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Peter Hochs and Hang Wang

We generalise the Atiyah–Segal–Singer fixed point theorem to noncompact man-
ifolds. Using KK-theory, we extend the equivariant index to the noncompact
setting, and obtain a fixed point formula for it. The fixed point formula is the
explicit cohomological expression from Atiyah–Segal–Singer’s result. In the
noncompact case, however, we show in examples that this expression yields
characters of infinite-dimensional representations. In one example, we realise
characters of discrete series representations on the regular elements of a max-
imal torus, in terms of the index we define. Further results are a fixed point
formula for the index pairing between equivariant K-theory and K-homology,
and a nonlocalised expression for the index we use, in terms of deformations of
principal symbols. The latter result is one of several links we find to indices of
deformed symbols and operators studied by various authors.
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1. Introduction

In the second part of the Index of elliptic operators series, Atiyah and Segal [1968]
proved a fixed point formula for compact groups and manifolds. This allows one
to compute the equivariant index of an elliptic operator (or an elliptic complex)
in terms of data on the fixed point sets of the group elements. In [Atiyah and
Singer 1968b], a cohomological version of this formula was obtained, which we
call the Atiyah–Segal–Singer fixed point theorem. It has applications, for example,
in representation theory. Indeed, Atiyah and Bott [1968] used a fixed point formula
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(which equals the Atiyah–Segal–Singer theorem in the case considered) to prove
the Weyl character formula.

Our goals in this paper are to generalise the Atiyah–Segal–Singer theorem to
noncompact manifolds, and to apply this generalisation in relevant situations.

The main result and some applications. We define an index on possibly noncom-
pact manifolds, which generalises the equivariant index for compact groups and
manifolds (see Definition 2.7). Assuming the fixed point set of a group element g
is compact, we show that this index is given by exactly the same cohomologi-
cal expression as in the Atiyah–Segal–Singer theorem. This is our main result,
Theorem 2.16. We also obtain a fixed point formula for the index pairing between
equivariant K-theory and K-homology in Theorem 2.18. In the nonequivariant
setting, very general expressions for this pairing were given in [Carey et al. 2014];
Theorem 2.18 is an equivariant version of these results for the operators considered
here.

While the cohomological expression for the index is the same as in the compact
case, in noncompact examples we see that it gives rise to characters of infinite-
dimensional representations. These can never occur as indices of elliptic operators
on compact manifolds, so that the theory really gives us something new. For ex-
ample, we use the fixed point theorem in Section 6E to express the character of a
representation in the discrete series of a semisimple Lie group in terms of our index,
on the regular elements of a maximal torus. Other examples and applications are:
• a holomorphic linearisation theorem, related to [Guillemin et al. 2002, Chap-

ter 4] and [Braverman 2002, Theorem 7.2];

• explicit computations for actions by the circle on the plane and the two-sphere;

• a relation with kernels of Fredholm operators, in particular Callias-type Dirac
operators [Anghel 1993; Braverman and Shi 2016; Bunke 1995; Callias 1978;
Kucerovsky 2001];

• a relation with Braverman’s index of deformed Dirac operators [Braverman
2002];

• a relative index theorem, in the spirit of [Gromov and Lawson 1983, Theo-
rem 4.18];

• some geometric consequences in the cases of the Hodge–Dirac and Spin-Dirac
operators.

In all cases we consider, we find that the index can be expressed explicitly in
terms of the kernel of a deformation of the operator in question. (In the discrete
series example, the operator does not even have to be deformed.) On noncompact
manifolds, one can often obtain a well-defined index of a Dirac operator by ap-
plying a deformation, with suitable growth behaviour. See, for example, [Anghel
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1993; Braverman 2002; 2015; Bunke 1995; Callias 1978; Hochs and Mathai 2015;
Hochs and Song 2017a; Kucerovsky 2001; Ma and Zhang 2014; Paradan 2011].
This index then depends on the deformation used. While we do not use a defor-
mation to define our index, we see in examples that it equals an index defined
via a deformation. One could speculate that this means that the index we use
implicitly includes a canonical choice of such a deformation. For the Callias-type
operators studied in [Anghel 1993; Braverman and Shi 2016; Bunke 1995; Callias
1978; Kucerovsky 2001], their equivariant indices can be expressed as the index
we define, plus a term representing the dependence on the deformation used, in
terms of its behaviour “at infinity”. (Previously, Callias-type operators were not
studied in combination with group actions, so only nonequivariant indices were
computed.)

The relation to index theory of deformed Dirac operators is strengthened in the
last section of this paper, which is independent of the fixed point formula. There
we give an expression for the index of elliptic operators involving deformations of
their principal symbols.

Other generalised fixed point theorems include [Berline and Vergne 1996a, Main
Theorem 1; 1996b, Theorem 20] (for transversally elliptic operators), [Braverman
2002, Theorem 7.5] (for deformed Dirac operators on noncompact manifolds), the
results in [Dell’Ambrogio et al. 2014] (for correspondences, generalising self-maps
on manifolds), [Emerson 2011, Theorem 2.7] (for groupoids) and [Wang and Wang
2016, Theorem 6.1] (for orbifolds).

Idea of the proof. Let us sketch some technical steps involved in defining the index
and proving the fixed point formula. We consider a Riemannian manifold M , and
an elliptic operator D on a vector bundle E→ M . Let G be a compact Lie group
acting on E , preserving D. Under assumptions about grading and self-adjointness,
we have a class [D] in the equivariant K-homology group K G

0 (M) of M . Let g ∈G.
Then we may replace G by the compact Abelian group generated by g, and still
retain all information about the action by the element g. A localisation theorem in
K-homology allows us to construct the g-index map

indexg : K G
0 (M)→ C.

This localisation theorem is closely related to a localisation theorem in KK-theory:
Theorem 3.2 in [Rosenberg 1999]. The g-index of the operator D is defined as the
g-index of its class [D] in K G

0 (M). If M is compact, this is the usual equivariant
index of D, evaluated at g.

If M is compact, the principal symbol σD of D defines a class in the equivariant
topological K-theory group K 0

G(TM). In our setting, M may be noncompact. Then
we have a class

[σD] ∈ KKG(M, TM)
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in the equivariant KK-theory of the pair (C0(M),C0(TM)). The Dolbeault–Dirac
operator on TM defines a class

[DTM ] ∈ KKG(TM, pt).

An index theorem by Kasparov implies that, with respect to the Kasparov product
⊗TM over C0(TM), we have

[D] = [σD]⊗TM [DTM ] ∈ KKG(M, pt)= K G
0 (M).

This generalises the Atiyah–Singer index theorem.
The proof of the fixed point formula for the g-index of D is a KK-theoretic

generalisation of the proof by Atiyah and Segal [1968] for the compact case. This
generalisation involves Kasparov’s index theorem, localisation theorems in KK-
theory, and KK-theoretic versions of the Gysin wrong-way maps in K-theory. An-
other ingredient is a class

σ D
g ∈ K 0

G(TM)g (1.1)

associated to σD , in the equivariant topological K-theory of TM , localised (in the
algebraic sense) at g. Using these techniques, and keeping track of what happens
in both entries in KK-theory, allows us to obtain an expression for the g-index of
D in terms of data on the fixed point set of g. While all constructions in the proof
are KK-theoretic in nature, the end result is a purely cohomological expression.
An explicit description of the class (1.1) in terms of a deformation of the symbol
σD allows us to prove a nonlocalised expression for the g-index, independent of
the fixed point formula.

Outline. The g-index is introduced in Section 2. It allows us to state the fixed
point formula in Theorem 2.16.

In Section 3, we prove the localisation results, which imply that the g-index is
well-defined. In Section 4, we review an index theorem by Kasparov. This result,
and related techniques, are used in the proof of the fixed point theorem in Section 5.

The applications and examples mentioned above are discussed in Section 6. In
Section 7, we obtain a nonlocalised expression for the g-index of an elliptic oper-
ator.

Notation. If A is a subset of a set B, then we denote the inclusion map A ↪→ B
by j B

A . We denote the one-point set by pt. For any set A, we write pA for the map
from A to pt.

If U is an open subset of a locally compact Hausdorff space X , then we denote
by k X

U the inclusion map C0(U ) ↪→ C0(X) defined by extending functions by zero
outside U . If Y is another locally compact Hausdorff space, we write

KK(X, Y ) := KK(C0(X),C0(Y )),
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and similarly for equivariant KK-theory. The Kasparov product ⊗C0(X) over C0(X)
will also be denoted by ⊗X . If X has a Borel measure, and E→ X is a Hermitian
vector bundle, then the ∗-homomorphism πX : C0(X)→ B(L2(E)) is given by
the pointwise multiplication on L2-sections of E . If H is a locally compact group
acting on X , and H ′ < H is a subgroup, we write H ×H ′ X for the quotient of
H × X by the action by H ′ given by

h′ · (h, x)= (hh′−1, h′x),

for h′ ∈ H ′, h ∈ H and x ∈ X .
Throughout this paper, G will be a compact Abelian group containing an element

g whose powers are dense in G. The only exception is Section 6E, where G denotes
a semisimple Lie group. There, a compact Cartan subgroup T < G will play the
role that G plays in the rest of this paper.

If M is a manifold, its tangent bundle projection TM → M is denoted by τM .
If a Riemannian metric is given, we will often tacitly use it to identify the tangent
bundle of M with the cotangent bundle. The complexification of a vector space or
vector bundle is denoted by a subscript C.

2. The fixed point formula

Our goal in this paper is to generalise the Atiyah–Segal–Singer fixed point theo-
rem ([Atiyah and Singer 1968b, Theorem 3.9], based on [Atiyah and Segal 1968,
Theorem 2.12]) to noncompact manifolds, and to find interesting applications of
this generalisation. This leads us to define the g-index in Section 2B. The key
to defining the g-index is a localisation theorem, which is stated in Section 2A.
The main result of this paper is the fixed point formula in Theorem 2.16, stated
in Section 2D. This formula is entirely cohomological, and does not involve KK-
theory. Some properties of the g-index are given in Section 2C.

Throughout this paper, M will be a Riemannian manifold. We consider an iso-
metric diffeomorphism g from M to itself. Suppose the closure of the powers of
g in the isometry group (with respect to the compact-open topology) is a compact
group G. Equivalently, suppose g is an element of a compact group H acting
isometrically on M , and let G < H be the closed subgroup generated by g. In any
case, G is Abelian. Let Mg be the fixed point set of g.

Let E = E+⊕ E−→M be a Z2-graded, Hermitian vector bundle. Let D be an
odd, essentially self-adjoint, elliptic differential operator, with principal symbol σD .
(For example, D can be a Dirac-type operator on a complete manifold.) We will
also write D for the self-adjoint closure of D. Then we have the element

[D] :=
[

L2(E), D
√

D2+1
, πM

]
(2.1)
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of the equivariant K-homology group KKG(M, pt) := KKG(C0(M),C). Here
πM : C0(M)→ B(L2(E)) is given by pointwise multiplication. For background
material on KK-theory, see [Blackadar 1998, Chapter VIII].

2A. Localisation. Let R(G)g := R(G)Ig be the localisation of the representation
ring R(G) at the prime ideal

Ig := {χ ∈ R(G) : χ(g)= 0}.

For any module M over R(G), we write Mg := MIg for the corresponding lo-
calised module over R(G)g. Similarly, if m ∈M, and ϕ :M→M′ is a module
homomorphism to another such module, we write mg ∈Mg and

ϕg :Mg→M′g

for the corresponding localised versions.
For any two G-C∗-algebras A and B, the group KKG(A, B) is a module over the

ring R(G)= KKG(C,C), via the exterior Kasparov product. Fix a G-C∗-algebra A.
The inclusion map

j M
Mg : Mg ↪→ M

induces
( j M

Mg )
∗

g : KKG(A,C0(M))g→ KKG(A,C0(Mg))g.

Theorem 2.2. If A is separable, the map ( j M
Mg )
∗
g is an isomorphism of Abelian

groups. This is still true if M \Mg is a manifold, rather than all of M.

Remark 2.3. If A= C, then this reduces to [Atiyah and Segal 1968, Theorem 1.1].
We need this more general statement, because in the noncompact case, princi-
pal symbols define classes in KKG(C0(M),C0(TM)) as in (4.4), rather than in
KKG(C,C0(TM)) when M is compact.

We will also use an analogue of Theorem 2.2 for the first entry in KK-theory.
Its formulation is slightly more subtle.

Theorem 2.4. Suppose that Mg is compact and that A is σ -unital. Let U, V ⊂ M
be two G-invariant, relatively compact open neighbourhoods of Mg, such that
U ⊂ V . Then the map

(( j V
U
)∗)g : KKG(C0(U ), A)g→ KKG(C0(V ), A)g

is an isomorphism of Abelian groups. This is still true if M is only a locally
compact Hausdorff topological space rather than a manifold, as long as the open
subset M \Mg is a manifold.

Theorems 2.2 and 2.4 will be proved in Section 3 for graded KK-theory, i.e.,
the combination of even and odd KK-theory. We will only apply the even versions,
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however. The cases where only M \Mg is a manifold were included because we will
also apply Theorem 2.4 to one-point compactifications of manifolds. Theorems 2.2
and 2.4 are similar to Theorem 3.2 in [Rosenberg 1999].

2B. The g-index. Suppose the fixed point set Mg is compact. Let U, V be as
in Theorem 2.4. Consider the proper map pU

:U → pt, and the inclusion map
k M

V : C0(V )→ C0(M) given by extending function by zero outside V . Let A be a
σ -unital G-C∗-algebra. By Theorem 2.4, we have the maps

KKG(C0(M), A)g
(k M

V )
∗
g

−−−→ KKG(C0(V ), A)g
(( j V

U
)∗)
−1
g

−−−−−→ KKG(C(U ), A)g
(pU
∗ )g
−−−→ KKG(C, A)g. (2.5)

Lemma 2.6. The composition (2.5) is independent of the sets U and V .

