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We find conditions such that cup products induce isomorphisms in low degrees
for extensions between stable polynomial representations of the general linear
group. We apply this result to prove generalizations and variants of the Steinberg
tensor product theorem. Our connectedness bounds for cup product maps depend
on numerical invariants which seem also relevant to other problems, such as the
cohomological behavior of the Schur functor.

1. Introduction

Let k be a field of positive characteristic p, and let G be an algebraic group over k.
The category of rational representations of G (as in [Jantzen 2003]) is equipped
with a tensor product, which induces a cup product on extension groups:

Ext∗G(M, N )⊗Ext∗G(P, Q)
∪
−→ Ext∗G(M ⊗ P, N ⊗ Q).

Of course the cup product is injective (but usually not surjective) in cohomological
degree zero, and in general it is neither injective nor surjective in higher degrees. If
G =GLn(k), it was observed in [Touzé 2010] that the cup product is injective in all
degrees when M , N , P , Q are stable polynomial representations, i.e., when M , N ,
P , Q are polynomial representations in the usual sense [Green 2007; Martin 1993]
and furthermore when n is big enough with respect to their degrees. This surprising
fact is easily proved by using the description of stable polynomial representations
in terms of the strict polynomial functors of Friedlander and Suslin [1997].

The first main result of this article is Theorem 3.6, which establishes conditions
under which cup products are not only injective, but also surjective in low degrees.
Theorem 3.6 actually applies to the case where N and Q are representations twisted
r times by the Frobenius morphism, i.e., for cup products of the form

Ext∗G(M, N )⊗Ext∗G(P
(r), Q(r))

∪
−→ Ext∗G(M ⊗ P (r), N ⊗ Q(r)).
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As for injectivity in [Touzé 2010], the natural home for stating and proving this
connectedness property of cup products is the category of strict polynomial func-
tors. We note that already in degrees 0 and 1, our theorem looks much stronger
than what was previously known for the behavior of cup products; see Remark 4.7.

We then give concrete applications of Theorem 3.6 to the representation theory
of GLn(k). Namely, we prove the following two new generalizations of Steinberg’s
tensor product theorem.

• We call tensor products of Steinberg type the stable polynomial representa-
tions of the form M ⊗ N (r), where all the composition factors of M have
pr-restricted highest weights. Representations of this form appear naturally,
e.g., in the theory of good p-filtrations [Andersen 2001].

In Theorem 5.8, we describe the structure of the abelian subcategory gen-
erated by these tensor products of Steinberg type (with r and deg M fixed). In
particular, we prove that the GLn(k)-module M ⊗ N (r) has the same structure
as the GLn(k) × GLn(k)-module M ⊗ N . This is interesting because the
latter is much easier to study. (The classical Steinberg tensor product theorem
corresponds to the very special case where M and N are simple. Indeed, in
that case M ⊗ N is simple as a GLn(k)×GLn(k)-module, and thus by our
theorem the GLn(k)-module M ⊗ N (r) is simple too).

• As made explicit in [Krause 2013], stable polynomial representations are
equipped with an internal tensor product (Day convolution product), dual to
the internal Hom used in Ext-computations, e.g., in [Touzé 2013b; 2014]. In
Theorem 6.2 we explain how to reduce the computation of internal tensor
products of simples to the case of simples with p-restricted highest weights.
Thus, Theorem 6.2 plays the same role for understanding internal tensor prod-
ucts of simples as the classical Steinberg tensor product theorem does for
understanding ordinary tensor products of simples.

In Appendix B we show that Theorem 3.6 can also be used to derive new proofs
of two well-known fundamental theorems for simple representations of GLn(k):
Steinberg’s tensor product theorem and Clausen and James’ theorem. We note that
another functor technology proof of Steinberg’s tensor product theorem is given in
[Kuhn 2002]. The proof given here seems quite different; see Remark B.11.

The bounds for connectedness given in Theorem 3.6 depend on some cohomo-
logical constants p(M, r) and i(N , r). To be more specific, a projective stable
polynomial module is pr-bounded if its socle is a direct sum of simples with pr-
restricted highest weights; see Corollary 4.2. The integer p(M, r) is characterized
by:

p(M, r)≥ k if and only if there exists a resolution P of M in which the
first k terms P0, . . . , Pk−1 are pr-bounded projectives.
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The integer i(N , r) is defined dually; see Definition 3.4. Although we use this
definition for stable polynomial representations, it makes sense for unstable poly-
nomial representations as well. We are not aware of previous occurrences of these
constants in the literature. We study their basic properties and give characteriza-
tions of these constants, as well as elementary computation rules and examples. In
most examples, we limit ourselves to giving estimates for these constants rather
than exact values, and leave the following challenging problem open.

Problem. Compute (or obtain a reasonable understanding of) the exact value of
p(M, r) and i(M, r) for the most important GLn(k)-modules (simple modules,
standard or costandard modules).

One further motivation for this problem is that the constants p(M, r) and i(M, r)
seem to be related to other problems of interest. Let us give two examples.
• In Theorem 8.2, we prove that the constants p(M, 1) and i(M, 1) govern the

connectedness of the Schur functor on the level of extensions. The cohomo-
logical behavior of the Schur functor was already studied in a series of papers
[Doty et al. 2004; Kleshchev and Nakano 2001; Kleshchev and Sheth 1999].
Our Theorem 8.2 gives a simpler and effective approach to this problem. For
example, with our first computations of i(F, 1) and p(F, 1), we recover and
generalize many results from [Kleshchev and Nakano 2001].

• It seems that the values of p(L , r) capture some interesting concrete proper-
ties of simple functors L . Clausen and James’ theorem [Clausen 1980; James
1980] says that p(L , 1)> 0 if and only if the highest weight of L is p-restricted.
Reischuk [2016] has proved that p(L , 1) > 1 if and only if Qd

⊗ L is simple,
where Qd is the simple head of Sd (see Section 6 and in particular Theorem 6.2
and Corollaries 6.6 and 6.9 to understand why this particular internal tensor
product is interesting). It would be interesting to understand if higher inequal-
ities p(L , 1) > k (of cohomological nature) are directly connected to some
nonhomological representation-theoretic properties of L .

We finish by explaining a wider perspective behind the work presented here.
Functor category techniques have proved useful for studying representations and
cohomology of many variants of classical matrix groups. See, e.g., [Touzé 2010]
for symplectic and orthogonal group schemes, [Axtell 2013; Drupieski 2016] for
super Schur algebras, [Hong and Yacobi 2017] for quantum GLn , [Franjou et al.
1999; Djament and Vespa 2010] for finite classical groups or more generally [Dja-
ment 2012] for discrete unitary groups. In these examples, the functor categories in
play share many properties with the category of strict polynomial functors used here.
So we expect that the techniques and results developed in this article can be adapted
to these cases. For example, we prove in [Touzé 2017a] an analogue of Theorem 3.6
for polynomial representations of orthogonal and symplectic group schemes.
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This article has been written in such a way that the main thread of ideas and
proofs is self-contained. In particular, only very basic facts of the representation
theory of general linear groups are used (the highest weight category structure
is used only for the results of Section 7B) and no combinatorics of the symmetric
group is used (except a result of Bessenrodt and Kleshchev [2000] in Corollary 6.6).
These basic facts are recalled in Section 2. In the same spirit, we have also added
an appendix on representations of tensor products of finite dimensional algebras,
whose results are used in Section 5.

2. Background

2A. Strict polynomial functors and Schur algebras. In this article k is a field
of positive characteristic p, and Pd,k denotes the category of homogeneous strict
polynomial functors of degree d over k (with possibly infinite dimensional values).
We refer, e.g., to [Friedlander 2003], [Friedlander and Suslin 1997] or [Krause
2013] for an introduction to strict polynomial functors. If one considers an infinite
ground field k, strict polynomial functors have a nice description like the one in
[Macdonald 1995] (where they are simply called “polynomial functors”). Namely,
strict polynomial functors are functors from finite dimensional k-vector spaces to
k-vector spaces, such that for all pairs of finite dimensional vector spaces (V,W ),
the map

Homk(V,W )→ Homk(F(V ), F(W )),

f 7→ F( f )

is given by a homogeneous polynomial of degree d (that is, given by an element
of Sd(Homk(V,W )∗)⊗Homk(F(V ), F(W ))).

For example, the category P0,k is equivalent to the category of constant functors,
which is equivalent to the category of k-vector spaces. Typical examples of homo-
geneous functors of higher degree d are the tensor product functors ⊗d

: V 7→ V⊗d ,
the symmetric power functors Sd

: V 7→ (V⊗d)Sd and the divided power functors
0d
: V 7→ (V⊗d)Sd . (Here the symmetric group Sd acts on V⊗d by permuting the

factors of the tensor product). Note that S0
=⊗

0
= 00

= k and S1
=⊗

1
= 01, but

for d ≥ p the functor Sd is not isomorphic to 0d .
We denote by Pk the category of strict polynomial functors (of bounded degree),

that is, Pk=
⊕

d≥0 Pd,k. Thus, objects of Pk decompose as finite direct sums of ho-
mogeneous functors, and there are no nonzero morphisms between homogeneous
functors of different degrees. All functors of vector spaces considered in this article
will actually be strict polynomial functors of bounded degree, and hence we will
always omit the terms “of bounded degree”, and we will often omit the terms “strict
polynomial”.
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By evaluating a strict polynomial functor F on kn , one obtains a polynomial
GLn(k)-module F(kn). Restricting to homogeneous strict polynomial functors of
degree d , one obtains a functor

Pd,k
evkn
−−→ Pold,GLn(k) ' S(n, d)-Mod,

where Pold,GLn(k) denotes the category of homogeneous polynomial representa-
tions of GLn(k) of degree d , and S(n, d)-Mod the equivalent category of modules
over the Schur algebra S(n, d) (which is finite dimensional). It is an equivalence
of categories, provided n ≥ d . (Friedlander and Sulin [1997] proved it for functors
with finite dimensional values, but their proof actually works in the general case;
see also [Krause 2013].) In particular, Pk has nice properties similar to those of
modules over a finite dimensional algebra. We shall use the following ones in the
sequel.

(1) Simple functors are homogeneous functors, and their values are finite dimen-
sional vector spaces. A functor has a finite composition series if and only if
it has finite dimensional values; such functors are called finite. Finally, every
functor is the union of its finite subfunctors.

(2) Arbitrary direct sums of injective functors are injective, and every functor can
be embedded into a direct sum of finite injectives.

(3) Any nonzero strict polynomial functor has a nonzero socle, a nonzero head
and a finite Loewy length.

2B. Frobenius twists. let k be a field of positive characteristic p. For all r ≥ 0, we
denote by I (r) the r -th Frobenius twist functor. The functor I (0)= I = S1

=01
=31

is the identity functor. More generally, for all r ≥ 0 the functor I (r) is the unique
simple additive functor of degree pr (up to isomorphism).

Notation 2.1. We use the traditional notation F (r) = F ◦ I (r). We also denote by
F ⊗G(r) the tensor product of F and G(r), i.e., Frobenius twists have a priority
higher than tensor products in our notations.

The effect on Ext∗ of precomposition by Frobenius twist is now well understood
in all degrees [Touzé 2013a; Chałupnik 2015]. In particular, in degrees i = 0 or
i = 1, the k-linear morphism

ExtiPk
(F,G)→ ExtiPk

(F (r),G(r))

induced by precomposition by I (r) is an isomorphism. This description of the
effect of precomposition by Frobenius twists in degrees 0 and 1 can be proved by
very elementary means; see, e.g., [Breen et al. 2016, Appendix A]. We will not
need to know about higher degrees, except in the proof of Proposition 7.3.
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2C. Elementary facts regarding simple functors. Traditionally, simple polyno-
mial GLn(k)-modules are classified by examining the action of a maximal torus on
GLn(k)-modules, that is, using the concept of highest weights; see, e.g., [Martin
1993, Chapter 1]. In the sequel of the article, we shall use the following conse-
quences of this classification.

(1) Isomorphism classes of simple functors are in bijective correspondence with
partitions. For each partition λ= (λ1, . . . , λk) we fix a simple functor Lλ in the
corresponding isomorphism class. Then Lλ is homogeneous of degree

∑
λi .

We call λ the highest weight of Lλ. Indeed, by evaluating on kn , we obtain
a simple polynomial module Lλ(kn) with highest weight λ. For example, the
only simple functor of degree 0 is L(0) = k.

(2) Simple functors are self-dual. To be more specific, each simple functor L is
isomorphic to its dual L], defined by L](V ) := L(V ∗)∗.

(3) Simple functors have endomorphism rings of dimension 1.

(4) For all partitions λ and µ and all r ≥ 0, Lλ+prµ is a composition factor of
Lλ⊗ L(r)µ .

Remark 2.2. Actually, one needs the fact that k is algebraically closed to obtain
easily (by Schur’s lemma) that the endomorphism ring of a simple functor has
dimension one. When k is not algebraically closed, this can be proved using the
fact that Schur algebras are quasihereditary; see, e.g., [Martin 1993, Chapter 3].

2D. Bifunctors and sum-diagonal adjunction. We will need strict polynomial
functors with several variables for intermediate computations, as well as in the
study of tensor products of Steinberg type in Section 5. Definitions and basic
properties of strict polynomial functors extend without problem to the case of
functors with several variables, and we refer to [Suslin et al. 1997, Section 2],
[Touzé 2010, Section 2] or [Touzé 2017b, Section 3] for details. We recall here the
main features of the theory in the context of bifunctors, and leave to the reader the
obvious formulas with three variables or more.

