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An explicit basis for the rational higher Chow groups
of abelian number fields

Matt Kerr and Yu Yang

We review and simplify A. Beı̆linson’s construction of a basis for the motivic
cohomology of a point over a cyclotomic field, then promote the basis elements
to higher Chow cycles and evaluate the KLM regulator map on them.

1. Introduction

Let ζN ∈ C∗ be a primitive N -th root of 1 (N ≥ 2). The seminal article [Beı̆linson
1984] concludes with a construction of elements 4b (for b ∈ (Z/NZ)∗) in motivic
cohomology

H 1
M(Spec(Q(ζN )),Q(n))∼= K (n)

2n−1(Q(ζN ))⊗Q

mapping to Lin(ζ b
N )=

∑
k≥1 ζ

kb
N /k

n
∈ C/(2π i)nR under his regulator. Since by

Borel’s theorem [1974], we have rk K (n)
2n−1(Q(ζN ))Q =

1
2φ(N ) (for N ≥ 3), an

immediate consequence is that the {4b} span K (n)
2n−1(Q(ζN ))Q; indeed, Beı̆linson’s

results anticipated the eventual proofs [Rapoport 1988; Burgos Gil 2002] of the
equality (for number fields) of his regulator with that of Borel [1977]. An ex-
panded account of his construction was written up by Neukirch (with Rapoport and
Schneider) in [Neukirch 1988], up to a “crucial lemma” [op. cit., Part II, Lemma
2.4] required for the regulator computation, which was subsequently proved by
Esnault [1989].

The intervening years have seen some improvements in technology, especially
Bloch’s introduction of higher Chow groups [Bloch 1986], which yield an integral
definition of motivic cohomology for smooth schemes X . In particular, we have1

H 1
M(Spec(Q(ζN )),Z(n))∼= CH n(Q(ζN ), 2n− 1)

:= H2n−1{Zn(Q(ζN ), •), ∂},

MSC2010: 14C25, 14C30, 19E15.
Keywords: higher Chow group, Abel–Jacobi map, polylogarithms, Beı̆linson regulator, Borel’s

theorem.
1We use the shorthand CH∗(F, ∗) (Z∗(F, ∗), etc.) for CH∗(Spec(F), ∗) (F a field).

173

http://msp.org
http://msp.org/akt
http://dx.doi.org/10.2140/akt.2018.3-2
http://dx.doi.org/10.2140/akt.2018.3.173


174 MATT KERR AND YU YANG

and can ask for explicit cycles in ker(∂)⊂ Zn(Q(ζN ), 2n− 1) representing (mul-
tiples of) Beı̆linson’s elements 4b. Another relevant development was the explicit
realization of Beı̆linson’s regulator in [Kerr et al. 2006; Kerr and Lewis 2007]
as a morphism ÃJ of complexes, from a rationally quasi-isomorphic subcomplex
Zn

R(X, •) of Zn(X, •) to a complex computing the absolute Hodge cohomology
of X . Here this “KLM morphism” yields an Abel–Jacobi mapping

AJ : CH n(Q(ζN ), 2n− 1)⊗Q→ C/(2π i)nQ, (1.1)

and in the present note we shall construct (for all n) higher Chow cycles

Ẑb ∈ ker(∂)⊂ Zn
R(Q(ζN ), 2n− 1)⊗Q

satisfying

(n− 3)N n−1Ẑb ∈ Zn
R(Q(ζN ), 2n− 1)) and AJ(Ẑb)= Lin(ζ b

N ).

(See Theorems 3.3, 3.8, and 4.2, with Ẑ = (−1)nZ̃ /N n−1.) This is entirely more
explicit than the constructions in [Beı̆linson 1984; Neukirch 1988], and yields
a brief and transparent evaluation of the regulator, which moreover allows us to
dispense with some of the hypotheses of [Neukirch 1988, Part II, Lemma 2.4] or
[Esnault 1989, Theorem 3.9] and thus avoid the more complicated construction of
[Neukirch 1988, Part II, Lemma 3.1]. Furthermore, in concert with the anticipated
extension of ÃJ to the entire complex Zn(X, •) (making (1.1) integral), we expect
that our cycles will be useful for studying the torsion in CH n(Q(ζN ), 2n− 1), as
begun in [Petras 2008; 2009]; see Remark 4.1 and Section 4E.

2. Beı̆linson’s construction

In this section we show that (the graph of) the n-tuple of functions{
1− ζN z1 · · · zn−1,

( z1
z1−1

)N
, . . . ,

( zn−1
zn−1−1

)N}
completes to a relative motivic cohomology class on (�n−1, ∂�n−1). Most of the
work that follows is to show that its image under a residue map vanishes; see (2.12).
It also serves to establish notation for Section 3, where we recast this class as a
higher Chow cycle and compute its regulator.

2A. Notation. Let N ≥ 2, and ζ ∈ C be a primitive N -th root of unity; i.e.,
ζ = e2π ia/N , where a is coprime to N . Denoting by 8N (x) the N -th cyclotomic
polynomial, each such a yields an embedding σ of F :=Q[ω]/(8N (ω)) into C (by
sending ω 7→ ζ ). (If N = 2, then F=Q and ω = ζ =−1.)

Working over any subfield of C containing ζ , write

�n
:= (P1

\{1})n ⊃ (P1
\{0, 1})n =: Tn,
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with coordinates (z1, . . . , zn). We have isomorphisms from Tn to Gn
m (with co-

ordinates (t1, . . . , tn)), given by ti := zi/(zi − 1). Define a function fn(z) :=
1− ζ bt1 · · · tn on Tn (with b coprime to N ), and normal crossing subschemes

Sn
:= {z ∈ Tn

| some zi =∞} ⊂ Sn
∪ |( fn)0| =: S̃n

⊂ Tn.

(Alternatively, we may view these schemes as defined over F by replacing ζ b

with ωb.)
Now consider the morphism

ın : T
n−1
→ Tn, (t1, . . . , tn−1) 7→ (t1, . . . , tn−1, (ζ

bt1 · · · tn−1)
−1).

Lemma 2.1. The morphism ın sends Tn−1 isomorphically onto |( fn)0|, with

ın(S̃n−1)= |( fn)0| ∩ Sn.

We also remark that the Zariski closure of ın(T
n−1) in �n is just ın(T

n−1).

2B. Results for Betti cohomology. The construction just described has quite pleas-
ant cohomological properties, as we shall now see.

Lemma 2.2. As a Q-MHS,

Hq(Tn, Sn)∼=

{
Q(−n), q = n,

0, q 6= n.

Proof. Apply the Künneth formula to (Tn, Sn)∼= (Gm, {1})n . �

Lemma 2.3. As a Q-MHS,

Hq(Tn, S̃n)∼=

{
Q(0)⊕Q(−1)⊕ · · ·⊕Q(−n), q = n,

0, q 6= n.

Proof. This is clear for (T1, S̃1)∼= (Gm, {1, ζ̄ }). Now consider the exact sequence

H∗−1(Tn, Sn)
ı∗n
−→ H∗−1(Tn−1, S̃n−1)

δ
−→

H∗(Tn, S̃n)→ H∗(Tn, Sn)
ı∗n
−→ H∗(Tn−1, S̃n−1)

of Q-MHS, associated to the inclusion (Tn−1, S̃n−1)
ın
↪→ (Tn, Sn). (This is just the

relative cohomology sequence, once one notes that ((Tn, Sn), ın(T
n−1, S̃n−1)) =

(Tn, Sn
∪ ın(T

n−1)) = (Tn, S̃n) by Lemma 2.1.) If ∗ 6= n, then the underlined
terms are 0 via Lemma 2.2 and induction. If ∗ = n, then the end terms are 0 via
Lemma 2.2 and induction, and

0→ H n−1(Tn−1, S̃n−1)
δ
−→ H n(Tn, S̃n)→ H n(Tn, Sn)→ 0 (2.4)

is a short-exact sequence.
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Now observe that:

• H n(Tn, Sn
;C)= Fn H n(Tn, Sn

;C) is generated by the holomorphic form

η :=
1

(2π i)n
dt1
t1
∧ · · · ∧

dtn
tn
;

• Hn−1(T
n−1, S̃n−1

;Q) is generated by images e(Ui ) of the cells
n⋃

i=0

Ui = [0, 1]n \
n⋃
`=1

{∑
xi = `−

a
N

}
,

where e : [0, 1]n → Tn is defined by (x1, . . . , xn) 7→ (e2π ix1, . . . , e2π ixn ) =

(t1, . . . , tn);

•

∫
e(Ui )

η =

∫
Ui

dx1 ∧ · · · ∧ dxn ∈Q.

(Writing S 1 for the unit circle, ((S 1)n, (S 1)n ∩ S̃n) is a deformation retract of
(Tn, S̃n). The e(Ui ) visibly yield all the relative cycles in the former, justifying the
second observation.) Together these immediately imply that (2.4) is split, complet-
ing the proof. �

2C. Results for Deligne cohomology. Recall that Beı̆linson’s absolute Hodge co-
homology [1986] of an analytic scheme Y over C sits in an exact sequence

0→ Ext1MHS(Q(0), H r−1(Y,A(p)))→ H r
D(Y,A(p))

→ HomMHS(Q(0), H r (Y,A(p)))→ 0.

(Here we use a subscript “D” since the construction after all is a “weight-corrected”
version of Deligne cohomology; the subscript “MHS” of course means “A-MHS”.)
We shall not have any use for details of its construction here, and refer the reader
to [Kerr and Lewis 2007, §2].

Lemma 2.5. The map ı∗n : H n
D(T

n, Sn
;A(n)) → H n

D(T
n−1, S̃n−1

;A(n)) is zero
(A =Q or R).

Proof. Consider the exact sequence

· · ·→H n
D(T

n, Sn
;Q(n))

ı∗n
−→H n

D(T
n−1, S̃n−1

;Q(n))
δD
−→H n+1

D (Tn, S̃n
;Q(n))→· · · .

It suffices to show that δD is injective. Now

HomMHS(Q(0), H n(Tn−1, S̃n−1
;Q(n)))= {0},

HomMHS(Q(0), H n+1(Tn, S̃n
;Q(n)))= {0},

by Lemma 2.3, and so δD is given by

Ext1MHS(Q(0), H n−1(Tn−1, S̃n−1
;Q(n)))

δD
−→ Ext1MHS(Q(0), H n(Tn, S̃n

;Q(n))).
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Since (2.4) is split, the corresponding sequence of Ext1-groups is exact, and δD is
injective. �

2D. Results for motivic cohomology. Let X be any smooth simplicial scheme (of
finite type), defined over a subfield of C. We have Deligne class maps

cD,A : H r
M(X,Q(p))→ H r

D(X
an
C ,A(p))

(for A=Q or R). The case of particular interest here is when r = 1, X is a point, and

cD,A(Z)=
1

(2π i)p−1

∫
Zan

C

R2p−1 ∈ C/A(p), (2.6)

where, interpreting log(z) as the 0-current with branch cut along Tz := z−1(R−),

R2p−1 :=

2p−1∑
k=1

(2π i)k−1 R(k)2p−1

:=

2p−1∑
k=1

(2π i)k−1 log(zk)
dzk+1

zk+1
∧ · · · ∧

dz2p−1

z2p−1
· δTz1∩···∩Tzk−1

(2.7)

is the regulator current of [Kerr et al. 2006; Kerr and Lewis 2007] belonging to
D2p−2((P1)×(2p−1)). Here it is essential that the representative higher Chow cycle
Z belong to the quasi-isomorphic subcomplex Z p

R(pt., •)Q ⊂ Z p(pt., •)Q compris-
ing cycles in good position with respect to certain real analytic chains; see [Kerr
and Lewis 2007, §8] or Remark 3.4 below.

Now take a number field K , [K :Q] = d = r1+ 2r2, and set

dm = dm(K ) :=


r1+ r2− 1, m = 1,
r1+ r2, m > 1 odd,
r2, m > 0 even.

For X defined over K , write X̃ an
C
:=
∐
σ∈Hom(K ,C)(

σX)an
C

and

H r
M(X,Q(p))

c̃+D,R ((

c̃D,R
// H r (X̃ an

C
,R(p))

H r
D(X̃

an
C
,R(p))+

) 	

66

for the map Z 7→ (cD,R(σZ))σ , which factors through the invariants under de Rham
conjugation. If X = Spec(K ), then we have H 1

D(X̃
an
C
,R(p)) ∼= R(p − 1)⊕d and

H 1
D(X̃

an
C
,R(p))+ ∼= R(p− 1)⊕dp . Write H r

M(X,R(p))= H r
M(X,Q(p))⊗Q R.
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Lemma 2.8. For X = Spec(K ), G×n
m,K , (Tn

K , Sn
K ), or (Tn

K , S̃n
K ),

c̃+D,R⊗R : H r
M(X,R(p))→ H r

D(X̃
an
C
,R(p))+

is an isomorphism (∀r, p).

Proof. By [Burgos Gil 2002], the composition

K2p−1(OK )⊗Q
∼=
−→ H 1

M(Spec(K ),Q(p))
c̃+D,R
−−→ R(p− 1)⊕dp

· 2/(2π i)p−1

−−−−−−→ Rdp

is exactly the Borel regulator (and the groups are zero for r 6= 1). The lemma
follows for X = Spec(K ).

Let Y be a smooth quasiprojective variety, defined over K , and pick p ∈Gm(K ).
Write Y

ı
↪→Gm,Y


↪→A1

Y
κ
←↩ Y for the Cartesian products with Y of the morphisms

Spec(K )
ı p
↪→ Gm,K


↪→ A1

K
ı0
←↩ Spec(K ).

Then by the homotopy property,

ı∗ : H r
K(Gm,Y ,R(p))→ H r

K(Y,R(p))∼= H r
K(A

1
Y ,R(p))

splits the localization sequence

· · ·
κ∗
−→ H r

K(A
1
Y ,R(p))

∗

−→ H r
K(Gm,Y ,R(p))

Res
−−→ H r−1

K (Y,R(p− 1))
κ∗
−→ · · ·

for K =M,D (in particular, κ∗ = 0). It follows that

H r
K(Gm,Y ,R(p))∼= H r

K(Y,R(p))⊕ H r−1
K (Y,R(p− 1)),

compatibly with cD,R; applying this iteratively gives the lemma for G×n
m,K .

Finally, both (Tn, Sn
K ) and (Tn

K , S̃n
K ) may be regarded as (co)simplicial normal

crossing schemes X •. (That is, writing S̃n
K =

⋃
Yi , we take X0

= Tn
K , X1

=
∐

i Yi ,
X2
=
∐

i< j Yi ∩ Y j , etc.) We have spectral sequences

E i, j
1 = H 2p+ j

K (X i ,R(p))=⇒ H 2p+i+ j
K (X •,R(p)),

compatible with cD,R, and all X i are disjoint unions of powers of Gm,K . The lemma
is proved. �

Lemma 2.9. The map ı∗n : H n
M(T

n, Sn
;A(n))→ H n

M(T
n−1, S̃n−1

;A(n)) is zero
( for A =Q or R).

Proof. Form the obvious commutative square and use the results of Lemmas 2.5
and 2.8. �
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2E. The Beı̆linson elements. To each I ⊂ {1, . . . , n} and ε : I → {0,∞} we
associate a face map ρεI : �

n−|I | ↪→ �n , with zi = ε(i) (for all i ∈ I ) on the
image, and degeneracy maps δi :�n ��n−1 killing the i-th coordinate. For any
smooth quasiprojective variety X (say, over a field K ⊇ Q), let cp(X, n) denote
the free abelian group on subvarieties (of codimension p) of X ×�n meeting all
faces X × ρεI (�

n−|I |) properly, and d p(X, n)=
∑

im(idX ×δ
∗

i )⊂ cp(X, n). Then
Z p(X, •) := cp(X, •)/d p(X, •) defines a complex with differential

∂ =

n∑
i=1

(−1)i−1((idX ×ρ
0
i )
∗
− (idX ×ρ

∞

i )
∗
)
,

whose r -th homology defines Bloch’s higher Chow group

CH p(X, r)∼= H 2p−r
M (X,Z(p)). (2.10)

This isomorphism does not apply for singular varieties (e.g., our simplicial schemes
above), and for our purposes in this paper it is the right-hand side of (2.10) that
provides the correct generalization. In particular, we have

H r
M(X × (�

a, ∂�a),Q(p))∼= H r−a
M (X,Q(p)),

where ∂�a
:=
⋃

i∈{1,...,a}, ε∈{0,∞} ρ
ε
i (�

a−1). We note here that the (rational) motivic
cohomology of a cosimplicial normal-crossing scheme X • can be computed via (the
simple complex associated to) a double complex:

Ea,b
0 := Z p(Xa,−b)#Q =⇒ H 2p+a+b

M (X •,Q(p)), (2.11)

where # denotes cycles meeting all components of all Xq>a
× ∂εI �

−b properly.2

Continuing to write ti for zi/(zi − 1), we now consider

f (z)= fn−1(z1, . . . , zn−1) := 1−ωbt1 · · · tn−1

as a regular function on �n−1
F , and

Z := {(z; f (z), t N
1 , . . . , t N

n−1) | z ∈�
n−1
\|( f )0|}

as an element of

ker
{

Zn(�n−1
\|( f )0|, n)#Q

∂⊕
∑
(ρεi )

∗

−−−−−−→ Zn(�n−1
\|( f )0|, n− 1)⊕

⊕
i,εZn(�n−2

\
∣∣( f |zi=ε)0

∣∣, n
)

Q

}
,

and hence of
H n

M(�
n−1
F \|( f )0|, ∂�n−1

\∂|( f )0|;Q(n))

2See [Levine 1994, §3] and [Kerr and Lewis 2007, §8.2] for the relevant moving lemmas (and for
detailed discussion of differentials, etc.).
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(where ∂|( f )0| := ∂�n−1
∩|( f )0|=

⋃
i,ε |( f |zi=ε)0|, and # indicates cycles meeting

faces of ∂�n−1
\∂|( f )0| properly). The powers t N

i are unnecessary at this stage but
will be crucial later. For simplicity, we write the class of Z in this group as a
symbol { fn−1, t N

1 , . . . , t N
n−1}.

Using Lemma 2.1, we have a (vertical) localization exact sequence

��

H n
M(�

n−1, ∂�n−1
;Q(n)) oo

∼=
//

��

CH n(F, 2n− 1)Q

H n
M(�

n−1
\|( f )0|, ∂�n−1

\|( f )0|;Q(n))

Res|( f )0|
��

H n−1
M (Tn−2, S̃n−2

;Q(n− 1))

��

H n−1
M (Tn−1, Sn−1

;Q(n− 1))
ı∗n−1
oo

(2.12)

in which evidently

Res|( f )0|{ fn−1, t N
1 , . . . , t N

n−1} = ı∗n−1{t
N
1 , . . . , t N

n−1}.

Proposition 2.13. Z lifts to a class 4̃ ∈ CH n(F, 2n− 1)Q.

Proof. Apply (2.12) and Lemma 2.9. �

This is essentially Beı̆linson’s construction; we normalize the class by

4 :=
(−1)n

N n−1 4̃.