Proof. To prove independence of U , let U ′ be a G-invariant, relatively compact
neighbourhood of Mg such that U ′ ⊂U . Then we have the commutative diagram

KKG(C(U ′), A)
pU ′
∗

((

( j V
U ′
)∗

vv

( jU
U ′
)∗

��

KKG(C0(V ), A) KKG(C(U ), A)
pU
∗

//

( j V
U
)∗

oo KKG(C, A)

Commutativity of this diagram implies that

(pU ′
∗
)g ◦ (( j V

U ′
)∗)
−1
g = (p

U
∗
)g ◦ (( j V

U
)∗)
−1
g .

So (2.5) is indeed independent of U .
To prove independence of V , let V ′ be a G-invariant, relatively compact open

subset of M containing V . Then the following diagram commutes:

KKG(C0(V ′), A)

(kV ′
V )∗

��

KKG(C0(M), A)
(k M

V )
∗

//

(k M
V ′ )
∗

55

KKG(C0(V ), A) KKG(C(U ), A)
( j V

U
)∗

oo

( j V ′

U
)∗

ii

Therefore, we have

(( j V ′

U
)∗)
−1
g ◦ (k

M
V ′)
∗

g = (( j V
U
)∗)
−1
g ◦ (k

M
V )
∗

g,

so that (2.5) is independent of V . �

To define the g-index, we only need the case of Lemma 2.6 where A = C. Later
we will also use the general case, however.
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Let
evg : R(G)→ C

be defined by evaluating characters at g, i.e., evg(χ) := χ(g), for χ ∈ R(G). In
view of Lemma 2.6, we obtain a well-defined index as follows.

Definition 2.7. The g-index is the map

indexg : KKG(M, pt)→ C

defined as the composition

KKG(M, pt) ↪→ KKG(M, pt)g
(pU
∗ )g◦(( j V

U
)∗)
−1
g ◦(k

M
V )
∗
g

−−−−−−−−−−−−−→ KKG(pt, pt)g ∼= R(G)g
(evg)g
−−−→ C. (2.8)

We will write
indexg(D) := indexg[D],

where [D] ∈ KKG(M, pt) is the class (2.1).

Note that (k M
V )
∗
g[D]g is simply the localisation at g of the K-homology class of

the restriction of D to V .

Remark 2.9. The g-index of D could also have been called the D-Lefschetz num-
ber of g.

2C. Properties of the g-index. If M is compact, then we may take U = V = M
in Definition 2.7. Furthermore, the map pM

: M→ pt is proper. In that case, the
composition (2.5) simply equals the map

(pM
∗
)g : KKG(C0(M), A)g→ KKG(C, A)g.

If A = C, then it follows that for compact M , the g-index of D equals

indexg(D)= indexG(D)(g), (2.10)

the usual equivariant index of D evaluated at g. Note that on the right-hand side
of (2.10), G can be any compact Lie group acting isometrically on M if the action
lifts to E , commutes with D, and contains g.

In general, however, the g-indices on noncompact manifolds give us something
more general than the equivariant index in the compact case. In the examples
in Section 6, we will see that the g-index can be used to describe characters of
infinite-dimensional representations. These cannot be realised as indices on com-
pact manifolds. And even on compact manifolds, an equivariant index can be
decomposed into g-indices which individually correspond to infinite-dimensional
representations. See Section 6D.

The g-index has an excision property.
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Lemma 2.11. Let V be a G-invariant, relatively compact, open neighbourhood
of Mg. Suppose there is a G-equivariant open embedding V ↪→ M̃ into a G-
manifold M̃. Suppose the action by G on M̃ has no fixed points outside V . Suppose
there is a Hermitian, Z2-graded G-vector bundle Ẽ→ M̃ and an odd, self-adjoint,
elliptic differential operator D̃ on Ẽ such that Ẽ |V = E |V and D̃|V = D|V . Then

indexg(D)= indexg(D̃).

Proof. By Proposition 10.8.8 in [Higson and Roe 2000], we have

(k M
V )
∗
[D] = (k M̃

V )
∗
[D̃] ∈ KKG(V, pt).

This implies the claim. �

Example 2.12. Suppose M has a G-equivariant Spin-structure, and let D be the
Spin-Dirac operator. Let M ↪→ M̃ be a G-equivariant open embedding into a
compact G-manifold M̃ with a G-equivariant Spin-structure. If G is connected
and indexg(D) 6= 0, then g must have a fixed point in M̃ \ M . Indeed, Atiyah
and Hirzebruch [1970] showed that the g-index of the Spin-Dirac operator on M̃
is zero in this case. So the claim follows by Lemma 2.11.

Another property of the g-index is multiplicativity. Let D1 and D2 be operators
like D on manifolds M1 and M2, respectively, and consider the product operator

D1× D2 := D1⊗ 1+ 1⊗ D2

on M1 × M2 (where graded tensor products are used). Then functoriality of the
Kasparov product implies that

indexg(D1× D2)= indexg(D1) indexg(D2).

In the index theory of deformed Dirac operators developed in [Braverman 2002],
the deformation used means that an analogous multiplicativity property is highly
nontrivial; see [Hochs and Song 2017b; Ma and Zhang 2014; Paradan 2011].

2D. Fixed points. Having defined the g-index, we can state the main result of this
paper. We will use the fact that the connected components of the fixed point set Mg

are smooth submanifolds of M , possibly of different dimensions.
Since Mg is compact, the restriction to TMg of the principal symbol σD of D

defines a class
[σD|TMg ] ∈ KKG(pt, TMg). (2.13)

Let N→ Mg be the union of the normal bundles to each of the components of Mg.
Consider the topological K-theory class[∧

NC

]
:=
[⊕

j
∧2 j N ⊗C

]
−
[⊕

j
∧2 j+1 N ⊗C

]
∈ KKG(pt,Mg). (2.14)
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For any trivial G-space X , we have

KKG(pt, X)∼= KK(pt, X)⊗ R(G).

We can evaluate the factor in R(G) of any class a ∈ KKG(pt, X) at g, to obtain
a(g) ∈ KK(pt, X)⊗C. In this way, evaluating the classes (2.13) and (2.14) at g
gives the classes

[σD|TMg ](g) ∈ KK(pt, TMg)⊗C

and [∧
NC

]
(g) ∈ KK(pt,Mg)⊗C, (2.15)

respectively.
Consider the Chern characters

ch : KK(pt, TMg)→ H∗(TMg),

ch : KK(pt,Mg)→ H∗(Mg),

defined on each smooth component of Mg separately. By [Atiyah and Segal 1968,
Lemma 2.7], the K-theory class (2.15) is invertible; hence so is its Chern character.
An explicit expression for the inverse

1
ch
([∧

NC

]
(g)
) ∈ H∗(Mg)⊗C

of this element is given in [Atiyah and Singer 1968b, (3.8)]. The cohomology
group H∗(Mg) acts on H∗(TMg) via the pullback along the tangent bundle projec-
tion τMg . Let Todd(TMg

⊗C) be the cohomology class on Mg obtained by putting
together the Todd-classes of the complexified tangent bundles to all components
of Mg.

Theorem 2.16 (fixed point formula). The g-index of D equals

indexg(D)=
∫

TMg

ch([σD|TMg ](g))Todd(TMg
⊗C)

ch
([∧

NC

]
(g)
) . (2.17)

The integral in this expression is the sum of the integrals over all connected
components of TMg of the integrand corresponding to each component.

If M is compact, then (2.10) implies that Theorem 2.16 reduces to the Atiyah–
Segal–Singer fixed point formula [Atiyah and Singer 1968b, Theorem 3.9].

2E. The index pairing. In the course of the proof of Theorem 2.16, we will also
find a fixed point formula for the index pairing (i.e., the Kasparov product)

KKG(pt,M)× KKG(M, pt)→ KKG(pt, pt).

Note that any element of the equivariant topological K-theory group KKG(pt,M)
can be represented by a formal difference [F0]− [F1], for two G-equivariant vec-
tor bundles F0, F1 → M that are equal outside a compact set. We will write
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F := F0 ⊕ F1, with the Z2-grading where F0 is the even part and F1 the odd
part, and [F] := [F0] − [F1] ∈ KKG(pt,M).

Theorem 2.18 (fixed point formula for the index pairing). We have

([F]⊗M [D])(g)=
∫

TMg

ch([F |Mg ](g)) ch([σD|TMg ](g))Todd(TMg
⊗C)

ch
([∧

NC

]
(g)
) .

Recall that Mg was assumed to be compact, and that we use the action by the
cohomology of Mg on the cohomology of TMg via the pullback along τMg .

Theorem 3.33 in [Carey et al. 2014] is a nonequivariant index formula for the
index pairing in a more general context. Theorem 2.18 is an equivariant version of
this result, for operators like D.

The proof of Theorem 2.18 is simpler than that of Theorem 2.16, because it does
not involve localisation in the first entry of KK-theory. Theorem 2.16 is needed for
the examples and applications in Section 6, such as the relation with characters of
discrete series representations. The reason for this is that Theorem 2.16 provides
an expression for an index of the operator D itself, without the need to twist it by
a K-theory class.

3. Localisation

We now turn to a proof of Theorems 2.2 and 2.4. This involves certain module
structures discussed in Section 3A, which are used to prove vanishing results in
Section 3B. In this section, we consider graded KK-theory, i.e., the direct sum of
even and odd KK-theory.

3A. Module structures. Let H be a locally compact group, and let H ′ < H be a
compact subgroup.

Proposition 3.1. Let Y be a locally compact, Hausdorff , proper H-space for
which there is an equivariant, continuous map Y → H/H ′. Then for any H-C∗-
algebra A, the groups

KK H (A,C0(Y )) and KK H (C0(Y ), A)

have structures of unital R(H ′)-modules.

Proposition 3.1 follows from the fact that vector bundles, even on noncompact
spaces, define classes in KK-theory in the following way. This is probably well-
known, but we include a proof for completeness’ sake.

Let X be a locally compact Hausdorff space on which H acts properly. Let
E → X be a Hermitian H -vector bundle. The space 00(E) of continuous sec-
tions of E vanishing at infinity is a right Hilbert C0(X)-module by pointwise
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multiplication and inner products. Let πX : C0(X) → B(00(E)) be given by
pointwise multiplication.

Lemma 3.2. The triple
(00(E), 0, πX ) (3.3)

is an H-equivariant Kasparov (C0(X),C0(X))-cycle.

For compact spaces X , this fact is noted for example in (3.1) in [Rosenberg
1999]. In general, we will denote the class in KK H (X, X) defined by (3.3) by [E].

Proof. We show that for all f ∈ C0(X), the operator πX ( f ) on 00(E) is compact.
This implies the claim.

Let U ⊂ X be a relatively compact open subset admitting an orthonormal frame
{e1, . . . , er } of E |U . Let s ∈ 00(E). Then

s|U =
r∑

j=1

(e j , s)E e j .

Here (− ,−)E is the metric on E . So if f ∈ C0(X) is supported inside U , then

πX ( f )s =
r∑

j=1

(e j , f s)e j =

r∑
j=1

( f̄ e j , s)e j .

By extending the sections e j outside U to elements of 00(E), we find that πX ( f )
is a finite-rank operator.

For a general f ∈ Cc(X), there is a finite open cover {U j }
n
j=1 of supp( f ) such

that every set U j admits a local orthonormal frame for E . Let {ϕ j }
n
j=1 be functions

such that supp(ϕ j ) ⊂ U j , and
∑n

j=1 ϕ j equals one on supp( f ). Then, by the
preceding argument,

πX ( f )=
n∑

j=1

πX (ϕ j f )

is a finite-rank operator. Hence, for all f ∈ C0(X), the operator πX ( f ) on 00(E)
is indeed compact. �

Now consider the situation of Proposition 3.1. Let p : Y → H/H ′ be an equi-
variant, continuous map. Let V be a finite-dimensional representation space of H ′.
We have the H -vector bundles

H ×H ′ V → H/H ′

and
EV := p∗(H ×H ′ V )→ Y.

By Lemma 3.2, this vector bundle defines a class

[EV ] ∈ KK H (Y, Y ).
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Lemma 3.4. The map from R(H ′) to KK H (Y, Y ) given by

[V ] 7→ [EV ],

with [EV ] defined as above, is a ring homomorphism.

Proof. This follows from the fact that in the setting of Lemma 3.2, for any two
Hermitian H -vector bundles E, E ′→ X , one has

[E]⊗X [E ′] = [E ⊗ E ′]. �

The ring homomorphism of Lemma 3.4 defines the module structures sought in
Proposition 3.1, which has therefore been proved. If A = C and Y is compact, the
R(H ′)-module structure on KK H (C,C0(Y )) defined in this way is the one used in
[Atiyah and Segal 1968].

3B. Vanishing results. We will prove Theorems 2.2 and 2.4 by generalising Atiyah
and Segal’s proof of [Atiyah and Segal 1968, Theorem 1.1]. An important step is
the following generalisation of [Atiyah and Segal 1968, Corollary 1.4].

Proposition 3.5. Let H < G be a closed subgroup such that g 6∈ H. Let Y be
a compact G-space for which there is an equivariant map Y → G/H , and A a
G-C∗-algebra. Then

KKG(A,C0(Y ))g = KKG(C0(Y ), A)g = 0.

Proof. By [Atiyah and Segal 1968, Corollary 1.3], we have R(H)g = 0. As
Atiyah and Segal argued below that corollary, it is therefore enough to show that
KKG(A,C0(Y )) and KKG(C0(Y ), A) are unital R(H)-modules. Hence, the claim
follows from Proposition 3.1. �

We will deduce Theorems 2.2 and 2.4 from the following special cases.

Proposition 3.6. In the setting of Theorem 2.2, suppose g has no fixed points in M.
Then, if A is separable, we have

KKG(A,C0(M))g = 0. (3.7)

If A is σ -unital, then for all G-invariant, relatively compact open subsets U ⊂ M ,

KKG(C0(U ), A)g = 0. (3.8)

If A = C, then (3.7) is precisely [Atiyah and Segal 1968, Proposition 1.5]. By
a generalisation of the arguments in [Atiyah and Segal 1968, Section 1], we will
deduce Proposition 3.6 from Proposition 3.5.