Given two nonnegative integers d1 and d2, we denote by Pd1,d2,k the category
of homogeneous strict polynomial bifunctors of bidegree (d1, d2) (with possibly
infinite dimensional values). Typical examples of objects of this category are the
bifunctors of separable type, which are the bifunctors of the form

F �G : (V,W ) 7→ F(V )⊗G(W ),

where F and G are homogeneous strict polynomial functors of degree d1 and d2,
respectively. Just as in the one variable case, evaluating bifunctors on a pair of
vector spaces (kn, km) yields a functor

Pd1,d2,k→ S(n, d1)⊗ S(m, d2)-Mod,
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where S(m, d1) and S(m, d2) are Schur algebras (which are finite dimensional).
Moreover, this functor is an equivalence of categories if n ≥ d1 and m ≥ d2. In
particular Pd1,d2,k satisfies the three properties mentioned at the end of Section 2A.
We have a Künneth morphism

Ext∗Pd1,k
(F1,G1)⊗Ext∗Pd2,k

(F2,G2)
κ
−→ Ext∗Pd1,d2,k

(F1 � F2,G1 �G2),

which is an isomorphism if the quadruple (F1,G1, F2,G2) satisfies the following
condition.

Condition 2.3 (Künneth condition). In the quadruple (F1,G1, F2,G2), F1 and F2

are both finite functors, or F1 and G1 are both finite functors.

We also denote by Pd,k(2) the category of homogeneous strict polynomial bi-
functors of total degree d , and by Pk(2) the category of strict polynomial functors
of bounded degree, with possibly infinite dimensional values. We have decompo-
sitions

Pk(2)=
⊕
d≥0

Pd,k(2), Pd,k(2) =
⊕

d1+d2=d

Pd1,d2,k.

In particular, each bifunctor B decomposes uniquely as a direct sum B=
⊕

B(d1,d2),
where B(d1,d2) is a homogeneous strict polynomial bifunctor of bidegree (d1, d2).
We shall refer to B(d1,d2) as the homogeneous component of bidegree (d1, d2) of B.
A typical example of (degree d homogeneous) bifunctor is the bifunctor

F� : (V,W ) 7→ F(V ⊕W ),

where F is a (degree d homogeneous) strict polynomial functor of degree d . Con-
versely, from a (degree d homogeneous) bifunctor B of total degree d one can
construct a (degree d homogeneous) strict polynomial functor with one variable
by diagonal evaluation:

B1 : V 7→ B(V, V ).

These two constructions are exact and adjoint to each other on both sides. Hence
we have graded isomorphisms

Ext∗Pk(2)(B, F�)' Ext∗Pk
(B1, F),

Ext∗Pk(2)(F�, B)' Ext∗Pk
(F, B1).

These two isomorphisms were first used in the context of strict polynomial functors
in [Franjou et al. 1999]. In this article, they will be the key tool for Theorem 3.6.
As in [Franjou et al. 1999], we will often use them when B is of separable type
B = G � H , and hence when B1 = G⊗ H .
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2E. The internal tensor product. The category Pd,k is endowed with a closed
symmetric monoidal structure. We denote this internal tensor product by ⊗, and
by Hom the associated internal hom. We refer the reader to [Krause 2013] for a
presentation of this internal tensor product. We study the internal tensor product
of simple functors in Section 6. For this purpose, we will use the following facts.

(1) If F is a functor, we denote by F V the parametrized functor

W 7→ F(Homk(V,W )).

Then the internal Hom is the functor given by

Hom(F,G)(V )= HomPd,k(F
V,G).

(2) The study of internal tensor products can be reduced to the study of internal
Hom by using the isomorphism natural with respect to F,G:

(F ⊗G)] ' Hom(F,G]).

Here ] is the duality defined by F](V ) = F(V ∗)∗, where ∗ is the k-linear
duality of vector spaces.

Remark 2.4. Schur algebras do not have a Hopf algebra structure in general. (In-
deed, Schur algebras have finite global dimension, and a Hopf algebra structure
would make them self-injective in addition, and hence semisimple.) Thus the in-
ternal tensor product on Pd,k is an example of a monoidal product which does not
come from a Hopf algebra structure.

2F. Connection with representations of symmetric groups. The Schur functors
relate strict polynomial functors to representations of the symmetric groups Sd .
We will use these Schur functors in Sections 6 and 8. Let d be a positive integer.
Consider the right action of the symmetric group Sd on ⊗d given by permuting
the factors of the tensor product. The Schur functor is the functor

fd := HomPd,k(⊗
d, – ) : Pd,k→ kSd -Mod.

Since ⊗d is projective, the Schur functor fd is exact. It has adjoints on both sides.
To be more specific, the left adjoint `d is defined by `d(M)= (⊗d)⊗Sd M , while
the right adjoint rd is defined by rd(M)= ((⊗d)⊗M)Sd . The unit and counit of
adjunction induce natural isomorphisms

M
'
−→ fd(`d(M)), fd(rd(M))

'
−→ M.

In particular, the Schur functor fd is a quotient functor.
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3. Exts in low degrees between tensor products

3A. Definition of i(F, r) and p(F, r). For all tuples λ= (λ1, . . . , λn) of nonneg-
ative integers, we let

0λ := 0λ1 ⊗ · · ·⊗0λn and Sλ := Sλ1 ⊗ · · ·⊗ Sλn .

Let T denote the set of all tuples of nonnegative integers. Then the family (0λ)λ∈T
forms a projective generator of Pk, while the family (Sλ)λ∈T forms an injective
cogenerator of Pk.

Definition 3.1. Let r be a nonnegative integer. A tuple of nonnegative integers
λ= (λ1, . . . , λn) is pr-bounded if λk < pr for all k. A basic pr-bounded projective
(resp. injective) is a functor of the form 0λ (resp. Sλ), where λ is pr-bounded. A
strict polynomial functor F is left pr-bounded if it is a quotient of a direct sum of
basic pr-bounded projectives. Similarly, F is right pr-bounded if it embeds in a
product of basic pr-bounded injectives.

Remark 3.2. If r = 0, the tuple (0, . . . , 0) is the only pr-bounded tuple. Since
00
= S0

= k, a functor is p0-bounded if and only if it is constant.

The following lemma collects elementary facts on pr-bounded functors.

Lemma 3.3. (1) The following statements are equivalent:
(i) F is right pr-bounded,

(ii) Soc(F) is right pr-bounded,
(iii) F embeds into a direct sum of basic pr-bounded injectives.

(2) The following statements are equivalent:
(i′) F is left pr-bounded,

(ii′) Head(F) is left pr-bounded,
(iii′) F is the union of finite left pr-bounded subfunctors.

Proof. (1) It is clear that (iii)⇒(i)⇒(ii). If (ii) holds, then each simple summand of
Soc(F) embeds into a basic pr-bounded injective. Thus Soc(F) embeds into a di-
rect sum of basic pr-bounded injectives J . Since J is injective, the monomorphism
Soc(F) ↪→ J extends to a map φ : F→ J . But Soc(kerφ)⊂ kerφ ∩ Soc(F)= 0
so φ is injective. This proves (iii).

(2) It is clear that (i′)⇒(ii′). The proof of (ii′)⇒(i′) is dual to the one of (ii)⇒(iii).
Let us prove (i′)⇔(iii′). If F is left pr-bounded, there is a map π :

⊕
λ∈A 0

λ � F .
Thus F is the union of the images of the π

(⊕
λ∈B 0

λ
)
, where B is a finite subset

of A. Conversely, if F is the union of a family of finite left pr-bounded functors Fα ,
then F is a quotient of

⊕
Fα. Hence F is left pr-bounded. �

Definition 3.4. Let r be a nonnegative integer, and let F be a strict polynomial
functor.
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(1) We define p(F, r) ∈ [0,+∞] as the supremum of all the integers n ≥ 0
such that F admits a projective resolution P in which the first n objects
P0, . . . , Pn−1 are left pr-bounded.

(2) We define i(F, r)∈[0,+∞] as the supremum of all the integers n≥0 such that
F admits an injective resolution J in which the first n objects J 0, . . . , J n−1

are right pr-bounded.

Remark 3.5. (i) By definition p(F, r) > 0 if and only if F is left pr-bounded,
and i(F, r) > 0 if and only if F is right pr-bounded.

(ii) If pr > deg F , then all projectives or injectives appearing in any resolution of
F are pr-bounded, so p(F, r)= i(F, r)=+∞. In particular, if F is constant,
it is homogeneous of degree 0 and i(F, r)= p(F, r)=+∞ for all r ≥ 0.

(iii) In the definition, p(F, r) and i(F, r) belong to [0,+∞]. However, the cat-
egory Pd,k has finite global dimension gldim(d, k), which is explicitly com-
puted in [Totaro 1997]. If F is homogeneous of degree d, then p(F, r) and
i(F, r) actually belong to [0, . . . , gldim(d, k)] ∪ {+∞}.

3B. Application to the connectedness of cup products. The tensor product on Pk ,
⊗ : Pk×Pk→ Pk, induces a cup product on extension groups in the usual way;
see, e.g., [Benson 1998, Section 3.2]. The purpose of this section is to prove the
following result.

Theorem 3.6. Let (F,G, X, Y ) be a quadruple of homogeneous strict polynomial
functors satisfying the Künneth condition (Condition 2.3), and let r ≥ 0. The cup
product induces a graded injective map

Ext∗Pk
(F,G)⊗Ext∗Pk

(X (r), Y (r)) ↪→ Ext∗Pk
(F ⊗ X (r),G⊗ Y (r)).

Moreover, this graded injective map is an isomorphism in degree k in the following
situations:

(1) when deg F < deg G, and k < i(G, r);

(2) when deg F > deg G, and k < p(F, r);

(3) when deg F = deg G, and k < p(F, r)+ i(G, r).

Remark 3.7. If deg F 6= deg G then the domain of the cup product is zero, as there
is no nonzero Ext between homogeneous functors of different degrees. Thus, in
cases (1) and (2), Theorem 3.6 merely says that the codomain of the cup product
is zero in low degrees.

The remainder of Section 3 is devoted to the proof of Theorem 3.6. Observe
that we have a factorization of cup products
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Ext∗Pk
(F,G)⊗Ext∗Pk

(X (r), Y (r))

κ

��

∪ // Ext∗Pk
(F ⊗ X (r),G⊗ Y (r))

Ext∗Pk(2)(F � X (r),G � Y (r))

–1

33

In particular, Theorem 3.6 is a consequence of the following slightly more general
statement, in which the Künneth condition is removed.

Theorem 3.8. Let F,G, X, Y be homogeneous functors, and let r ≥ 0 . Diagonal
evaluation induces a graded injective map

Ext∗Pk(2)(F � X (r),G � Y (r)) ↪→ Ext∗Pk
(F ⊗ X (r),G⊗ Y (r)).

Moreover, this graded injective map is an isomorphism in degree k in the situations
listed in Theorem 3.6.

The proof of Theorem 3.8 relies on a series of lemmas. The proofs of these lem-
mas are all based upon the sum-diagonal adjunction technique recalled in Section 2D.

Lemma 3.9. Let F,G, F ′,G ′ be homogeneous functors satisfying deg F = deg G
and deg F ′ = deg G ′. Diagonal evaluation yields an injective map

Ext∗Pk(2)(F � F ′,G �G ′) ↪→ Ext∗Pk
(F ⊗ F ′,G⊗G ′)

whose cokernel is isomorphic to the following direct sum, indexed by the tuples of
nonnegative integers (d1, d2, e1, e2) such that d2 > 0 and e1 > 0:⊕

0<d2,e1
0≤d1,e2

Ext∗Pk(2)
(
F � F ′, (G�)

(d1,d2)⊗ (G ′�)
(e1,e2)

)
.

This cokernel is also isomorphic to the direct sum⊕
0<d2,e1
0≤d1,e2

Ext∗Pk(2)
(
(F�)

(d1,d2)⊗ (F ′�)
(e1,e2),G �G ′

)
.

Proof. We recall the proof of injectivity from [Touzé 2010] and prove the first
description of the cokernel. The proof of the second description is similar. The
map given by diagonal evaluation is equal to the composite of the map

η∗ : Ext∗Pk(2)(F � F ′,G �G ′)→ Ext∗Pk(2)(F � F ′, (G⊗G ′)�)

induced by the canonical map η :G�G ′→ (G⊗G ′)�, together with the adjunction
isomorphism

Ext∗Pk(2)(F � F ′, (G⊗G ′)�)' Ext∗Pk
(F ⊗ F ′,G⊗G ′).
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Thus, to prove Lemma 3.9, it suffices to prove that η∗ is injective and to identify
its cokernel. But

(G⊗G ′)� = G�⊗G ′�,

and there is a decomposition

(G⊗G ′)� = G �G ′⊕
⊕

d2>0 or e1>0

(G�)
(d1,d2)⊗ (G ′�)

(e1,e2).

The map η identifies with the inclusion of G � G ′ into the right-hand side, and
since the decomposition is a direct sum, it follows that η∗ admits a section, and the
cokernel of η∗ is isomorphic to⊕

d2>0 or e1>0

Ext∗Pk(2)(F � F ′, (G�)
(d1,d2)⊗ (G ′�)

(e1,e2)).