3. The higher Chow cycles

3A. Representing Beı̆linson’s elements. We first describe (2.11) more explicitly
in the relevant cases. As above, write ∂ : Zn(�r , s)#

Q
→ Zn(�r , s − 1)#

Q
for the

higher Chow differential, and

δ : Zn(�r , s)#Q→
⊕
i,ε

Zn(�r−1, s)#Q

for the cosimplicial differential
∑r

i=1(−1)i−1((ρ0
i × id�s )∗ − (ρ∞i × id�s )∗). A

complex of cocycles for the top motivic cohomology group in (2.12) is given by

Zn
�(k) := Zn

M((�
n−1
F , ∂�n−1

F ), k)Q :=
n−1⊕
a=0

⊕
(I,ε), |I |=a

Zn(�n−a−1
F , a+ k)#Q (3.1)



A BASIS FOR HIGHER CHOW GROUPS OF ABELIAN NUMBER FIELDS 181

with differential D := ∂ + (−1)n−a−1δ. These are, of course, the simple complex
and total differential associated to the natural double complex

Ea,b
0 =

⊕
(I,ε), |I |=a

Zn(�n−a−1
F ,−b)#Q.

Analogously, one defines

Zn
�\ f (k) := Zn

M
(
(�n−1

F \|( f )0|, ∂�n−1
F \∂|( f )0|), k

)
Q
,

Zn−1
f (k) := Zn−1

M ((Tn−2, S̃n−2), k)Q,

so that Zn−1
f (•)

ı∗
−→ Zn

�(•)→ Zn
�\ f (•) are morphisms of (homological) complexes.

Now define
θ : Zn

�(k)→ Zn(F, n+ k− 1)Q

by simply adding up the cycles (with no signs) on the right-hand side of (3.1).
(Use the natural maps �n−a−1

×�a+k
→�n+k−1 obtained by concatenating coor-

dinates.) Then we have:

Lemma 3.2. The map θ is a quasi-isomorphism of complexes.

Proof. Checking that θ is a morphism of complexes is easy and left to the reader.
The a= n−1, (I, ε)= ({1, . . . , n−1}, 0) term of (3.1) is a copy of Zn(F, n+k−1)
in Zn

�(k), which leads to a morphism ψ : Zn(F, n+ •−1)→ Zn
�(•) with θ ◦ψ = id.

Moreover, it is elementary that ψ is a quasi-isomorphism: taking d0 = ∂ gives

Ea,b
1 =

⊕
(I,ε), |I |=a

CH n(�n−a−1
F ,−b)Q ∼= CH n(F,−b)⊕2a(n−1

a ),

so Ea,b
2 = 0 except for En−1,b

2
∼= CH n(F,−b), which is exactly the image of

ψ(ker ∂).3 �

In particular, we may view θ as yielding the isomorphism in the top row of (2.10).
By the moving lemmas of Bloch [1994] and Levine [1994], we have another

quasi-isomorphism
Zn
�(•)

ı∗Zn−1
f (•)

'
−→ Zn

�\ f (•),

which enables us to replace any Y�\ f ∈ ker(D) ⊂ Zn
�\ f (n) by a homologous

Y ′�\ f arising as the restriction of some Y ′� ∈ Zn
�(n) with DY ′� = ı∗(Y ′′f ) and

Y ′′f ∈ ker(D) ∈ Zn−1
f (n− 1). This gives an “explicit” prescription for computing

Res|( f )0| in (2.10).
Now we come to our central point: the cycle Z={ fn−1, t N

1 , . . . , t
N
n−1} of Section 2E

already belongs to (Zn(�n−1
F , n)#

Q
⊆)Zn

�(n), without “moving” it by a boundary.
Its restriction to Zn

�\ f (n) is clearly D-closed, and DZ = ı∗{t N
1 , . . . , t N

n−1} =: ı∗T .

3This is true for any field, but specifically for our F=Q(ω), the only nonzero term is En−1,n
2 .
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By Proposition 2.13, the class of T in homology of Zn−1
f (•) is trivial, and so there

exists T ′ ∈ Zn−1
f (n) with DT ′ =−T . Defining

W := ı∗T ′, Z̃ := Z +W,

we now have DZ̃ = 0. This allows us to make a rather precise statement about the
lift in Proposition 2.13. Denote the projection (z1, . . . , z2n−1) 7→ (z1, . . . , zn−i ) by
pi :�2n−1 ��n−i .

Theorem 3.3. 4̃ has a representative in Zn(F, 2n− 1)Q of the form

Z̃ =Z +W =Z +W1+W2+ · · ·+Wn−1,

where Z = θ(Z) (i.e., Z interpreted as an element of Zn(F, 2n− 1)Q) and Wi is
supported on p−1

i |( fn−i )0|.

Proof. Viewing (|( fn−1)0|, ∂|( fn−1)0|)∼= (T
n−2, S̃n−2) as a simplicial subschemeX•

of (�n−1, ∂�n−1)=: X •, the subscheme Xi−1
⊂ X i−1 comprises 2i−1

(n−1
i−1

)
copies

of |( fn−i )0| ⊂�n−1. We may decompose

W ∈
n⊕

i=1

⊕
(I,ε), |I |=i−1

ı∗Zn−1(|( fn−i )0|, n+ i − 1)#Q ⊂
n−1⊕
i=1

E i−1,−n−i+1
0

into its constituent pieces Wi ∈E i−1,−n−i+1
0 , and define Wi :=θ(Wi ) and W :=θ(W).

Clearly supp(Wi )⊂ p−1
i |( fn−i )0|, and Z̃ := θ(Z̃) is ∂-closed, giving the desired

representation. �

Remark 3.4. In fact, σ(Z ) ∈ Zn
R(Spec(C), 2n− 1)Q for any σ ∈ Hom(F,C): the

intersections Tz1∩· · ·∩Tzk ∩(ρ
ε
I )
∗σ(Z ) are empty excepting Tz1∩· · ·∩Tzk ∩σ(Z )

for k ≤ n − 1 and Tz1 ∩ · · · ∩ Tzk ∩ (ρ
0
n)
∗σ(Z ) for k ≤ n − 2, which are both

of the expected real codimension. A trivial modification of the above argument
then shows that the Wi may be chosen so that the σ(Wi ) (and hence σ(Z̃ )) are in
Zn

R(Spec(C), 2n−1)Q as well. We shall henceforth assume that this has been done.

3B. Computing the KLM map. We begin by simplifying the formula (2.6) for the
regulator map.

Lemma 3.5. Let K ⊂C and suppose Z ∈ ker(∂)⊂ Zn
R(Spec(K ), 2n−1)Q satisfies

Tz1 ∩ · · · ∩ Tzn ∩ Z an
C =∅. (3.6)

Then

cD,Q(Z)=
∫

Z an
C
∩Tz1∩···∩Tzn−1

log(zn)
dzn+1

zn+1
∧ · · · ∧

dz2n−1

z2n−1

in C/Q(n).
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Proof. We have

cD,Q(Z)=
n−1∑
k=1

(2π i)k−n
∫

Z an
C

R(k)2n−1+

∫
Z an

C

R(n)2n−1+

n−1∑
k=1

(2π i)k
∫

Z an
C

R(n+k)
2n−1 .

The terms
∫

Z an
C

R(k)2n−1 are zero by type, since dimC ZC = n− 1, and the
∫

Z an
C

R(n+k)
2n−1

are integrals over Z an
C
∩Tz1∩· · ·∩Tzn+k−1 =∅. So only the middle term remains. �

Lemma 3.7. For any σ ∈ Hom(F,C), Tz1 ∩ · · · ∩ Tzn ∩ σ(Z̃ )=∅.

Proof. From Theorem 3.3, σ(Wi ) is supported over p−1
i (|( fn−i )0|); that is, on σ(Wi )

we have z1 · · · zn−i = ζ̄
b, and so Tz1∩· · ·∩Tzn−i∩σ(Wi )=∅, since ζ̄ b /∈ (−1)n−i R+.

On σ(Z ), zn = fn−1(z1, . . . , zn−1) = 1− ζ bt1 · · · tn−1 (where ti = zi/(zi − 1)),
and on Tzi , ti ∈ [0, 1]. It follows that on Tz1 ∩ · · · ∩ Tzn ∩ σ(Z ), zn belongs to
R− ∩ (1− ζ b

[0, 1]), which is empty. �

We may now compute the regulator on the cycle of Theorem 3.3, independently
of the choice of the Wi .

Theorem 3.8. cD,Q(σ (4))= Lin(ζ b) ∈ C/Q(n).

Proof. By Lemmas 3.5 and 3.7, we obtain

cD,Q(σ (Z̃ ))=

∫
σ(Z )an

C
∩Tz1∩···∩Tzn−1

log(zn)
dzn+1

zn+1
∧ · · · ∧

dz2n−1

z2n−1

+

n−1∑
i=1

∫
σ(Wi )

an
C
∩Tz1∩···∩Tzn−1

log(zn)
dzn+1

zn+1
∧ · · · ∧

dz2n−1

z2n−1
,

in which (by the proof of Lemma 3.7) σ(Wi )
an
C
∩Tz1 ∩· · ·∩Tzn−1 =∅ for all i . The

remaining (first) term becomes∫
z∈R

×(n−1)
−

log( fn−1(z))
dt N

1

t N
1
∧ · · · ∧

dt N
n−1

t N
n−1

= (−N )n−1
∫

t∈[0,1]×(n−1)
log(1− ζ bt1 · · · tn−1)

dt1
t1
∧ · · · ∧

dtn−1

tn−1

= (−N )n−1
∫ ζ b

0

∫ un−1

0
· · ·

∫ u2

0
log(1− u1)

du1

u1
∧ · · · ∧

dun−1

un−1

= (−1)n N n−1 Lin(ζ b),

where un−1 = ζ
btn−1, un−2 = ζ

btn−2tn−1, . . . , u1 = ζ
bt1 · · · tn−1. �

To write the image of our cycles under the Borel regulator, we refine notation
by writing σa (for σ : ω 7→ e2π ia/N ), fn−1,b = 1−ωbt1 · · · tn−1, 4b, Z̃b, Zb, etc.
So Theorem 3.8 reads cD,Q(σa(4b)) = Lin(e2π iab/N ), and one has the following
corollary.
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Corollary 3.9. Let N ≥ 3 and set

A :=
{
a ∈ N | (a, N )= 1 and 1≤ a ≤

⌊ N
2

⌋}
;

then for any b ∈ A,

c̃+D,R(4b)= (πn(Lin(e2π iab/N ))a∈A ∈ R(n− 1)⊕
1
2φ(N ),

where πn : C→ R(n − 1) is iIm for n even, and Re for n odd. If N = 2, then
c̃+D,R = 0 for n even and c̃+D,R(41)= ζ(n) ∈ R(n− 1) for n odd.

As an immediate consequence, we get a (rational) basis for the higher Chow
cycles on a point over any abelian extension of Q.

Corollary 3.10. The {4b}b∈A span CH n(F, 2n− 1)Q. Moreover, for any subfield
E⊂ F, with 0 =Gal(F/E), there exists a subset B ⊂ A (with |B| = dn(E)) such that
the

{∑
γ∈0

γ4b
}

b∈B span CH n(E, 2n− 1)Q.

Proof. In view of Lemma 2.8, for the first statement we need only check the linear
independence of the vectors v(b) in Corollary 3.9. Let χ be one of the 1

2φ(N )
Dirichlet characters modulo N with χ(−1) = (−1)n−1; and let ρα : C|A|→ C|A|

be the permutation operator defined by µ(v) j = vα· j , where α ∈ (Z/NZ)∗ is a
generator. Then the linear combinations

vχ :=
∑
b∈A

χ(b)v(b) =
(

1
2

N∑
b=1

χ(b)πn(Lin(e2π iab/N ))

)
a∈A

are independent (over C) provided they are nonzero, since their eigenvalues χ(α)
under ρα are distinct. By the computation in [Zagier 1991, pp. 420–422], if χ is
induced from a primitive character χ0 modulo N0 = N/M , then (with µ being the
Möbius function and τ( · ) the Gauss sum)

v
χ

1 =
1

2Mn−1

{∑
d|M

µ(d)χ0(d)dn−1
}
τ(χ0)L(χ0, n),

the last two factors of which are nonzero by primitivity of χ0; the bracketed term
is
∏

p>1 prime, p|M(1−χ0(p)pn−1), hence also nonzero.
The second statement follows at once, since the composition of

∑
γ∈0 with

CH n(E, 2n− 1)Q ↪→ CH n(F, 2n− 1)Q is a multiple of the identity. �

4. Explicit representatives

We finally turn to the construction of the cycles described by Theorem 3.3. Here
the benefit of using t N

i (at least, if one is happy to work rationally) comes to the
fore: it allows us to obtain uniform formulas for all N , and to use as few terms
as possible. In fact, it turns out that for all n it is possible to take W3 = · · · =
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Wn−1 = 0. (While it is easy to argue abstractly that Wn−1 can always be taken to be
zero, this stronger statement surprised us.) For brevity, we shall use the notation
( f1(t, u, v), . . . , fm(t, u, v)) for

{( f1(t, u, v), . . . , fm(t, u, v)) | ti , u, v ∈ P1
} ∩�m

;

all precycles are defined over F=Q(ω), and we write ξ := ωb.

4A. K3 case (n= 2). Let Z = (t/(t−1), 1−ξ t, t N ), as dictated by Theorem 3.3;
then all ∂εi Z = 0. In particular,

∂0
1 Z = (1− ξ t, t N )|t/(t−1)=0 = (1, 0)= 0

and
∂0

2 Z =

(
ξ−1

ξ−1− 1
, ξ−N

)
=

(
1

1−ξ
, 1
)
= 0.

So we may take W = 0 and Z̃ =Z .
In contrast, if we took Z = (t/(t − 1), 1− ξ t, t), then ∂0

2 Z = (1/(1− ξ), ξ−1)

and a nonzero W -term is required.

4B. K5 case (n = 3). Of course Z = (t1/(t1− 1), t2/(t2− 1), 1− ξ t1t2, t N
1 , t N

2 ).
Taking

W1 =
1
2

(
t1

t1− 1
,

1
1− ξ t1

,
(u− t N

1 )(u− t−N
1 )

(u− 1)2
, t N

1 u,
u
t N
1

)
,

we note that z2 = 1/(1− ξ t1) implies t2 = (1− ξ t1)−1/((1− ξ t1)−1
− 1)= 1/ξ t1,

which in turn implies f2(t1, t2)= 0. Now we have

∂Z = ∂0
3 Z =

(
t1

t1− 1
,

t2
t2− 1

, t N
1 , t N

2

)∣∣∣∣
1−ξ t1t2=0

=

(
t1

t1− 1
,

1
1− ξ t1

, t N
1 ,

1
t N
1

)
and

∂W1 =−∂
∞

3 W1 =−2 · 1
2

(
t1

t1− 1
,

1
1−ξ t1

, t N
1 ,

1
t N
1

)
=−∂Z .

Therefore Z̃ =Z +W1 is closed.

Remark 4.1. See [Petras 2008, §3.1] for a detailed discussion of the properties of
these cycles, especially the (integral!) distribution relations of [loc. cit., Proposition
3.1.26].

In particular, we can specialize to N = 2 to obtain

2Z̃ = 2
(

t1
t1−1

,
t2

t2−1
, 1+t1t2, t2

1 , t2
2

)
+

(
t1

t1−1
,

1
1+t1

,
(u−t2

1 )(u−t−2
1 )

(u−1)2
, t2

1 u,
u
t2
1

)
in Z3

R(Q, 5), spanning CH 3(Q, 5)Q ∼= K5(Q)Q, with

cD,Q(2Z̃ )=−8 Li3(−1)= 6ζ(3) ∈ C/Q(3).
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4C. K7 case (n= 4). Set

Z =

(
t1

t1− 1
,

t2
t2− 1

,
t3

t3− 1
, 1− ξ t1t2t3, t N

1 , t N
2 , t N

3

)
,

W1 =
1
2
(W

(1)
1 +W

(2)
1 ),

W
(1)

1 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,
(u− t N

1 )(u− t N
2 )

(u− 1)(u− t N
1 t N

2 )
,

u
t N
1
,

u
t N
2
,

1
u

)
,

W
(2)

1 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,
(u− t N

1 )(u− t N
2 )

(u− 1)(u− t N
1 t N

2 )
,

t N
1

u
,

t N
2

u
,

u
t N
1 t N

2

)
,

W2 =−
1
2

(
t1

t1− 1
,

1
1− ξ t1

,
(v− t N

1 u)(v− ut−N
1 )

(v− u2)(v− 1)
,

(u− t N
1 )(u− vt−N

1 )

(u− v)2
,
vt N

1

u
,
v

t N
1 u

,
u
v

)
.

Direct computation shows

∂Z =−∂0
4 Z =−∂∞4 W

(1)
1 =−∂∞4 W

(2)
1 ,

∂W1 =−
1
2∂
∞

3 W
(1)

1 +
1
2∂
∞

4 W
(1)

1 −
1
2∂
∞

3 W
(2)

1 +
1
2∂
∞

4 W
(2)

1 ,

∂W2 =−∂
∞

3 W2 =
1
2∂
∞

3 W
(1)

1 +
1
2∂
∞

3 W
(2)

1 ,

which sum to zero.
Alternately, we can take

W1 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,
(u− t N

1 )(u− t N
2 )

(u− 1)(u− t N
1 t N

2 )
,

t N
1

u
,

t N
2

u
,

u
t N
1 t N

2

)
,

W2 =

(
t1

t1− 1
,

1
1− ξ t1

,
(u− vt N

1 )(u− vt−N
1 )

(u− v)2
,
vt N

1

u
,
v

t N
1 u

,
u
v
, v− 1

)
.

Writing

V1 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
, t N

1 , t N
2 ,

1
t N
1 t N

2

)
,

V2 =

(
t1

t1− 1
,

1
1− ξ t1

,
(u− t N

1 )(u− t−N
1 )

(u− 1)2
,

t N
1

u
,

1
t N
1 u

, u
)
,

one has ∂Z =−V1, ∂W1 =−V2+V1, ∂W2 = V2; so again Z̃ is a closed cycle.
We present the general n construction next, but include the n = 5 case as an

appendix (as the authors only saw the pattern after working out this case).
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4D. General n construction (n ≥ 4). To state the final result, we define

Z :=

(
t1

t1− 1
, . . . ,

tn−1

tn−1− 1
, 1− ξ t1 · · · tn−1, t N

1 , . . . , t N
n−1

)
,

W1 :=
1

n− 3
W̃1

:=
(−1)n−1

n− 3

(
t1

t1− 1
, . . . ,

tn−2

tn−2− 1
,

1
1− ξ t1 · · · tn−2

,

(u− t N
1 ) · · · (u− t N

n−2)

(u− t N
1 · · · t

N
n−2)(u− 1)n−3

,
t N
1

u
, . . . ,

t N
n−2

u
,

u
t N
1 · · · t

N
n−2

)
,

W2 :=
1

n−3

n−1∑
i=1

(−1)i−1W
(i)

2 ,

where for 1≤ i ≤ n− 2,

W
(i)

2 :=

(
t1

t1− 1
, . . . ,

tn−3

tn−3− 1
,

1
1− ξ t1 · · · tn−3

,
(u− t N

1 v) · · · (u− t N
n−3v)

(u− t N
1 · · · t

N
n−3v)(u− v)

n−4
,

vt N
1

u
, . . . ,

v

u
, . . . ,

vt N
n−3

u
,

u
vt N

1 · · · t
N
n−3

, v− 1
)
,

(with v/u occurring in the (n+ i − 1)-st entry4) and

W
(n−1)

2 :=(
t1

t1− 1
, . . . ,

tn−3

tn−3− 1
,

1
1− ξ t1 · · · tn−3

,
(u− t N

1 v) · · · (u− t N
n−3v)

(u− t−N
1 · · · t−N

n−3v)
−1(u− v)n−2

,

vt N
1

u
, . . . ,

vt N
n−3

u
,

v

ut N
1 · · · t

N
n−3

,
u
v
, v− 1

)
.