By Palais’ slice theorem [1961, Proposition 2.2.2], there is an open cover {U j }
∞

j=1
of M by G-invariant open sets such that for all j ,

U j ∼= G×H j S j
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(via the action map), for the stabiliser H j <G of a point in U j , and an H j -invariant
submanifold S j ⊂ M . Suppose that g has no fixed points. Then it does not lie in
any of the stabilisers H j . Therefore, Proposition 3.5 implies that

KKG(A,C0(U j ))g = KKG(C0(U j ), A)g = 0.

Let X ⊂ M be any G-invariant, compact subset. The proof of Proposition 3.6
is based on the following fact.

Lemma 3.9. If A is separable, then

KKG(A,C0(X))g = 0. (3.10)

If A is σ -unital, then
KKG(C0(X), A)g = 0. (3.11)

Proof. We use an induction argument based on exact sequences in KK-theory. We
work out the details for (3.10). Then (3.11) can be proved in the same way, with
exact sequences in the second entry in KK-theory replaced by the corresponding
exact sequences in the first entry. The conditions that A is separable or σ -unital
imply that these exact sequences exist.

For j, n ∈ N, write X j := U j ∩ X , and Yn := X1 ∪ · · · ∪ Xn . Fix n ∈ N, and
consider the exact sequence of C∗-algebras

0→ C0(Xn+1 \ Yn)→ C0(Xn+1)→ C0(Xn+1 ∩ Yn)→ 0.

It induces the exact triangle

KKG(A,C0(Xn+1)) // KKG(A,C0(Xn+1 ∩ Yn))

∂

��

KKG(A,C0(Xn+1 \ Yn))

jj

(See, e.g., [Blackadar 1998, Theorem 19.5.7].) By Proposition 3.5, we have

KKG(A,C0(Xn+1))g = KKG(A,C0(Xn+1 ∩ Yn))g = 0.

Since localisation at g preserves exactness, we find that

KKG(A,C0(Xn+1 \ Yn))g = 0. (3.12)

Using the exact sequence

0→ C0(Yn+1 \ Yn)→ C0(Yn+1)→ C0(Yn)→ 0

in a similar way, we obtain the exact triangle
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KKG(A,C0(Yn+1))g // KKG(A,C0(Yn))g

∂

��

KKG(A,C0(Yn+1 \ Yn))g

jj

Since Yn+1 \ Yn = Xn+1 \ Yn , the vanishing of (3.12) implies that

KKG(A,C0(Yn+1))g = KKG(A,C0(Yn))g.

Because Y1 = X1, Proposition 3.5 implies that

KKG(A,C0(Y1))g = 0.

Since X is compact, it can be covered by finitely many of the sets X j . Hence, the
claim follows by induction on n. �

Proof of Proposition 3.6. Let U ⊂ M be a G-invariant, relatively compact open
subset. Consider the exact sequence

0→ C0(U )→ C0(U )→ C0(∂U )→ 0.

If A is σ -unital, this induces the localised exact triangle

KKG(C0(U ), A)g

))

KKG(C0(∂U ), A)goo

KKG(C0(U ), A)g

∂

OO

Lemma 3.9 implies that

KKG(C0(U ), A)g = KKG(C0(∂U ), A)g = 0.

So we find that KKG(C0(U ), A)g = 0.
Similarly, if A is separable, we have the exact triangle

KKG(A,C0(U ))g // KKG(A,C0(∂U ))g

∂

��

KKG(A,C0(U ))g

ii

Applying Lemma 3.9 in the same way, we find that KKG(A,C0(U ))g = 0. The
equality (3.7) follows, because M is the direct limit of sets U as above, and because
KK-theory commutes with direct limits in the second entry. �

Remark 3.13. The reason why (3.8) does not hold if U is replaced by M , and
hence why Theorem 2.4 has to be stated more subtly than Theorem 2.2, is that
KK-theory does not commute with direct limits in the first entry. For example, the
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domain of the analytic assembly map in the Baum–Connes conjecture [Baum et al.
1994] is the representable K-homology group

RK H
∗
(X) := lim

−−→
Y⊂X; Y/H cpt

KK H (C0(Y ),C),

for a locally compact Hausdorff space X on which a locally compact group H acts
properly. This does not equal the usual K-homology group KK H (C0(X),C) in
general.

3C. Proofs of localisation results.

Proof of Theorem 2.2. Consider the exact sequence

0→ C0(M \Mg)→ C0(M)
( j M

Mg )
∗

−−−→ C0(Mg)→ 0.

It induces the exact triangle

KKG(A,C0(M))
( j M

Mg )
∗

// KKG(A,C0(Mg))

∂

��

KKG(A,C0(M \Mg))

jj

After localisation at g, the first part of Proposition 3.6 yields the exact triangle

KKG(A,C0(M))g
( j M

Mg )
∗
g
// KKG(A,C0(Mg))g

∂
��

0 �

jj

Proof of Theorem 2.4. Let U and V be as in Theorem 2.4. Similarly to the proof
of Theorem 2.2, we have an exact triangle

KKG(C0(V ), A)g

))

KKG(C0(U ), A)g
(( j V

U
)∗)g

oo

KKG(C0(V \U ), A)g

∂

OO

Because V \ U is a relatively compact subset of M \ Mg, the second part of
Proposition 3.6 implies that the bottom localised KK-group in this triangle equals
zero. �
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4. Kasparov’s index theorem

In the proof of the Atiyah–Segal–Singer fixed point theorem, the Atiyah–Singer
index theorem is used to relate topological and analytical indices to each other. In
the noncompact case discussed in this paper, a roughly similar role is played by
an index theorem of Kasparov. We state Kasparov’s index theorem in Section 4A.
In Section 4B, we discuss the fibrewise Bott element for the normal bundle of
a submanifold in KK-theory, which is dual to the class of the Dolbeault–Dirac
operator in a sense. This Bott element will play an important role in the proof
of Theorem 2.16. In Section 4D, we show how the Bott element can be used to
deduce the Atiyah–Singer index theorem from Kasparov’s index theorem in the
compact case. (The main step in the argument used there will be used in the proof
of Theorem 2.16.)

Most of the material in this section is based on [Atiyah and Singer 1968b; Kas-
parov 2016] and explanations to the authors by Kasparov. Although the results
here are not ours, we found it worthwhile to include the details, because they have
not appeared in print yet.

4A. The index theorem. To state the theorem, we recall the definition of the Dol-
beault operator class

[DTM ] ∈ KKG(TM, pt) (4.1)

in [Kasparov 2016, Definition 2.8]. The tangent bundle T (TM) of TM has a natural
almost complex structure J . For m ∈ M and v ∈ Tm M , we have

Tv(TM)= Tm M ⊕ Tv(Tm M)= Tm M ⊕ Tm M.

With respect to this decomposition, the almost complex structure J is given by the
matrix

[ 0
−1

1
0

]
. Let ∂̄ + ∂̄∗ be the Dolbeault–Dirac operator on smooth sections of

the vector bundle
∧0,∗T ∗(TM)→ TM , for this almost complex structure. We will

identify this vector bundle with τ ∗M
∧

TMC→ TM . The class (4.1) is the class of
this operator, as in (2.1). In our arguments however, it will be more convenient
to use the Spinc-Dirac operator DTM , on the same vector bundle. This defines the
same K-homology class as ∂̄ + ∂̄∗.

Definition 4.2. The topological index is the map

indext : KKG(M, TM)→ KKG(M, pt)

given by the Kasparov product with [DTM ].

Consider the principal symbol σ̃D := σD/
√

σ 2
D + 1 of the operator D/

√
D2+ 1.

For f ∈ C0(M), we have for all m ∈ M and v ∈ Tm M ,

f (m)(1− σ̃D(v)
2)= f (m)(σD(v)

2
+ 1)−1.
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Since the operator D is elliptic and of positive order, this expression tends to zero
as m or v tends to infinity. It therefore defines a compact operator on the Hilbert
C0(TM)-module 00(τ

∗

M E), analogously to the proof of Lemma 3.2. Therefore, the
triple

(00(τ
∗

M E), σ̃D, πTM ◦ τ
∗

M) (4.3)

is a G-equivariant Kasparov (C0(M),C0(TM))-cycle. Here, πTM : Cb(TM)→
B(00(τ

∗

M E)) is given by pointwise multiplication. Denote by

[σD] ∈ KKG(M, TM) (4.4)

the class of (4.3). In view of the following lemma, this symbol class is a natural
generalisation of the K-theory symbol class defined in [Atiyah and Singer 1968a]
when M is compact.

Lemma 4.5. If M is compact, consider the map pM from M to a point. The image

pM
∗
[σD] ∈ K ∗G(TM)

is the usual symbol class.

Proof. Since πTM ◦ τ
∗

M ◦ (p
M)∗ is the representation of C in 00(τ

∗

M E) by scalar
multiplication, we have

pM
∗
[σD] = [00(τ

∗

M E), σ̃D] ∈ KKG(pt, TM).

This corresponds to the class

[σD+ : τ
∗

M E+→ τ ∗M E−] ∈ K 0
G(TM)

in the sense of [Lawson and Michelsohn 1989, Chapter III, (1.7)], where TM is
identified with the open unit ball bundle BM over M . (Restricting σD+ to BM and
then identifying BM ∼= TM has the same effect as normalising σD+ .) The lemma
is then proved. �

We conclude this subsection by stating Kasparov’s index theorem, which will
be used to obtain a cohomological formula for the g-index.

Theorem 4.6 (Kasparov’s index theorem [2016, Theorem 4.2]). The K-homology
class of the elliptic operator in (2.1) is equal to the topological index of its symbol
class (4.4), i.e.,

[D] = indext [σD] ∈ KKG(M,C). (4.7)

Remark 4.8. In [Kasparov 2016, Theorem 4.2], the operator in question is as-
sumed to be properly supported, which is not true for the operator D/

√
1+ D2 in

general. However, let {χ j }
∞

j=1 be a sequence of G-invariant, compactly supported
functions, such that {χ2

j }
∞

j=1 is a partition of unity. (This exists since G is compact.)
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Then the operator
∞∑
j=1

χ j
D

√
1+D2

χ j

is properly supported, and also satisfies the other assumptions of [Kasparov 2016,
Theorem 4.2]. Since this operator defines the same K-homology class as D/

√
1+D2,

we can apply [Kasparov 2016, Theorem 4.2] to the class of the latter operator in
this way.

4B. The Bott element. If S is a closed (as a topological subspace, i.e., not neces-
sarily compact), G-invariant submanifold of M , then the Dolbeault operator classes
on TS and on a tubular neighbourhood of TS in TM are related by a (fibrewise) Bott
element. This is a technical tool that will be used several times in the paper. The
material here is analogous to Definition 2.6 and Theorem 2.7 in [Kasparov 2016].

Consider the tangent bundle projections

τS : TS→ S,

τN : TN → N .

Denote by π : N → S the normal bundle of S in M . Let Tπ : TN → TS be
the tangent map of π . It again defines a vector bundle. The following diagram
commutes:

TN
τN
//

Tπ
��

N

π

��

TS
τS
// S

(4.9)

This defines a vector bundle TN → S. Consider the vector bundle∧
ÑC := Tπ∗

(
τ ∗S
∧

N ⊗C
)
→ TN .

Let s ∈ S. Then

(TN )s := Tπ−1(τ−1
S (s))= τ−1

N (Ns)= Ts S× Ns × Ns .

Let w ∈ (TN )s , and let (η, ζ ) ∈ Ns × Ns be the projection of w according to this
decomposition. Note that (∧

ÑC

)
w
=
∧

Ns ⊗C.

We define the vector bundle endomorphism B of
∧

ÑC by

Bw = ext
(
ζ +
√
−1η

)
− int

(
ζ +
√
−1η

)
,

for all s, w, η and ζ as above. Here ext denotes the wedge product, and int denotes
contraction. With respect to the grading of

∧
ÑC by even and odd exterior powers,

the operator B is odd.
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As B is fibrewise selfadjoint, we have the bounded operator B(1+ B2)−1/2 on
00
(
TN,

∧
ÑC

)
. The space 00

(
TN,

∧
ÑC

)
is a right Hilbert C0(TN )-module in the

usual way, with respect to pointwise multiplication by functions and the pointwise
inner product. Consider the representation

π̃TS := πTN ◦ Tπ∗ : C0(TS)→B
(
00
(
TN,

∧
ÑC

))
,

where πTN is given by pointwise multiplication by functions in Cb(TN ).

Lemma 4.10. The triple(
00
(
TN,

∧
ÑC

)
, B(1+ B2)−1/2, π̃TS

)
(4.11)

is a G-equivariant Kasparov (C0(TS),C0(TN ))-cycle.

Proof. Let f ∈ C0(TS). Since B(1+ B2)−1/2 is a vector bundle endomorphism, it
commutes with π̃TS( f ). Moreover, we have for all w ∈ (TN )s as above,(

π̃TS( f )
(
1− [B(1+ B2)−1/2

]
2))

w
=

f (v)
1+‖η‖2+‖ζ‖2

,

with v := Tπ(w) ∈ Ts S. This defines a function in C0(TN ), and hence acts on the
Hilbert C0(TN )-module 00

(
TN ,

∧
ÑC

)
as a compact operator. As G preserves the

metric on TN , the operator B(1+ B2)−1/2 is G-equivariant. �

Definition 4.12. The (fibrewise) Bott element of the normal bundle N → S is the
class

βN ∈ KKG(TS, TN )
of the cycle (4.11).

4C. The Bott element and Dolbeault classes. The Bott element is useful to us
because of the following property. This was used in [Kasparov 2016, second para-
graph on p. 1326]; we work out some details of the proof in this subsection.

Proposition 4.13. Under the Kasparov product

KKG(TS, TN )× KKG(TN , pt)→ KKG(TS, pt),
one has

βN ⊗TN [DTN ] = [DTS].