This is almost the description of the cokernel given in Lemma 3.9, but the sum-
mation index is different. Since there are no nonzero extensions between ho-
mogeneous bifunctors of different degrees, all the terms in the direct sum are
zero, except the ones satisfying d1 + e1 = deg F and d2 + e2 = deg F ′. Since
d1+d2 = deg G = deg F , the nonzero terms in the direct sum satisfy e1 = d2. Thus
we can replace the summation index “d2 > 0 or e1 > 0” by “e1 > 0 and d2 > 0”
and we are done. �

The proof of the next lemma is omitted since it is very similar to the proof of
Lemma 3.9.

Lemma 3.10. Let F, F ′,G,G ′ be homogeneous functors. If deg F > deg G, then
Ext∗Pk

(F ⊗ F ′,G⊗G ′) is isomorphic to the following direct sum, indexed by the
tuples of nonnegative integers (d1, d2, e1, e2) such that e1 > 0:⊕

0<e1
0≤d1,d2,e2

Ext∗Pk
(F � F ′, (G�)

(d1,d2)⊗ (G ′�)
(e1,e2)).

If deg F < deg G, then it is isomorphic to⊕
0<e1

0≤d1,d2,e2

Ext∗Pk
((F�)

(d1,d2)⊗ (F ′�)
(e1,e2),G �G ′).

The next two vanishing lemmas are analogues of the key vanishing result (i.e.,
Pirashvili’s vanishing) of [Friedlander and Suslin 1997, Theorem 2.13].

Lemma 3.11. Let F and G be homogeneous functors with deg G > 0 and let λ be
a pr-bounded tuple. Then

HomPk(F ⊗G(r), Sλ)= 0= HomPk(0
λ, F ⊗G(r)).
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Proof. We prove the first equality. The proof of the second one is similar. We will
use the fact that for all homogeneous G of positive degree and for all pr-bounded
tuples ν,

HomPk(G
(r), Sν)= 0. (∗)

This is proved when G has finite dimensional values in [Touzé 2012, Lemma 2.3],
and it holds for an arbitrary G because any functor is the colimit of its finite
subfunctors. (Alternatively, one could also prove this vanishing by sum-diagonal
adjunction.) To reduce the equality of Lemma 3.11 to formula (∗), we proceed as
follows. First, sum-diagonal adjunction yields an isomorphism:

HomPk(F ⊗G(r), Sλ)' HomPk(F �G(r), (Sλ)�).

We observe that (Sλ)� decomposes as a direct sum of tensor products of the form
Sµ� Sν such that µ and ν are pr-bounded. Thus Lemma 3.11 will be proved if we
can prove that HomPk(F �G(r), Sµ� Sν) is zero when µ and ν are pr-bounded.
So let φ : F �G(r)

→ Sµ� Sν be a morphism. By freezing the first variable of the
bifunctors, we obtain for all V a morphism of functors

φV : F(V )⊗G(r)( – )→ Sµ(V )⊗ Sν( – ).

By formula (∗), φV must be zero for all V . In particular, φ must be zero. �

Lemma 3.12. Let r be a positive integer, let J be a be a right pr-bounded injective
functor, let P be a left pr-bounded projective functor, let Z be a homogeneous
functor and let B and C be two homogeneous bifunctors. If deg C = (e1, e2) with
e1 > 0, and C (r) denotes the bifunctor (V,W ) 7→ C(V (r),W (r)), then

Ext∗Pk(2)(B⊗C (r), J � Z)= 0= Ext∗Pk(2)(P � Z , B⊗C (r)).

Proof. We prove the first equality. The proof of the second one is similar. If JZ is
an injective resolution of the functor Z , then J � JZ is an injective resolution of
the bifunctor J � Z . Thus, it is sufficient to do the proof in degree zero (i.e., for
Hom) and when Z is injective, the general case will follow by taking resolutions.
So let us take a morphism of bifunctors φ : B⊗C (r)

→ J � Z . Then by freezing
the first variable of the bifunctors, we obtain for all V a morphism of functors:

φV : B(V, – )⊗C (r)(V, – )→ J (V )⊗ Z( – ).

But by Lemma 3.11, φV is zero for all V . In particular, φ must be zero. �

Proof of Theorem 3.8. By Lemma 3.9, diagonal evaluation yields an injective mor-
phism on the Ext-level (if deg F 6= deg G or deg X 6= deg Y , the source of the cup
product morphism is zero for degree reasons, so that injectivity is trivial). Hence,
it remains to prove the cancellation in low degrees of the cokernel, described in
Lemmas 3.9 and 3.10.
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Assume that deg F ≥ deg G. Take a finite resolution of F of the form:

0→ F→ Fp(F,r)−1→ · · · → F0→ F→ 0

where the functors Fk with k < p(F, r) are left pr-bounded projective functors.
Take B and C as in Lemma 3.12. By using long exact sequences, we obtain that
for all k ∈ Z (with the convention that Ext are zero in nonpositive degrees):

Ext∗Pk(2)(F � X (r), B⊗C (r))' Ext∗−p(F,r)
Pk(2) (F � X (r), B⊗C (r)). (∗)

In particular the Ext on the left-hand side is (p(F, r)− 1)-connected, i.e., zero in
degrees ∗< p(F, r). By Lemmas 3.9 and 3.10, the case where B = (F�)

(d1,d2) and
C (r)
= (Y (r)� )(e1,e2) with e1> 0 implies that the cup product induces an isomorphism

in degrees less than p(F, r). A similar argument shows that the cup product is
an isomorphism in degrees less than i(G, r) if deg F ≤ deg G. Assume now that
deg F = deg G. By Lemma 3.9 and isomorphism (∗), the statement of Theorem 3.8
is equivalent to showing that

Ext∗Pk(2)
(
F � X (r), (G�)

(d1,d2)⊗ (Y (r)� )(e1,e2)
)

is (i(G, r)− 1)-connected for d2 > 0 and e1 > 0. By Lemma 3.9 again, this is
equivalent to showing that the cup product

Ext∗Pk
(F,G)⊗Ext∗Pk

(X (r), Y (r))→ Ext∗Pk
(F ⊗ X (r),G⊗ Y (r))

is an isomorphism in degrees less than i(G, r). But we have already proved that
the latter holds, since deg F ≤ deg G. �

4. An equivalent definition of p(F, r) and i(F, r)

The next proposition gives an equivalent definition of p(F, r) and i(F, r). While
the proof of Theorem 3.6 really relies on Definition 3.1, this new definition is useful
for applying Theorem 3.6 in concrete situations. In particular, the translation of
Theorem 3.6 in low degrees given in Corollary 4.4 will be used in Sections 5 and 6.

Recall that a partition λ= (λ1, . . . , λn) is pr-restricted (for some nonnegative
integer r ) if λn < pr and for i < n, λi −λi+1 < pr. By convention, the partition (0)
is pr-restricted for all r ≥ 0. Using euclidean division, one sees that any partition
λ can be written in a unique way as a sum λ= λ0

+ prλ1, where λ0 is pr-restricted.
A simple indexed by a pr-restricted partition will be loosely called a pr-restricted
simple. The proof of Proposition 4.1 relies on two classical fundamental results on
simple polynomial representations in positive characteristic. We state them here
with references to the literature, but we prove in Appendix B that both of them can
actually be derived from Theorem 3.6.
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(1) Steinberg’s tensor product theorem [Jantzen 2003, II.3.17]. If λ is pr-restricted
and µ is an arbitrary partition, then Lλ⊗ L(r)µ is isomorphic to Lλ+prµ.

(2) Clausen and James’ theorem [Clausen 1980; James 1980]. A partition λ of d
is p-restricted if and only if HomP(Lλ,⊗d)= HomP(⊗

d , Lλ) is nonzero.

Proposition 4.1. Let r be a nonnegative integer, and let F be a functor.

(1) The integer p(F, r) is the supremum of all n ≥ 0 such that F admits a projec-
tive resolution P , in which the first n objects P0, . . . , Pn−1 are direct sums of
projective covers of pr-restricted simples.

(2) The integer i(F, r) is the supremum of all n ≥ 0 such that F admits an injec-
tive resolution J , in which the first n objects J 0, . . . , J n−1 are direct sums of
injective envelopes of pr-restricted simples.

Proof. We restrict ourselves to proving the second statement; the proof of the first
one is similar. Let us denote by Jµ the injective envelope of Lµ. We have to prove
that

(i) for all pr-restricted partitions µ, there is a pr-bounded tuple λ such that Jµ is
a direct summand of Sλ, and

(ii) for all pr-bounded tuples λ, the indecomposable direct summands of Sλ are
all isomorphic to Jµ with µ pr-restricted.

Write µ=
∑n

i=0 piµi for p-restricted partitions µi . By Steinberg’s tensor prod-
uct theorem, Lµ is isomorphic to

L(0)
µ0 ⊗ · · ·⊗ L(n)µn .

By Clausen and James’ theorem, Lµ is a subfunctor of (I (0))⊗|µ
0
|
⊗· · ·⊗(I (n))⊗|µ

n
|.

Since I (i) ⊂ S pi
, we obtain that Lµ is a subfunctor of

⊗
0≤i≤n(S

pi
)⊗|µ

i
|. If µ is

pr-restricted then n < r , so Lµ (hence also Jµ) is a subfunctor of Sλ with λ pr-
bounded. This proves (i). Let λ be a pr-bounded tuple, and let µ be a partition
such that µ is not pr-restricted. By Steinberg’s tensor product theorem, Lµ is
isomorphic to Lµ′ ⊗ L(r)µ′′ for a pr-restricted partition µ′ and a nonzero partition µ′′.
So by Lemma 3.11, HomP(Lµ, Sλ) is zero, and hence Jµ is not a direct summand
of Sλ. This proves (ii). �

Corollary 4.2. For all F , i(F, r) > 0 if and only if Soc(F) is a direct sum of pr-
restricted simples. Likewise, p(F, r) > 0 if and only if Head(F) is a direct sum of
pr-restricted simples.

If (d0, . . . , dk) is a tuple of nonnegative integers, we let

T (d0,...,dk) = (⊗d0)⊗ (⊗d1)(1)⊗ · · ·⊗ (⊗dk )(k).

Corollary 4.3. Let L be a simple functor. The following are equivalent:
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(i) p(L , r) > 0,

(ii) i(L , r) > 0,

(iii) L is pr-restricted,

(iv) there exists a tuple (d0, . . . , dr−1) such that L is a quotient of T (d0,...,dr−1), and

(v) there exists a tuple (d0, . . . , dr−1) such that L embeds into T (d0,...,dr−1).

Proof. We have (i)⇔ (ii) ⇔ (iii) by Corollary 4.2, (iv) ⇔ (v) by Kuhn duality
(both L and T (d0,...,dr−1) are self-dual) and (iii)⇒ (iv) by Steinberg’s tensor product
theorem and Clausen and James’ theorem (as used in the proof of Proposition 4.1).
Finally, the functor T (d0,...,dr−1) is a quotient of (01)⊗d0 ⊗ · · ·⊗ (0 pr−1

)⊗dr , so that
p(T (d0,...,dr−1), r) > 0. Hence (iv)⇒(iii) by Corollary 4.2. �

The next corollary is a translation of Theorem 3.6 in low degrees in terms of
pr-restricted weights. It will be used in Sections 5 and 6.

Corollary 4.4. Let (F,G, X, Y ) be a quadruple of homogeneous strict polynomial
functors satisfying the Künneth condition (Condition 2.3), and let r ≥ 0. Precom-
posing by I (r) and taking cup products induces injective morphisms

HomPk(F,G)⊗HomPk(X, Y ) ↪→ HomPk(F ⊗ X (r),G⊗ Y (r)), (4.5)

HomPk(F,G)⊗Ext1Pk
(X, Y )

⊕ Ext1Pk
(F,G)⊗HomPk(X, Y )

↪→ Ext1Pk
(F ⊗ X (r),G⊗ Y (r)). (4.6)

If one of the conditions (C1) or (C2) below holds, morphism (4.5) is an isomor-
phism. If both (C1) and (C2) hold, then morphism (4.6) is also an isomorphism.

(C1) deg F ≤ deg G and Head(G) is a direct sum of pr-restricted simples.

(C2) deg F ≥ deg G and Soc(F) is a direct sum of pr-restricted simples.

Proof. Recall from Section 2B that precomposing by I (r) yields a k-linear iso-
morphism on the level of Hom and Ext1. Thus the statement of Corollary 4.4
is equivalent to the statement where X and Y are replaced by X (r) and Y (r) at the
source of the cup product maps. By Corollary 4.2, (C1) means that i(G, r) > 0, and
(C2) that i(F, r) > 0. Thus Corollary 4.2 follows directly from Theorem 3.6. �

Remark 4.7. In Sections 5 and 6 we will use Corollary 4.4 for quite general
functors F and G. However, this result is already interesting in the very special
case where F and G are pr-restricted simples. Indeed the isomorphism given
by Corollary 4.4 is then a stronger form, albeit valid only for stable polynomial
representations of GLn , of formulas of Donkin [1982] and Andersen [1984]; see
also [Jantzen 2003, II.10.16, II.10.17]. For example, Corollary 4.4 implies that if
λ 6= λ′ are partitions of d and G = GLn with n big enough, then the number of Lµ
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in the socle of the tensor product Ext1Gr
(Lλ, Lλ′)(−r)

⊗ L ′µ is zero, unless µ= µ′,
in which case it equals the dimension of Ext1G(Lλ, Lλ′).