Theorem 4.2. Z̃ = Z +W1 +W2 yields a closed cycle, with the properties de-
scribed in Theorem 3.3. (In particular, this recovers the second K7 construction
and the K9 construction above, for n = 4 and 5.)

Proof. Writing

Y0 := ∂
0
n Z =

(
t1

t1− 1
, . . . ,

tn−2

tn−2− 1
,

1
1− ξ t1 · · · tn−2

, t N
1 , . . . , t N

n−2,
1

t N
1 · · · t

N
n−2

)
,

Yi := ∂
0
2n−1W

(i)
2 (i = 1, . . . , n− 1), and Xi, j := ∂

∞

j W
(i)

2 ( j = 1, . . . , n− 2), one
computes that ∂Z = (−1)n−1Y0,

4That is, either before (i = 1), after (i = n − 2), or in the middle of the sequence
vt N

1 /u, vt N
2 /u, . . . , vt N

n−3/u.
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∂W̃1 = (−1)n∂∞n W̃1+

n−1∑
i=1

(−1)i∂∞i W̃1 = (−1)n(n− 3)Y0+

n−1∑
i=1

(−1)iYi ,

and ∂W (i)
2 = Yi +

∑n−2
j=1(−1) jXi, j . We have, therefore,

∂Z̃ =
1

n−3

n−1∑
i=1

n−2∑
j=1

(−1)i+ j−1Xi, j , (4.3)

and for each i > j , the reader may verify that Xi, j =X j,i−1, so that the terms on
the right-hand side of (4.3) cancel in pairs. �

4E. Expected implications for torsion. One of the anticipated applications of the
explicit AJ maps of [Kerr et al. 2006; Kerr and Lewis 2007] has been the detec-
tion of torsion in higher Chow groups. While they provide an explicit map of
complexes from Z p

R(X, •) to the integral Deligne cohomology complex, the fact
that Z p

R(X, •) ⊂ Z p(X, •) is only a rational quasi-isomorphism leaves open the
possibility that a given cycle with (nontrivial) torsion KLM-image is bounded by
a precycle in the larger complex. So far, therefore, any conclusions we can try
to draw about torsion are speculative, as they depend on the (so far) conjectural
extension of the KLM map to an integrally quasi-isomorphic subcomplex.

Let us describe what the existence of such an extension, together with the cycles
just constructed, would yield. Let f : Z/NZ→ Z be a function which is zero
off (Z/NZ)∗, with f (−b)= (−1)n f (b), and write

εn :=


1, n = 2,
2, n = 3,
n− 3, n ≥ 4.

Then (fixing σ(ω)= ζN = e2π i/N ) the cycle

Zn
f (N ) := εn

N−1∑
b=0

f (b)σ (Z̃b) ∈ Zn
R(Q(ζN ), 2n− 1)

is integral. Working up to sign, we compute (in C/Z) by Theorem 3.8

τ n
f (N ) :=

±1
(2π i)n

cD(Zn
f (N ))=

±εn N n−1

(2π i)n

N−1∑
b=0

f (b)
∑
k≥1

ζ kb
N

kn

=
±εn N n−1

2(2π i)n

N−1∑
b=0

f (b)
∑

k∈Z\{0}

ζ kb
N

kn =
±εn N n−1

2 · n!

N−1∑
b=0

f (b)Bn(
b
N
),
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which is evidently a rational number.5 This (nonconjecturally) establishes that
Zn

f (N ) is torsion. Under our working (conjectural!) hypothesis, if τ n
f (N ) =

±An
f (N )/C

n
f (N ) in lowest form, we may additionally conclude that the order of

Zn
f (N ) is a multiple of Cn

f (N ).
For example, taking N = 5, n = 2, and f (1) = f (4) = 1, f (2) = f (3) = 0,

we obtain Z2
f (5) ∈ Z2

R(Q(
√

5), 3) with τ 2
f (5)=

±1
120 . This checks out with what is

known (cf. Proposition 6.9 and Remark 6.10 of [Petras 2009]), and would make
Z2

f (5) a generator of CH 2(Q(
√

5), 3).
For N =2, f (1)=1, and n=2m (i.e., CH 2m(Q, 4m−1)), the above computation

simplifies to

|τ 2m
f (2)| =

±ε2m22m−2

(2m)!
B2m

(1
2

)
=
±(2m− 3)(22m−1

− 1)
2(2m)!

B2m,

which yields 1
24 , 7

1440 , 31
20160 , 635

483840 for m = 1, 2, 3, 4, respectively. It is known that
CH 2(Q, 3)∼= Z/24Z [Petras 2009], but the other orders seem unexpectedly large
and should warrant further investigation.

Appendix: K9 case (n= 5)

Begin by writing

Z =

(
t1

t1− 1
,

t2
t2− 1

,
t3

t3− 1
,

t4
t4− 1

, 1− ξ t1t2t3t4, t N
1 , t N

2 , t N
3 , t N

4

)
,

W1 =
1
2

(
t1

t1− 1
,

t2
t2− 1

,
t3

t3− 1
,

1
1− ξ t1t2t3

,

(u− t l
1)(u− t l

2)(u− t l
3)

(u− 1)2(u− t l
1t l

2t l
3)

,
t N
1

u
,

t N
2

u
,

t N
3

u
,

u
t N
1 t N

2 t N
3

)
,

W
(1)

2 =

(
t1

t1−1
,

t2
t2−1

,
1

1−ξ t1t2
,
(u−t N

1 v)(u−t N
2 v)

(u−t N
1 t N

2 v)(u−v)
,
v

u
,

t N
1 v

u
,

t N
2 v

u
,

u
vt N

1 t N
2
,v−1

)
,

W
(2)

2 =

(
t1

t1−1
,

t2
t2−1

,
1

1−ξ t1t2
,
(u−t N

1 v)(u−t N
2 v)

(u−t N
1 t N

2 v)(u−v)
,
vt N

1

u
,
v

u
,

t N
2 v

u
,

u
vt N

1 t N
2
,v−1

)
,

W
(3)

2 =

(
t1

t1−1
,

t2
t2−1

,
1

1−ξ t1t2
,
(u−t N

1 v)(u−t N
2 v)

(u−t N
1 t N

2 v)(u−v)
,
vt N

1

u
,
vt N

2

u
,
v

u
,

u
vt N

1 t N
2
,v−1

)
,

5 Bn(x)=
∑n

j=0
(n

j
)
B j xn− j is the n-th Bernoulli polynomial (and {B j } the Bernoulli numbers).
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W
(4)

2 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,

(u− t N
1 v)(u− t N

2 v)

(u− vt−N
1 t−N

2 )−1(u− v)3
,
vt N

1

u
,
vt N

2

u
,

v

ut N
1 t N

2
,

u
v
, v− 1

)
,

W2 =
1
2
(W

(1)
2 −W

(2)
2 +W

(3)
2 −W

(4)
2 ).

To compute the boundaries, introduce

U1 =

(
t1

t1− 1
,

t2
t2− 1

,
t3

t3− 1
,

1
1− ξ t1t2t3

, t N
1 , t N

2 , t N
3 ,

1
t N
1 t N

2 t N
3

)
,

U2 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,
(u− t N

1 )(u− t N
2 )

(u− t N
1 t N

2 )(u− 1)
,

1
u
,

t N
1

u
,

t N
2

u
,

u
t N
1 t N

2

)
,

U3 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,
(u− t N

1 )(u− t N
2 )

(u− t N
1 t N

2 )(u− 1)
,

t N
1

u
,

1
u
,

t N
3

u
,

u
t N
1 t N

2

)
,

U4 =

(
t1

t1− 1
,

t2
t2− 1

,
1

1− ξ t1t2
,
(u− t N

1 )(u− t N
2 )

(u− t N
1 t N

2 )(u− 1)
,

t N
1

u
,

t N
2

u
,

1
u
,

u
t N
1 t N

2

)
,

U5 =

(
t1

t1−1
,

t2
t2−1

,
1

1−ξ t1t2
,
(u−t N

1 )(u−t N
2 )(u−t−N

1 t−N
2 )

(u−1)3
,

t N
1

u
,

t N
2

u
,

1
ut N

1 t N
2
,u
)
,

and

V1 =

(
t1

t1− 1
,

1
1− ξ t1

,
(u− t N

1 v)(u− t−N
1 v)

(u− v)2
,
v

u
,

t N
1 v

u
,
v

ut N
1
,

u
v
, v− 1

)
,

V2 =

(
t1

t1− 1
,

1
1− ξ t1

,
(u− t N

1 v)(u− t−N
1 v)

(u− v)2
,
vt N

1

u
,
v

u
,
v

t N
1 u

,
u
v
, v− 1

)
,

V3 =

(
t1

t1− 1
,

1
1− ξ t1

,
(u− t N

1 v)(u− t−N
1 v)

(u− v)2
,
vt N

1

u
,
v

ut N
1
,
v

u
,

u
v
, v− 1

)
.

Then ∂Z = U1, ∂W1 = −U1 +
1
2(−U2 + U3 − U4 + U5), ∂W

(1)
2 = −V1 + U2,

∂W
(2)

2 = −V2+U3, ∂W (3)
2 = −V3+U4, and ∂W (4)

2 = U5− V1+ V2− V3; and so
Z̃ is closed.

As for n= 3, we obtain a generator for CH 5(Q, 9)Q∼= K9(Q)Q by setting N = 2
and ξ =−1; the integral cycle 2Z̃ has cD,Q(2Z̃ )= 15ζ(5).
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Algebraic K-theory and
a semifinite Fuglede–Kadison determinant

Peter Hochs, Jens Kaad and André Schemaitat

In this paper we apply algebraic K-theory techniques to construct a Fuglede–
Kadison type determinant for a semifinite von Neumann algebra equipped with
a fixed trace. Our construction is based on the approach to determinants for
Banach algebras developed by Skandalis and de la Harpe. This approach can be
extended to the semifinite case since the first topological K-group of the trace
ideal in a semifinite von Neumann algebra is trivial. Along the way we also
improve the methods of Skandalis and de la Harpe by considering relative K-
groups with respect to an ideal instead of the usual absolute K-groups. Our
construction recovers the determinant homomorphism introduced by Brown, but
all the relevant algebraic properties are automatic due to the algebraic K-theory
framework.

1. Introduction

One first encounters the relationship between algebraic K-theory and determinants
in the isomorphism between the first algebraic K-group of the complex numbers
and the complex multiplicative group. This isomorphism is implemented by the
determinant of an invertible matrix. In the present paper we will expand on this
relationship in the context of Banach algebras and, in particular, we will see how to
recover the Fuglede–Kadison determinant for semifinite von Neumann algebras as
introduced by Brown [Brown 1986; Fuglede and Kadison 1952]. Brown based his
construction on ideas of Grothendieck [1956] and Fack [1982; 1983], who defined
a determinant function as an analogue of the product of the eigenvalues up to a
given cutoff.

The main advantage of applying an algebraic K-theory approach to determinants
is that all the algebraic properties of determinants follow as a direct consequence
of the definitions. Moreover, when determinants are interpreted as invariants of
algebraic K-theory, they can be used to detect nontrivial elements in these generally
rather complicated abelian groups. On the other hand, basing the construction of
determinants purely on functional analytic methods requires a substantial amount

MSC2010: 46L80.
Keywords: algebraic K-theory, semifinite von Neumann algebras, determinants.
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of work for proving the main algebraic properties, and the more conceptual frame-
work provided by algebraic K-theory is entirely lost.

The key property that we investigate in this text is the relationship between the
operator trace, the logarithm and the determinant as expressed by the identity

log(det(g))= Tr(log(g)).

In order to expand on this basic relationship in a K-theoretic context one considers
a unital Banach algebra A together with the homomorphism

GL(A)→ GLtop(A),

where GL(A) denotes the general linear group (over A) equipped with the discrete
topology, and GLtop(A) is the same algebraic group but with the topology coming
from the unital Banach algebra A. Passing to classifying spaces and applying
Quillen’s plus construction [1973], one obtains a continuous map

BGL(A)+→ BGLtop(A)

(which is unique up to homotopy). By taking homotopy fibres and homotopy
groups this gives rise to a long exact sequence of abelian groups,

K top
∗+1(A)

∂
// K rel
∗
(A) ∂

// K alg
∗ (A) // K top

∗ (A),

which is related to the SBI -sequence in continuous cyclic homology by means of
Chern characters, resulting in the commutative diagram

K top
∗+1(A)

∂
//

chtop

��

K rel
∗
(A) //

chrel

��

K alg
∗ (A) //

chalg

��

K top
∗ (A)

chtop

��

HP∗+1(A)
S
// HC∗−1(A)

B
// HN∗(A)

I
// HP∗(A)

(1.1)

of abelian groups; see [Karoubi 1987; Connes and Karoubi 1988].
In this paper we focus on the low degree (and more explicit) version of this

commutative diagram. More precisely, supposing that the unital Banach algebra
A comes equipped with a tracial functional τ : A→ C, one obtains an invariant
of the continuous cyclic homology group HC0(A), and hence by precomposition
with the relative Chern character we obtain a homomorphism

τ ◦ chrel
: K rel

1 (A)→ C.

Supposing furthermore that K top
1 (A) = {0}, it follows from the commutative di-

agram in (1.1) combined with Bott-periodicity in topological K-theory that the
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character τ ◦ chrel induces a homomorphism

detτ : K
alg
1 (A)→ C/(2π i · Im(τ )),

where τ : K top
0 (A)→ C is the character on even topological K-theory induced by

our tracial functional. In this way we recover the determinant defined by Skandalis
and de la Harpe [de la Harpe and Skandalis 1984; de la Harpe 2013].

We extend this framework for defining determinants by incorporating that the
tracial functional τ might only be defined on an ideal J sitting inside the unital
Banach algebra A (where J is not required to be closed in the norm-topology
of A). In this context, we assume that τ : J → C is a hypertrace in the sense
that τ( ja) = τ(aj) for all a ∈ A, j ∈ J . The correct K-groups to consider are
then relative versions of relative K-theory and algebraic K-theory, and similarly
one considers relative versions of the cyclic homology groups appearing in the
SBI -sequence (we do not use relative topological K-theory because of excision).
The idea of applying relative K-groups in relation to determinant-type invariants
of algebraic K-theory was (among other things) developed in the Ph.D. thesis of
the second author [Kaad 2009].

In the setting of a semifinite von Neumann algebra N equipped with a fixed
normal, faithful and semifinite trace τ : N+→ [0,∞], it is relevant to look at the
trace ideal

L 1
τ (N ) := {x ∈ N : τ(|x |) <∞}

sitting inside the von Neumann algebra N . Using the facts that K top
1 (L 1

τ (N ))= {0}
and Im(τ : K top

0 (L 1
τ (N ))→ C)⊆ R, we obtain an algebraic K-theory invariant1

detτ : K
alg
1 (L 1

τ (N ), N )→ C/ iR,

which recovers the Fuglede–Kadison determinant in the context of semifinite von
Neumann algebras; see [Brown 1986; Fuglede and Kadison 1952]. We emphasize
one more time that all the relevant algebraic properties of this determinant follow
immediately from its construction. Moreover, we show that detτ is given by the
explicit formula

detτ (g)= τ(log(|g|))+ iR (g ∈ GLn(N ), g−1n ∈ Mn(L
1
τ (N )). (1.2)

Here, τ is extended to Mn(N ) in the obvious way by taking the sum over the
diagonal.

Recently, the Fuglede–Kadison determinant was generalized in another direction
by Dykema, Sukochev and Zanin to operator bimodules over II1-factors [Dykema
et al. 2017]. They define this determinant using functional analytic methods via an

1In the main text, we denote this map by d̃etτ , and use the notation detτ for the composition with
the isomorphism C/ iR∼= (0,∞) given by z+ iR 7→ e(z+z̄)/2.
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expression analogous to (1.2). It then requires an elaborate argument to prove that
this determinant is multiplicative [Dykema et al. 2017, Theorem 1.3].

The present paper is organized as follows. In Section 2 we introduce the relevant
K-groups and in Section 3 we develop the low degree version of the long exact
sequence which compares relative algebraic K-theory to topological K-theory. In
Section 4 we introduce the low degree version of the relative Chern character in
the presence of an ideal J ⊆ A. In Section 5 we present our relative approach
to the construction of Skandalis–de la Harpe determinants. In Section 6 we show
that the first topological K-group of the trace ideal in a semifinite von Neumann
algebra is trivial, and in Section 7 we apply this fact to construct the semifinite
Fuglede–Kadison determinant.

2. K-theory for relative pairs of Banach algebras

2.1. Definition. Let (A, ‖ ·A‖) be a unital Banach algebra and J ⊂ A be a (not
necessarily closed) ideal. We call (J, A) a relative pair of Banach algebras when
the following hold:

(1) J is a Banach algebra in its own right. Thus, J is endowed with a norm
‖·‖J : J → [0,∞) such that (J, ‖·‖J ) is a Banach algebra.

(2) For all a, b ∈ A and j ∈ J we have

‖ajb‖J ≤ ‖a‖A ‖ j‖J ‖b‖A and ‖ j‖A ≤ ‖ j‖J .

2.2. For a relative pair of Banach algebras (J, A) we obtain for all n ∈N a relative
pair of Banach algebras (Mn(J ),Mn(A)), where the n× n matrices in Mn(J ) are
equipped with the norm ‖ j‖Mn(J ) :=

∑n
k,l=1 ‖ jkl‖J , and similarly for Mn(A).

2.3. The rest of this section is a reminder on various K-groups for relative pairs
of Banach algebras. A standard reference for topological K-theory is [Blackadar
1998]. Very good treatments of algebraic K-theory can be found in [Rosenberg
1994; Weibel 2013]. The probably less common relative K-theory of Banach alge-
bras has been introduced in [Karoubi 1987; Connes and Karoubi 1988].

2.4. Definition. Let A be a Banach algebra. If A has a unit, we denote the group
of invertible elements in Mn(A) by GLn(A). If A has no unit, we define for all
n ∈ N the group

GLn(A) := {g ∈ GLn(A+) : g− 1n ∈ Mn(A)} ⊂ GLn(A+),

where A+ is the unitization of A and 1n the unit of GLn(A+). The group GLn(A)
becomes a topological group when equipped with the topology coming from the
metric d(g, h) := ‖g− h‖Mn(A).
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2.5. Definition. The topological K-groups of the pair (J, A) can be defined to be
the usual topological K-groups of J , i.e.,

K top
i (J, A) := K top

i (J ) (i = 0, 1).

This is due to the fact that topological K-theory satisfies excision [Blackadar 1998,
Theorem 5.4.2]. For our purposes, it will be useful to know another realization of
K top

0 (J ), namely K top
2 (J ), which may be defined by

K top
2 (J )= lim

n→∞
π1(GLn(J ),1n)= lim

n→∞
{[γ ] ∈ C∞(S1,GLn(J ))/∼ : γ (1)= 1n},

where the equivalence relation ∼ is given by smooth basepoint preserving homo-
topies and the group operation is given by the pointwise product of invertible ma-
trices; see [Blackadar 1998, Section 9.1].