To prove this proposition, one can use the part D1 of the Spinc-Dirac operator
DTN acting in the fibre directions of TN → TS. For s ∈ S and v ∈ Ts S, we
have Tπ−1(v) = Ns ⊕ TvN . Let a be the rank of N , and let { f1, . . . , fa} be a
local orthonormal frame of N → S. This defines coordinate functions κ j and λ j

on the parts Ns and TvN of the fibres Tπ−1(v) of TN → TS, respectively. For
j = 1, . . . , a, consider the vector bundle endomorphisms

e j := ext( f j )− int( f j ) and ε j := ext( f j )+ int( f j )
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of
∧

N ⊗C→ S, pulled back along (4.9) to endomorphisms of
∧

ÑC→ TN . Then
D1 is the operator

D1 :=

a∑
j=1

e j
∂

∂κ j
+
√
−1ε j

∂

∂λ j

on 0∞
(
TN ,

∧
ÑC

)
. This can be viewed as a family of operators on the fibres

of TN → TS.
It defines a class in KK-theory as follows. Let 0c

(
TN ,

∧
ÑC

)
be the space of

continuous compactly supported sections of
∧

ÑC. Let E0 be the completion of
this space into a Hilbert C0(TS)-module with respect to the C0(TS)-valued inner
product

〈 f, h〉(v) :=
∫

Tπ−1(v)

f (t)h(t) dt (4.14)

for f, h ∈ 0c
(
TN ,

∧
ÑC

)
and v ∈ TS. The operator D1 gives rise to the class

[D1] :=
[
E0, D1(1+ D2

1)
−1/2, πTN

]
∈ KKG(TN , TS). (4.15)

Lemma 4.16. We have

[D1]⊗TS [DTS] = [DTN ] ∈ KKG(TN , pt).

Proof. Regarding N as an open subset of M , we identify their tangent bundles
when restricted to S, i.e., TN |S = TM |S . Therefore, as vector bundles over TN ,
we have∧

ÑC⊗ Tπ∗τ ∗S
∧

TSC = Tπ∗τ ∗S
∧

NC⊗ Tπ∗τ ∗S
∧

TSC

= Tπ∗τ ∗S
∧
(N ⊕ TS)C = Tπ∗τ ∗S

∧
(TM |S)C

= Tπ∗τ ∗S
∧
(TN |S)C = τ ∗N

∧
TNC.

The last equality follows from commutativity of (4.9). Thus, as Hilbert spaces with
representations of C0(TN ),

E0⊗C0(TS) L2(TS, τ ∗S
∧

TSC

)
∼= L2

(
TN , τ ∗N

∧
TNC

)
. (4.17)

Under this identification, we have

D1⊗ 1+ 1⊗ DTS = DTN .

(Here we use graded tensor products.) Consider the bounded operator

F :=
D1⊗ 1+ 1⊗ DTS

√

1+ D2
1 ⊗ 1+ 1⊗ D2

TS

(4.18)
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on E0⊗C0(TS) L2
(
TS, τ ∗S

∧
TSC

)
. Write

F1 :=
D1√

1+ D2
1

, FTS :=
DTS√

1+ D2
TS

.

We can verify that F is an 1⊗FTS-connection, and the graded commutator [F1⊗1, F]
is positive modulo compact operators. Thus, by [Blackadar 1998, Definition 18.4.1],
the Kasparov product [D1]⊗TS [DTS] is represented by the operator F on the space
L2
(
TN , τ ∗N

∧
TNC

)
. The lemma is then proved. �

Lemma 4.19. The product
βN ⊗TN [D1]

is the identity element of the ring KKG(TS, TS).

Proof. The idea is that in this product, we pair fibrewise Bott classes and Dolbeault
classes, and thus obtain the trivial line bundle over TS. To see this, observe first
the isomorphism

0c
(
TN ,

∧
ÑC

)
⊗Cc(TN ) 0c

(
TN ,

∧
ÑC

)
∼= 0c

(
TN ,

∧
ÑC⊗

∧
ÑC

)
(4.20)

as Cc(TS)-modules. Denote by E′ the completion of the right-hand side under the
C0(TS)-valued inner product defined in a similar way as (4.14). It can be checked
that

F0 :=
B⊗ 1+ 1⊗ D1√

1+ B2⊗ 1+ 1⊗ D2
1

(4.21)

is a 1⊗ D1/
√

1+ D2
1-connection, and that for all a in C0(TS), the operator

π̃TS(a)[B(1+ B2)−1/2
⊗ 1, F0]π̃TS(a)∗

is positive modulo compact operators on E′. Hence, the Kasparov product of βN ,
given by (4.11), and the class [D1], given by (4.15), is equal to

[E′, F0, π̃TS] ∈ KKG(TS, TS). (4.22)

As in the proof of [Kasparov 2016, Theorem 2.7(2)], we apply the rotation homo-
topy

Ft :=
(B+ sin(t)D1)⊗ 1+ 1⊗ cos(t)D1√

1+ (B2
+ sin(t)2 D2

1)⊗ 1+ 1⊗ cos(t)2 D2
1

,

for t ∈
[
0, π2

]
. Then the operator F0 in the cycle (4.22) is transformed into Fπ/2 =

F ′⊗ 1, where
F ′ := (B+ D1)(1+ B2

+ D2
1)
−1/2.

In summary, βN and [D1] are families of operators indexed by TS whose Kasparov
product is represented by F ′. At every v ∈ Ts S, the square of B+D1 is the harmonic
oscillator operator
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a∑
j=1

(
κ2

j + λ
2
j −

∂

∂κ2
j
−
∂2

∂λ2
j

)
+ 2 deg−a

on Tπ−1(v)∼= Ns × Ns . (Here deg is the degree in
∧

N .) It has a one-dimensional
kernel, concentrated in degree zero, generated by

(η, ζ ) 7→ e−(‖η‖
2
+‖ζ‖2)/2

∈ C0(Ns × Ns). (4.23)

Thus, over each fibre, F ′ is a Fredholm operator with index 1, and βN ⊗TN [D1] is
equal to the exterior product of this Fredholm operator in KKG(C,C) and the class
[C0(TS), 0, πTS] ∈ KKG(TS, TS), both representing the respective ring identities.
Hence the claim follows. �

Proof of Proposition 4.13. Using Lemmas 4.16 and 4.19, and associativity of the
Kasparov product, we find that

βN ⊗TN [DTN ] = (βN ⊗TN [D1])⊗TS [DTS] = [DTS].

This finishes the proof. �

We will later need the restriction of the Bott element to TS. Consider the class[
τ ∗S
∧

NC

]
:=
[⊕

j
∧2 j

τ ∗S N ⊗C
]
−
[⊕

j
∧2 j+1

τ ∗S N ⊗C
]
∈ KKG(TS, TS),

defined as in Lemma 3.2.

Lemma 4.24. We have

( j TN
TS )
∗βN = [τ

∗

S
∧

NC] ∈ KKG(TS, TS).

Proof. The Hilbert C0(TS)-module in ( j TN
TS )
∗βN is 00

(
TS, τ ∗S

∧
NC

)
. Because B|TS

is the zero operator, the claim follows. �

4D. The Atiyah–Singer index theorem. Suppose for now that M is compact and
G is trivial. Then Kasparov’s index theorem reduces to the Atiyah–Singer index
theorem; see [Kasparov 2016, Remark 4.5]. We provide the details of this impli-
cation here, because these will be used in the proof of Theorem 2.16.

Consider the Atiyah–Singer topological index map

indexAS
t : KK(pt, TM)→ Z,

which maps a class σ ∈ KK(pt, TM) to∫
TM

ch(σ )Todd(TM ⊗C). (4.25)

Note that we do not have the factor (−1)dim M in (4.25) as in [Atiyah and Singer
1968b, Theorem 2.12], because we use a different almost complex structure on TM
than in [Atiyah and Singer 1968b, p. 554], giving the opposite orientation.



258 PETER HOCHS AND HANG WANG

Lemma 4.26. As a map KK(pt, TM)→ KK(pt, pt), right multiplication by [DTM ]

is the Atiyah–Singer topological index.

Because of Lemma 4.26, Theorem 4.6 implies the Atiyah–Singer index theorem.
Indeed, since M is compact, the map pM

: M→ pt is proper. By functoriality of
the Kasparov product, Lemma 4.26 implies that the following diagram commutes:

KK(M, TM)
indext

//

pM
∗

��

KK(M, pt)

pM
∗

��

KK(pt, TM)
indexAS

t
// Z= KK(pt, pt)

By Lemma 4.5, applying the map pM
∗

to both sides of (4.7), and using commuta-
tivity of the above diagram, one obtains the Atiyah–Singer index theorem.

Proof of Lemma 4.26. The proof is a reformulation of the arguments in [Atiyah
and Singer 1968b], using KK-theory. There are embeddings M ↪→ Rn with normal
bundle N of rank a, and TM ↪→ T Rn

= Cn with normal bundle TN . As N is
homeomorphic to a tubular neighbourhood of M in Rn , we can identify TN with
an open neighbourhood of TM in Cn . (Note that here, the submanifold S of M in
Section 4B is replaced by the submanifold M of Rn .)

Denote by
βN ∈ KK(TM, TN )

the fibrewise Bott element over TM in TN , in the sense of Definition 4.12. Then
by Proposition 4.13,

[DTM ] = βN ⊗[DTN ]. (4.27)

The Chern character is compatible with the pairing of K-theory and K-homology.
The Chern character of the Bott generator β of K 0(R2) is a generator of H 2(R2). As
the Dolbeault class [DR2] of R2 is dual to β, its Chern character is the Poincaré dual
of ch(β). So ch[DR2] is the fundamental class [R2

] of R2. Similarly, working with
the exterior Kasparov product of n copies of β, we conclude that ch[DR2n ] = [R2n

].
Noting that T Rn

= R2n , by functoriality of the Chern character we have

ch[DTN ] = ch
((

kT Rn

TN
)
∗
[DT Rn ]

)
=
(
kT Rn

TN
)
∗

ch[DT Rn ]

=
(
kT Rn

TN
)
∗
[T Rn
] = [TN ]. (4.28)

Thus, the Chern character of [DTN ] is the fundamental class [TN ] ∈ H2n(TN ). Let
σ ∈ KK(pt, TM) be given. Then (4.27) and (4.28) imply that

σ ⊗TM [DTM ] =

∫
TN

ch(σ )∧ ch(βN ). (4.29)
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The Thom isomorphism ψTN : H∗(TM)→ H∗(TN ) (mapping between compactly
supported cohomologies) is an isomorphism of H∗(TM)-modules. So we can
rewrite the integral (4.29) as∫

TN
ch(σ )∧ ch(βN )=

∫
TM
ψ−1

TN (ch(σ )∧ ch(βN ))

=

∫
TM

ch(σ )∧ψ−1
TN (ch(βN )). (4.30)

To calculate u := ψ−1
TN (ch(βTN )), we make use of the following diagram:

K ∗(TM)
ψTN
//

ch
��

K ∗(TN )
( j TN

TM )
∗

//

ch
��

K ∗(TM)

ch
��

H∗(TM)
ψTN
// H∗(TN )

( j TN
TM )
∗

// H∗(TM)

Note that in the second line, the composition is equal to the exterior product by the
Euler class e(TN ). In the above diagram, we have

βN
� ( j TN

TM )
∗

//
_

ch
��

∑
j (−1) j∧ j TN

_

ch
��

u � ψTN
// ch(βN )

� ( j TN
TM )
∗

// u · e(TN )

by Lemma 4.24. As the above square commutes by functoriality of the Chern
character, and since TN = τ ∗M NC and NC⊕ (TM ⊗C)= M ×Cn , we obtain

u =
ch
(∑

j (−1) j∧j TN
)

e(TN )
= τ ∗M

(
e(TM)

ch
(∑

j (−1) j
∧j TM)

))= τ ∗M(Todd(TM ⊗C)).

Therefore, together with (4.29) and (4.30) one has

σTM ⊗[DTM ] =

∫
TM

ch(σ )Todd(TM ⊗C),

and the lemma is proved. �

5. Proof of the fixed point formula

After proving Theorems 2.2 and 2.4 and discussing Kasparov’s index theorem, we
are ready to prove Theorem 2.16.

We start in Section 5A, by generalising Gysin maps, or wrong-way functoriality
maps in K-theory, that play a key role in [Atiyah and Singer 1968a]. We use these
generalised Gysin maps in Section 5B to set up the commutative diagrams we need.
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We discuss a map defined by evaluating characters at g in Section 5C. Then we
introduce a class in the topological K-theory of TM , localised at g, defined by the
principal symbol of D. The properties of that class allow us to finish the proof of
Theorem 2.16.

5A. Gysin maps. Let S ⊂ M be a G-invariant submanifold, with inclusion map
j M
S : S ↪→M . (In the applications of what follows, S will be a connected component

of the fixed point set Mg.) Let N → S be the normal bundle of S in M . The
inclusion map j TN

TS : TS ↪→ TN induces a map

( j TN
TS )
∗
: C0(TN )→ C0(TS)

by restriction. We identify TN with an open neighbourhood of TS in TM , via a
G-equivariant embedding TN ↪→ TM. In this way, we have the injective map

kTM
TN : C0(TN ) ↪→ C0(TM),

defined by extending functions by zero.

Definition 5.1. Let A be any G-C∗-algebra. The map

( j TM
TS )! : KKG(A,C0(TS))→ KKG(A,C0(TM))

is the composition

KKG(A,C0(TS))
−⊗C0(TS)βN
−−−−−−→ KKG(A,C0(TN ))

(kTM
TN )∗
−−−→ KKG(A,C0(TM)).

Here βN ∈ KKG(TS, TN ) is the Bott element, as in Definition 4.12.

We also have the usual map

( j TM
TS )

∗
: KKG(A,C0(TM))→ KKG(A,C0(TS)).

Lemma 5.2. The map

( j TM
TS )

∗
◦ ( j TM

TS )! : KKG(A,C0(TS))→ KKG(A,C0(TS))

is given by the Kasparov product from the right with

( j TN
TS )
∗βN ∈ KKG(C0(TS),C0(TS)).

Proof. For all x ∈ KKG(A,C0(TS)), functoriality of the Kasparov product implies
that

( j TM
TS )

∗
◦ ( j TM

TS )!(x)= ( j TM
TS )

∗
◦ (kTM

TN )∗(x ⊗C0(TS) βN )

= x ⊗C0(TS) (( j TM
TS )

∗
◦ (kTM

TN )∗βN ).