5. Tensor products of Steinberg type

Recall that a simple functor L is a composition factor of an arbitrary functor F if
L is a subquotient of F . Equivalently, if 0= F−1

⊂ F0
⊂ · · · ⊂ F is an exhaustive

filtration of F whose successive quotients are semisimple (e.g., the Loewy filtration
of F), then L appears as a direct summand in one of these successive quotients.

Definition 5.1. A tensor product of Steinberg type is a strict polynomial functor
isomorphic to a tensor product F ⊗G(r), where r is a nonnegative integer and F
is a functor whose composition factors are all pr-restricted.

The purpose of the present section is to explore the structure of these tensor prod-
ucts of Steinberg type. Note that by Steinberg’s tensor product theorem (applied
to the tensor product of the socle filtration of F by the socle filtration of G(r)), all
composition factors of F ⊗G(r) are of the form Lλ⊗ L(r)µ , with Lλ a composition
factor of F and Lµ a composition factor of G. This observation motivates the
following definition.

Definition 5.2. Let e, d, r be nonnegative integers. We let St (d, e, r) be the full
subcategory of Pd+epr ,k supported by the strict polynomial functors whose com-
position factors are all of the form Lλ⊗ L(r)µ for pr-restricted partition λ of d and
partitions µ of e.

Lemma 5.3. The category St (d, e, r) contains all the tensor products of Steinberg
type F ⊗ G(r), where F is homogeneous of degree d and G is homogeneous of
degree e. Moreover, it is localizing and colocalizing, i.e., it is closed under sums,
products, subobjects, quotients and extensions.

Proof. Everything is straightforward from the definition of St (d, e, r) except
maybe that St (d, e, r) is closed under arbitrary products. Let L be a composition
factor of a product

∏
Xα. Then there is a nonzero map PL →

∏
Xα, where PL

denotes the projective cover of L . Thus there is an α such that HomPk(PL , Xα) 6= 0,
so that L = Lλ⊗ L(r)µ with λ pr-restricted. �

The next lemma makes critical use of Corollary 4.4.

Lemma 5.4. In the category St (d, e, r), any object X has a presentation P1 →

P0→ X→ 0 in which the Pi are direct sums of tensor products of Steinberg type
F⊗G(r) with F and G finite. Similarly, X has a copresentation 0→ X→Q0

→Q1

in which the Qi are products of such tensor products.

Proof. It suffices to prove that all the objects of St (d, e, r) are quotients of direct
sums of tensor products of Steinberg type with values in finite dimensional spaces
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(then using the duality ], they will also embed into products of such functors).
Let X be an object of St (d, e, r), and let X i denote the i-th term of the socle
filtration of X . Assume that X i−1 is a quotient of P i−1, where P i−1 has the required
form. Then X i/X i−1 is a direct sum of Lλ⊗ L(r)µ , and each of these functors is a
homomorphic quotient of Pλ⊗ P (r)µ , where Pµ and Pλ are projective functors, and
Pλ is left pr-bounded. Using Corollary 4.4 and the projectivity of Pµ and Pλ, we
obtain Ext1Pk

(Pλ ⊗ P (r)µ , X i−1) = 0. Hence the map Pλ ⊗ P (r)µ → X i/X i−1 lifts
to f : Pλ⊗ P (r)µ → X i . The functor Pλ has a unique largest quotient P ′λ whose
composition factors are pr-restricted. Let Kλ be the kernel of the quotient map
Pλ � P ′λ. By Corollary 4.4, HomPk(Kλ ⊗ P (r)µ , X i ) = 0. Therefore, f induces
a map P ′λ ⊗ P (r)µ → X i . In particular, if we define P i

:= P i−1
⊕
⊕

P ′λ ⊗ P (r)µ ,
then P i is a direct sum of tensor products of Steinberg type with values in finite
dimensional vector spaces, and X i is a quotient of P i . Since homogeneous strict
polynomial functors have finite socle filtrations, this proves the lemma. �

We will prove that the categories St (d, e, r) have an alternative description in
terms of bifunctors. To be more specific, we denote by

8 : Pd,e,k(2)→ Pd+pr e,k

the functor such that 8(B)(V ) = B(V, V (r)). We observe that 8 is exact, but it
is not an equivalence of categories. For example, if d = pr and e = 1, the bifunc-
tor I (r)� I is simple, while its image ⊗2(r) is not (32(r) is a proper subfunctor).
However, 8 behaves better if we suitably restrict its source and target categories.

Definition 5.5. Let e, d, r be nonnegative integers. We denote by St ′(d, e, r) the
full subcategory of Pd,e,k(2) supported by the strict polynomial bifunctors whose
composition factors are all of the form Lλ� Lµ, where λ is a pr-restricted partition
of weight d and µ is a partition of weight e.

We have the following analogues of Lemmas 5.3 and 5.4.

Lemma 5.6. The subcategory St ′(d, e, r) contains all the separable functors F�G,
where F is homogeneous of degree d with pr-restricted composition factors and G
is homogeneous of degree e. Moreover, St ′(d, e, r) is closed under sums, products,
subobjects, quotients and extensions.

Lemma 5.7. In the category St ′(d, e, r), any object B has a presentation P1→

P0→ X→ 0 in which the Pi are direct sums of tensor products of separable type
F �G, where F and G are finite and the composition factors of F are pr-restricted.
Similarly, B has a copresentation 0→ X→ Q0

→ Q1 in which the Qi are products
of such tensor products.

We can now state the central theorem of this section.
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Theorem 5.8. The functor 8 restricts to an equivalence of categories:

8 : St ′(d, e, r)
'
−→ St (d, e, r).

Proof. We first prove that 8 is fully faithful. Let T be the full subcategory of
St ′(d, e, r) supported by the bifunctors of separable type F � G with F and G
finite. By Lemma 5.7 and exactness of 8, it suffices to prove that the restriction
of 8 to T is fully faithful. This follows from Corollary 4.4. To prove that 8
is essentially surjective, we consider the functor 9 : Pd+epr ,k→ Pd,e,k(2) which
sends a functor F to the bifunctor

(9F)(V,W )= HomPd+pr e,k(0
d,V
⊗ (0e,W )(r), F).

If F ⊗G(r) is a tensor product of Steinberg type, by Corollary 4.2 F is right pr-
bounded, so that Corollary 4.4 and [Friedlander and Suslin 1997, Theorem 2.10]
yield isomorphisms of strict polynomial functors:

(89(F ⊗G(r)))(V )' HomPd,k(0
d,V, F)⊗HomPe,k(0

e,V (r)
,G)

' F(V )⊗G(V (r)).

Thus 8 ◦9 is the identity functor on the tensor products of Steinberg type. By
Lemma 5.4, all the functors of St (d, e, r) are kernels of products of tensor products
of Steinberg type. Thus by left exactness of 8 ◦9, the restriction of 8 ◦9 to
the whole category St (d, e, r) is isomorphic to the identity functor. Hence 8 is
essentially surjective (and 9 is the inverse of 8). �

Theorem 5.8 generalizes the Steinberg tensor product theorem. Indeed, exter-
nal tensor products Lλ � Lµ of simple functors are simple bifunctors, so that
Theorem 5.8 and the stability of St (d, e, r) by subobjects imply that the functors
8(Lλ� Lµ)= Lλ⊗ L(r)µ are simple. More generally, Theorem 5.8 can be used to
convert any question about the structure of the tensor products of Steinberg type
(socle length, submodule lattices, or even Ext1 issues) into similar questions about
the structure of bifunctors of separable type which are much easier to study. To
illustrate this, we give new properties of tensor products of Steinberg type, obtained
by translating some general properties of representations of tensor products of finite
dimensional algebras given in Appendix A (recall that the category Pd,e,k(2) is
equivalent to the category of S(d, d)⊗ S(e, e)-modules).

Remark 5.9. In the following corollaries, we do not assume that F and G are
homogeneous. In each case, the proof reduces easily to the homogeneous case by
additivity of tensor products. We also observe that each of these corollaries is a
stronger statement than the classical Steinberg tensor product theorem.
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Corollary 5.10 (socle series). If the composition factors of F are pr-restricted,
then for all G, the socle filtration of F ⊗ G(r) is the tensor product of the socle
filtration of F by the socle filtration of G, precomposed by I (r).

Corollary 5.11 (subfunctors). Assume that the composition factors of F are pr-
restricted. Let G be any functor. Assume that F or G is multiplicity free. Then the
subfunctors S ⊂ F ⊗G(r) are of the form

S =
∑
α

Fα ⊗G(r)
α

for some families of subfunctors Fα ⊂ F and Gα ⊂ G.

Corollary 5.12 (diagrams). Assume that F and G are multiplicity-free and the
composition factors of F are pr-restricted. Then the diagram associated to F⊗G(r)

as defined in [Alperin 1980] has the functors Lλ⊗ L(r)µ as vertices, where Lλ is a
composition factor of F and Lµ is a composition factor of G, and there is an edge
Lλ⊗ L(r)µ → L ′λ⊗ L ′µ

(r) if and only if one of the following two conditions holds:

(i) Lλ = L ′λ and there is an edge Lµ→ L ′µ in the diagram of G,

(ii) Lµ = L ′µ and there is an edge Lλ→ L ′λ in the diagram of F.

The next statement follows from Proposition A.8. It uses the fact that all simple
strict polynomial functors satisfy Ext1Pk

(L , L) = 0, which follows from the fact
that the Schur algebras are quasihereditary.

Corollary 5.13 (tensor products on the left). Let λ be a pr-restricted partition.
Let Lλ⊗P(r)k denote the full subcategory of Pk whose objects are the functors
isomorphic to tensor products of the form Lλ⊗ F (r). Then

(1) the subcategory Lλ⊗P(r)k is localizing and colocalizing,

(2) precomposing by I (r) and tensoring by Lλ yields an equivalence of categories
Pk ' Lλ⊗P(r)k .

6. Application to internal tensor products

The purpose of this section is to study the internal tensor product of simple functors.
In particular, Theorem 6.2 plays a role for internal tensor products similar to the
role of the Steinberg theorem for ordinary tensor products.

6A. Internal tensor products of simple functors. Let F1 and G1 be two homoge-
neous functors of degree d , and F2 and G2 homogeneous functors of degree e. The
internal tensor product is equipped with a coproduct

(F1⊗ F2)⊗ (G1⊗G2)→ (F1⊗G1)⊗ (F2⊗G2).
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To be more specific, this coproduct coincides on the standard projectives with the
following composite (where the first map is the canonical inclusion and the second
one is the canonical projection):

(0d,T
⊗0e,U )⊗ (0d,V

⊗0e,W ) ↪→ (0d+e,T⊕U
⊗0d+e,V⊕W )

= 0d+e,(T⊕U )⊗(V⊕W )

� 0d,T⊗V
⊗0e,U⊗W

= (0d,T
⊗0d,V )⊗ (0e,U

⊗0e,W ).

The following proposition is a consequence of Corollary 4.4.

Proposition 6.1. Let F,G, X, Y be homogeneous strict polynomial functors, and
let r ≥ 0. If deg F < deg G and G is left pr-bounded, or if deg F > deg G and F
is left pr-bounded, then

(F ⊗ X (r))⊗ (G⊗ Y (r))= 0.

If deg F = deg G and F or G is left pr-bounded, then the coproduct induces an
isomorphism

(F ⊗ X (r))⊗ (G⊗ Y (r))' (F ⊗G)⊗ (X ⊗ Y )(r).

Proof. In this proof, we assume that deg F ≥ deg G and F is pr-bounded (the
proof is similar if deg F ≤ deg G and G is pr-bounded). Since the internal tensor
product is right exact and commutes with arbitrary direct sums, it suffices to prove
Proposition 6.1 when G and Y are finite.

Since F is left pr-bounded, the parametrized functor F V also is. Hence, if
deg F > deg G, Corollary 4.4 implies that

Hom(F ⊗ X (r),G]
⊗ (Y ])(r))= 0. (∗)

Since G and Y are finite, G]
⊗ (Y ])(r) is isomorphic to (G ⊗ Y (r))]. Hence the

equality (∗) can be reinterpreted as

((F ⊗ X (r))⊗ (G⊗ Y (r)))] = 0.

This proves the asserted cancellation. Assume now that deg F = deg G. Then by
Corollary 4.4 the cup product induces an isomorphism

Hom(F,G)⊗Hom(X, Y )(r) ' Hom(F ⊗ X (r), Y ⊗ Y (r)). (∗∗)

But the coproduct is dual to the cup product; that is, for all functors F , G, H and
K there is a commutative diagram in which the horizontal isomorphisms are the
canonical isomorphisms recalled in Section 2E:



308 ANTOINE TOUZÉ

(F ⊗ H)]⊗ (G⊗ K )]

can
��

' // Hom(F, H ])⊗Hom(G, K ])

∪

��
((F ⊗ H)⊗ (G⊗ K ))]

coproduct]

��

Hom(F ⊗ H,G]
⊗ K ])

can
��

((F ⊗ H)⊗ (G⊗ K ))] ' // Hom(F ⊗ H, (G⊗ K )])

If the functors G and K are finite, so is G⊗K and the canonical maps denoted “can”
in the diagram above are isomorphisms. Thus, the isomorphism of Proposition 6.1
can be deduced from the diagram above with H = X (r) and K = Y (r), and from
the isomorphism (∗∗). �

The following theorem reduces the study of internal tensor products of simple
functors to the case of p-restricted simple functors. In other terms, it plays the same
role for internal tensor products as the classical Steinberg tensor product theorem
does for ordinary tensor products.