The fact that K top
0 (J ) and K top

2 (J ) are isomorphic is known as Bott periodicity,
[Blackadar 1998, Theorem 9.2.1]. An explicit isomorphism is given by

βJ : K
top
0 (J )→ K top

2 (J ), [e] − [ f ] 7→ [γeγ
−1
f ],

where e, f ∈ Mn(J+) are idempotents with e− f ∈ Mn(J ). The so-called idem-
potent loops γe are defined by γe(z) := ze+ 1n − e for z ∈ S1.

2.6. Definition. The first algebraic K-theory of the pair (J, A) is defined by

K alg
1 (J, A) := lim

n→∞
(GLn(J )/[GLn(J ),GLn(A)]),

where

[GLn(J ),GLn(A)] := 〈ghg−1h−1
: g ∈ GLn(J ), h ∈ GLn(A)〉

is a normal subgroup of GLn(J ).

2.7. Definition. Let A be a Banach algebra. For all n ∈ N, we let Rn(A) denote
the group of smooth paths σ : [0, 1] → GLn(A) such that σ(0) = 1n . The group
operation is given by pointwise multiplication.

Now, let (J, A) be a relative pair of Banach algebras. From the compatibility of
the norms on J and A (see Definition 2.1) it follows that

στσ−1τ−1
∈ Rn(J ) (σ ∈ Rn(J ), τ ∈ Rn(A)).

We thus have the normal subgroup

[Rn(J ), Rn(A)] := 〈στσ−1τ−1
| σ ∈ Rn(J ), τ ∈ Rn(A)〉

of Rn(J ). On Rn(J ) we may consider the equivalence relation ∼ of being homo-
topic with fixed endpoints through a smooth homotopy. Denote the quotient map
by q : Rn(J )→ Rn(J )/∼. We define

K rel
1 (J, A) := lim

n→∞

(
(Rn(J )/∼)/q

(
[Rn(J ), Rn(A)]

))
.
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3. The comparison sequence

3.1. Definition. We define the following group homomorphisms:

∂ : K top
2 (J )→ K rel

1 (J, A), [γ ] 7→ [t 7→ γ (e2π i t)],

θ : K rel
1 (J, A)→ K alg

1 (J, A), [σ ] 7→ [σ(1)−1
],

p : K alg
1 (J, A)→ K top

1 (J ), [g] 7→ [g].

3.2. Lemma. The sequence

K top
2 (J ) ∂

// K rel
1 (J, A) θ

// K alg
1 (J, A)

p
// K top

1 (J ) // 0

is exact.

Proof. The only nontrivial thing to check is exactness at K rel
1 (J, A). It is clear that

θ ◦ ∂ = 0. On the other hand, let σ ∈ Rn(J ) and suppose that [σ(1)−1
] is trivial in

K alg
1 (J, A). Then there are gi ∈ GLm(J ) and hi ∈ GLm(A) such that

σ(1)−1
=

n∏
i=1

[gi , hi ].

By Whitehead’s lemma [Rosenberg 1994, Theorem 2.5.3], we may assume that gi

and hi lie in the connected component of the identity. Thus, there are smooth paths
αi ∈ Rm(J ) connecting 1m and gi , and βi ∈ Rm(A) connecting 1m and hi . Then

τ :=

n∏
i=1

[αi , βi ] ∈ [Rm(J ), Rm(A)]

is a path from 1m to σ(1)−1. Hence γ := σ · τ−1 is a smooth loop at 1m and
∂([γ ])= [σ ] since [τ−1

] is trivial in K rel
1 (J, A). �

4. The relative Chern character

4.1. Let (J, A) be a relative pair of Banach algebras. By J ⊗π A we denote the
projective tensor product of J and A. The compatibility of the norms on J and A
ensures that the multiplication operator

m : J ⊗π A→ J, j ⊗ a 7→ ja

is bounded.

4.2. Definition. We define the Hochschild boundary map

b : J ⊗π A→ J, j ⊗ a 7→ ja− aj
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and the zeroth relative continuous cyclic homology of the pair (J, A) by

HC0(J, A) := J/ Im(b).

Since Im(b)⊂ J might not be closed we regard HC0(J, A) simply as a vector space
without further topological structure.

4.3. Definition. Recall from 2.2 that (Mn(J ),Mn(A)) is a relative pair of Banach
algebras for all n ∈ N. We thus have for each n ∈ N the relative continuous cyclic
homology groups HC0(Mn(J ),Mn(A)), and we may consider the direct limit of
vector spaces

lim
n→∞

HC0(Mn(J ),Mn(A)).

This direct limit is linked to HC0(J, A) via the linear map

TR : lim
n→∞

HC0(Mn(J ),Mn(A))→ HC0(J, A),

which is induced by the “trace” TR : Mn(J )→ J mapping a matrix to the sum
of its diagonal entries. To verify that TR is indeed well-defined at the level of
relative continuous cyclic homology, one may translate the proof of [Loday 1998,
Corollary 1.2.3] to our current setting.

4.4. Our next task is to construct the relative Chern character. This will be a group
homomorphism

chrel
: K rel

1 (J, A)→ HC0(J, A)

induced by

Rn(J ) 3 σ 7→ TR
(∫ 1

0

dσ
dt
σ−1 dt

)
∈ J.

We shall express chrel as the composition of two homomorphisms: a generalized
logarithm

log : K rel
1 (J, A)→ lim

n→∞
HC0(Mn(J ),Mn(A))

and the generalized trace as defined in Definition 4.3. We now introduce the gen-
eralized logarithm:

4.5. Proposition. There is a well-defined homomorphism

log : K rel
1 (J, A)→ lim

n→∞
HC0(Mn(J ),Mn(A)), [σ ] 7→

[∫ 1

0

dσ
dt
σ−1 dt

]
.

Proof. Suppose first that σ0, σ1 ∈ Rn(J ) are homotopic through a smooth homotopy
H : [0, 1]×[0, 1]→GLn(J ) with fixed endpoints. So, H(t, j)= σ j (t) for j = 0, 1.

We will show that∫ 1

0

dσ1

dt
σ−1

1 dt −
∫ 1

0

dσ0

dt
σ−1

0 dt ∈ Im(b),
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where b : Mn(J )⊗π Mn(A)→ Mn(J ) is the Hochschild boundary map associated
to the relative pair (Mn(J ),Mn(A)).

Define
L(H) := −

∫ 1

0

∫ 1

0

∂H
∂t

H−1
⊗
∂H
∂s

H−1 dt ds.

We consider L(H) as an element of Mn(J )⊗π Mn(A) (in fact we even end up in
Mn(J )⊗π Mn(J ), which we may then map to Mn(J )⊗π Mn(A) via the inclusion
Mn(J )→ Mn(A)). Applying the Hochschild boundary b, we see that

b(L(H))=−
∫ 1

0

∫ 1

0

[
∂H
∂t

H−1,
∂H
∂s

H−1
]

dt ds.

An easy calculation shows that[
∂H
∂t

H−1,
∂H
∂s

H−1
]
=−

∂H
∂t
∂H−1

∂s
+
∂H
∂s

∂H−1

∂t

=
∂

∂t

(
∂H
∂s

H−1
)
−
∂

∂s

(
∂H
∂t

H−1
)
.

By the fundamental theorem of calculus, we conclude

b(L(H))=
∫ 1

0

∫ 1

0

∂

∂s

(
∂H
∂t

H−1
)

ds dt −
∫ 1

0

∫ 1

0

∂

∂t

(
∂H
∂s

H−1
)

dt ds

=

∫ 1

0

(
∂H
∂t
(t, 1)H(t, 1)−1

−
∂H
∂s
(t, 0)H(t, 0)−1

)
dt

−

∫ 1

0

(
∂H
∂s
(1, s)H(1, s)−1

−
∂H
∂s
(0, s)H(0, s)−1

)
ds

=

∫ 1

0

dσ1
dt
σ−1

1 dt −
∫ 1

0

dσ0
dt
σ−1

0 dt.

The second term in the next to last line of our computation vanishes, since our
homotopy has fixed endpoints.

We have thus proved that the assignment

log : Rn(J )→ Mn(J ), σ 7→

∫ 1

0

dσ
dt
σ−1 dt

descends to a well-defined map log : (Rn(J )/∼)→HC0(Mn(J ),Mn(A)). Further-
more, since log is compatible with direct limits, we obtain a well-defined map

log : lim
n→∞

(Rn(J )/∼)→ lim
n→∞

HC0(Mn(J ),Mn(A)).

We now show that log([σ0 · σ1]) = log([σ0])+ log([σ1]) for all σ0, σ1 ∈ Rn(J ).
Choose a smooth function φ : R→ [0, 1] such that

φ((−∞, 0])= {0} and φ
([1

2 ,∞
))
= {1}.
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Define the smooth function ψ : R→[0, 1] by ψ(t) := φ
(
t − 1

2

)
. We then have that

σ0σ1 ∼ (σ0 ◦ψ) · (σ1 ◦φ),

and it thus suffices to verify that log((σ0 ◦ψ) · (σ1 ◦φ))= log(σ0)+ log(σ1). But
this identity follows by a change of variables:

log
(
(σ0 ◦ψ) · (σ1 ◦φ)

)
=

∫ 1/2

0

d(σ1 ◦φ)

dt
(σ1 ◦φ)

−1 dt +
∫ 1

1/2

d(σ0 ◦ψ)

dt
(σ0 ◦ψ)

−1 dt

= log(σ0)+ log(σ1).

To finish the proof of the proposition we only need to show that log([στσ−1
])=

log([τ ]) whenever σ ∈ Rn(A) and τ ∈ Rn(J ). To this end, we consider the smooth
homotopy with fixed endpoints

H(s, t) := σ( f (s, t))τ (t)σ ( f (s, t))−1, f (s, t) := ts+ 1− s = s(t − 1)+ 1

between στσ−1 and σ(1)τσ (1)−1. This proves that

log([στσ−1
])= log([σ(1)τσ (1)−1

])= log([τ ]),

where we have used the fact that σ(1)xσ(1)−1 and x determine the same element
in HC0(Mn(J ),Mn(A)) for all x ∈ Mn(J ). �

4.6. Definition. By the relative Chern character chrel
: K rel

1 (J, A)→ HC0(J, A),
we understand the homomorphism obtained as the composition

chrel
: K rel

1 (J, A)
log
// lim
n→∞

HC0(Mn(J ),Mn(A))
TR
// HC0(J, A)

of the generalized logarithm and the generalized trace.

5. The relative Skandalis–de la Harpe determinant

5.1. Analogous to the determinant of Skandalis and de la Harpe, we are now in
a position to define such a determinant purely by means of K-theory for relative
pairs of Banach algebras. In particular, we are able to deal with the presence of a
not necessarily closed ideal J inside a unital Banach algebra A.

5.2. Definition. Let (J, A) be a relative pair of Banach algebras. In this section we
assume τ : J → C to be a continuous linear functional which additionally satisfies

τ( ja)= τ(aj) (a ∈ A, j ∈ J ).

The latter property means that τ is a hypertrace. For such a trace there is a well-
defined map (also denoted by τ ):

τ : HC0(J, A)→ C, j + Im(b) 7→ τ( j).
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Furthermore, we let

τ̃ := −τ ◦ chrel
: K rel

1 (J, A)→ C,

with chrel as in Definition 4.6. Note that τ̃ is a homomorphism into the additive
group C.

5.3. Recall (Lemma 3.2) that there is an exact sequence in relative K-theory:

K top
2 (J ) ∂

// K rel
1 (J, A) θ

// K alg
1 (J, A)

p
// K top

1 (J ) // 0 .

This allows us to define the relative Skandalis–de la Harpe determinant

d̃etτ : Ker(p)→ C/ Im(τ̃ ◦ ∂)
by

d̃etτ ([g]) := τ̃ ([σ ])+ Im(τ̃ ◦ ∂),

where [σ ] ∈ K rel
1 (J, A) satisfies θ([σ ])= [σ(1)−1

] = [g] 3 K alg
1 (J, A). Such a lift

always exists since Ker(p)= Im(θ). Furthermore, this assignment is well-defined
since if [σ0] and [σ1] are lifts of the same element [g] then

[σ0][σ1]
−1
∈ Ker(θ)= Im(∂).

It follows that τ̃ ([σ0])= τ̃ ([σ1]) modulo Im(τ̃ ◦ ∂).
Compare this with the definition on page 245 of [de la Harpe and Skandalis

1984], where absolute K-theory is used rather than relative K-theory.

5.4. Lemma. We have the following equality of subgroups of (C,+):

2π i · Im(τ : K top
0 (J )→ C)= Im(τ̃ ◦ ∂ : K top

2 (J )→ C).

By τ : K top
0 (J )→ C we understand the map induced by τ .

Proof. The claim follows from commutativity of the following diagram:

K top
0 (J )

βJ

∼=

//

−2π i ·τ
%%

K top
2 (J )

τ̃◦∂

��

C

(5.5)

By βJ we mean the Bott isomorphism map, as in Definition 2.5.
To prove commutativity of (5.5), we note that for an idempotent f ∈ Mn(J+),

chrel(∂([γ f ]))= TR
(

2π i
∫ 1

0
e2π i t f (e−2π i t f +1n − f ) dt

)
= 2π i TR( f ).

If now e, f ∈ Mn(J+) are idempotents satisfying e− f ∈ Mn(J ), then

τ̃
(
∂(βJ ([e] − [ f ]))

)
= τ̃ (∂([γeγ

−1
f ]))=−2π i · τ(TR(e− f )).

So (5.5) indeed commutes. �
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5.6. Together with Lemma 5.4 we see that the following diagram commutes:

K top
2 (J ) ∂

//

τ̃◦∂

��

K rel
1 (J, A) θ

// //

τ̃

��

Ker p

d̃etτ
��

p
// 0

2π i · Im(τ ) // // C // // C/(2π i · Im(τ ))

In the next section this will be applied to the case that the kernel of p is all of
K alg

1 (J, A). In that case we get a determinant

d̃etτ : K
alg
1 (J, A)→ C/(2π i · Im (τ )).

6. Topological K-theory of trace ideals

6.1. In the following, N ⊂L (H) always denotes a semifinite von Neumann alge-
bra equipped with a fixed normal, faithful and semifinite trace τ : N+→ [0,∞]. A
good reference for traces on von Neumann algebras is [Dixmier 1981, I.6.1, I.6.10].

6.2. We let ‖ · ‖ : N → [0,∞) denote the operator norm on N and we let

L 1
τ (N ) := {x ∈ N : τ(|x |) <∞} ⊂ N

denote the trace ideal in N . We recall that L 1
τ (N ) ⊂ N is indeed a ∗-ideal and

that L 1
τ (N ) becomes a Banach ∗-algebra in its own right when equipped with the

norm
‖x‖1,∞ := ‖x‖+ τ(|x |) (x ∈L 1

τ (N )).

Moreover, it holds that (L 1
τ (N ), N ) is a relative pair of Banach algebras in the

sense of Definition 2.1.

6.3. For each n ∈ N we have that Mn(N ) ⊂ L (H⊕n) is a semifinite von Neu-
mann algebra. Indeed, we may define the normal, faithful and semifinite trace
τn : Mn(N )+→ [0,∞] by τn(x) :=

∑n
i=1 τ(xi i ). The inclusion Mn(L

1
τ (N ))→

Mn(N ) then induces an isomorphism

Mn(L
1
τ (N ))∼=L 1

τn
(Mn(N ))

of Banach ∗-algebras. This isomorphism is, however, not an isometry since (by
convention) Mn(L

1
τ (N )) is equipped with the norm defined as in 2.2.

6.4. Lemma. The group GLn(L
1
τ (N )) is path connected for all n ∈ N. In particu-

lar, it holds that
K top

1 (L 1
τ (N ))= {0}.

Proof. Since Mn(L
1
τ (N ))∼=L 1

τn
(Mn(N )) by 6.3, it suffices to verify the lemma

for n = 1. Thus, let g ∈GL1(L
1
τ (N )). Using polar decomposition we may suppose

that g∗g = 1 = gg∗ or that g = |g|. In the first case we may find an x ∈ L 1
τ (N )
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with x = −x∗ such that g = ex . In the second case we may find an x ∈ L 1
τ (N )

with x = x∗ such that g = ex . In both cases we obtain the smooth path t 7→ et x

connecting 1 and g. �

7. The semifinite Fuglede–Kadison determinant

7.1. We are now going to use K-theory for relative pairs of Banach algebras to
define our determinant. From 6.2 we know that (L 1

τ (N ), N ) is a relative pair of
Banach algebras and that τ : L 1

τ (N )→ C is continuous with respect to ‖ · ‖1,∞.
Since τ : L 1

τ (N ) → C is moreover a hypertrace, we get (as defined in 5.6) a
determinant

d̃etτ : K
alg
1 (L 1

τ (N ), N )→ C/(2π i · Im(τ )).

Note that our determinant is defined on all of K alg
1 (L 1

τ (N ), N ) by Lemma 6.4.

7.2. Lemma. We have

Im
(
τ : K top

0 (L 1
τ (N ))→ C

)
⊂ R.

Proof. Since Mn(L
1
τ (N )

+)⊂ Mn(N ) is closed under holomorphic functional cal-
culus for all n ∈ N, every idempotent in Mn(L

1
τ (N )

+) is similar to a projection
in Mn(L

1
τ (N )

+); see [Blackadar 1998, Proposition 4.6.2]. And for projections
p, q ∈ Mn(L

1
τ (N )

+) with p− q ∈ Mn(L
1
τ (N )) we see that

τ([p] − [q])= τ(TR(p− q)) ∈ R,

where we have used that all the diagonal entries (p− q) j j are self-adjoint. �

7.3. We thus have a well-defined homomorphism

d̃etτ : K
alg
1 (L 1

τ (N ), N )→ C/ iR, d̃etτ : [g] 7→ τ̃ ([σ ])+ iR,

where [σ ] ∈ K rel
1 (L

1
τ (N ), N ) is any lift of [g], by which we mean that θ([σ ]) =

[σ(1)−1
] = [g].

Note that there is an isomorphism of abelian groups

C/ iR→ (0,∞), z+ iR 7→ e<(z),

where <(z) denotes the real part of z ∈C. This gives rise to the following definition:

7.4. Definition. We define the semifinite Fuglede–Kadison determinant

detτ : K
alg
1 (L 1

τ (N ), N )→ (0,∞)
by

detτ ([g]) := e<(d̃etτ ([g])).

More explicitly, we have
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detτ ([g])= exp((<◦ τ̃ )[σ ])= exp
(
−(<◦ τ ◦TR)

(∫ 1

0

dσ
dt
σ−1 dt

))
,

where [σ ] ∈ K rel
1 (L

1
τ (N ), N ) is any lift of [g] ∈ K alg

1 (L 1
τ (N ), N ), meaning that

[σ(1)−1
] = [g].

7.5. Proposition. The semifinite Fuglede–Kadison determinant detτ has the fol-
lowing properties:

(1) detτ ([gh])= detτ ([g])detτ ([h]) for all g, h ∈ GLn(L
1
τ (N )).

(2) detτ ([hgh−1
])= detτ ([g]) for all g ∈ GLn(L

1
τ (N )) and h ∈ GLn(N ).