Since ( j TM
TS )

∗
◦ (kTM

TN )∗ = ( j TN
TS )
∗, the claim follows. �
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Lemma 5.3. For any G-invariant closed subset X ⊂ M , and any G-invariant
neighbourhood V of X , the following diagram commutes:

KKG(X, TS)
−⊗TS[DTS]

//

( j V
X )∗

��

KKG(X, pt)

( j V
X )∗

��

KKG(V, TS)

( j TM
TS )!

��

KKG(V, TM)
−⊗TM [DTM ]

// KKG(V, pt)

Proof. For all a ∈ KKG(X, TS), functoriality and associativity of the Kasparov
product imply that

(( j TM
TS )! ◦ ( j V

X )∗(a))⊗TM [DTM ] = (kTM
TN )∗(( j V

X )∗(a)⊗TS βN )⊗TM [DTM ]

= ( j V
X )∗(a)⊗TS ((kTM

TN )∗(βN )⊗TM [DTM ]).

Now (kTM
TN )
∗
[DTM ] = [DTN ], so

(kTM
TN )∗(βN )⊗TM [DTM ] = βN ⊗TN (kTM

TN )
∗
[DTM ] = βN ⊗TN [DTN ] = [DTS],

where the last equality was proved in Proposition 4.13. �

5B. Localisation and Gysin maps. Let U and V be as in Theorem 2.4. Consider
the following diagram:

KKG(M, TM)
indext

//

(k M
V )
∗

��

KKG(M, pt)

(k M
V )
∗

��

KKG(V, TM)
−⊗TM [DTM ]

//

( j TM
TMg )

∗

��

KKG(V, pt)

KKG(V, TMg)

KKG(V, TMg)

−⊗TMg ( j TN
TMg )

∗βN

OO
( j TM

TMg )!

^^

KKG(U , TMg)
−⊗TMg [DTMg ]

//

( j V
U
)∗

OO

KKG(U , pt)

( j V
U
)∗

OO

(5.4)

The top part of this diagram commutes because of functoriality of the Kasparov
product. The part with the product with ( j TM

TMg )
∗βN in it commutes by Lemma 5.2,

applied with A = C0(V ), and S running over the connected components of Mg.
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The remaining part of the diagram commutes by Lemma 5.3, applied in a similar
way with S a connected component of Mg, and X =U .

Diagram (5.4) can be extended as follows:

KKG(M, TM)
indext

//

(k M
V )
∗

��

KKG(M, pt)

(k M
V )
∗

��
KKG(pt, TM)

( j TM
TMg )

∗

��

KKG(U, TM)

( j TM
TMg )

∗

��

pU
∗

oo
( j V

U
)∗
//KKG(V, TM)

−⊗TM [DTM ]
//

( j TM
TMg )

∗

��

KKG(V, pt)

KKG(pt, TMg) KKG(U, TMg)
pU
∗

oo
( j V

U
)∗
//KKG(V, TMg)

KKG(pt, TMg)

−⊗TMg ( j TN
TMg )

∗βN

OO

−⊗TMg [DTMg ]

��

KKG(U, TMg)

−⊗TMg ( j TN
TMg )

∗βN

OO

pU
∗

oo
( j V

U
)∗
//

−⊗TMg [DTMg ]

��

KKG(V, TMg)

−⊗TMg ( j TN
TMg )

∗βN

OO ( j TM
TMg )!

]]

KKG(pt, pt) KKG(U, pt)
pU
∗

oo

( j V
U
)∗

KK

(5.5)

The right-hand part of this diagram is diagram (5.4), and hence commutes. The
other parts commute by functoriality of KK-theory and the Kasparov product.

Theorem 2.4 implies that the maps ( j V
U
)∗ become invertible after localisation

at g. We will also use inverses of the localised classes

(( j TN
TMg )

∗βN )g ∈ KKG(TMg, TMg)g. (5.6)

Lemma 5.7. The element (5.6) is invertible.

Proof. By Lemma 4.24, we have

( j TN
TMg )

∗βN =
[
τ ∗Mg

∧
NC

]
.

Atiyah and Segal [1968, Lemma 2.7] showed that
[∧

NC

]
is invertible in K 0

G(M
g)g.

The map
τ ∗Mg : K 0

G(M
g)→ KKG(TMg, TMg)

sending a class [E] ∈ K 0
G(M

g) to [τ ∗Mg E] is a unital ring homomorphism. Hence,
so is its localisation at g. Therefore, the class[

τ ∗Mg
∧

NC

]
g = (τ

∗

Mg )g
[∧

NC

]
g ∈ KKG(TMg, TMg)g

is invertible. �
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5C. Evaluation. Let X and Y be locally compact Hausdorff spaces with trivial
actions by a compact group G. Then the exterior Kasparov product

KK(X, Y )× KKG(pt, pt)→ KKG(X, Y )

defines an isomorphism

KK(X, Y )⊗ R(G)∼= KKG(X, Y ). (5.8)

If X is a point, this is a classical fact. We will also apply this isomorphism to
the class [DTMg ] ∈ KKG(TMg, pt). There it is trivial, since G acts trivially on the
Hilbert space in question. In the only other case where we will use the isomorphism
(5.8), we will have X = Y , and this space has finitely many connected components.
(To be precise, we will have X = Y = TMg.) Let us work out the isomorphism
explicitly in that case, for the cycles we will apply it to. These are G-equivariant
Kasparov (C0(X),C0(X))-cycles of the form (00(E), F, π), where E → X is
a vector bundle (of finite rank). Let a ∈ KKG(X, X) be the class of a cycle of
this form, and let b ∈ KK(X, X) be the class defined by the same cycle, where the
group action is ignored. As G acts trivially on X , each fibre of E is a representation
space of G. Suppose for simplicity that X is connected; the general case follows by
applying the arguments to its connected components. (This works since there are
finitely many of them.) Since X is connected, the representations by G on all fibres
of E are equivalent. Let V be any one of these fibres, viewed as a representation
space of G. Denote by 1G the ring identity of R(G), i.e., the trivial representation
of G. Let E0 := X × V → X be the trivial bundle with fibre V . Consider the
representations

π X
X : C0(X)→B(C0(X)),

π
E0
X : C0(X)→B(00(E0)),

defined by pointwise multiplication. Then([
C0(X), 0, π X

X
]
⊗[V ]

)
+ (b⊗ 1G)

=
([
00(E0), 0, π E0

X

]
⊗ 1G

)
+ a ∈ KKG(X, X). (5.9)

In fact, both sides of (5.9) are represented by the cycle(
00(E0⊕ E), 0⊕ F, π E0

X ⊕π
)
, (5.10)

but, initially, with different G-actions. Namely, for the left-hand side of (5.9), G
acts on the first summand E0 in (5.10), while for the right-hand side of (5.9), G
acts on the second summand E in (5.10). As G acts trivially on X , representations
of G commute with those of C0(X). Since, in addition, F is G-invariant, these
two actions by G can be connected by a rotation homotopy, so (5.9) follows. In
that equality, a is represented as an element of KK(X, Y )⊗ R(G).
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In general, using (5.8), one can apply the evaluation evg = 1⊗ evg as a map

evg : KKG(X, Y )→ KK(X, Y )⊗C. (5.11)

This map is compatible with localisation at g, in the sense that the following dia-
gram commutes:

KKG(X, Y )
evg
//

��

KK(X, Y )⊗C

KKG(X, Y )g
(evg)g

66

If a ∈ KKG(X, Y ), we will also write

a(g) := evg(a) ∈ KK(X, Y )⊗C.

The evaluation map (5.11) is compatible with Kasparov products. This follows
from the facts that the isomorphism (5.8) is compatible with the product, that Kas-
parov products in R(G) coincide with tensor products of representations, and that
the character of the tensor product of two finite-dimensional representations is the
product of the characters of the individual representations.

Hence, we can attach the following commutative diagram to the lower left-hand
side of (5.5):

KK(pt, TMg)⊗C KKG(pt, TMg)
evg
oo

KK(pt, TMg)⊗C

(−⊗TMg [DTMg ])⊗1

��

(−⊗TMg ( j TM
TMg )

∗βN (g))⊗1

OO

KKG(pt, TMg)

−⊗TMg ( j TN
TMg )

∗βN

OO

−⊗TMg [DTMg ]

��

evg
oo

C KKG(pt, pt)evg
oo

(5.12)

Here, [DTMg ]∈ KK(TMg, pt) is identified with [DTMg ]⊗1∈ KK(TMg, pt)⊗R(G),
so that evg([DTMg ])= [DTMg ]⊗ 1. In particular, when Mg

= pt, the vertical map
on the lower left corner is the identity.

By Lemma 4.26 and compactness of Mg, the map

−⊗TMg [DTMg ] : KK(pt, TMg)→ KK(pt, pt)

is the Atiyah–Singer topological index map indexAS
t . We will use the same notation

for its extension to a map KK(pt, TMg)⊗C→ C.
Using commutativity of (5.5) and (5.12), and invertibility of the localised maps

(( j V
U
)∗)g and classes (5.6), we obtain the commutative diagram
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KKG(M, TM)g
(indext )g

//

(pU
∗ )g◦(( j V

U
)∗)
−1
g ◦(k M

V )
∗
g

��

KKG(M, pt)g

(( j V
U
)∗)
−1
g ◦(k M

V )
∗
g

��

KKG(pt, TM)g

( j TM
TMg )

∗

��
KK(pt, TMg)⊗C

indexAS
t (−⊗TMg (( j TN

TMg )
∗βN )

−1(g))

��

KKG(pt, TMg)g
(evg)g

oo

−⊗TMg (( j TN
TMg )

∗βN )
−1
g ⊗TMg [DTMg ]g

��
C KKG(pt, pt)g

(evg)g

oo KKG(U, pt)g
(pU
∗ )g

oo

(5.13)

5D. The g-symbol class. Recall that in (4.4) we defined the class

[σD] ∈ KKG(M, TM).

The last ingredient of the proof of Theorem 2.16 is a class defined by σD in the
topological K-theory of TM , localised at g. In Section 7, we will describe this
class more explicitly, and use it to obtain another expression for the g-index.

Definition 5.14. The g-symbol class of D is the class σ D
g in the localised topolog-

ical K-theory of TM defined by

σ D
g := (p

U
∗
)g ◦ (( j V

U
)∗)
−1
g ◦ (k

M
V )
∗

g[σD]g ∈ KKG(pt, TM)g. (5.15)

The g-symbol class generalises the usual symbol class in the compact case.

Lemma 5.16. If M is compact, then σ D
g is the localisation at g of the usual class

of σD in KKG(pt, TM).

Proof. If M is compact, then we can choose U = V = M . Then, since the map
pM
: M→ pt is proper, we have

σ D
g = (p

M
∗
[σD])g,

which is the usual symbol class by Lemma 4.5. �

We now prove some properties of the g-symbol class that will be used in the
proof of Theorem 2.16. As before, we write σ̃D := σD/

√
σ 2

D + 1.

Lemma 5.17. The class

(k M
V )
∗

g[σD]g ∈ KKG(V, TM)g

is the localisation at g of the class

[σD|V ]TM := [00(τ
∗

V (E |V )), σ̃D|TV , πV ] ∈ KKG(V, TM).
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Here, the C0(TM)-valued inner product on 00(E |V ) is defined by the natural
C0(TV )-valued inner product, composed with the inclusion kTM

TV .

Proof. The class
(k M

V )
∗
[σD] ∈ KKG(V, TM)

is represented by the Kasparov cycle

(00(τ
∗

M E), σ̃D, (k M
V )
∗πM)= (00(τ

∗

V (E |V )), σ̃D|TV , πV )

⊕ (00(τ
∗

M\V (E |M\V )), σ̃D|TM\TV , 0).

The second summand on the right-hand side is a degenerate cycle, so the claim
follows. �

Consider the class

U [σD|TMg ] :=
[
00(τ

∗

Mg (E |Mg )), σ̃D|TMg ,
(

jU
Mg

)
∗
πMg

]
∈ KKG(U , TMg).

Lemma 5.18. We have(
j V
U

)
∗

(
U [σD|TMg ]

)
= ( j TM

TMg )
∗
[σD|V ]TM ∈ KKG(V, TMg).

Proof. By definition,

( j TM
TMg )

∗
[σD|V ]TM =

[
00(τ

∗

V (E |V ))⊗ j TM
TMg

C0(TMg), σ̃D|V ⊗ 1, πV ⊗ 1
]
.

The map
00(τ

∗

V (E |V ))⊗ j TM
TMg

C0(TMg)→ 00(τ
∗

Mg (E |Mg ))

that maps s ⊗ ϕ to ϕs|TMg , for s ∈ 00(τ
∗

V (E |V )) and ϕ ∈ C0(TMg), is an iso-
morphism of Hilbert C0(TMg)-modules. It intertwines the operators σ̃D|V ⊗ 1
and σ̃D|TMg , and the representations πV ⊗ 1 and

( j V
Mg )∗πMg =

(
j V
U

)
∗

(
jU
Mg

)
∗
πMg .

The lemma is then proved. �

Proposition 5.19. The class

( j TM
TMg )

∗

gσ
D
g ∈ KKG(pt, TMg)g

is the localisation at g of the usual class [σD|TMg ] in the equivariant topological
K-theory of TMg.

Proof. By commutativity of (the top left part of) diagram (5.5), we have

( j TM
TMg )

∗

gσ
D
g =

(
pU
∗

)
g ◦
((

j V
U

)
∗

)−1
g ◦ ( j TM

TMg )
∗

g ◦ (k
M
V )
∗

g[σD]g.

By Lemma 5.17, we have

(k M
V )
∗

g[σD]g = ([σD|V ]TM)g.
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By Lemma 5.18 we have((
j V
U

)
∗

)−1
g ◦ ( j TM

TMg )
∗

g([σD|V ]TM)g =U [σD|TMg ]g.

By Lemma 4.5, we have

pU
∗

(
U [σD|TMg ]

)
= [σD|TMg ] ∈ KKG(pt, TMg).