Theorem 6.2. Let λ0, . . . , λr and µ0, . . . , µs be p-restricted partitions, and let
λ=

∑
piλi and µ=

∑
piµi .

(1) If r = s and µi and λi have the same weight for all i , then Lλ⊗ Lµ is nonzero
and there is an isomorphism

Lλ⊗ Lµ ' (Lλ0 ⊗ Lµ0)⊗ (Lλ1 ⊗ Lµ1)(1)⊗ · · ·⊗ (Lλr ⊗ Lµr )(r).

(2) Otherwise, Lλ⊗ Lµ is zero.

Proof. The classical Steinberg tensor product theorem shows that

Lλ = Lλ0 ⊗ · · ·⊗ L(r)λr and Lµ = Lµ0 ⊗ · · ·⊗ L(s)µs ,

where the Lλi and the Lµ j are p-restricted, hence right p-bounded by Corollary 4.2.
Thus the result follows by applying Proposition 6.1. �

6B. The case of p-restricted simple functors. To investigate internal tensor prod-
ucts of p-restricted simple functors, we rely on the Schur functor.

Lemma 6.3. For all strict polynomial functors F, there are isomorphisms of func-
tors, natural with respect to F :

F ⊗⊗d
' Hom(⊗d, F)'⊗d

⊗ fd(F).

Moreover, if we consider the action of Sd on the left-hand side induced by the
left action of Sd on ⊗d, the action on the middle term induced by the right action
of Sd on ⊗d, and the diagonal action of Sd on the right-hand side, then these
isomorphisms are Sd -equivariant.
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Proof. We have isomorphisms of strict polynomial functors, natural with respect
to V and F :

Hom(0d,V, F)' FV ' F ⊗0d
V . (∗)

Take V = kd and let the torus (Gm)
×d act on kd by (λ1, . . . , λd) · (x1, . . . , xd) =

(λ1x1, . . . , λd xd). Then the summand of weight (1, . . . , 1) of the right-hand side
of isomorphism (∗) is F ⊗⊗d , and it is isomorphic to the summand of weight
(1, . . . , 1) of the left-hand side, which is Hom(⊗d, F). Moreover, Hom(⊗d, F) is
isomorphic to the functor U 7→ HomPk((⊗

d)U, F). Since (⊗d)U is isomorphic to
(U∗)⊗d

⊗⊗
d, we get an isomorphism of strict polynomial functors with variable U :

Hom(⊗d, F)' HomPk((U
∗)⊗d
⊗⊗

d, F)'U⊗d
⊗ fd(F).

Finally, one easily checks that these explicit constructions of the isomorphisms of
Lemma 6.3 yield Sd -equivariant isomorphisms. �

Proposition 6.4. For all functors F , G, there is an isomorphism of kSd -modules

fd(F ⊗G)' fd(F)⊗ fd(G),

where the tensor product on the right is the Kronecker product of fd(F) and fd(G)
(i.e., Sd acts diagonally).

Proof. Lemma 6.3 yields a chain of isomorphisms:

F⊗ (G⊗⊗d)' F⊗ (⊗d
⊗ fd(G))' (F⊗⊗d)⊗ fd(G)'⊗d

⊗ fd(F)⊗ fd(G).

Thus the evaluation of F⊗ (G⊗⊗d) at k is isomorphic to fd(F)⊗ fd(G). On the
other hand, F ⊗ (G⊗⊗d) is isomorphic to (F ⊗G)⊗⊗d and Lemma 6.3 shows
that the evaluation of the latter at k is isomorphic to fd(F ⊗G). �

The following corollary shows that in the first case of Theorem 6.2, the internal
tensor product is always nonzero.

Corollary 6.5. Let L and L ′ be two p-restricted simples. Then L ⊗ L ′ is nonzero.

Proof. By Clausen and James’ theorem, fd(L) and fd(L ′) are nonzero. Hence, by
Proposition 6.4, fd(L ⊗ L ′) is nonzero. Thus L ⊗ L ′ is nonzero. �

Given two p-restricted simples L and L ′, a natural question is to determine if
the analogue of Theorem B.12 holds, i.e., if the nonzero functor L ⊗ L ′ is simple.
In fact, Bessenrodt and Kleshchev [2000] have proved that the Kronecker product
of two simple representations of symmetric groups is almost never simple. In
particular, Proposition 6.4 has the following consequence in odd characteristic.

Corollary 6.6. Assume that p is odd. Let L and L ′ be two p-restricted simples
such that fd(L) and fd(L ′) both have dimension at least two. Then L ⊗ L ′ is not
simple.
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Proof. Since the right adjoint of fd satisfies fd ◦ rd = Id, fd(L) sends simple
functors either to simple kSd -modules or to zero. But fd(L⊗L ′)' fd(L)⊗ fd(L ′)
is a Kronecker product of two simple kSd -modules, so is not simple by [Bessenrodt
and Kleshchev 2000, Theorem 2]. Thus L ⊗ L ′ cannot be simple. �

Remark 6.7. Corollary 6.6 uses [Bessenrodt and Kleshchev 2000, Theorem 2],
which is a nontrivial result on symmetric groups. It would be interesting to find a
more elementary proof of Corollary 6.6, in the spirit of the proof of Theorem B.12.

To solve completely (in odd characteristic) the problem of knowing if an internal
tensor product L ⊗ L ′ can be simple, it remains to study the case where fd(L ′)
has dimension 1. The remainder of the section is devoted to this study. In our
discussion below, we show in Corollary 6.10 that when fd(L ′) has dimension one,
L⊗ L ′ may sometimes be simple and sometimes not, and in Corollary 6.9 we show
that it suffices to study the case L ′ = Qd. The latter case is studied in [Reischuk
2016], where the simplicity of L ⊗ Qd is shown to be equivalent to p(L , 1) > 1.

There are two kSd-modules of dimension 1, namely the signature module kalt

and the trivial module k. The signature module is the image by the Schur functor of
3d
= L(1,...,1). Since HomPd,k(⊗

d, Sd) has dimension 1 and since Sd is a quotient
of ⊗d, the head of Sd is a p-restricted simple functor. This functor is known under
the name of truncated symmetric powers, and we denote it by Qd as in [Breen et al.
2016]. Then fd(Qd) is the trivial kSd -module. Thus, to solve completely (in odd
characteristic) the problem of knowing if an internal tensor product L ⊗ L ′ can be
simple, it remains to investigate the internal tensor products L ⊗ Qd and L ⊗3d

for p-restricted simples L .

Proposition 6.8. Let F be a homogeneous functor of degree d. Consider the right
action of Sd on ⊗d given by permuting the factors of the tensor product. If p 6= 2
then

F ⊗3d
' (⊗d)⊗Sd (k

alt
⊗ fd(F)).

If Head(F) is a direct sum of p-restricted simples (and p arbitrary), then

F ⊗ Qd
' (⊗d)⊗Sd fd(F).

Proof. Lemma 6.3 yields an Sd-equivariant isomorphism F ⊗⊗d
'⊗

d
⊗ fd(F).

Taking the coinvariants under the signed action of Sd and using right exactness of
internal tensor products, we obtain the first isomorphism. For the second, let Rd be
the radical of Sd. Since fd(Sd)= fd(Qd) and the Schur functor is exact, we have
fd(Rd)= 0. Hence, by Lemma 6.3, Rd

⊗⊗
d is zero. But if P is left p-bounded

projective, it is a direct summand in a direct sum of copies of⊗d, and hence Rd
⊗P

is zero. Now F is left p-bounded by Corollary 4.2, so Rd
⊗ F = F ⊗ Rd

= 0. By
right exactness of tensor products we thus obtain an isomorphism F⊗Sd

' F⊗Qd .
Then the computation of F ⊗ Sd is done in the same fashion as that of F ⊗3d . �
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If M is a simple Sd-module, then M ⊗ kalt is also simple. Let Lµ be the
simple p-restricted functor such that fd(Lµ) = M . We denote by m(µ) the p-
restricted partition such that fd(Lm(µ))= M ⊗ kalt. The involution µ 7→ m(µ) (or
rather µ′ 7→ m(µ′) where µ′ stands for the conjugate partition of µ) is known as
the Mullineux correspondence [Martin 1993, Section 4.2], and its combinatorial
description has been proved by Ford and Kleshchev [1997]; see also the work of
Brundan and Kujawa [2003] for a more recent and different proof. Proposition 6.8
has the following consequence.

Corollary 6.9. Let µ be a p-restricted partition. Then

Lµ⊗3d
' Lm(µ)⊗ Qd .

As another consequence of Proposition 6.8, we obtain that the internal tensor
product of two simple functors may sometimes be simple and sometimes not. The
problem of knowing exactly for which p-restricted partitions µ the functor Lµ⊗3d

is simple is studied in [Reischuk 2016].

Corollary 6.10. Assume that p is odd. Then Qd
⊗3d is isomorphic to 3d , and

3d
⊗3d is isomorphic to Sd .

7. Estimates for p(F, r) and i(F, r)

7A. Basic properties of p(F, r) and i(F, r). Let r be a positive integer. We
introduce the following two homogeneous functors of degree d , where T (d0,...,dk) =

(⊗d0)⊗ (⊗d1)(1)⊗ · · ·⊗ (⊗dk )(k) as in Corollary 4.3:

L(d, r) =
⊕

λ not pr-restricted
and |λ| = d

Lλ , T (d, r) =
⊕

∑
0≤i<r pi di<d∑

0≤i pi di=d

T (d0,...,dk).

These functors are defined so that they contain all the simples of degree d, or all
the twisted tensor powers of degree d , which have at least one factor precomposed
by I (s) with s ≥ r . Hence they are nonzero if and only if d ≥ pr. By Corollary 4.3,
L(d, r) is a quotient of T (d, r). Since these two functors are self-dual, it follows
that L(d, r) is also a subfunctor of T (d, r).

Proposition 7.1. Let F be a homogeneous functor of degree d, and let G(d, r)
be equal to either L(d, r) or T (d, r). Then p(F, r) is the lowest (possibly +∞)
degree k such that the vector space ExtkPk

(F,G(d, r)) is nonzero, and i(F, r) is
the lowest k such that ExtkPk

(G(d, r), F) is nonzero.

Proof. Let P be a degree d homogeneous pr-bounded projective. Then Theorem 3.6
implies that Ext∗Pk

(P,G(d, r)) is zero. Take a projective resolution Q of F whose
first p(F, r)-terms (i.e., up to index p(F, r)− 1) are left pr-bounded projectives,
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and let K be the kernel of Q p(F,r)−1→ Q p(F,r)−2. By definition of p(F, r), K
is not pr-bounded. By Corollary 4.2, this means that there exists a nonzero map
K → L(d, r), and hence also a nonzero map K → T (d, r). By dimension shifting,

ExtiPk
(F,G(d, r))'

{
0 if i < p(F, r),
HomPk(K ,G(d, r)) 6= 0 if i = p(F, r).

The proof for i(F, r) is similar. �

Since T (d, r) is a self-dual functor, Ext∗Pk
(T (d, r), F]) is always isomorphic to

Ext∗Pk
(F, T (d, r)). Thus we obtain the following corollary.

Corollary 7.2. For all functors F , we have i(F], r)= p(F, r).

We now indicate how i(F, r) behaves with respect to some usual operations
on strict polynomial functors. There are similar statements for p(F, r) which can
be deduced from the formula p(F, r) = i(F], r) or by repeating the proofs with
projective resolutions. We leave this to the reader.

Proposition 7.3. Let F and G be two functors. The following hold:

(a) i(FV , r)= i(F, r).

(b) i(F, r)= i(F (s), r + s).

(c) i(F ⊗G, r)=min{i(F, r), i(G, r)}.

(d) i(F ⊕G, r)=min{i(F, r), i(G, r)}.

(e) i(F, r)≥min{i(S, r) : S is finite and S ⊂ F}.

Proof. Statement (d) is straightforward from the characterization of i(F, r) in terms
of Ext∗ provided by Proposition 7.1, and implies that for the remaining statements,
we can assume that F and G are homogeneous. We let d := deg F and g := deg G.
Statement (e) follows from the interpretation of i(F, r) given in Proposition 7.1
and the fact that Ext∗(T (d, r), – ) commutes with directed colimits. To prove (a),
observe that F is a direct summand in F V so that i(F, r)≥ i(FV , r). Moreover, if J
is a standard pr-bounded injective then JV is a direct sum of standard pr-bounded
injectives. Hence if Q is an injective resolution of F whose first i(F, r) terms are
left pr-bounded injectives, then QV is an injective resolution of FV whose first
i(F, r) terms are left pr-bounded injectives, so that i(FV , r)≥ i(F, r).

To prove (b), we use the isomorphisms

Ext∗P,k(T (d, r + s), F (s))' Ext∗Pk
(T (d, r)(s), F (s))' Ext∗Pk

(T (d, r), FEs ).