(3) detτ ([ex
])= (exp ◦<◦ τ ◦TR)(x) for x ∈ Mn(L

1
τ (N )).

These properties follow directly from the definition of the determinant and the
fact that d̃etτ is a homomorphism.

In [Brown 1986, Section 1], the equality in the following proposition is the
definition of the determinant.

7.6. Proposition. The following explicit formula holds:

detτ ([g])= eτ(log|g|), (g ∈ GL1(L
1
τ (N ))).

Proof. Let g ∈ GL1(L
1
τ (N )). Using the polar decomposition g = u|g|, we may

compute
detτ ([g])= detτ ([u])detτ ([|g|]).

Since u ∈ GL1(L
1
τ (N )) is unitary in the ambient von Neumann algebra, we may

write u= ei x for some x ∈L 1
τ (N ) with x = x∗. Moreover, we have log|g| ∈L 1

τ (N ).
By Proposition 7.5(3) we thus have that

detτ ([g])= e<(τ (i x))
· eτ(log|g|)

= eτ(log|g|). �
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Algebraic K-theory of quotient stacks

Amalendu Krishna and Charanya Ravi

We prove some fundamental results like localization, excision, Nisnevich de-
scent, and the regular blow-up formula for the algebraic K-theory of certain
stack quotients of schemes with affine group scheme actions. We show that the
homotopy K-theory of such stacks is homotopy invariant. This implies a similar
homotopy invariance property of the algebraic K-theory with coefficients.

1. Introduction

The higher algebraic K-theories of Quillen and Thomason–Trobaugh are among the
most celebrated discoveries in mathematics. Fundamental results like localization,
excision, Nisnevich descent, and the blow-up formula have played pivotal roles in
almost every recent breakthrough in the K-theory of schemes; see, e.g., [Cortiñas
2006; Cortiñas et al. 2008; Schlichting 2010]. The generalization of these results
to equivariant K-theory is the theme of this paper.

The significance of equivariant K-theory [Thomason 1987a] in the study of the
ordinary (nonequivariant) K-theory is essentially based on two principles. First, it
often turns out that the presence of a group action allows one to exploit representation-
theoretic tools to study equivariant K-theory. Second, there are results (see, for
instance, [Merkurjev 2005, Theorem 32]) which directly connect equivariant alge-
braic K-theory with the ordinary K-theory of schemes with group action. These
principles have been effectively used in the past to study both equivariant and
ordinary algebraic K-theory; see, for instance, [Joshua and Krishna 2015; Vezzosi
and Vistoli 2003]. In addition, equivariant K-theory often allows one to understand
various other cohomology theories of moduli stacks and moduli spaces from the
K-theoretic point of view.

However, any serious progress towards the applicability of equivariant K-theory
(of vector bundles) requires analogues for quotient stacks of the fundamental results
of Thomason–Trobaugh. The goal of this paper is to establish these results, so that
a very crucial gap in the study of the K-theory of quotient stacks can be filled.
Special cases of these results were earlier proven in [Krishna 2009; Krishna and
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Østvær 2012; Heller et al. 2015]. Here is a summary of our main results. The
precise statements and the underlying notation can be found in the body of the text.
We fix a field k.

Theorem 1.1. Let X be a nice quotient stack over k with the resolution property.
Let K denote the (nonconnective) K-theory presheaf on the 2-category of nice quo-
tient stacks. Let Z ↪→ X be a closed substack with open complement U . Then the
following hold.

(1) There is a homotopy fibration sequence of S1-spectra

K(X on Z)→ K(X )→ K(U).

(2) The presheaf X 7→ K(X ) satisfies excision.

(3) The presheaf X 7→ K(X ) satisfies Nisnevich descent.

(4) The presheaf X 7→ K(X ) satisfies descent for regular blow-ups.

Theorem 1.2. The nonconnective homotopy K-theory presheaf KH on the 2-cate-
gory of nice quotient stacks with resolution property satisfies the following.

(1) It is invariant under every vector bundle morphism (Thom isomorphism for
stacks).

(2) It satisfies localization, excision, Nisnevich descent, and descent for regular
blow-ups.

(3) If X is the stack quotient of a scheme by a finite nice group, then KH(X ) is
invariant under infinitesimal extensions.

The following result shows that K-theory with coefficients for quotient stacks is
homotopy invariant, i.e., it satisfies the Thom isomorphism. No case of this result
was yet known for stacks which are not schemes.

Theorem 1.3. Let X be a nice quotient stack over k with the resolution property
and let f : E→ X be a vector bundle. Then the following hold.

(1) For any integer n invertible in k, the map f ∗ : K(X ;Z/n)→ K(E;Z/n) is a
homotopy equivalence.

(2) For any integer n nilpotent in k, the map f ∗ : K(X ;Z[1/n])→ K(E;Z[1/n])
is a homotopy equivalence.

In the above results, a nice quotient stack means a stack of the form [X/G],
where G is an affine group scheme over k acting on a k-scheme X such that G is
nice, i.e., it is either linearly reductive over k or char(k) = 0. Group schemes of
multiplicative type (e.g., diagonalizable group schemes) are notable examples of
this in positive characteristic. We refer to Section 2B for more details.
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Applications. Similar to the case of schemes, one expects the above results to be
of central importance in the study of the K-theory of quotient stacks. Already
by now, there have been two immediate major applications: (1) the cdh-descent
and, (2) Weibel’s conjecture for negative KH -theory of stacks. In a sense, these
applications motivated the results of this paper.

Hoyois [2017] has constructed a variant of KH -theory for nice quotient stacks
and has used the main results of this paper to prove the cdh-descent for this variant.
The results of this paper (and their generalizations) have also been used recently
by Hoyois and the first author [Hoyois and Krishna 2017] to prove cdh-descent
for the KH -theory (as defined in Section 5) of nice stacks, and to prove Weibel’s
conjecture for the vanishing of negative KH -theory of such stacks.

Another application of the above results is related to a rigidity type theorem for
the K-theory of semilocal rings. Let A be a normal semilocal ring with isolated
singularity with an action of a finite group G, and let Â denote its completion
along the Jacobson radical. The rigidity question asks if the map K ′

∗
(G, A)→

K ′
∗
(G, Â) is injective. If G is trivial, this was proven for K ′0(G, A) by Kamoi and

Kurano [2002] for certain type of isolated singularities. They apply this result to
characterize certain semilocal rings. The main tool of [Kamoi and Kurano 2002]
is Theorem 1.1 for the ordinary K-theory of singular rings. We hope that the
localization theorem for the K-theory of quotient stacks can now be used to prove
the equivariant version of this rigidity theorem.

2. Perfect complexes on quotient stacks

Throughout this text, we work over a fixed base field k of arbitrary characteristic. In
this section, we fix notations, recall basic definitions and prove some preliminary
results. We conclude the section with the proof of an excision property for the
derived category of perfect complexes on stacks.

2A. Notations and definitions. Let Schk denote the category of separated schemes
of finite type over k. A scheme in this paper will mean an object of Schk . A group
scheme G will mean an affine group scheme over k. Recall that a stack X (of finite
type) over the big fppf site of k is said to be an algebraic stack over k if the diagonal
of X is representable by algebraic spaces and X admits a smooth, representable
and surjective morphism U → X from a scheme U . Throughout this text a “stack”
will always refer to an algebraic stack. We shall say that X is a quotient stack if it
is a stack of the form [X/G] (see, for instance, [Laumon and Moret-Bailly 2000,
§2.4.2]), where G is an affine group scheme acting on a scheme X .

2B. Nice stacks. Given a group scheme G, let ModG(k) denote the category of
k-modules with G-action. Recall that G is said to be linearly reductive if the
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“functor of G-invariants” ( – )G :ModG(k)→Mod(k), given by the submodule of
G-invariant elements, is exact. If char(k)= 0, it is well known that G is linearly
reductive if and only if it is reductive. In general, it follows from [Abramovich et al.
2008, Propositions 2.5, 2.7, Theorem 2.16] that G is linearly reductive if there is
an extension

1→ G1→ G→ G2→ 1, (2.1)

where each of G1 and G2 is either finite over k of degree prime to the exponen-
tial characteristic of k, or is of multiplicative type (étale locally diagonalizable)
over k. One knows that linearly reductive group schemes in positive characteristic
are closed under the operations of taking closed subgroups and base change.

Definition 2.2. We shall say that a group scheme G is nice if either it is linearly
reductive or char(k)= 0. If G is nice and it acts on a scheme X , we shall say that
the resulting quotient stack [X/G] is nice.

2C. Perfect complexes on stacks. Given a stack X , let Sh(X ) denote the abelian
category of sheaves of abelian groups, Mod(X ) the abelian category of sheaves
of OX -modules, and QC(X ) the abelian category of quasicoherent sheaves, each
on the smooth-étale site Lis-Et(X ) of X . Let Chqc(X ) denote the category of
all (possibly unbounded) chain complexes over Mod(X ) whose cohomology lie
in QC(X ), and Ch(QC(X )) the category of all chain complexes over QC(X ). Let
Dqc(X ) and D(QC(X )) denote the corresponding derived categories. Let D(X )
denote the unbounded derived category of Mod(X ). If Z ↪→X is a closed substack
with open complement j : U ↪→ X , we let

Chqc,Z(X )=
{
F ∈ Chqc(X ) | j∗(F)

q. iso.
−−−→ 0

}
.

The derived category of Chqc,Z(X ) will be denoted by Dqc,Z(X ). Recall that a
stack X is said to have the resolution property if every coherent sheaf on X is a
quotient of a vector bundle.

Lemma 2.3. Let X be the stack quotient of a scheme X with an action of a group
scheme G. Then the following hold.

(1) Every quasicoherent sheaf on X is the direct limit of its coherent subsheaves.

(2) X has the resolution property if X has an ample family of G-equivariant line
bundles. In particular, X has the resolution property if X is normal with an
ample family of (nonequivariant) line bundles.

(3) X has the resolution property if X is quasi-affine.

Proof. Part (1) is [Thomason 1987b, Lemma 1.4]. For (2), note that [Spec(k)/G]
has the resolution property [Thomason 1987b, Lemma 2.4]. Therefore, if X has
an ample family of G-equivariant line bundles, it follows from [Thomason 1987b,
Lemma 2.6] that X has the resolution property. If X is normal with an ample family



ALGEBRAIC K-THEORY OF QUOTIENT STACKS 211

of (nonequivariant) line bundles, it follows from [Thomason 1987b, Lemmas 2.10,
2.14] that X has the resolution property. Part (3) is well known and follows, for
example, from [Hall and Rydh 2017, Lemma 7.1]. �

Recall from [SGA 6 1971, Definition I.4.2] that a complex of OX -modules on a
Noetherian scheme is perfect if it is Zariski locally quasi-isomorphic to a bounded
complex of locally free sheaves.

Definition 2.4. Let X be a stack over k. A chain complex P ∈ Chqc(X ) is called
perfect if for any affine scheme U = Spec(A) with a smooth morphism s :U→ X ,
the complex of A-modules s∗(P) ∈ Ch(Mod(A)) is quasi-isomorphic to a bounded
complex of finitely generated projective A-modules.

We shall denote the category of perfect complexes on X by Perf(X ) and its
derived category by Dperf(X ). For a quotient stack with the resolution property,
we can characterize perfect complexes in terms of their pull-backs to the total
space of the quotient map.

Lemma 2.5. Let f : X ′→ X be a faithfully flat map of Noetherian schemes. Let
P be a chain complex of quasicoherent sheaves on X such that f ∗(P) is perfect
on X ′. Then P is a perfect complex on X.

Proof. By [Thomason and Trobaugh 1990, Proposition 2.2.12], a complex of qua-
sicoherent sheaves is perfect if and only if it is cohomologically bounded above,
its cohomology sheaves are coherent, and it has locally finite Tor-amplitude. But
all these properties are known to descend from a faithfully flat cover. �

Proposition 2.6. Let X be the stack quotient of a scheme X with an action of a
group scheme G and let u : X → X be the quotient map. Assume that X has the
resolution property. Let P be a chain complex of quasicoherent OX -modules. Then
the following are equivalent.

(1) P is perfect.

(2) u∗(P) is perfect.

(3) u∗(P) is quasi-isomorphic to a bounded complex of G-equivariant vector bun-
dles in Ch(QCG(X)), where QCG(X) denotes the category of G-equivariant
quasicoherent sheaves on X.

Proof. (1)⇒ (2). We let Q = u∗(P). Consider an open cover of X by affine open
subsets {Spec(Ai )}. Let s :U→[X/G] be an atlas and si :Ui→ Spec(Ai ) its base
change to Spec(Ai ), where Ui are algebraic spaces. Take étale covers ti : Vi →Ui

of Ui , where the Vi are schemes. Let fi : Vi→U and gi : Vi→Spec(Ai ) denote the
obvious composite maps. It follows from (1) that Lg∗i (Q|Spec(Ai ))' L f ∗i (s

∗(P)) is
a perfect complex on Vi . Therefore, by Lemma 2.5, Q|Spec(Ai ) is a perfect complex
in Ch(Mod(Ai )). Equivalently, Q is perfect.
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(2)⇒ (3). We want to apply the inductive construction lemma [Thomason and
Trobaugh 1990, Lemma 1.9.5] with A being QCG(X), D the category of G-equi-
variant vector bundles on X and C the category of complexes in Ch(QCG(X))
satisfying (2). It is enough to verify that the hypothesis [loc. cit., 1.9.5.1] holds.

Suppose C ∈ C such that H i (C)= 0 for i ≥ n, and q :F � H n−1(C) in QCG(X).
By [Thomason and Trobaugh 1990, Proposition 2.2.3], G = H n−1(C) is a coherent
OX -module. Therefore, G is a coherent G-module. By Lemma 2.3(1), we can
write F = lim

−−→
Fα , where Fα are coherent G-submodules of F . Under the forgetful

functor, this gives an epimorphism q : lim
−−→

Fα � G in QC(X), where Fα, G are
coherent modules.

Now, as G is coherent and X is Noetherian, we can find an α such that the
composite map Fα ↪→ F

q
−→ G is surjective. By the resolution property, there exists

E ∈ D such that E � Fα. Hence the composite E→ Fα ↪→ F
q
−→ G is also surjec-

tive. Applying the conclusion of [Thomason and Trobaugh 1990, Lemma 1.9.5] to
C• = P and D• = 0, we get a bounded above complex E of G-vector bundles and
a quasi-isomorphism φ : E

∼
−→ P in Ch(QCG(X)). Therefore, E ∈ C.

Since X is Noetherian, E has globally finite Tor-amplitude. To show that Q is
quasi-isomorphic to a bounded complex over D, it suffices to prove that the good
truncation τ≥a(E) is a bounded complex of G-equivariant vector bundles and the
map E → τ≥a(E) is a quasi-isomorphism. It is enough to prove this claim by
forgetting the G-action. But this follows exactly along the lines of the proof of
[Thomason and Trobaugh 1990, Proposition 2.2.12].

(3) =⇒ (1) is clear. �

2D. Perfect complexes and compact objects of Dqc(X ). Recall that if T is a trian-
gulated category which is closed under small coproducts, then an object E ∈Obj(T )
is called compact if the functor HomT (E, – ) on T commutes with small coprod-
ucts. The full triangulated subcategory of compact objects in T is denoted by T c.
If X is a scheme, one of the main results of [Thomason and Trobaugh 1990] is that
a chain complex P ∈ Chqc(X) is perfect if and only if it is a compact object of
Dqc(X). For quotient stacks, this is a consequence of the results of [Neeman 1996;
Hall and Rydh 2015]:

Proposition 2.7. Let X be a nice quotient stack. Then a chain complex P ∈Chqc(X )
is perfect if and only if it is a compact object of Dqc(X ).
Proof. Suppose P is compact. We need to show that s∗(P) is perfect on U=Spec(A)
for every smooth map s :U→X . Since the compact objects of Dqc(U ) are perfect,
it suffices to show that s∗(P) is compact. We deduce this using [Neeman 1996,
Theorem 5.1].

The push-forward functor Rs∗ : Dqc(U )→ Dqc(X ) is a right adjoint to the pull-
back Ls∗ : Dqc(X )→ Dqc(U ). As Rs∗ and Ls∗ both preserve small coproducts
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(see the proof of Lemma 2.8 below), it follows from [Neeman 1996, Theorem 5.1]
that s∗(P) is compact.

If P is perfect, then it is a compact object of Dqc(X ) by our assumption on X
and [Hall and Rydh 2015, Theorem C]. �

Lemma 2.8. Let X be a nice quotient stack and let Z ⊂ X be a closed sub-
stack. Then the compact objects of Dqc,Z(X ) are exactly those which are perfect
in Chqc(X ).

Proof. It follows from Proposition 2.7 that Dperf
Z (X ) ⊆ Dc

qc,Z(X ). To prove the
other inclusion, let K ∈ Dc

qc,Z(X ). We need to show that K is a perfect complex
in Dqc(X ). Let s : V =Spec(A)→X be any smooth morphism and set T = s−1(Z).
Consider a set of objects {Fα} in Dqc,T (V ). Since X is a quotient stack, there exists
a smooth atlas u : X → X , where X ∈ Schk . This gives a 2-Cartesian square of
stacks

W s′
//

u′
��

X
u
��

V s
// X

(2.9)

The maps u and s are Tor-independent because they are smooth. Since1X is rep-
resentable and V is affine, it follows that s is representable. We conclude from [Hall
and Rydh 2017, Lemma 2.5(3), Corollary 4.13] that u∗Rs∗(Fα)

'
−→ Rs ′

∗
u′∗(Fα). It

follows that Rs∗(Fα) ∈ Dqc,Z(X ). Using adjointness [Krishna 2009, Lemma 3.3],
we get

HomDqc,T (V )
(
s∗(K ),

⊕
αFα

)
' HomDqc,Z (X )

(
K , Rs∗

(⊕
αFα

))
'

1 HomDqc,Z (X )
(
K ,
⊕

αRs∗(Fα)
)

'
2 ⊕

αHomDqc,Z (X )(K , Rs∗(Fα))

'
⊕

αHomDqc,T (V )(s
∗(K ), Fα),

where '1 follows from the fact that Rs∗ preserves small coproducts [Hall and Rydh
2017, Lemmas 2.5(3), 2.6(3)], and '2 follows since K ∈ Dc

qc,Z (X ). This shows
that s∗(K ) ∈ Dc

qc,T (V ). Since V is affine, this implies that s∗(K ) is perfect. �

2E. Excision for derived category. We now prove an excision property for the
derived category of perfect complexes on stacks using the technique of Cartan–
Eilenberg resolutions.

Let A be a Grothendieck category and let D(A) denote the unbounded derived
category of A. Let Ch(A) denote the category of all chain complexes over A. An
object A ∈ Ch(A) is said to be K-injective if for every acyclic complex J ∈ Ch(A),
the complex Hom•(J, A) is acyclic. Since A has enough injectives, a complex over
A has a Cartan–Eilenberg resolution; see [EGA III1 1961, Chapitre 0, (11.4.2)].
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It is known that a Cartan–Eilenberg resolution of an unbounded complex over A
need not, in general, be a K-injective resolution. However, when X is a scheme or
a Noetherian and separated Deligne–Mumford stack over a fixed Noetherian base
scheme, it has been shown that for a complex J of OX -modules with quasicoherent
cohomology, the total complex of a Cartan–Eilenberg resolution does give a K-
injective resolution of J ; see [Keller 1998; Krishna 2009, Proposition 2.2]. Our
first objective is to extend these results to all algebraic stacks. We follow the
techniques of [Krishna 2009] closely. Given a double complex J •,•, let Totˆ(J )
denote the (product) total complex.