So the claim follows. �

We have now finished all preparation needed to prove Theorem 2.16.

Proof of Theorem 2.16. Using Kasparov’s index theorem, Theorem 4.6, and com-
mutativity of (5.13), we find that

indexg(D)= (evg)g ◦
(

pU
∗

)
g ◦
((

j V
U

)
∗

)−1
g ◦ (k

M
V )
∗

g[D]

= (evg)g ◦
(

pU
∗

)
g ◦
((

j V
U

)
∗

)−1
g ◦ (k

M
V )
∗

g ◦ (indext)g[σD]g

= indexAS
t
(
(( j TM

TMg )
∗σ D

g )(g)⊗TMg (( j TN
TMg )

∗βN )
−1(g)

)
.

By Lemma 4.24 and Proposition 5.19, the latter expression equals

indexAS
t
(
[σD|TMg ](g)⊗TMg

[∧
NC

]−1
(g)
)
.

Furthermore,

[σD|TMg ](g)⊗TMg
[
τ ∗Mg

∧
NC

]−1
(g)= [σD|TMg ](g) ·

[∧
NC

]−1
(g),

where the dot means the right K 0
G(M

g)-module structure of K 0
G(TMg). We con-

clude that
indexg(D)= indexAS

t
(
[σD|TMg ](g) ·

[∧
NC

]−1
(g)
)
.

Theorem 2.16 now follows from the definition of the topological index map (4.25),
and multiplicativity of the Chern character. �

5E. The index pairing. The arguments used to prove Theorem 2.16 also imply
Theorem 2.18 about the index pairing. In fact, the parts of the proof of Theorem 2.16
about localisation in the first entry of KK-theory are not needed in the proof of
Theorem 2.18.

The key step is a localisation property of the K-homology class of D, localised
at g.

Proposition 5.20. We have

[D]g = ( j TM
TMg )

∗

g[σD]g ⊗TMg
[
τ ∗Mg

∧
NC

]−1
g ⊗TMg [DTMg ]g ∈ KKG(M, pt)g.
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Proof. Lemmas 5.2 and 5.3 imply that the following diagram commutes:

KKG(M, TM)
−⊗TM [DTM ]

//

( j TM
TMg )

∗

��

KKG(M, pt)

KKG(M, TMg) KKG(M, TMg)

( j TM
TMg )!

kk

−⊗TMg [DTMg ]

OO

−⊗TMg ( j TN
TMg )

∗βN

oo

Therefore, the claim follows from Lemmas 4.24 and 5.7, and Theorem 4.6. �

Proof of Theorem 2.18. Let [F] ∈ KKG(pt,M) be as in Section 2E. By compat-
ibility of the Kasparov product with localisation and evaluation, Proposition 5.20
implies that

([F]⊗M [D])(g)

= ([F]g ⊗M [D]g)(g)

= ([F]g ⊗M ( j TM
TMg )

∗

g[σD]g)(g)⊗TMg
[
τ ∗Mg

∧
NC

]
(g)−1

⊗TMg [DTMg ](g).
Now

([F]g⊗M ( j TM
TMg )

∗

g[σD]g)(g)=[τ ∗Mg (F |Mg )](g)⊗[σD|TMg ](g)∈ KK(pt, TMg)⊗C,

where on the right-hand side, the tensor product denotes the ring structure on the
topological K-theory of TMg. Therefore, and because [DTMg ](g)= [DTMg ]⊗ 1 is
in KK(TMg, pt)⊗C, the claim follows from Lemma 4.26. �

6. Examples and applications

The g-index was defined in terms of KK-theory, but Theorem 2.16 allows us to
express it entirely in cohomological terms. Using this theorem, we can compute
the g-index explicitly in examples, and show how it is related to other indices.

For finite fixed point sets, Theorem 2.16 has a simpler form, as discussed in
Section 6A. In Section 6B, we give a linearisation theorem for the g-index of a
twisted Dolbeault–Dirac operator on a complex manifold, in the case of a finite
fixed point set. We then work out the example of the Dolbeault–Dirac operator
on the complex plane, acted on by the circle, in Section 6C. An illustration of the
linearisation theorem is given in Section 6D, where we apply it to the two-sphere,
to decompose the usual equivariant index. In Section 6E, we realise characters
of discrete series representations of semisimple Lie groups on regular points of a
maximal torus, in terms of the g-index. For Fredholm operators, and in particular
Callias-type deformations of Dirac operators, we describe the relation between the
g-index and the character of the action by g on the kernel of such an operator,
in Section 6F. We then give a relation with an index studied by Braverman in
Section 6G, and a relative index theorem along the lines of work by Gromov and
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Lawson in Section 6H. In Section 6I, we mention some geometric consequences
of the vanishing or nonvanishing of the g-index of a Hodge–Dirac or Spin-Dirac
operator.

6A. Finite fixed point sets. If the fixed point set Mg is zero-dimensional, then
TMg

= Mg, τMg is the identity map, Todd(TMg
⊗C) is trivial and

ch([σD|TMg ](g))= Tr(g|E+)−Tr(g|E−).

Furthermore, since Mg only consists of isolated points, we have

K 0(Mg)=
⊕

m∈Mg

Z= H∗(Mg),

and the Chern character is the identity map. So we now have, at a fixed point
m ∈ Mg,

ch
([∧

NC

]
(g)
)

m = ch
([∧

TMC|Mg
]
(g)
)

m = detR(1− g|Tm M).

The last equality is obtained by evaluating the virtual character of
∧

Tm MC at g,
so one obtains

TrC(g|∧even Tm MC
)−TrC(g|∧odd Tm MC

).

Therefore, Theorem 2.16 implies the following generalisation of Atiyah and Bott’s
fixed point theorem [1968, Theorem A] to noncompact manifolds, but for com-
pact G.

Corollary 6.1. When Mg is a finite set of points,

indexg(D)=
∑

m∈Mg

Tr(g|E+m )−Tr(g|E−m )

detR(1− g−1|Tm M)
. (6.2)

Remark 6.3. In the statement of the Atiyah–Bott fixed point theorem, the denom-
inator is |detR(1− g|Tm M)|. In our case, g is contained in a compact group G, so
the real eigenvalues of g are 1 or −1. Thus detR(1− g−1

|Tm M) is always positive.
See also page 186 in [Berline et al. 1992]. Also, the fact that g acts orthogonally
on Tm M implies that detR(1− g−1

|Tm M)= detR(1− g|Tm M).

Now suppose that M is a complex manifold, and g is holomorphic. Let F→ M
be a holomorphic vector bundle, and consider the Dolbeault–Dirac operator ∂̄F+ ∂̄

∗

F
on M , coupled to F .

Corollary 6.4. If Mg is a finite set of points, then

indexg(∂̄F + ∂̄
∗

F )=
∑

m∈Mg

TrC(g|Fm )

detC(1− g−1|Tm M)
. (6.5)
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For equivalent expressions, note that

detC(1− g−1
|T 1,0

m M)= detC(1− g−1
|Tm M)= detC(1− g|T 0,1

m M)

in (6.5).

Proof. In Theorem 4.12 of [Atiyah and Bott 1968], it is shown that in this situation,
the right-hand side of (6.2) equals the right-hand side of (6.5). The key observation
is that the supertrace of g|∧∗(T 0,1 M) is cancelled by the second factor in

detR(1− g−1
|Tm M)= detC(1− g−1

|T 1,0
m M)detC(1− g−1

|T 0,1
m M).

(See also [Berline et al. 1992, Corollary 6.8].) �

6B. A holomorphic linearisation theorem. A tool used in some index problems
is a linearisation theorem, relating an index to indices on vector spaces. See for
example Chapter 4 of [Guillemin et al. 2002] and Theorem 7.2 in [Braverman
2002]. A version for Callias-type operators can be deduced from Theorem 2.16 in
[Braverman and Shi 2016]. In those references, cobordism arguments are used to
prove linearisation theorems. We will use the excision property of the g-index to
obtain an analogous result. (So we do not use Theorem 2.16 here.) We will state
and prove this result in the setting of Corollary 6.4, where M is a complex manifold,
D is the Dolbeault–Dirac operator coupled to a holomorphic vector bundle F→M ,
and Mg is finite. A more general statement, where Mg is not finite or D is not a
Dolbeault–Dirac operator, is possible, but would be less explicit.

Under these assumptions, for any m ∈ Mg, let ∂̄Tm M be the Dolbeault operator
on the complex vector space Tm M .

Corollary 6.6 (holomorphic linearisation theorem). We have

indexg(∂̄F + ∂̄
∗

F )=
∑

m∈Mg

TrC(g|Fm ) indexg(∂̄
Tm M
+ (∂̄Tm M)∗).

Proof. By Lemma 2.11, the g-index of ∂̄F+ ∂̄
∗

F equals the g-index of the Dolbeault–
Dirac operator on the union over m ∈ Mg of the tangent spaces Tm M , coupled to
the vector bundle which on every space Tm M is trivial with fibre Fm . It follows
directly from the definition that the g-index is additive with respect to disjoint
unions. Hence

indexg(∂̄F + ∂̄
∗

F )=
∑

m∈Mg

indexg(∂̄
Tm M
⊗ 1Fm + (∂̄

Tm M)∗⊗ 1Fm )

=

∑
m∈Mg

TrC(g|Fm ) indexg(∂̄
Tm M
+ (∂̄Tm M)∗). �

An example on computing and explicitly realising an index of the form

indexg(∂̄
Tm M
+ (∂̄Tm M)∗),
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as in Corollary 6.6, is given in the next subsection. An example showing that the
linearisation theorem gives a natural result if M is compact is given in Section 6D.

6C. The circle acting on the plane. Consider the usual action by the circle T1
=

U(1) on the complex plane C, and the (untwisted) Dolbeault–Dirac operator ∂̄+ ∂̄∗

on C. We will compute the distribution 2 on T1 given by the function

g 7→ indexg(∂̄ + ∂̄
∗). (6.7)

This function is defined on the set of elements g ∈ T1 with dense powers, i.e., the
elements of the form g = e

√
−1α, where α ∈ R \ 2πQ. So the function is defined

almost everywhere.
By Corollary 6.4, we have for such g

indexg(∂̄ + ∂̄
∗)=

1
1−g−1 .

So the function (6.7) is given by g 7→ 1/(1− g−1) almost everywhere. One can
deduce that the sum of functions

∞∑
k=0

(g 7→ g−k) (6.8)

converges as a distribution on T1 to 2.
This allows us to describe the g-index of ∂̄+∂̄∗ in terms of its kernel. Indeed, con-

sider the Euclidean density dz = dx dy on C, and the corresponding space L2(C).
Let O(C) be the space of holomorphic functions on C. Let ψ ∈ C∞(C) be a
positive, T1-invariant function. Let L2(C, ψ) be the completion of C∞c (C) to a
Hilbert space with respect to the inner product

( f1, f2)ψ := (ψ f1, ψ f2)L2(C). (6.9)

Let π be the representation of T1 in L2(C, ψ) given by

(π(g) f )(z)= f (g−1z),

for all g ∈ T1, f ∈ L2(C, ψ) and z ∈ C.
Set

OL2(C, ψ) := O(C)∩ L2(C, ψ).

For k ∈ Z≥0, let ek
∈ O(C) be the function z 7→ zk . Then for all k ∈ Z≥0 and z ∈ C,

π(g)ek
= g−kek . (6.10)

Suppose ψ was chosen so that ek
∈ L2(C, ψ) for all k. For example, one can take

ψ(z)= e−|z|
2/2.
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Let �0,∗
L2 (C) be the Hilbert space of square-integrable forms of type (0, ∗). Let

�
0,∗
L2 (C, ψ) be the analogous Hilbert space with the inner product weighted by ψ

as in (6.9). Set

kerL2,ψ(∂̄ + ∂̄
∗)± := ker(∂̄ + ∂̄∗)± ∩�0,∗

L2 (C, ψ).

We can realise the distribution 2 given by the g-indices of ∂̄ + ∂̄∗ in terms of the
representation of T1 in this space.

Proposition 6.11. The restriction of the representation π of T1 to kerL2,ψ(∂̄+ ∂̄
∗)±

has a distributional character χ±, and we have

2= χ+−χ− ∈D′(T1).

Proof. First note that
ker(∂̄ + ∂̄∗)+ = O(C),

ker(∂̄ + ∂̄∗)− = 0.

So we only need to consider the even part of kerL2,ψ(∂̄ + ∂̄
∗), which equals

kerL2,ψ(∂̄ + ∂̄
∗)+ = OL2(C, ψ). (6.12)

The functions {ek
}k≥0 form an orthogonal basis of OL2(C, ψ). By (6.10), the char-

acter of the representation π on the space (6.12) equals the series (6.8), which
converges to 2. �

Remark 6.13. The L2(C, ψ)-kernel of ∂̄ + ∂̄∗ can be identified as the L2-kernel
of a deformed operator. For example, let ψ(z)= e−|z|

2/2. Recall that ∂̄ + ∂̄∗ is an
operator on �0,∗(C), given by

∂̄ + ∂̄∗ = c(dz) ∂
∂z
+ c(dz̄) ∂

∂ z̄
,

where now c(dz̄)= 1
√

2
ext(dz̄) and c(dz)=− 1

√
2

int(dz). (See [Berline et al. 1992,
Section 3.6].) Set

b := 1
2

zc(dz̄).

Then b∗ =− 1
2 z̄c(dz). We have the deformed operator

∂̄ + b = c(dz̄)
(
∂

∂ z̄
+

z
2

)
:�0,0(C)→�0,1(C),

(∂̄ + b)∗ = c(dz)
(
∂

∂z
−

z̄
2

)
:�0,1(C)→�0,0(C).

The operator U : �0,∗(C) → �0,∗(C, ψ) given by U (α) = ψ−1α is a unitary
isomorphism. We have

∂̄U ( f )= ∂̄(ψ−1 f )= ψ−1
(
∂̄ +

z
2

)
f =U

((
∂̄ +

z
2

)
f
)
.
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Similarly, U intertwines ∂̄∗ and (∂̄ + b)∗. It then follows that

kerL2(∂̄ + b)∼= kerL2,ψ(∂̄),

kerL2(∂̄ + b)∗ ∼= kerL2,ψ(∂̄
∗)= 0.