The first isomorphism is induced by the inclusion T (d, r)(s) ⊂ T (d, r + s); the
cokernel of this split inclusion is easily seen to be zero by using the sum diagonal
adjunction. The second isomorphism is proved in [Touzé 2013a; Chałupnik 2015].
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In this formula FEs is a nonnegatively graded functor, and the degree on the right-
hand side is the total degree. The graded functor FEs equals Fkps in an ungraded
way, so that the lowest nonzero degree k on the right-hand side of the isomorphism
is greater or equal to i(Fkps , r) = i(F, r). Hence i(F (s), r + s) ≥ i(F, r). Con-
versely, the degree zero component of FEs is isomorphic to F , so that the lowest
nonzero degree k on the right-hand side of the isomorphism is lower or equal to
i(F, r), and hence i(F (s), r + s)≤ i(F, r).

It remains to prove (c). Assume for example that i(F, r) ≤ i(G, r). If Q and
Q′ are injective resolutions of F and G, respectively, whose first i(F, r) terms
are pr-bounded, then Q ⊗ Q′ is an injective resolution of F ⊗ G whose first
i(F, r) terms are pr-bounded, and hence i(F ⊗ G, r) ≥ i(F, r). Conversely, let
x be a nonzero extension in Exti(F,r)(T (d, r), F). Let L be a simple subfunctor
of G. As L is a quotient of a functor T (d0,...,d`) for some tuple (d0, . . . , d`) by
Corollary 4.3, there is a nonzero map f : T (d0,...,d`) → G. Since cup products
are injective (by Theorem 3.6 with r = 0 or by Lemma 3.9), x ∪ f is a nonzero
element of Exti(F,r)(T (d, r)⊗ T (d0,...,d`), F ⊗ G). But T (d, r)⊗ T (d0,...,d`) is a
direct summand of T (d + g, r), so that i(F ⊗G, r)≤ i(F, r). �

7B. A few examples.

Proposition 7.4. Let r be a nonnegative integer. The following hold:

(1) If deg F < pr, then i(F, r)=+∞.

(2) If d ≥ pr, then i(Sd, r)= 0.

(3) If d ≥ pr, then i(3d, r)= pr
− 1.

(4) If d ≥ pr, then i(0d, r)= 2(pr
− 1).

Proof. The first statement follows from the fact that when d < pr, all basic injectives
of degree d are pr-bounded. If d ≥ pr, the multiplication of the symmetric algebra
and the natural inclusion I (r) ↪→ S pr

induce a nonzero map ⊗d−pr
⊗ I (r)→ Sd .

Hence, by Proposition 7.1, i(Sd, r)= 0. Let us prove that i(3d, pr )= pr
− 1. The

homogeneous part of degree d of the reduced bar construction of the symmetric
algebra S provides an injective resolution of 3d whose first pr

− 1 terms are basic
pr-bounded injectives; see, e.g., [Totaro 1997]. Thus i(3d, r) ≥ pr

− 1. Con-
versely, using sum-diagonal adjunction one obtains that Ext∗Pk

(⊗d−pr
⊗ I (r),3d)

is isomorphic to the tensor product

Ext∗Pk
(⊗d−pr

,3d−pr
)⊗Ext∗Pk

(I (r),3pr
).

The factor on the left-hand side of the tensor product is concentrated in degree
zero (as ⊗d−pr

is projective) and one-dimensional by [Friedlander and Suslin 1997,
Corollary 2.12], and by [Friedlander and Suslin 1997, (4.5.1), p. 251], the factor
on the right-hand side of the tensor product is one-dimensional and concentrated in
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degree pr
−1. Now⊗d−pr

⊗ I (r) is a direct summand in T (d, r), so that i(3d , r)≤
pr
− 1 by Proposition 7.1. A similar argument applies to (4): the homogeneous

part of degree d of the twofold reduced bar construction of the symmetric algebra
yields an injective resolution whose first 2(pr

− 1) terms are basic pr-bounded
injectives, and on the other hand, one can compute that Ext∗Pk

(⊗d−pr
⊗ I (r), 0d)

is one-dimensional and concentrated in degree 2(pr
− 1). �

Let us denote by Sλ the Schur functor associated to a partition λ and by Wλ

the Weyl functor associated to λ. These are finite homogeneous strict polynomial
functors, whose degree is the weight of the partition λ, and we have Wλ = S]λ. They
generalize the functors Sd , 3d and 0d . Indeed,

W(d,0,0,... ) = 0
d , S(d,0,0,... ) = Sd , S(1,...,1) =W(1,...,1) =3

d .

The Sλ are the costandard, and the Wλ the standard, objects of the highest weight
category structure of Pk. In particular Soc(Sλ) = Lλ = Head(Wλ). We refer
the reader to [Touzé 2013b, Section 6.1.1] or [Krause 2017] for more details and
references on these functors. The following lemma may be useful for computations.

Lemma 7.5. Let λ be a partition and let λ′ be the dual partition. For all tuples
(d0, . . . , dk) there is a graded isomorphism (where Ext is understood as zero in
negative degrees):

Ext∗Pk
(T (d0,...,dk), Sλ)' Ext∗+s

Pk
(T (d0,...,dk),Wλ′),

where s = d1(p− 1)+ d2(p2
− 1)+ · · ·+ dk(pk

− 1).

Proof. We use Ringel duality 2, which is an autoequivalence of D(Pd,k). See,
e.g., [Touzé 2013b, Section 3; Chałupnik 2008, Section 2]. We have 2Sλ = Wλ′

and 2T (d0,...,dk) = T (d0,...,dk)[−s], so that the lemma follows from interpreting mor-
phisms of degree s in the derived category as extensions of degree s. �

Proposition 7.6. Let λ be a partition and λ′ the dual partition. Then we have

i(Sλ, r)+ pr
− 1≤ i(Wλ′, r).

Assume, moreover, that λ= λ0
+ pλ1

+· · ·+ pkλk , where each λk is a p-restricted
partition of dk , and k ≥ r . Then

i(Wλ′, r)≤
k∑

i=1

di (pi
− 1).

Proof. We use the isomorphism of Lemma 7.5. If T (d0,...,dr ) is a direct summand
of T (d, r), then the associated shift s is always greater than or equal to pr

−

1. This proves the first inequality. As regards the second inequality, we have
Lλ = Lλ0 ⊗ · · ·⊗ L(k)

λk by the Steinberg tensor product theorem. By Clausen and
James’ theorem, Lλ is then a quotient of T (d0,...,dk). Thus we get a nonzero element
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in HomPk(T
(d0,...,dk), Sλ) by composing the quotient map T (d0,...,dk)→ Lλ with the

inclusion Lλ ⊂ Sλ. Therefore, by Lemma 7.5, there is a nonzero extension of
degree

∑k
i=1 di (pi

− 1) between T (d0,...,dk) (hence T (d, r)) and Wλ′ . �

We finish this section by computing the integers i(F, r) when F is any Schur or
Weyl functor of degree 4 in characteristic p= 2. The result is already known for S4,
34 and 04 by Proposition 7.4. For the three remaining partitions, the computation
relies on the following short exact sequences.

Lemma 7.7. Let k be a field of characteristic p = 2. There are short exact se-
quences

(1) 0→34
→33

⊗31
→ S(2,1,1)→ 0,

(2) 0→ S(3,1)→ S3
⊗ S1
→ S4

→ 0,

(3) 0→ S(2,2)→ S2
⊗ S2
→ S(3,1)⊕ S4

→ 0.

Proof. The first two sequences are the standard presentation and copresentation of
Schur functors and are valid over an arbitrary ring [Akin et al. 1982]. Only the last
one is specific to the characteristic 2 case and needs to be proved. As proved in
[Akin et al. 1982], the Schur functor S(2,2) has copresentation given by

0→ S(2,2)→ S2
⊗ S2 (φ,mult)
−−−−→ S3

⊗ S1
⊕ S4, (∗)

where mult denotes the map induced by the multiplication for the symmetric alge-
bra and φ is defined as the composite map

S2
⊗ S2 S2

⊗1
−−−→ S2

⊗⊗
2 mult⊗S1

−−−−→ S3
⊗ S1,

for 1 induced by the comultiplication of the symmetric algebra. Since the field has
characteristic 2, there is a surjective map π : S2

→32, and φ factors in a unique
way as φ = ψ ◦ (S2

⊗π). Now the composite mult ◦ψ : S2
⊗32

→ S4 is zero, so
that the image of ψ is contained in S(3,1). Thus the copresentation (∗) induces a
copresentation

0→ S(2,2)→ S2
⊗ S2
→ S(3,1)⊕ S4.

The last map on the right is surjective for Euler characteristic reasons (the dimen-
sions being independent of the characteristic, one can do the computation in charac-
teristic zero, where S2

⊗S2 is isomorphic to S(2,2)⊕S(3,1)⊕S4 by the Pieri rule). �

The extension groups between ⊗2
⊗ I (1), I (1)⊗ I (1) or I (2) on the one hand, and

tensor products of symmetric or exterior powers on the other, are easy to compute.
Now one can completely compute the extension groups between T (4, r) and the
Schur functors simply by inspecting the (not very) long exact Ext∗Pk

(T (d, r), – )-
sequences associated to the short exact sequences of Lemma 7.7. One can then
obtain the corresponding computations with Weyl functors by Lemma 7.5. We
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record the resulting computations of i(F, r) in the following proposition. Since
p3
= 23 > 4= d, only the cases r = 1 and r = 2 are interesting.

Proposition 7.8. Let k be a field of characteristic 2. The following computations
hold.

F 04 W(3,1) W(2,2) W(2,1,1) 3
4 S(2,1,1) S(2,2) S(3,1) S4

i(F, 1) 2 2 2 1 1 1 0 0 0
i(F, 2) 6 5 4 4 2 2 1 1 0

Remark 7.9. One sees in this example that the integers i(F, r) are increasing with
respect to the dominance order for Weyl functors, and decreasing with respect to
the dominance order for Schur functors. It would be quite interesting to know if
this is the shadow of some general phenomenon.

8. Application to symmetric groups

Lemma 8.1. The Schur functor sends p-bounded projectives and injectives to pro-
jective and injective kSd-modules, respectively. Moreover, if F is a p-bounded
projective or if G is a p-bounded injective, then the Schur functor induces an
isomorphism

HomPd,k(F,G)
'
−→ HomSd ( fd(F), fd(G)).

Proof. The left adjoint of fd sends kSd to⊗d. Thus fd(⊗
d)= fd(`d(kSd))'kSd

is projective. Moreover, the map induced by fd ,

HomPd,k(⊗
d,G)→ HomSd (kSd , fd(G)),

is an isomorphism because it identifies with the adjunction isomorphism for (`d , fd).
This proves Lemma 8.1 for the p-bounded projective ⊗d. If i < p then 0i is
a direct summand of ⊗i (the retract of the canonical inclusion 0i ↪→ ⊗i is the
natural transformation which sends v1 ⊗ · · · ⊗ vi to

∑
σ∈Si

vσ(1)⊗ · · ·⊗ vσ(i).).
Thus p-bounded projectives are direct summands of direct sums of copies of ⊗d .
As fd commutes with arbitrary direct sums, this implies that Lemma 8.1 holds for
all p-bounded projectives. The proof for p-bounded injectives is similar, using the
right adjoint rd . �

The next theorem generalizes many theorems in [Kleshchev and Nakano 2001].
In particular, Theorem 8.2 does not require any restriction on the characteristic, and
works for all F and all G. As regards concrete computations, the explicit bounds for
i(G, 1) for Weyl functors G given in Section 7B yield connectedness bounds which
are at least as good as those given in [Kleshchev and Nakano 2001]. However,
we have not investigated estimates for i(G, 1) when G is simple. Hence, unlike
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[Kleshchev and Nakano 2001], we don’t have concrete connectedness estimates
for simple functors.

Theorem 8.2. Let F and G be homogeneous strict polynomial functors of degree d.
The map induced by the Schur functor

ExtkPd,k
(F,G)→ ExtkkSd

( fd(F), fd(G))

is an isomorphism in degrees k < p(F, 1)+ i(G, 1)−1, and it is injective in degree
k = p(F, 1)+ i(G, 1)− 1.

Proof. Assume that there is a short exact sequence 0→ H→ J→ H ′→ 0, where J
is a p-bounded injective. The Schur functor induces a morphism from the induced
Ext∗Pd,k

(F, – )-long exact sequence to the induced Ext∗Sd
( fd(F), fd(– ))-long exact

sequence. Using Lemma 8.1 together with the five lemma, we see that the Schur
functor is k-connected for the pair (F, H) (i.e., an isomorphism in Ext-degree < k
and injective in Ext-degree k) if and only if it is (k − 1)-connected for the pair
(F, H ′). Using this argument, we reduce the proof of Theorem 8.2 to the case
where i(G, 1)= 0. By a similar argument applied to the contravariant variable of
Ext, we reduce the proof further to the case where i(F, 1)= 1. In the latter case,
F is a quotient of a p-bounded projective P and we have a commutative diagram

HomPd,k(P,G)
fd

'

// HomSd ( fd(P), fd(G))

HomPd,k(F,G)
?�

OO

fd // HomSd ( fd(F), fd(G))
?�

OO

which proves that for the pair (F,G) the Schur functor is indeed p(F, 1)− 1 con-
nected (i.e., injective in degree zero). �

The following examples show that the bounds in Theorem 8.2 are optimal.