Proposition 2.10. Let X be a stack and let K ∈ Chqc(X ). Let E
ε
−→ I •,• be a

Cartan–Eilenberg resolution of E in Ch(X ). Then E
ε
−→ Totˆ(I ) is a K-injective

resolution of E.

Proof. Since Mod(X ) is a Grothendieck category and I •,• is a Cartan–Eilenberg
resolution, Totˆ(I ) is a K-injective complex by [Weibel 1996, A.3]. We only need
to show that E

ε
−→ Totˆ(I ) is a quasi-isomorphism. Let

τ≥p(E) := 0→ E p/B p E→ E p+1
→ · · ·

denote the good truncation of E . Then {τ≥p(E)}p∈Z gives an inverse system of
bounded below complexes with surjective maps such that E

'
−→ lim
←−−p τ

≥p(E). Let
τ≥p(I ) denote the double complex whose i-th row is the good truncation of the
i-th row of I •,• as above.

Let L•,•p = Ker(τ≥p(I )� τ≥p+1(I )). Then I •,• � τ≥p(I )� τ≥p+1(I ) and
I •,•

'
−→ lim
←−−p τ

≥p(I ). Therefore, Totˆ(I )
'
−→ lim
←−−p Totˆ(τ≥p(I )). Moreover, since

τ≥p(I ) is a Cartan–Eilenberg resolution of the bounded below complex τ≥p(E),
it is known that for each p ∈ Z, τ≥p(E)

εp
−→ Totˆ(τ≥p(I )) is a quasi-isomorphism.

Furthermore, the standard properties of Cartan–Eilenberg resolutions imply that
B p E→ B p I •,• is an injective resolution and hence, the inclusions B p I •,i ↪→ I •,i

are all split. In particular, the maps τ≥p(I )� τ≥p+1(I ) are termwise split surjec-
tive. Since τ≥p(I ) are upper half plane complexes with bounded below rows, we
conclude that the sequences

0→ Totˆ(L p)→ Totˆ(τ≥p(I ))→ Totˆ(τ≥p+1(I ))→ 0 (2.11)

are exact and are split in each degree.
Hence, we see that Totˆ(I )

'
−→ lim
←−−p Totˆ(τ≥p(I )), where each Totˆ(τ≥p(I )) is a

bounded below complex of injective OX -modules, and ε is induced by a compatible
system of quasi-isomorphisms εp. Furthermore, Totˆ(τ≥p(I ))→ Totˆ(τ≥p+1(I ))
is degreewise split surjective with kernel Totˆ(L p), which is a bounded below
complex of injective OX -modules. Since Hi (E) ∈ QC(X ) and QC(X )⊆Mod(X )
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satisfies [Laszlo and Olsson 2008, Assumption 2.1.2], the proposition now follows
from [Laszlo and Olsson 2008, Proposition 2.1.4]. �

Corollary 2.12. Let f : Y→X be a morphism of stacks and let E ∈ Dqc(Y). Then
the natural map R f∗(E)→ lim

←−−n R f∗(τ≥n(E)) is an isomorphism in Dqc(X ).

Proof. This is easily checked by replacing E by a Cartan–Eilenberg resolution and
using properties of Cartan–Eilenberg resolutions and good truncation. �

Recall that a morphism f : Y→ X of stacks is representable if for every alge-
braic space T and a morphism T → X , the fiber product T ×X Y is represented by
an algebraic space. If T ×X Y is represented by a scheme whenever T is a scheme,
we say that f : Y→ X is strongly representable.

Proposition 2.13. Let f : Y→ X be a strongly representable étale morphism of
stacks. Let Z i

↪→ X be a closed substack such that f : Z×X Y→ Z induces an iso-
morphism of the associated reduced stacks. Then f ∗ : Dqc,Z(X )→ Dqc,Z×XY(Y)
is an equivalence.

Proof. We set W = Z ×X Y . Let us first assume that E ∈ D+qc,Z(X ). We claim
that the adjunction map E→ R f∗ ◦ f ∗(E) is an isomorphism. The proof of this
claim is identical to that of [Krishna and Østvær 2012, Proposition 3.4] which
considers the case of schemes and Deligne–Mumford stacks. We take a smooth
atlas s :U→X with U ∈ Schk and note that U ×X Y→U is an étale morphism in
Schk because f is strongly representable. As in the proof of [Krishna and Østvær
2012, Proposition 3.4], an application of [Hall and Rydh 2017, Corollary 4.13] now
reduces the problem to the case of schemes. By similar arguments, if F ∈ D−qc,W(Y),
the co-adjunction map f ∗ ◦ R f∗(F)→ F is an isomorphism (see the proof of
[Krishna and Østvær 2012, Theorem 3.5] for details).

To prove the proposition, we need to show that f ∗ is fully faithful and essentially
surjective on objects. To prove the first assertion, let E ∈ Dqc,Z(X ). Since f ∗

is exact, it commutes with good truncation. Applying this to the isomorphism
E
'
−→ lim
←−−n τ

≥n(E), we conclude from Corollary 2.12 and what we showed above
for the bounded below complexes that the adjunction map E→ R f∗ ◦ f ∗(E) is an
isomorphism. If E ′ ∈ Dqc,Z(X ) is now another object, then

HomDqc,Z (X )(E, E ′)' HomDqc,Z (X )(E, R f∗ ◦ f ∗(E ′))

' HomDqc(X )(E, R f∗ ◦ f ∗(E ′))

'
1 HomDqc(Y)( f ∗(E), f ∗(E ′))

' HomDqc,W (Y)( f ∗(E), f ∗(E ′)),

where '1 follows from the adjointness of ( f ∗, R f∗) [Krishna 2009, Lemma 3.3].
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To prove the essential surjectivity of f ∗, let F ∈ Dqc,W(Y). If F ∈ D−qc,W(Y),
then we have shown above that the map f ∗ ◦ R f∗(F)→ F is an isomorphism.
The general case follows from the bounded above case using the isomorphism
lim
−−→n τ

≤n(F)
'
−→ F . �

3. Algebraic K-theory of nice quotient stacks

In this section, we prove Theorem 1.1. Let X be a stack. We begin with the
definition and some preliminary results on the K-theory spectrum for stacks.

3A. K-theory spectrum. The algebraic K-theory spectrum K (X ) of X is defined
to be the K-theory spectrum of the complicial bi-Waldhausen category of perfect
complexes in Chqc(X ) in the sense of [Thomason and Trobaugh 1990, §1.5.2].
Here, the complicial bi-Waldhausen category structure is given with respect to the
degreewise split monomorphisms as cofibrations and quasi-isomorphisms as weak
equivalences. The homotopy groups of the spectrum K (X ) are defined to be the
K-groups of the stack X and are denoted by Kn(X ). Note that these groups are 0 if
n < 0; see [Thomason and Trobaugh 1990, §1.5.3]. We shall extend this definition
to negative integers later in this section. For a closed substack Z of X , K (X on Z)
is the K-theory spectrum of the complicial bi-Waldhausen category of those perfect
complexes on X which are acyclic on X \Z .

Lemma 3.1. For a stack X with affine diagonal, the inclusion of the complicial
bi-Waldhausen category of perfect complexes of quasicoherent OX -modules into
the category of perfect complexes in Chqc(X ) induces a homotopy equivalence of
their K-theory spectra.

Similarly, for a closed substack Z ↪→ X , K (X on Z) is homotopy equivalent
to the K-theory spectra of the complicial bi-Waldhausen category of perfect com-
plexes of quasicoherent OX -modules which are acyclic on X \Z .

Proof. For a stack X with affine diagonal, by [Lurie 2005, Theorem 3.8] the inclu-
sion functors 8 : Ch(QC(X ))→ Chqc(X ) and 8Z : ChZ(QC(X ))→ Chqc,Z(X )
induce equivalences of their left bounded derived categories. Therefore, they re-
strict to the equivalences of the derived homotopy categories of the bi-Waldhausen
categories of perfect complexes of quasicoherent OX -modules and that of perfect
complexes in Chqc(X ), both with support in Z in the case of 8Z . By [Thomason
and Trobaugh 1990, Theorem 1.9.8], these inclusions therefore induce homotopy
equivalence of their K-theory spectra. �

Lemma 3.2. Let X be a quotient stack with the resolution property. Consider the
following list of complicial bi-Waldhausen categories:

(1) bounded complexes of vector bundles on X ,
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(2) perfect complexes in Ch(QC(X )),

(3) perfect complexes in Chqc(X ).

Then the obvious inclusion functors induce homotopy equivalences of all their K-
theory spectra. Furthermore, K (X ) is homotopy equivalent to the algebraic K-
theory spectrum of the exact category of vector bundles on X .

Proof. The inclusion of (1) in (2) induces a homotopy equivalence of K-theory
spectra by Proposition 2.6 and [Thomason and Trobaugh 1990, Theorem 1.9.8].
The inclusion of (2) in (3) induces homotopy equivalence of K-theory spectra by
Lemma 3.1. The last assertion follows from [Thomason and Trobaugh 1990, The-
orem 1.11.7]. �

3B. The localization and excision for K-theory. We now establish the localiza-
tion sequence and excision for the K-theory of nice quotient stacks. We begin with
the following localization at the level of Dqc(X ).

Proposition 3.3. Let X be a nice quotient stack and let Z ↪→ X be a closed sub-
stack with open complement j : U ↪→ X . Assume that X has the resolution property.
Then the following hold.

(1) Dqc(X ), Dqc,Z(X ) and Dqc(U) are compactly generated.

(2) The functor
j∗ :

Dqc(X )
Dqc,Z(X )

→ Dqc(U)

is an equivalence of triangulated categories.

Proof. The stack U has the resolution property by our assumption and [Gross
2017, Theorem A]. It follows from Proposition 2.7 that every perfect complex in
Dqc(X ) is compact, i.e., X is concentrated. Since X and U have affine diagonal
with resolution property, it follows from [Hall and Rydh 2017, Proposition 8.4]
that Dqc(X ), Dqc,Z(X ) and Dqc(U) are compactly generated.

The second statement is an easy consequence of adjointness of the functors
( j∗, R j∗) and works exactly like the case of schemes. One checks easily that j∗

is fully faithful and j∗ ◦ R j∗ is the identity on Dqc(U). �

Theorem 3.4 (localization sequence). Let X be a nice quotient stack and let Z ↪→ X
be a closed substack with open complement j : U ↪→ X . Assume that X has the
resolution property. Then the morphism of spectra K (X on Z)→ K (X )→ K (U)
induce a long exact sequence

· · · → Ki (X on Z)→ Ki (X )→ Ki (U)→ Ki−1(X on Z)
→ · · · → K0(X on Z)→ K0(X )→ K0(U).
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Proof. It follows from Proposition 2.7, Lemma 2.8 and Proposition 3.3 that there
is a commutative diagram of triangulated categories

Dperf
Z (X )
� _

��

// Dperf(X )� _

��

// Dperf(U)� _

��

Dqc,Z(X ) // Dqc(X ) // Dqc(U)

(3.5)

where the bottom row is a localization sequence of triangulated categories and
the top row is the sequence of full subcategories of compact objects of the corre-
sponding categories in the bottom row. Moreover, each triangulated category in
the bottom row is generated by its compact objects in the top row. We can thus
apply [Neeman 1992, Theorem 2.1] to conclude that the functor

Dperf(X )

Dperf
Z (X )

→ Dperf(U) (3.6)

is fully faithful, and an equivalence up to direct factors.
Let 6 be the category whose objects are perfect complexes in Chqc(X ), and

where a map x→ y is a weak equivalence if the restriction x |U → y|U is a quasi-
isomorphism in Chqc(U). The cofibrations in 6 are degreewise split monomor-
phisms. Then it is easy to see that 6 is a complicial bi-Waldhausen model for
the quotient category Dperf(X )/Dperf

Z (X ). Thus, by the Waldhausen localization
theorem [Thomason and Trobaugh 1990, Theorems 1.8.2, 1.9.8], there is a homo-
topy fibration of spectra K (X on Z)→ K (X )→ K (6). It follows from (3.6) and
[Neeman 1992, Lemma 0.6] that K (6)→ K (U) is a covering map of spectra. In
particular, Ki (6)

'
−→ Ki (U) for i ≥ 1 and K0(6) ↪→ K0(U). �

Theorem 3.7 (excision). Let X be a nice quotient stack and let Z ↪→ X be a
closed substack. Let f : Y → X be a strongly representable étale morphism
of stacks such that f : Z ×X Y → Z induces an isomorphism of the associated
reduced stacks. Assume that X ,Y have the resolution property. Then f ∗ induces a
homotopy equivalence

f ∗ : K (X on Z) '−→ K (Y on Z×XY).

Proof. We observe that since f is strongly representable, Y is also a nice quotient
stack. The theorem now follows directly from Lemma 2.8 and Proposition 2.13. �

3C. Projective bundle formula. In order to define the nonconnective K-theory of
stacks, we need the projective bundle formula for their K-theory. This formula
for the equivariant K-theory was proven in [Thomason 1993a, Theorem 3.1]. We
adapt the argument of Thomason to extend it to the K-theory of all stacks. Though
this formula is used in this text only for quotient stacks, its most general form plays
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a crucial role in [Hoyois and Krishna 2017]. For details on the projective bundles
over algebraic stacks, see [Laumon and Moret-Bailly 2000, Chapter 14].

Theorem 3.8. Let X be a stack, E a vector bundle of rank d and p : PE→ X the
projective bundle associated to it. Let OPE(1) be the fundamental invertible sheaf
on PE and OPE(i) its i -th power in the group of invertible sheaves over X .

Then the morphism of K-theory spectra induced by the exact functor that sends
a sequence of d perfect complexes in Chqc(X ), (E0, . . . , Ed−1) to the perfect com-
plex

p∗E0⊕OPE(−1)⊗ p∗E1⊕ · · ·⊕OPE(1− d)⊗ p∗Ed−1

induces a homotopy equivalence

8 :
∏
d

K (X ) ∼−→ K (PE).

Similarly, for each closed substack Z , the exact functor restricts to the subcategory
of complexes acyclic on X \Z to give a homotopy equivalence

8 :
∏
d

K (X on Z) ∼−→ K (PE on P(E|Z)).

We need the following steps to prove this theorem.

Lemma 3.9. Under the hypothesis of Theorem 3.8, let F be a perfect complex in
Chqc(X ) or in general a complex with quasicoherent and bounded cohomology.
Then the canonical adjunction morphism (3.10) is a quasi-isomorphism:

η : F
∼
−→ Rp∗ p∗F = Rp∗(OPE ⊗ p∗F). (3.10)

In addition, for j = 1, 2, . . . , d − 1, we have as a result of cancellation

Rp∗(OPE(− j)⊗ p∗F)' 0. (3.11)

Proof. The assertion of the lemma is fppf local on X . Let u :U → X be a smooth
atlas for X , where U is a scheme. Since p : PE→ X is strongly representable, we
can apply [Hall and Rydh 2017, Lemma 2.5(3), Corollary 4.13] to reduce to the
case when X ∈ Schk . In this latter case, the lemma is proven in [Thomason 1993a,
Lemma 3]. �

Lemma 3.12. Under the hypothesis of Theorem 3.8, if E is a perfect complex in
Chqc(PE), then the following hold.

(1) Rp∗(E) is a perfect complex in Chqc(X ).

(2) If Rp∗(E ⊗OPE(i)) is acyclic on X for i = 0, 1, . . . , d − 1, then E is acyclic
on PE .
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Proof. Since the assertion is fppf local on X and the perfectness is checked by
base change of X by smooth morphisms from affine schemes, we can use [Hall
and Rydh 2017, Lemma 2.5(3), Corollary 4.13] again to replace X by a scheme.
Part (1) then follows from [Thomason 1993a, Lemma 4] and (2) follows from
[Thomason 1993a, Lemma 5]. �

Proof of Theorem 3.8. The proof follows exactly along the lines of the proof of
[Thomason 1993a, Theorem 1], using Lemmas 3.9 and 3.12, which generalize
[Thomason 1993a, Lemmas 3, 4, 5] to stacks. �

3D. K-theory of regular blow-ups of stacks. A closed immersion Y → X of
stacks over k is defined to be a regular immersion of codimension d if there
exists a smooth atlas U → X of X such that Y ×X U → U is a regular immer-
sion of schemes of codimension d. This is well defined as U is Noetherian and
regular immersions behave well under flat base change and satisfy fpqc descent.
For a closed immersion i : Y → X , the blow-up of X along Y is defined to be
p : X̃ = Proj

(⊕
n≥0 I

n
Y
)
→ X . See [Laumon and Moret-Bailly 2000, Chapter 14]

for relative proj construction on stacks. Note that in the case of a regular immersion,
X̃ ×X Y→ Y is a projective bundle over Y , similar to schemes.

Theorem 3.13. Let i : Y→ X be a regular immersion of codimension d of stacks.
Let p :X ′→X be the blow-up of X along Y and j :Y ′=Y×X X ′→X ′, q :Y ′→Y
be the maps obtained by base change. Then the square

K (X ) i∗
//

p∗
��

K (Y)

q∗
��

K (X ′)
j∗
// K (Y ′)

(3.14)

is homotopy Cartesian.

Proof. This is proved in [Cortiñas et al. 2008, Proposition 1.5] in the case of
schemes and an identical proof works for the case of stacks, in the presence of the
results of Section 3C and Lemma 3.16. We give some details on the strategy of the
proof. For r =0, . . . , d−1, let Dperf

r (X ′)⊂ Dperf(X ′) be the full triangulated subcat-
egory generated by Lp∗F and R j∗Lq∗G⊗OX ′(−l) for F ∈ Dperf(X ), G ∈ Dperf(Y)
and l = 1, . . . , r . Let Dperf

r (Y ′) ⊂ Dperf(Y ′) be the full triangulated subcategory
generated by Lq∗G⊗OY ′(−l) for G ∈ Dperf(Y) and l = 0, . . . , r . By Lemmas 3.9
and 3.16(1), Lp∗ : Dperf(X ) → Dperf

0 (X ′) and Lq∗ : Dperf(Y) → Dperf
0 (Y ′) are

equivalences. Exactly as in [Cortiñas et al. 2008, Lemma 1.2], one shows that
Dperf

d−1(X
′)= Dperf(X ′) and Dperf

d−1(Y
′)= Dperf(Y ′) using Lemmas 3.12 and 3.16.

To prove the theorem, it is sufficient to show that L j∗ is compatible with the
filtrations on Dperf(X ′) and Dperf(Y ′):
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Dperf(X )

Li∗

��

Lp∗

∼
// Dperf

0 (X ′)

L j∗

��

� � // Dperf
1 (X ′)

L j∗

��

� � // · · ·
� � // Dperf

d−1(X
′)= Dperf(X ′)

L j∗

��

Dperf(Y)
Lq∗

∼
// Dperf

0 (Y ′) �
�
// Dperf

1 (Y ′) �
�
// · · ·
� � // Dperf

d−1(Y
′)= Dperf(Y ′)

(3.15)

and that for r = 0, . . . , d − 2, L j∗ induces equivalences on quotient triangulated
categories:

L j∗ : Dperf
r+1(X

′)/Dperf
r (X ′) ∼−→ Dperf

r+1(Y
′)/Dperf

r (Y ′).