6D. The circle acting on the two-sphere. As in Section 6C, we consider the circle
group T1, this time acting by rotations on the two-sphere S2. In this compact setting,
the usual index theory, and the Atiyah–Segal–Singer theorem apply. But we can
use the g-index to decompose indices in this case.

We embed T1 ∼= SO(2) into SO(3) in the top-left corner. Then S2
= SO(3)/T1.

Identifying this space with P1(C), we obtain a complex structure on it. Fix n ∈Z≥0.
Let Cn be the space of complex numbers, on which T1 acts by

g · z = gnz,

for g ∈ T1 and z ∈ Cn . We have the line bundle

Ln := SO(3)×T1 Cn→ S2.

Let ∂̄n + ∂̄
∗
n be the Dolbeault–Dirac operator on S2, coupled to Ln . Since S2 is

compact, we have the equivariant index

indexSO(3)(∂̄n + ∂̄
∗

n ) ∈ R(SO(3)).

By the Borel–Weil–Bott theorem, this index is the irreducible representation Vn of
SO(3) with highest weight n (with respect to the positive root corresponding to the
identification of S2 with P1(C)).

Fix an element g ∈ T1 with dense powers. By the Atiyah–Segal–Singer theorem,
or Corollary 6.4, the character of Vn evaluated at g equals

indexT1(∂̄n + ∂̄
∗

n )(g)=
gn

1− g−1 +
g−n

1− g
. (6.14)

The two terms on the right-hand side correspond to the two fixed points of the
action by T1. This expression can be rewritten as the finite sum

2n∑
j=0

g j−n.

This is the usual decomposition of Vn|T1 into irreducible representations of T1.
So far, we have done nothing new in this example. But let ∂̄C

+ (∂̄C)∗ be the
Dolbeault–Dirac operator on C. Then the linearisation theorem, Corollary 6.6,
implies that

indexT1(∂̄n + ∂̄
∗

n )(g)= indexg(∂̄
C
+ (∂̄C)∗)gn

+ indexg−1(∂̄C
+ (∂̄C)∗)g−n.
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As we saw in Section 6C, Corollary 6.4 implies that

indexg(∂̄
C
+ (∂̄C)∗)=

1
1− g−1 ,

and likewise with g replaced by g−1. This agrees with (6.14). Using Proposition 6.11,
we can realise the latter index as the character of the representation of T1 in

kerL2,ψ(∂̄ + ∂̄
∗)+,

with ψ as in Section 6C.

6E. Discrete series characters. In this subsection only, we use the letter G to
denote a connected, semisimple Lie group. Let T < G be a maximal torus, and
suppose it is a Cartan subgroup of G, i.e., G has discrete series representations.
(The torus T plays the role that the group G plays in the rest of this paper; we have
changed notation because this is standard in the current setting.) Let K < G be a
maximal compact subgroup containing T . We denote the normalisers of T in G
and K by NG(T ) and NK (T ), respectively.

Lemma 6.15. The fixed point set of the action by T on G/T is NK (T )/T , the Weyl
group Wc of (kC, tC).

Proof. Since
(G/T )T = NG(T )/T,

it is enough to show that
NG(T )= NK (T ).

To prove this, let g= p⊕ k be the Cartan decomposition of g. Suppose X ∈ p, such
that exp(t X) ∈ NG(T ) for all t ∈ R. Then for all H ∈ t,

exp(t X) exp(H) exp(−t X)= exp(Ad(exp(t X))H) ∈ T .

So [X, H ] ∈ t. Because X ∈p and H ∈ t⊂ k, we have [X, H ] ∈p. Hence [X, H ]=0.
Since t is maximal commutative, we find that X ∈ t, so that X = 0. Therefore, an
element Y ∈ g such that exp(tY ) ∈ NG(T ) for all t ∈ R must lie in k. Since G is
connected, the claim follows. �

Example 6.16. If G = SL(2,R), then a strongly elliptic coadjoint orbit of G is
equivariantly diffeomorphic to G/T . This is now a hyperbolic plane, on which T
acts by rotations. This action has one fixed point, corresponding to the trivial Weyl
group of K = T .

Let λ∈ it∗ be regular (in the sense that (α, λ) 6= 0 for all roots α, for a Weyl group
invariant inner product). Fix a set R+ of positive roots for (gC, tC) by defining a
root α to be positive if (α, λ) > 0. Let ρ be half the sum of the positive roots.
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The choice of positive roots determines a G-invariant complex structure on the
manifold G/T , defined by

T 0,1
eT (G/T )= (g/t)0,1 :=

⊕
α∈R+

(gC)−α. (6.17)

Suppose λ+ρ is an integral weight. Then λ−ρ is integral as well, and we have
the holomorphic line bundle

Lλ−ρ := G×T Cλ−ρ→ G/T,

where T acts on Cλ−ρ := C via the weight eλ−ρ . Let

∂̄Lλ−ρ + ∂̄
∗

Lλ−ρ

be the Dolbeault–Dirac operator on G/T , coupled to Lλ−ρ .
Let 2λ be the distributional character of the discrete series representation of G

with infinitesimal character λ.

Proposition 6.18. Let g ∈ T be such that the powers of g are dense in T . (Then in
particular, g is a regular element.) One has

indexg(∂̄Lλ−ρ + ∂̄
∗

Lλ−ρ )= (−1)dim(G/K )/22λ(g).

Proof. The proof is analogous to Atiyah and Bott’s derivation of the Weyl character
formula from their fixed point theorem in [Atiyah and Bott 1968, Section 5]. By
Corollary 6.4 and Lemma 6.15, we have

indexg(∂̄Lλ−ρ + ∂̄
∗

Lλ−ρ )=
∑

aT∈NK (T )/T

eλ−ρ(a−1ga)

det(1−Ad0,1
g/t(a−1ga))

. (6.19)

Here Ad0,1
g/t : T → GL((g/t)0,1) is induced by the adjoint representation. Because

of (6.17), we have

det(1−Ad0,1
g/t(a

−1ga))=
∏
α∈R+

(1− e−α(a−1ga)).

Since in the identification NK (T )/T = Wc, the normaliser NK (T ) acts on it∗

via the coadjoint action, we find that (6.19) equals∑
w∈Wc

ew·(λ−ρ)∏
α∈R+(1− e−w·α)

(g). (6.20)

Consider the Weyl denominator

1 := eρ
∏
α∈R+

(1− e−α).
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One has, for all w ∈Wc,

w ·1 := ew·ρ
∏
α∈R+

(1− e−w·α)= ε(w)1,

where ε(w)= detw is the sign of w. Hence we find that (6.20) equals∑
w∈Wc

ε(w)ew·λ

1
(g).

(This expression still makes sense if ρ is not an integral weight.) By Harish-
Chandra’s character formula for the discrete series (see [Harish-Chandra 1966,
Theorem 16] or [Knapp 2001, Theorem 12.7]), this is (−1)dim(G/K )/22λ(g). �

Note that Proposition 6.18 only relates the value of the character 2λ at g to
the g-index of ∂̄Lλ−ρ + ∂̄

∗

Lλ−ρ if g is a regular element of some maximal torus.
Such elements form an open subset of G, and characters are not determined by
their restrictions to this set. However, we can still use Proposition 6.18 to give a
description of the g-index in terms of the kernel of ∂̄Lλ−ρ + ∂̄

∗

Lλ−ρ .

Proposition 6.21. Suppose G is a linear group. Then the representation of G in
the L2-kernel of (∂̄Lλ−ρ + ∂̄

∗

Lλ−ρ )
± has a distributional character 2± that can be

evaluated at g, and one has

indexg(∂̄Lλ−ρ + ∂̄
∗

Lλ−ρ )=2
+(g)−2−(g).

Proof. This follows from Proposition 6.18 and Schmid’s realisation of the discrete
series in the L2-Dolbeault cohomology of G/T with values in Lλ−ρ , in [Schmid
1976, Theorem 1.5]. Schmid’s result implies that the space

kerL2(∂̄Lλ−ρ + ∂̄
∗

Lλ−ρ )
±

equals zero if ±=−(−1)dim(G/K )/2, and the representation of G in this space is the
discrete series representation with infinitesimal character λ if ±= (−1)dim(G/K )/2.
(The integer k in Schmid’s result now equals dim(G/K )/2, and his λ is our λ−ρ.)
Hence,

2+−2− = (−1)dim(G/K )/22λ.

So the claim follows from Proposition 6.18. �

Paradan [2003] gave a realisation of restrictions of discrete series representa-
tions to maximal compact subgroups, as an equivariant index of a deformation of
the operator ∂̄Lλ−ρ + ∂̄

∗

Lλ−ρ . That realisation allowed him to apply the quantisation
commutes with reduction principle to find a geometric formula for multiplicities of
K-types.

In the paper [Hochs and Wang 2017], we further explore the relation between
index theory and characters of the discrete series.
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6F. Fredholm operators. We return to the notation used in the rest of this paper
except for Section 6E, where G is a compact Abelian group generated topologically
by an element g ∈ G.

For Fredholm operators, it is a natural question how the g-index of such an
operator is related to the traces of g acting on even and odd parts of its kernel. This
depends on the behaviour of the operator “towards infinity”. To make this more
explicit, let M+ be the one-point compactification of M . The point at infinity is
fixed by g. Let U, V ⊂ M be as in Section 2B. Let U ′, V ′ ⊂ M+ be g-invariant
neighbourhoods of the point at infinity, such that U ′ ⊂ V ′, and V ∩ V ′ =∅. Then
U tU ′ and V t V ′ are neighbourhoods of (M+)g as in (2.5). Lemma 2.6 therefore
implies that for any σ -unital G-C∗ algebra A, the following diagram commutes:

KKG(C(M+), A)g

(pM+
∗ )g

��

(k M+
V )∗g⊕(k

M+
V ′ )

∗
g

// KKG(C0(V ), A)g ⊕ KKG(C0(V ′), A)g

(( j V
U
)∗)
−1
g ⊕(( j V ′

U ′
)∗)
−1
g

��

KKG(C(U ), A)g ⊕ KKG(C(U ′), A)g

(pU
∗ )g⊕(p

U ′
∗ )g

��

KKG(C, A)g KKG(C, A)g ⊕ KKG(C, A)g
+

oo

(6.22)

Indeed, since M+ is compact, one can apply Lemma 2.6 to the pairs of neighbour-
hoods U tU ′ ⊂ V t V ′ and M+ ⊂ M+ of (M+)g.

Now suppose that (D2
+ 1)−1 is a compact operator. Then F := D/

√
D2+ 1 is

Fredholm, so kerL2(D) is finite-dimensional. Let the representation

πM+ : C(M+)→B(L2(E))

be defined for f ∈ C0(M) and z ∈ C by

πM+( f + z)= πM( f )+ z. (6.23)

Then the triple (L2(E), F, πM+) is a Kasparov (C(M+),C)-module. Let

M+[D] ∈ KKG(M+, pt) (6.24)

be its class. In this case, we will write index∞g (D) for a version of the g-index of
D that captures the behaviour of D at infinity:

index∞g (D) := (evg) ◦
(

pU ′
∗

)
g ◦
((

j V ′

U ′
)
∗

)−1
g ◦ (k

M+
V ′ )

∗

g(M+[D]g). (6.25)

Proposition 6.26. If (D2
+ 1)−1 is compact, then

Tr(g on kerL2(D+))−Tr(g on kerL2(D−))= indexg(D)+ index∞g (D). (6.27)
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Proof. By commutativity of (6.22), with A = C, we have

(evg)g ◦ (pM+
∗
)g[D] = indexg(D)+ index∞g (D). (6.28)

Now
pM+
∗
[D] = [L2(E), F] = [ker F, 0] ∈ KKG(pt, pt),

so the left-hand sides of (6.27) and (6.28) are equal. �

In concrete situations, knowledge of index∞g (D) then allows one to use the fixed
point formula in Theorem 2.16 to compute the left-hand side of (6.27).

This can be made more explicit in a situation relevant to the treatment of Callias-
type deformations of Dirac operators in the context of KK-theory in [Bunke 1995;
Kucerovsky 2001]. Suppose that 8∈End(E)G is an odd, self-adjoint vector bundle
endomorphism. Suppose that 82

− 1E tends to zero at infinity, so that it is a
compact operator on 00(E). Then (00(E),8, πM+) is an equivariant Kasparov
(C(M+),C0(M))-cycle. Let [8] ∈ KKG(M+,M) be its class. Now we do not
assume that (D2

+ 1)−1 itself is compact, but that

[D8] := [8]⊗M [D] ∈ KKG(M+, pt)

is the class of an elliptic operator D8 as in (6.24). Then (D2
8+ 1)−1 is compact.

(The idea is that D8 = D +8 if D8+8D is sufficiently small; compare this
with [Bunke 1995, Proposition 2.18].) By functoriality of the Kasparov product,
we have for U ′, V ′ ⊂ M as above,

index∞g (D8)= (evg)g
(((

pU ′
∗

)
g ◦
((

j V ′

U ′
)
∗

)−1
g ◦ (k

M+
V ′ )

∗

g[8]g
)
⊗M [D]g

)
. (6.29)

This expression has the advantage that 8 is a vector bundle endomorphism, which
makes (6.29) easier to evaluate than (6.25). In particular, if 82

= 1E on V ′ ∩M ,
then (k M+

V ′ )
∗
[8] = 0. In that case, Theorem 2.16 and Proposition 6.26 imply that

Tr(g on kerL2(D+8))−Tr(g on kerL2(D−8))

=

∫
TMg

ch([σD8
|TMg ](g))Todd(TMg

⊗C)

ch
([∧

NC

]
(g)
) . (6.30)

Example 6.31. Let M = Cn, and let g be the diagonal action by n nontrivial ele-
ments of U(1). Then Mg

= {0}, and N = Cn. Let βCn ∈ KKG(pt,C2n) be the Bott
element as in Definition 4.12. Now the class [D1] ∈ KKG(C

2n, pt) as in (4.15) is
the Dolbeault class of C2n. The Kasparov product

βCn ⊗C2n [D1] ∈ KKG(pt, pt)

is represented by the elliptic operator DB := B⊗ 1+ 1⊗ D1 as in (4.21). Hence
(D2

B + 1)−1 is a compact operator. In the proof of Lemma 4.19, we saw that the
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L2-kernel of DB is spanned by the g-invariant function (4.23). So

Tr(g on kerL2(D+B ))−Tr(g on kerL2(D−B ))= 1. (6.32)

On the other hand, let b∈C∞(R) be an odd function, with values in [−1, 1], such
that b(x)= 1 for all x ≥ 1. If we replace B(1+ B2)−1/2 by b(B) in (4.11), then the
resulting class in KKG(pt,C2n) is the same class βCn . But with this normalisation
function, we have b(B)2 = 1 outside the unit ball in Cn . So

index∞g (DB)= 0. (6.33)

Finally, by Corollary 6.4, with F =
∧

ÑC =
∧

C2n , we have

indexg(DB)= 1. (6.34)

The equalities (6.32), (6.33) and (6.34) illustrate Proposition 6.26 in this case.