Example 8.3. Let Q p be the socle of 0 p. Then Q p is the simple functor with
highest weight (p− 1, 1). In particular, i(Q p, 1)≥ 1 by Corollary 4.2. Since 0 p

is the middle term of a nonsplit extension

0→ Q p
→ 0 p

→ I (1)→ 0,

we have Ext1Pk
(I (1), Q p) 6= 0, which proves that i(Q p, 1)≤ 1 by Proposition 7.1.

Thus i(Q p, 1)= 1. We claim that the following map is not an isomorphism:

Exti(Q
p,1)−1

Pp,k
(0 p, Q p)→ Exti(Q

p,1)−1
kSp

( f p(Q p), f p(0
p)).

Indeed, the domain HomPk(0
p, Q p) is zero as Head(0 p) = I (1) 6= Q p. But

f p(0
p) = f p(Q p) = k. Thus the codomain HomkSp( f p(0

p), f p(Q p)) has di-
mension one.
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Example 8.4. Let F be a homogeneous functor of degree d. By Proposition 7.1,
Exti(F,1)Pk,d

(T (d,1), F) is nonzero. On the other hand fd(T (d,1))=0 by Corollary 4.4,
so that the following map is not injective:

Exti(F,1)Pd,k
(T (d, 1), F)→ Exti(F,1)kSd

( fd(T (d, 1)), fd(F)).

Appendix A. Representations of tensor product algebras

This appendix collects some results about representations of tensor product alge-
bras. All these results are standard (except maybe Proposition A.6), but they are
scattered in the literature and not always stated under the form that we want to use.

In the remainder of the section, we fix two finite dimensional algebras A and B
over a ground field k. We assume furthermore that k is a splitting field for these
two algebras; that is, the endomorphism rings of simple modules have dimension
one over k. (This hypothesis is satisfied for quasihereditary algebras, and of course
for all algebras if k is algebraically closed).

If M is an A-module and N a B-module, we denote by M�N their tensor product,
viewed as an A⊗ B-module. The tensor product yields a Künneth morphism

Ext∗A(M,M ′)⊗Ext∗B(N , N ′)
κ
−→ Ext∗A⊗B(M � N ,M ′� N ′).

Proposition A.1. The Künneth morphism κ is an isomorphism if M and M ′ have
finite dimension or if M and N have finite dimension.

Proof. If M has finite dimension, then it has a projective resolution by finite dimen-
sional projective A-modules. Thus, it suffices to prove the result in degree zero (i.e.,
for Hom), the general result follows formally by taking resolutions. Using semi-
exactness and additivity of Hom and � with respect to their first variable, one
reduces furthermore to the case M = A. If M ′ has finite dimension, the Künneth
morphism in degree zero identifies with the map

M ′⊗HomB(N , N ′)→ HomB(N ,M ′⊗ N ′),

which is an isomorphism since M ′ has finite dimension. If N has finite dimension,
one can also reduce to the case N = B, and in the latter case it is clear that κ is an
isomorphism. �

Proposition A.2. Up to isomorphism, the simple A⊗ B-modules are the tensor
products L1 � L2 where L1 is a simple module over A and L2 a simple module
over B. Moreover, two such simple modules L1 � L2 and L ′1 � L ′2 are isomorphic
if and only if L1 ' L ′1 and L2 ' L ′2.

Proof. The fact that L1 � L2 is simple if L1 and L2 are simple follows from
the density theorem [Curtis and Reiner 1981, (3.27)]. If two such tensor prod-
ucts L1 � L2 and L ′1 � L ′2 are isomorphic, then L1 ' L ′1 and L2 ' L ′2 because
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HomA⊗B(L1 � L2, L ′1 � L ′2) is isomorphic to HomA(L1, L ′1) ⊗ HomB(L2, L ′2).
It remains to prove that any simple A⊗ B-module is of the form L1 � L2. The
Jacobson radical J (A⊗ B) of A⊗ B contains J (A)⊗ B + A⊗ J (B), since the
latter is a nilpotent ideal [Curtis and Reiner 1981, (5.15)]. Thus we have a surjective
morphism

π : A/J (A)⊗ B/J (B)� A⊗ B/J (A⊗ B).

Since the quotient C/J (C) of a k-algebra C is a semisimple ring [Curtis and Reiner
1981, (5.19)] with the same simple modules as C , it follows form the Wedderburn
theorem and dimension counting that π is an isomorphism and that all simple
A⊗ B-modules have the form L1 � L2. �

Lemma A.3. For all modules M and N , Soc(M)�Soc(N )= Soc(M � N ).

Proof. By Proposition A.2, Soc(M)�Soc(N ) is a semisimple submodule of M�N .
Moreover, for all simple modules L1 � L2, we have

HomA⊗B(L1 � L2,M � N )= HomA(L1,M)⊗HomB(L2, N )

= HomA(L1,Soc(M))⊗HomB(L2,Soc(N ))

= HomA⊗B(L1 � L2,Soc(M)�Soc(N )).

Consequently, all simple submodules of M�N are submodules of Soc(M)�Soc(N ).
This proves the lemma. �

Lemma A.4. For all modules M and N , Head(M � N )= Head(M)�Head(N ).

Proof. If M and N have finite dimension, the proof is dual to the proof of Lemma A.3.
By additivity of � with respect to both variables, the result is then true when M
and N are arbitrary projectives. In general, let P and Q be projective covers of
Head(M) and Head(N ), respectively. One has quotient maps

P � Q � M � N � Head(M)�Head(N ),

and the result follows by taking heads of these modules. �

Lemma A.3 can be applied iteratively to identify the socle filtration of M � N .
We index socle filtrations of modules so that the (−1)-th term is zero and the zeroth
term is the socle of the modules.

Proposition A.5. For all modules M and N , the socle filtration of M � N is the
tensor product of the socle filtration of M with the socle filtration of N .

Proof. Let M i , N i and (M � N )i be the terms of the socle filtrations of M , N
and M � N , and let Fn

:=
∑

i+ j=n M i � N j . We prove Fn
= (M � N )n by

induction on n. We have F0
= M0 � N 0

= (M � N )0 by Lemma A.3. Assume
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that Fn
= (M � N )n . Let ι be the canonical inclusion⊕
i+ j=n+1

(M i/M i−1)� (N j/N j−1)= Fn+1/Fn ↪→ (M � N )/Fn.

Let φ denote the canonical inclusion

(M � N )/Fn ↪→
⊕

i+ j=n+1

(M/M j−1)� (N/N j−1).

The composite φ ◦ ι is the direct sum of the canonical inclusions

(M i+1/M i )� (N j+1/N j ) ↪→ (M/M i )� (N/N j ).

Thus, it follows from Lemma A.3 that φ ◦ ι maps the semisimple module Fn+1/Fn

isomorphically onto the socle of the target of φ. In particular, the inclusion ι is in
fact an isomorphism. �

Recall that a finite module is multiplicity free if it has a composition series
whose composition factors are pairwise nonisomorphic.

Proposition A.6. Assume that one of the modules M or N is multiplicity free. Then
for all submodules S ⊂ M � N , there are submodules Uα of M and submodules Vα
of N such that S =

∑
Uα � Vα.

Proof. Since any module over a finite dimensional algebra is the sum of its finite
submodules, it suffices to prove Proposition A.6 when all modules have finite di-
mension. Assume for example that M is multiplicity free, and fix a submodule
S ⊂ M � N .

Let T be a submodule of S such that T/Rad(T )' L1 � L2 is simple. There is
a submodule U ⊂ M such that Head(U )' L1. We claim that T ⊂U � N . Indeed,
since M is multiplicity free, L1 � L2 is not a composition factor of (M/U )� N .
Since Head(T )= L1�L2, no nontrivial homomorphic image of T can be contained
in (M/U )� N . Thus T ⊂U � N .

We now construct a strictly decreasing sequence of modules V0 = N ⊃ V1 ⊃

· · · ⊃ Vn such that U �Vn = T . Assume that Vi is constructed such that T ⊂U �Vi .
If the inclusion is an equality then the construction is finished. Otherwise, the
canonical map φ : Head(T )→ Head(U � Vi ) is not surjective. By Lemma A.4,
Head(U � Vi )= Head(U )�Head(Vi ) and by using the Künneth formula, we see
that all submodules of Head(U � Vi ) are of the form Head(U )� W , where W is
a submodule of Head(Vi ). In particular, Imφ is of the form Head(U )� Wφ . The
inverse image of Imφ by the quotient map

π �πi :U � Vi � Head(U )�Head(Vi )

is Rad(U )�Vi +U �π−1
i (Wφ). This is a submodule of U �Vi which contains T .
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But Head(T )' L1 � L2 is not a composition factor of

Rad(U )� (Vi/π
−1
i (Wφ))'

Rad(U )� Vi +U �π−1
i (Wφ)

U �π−1
i (Wφ)

.

Thus T is actually a submodule of U � π−1
i (Wφ). We define Vi+1 := π

−1
i (Wφ).

Since φ is not surjective, Vi+1 is a strict submodule of Vi and T ⊂U �Vi+1. Since
V0 = N has finite dimension, we cannot indefinitely repeat this construction and
decrease the dimension of the submodules Vi . Hence there must be an integer n
such that U � Vn = T .

We have proved so far that all submodules of T ⊂ S with simple head are of the
form U � V for some submodules U ⊂ M and V ⊂ N . But for each composition
factor Lα of S we can find a Tα with Tα/Rad(Tα) = Lα. Then S =

∑
Tα =∑

Uα � Vα and we are done. �

The submodule lattice of multiplicity free modules can be described in terms of
certain oriented diagrams [Alperin 1980]. To be more specific, the diagram D(M)
associated to a module M has the composition factors of M as vertices, and there is
an edge L→ L ′ if and only if there is a submodule U ⊂ M such that Head(U )' L
and L ′ is a homomorphic image of Rad(U ) (such a module U is unique [Alperin
1980, Lemma 4]). The following proposition describes the diagrams of tensor
products M � N .

Proposition A.7. The tensor product M � N is multiplicity free if and only if both
M and N are multiplicity free. If this happens, then the vertices of D(M � N )
are the tensor products L1 � L2, where L1 is a composition factor of M and L2 a
composition factor of N. Moreover, there is an edge L1 � L2→ L ′1 � L ′2 if and
only if either L1 = L ′1 and there is an edge L2→ L ′2 in D(N ) or if L2 = L ′2 and
there is an edge L1→ L ′1 in D(M).

Proof. We only prove the statement about the edges of D(M � N ). Let L1 � L2 be
a composition factor of M �N and let U ⊂ M such that Head(U )= L1 and V ⊂ N
such that Head(V )= L2. Then by Lemma A.4, Head(U�V )= L1�L2. Thus there
is an edge L1 � L2→ L ′1 � L ′2 if and only if L ′1 � L ′2 is a homomorphic image of
Rad(U )�V+U�Rad(V ), that is, if and only if HomA�B(Rad(U )�V, L ′1�L ′2) 6=0
or HomA�B(U�Rad(V ), L ′1�L ′2) 6= 0. By the Künneth formula, the first condition
is equivalent to the fact that L ′1 is a homomorphic image of Rad(U ) and that L ′2=L2

while the second one is equivalent to the fact that L ′2 is a homomorphic image of
Rad(V ) and that L ′1 = L1. �

Proposition A.8. Let L be a simple A-module satisfying Ext1A(L , L)= 0, let C be
a localizing and colocalizing subcategory of B-Mod, and let L � C denote the full
subcategory of A⊗ B-Mod whose objects are isomorphic to tensor products of the
form L � M , where M is an object of C. Then
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(i) L � C is a localizing and colocalizing subcategory of A⊗ B-Mod,

(ii) tensor product by L induces an equivalence of categories C ' L � C.

Proof. The second statement follows from the Künneth formula and the fact
that EndA(L) = k. Let us prove (i). The stability of L � C by arbitrary di-
rect sums is obvious, and since L is finite dimensional the canonical morphism
L �

∏
Mi →

∏
L � Mi is an isomorphism, which proves the stability by direct

products. If S ⊂ L � N then S =
∑

Uα � Vα by Proposition A.6. But the only
nonzero submodule of L is L itself, so that S =

∑
L � Vα ' L �

(∑
Vα
)

is an
object of L � C. The stability by quotients follows from the stability by subobjects.
Finally, since Ext1A(L , L)= 0 and EndA(L)= k, the Künneth formula shows that
Ext1A⊗B(L � N , L � N ′) is isomorphic to Ext1B(N , N ′). Thus, all extensions of
L � N by L � N ′ are of the form L � E , where E is an extension of N by N ′.
Hence L � C is stable by extensions. �

Appendix B. On theorems of Steinberg and Clausen–James

In this appendix, we give new proofs of Steinberg’s tensor product theorem for
GLn and Clausen and James’ theorem, based on Theorem 3.6.

Lemma B.1. A strict polynomial functor is simple if and only if it is self-dual and
its endomorphism ring has dimension one.

Proof. The condition is necessary by facts (2) and (3) from Section 2C. We prove
it is sufficient. Let L be a simple subfunctor of F . The composite

F ' F] � L] ' L ↪→ F

is a nonzero endomorphism of F . Since the endomorphism ring of F has dimen-
sion one, this morphism must be a nonzero multiple of the identity, and hence an
isomorphism. Thus one must have L = F . �

Proposition B.2 (weak Steinberg theorem). Let r ≥ 0, let L1 be a left pr-bounded
simple functor, and let L2 be any simple functor. Then L1⊗ L(r)2 is simple.