Given this, it follows from [Thomason and Trobaugh 1990, Theorems 1.8.2, 1.9.8]
that every square in (3.15) induces a homotopy Cartesian square of K-theory spectra.

To prove the compatibility of L j∗, it is enough to check on generators and in
this case, it can be reduced to the case of schemes using [Hall and Rydh 2017,
Corollary 4.13]. To prove that L j∗ induces equivalence on quotients, we first note
that the composition

L j∗ ◦ [OX ′(−r − 1)⊗ R j∗Lq∗] : Dperf(Y)→ Dperf
r+1(X

′)/Dperf
r (X ′)

→ Dperf
r+1(Y

′)/Dperf
r (Y ′)

agrees with OY ′(−r − 1)⊗ Lq∗ : Dperf(Y)→ Dperf
r+1(Y

′)/Dperf
r (Y ′), up to a natural

equivalence. This follows as in the proof of [Cortiñas et al. 2008, Lemma 1.4] using
[Hall and Rydh 2017, Corollary 4.13]. Therefore, it is enough to show that the
functors OX ′(−r −1)⊗ R j∗Lq∗ and OY ′(−r −1)⊗ Lq∗ are equivalences. But the
proof of this is exactly the same as the one in [Cortiñas et al. 2008, Proposition 1.5]
for schemes. �

Lemma 3.16. Under the hypotheses of Theorem 3.13, the following hold.

(1) Let F be a perfect complex on X . Then the canonical adjunction morphism
(3.17) is a quasi-isomorphism:

η : F
∼
−→ Rp∗Lp∗F = Rp∗(OX ′ ⊗ Lp∗F). (3.17)

(2) Let r be an integer such that 1≤ r ≤ d−1. Let A′r denote the full triangulated
subcategory of Dperf(X ′) of those complexes E for which Rp∗(E⊗OX ′(i))' 0
for 0 ≤ i < r . Then there exists a natural transformation ∂ of functors from
A′r to Dperf(X ′):

∂ : (R j∗Lq∗Rq∗(E ⊗OX ′ OY ′(r − 1))⊗OX ′(−r))[−1] → E . (3.18)

Moreover, Rp∗(∂ ⊗OX ′(i)) is a quasi-isomorphism for 0≤ i < r + 1.

(3) Suppose E ∈ Dperf(X ′) is such that Rp∗(E ⊗ OX ′(i)) is acyclic on X for
i = 0, . . . , d − 1. Then E is acyclic on X ′.
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Proof. Statements (1) and (3) are proved in [Thomason 1993b] for schemes. The
general case can be deduced from this exactly as in Lemmas 3.9 and 3.12. For (2),
the existence of ∂ follows from [Thomason 1993b, Lemma 2.4(a)] as the construc-
tion of ∂ given there is natural in X for schemes. To check that Rp∗(∂⊗OX ′(i)) is
a quasi-isomorphism for 0≤ i < r + 1, we may again assume that X is a scheme,
and this case follows from [loc. cit., Lemma 2.4(a)]. �

3E. Negative K-theory of stacks. Let U ↪→ X be an open immersion of stacks
over k. As K0(X )→ K0(U) is not always surjective in the localization theorem, we
want to introduce a nonconnective spectrum K(–) with K (–) as its (−1)-connective
cover, so that K(X on Z)→ K(X )→ K(U) is a homotopy fiber sequence for any
closed substack Z of X with complement U . We define K only in the absolute case
below. The construction of K(X on Z) follows similarly, as shown in [Thomason
and Trobaugh 1990]. We shall use the following version of the Bass fundamental
theorem for stacks to define K(X ). The homotopy groups of K(X ) will be denoted
by Ki (X ).

Theorem 3.19 (Bass fundamental theorem). Let X be a nice quotient stack with
the resolution property and let X [T ] = X ×Spec(k[T ]). Then the following hold.

(1) For n ≥ 1, there is an exact sequence

0→ Kn(X )
(p∗1 ,−p∗2)
−−−−−→ Kn(X [T ])⊕ Kn(X [T−1

])

( j∗1 , j∗2 )
−−−−→ Kn(X [T, T−1

])
∂T
−→ Kn−1(X )→ 0.

Here p∗1, p∗2 are induced by the projections X [T ] → X , etc., and j∗1 , j∗2 are
induced by the open immersions X [T±1

] = X [T, T−1
] → X [T ], etc. The

sum of these exact sequences for n = 1, 2, . . . is an exact sequence of graded
K∗(X )-modules.

(2) For n ≥ 0, ∂T : Kn+1(X [T±1
])→ Kn(X ) is naturally split by a map hT of

K∗(X )-modules. Indeed, the cup product with T ∈ K1(k[T±1
]) splits ∂T up

to a natural automorphism of Kn(X ).

(3) There is an exact sequence for n = 0:

0→ Kn(X )
(p∗1 ,−p∗2)
−−−−−→ Kn(X [T ])⊕ Kn(X [T−1

])
( j∗1 , j∗2 )
−−−−→ Kn(X [T±1

]).

Proof. It follows from [Thomason 1987b, Lemma 2.6] that P1
X and X [T ] are nice

quotient stacks with the resolution property. It follows from Theorem 3.8 that
there is an isomorphism K∗(P1

X ) ' K∗(X )⊕ K∗(X ), where the two summands
are K∗(X )[O] and K∗(X )[O(−1)] with respect to the external product K (X )∧
K (P1

k) → K (P1
X ) and with [O], [O(−1)] ∈ K0(P

1
k). As for schemes, (1) now
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follows directly from Theorems 3.4 and 3.7; see also [Thomason and Trobaugh
1990, Theorem 6.1].

For (2), it suffices to show that the composite map

∂T (T ∪ p∗( – )) : Kn(X )→ Kn+1(X [T±1
])→ Kn(X )

is an automorphism of Kn(X ) for n ≥ 0. By naturality and the fact that ∂T is a map
of K∗(X )-modules, this reduces to showing that ∂T : K1(k[T±1

])→ K0(k) sends
T to ±1. But this is well known and (3) follows from (2) using the analogue of
[Thomason and Trobaugh 1990, (6.1.5)] for stacks. �

Theorem 3.20. For a nice quotient stack X with the resolution property, there is
a spectrum K(X ) together with a natural map of spectra K (X )→ K(X ) which
induces isomorphism Ki (X )

'
−→ Ki (X ) for i ≥ 0.

Let Y be a nice quotient stack with the resolution property and let f : Y→ X
be a strongly representable étale map. Let Z ↪→ X be a closed substack such
that Z×XY → Z induces an isomorphism of the associated reduced stacks. Let
π : P(E)→ X be the projective bundle associated to a vector bundle E on X of
rank r. Then the following hold.

(1) There is a homotopy fiber sequence of spectra

K(X on Z)→ K(X )→ K(X \Z).

(2) The map f ∗ : K(X on Z)→ K(Y on Z×XY) is a homotopy equivalence.

(3) The map
∏r−1

0 K(X )→ K(P(E)), (a0, . . . , ar−1) 7→
∑

i O[−i] ⊗ π∗(ai ), is
a homotopy equivalence.

Proof. The construction of the spectrum K(X ) follows directly from Theorem 3.19
by the formalism given in (6.2)–(6.4) of [Thomason and Trobaugh 1990]. Like
for schemes, the proof of (1), (2) and (3) is a standard deduction from Theo-
rems 3.4, 3.7 and 3.8, using the inductive construction of K(X ). �

3F. Schlichting’s negative K-theory. Schlichting [2006] defined negative K-theory
of complicial bi-Waldhausen categories. Let X be a nice quotient stack. Schlicht-
ing’s negative K-theory spectrum K Scl(X ) is the K-theory spectrum of the Frobe-
nius pair associated to the category Chqc(X ). It follows from [Schlichting 2006,
Theorem 8] that K Scl

i (X ) = Ki (X ) for i ≥ 0. The following result shows that
K Scl

i (X ) agrees with Ki (X ) for i < 0.

Theorem 3.21. Let X be a nice quotient stack with the resolution property. Then
there are natural isomorphisms between K Scl

i (X ) and Ki (X ) for i ≤ 0.

Proof. Let p :P1
X→X be the projection map. Then we can prove as in Theorem 3.8

that the functors p∗ :Dperf(X )→Dperf(P1
X ) and O(−1)⊗p∗ :Dperf(X )→Dperf(P1

X ),
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which are induced by maps of their Frobenius models, induce isomorphisms

(p∗,O(−1)⊗ p∗) : K Scl
i (X )⊕ K Scl

i (X ) '−→ K Scl
i (P1

X )

for i ≤ 0. It follows from the proof of Bass’ fundamental theorem in [Thomason
and Trobaugh 1990, Theorem 6.6(b)] that there is an exact sequence of abelian
groups

0→K Scl
i (X )→K Scl

i (X [T ])⊕K Scl
i (X [T−1

])→K Scl
i (X [T, T−1

])→K Scl
i−1(X )→0

for i ≤ 0. As K Scl
0 (Y)=K0(Y) for any stack Y , the negative K-groups coincide. �

4. Nisnevich descent for K-theory of quotient stacks

In this section, we prove Nisnevich descent in a 2-category of stacks whose objects
are all quotients of schemes by action of a fixed group scheme. So let G be a
group scheme over k. Let SchG

k denote the category of separated schemes of finite
type over k with G-action. The equivariant Nisnevich topology on SchG

k and the
homotopy theory of simplicial sheaves in this topology was defined and studied in
detail in [Heller et al. 2015]. As an application of Theorem 3.20, we shall show in
this section that the K-theory of quotient stacks for G-actions satisfies descent in
the equivariant Nisnevich topology on SchG

k .

Definition 4.1 [Heller et al. 2015, Definition 2.1]. A distinguished equivariant
Nisnevich square is a Cartesian square

B

��

// Y

p
��

A �
� j

// X

(4.2)

in SchG
k such that

(1) j is an open immersion,

(2) p is étale, and

(3) the induced map (Y \ B)red→ (X \ A)red of schemes (without reference to the
G-action) is an isomorphism.

Remark 4.3. We remark here that given a Cartesian square of the type (4.2) in SchG
k ,

the closed subscheme (X \ A)red (or (Y \ B)red) may not in general be G-invariant,
unless G is smooth. However, it follows from [Thomason 1987a, Lemma 2.5] that
we can always find a G-invariant closed subscheme Z ⊂ X such that Zred = X \ A.
This closed subscheme can be assumed to be reduced if G is smooth. Using the
elementary fact that a morphism of schemes is étale if and only if the induced
map of the associated reduced schemes is étale, it follows immediately that the
condition (3) in Definition 4.1 is equivalent to
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(3′) there is a G-invariant closed subscheme Z ⊂ X with support X \ A such that
the map Z ×X Y → Z in SchG

k is an isomorphism.

The collection of distinguished equivariant Nisnevich squares forms a cd-structure
in the sense of [Voevodsky 2010]. The associated Grothendieck topology is called
the equivariant Nisnevich topology. It is also called the eN-topology. It follows
from [Heller et al. 2015, Theorem 2.3] that the equivariant Nisnevich cd-structure
on SchG

k is complete, regular, and bounded. We refer to [Voevodsky 2010, §2] for
the definition of a complete, regular, and bounded cd-structure.

Let SchG
k/Nis denote the category of G-schemes X , such that X admits a family of

G-equivariant ample line bundles, equipped with the equivariant Nisnevich topol-
ogy. Note that all objects of SchG

k/Nis have the resolution property by Lemma 2.3.
It follows from [Heller et al. 2015, Corollary 2.11] that for a sheaf F of abelian
groups on SchG

k/Nis, we have H i
G/Nis(X,F)= 0 for i > dim(X).

Definition 4.4. An equivariant morphism Y → X in SchG
k splits if there is a filtra-

tion of X by G-invariant closed subschemes

∅= Xn+1 ( Xn ( · · ·( X0 = X, (4.5)

such that for each j , the map (X j \ X j+1)×X Y → X j \ X j+1 has a G-equivariant
section. If f is étale and surjective, the morphism is called an equivariant split
étale cover of X.

4A. Equivariant Nisnevich covers. In [Heller et al. 2015, Proposition 2.15], it
is shown that an equivariant étale morphism Y → X in SchG

k is an equivariant
Nisnevich cover if and only if it splits. Further, when G is a finite constant group
scheme, it is shown that an equivariant étale map f : Y → X in SchG

k is an equivari-
ant Nisnevich cover if and only if for any point x ∈ X , there is a point y ∈ Y such
that f (y)= x and f induces isomorphisms k(x)' k(y) and Sy ' Sx . Here, for a
point x ∈ X , the set-theoretic stabilizer Sx ⊆G is defined by Sx = {g ∈G | g.x = x}
[Heller et al. 2015, Proposition 2.17].

Let G0 denote the connected component of the identity element in G. Suppose
that G is of the form G=

∐r
i=0 gi G0, where {e= g0, g1, . . . , gr } are points in G(k)

which represent the left cosets of G0. In the next proposition, we give an explicit
description of the equivariant Nisnevich covers of reduced schemes X ∈ SchG

k . For
x ∈ X , let S̃x := {gi | 0≤ i ≤ r, gi .x = x}.

Proposition 4.6. Let G be a smooth affine group scheme over k as above. A mor-
phism f : Y → X in SchG

k is an equivariant split étale cover of a reduced scheme
X if and only if for any point x ∈ X , there is a point y ∈ Y such that f (y)= x and
f induces isomorphisms k(x)' k(y) and S̃y ' S̃x .
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Proof. It is clear that a split étale G-equivariant family of morphisms satisfies the
given conditions. The heart of the proof is to show the converse.

Suppose Y f
−→ X is such that for any point x ∈ X , there is a point y ∈ Y such

that f (y) = x and f induces isomorphisms k(x) ' k(y) and S̃y ' S̃x . Let W be
the regular locus of X . Then W is a G-invariant dense open subscheme of X . Set
U = Y ×X W. Notice that W is a disjoint union of its irreducible components, and
each fU being étale, it follows that U is regular and hence a disjoint union of its
irreducible components.

Let x ∈ W be a generic point of W. Then the closure Wx = {x} in W is an
irreducible component of W. By our assumption, there is a point y ∈U such that

f (y)= x, kx
'
−→ ky, and S̃y

'
−→ S̃x . (4.7)

Then the closure Uy = {y} in U is an irreducible component of U . Since Uy→Wx

is étale and generically an isomorphism, it must be an open immersion. Thus f
maps Uy isomorphically onto an open subset of Wx . We replace Wx by this open
subset f (Uy) and call it our new Wx .

Let GUy be the image of the action morphism µ :G×Uy→U . Notice that µ is
a smooth map and hence open. This in particular implies that GUy is a G-invariant
open subscheme of U as Uy is one of the disjoint irreducible components of U and
hence open. By the same reason, GWx is a G-invariant open subscheme of W .

Since the identity component G0 is connected, it keeps Uy invariant. Therefore,
y ∈ U is fixed by G0 and hence G acts on this point via its quotient G = G/G0.
Since each g j G0 takes Uy onto an irreducible component of U and since U has only
finitely many irreducible components which are all disjoint, we see that GUy =

U0qU1q · · · qUn is a disjoint union of some irreducible components of U with
U0 =Uy . In particular, for each U j , we have U j = g ji G

0Uy = g ji Uy for some ji .
Since f maps Uy isomorphically onto Wx , we conclude from the above that

f maps each Uj isomorphically onto one and only one Wj such that GWx =

f (GUy)=W0qW1q· · ·qWm (with m ≤ n) is a disjoint union of open subsets of
some irreducible components of W with W0 =Wx . The morphism f will map the
open subscheme GUy isomorphically onto the open subscheme GWx if and only
if no two components of GUy are mapped onto one component of GWx . This is
ensured by using the condition (4.7).

If two distinct components of GUy are mapped onto one component of GWx ,
we can (using the equivariance of f ) apply automorphisms by the g ji and assume
that one of these components is Uy . In particular, we can find j ≥ 1 such that

Wx = f (Uy)= f (Uj )= f (g ji Uy)= g ji f (Uy)= g ji Wx . (4.8)

But this implies that g ji ∈ S̃x and g ji /∈ S̃y . This violates the condition in (4.7)
that S̃y and S̃x are isomorphic. We have thus shown that the morphism f has a
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G-equivariant splitting over a nonempty G-invariant open subset GWx . Letting
X1 be the complement of this open subset in X with reduced scheme structure, we
see that X1 is a proper G-invariant closed subscheme of X , and by restricting our
cover to X1, we get a cover for X1 satisfying the given conditions. The proof of
the proposition is now completed by the Noetherian induction. �

4B. Equivariant Nisnevich descent. It is shown in [Heller et al. 2015, §3] that
the category of presheaves of S1-spectra on SchG

k/Nis (denoted by Pres(SchG
k/Nis))

is equipped with the global and local injective model structures. A morphism
f : E→ E ′ of presheaves of spectra is called a global weak equivalence if the map
E(X)→ E ′(X) is a weak equivalence of S1-spectra for every object X ∈ SchG

k/Nis.
It is a global injective cofibration if E(X)→ E ′(X) is a cofibration of S1-spectra
for every object X ∈ SchG

k/Nis. The map f is called a local weak equivalence
if it induces an isomorphism on the sheaves of stable homotopy groups of the
presheaves of spectra in the eN-topology. A local (injective) cofibration is the
same as a global injective cofibration.

A presheaf of spectra E on SchG
k/Nis is said to satisfy the equivariant Nisnevich

descent (eN-descent) if the fibrant replacement map E→ E ′ in the local injective
model structure of Pres(SchG

k/Nis) is a global weak equivalence. Let KG denote
the presheaf of spectra on SchG

k which associates the spectrum K([X/G]) to any
X ∈ SchG

k . As a consequence of Theorem 3.20, we obtain the following.

Theorem 4.9. Let G be a nice group scheme over k. Then the presheaf of spectra
KG on SchG

k/Nis satisfies the equivariant Nisnevich descent.

Proof. Since the eN-topology is regular, complete and bounded by [Heller et al.
2015, Theorem 2.3], it suffices to show using [Voevodsky 2010, Proposition 3.8]
that KG takes a square of the type (4.2) to a homotopy Cartesian square of spectra.
In other words, we need to show that the square

K([X/G])
j∗
//

p∗

��

K([A/G])

p′∗

��

K([Y/G])
j ′∗
// K([B/G])

(4.10)

is homotopy Cartesian. But this is an immediate consequence of Theorem 3.20. �

Corollary 4.11. Let G be a nice group scheme over k and let X ∈ SchG
k/Nis. Then

there is a strongly convergent spectral sequence

E p,q
2 = H p

eN (X,K
G
q )⇒ Kq−p([X/G]).

Proof. This is immediate from Theorem 4.9 and [Heller et al. 2015, Theorem 2.3,
Corollary 2.11]. �
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5. Homotopy invariance of K-theory with coefficients for quotient stacks

It is known that with finite coefficients, the ordinary algebraic K-theory of schemes
satisfies the homotopy invariance property (see [Weibel 1989, Theorem 1.2, Propo-
sition 1.6] for affine schemes and [Thomason and Trobaugh 1990, Theorem 9.5]
for the general case). This is a hard result which was achieved by first defining a
homotopy invariant version of algebraic K-theory [Weibel 1989] and then showing
that with finite coefficients, this homotopy (invariant) K-theory coincides with the
algebraic K-theory.