Example 6.35. In the setting of Theorem 2.18, the index pairing [F] ⊗M [D] in
KKG(pt, pt) is represented by a Fredholm operator DF . Analogously to (6.29),
we have index∞g (DF ) = 0, so that Proposition 6.26 and Theorem 2.16 yield an
expression for Tr(g on kerL2(D+F ))−Tr(g on kerL2(D−F )). But in this setting, the
same expression follows directly from Theorem 2.18.

See Remark 7.10 for the construction of a Fredholm operator D f v as a deforma-
tion of any elliptic operator D, with index∞g (D f v)= 0.

6G. Braverman’s index. Suppose X ∈ g such that g = exp X . Let X M be the
vector field on M defined by X . Suppose D is a Dirac-type operator, and consider
the deformed operator

D f
X := D+

√
−1 fc(X M).

Here f ∈ C∞(M)G , and c : TM → End(E) is a given Clifford action, used to
define the Dirac operator D. Braverman [2002, Theorem 7.5] obtained a fixed
point theorem for such operators. This implies that the g-index equals Braverman’s
index in this case.

Corollary 6.36. If f is admissible [Braverman 2002, Definition 2.6], then the rep-
resentation of G in kerL2(D f

X )
± has a character χ± that can be evaluated at g,

and one has
indexg(D)= χ+(g)−χ−(g).

Proof. The fixed point formula for indexg(D) in Theorem 2.16 is precisely the
evaluation at g of the right-hand side of the formula in [Braverman 2002, Theorem
7.5]. (This equality also shows that kerL2(D f

X ) has a character that can be evaluated
at g.) �
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Remark 6.37. In the above construction, the element X ∈ g, which represents the
taming map used in [Braverman 2002], depends on the group element g. So the g-
index of D is not the character of the Braverman index of D deformed by a single
taming map, but the taming map depends on g.

6H. A relative index theorem. Gromov and Lawson [1983, Theorem 4.18] obtain
a relative index formula for pairs of elliptic operators that coincide outside compact
sets. (See Theorem 2.18 in [Braverman and Shi 2016] for a version for Callias-type
operators.) There is an analogue of this result for the g-index.

For j = 0, 1, let M j be a manifold with the same structure and properties as M .
Let E j → M j be a vector bundle like E → M , and let D j be an operator on
E j like D on E . Suppose there are relatively compact neighbourhoods U j of Mg

j
outside of which M j , E j and D j can be identified. As on page 38 of [Gromov and
Lawson 1983], we compactify M j to a manifold M̃ j , by taking a neighbourhood
V j of U j , and attaching a compact manifold X to it. Since M0 \ V0 = M1 \ V1, the
same manifold X can be used for j = 0, 1. Extend the vector bundles E j and the
operators D j to vector bundles Ẽ j→ M̃ j and elliptic operators D̃ j on Ẽ j . Suppose
the map g extends to M̃ j and Ẽ j , commuting with D̃ j ; this extends to continuous
actions by G on M̃ j and Ẽ j preserving D̃ j .

Proposition 6.38 (relative index theorem). We have

indexg(D1)− indexg(D0)= indexG(D̃1)(g)− indexG(D̃0)(g).

Since the manifolds M̃ j are compact, the indices on the right-hand side of this
equality are given by the usual equivariant index.

Proof. By the Atiyah–Segal–Singer fixed point theorem (or Theorem 2.16), we
have, for j = 0, 1,

indexG(D̃ j )(g)=
∫

TMg
j

ch
(
[σD̃ j
|TMg

j
](g)

)
Todd(TMg

j ⊗C)

ch
([∧

(N j )C
]
(g)
)

+

∫
TX g

ch
(
[σD̃ j
|TX g ](g)

)
Todd(TX g

⊗C)

ch
([∧

(NX )C
]
(g)
) .

Here N j → Mg
j and NX → X g are normal bundles to fixed point sets. Since

σD̃1
|TX g = σD̃0

|TX g , Theorem 2.16 implies the claim. �

6I. Some geometric consequences. The g-index of a G-equivariant elliptic opera-
tor is a topological invariant of the group action that can be used to detect geometric
properties of the action. We illustrate this in the cases of the Hodge–de Rham and
Spin-Dirac operators.
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Let D = d + d∗ : �even
C
(M) → �odd

C
(M) be the Hodge–de Rham operator

on M , acting on complex differential forms. The symbol class of this operator
is
[
τ ∗M
∧

TMC

]
, whose restriction to TMg equals

[σD|TMg ] =
[
τ ∗Mg

∧
NC

]
⊗
[
τ ∗Mg

∧
TMg

C

]
. (6.39)

Let DMg be the componentwise defined Hodge–de Rham operator on Mg. Then
Theorem 2.16 and (6.39) imply that

indexg(d+d∗)=
∫

TMg
ch(σDMg )Todd(TMg

⊗C)= index(DMg )=χ(Mg), (6.40)

the Euler characteristic of Mg. (See also [Lawson and Michelsohn 1989, p. 262].)

Corollary 6.41. If indexg(d + d∗) 6= 0, then every g-invariant vector field on M
has a zero on Mg.

Proof. A g-invariant vector field on M restricts to a vector field on Mg. If it does
not vanish there, then χ(Mg)= 0. So the claim follows from (6.40). �

Next, suppose that M is a Spin manifold, and that g lifts to the spinor bundle.
Let D be the Spin-Dirac operator.

Corollary 6.42. If G is connected, M is noncompact, and indexg(D)= 0, then the
one-point compactification M+ of M is not a G-equivariant Spin manifold.

Proof. If M+ is a G-equivariant Spin manifold with Dirac operator DM+ , then the
vanishing result of Atiyah and Hirzebruch [1970] and Theorem 2.16 imply that

0= indexg(DM+)= indexg(D)+ a∞.

Here a∞ is the contribution to the right-hand side of (2.17) of the fixed point at
infinity, which is nonzero by [Atiyah and Bott 1968, Theorem 8.35]. �

7. A nonlocalised index formula

In the compact case, the Kirillov formula is a nonlocalised expression for the
equivariant index of an elliptic operator; see [Berline et al. 1992, Theorem 8.2].
This can be deduced from the fixed point formula in the compact case. In the
case of noncompact manifolds, there is also a nonlocalised expression for the g-
index, Proposition 7.8 below. This follows from Kasparov’s index theorem and
the properties of the g-symbol class introduced in Section 5D, rather than from
Theorem 2.16.

A potentially interesting feature of this nonlocalised formula is that it involves
the same kind of deformed symbols as the ones used for Dirac operators on sym-
plectic manifolds in [Paradan 2011]. Those deformed symbols are transversally
elliptic rather than elliptic. Berline and Vergne obtained a generalisation of the
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Atiyah–Segal–Singer fixed point formula to transversally elliptic operators or sym-
bols; see [Berline and Vergne 1996a, Main Theorem 1; 1996b, Theorem 20]. This
formula involves a distribution on the group. It was pointed out to the authors by
Vergne that this formula implies that for the deformed symbols we will consider,
at points g where this distribution is given by a function, it is given by the g-index.

The index of such a deformed symbol was shown to equal the index of a de-
formed Dirac operator in Theorem 5.5 in [Braverman 2002]. In Theorem 1.5 in
[Ma and Zhang 2014], this index is proved to be equal to another index of deformed
Dirac operators, defined using the Atiyah–Patodi–Singer index on manifolds with
boundary. In contrast to [Braverman 2002; Ma and Zhang 2014; Paradan 2011],
the expression for the g-index in terms of deformed symbols is independent of the
choices made in this deformation. Furthermore, it applies to more general elliptic
operators than Dirac operators.

We shall describe the g-symbol class σ D
g of Definition 5.14 more explicitly,

using a deformed symbol. Let v be a G-invariant vector field on M that does not
vanish outside V .

Example 7.1. If X ∈ g such that g = exp(X), one can take the vector field v
induced by X . This vector field obviously depends on g.

Example 7.2. If H is a compact Lie group acting on M , containing G, then it
can be possible to choose a single vector field v that works for all elements of H .
Indeed, suppose there is an H -equivariant map ψ :M→ h, and consider the Kirwan
vector field v, defined by

vm :=
d
dt

∣∣∣
t=0

exp(tψ(m)) ·m,

for m ∈ M . Suppose this vector field is nonzero outside a compact set. Then ψ
is a taming map as in Definition 2.4 in [Braverman 2002]. In this case, the vector
field v can be used for any element of H .

Let f : V → R≥0 be a G-invariant continuous function, such that f (m) = 0
when m ∈U and limm→m′ f (m)=∞ if m′ ∈ ∂V . Consider the deformed symbol
σD, f v ∈ End(τ ∗V (E |V )), given by

σD, f v(u) := σD(u+ f (m)vm) (7.3)

for m ∈ V and u ∈ Tm M . Set

σ̃D, f v :=
σD, f v

√

σ 2
D, f v + 1

.

This defines an odd, self-adjoint, bounded operator on the Hilbert C0(TV )-module
00(τ

∗

V (E |V )). Furthermore, we have for every vector field u on M , and every
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m′ ∈ ∂V ,
lim

m→m′
σ̃D, f v(um)= sgn(σD(vm′)).

We extend σ̃D, f v to a continuous vector bundle endomorphism of τ ∗M E by setting

σ̃D, f v(u) := sgn(σD(vm))

for all u ∈ Tm M , where m ∈ M \ V . (Since vm 6= 0 if m ∈ M \ V , this operator is
invertible outside V .)

Note that
σ̃D, f v(u)2− 1→ 0 (7.4)

as u→∞ in TM . Indeed, let m ∈M and u ∈ Tm M be given. If m 6∈ V , then vm 6= 0
and σ̃D, f v(u)2 = 1. And if m ∈ V , then

σ̃D, f v(u)2− 1= (σD(u+ f (m)vm)
2
+ 1)−1.

Since D is elliptic and has first order, this goes to zero as u →∞ in TV . We
therefore find that (00(τ

∗

M E), σ̃D, f v) is a Kasparov (C,C0(TM))-cycle. Let

pt[σD, f v] ∈ KKG(pt, TM)

be its class, which will be called the deformed symbol class.

Lemma 7.5. The localisation of the deformed symbol class at g is σ D
g , i.e.,

pt[σD, f v]g = σ
D
g ∈ KKG(pt, TM)g.

Proof. As in Section 6F, let M+ be the one-point compactification of M . Let
U, V,U ′, V ′ ⊂ M+ be as in that subsection. Consider the class

M+[σD, f v] := [00(τ
∗

M E), σ̃D, f v, πM+] ∈ KKG(M+, TM),

where πM+ is as in (6.23). Then by commutativity of (6.22), for A = C0(TM), we
have

pt[σD, f v]g =
(

pM+
∗

)
g(M+[σD, f v])

=
(

pU
∗

)
g ◦
((

j V
U

)
∗

)−1
g ◦

(
k M+

V
)∗

g(M+[σD, f v]g)

+ (pU ′
∗
)g ◦

((
j V ′

U ′
)
∗

)−1
g ◦

(
k M+

V ′
)∗

g(M+[σD, f v]g). (7.6)

Now since f = 0 on V , we have(
k M+

V
)∗
(M+[σD, f v])=

(
k M

V
)∗
[σD].

So the first term in (7.6) equals σ D
g . Furthermore,(

k M+
V ′
)∗
(M+[σD, f v])= [0

∞(E |V ′), sgn(σD(v)), πV ′] = 0,

since this class is represented by a degenerate cycle. �
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Remark 7.7. Instead of (7.3), we could have used a more general deformed symbol
of the form

σD, f8(u) := σD(u)+ f (m)8m,

for m ∈ M , u ∈ Tm M and a G-equivariant, fibrewise self-adjoint, odd vector bundle
endomorphism 8 of E , which is invertible outside V . We have used the natural
choice 8= σD(v).

The realisation of the g-symbol class in Lemma 7.5 leads to the following non-
local formula for the g-index.

Proposition 7.8 (nonlocalised formula for the g-index). The g-index of D is cal-
culated by

indexg(D)= (pt[σD, f v]⊗TM [DTM ])(g). (7.9)

Proof. It follows from Definitions (2.8) and 5.14, and Theorem 4.6, that

indexg(D)= (σ D
g ⊗TM [DTM ]g)(g).

The claim therefore follows from Lemma 7.5. �

Remark 7.10. Recall that when M is noncompact, indexg(D) is defined using
KK-functorial maps. In Proposition 7.8, the class

pt[σD, f v]⊗TM [DTM ] ∈ KKG(pt, pt)

is represented by a Fredholm operator D f v , defined in terms of the deformed sym-
bol σD, f v and the Dolbeault–Dirac operator DTM . Proposition 7.8 states that

indexg(D)= Tr(g on kerL2(D+f v))−Tr(g on kerL2(D−f v)). (7.11)

Then Theorem 2.16 yields a cohomological expression for the right-hand side
of (7.11). (Note the analogy with (6.30); we now have index∞g (D f v)= 0.)
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