Proof. Self-duality of L1, L2 and I (r) and general properties of duality imply that
L1⊗ L(r)2 is self-dual. Moreover, since L1 is left pr-bounded, Theorem 3.6 yields
an isomorphism:

EndPk(L1⊗ L(r)2 )' EndPk(L1)⊗EndPk(L2)' k⊗ k= k.

Hence, L1⊗ L(r)2 is simple by Lemma B.1. �

Our next task is to prove that the p-restricted simple functors are left p-bounded.
Our proof will use the following proposition, which extends the classification of
additive strict polynomial functors proved in [Touzé 2017b].
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Proposition B.3. Let F ∈ Pd0,d1,...,dn,k be a strict polynomial functor with 1+ n
variables, such that F is nonzero and additive with respect to each of the last n vari-
ables. Let G be the strict polynomial functor defined by G(V ) = F(V, k, . . . , k).
Then the di s, 1≤ i ≤ n, are powers of p, i.e., di = pri and there is an isomorphism

F ' G � I (r1)� · · ·� I (rn).

Proof. By induction, we can reduce ourselves to proving that dn = prn and that F is
isomorphic to F � I (rn), where F(V0, . . . , Vn−1) := F(V0, . . . , Vn−1, k). The func-
tors with n+ 1 variables of the form P �0µ, where P is a projective functor with
n variables, homogeneous of multidegree (d0, . . . , dn−1), and µ= (µ1, . . . , µk) is
a tuple with

∑
µi = dn , form a projective generator of Pd0,d1,...,dn,k. Thus F is a

quotient of a direct sum
⊕

Pi �0µ
i
.

Observe that if µ has more than one nonzero coefficient, then there are no
nonzero morphisms from a functor of the form P � 0µ to F . Indeed, for some
n-tuple V = (V0, . . . , Vn−1), such a nonzero morphism would induce a nonzero
morphism of strict polynomial functors from P(V )⊗0µ(– ) to the additive functor
F(V , – ). This would contradict [Friedlander and Suslin 1997, Theorem 2.13].

In particular, F is in fact a quotient of
⊕

Pi �0dn = P �0dn with P =
⊕

Pi .
Moreover, the following composite is zero, where φ = P � mult, with “mult”
referring to the multiplication of the divided power algebra:

dn⊕
k=1

P � (0k
⊗0dn−k)

φ
−→ P �0dn → F.

Hence F is a quotient of P � (Cokerφ). But Cokerφ is nonzero if and only if
dn = prn for some rn , and in this case it is equal to I (rn). Thus dn = prn , and
we have a surjective map ψ : P � I (rn) � F . By replacing the last variable by k,
we obtain a surjective map ψ : P � F . We then take a projective functor with n
variables Q and a map χ : Q→ P whose image is Kerψ . Then using additivity
with respect with the last variable, one sees that we have a right exact sequence:

Q � I (rn)
χ�I (r)
−−−→ P � I (rn)

ψ
−→ F→ 0.

This implies that F is isomorphic to F � I (rn). �

Corollary B.4. If L is a simple functor, there exists nonnegative integers d0, . . . , dr

such that L is a quotient of the functor T (d0,...,dr ) =
⊗

0≤i≤r (⊗
di )(i).

Proof. If L has degree zero, then L is the constant functor k. Hence it is a quotient
of T (0)

=⊗
0
= k. Assume L is not constant. Then there exists a positive integer n,

the Eilenberg–Mac Lane degree of L , such that the functor with n variables

L�n : (V1, . . . , Vn) 7→ L(V1⊕ · · ·⊕ Vn)
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contains a nonzero homogeneous direct summand F which is additive with respect
to each of its variables (see, e.g., [Touzé 2017b, Section 2] for more details on
Eilenberg–Mac Lane degrees for strict polynomial functors). By Proposition B.3,
F is of the form

F = G � I (r1)� · · ·� I (rn)

where G is a homogeneous functor of degree zero, i.e., a constant functor. In
particular, F (hence also L�n ) contains I (r1) � · · ·� I (rn) as a direct summand.
Thus we have

0 6= HomPk(n)(I
(r1)� · · ·� I (rn), L�n )' HomPk(I

(r1)⊗ · · ·⊗ I (rn), L).

Since L is simple, any nonzero morphism with target L is surjective. Thus the
inequality above proves that L is a quotient of I (r1)⊗· · ·⊗ I (rn). By reordering the
factors of this tensor product (and using that (I (k))⊗dk = (⊗dk )(k)), we obtain the
result. �

We now consider two assertions, indexed by a nonnegative integer k.

A(k) If L is a p-restricted functor of degree d with d ≤ k, then L is a quotient
of ⊗d.

B(k) Let d be a nonnegative integer and let T be a homogeneous functor of
positive degree e. If d + pe ≤ k + 1, then no p-restricted simple functor
occurs as a composition factor of the tensor product ⊗d

⊗ T (1).

Lemma B.5. Assertion A(0) is true.

Proof. If L is a simple functor of degree 0, then L is the constant functor k. Hence
it is a quotient of ⊗0

= k. �

Lemma B.6. If A(k) is true, then B(k) is true.

Proof. The functor ⊗d
⊗ T (1) admits a filtration whose successive quotients are

direct sums of functors of the form Lλ ⊗ T (1), where Lλ is a simple functor of
degree d. Thus, it suffices to prove that these tensor products Lλ ⊗ T (1) have
no p-restricted composition factors. Let us write λ = α + pβ, where α is a p-
restricted partition and β is a partition. Since |α| ≤ d ≤ k, assertion A(k) implies
that the simple functor Lα is left p-bounded. By the weak Steinberg theorem of
Proposition B.2, Lλ' Lα⊗L(1)β is simple, and it is isomorphic to Lλ by elementary
highest weight theory (see item (4) in Section 2C). Hence,

Lλ⊗ T (1)
' Lα ⊗ (Lβ ⊗ T )(1).

The functor (Lβ ⊗ T )(1) has composition factors of the form (Lγ )(1) with γ 6= (0).
Since Lα is left p-bounded, Proposition B.2 implies that the composition factors
of Lλ⊗ T (1) have the form Lα ⊗ L(1)γ = Lα+pγ , and hence are not p-restricted. �
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Lemma B.7. If A(k) and B(k) are true, then A(k+ 1) is true.

Proof. By elementary highest weight theory (see (4) in Section 2C), Lλ is a com-
position factor of

Lλ0 ⊗ L(1)
λ1 ⊗ · · ·⊗ L(r)λr .

Thus it suffices to prove that the latter is a simple functor. Since A(k) is true,
it remains to prove that a p-restricted functor L of degree k + 1 is necessarily a
quotient of ⊗k+1. By Corollary B.4, there exists a tuple of nonnegative integers
(d0, . . . , dr ) such that L is a quotient of a tensor product of the form T (d0,...,dr ).
But assertion B(k) says that such tensor products have no p-restricted composition
factor except maybe if (d0, . . . , dr )= (k+ 1, 0, . . . , 0). �

Lemmas B.5, B.6 and B.7 imply that A(k) is true for all k ≥ 0. We are now
ready to prove:

Theorem B.8 (Steinberg’s tensor product theorem). Let λ0, . . . , λr be p-restricted
partitions, and let λ=

∑r
i=0 piλi . There is an isomorphism

Lλ ' Lλ0 ⊗ L(1)
λ1 ⊗ · · ·⊗ L(r)λr .

Proof. Since A(k) is true for all k ≥ 0, p-restricted simples are quotients of tensor
powers ⊗d . Moreover (⊗d)(i) = (I (i))⊗d is a quotient of (0 pi

)⊗d . Thus, for all
k ≤ r ,

⊗
i<k L(i)

λi is left pk-bounded. An induction on k using Proposition B.2
shows that each tensor product

⊗
i≤k L(i)

λi is simple. �

Remark B.9. If λ = (λ1, . . . , λk), then Lλ(kn) is a simple polynomial GLn(k)-
module if n ≥ k and is zero if n < k (This follows from the properties of the
deflating Schur functor dN ,n given in [Martin 1993, pp. 109–110], and the fact
that evkn = dN ,n ◦ evkN .) Thus, Theorem B.8 actually implies the Steinberg tensor
product theorem for polynomial representations of GLn(k), for all values of n
(and in particular without requiring that the representations are stable). Finally,
all simple rational representations of GLn(k) can be obtained by tensoring simple
polynomial representations of GLn(k) by a power of the determinant representation.
Thus, Theorem B.8 implies the classical Steinberg tensor product theorem as in
[Jantzen 2003, II.3.17].

Theorem B.10 (Clausen and James’ theorem). A simple functor L is p-restricted
if and only if HomPk(L ,⊗

d)= HomPk(⊗
d , L) is nonzero.

Proof. Property A(k) gives the “only if” part. Conversely, assume that the highest
weight λ of L is not p-restricted. Using euclidean division, we write λ= λ0

+ pλ1

with λ0 p-restricted and λ1 nonzero. Thus L ' Lλ0 ⊗ L(1)
λ1 by Steinberg’s tensor

product theorem. By property A(k), Lλ0 is left and right p-bounded, so that by
Theorem 3.6, HomP(L ,⊗d)= HomP(⊗

d , L)= 0. �



326 ANTOINE TOUZÉ

Remark B.11. There already exists a functorial proof of Steinberg’s tensor product
theorem in the literature [Kuhn 2002, Theorem 7.11]. However, the proof given
in this appendix is quite different from that in [Kuhn 2002]. Let us stress two
differences. First, the proof in [Kuhn 2002] uses finite fields, while the size of
the ground field plays no role in our proof. Second, to obtain a concrete form
of [Kuhn 2002, Theorem 7.11], one needs to know the classification of simple
representations of symmetric groups. On the contrary, our proof does not use
any knowledge of representations of symmetric groups. Better still, our reasoning
also proves Clausen and James’ theorem, so we can actually use our approach to
derive the classification of simple representations of symmetric groups from the
classification of simple representations of GLn .

Steinberg’s tensor product theorem tells us that if Lλ is simple and p-restricted
and Lµ is simple, then Lλ⊗ L(1)µ is simple. The following statement completes the
picture regarding tensor products of simple objects.

Theorem B.12. Let L and L ′ be both simple and p-restricted. Then L ⊗ L ′ is not
simple, unless one of the two is the constant functor k.

The remainder of the section is devoted to the proof of Theorem B.12.

Lemma B.13. Let d be a positive integer, and let L be a simple quotient of ⊗d .
The following injection induced by the tensor product is not surjective:

HomPk(⊗
d , L)⊗HomPk(I, I ) ↪→ HomPk(⊗

d+1, L ⊗ I ).

Proof. Fix a vector space V equipped with an isomorphism kd
⊕ k ' V . Let

ι1 : k ↪→ V , ι2 : kd ↪→ V , π1 : V → k and π2 : V → kd be the associated canonical
maps. Since EndPk(I ) ' k, any nonzero map φ in the image of the injection of
Lemma B.13 is of the form φ = f ⊗ Id for a nonzero f . Thus the following
composite is nonzero (it equals the map induced by f ):

(kd)⊗d
⊗ k

(ι2)
⊗d
⊗ι1

−−−−−→ V⊗d+1 φ
−→ L(V )⊗ V

L(π2)⊗π1
−−−−−→ L(kd)⊗ k. (∗)

For all morphisms f : ⊗d
→ L , we define a morphism ψ f : ⊗

d+1
→ L ⊗ I by

ψ f (x1⊗· · ·⊗xd+1)= f (x2⊗· · ·⊗xd+1)⊗x1. If f is nonzero, then ψ f is nonzero,
while for φ = ψ f the composite (∗) is zero. In particular ψ f is not in the image of
the inclusion. �

Lemma B.14. Let d be a positive integer, and let L be a simple quotient of ⊗d .
Let L(d−1,1) be the homogeneous summand of bidegree (d − 1, 1) of the bifunctor
(V,W ) 7→ L(V ⊕W ). There is an isomorphism L(d−1,1)

' FL � I , where FL is a
nonzero homogeneous functor of degree d − 1.
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Proof. Proposition B.3 provides an isomorphism L(d−1,1)
' FL � I . We have to

prove that FL is nonzero. By using the sum-diagonal adjunction and the Künneth
formula, we obtain that HomPk(⊗

d+1, L ⊗ I ) is isomorphic to

HomPk(⊗
d , L)⊗EndPk(I ) ⊕ HomPk(⊗

d , FL ⊗ I )⊗EndPk(I ).

For dimension reasons, Lemma B.13 implies that HomPk(⊗
d , FL ⊗ I ) is nonzero.

Hence FL is nonzero. �

Proof of Theorem B.12. We will show that the dimension of EndPk(L ⊗ L ′) is
not one. To this purpose, we use the sum-diagonal adjunction and the Künneth
formula. We obtain that the vector space EndPk(L ⊗ L ′) contains

EndPk(L)⊗EndPk(L
′)⊕HomPk(L , FL ⊗ I )⊗HomPk(L

′, FL ′ ⊗ I )

as a direct summand, with FL and FL ′ defined as in Lemma B.14. Again using the
sum-diagonal adjunction and the Künneth formula, we get that HomPk(L , FL ⊗ I )
contains EndPk(FL)⊗EndPk(I ) as a direct summand (and similarly for L ′). But
Lemma B.14 asserts that FL and FL ′ are nonzero, so that the dimension of the corre-
sponding endomorphism spaces is at least one. So, the dimension of EndPk(L⊗L ′)
is at least two. �
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