However, the proof of the agreement between algebraic K-theory and homotopy
K-theory with finite coefficients requires the knowledge of a spectral sequence
relating NK -theory and homotopy K-theory; see [Weibel 1989, Remark 1.3.1].
Recall here that NK (X) denotes the homotopy fiber of the pull-back map ι∗, where
ι : X ↪→ A1

k × X denotes the 0-section embedding into the trivial line bundle over
a scheme X . The existence of homotopy K-theory for quotient stacks is not yet
known and one does not know if the above spectral sequence would exist for the
homotopy K-theory of quotient stacks. In this section, we adopt a different strategy
to extend the results of Weibel and Thomason–Trobaugh to the K-theory of nice
quotient stacks (see Theorem 5.5).

5A. Homotopy K-theory of stacks. For n ∈ N, let

1n = Spec
(
k[t0, . . . , tn]/

(∑
i

ti − 1
))
.

Recall that 1• = {1n}n≥0 forms a simplicial scheme whose face and degeneracy
maps are given by the formulas

∂r (t j )=


t j if j < r ,
0 if j = r ,
t j−1 if j > r ,

δr (t j )=


t j if j < r ,
t j + t j+1 if j = r ,
t j+1 if j > r .

Definition 5.1. For a nice quotient stack X with the resolution property, the homo-
topy K-theory is defined to be the spectrum

KH(X )= hocolimn K(X ×1n).

It is clear from the definition that KH(X ) is contravariant with respect to mor-
phisms of stacks. Furthermore, there is a natural map of spectra K(X )→ KH(X ).
It is well known that K(X ) is not a homotopy invariant functor. Our first result on
KH(X ) is the following.

Theorem 5.2. Let X be a nice quotient stack with the resolution property, and
let f : E → X be a vector bundle morphism. Then the associated pull-back map
f ∗ : KH(X )→ KH(E) is a homotopy equivalence.
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Proof. We first show that the map KH(X )→ KH(X ×1n) is a homotopy equiva-
lence for every n ≥ 0. But this is essentially a direct consequence of the definition
of KH -theory. By identifying 1n with An

k and using induction, one needs to show
that the map KH(X )→ KH(X [T ]) is a homotopy equivalence. Proof of this is
identical to the case of the KH -theory of schemes [Weibel 1989, Theorem 1.2].

To prove the general case, we write X = [X/G], where G is a group scheme
over k acting on a k-scheme X . We let E = u∗(E), where u : X→X is the quotient
map. Then E is a G-equivariant vector bundle on X such that [E/G] ' E .

We consider the standard fiberwise contraction map H :A1
k× E→ E . Explicitly,

for an open affine U =Spec(A)⊆ X over which f is trivial (without G-action), H |U
is induced by the k-algebra homomorphism A[X1, . . . , Xn] → A[X1, . . . , Xn, T ]
given by X j 7→ TX j . It is then clear that this defines a unique map H as above
which is G-equivariant for the trivial G-action on A1

k . We have the commutative
diagram

{1}× E
id

||

i1
��

h1

""

E A1
k × E

p
oo

H
// E

{0}× E
id

bb

i0

OO

h0

<<
(5.3)

where h j = H ◦ i j for j = 0, 1 and p is the projection map.
Let ι : X ↪→ E denote the 0-section embedding, so that f ◦ ι= idX . So we only

need to show that f ∗ ◦ ι∗ is the identity on KH([E/G]). Since h0= ι◦ f , it suffices
to show that h∗0 is the identity.

It follows from the weaker version of homotopy invariance shown above (applied
to E) that p∗ is an isomorphism on the KH -theory of the stack quotients. In
particular, i∗0 = (p

∗)−1
= i∗1 . Since h1 = idE , we get i∗1 ◦ H∗ = id, which in turn

yields H∗ = (i∗1 )
−1
= p∗ and hence h∗0 = i∗0 ◦ H∗ = i∗0 ◦ p∗ = id. This finishes the

proof. �

5B. Proof of Theorem 1.2. The proof of Theorem 1.2 is a direct consequence
of the definition of KH(X ) and similar results for the K-theory. Part (1) of the
theorem is Theorem 5.2. Part (2) follows directly from Theorems 3.20 and 3.13
because the homotopy colimit preserves homotopy fiber sequences.

We now prove (3). Let G be a finite group acting on a scheme X such that
X admits an ample family of line bundles. Then X is covered by G-invariant
affine open subschemes. By Theorem 4.9, it suffices to prove the theorem when
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X = Spec(A) is affine. In this case, K([X/G]) is homotopy equivalent to the K-
theory of the exact category PG(A) of finitely generated G-equivariant projective
A-modules (see Lemma 3.2).

Since G is also assumed to be nice, it follows from [Levine and Serpé 2008,
Lemma 1.3] that PG(A) is equivalent to the exact category P(Atw

[G]) of finitely
generated projective Atw

[G]-modules. Recall here that Atw
[G] =

⊕
g∈G Aeg and

the product is defined by (rg · eg)(rh · eh)= rg · (rh ? g−1)egh , where ? indicates the
G-action on A.

If I is a nilpotent ideal of A with quotient B = A/I , it follows from Lemma 5.4
that the map Atw

[G] → B tw
[G] is surjective and its kernel is a nilpotent ideal

of Atw
[G]. We now apply [Weibel 1989, Theorem 2.3] to conclude that the map

KH(Atw
[G])→ KH((A/I )tw[G]) is a homotopy equivalence. Since G acts triv-

ially on 1•, there is a canonical isomorphism (A[1•])tw[G] ' (Atw
[G])[1•]. We

conclude that the map KH([Spec(A)/G])→ KH([Spec(B)/G]) is a homotopy
equivalence. This finishes the proof. �

Lemma 5.4. Let G be a finite group acting on commutative unital rings A and B.
Let A � B be a G-equivariant surjective ring homomorphism whose kernel is
nilpotent. Then the induced map Atw

[G] → B tw
[G] is surjective and its kernel is

nilpotent.

Proof. Let I denote the kernel of f : A � B. By hypothesis, there exists an integer
n such that I n

= 0. Since the induced map Atw
[G] → B tw

[G] is a G-graded
homomorphism induced by f on each graded piece, it is a surjection and its kernel
is given by I tw

[G] =
⊕

g∈G I eg. Since I is a G-invariant ideal of A, each element
of (I tw

[G])n is of the form (a1.eg1 + · · · + am .egm ), where gi ∈ G and ai ∈ I n.
Therefore, (I tw

[G])n = 0. �

5C. K-theory of stacks with coefficients. For an integer n ∈ N, let

K(X ;Z[1/n]) := hocolim(K(X ) ·n−→ K(X ) ·n−→ · · · ),

K(X ;Z/n) := K(X )∧S/n,

where S/n is the mod-n Moore spectrum. Our final result is the homotopy invari-
ance property of K-theory with coefficients.

The proof of Theorem 5.5 uses the notion of K-theory of dg-categories. We
briefly recall its definition and refer to [Keller 2006, §5.2] for further details. Let
A be a small dg-category. The category D(A) is the localization of the category
of dg A-modules with respect to quasi-isomorphisms. The category of perfect
objects Per(A) is the smallest triangulated subcategory of D(A) containing the
representable objects and closed under shifts, extensions and direct factors. The
algebraic K-theory of A is defined to be the K-theory spectrum of the Waldhausen
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category Per(A), where the cofibrations are the degreewise split monomorphisms
and the weak equivalences are the quasi-isomorphisms.

Theorem 5.5. Let X be a nice quotient stack over k with the resolution property
and let f : E→ X be a vector bundle. Then the following hold.

(1) For any integer n invertible in k, the map f ∗ : K(X ;Z/n)→ K(E;Z/n) is a
homotopy equivalence.

(2) For any integer n nilpotent in k, the map f ∗ : K(X ;Z[1/n])→ K(E;Z[1/n])
is a homotopy equivalence.

Proof. The category Perf(X ) has a natural dg enhancement [Cisinski and Tabuada
2012, Example 5.5] whose algebraic K-theory (in the sense of K-theory of dg-
categories) coincides with K(X ) by [Keller 2006, Theorem 5.1]. It follows from
Proposition 2.7 and [Hall and Rydh 2017, Proposition 8.4] that Dqc(X ) is com-
pactly generated and every perfect complex on X is compact. We conclude from
[Tabuada 2017, Theorem 1.2] that the theorem holds when f is the projection map
X [T ] → X . To prove the general case, we use (5.3) and repeat the argument of
Theorem 5.2 verbatim. �

Corollary 5.6. Let X be as in Theorem 5.5. Then the following hold.

(1) For any integer n invertible in k, the natural map K(X ;Z/n)→ KH(X ; Z/n)
is a homotopy equivalence.

(2) For any integer n nilpotent in k, the natural map K(X ;Z[1/n])→KH(X ;Z[1/n])
is a homotopy equivalence.
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A fixed point theorem on noncompact manifolds

Peter Hochs and Hang Wang

We generalise the Atiyah–Segal–Singer fixed point theorem to noncompact man-
ifolds. Using KK-theory, we extend the equivariant index to the noncompact
setting, and obtain a fixed point formula for it. The fixed point formula is the
explicit cohomological expression from Atiyah–Segal–Singer’s result. In the
noncompact case, however, we show in examples that this expression yields
characters of infinite-dimensional representations. In one example, we realise
characters of discrete series representations on the regular elements of a max-
imal torus, in terms of the index we define. Further results are a fixed point
formula for the index pairing between equivariant K-theory and K-homology,
and a nonlocalised expression for the index we use, in terms of deformations of
principal symbols. The latter result is one of several links we find to indices of
deformed symbols and operators studied by various authors.
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1. Introduction

In the second part of the Index of elliptic operators series, Atiyah and Segal [1968]
proved a fixed point formula for compact groups and manifolds. This allows one
to compute the equivariant index of an elliptic operator (or an elliptic complex)
in terms of data on the fixed point sets of the group elements. In [Atiyah and
Singer 1968b], a cohomological version of this formula was obtained, which we
call the Atiyah–Segal–Singer fixed point theorem. It has applications, for example,
in representation theory. Indeed, Atiyah and Bott [1968] used a fixed point formula
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(which equals the Atiyah–Segal–Singer theorem in the case considered) to prove
the Weyl character formula.

Our goals in this paper are to generalise the Atiyah–Segal–Singer theorem to
noncompact manifolds, and to apply this generalisation in relevant situations.

The main result and some applications. We define an index on possibly noncom-
pact manifolds, which generalises the equivariant index for compact groups and
manifolds (see Definition 2.7). Assuming the fixed point set of a group element g
is compact, we show that this index is given by exactly the same cohomologi-
cal expression as in the Atiyah–Segal–Singer theorem. This is our main result,
Theorem 2.16. We also obtain a fixed point formula for the index pairing between
equivariant K-theory and K-homology in Theorem 2.18. In the nonequivariant
setting, very general expressions for this pairing were given in [Carey et al. 2014];
Theorem 2.18 is an equivariant version of these results for the operators considered
here.

While the cohomological expression for the index is the same as in the compact
case, in noncompact examples we see that it gives rise to characters of infinite-
dimensional representations. These can never occur as indices of elliptic operators
on compact manifolds, so that the theory really gives us something new. For ex-
ample, we use the fixed point theorem in Section 6E to express the character of a
representation in the discrete series of a semisimple Lie group in terms of our index,
on the regular elements of a maximal torus. Other examples and applications are:
• a holomorphic linearisation theorem, related to [Guillemin et al. 2002, Chap-

ter 4] and [Braverman 2002, Theorem 7.2];

• explicit computations for actions by the circle on the plane and the two-sphere;

• a relation with kernels of Fredholm operators, in particular Callias-type Dirac
operators [Anghel 1993; Braverman and Shi 2016; Bunke 1995; Callias 1978;
Kucerovsky 2001];

• a relation with Braverman’s index of deformed Dirac operators [Braverman
2002];

• a relative index theorem, in the spirit of [Gromov and Lawson 1983, Theo-
rem 4.18];

• some geometric consequences in the cases of the Hodge–Dirac and Spin-Dirac
operators.

In all cases we consider, we find that the index can be expressed explicitly in
terms of the kernel of a deformation of the operator in question. (In the discrete
series example, the operator does not even have to be deformed.) On noncompact
manifolds, one can often obtain a well-defined index of a Dirac operator by ap-
plying a deformation, with suitable growth behaviour. See, for example, [Anghel



A FIXED POINT THEOREM ON NONCOMPACT MANIFOLDS 237

1993; Braverman 2002; 2015; Bunke 1995; Callias 1978; Hochs and Mathai 2015;
Hochs and Song 2017a; Kucerovsky 2001; Ma and Zhang 2014; Paradan 2011].
This index then depends on the deformation used. While we do not use a defor-
mation to define our index, we see in examples that it equals an index defined
via a deformation. One could speculate that this means that the index we use
implicitly includes a canonical choice of such a deformation. For the Callias-type
operators studied in [Anghel 1993; Braverman and Shi 2016; Bunke 1995; Callias
1978; Kucerovsky 2001], their equivariant indices can be expressed as the index
we define, plus a term representing the dependence on the deformation used, in
terms of its behaviour “at infinity”. (Previously, Callias-type operators were not
studied in combination with group actions, so only nonequivariant indices were
computed.)

The relation to index theory of deformed Dirac operators is strengthened in the
last section of this paper, which is independent of the fixed point formula. There
we give an expression for the index of elliptic operators involving deformations of
their principal symbols.

Other generalised fixed point theorems include [Berline and Vergne 1996a, Main
Theorem 1; 1996b, Theorem 20] (for transversally elliptic operators), [Braverman
2002, Theorem 7.5] (for deformed Dirac operators on noncompact manifolds), the
results in [Dell’Ambrogio et al. 2014] (for correspondences, generalising self-maps
on manifolds), [Emerson 2011, Theorem 2.7] (for groupoids) and [Wang and Wang
2016, Theorem 6.1] (for orbifolds).

Idea of the proof. Let us sketch some technical steps involved in defining the index
and proving the fixed point formula. We consider a Riemannian manifold M , and
an elliptic operator D on a vector bundle E→ M . Let G be a compact Lie group
acting on E , preserving D. Under assumptions about grading and self-adjointness,
we have a class [D] in the equivariant K-homology group K G

0 (M) of M . Let g ∈G.
Then we may replace G by the compact Abelian group generated by g, and still
retain all information about the action by the element g. A localisation theorem in
K-homology allows us to construct the g-index map

indexg : K G
0 (M)→ C.

This localisation theorem is closely related to a localisation theorem in KK-theory:
Theorem 3.2 in [Rosenberg 1999]. The g-index of the operator D is defined as the
g-index of its class [D] in K G

0 (M). If M is compact, this is the usual equivariant
index of D, evaluated at g.

If M is compact, the principal symbol σD of D defines a class in the equivariant
topological K-theory group K 0

G(TM). In our setting, M may be noncompact. Then
we have a class

[σD] ∈ KKG(M, TM)
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in the equivariant KK-theory of the pair (C0(M),C0(TM)). The Dolbeault–Dirac
operator on TM defines a class

[DTM ] ∈ KKG(TM, pt).

An index theorem by Kasparov implies that, with respect to the Kasparov product
⊗TM over C0(TM), we have

[D] = [σD]⊗TM [DTM ] ∈ KKG(M, pt)= K G
0 (M).

This generalises the Atiyah–Singer index theorem.
The proof of the fixed point formula for the g-index of D is a KK-theoretic

generalisation of the proof by Atiyah and Segal [1968] for the compact case. This
generalisation involves Kasparov’s index theorem, localisation theorems in KK-
theory, and KK-theoretic versions of the Gysin wrong-way maps in K-theory. An-
other ingredient is a class

σ D
g ∈ K 0

G(TM)g (1.1)

associated to σD , in the equivariant topological K-theory of TM , localised (in the
algebraic sense) at g. Using these techniques, and keeping track of what happens
in both entries in KK-theory, allows us to obtain an expression for the g-index of
D in terms of data on the fixed point set of g. While all constructions in the proof
are KK-theoretic in nature, the end result is a purely cohomological expression.
An explicit description of the class (1.1) in terms of a deformation of the symbol
σD allows us to prove a nonlocalised expression for the g-index, independent of
the fixed point formula.

Outline. The g-index is introduced in Section 2. It allows us to state the fixed
point formula in Theorem 2.16.

In Section 3, we prove the localisation results, which imply that the g-index is
well-defined. In Section 4, we review an index theorem by Kasparov. This result,
and related techniques, are used in the proof of the fixed point theorem in Section 5.

The applications and examples mentioned above are discussed in Section 6. In
Section 7, we obtain a nonlocalised expression for the g-index of an elliptic oper-
ator.

Notation. If A is a subset of a set B, then we denote the inclusion map A ↪→ B
by j B

A . We denote the one-point set by pt. For any set A, we write pA for the map
from A to pt.

If U is an open subset of a locally compact Hausdorff space X , then we denote
by k X

U the inclusion map C0(U ) ↪→ C0(X) defined by extending functions by zero
outside U . If Y is another locally compact Hausdorff space, we write

KK(X, Y ) := KK(C0(X),C0(Y )),
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and similarly for equivariant KK-theory. The Kasparov product ⊗C0(X) over C0(X)
will also be denoted by ⊗X . If X has a Borel measure, and E→ X is a Hermitian
vector bundle, then the ∗-homomorphism πX : C0(X)→ B(L2(E)) is given by
the pointwise multiplication on L2-sections of E . If H is a locally compact group
acting on X , and H ′ < H is a subgroup, we write H ×H ′ X for the quotient of
H × X by the action by H ′ given by

h′ · (h, x)= (hh′−1, h′x),

for h′ ∈ H ′, h ∈ H and x ∈ X .
Throughout this paper, G will be a compact Abelian group containing an element

g whose powers are dense in G. The only exception is Section 6E, where G denotes
a semisimple Lie group. There, a compact Cartan subgroup T < G will play the
role that G plays in the rest of this paper.

If M is a manifold, its tangent bundle projection TM → M is denoted by τM .
If a Riemannian metric is given, we will often tacitly use it to identify the tangent
bundle of M with the cotangent bundle. The complexification of a vector space or
vector bundle is denoted by a subscript C.

2. The fixed point formula

Our goal in this paper is to generalise the Atiyah–Segal–Singer fixed point theo-
rem ([Atiyah and Singer 1968b, Theorem 3.9], based on [Atiyah and Segal 1968,
Theorem 2.12]) to noncompact manifolds, and to find interesting applications of
this generalisation. This leads us to define the g-index in Section 2B. The key
to defining the g-index is a localisation theorem, which is stated in Section 2A.
The main result of this paper is the fixed point formula in Theorem 2.16, stated
in Section 2D. This formula is entirely cohomological, and does not involve KK-
theory. Some properties of the g-index are given in Section 2C.

Throughout this paper, M will be a Riemannian manifold. We consider an iso-
metric diffeomorphism g from M to itself. Suppose the closure of the powers of
g in the isometry group (with respect to the compact-open topology) is a compact
group G. Equivalently, suppose g is an element of a compact group H acting
isometrically on M , and let G < H be the closed subgroup generated by g. In any
case, G is Abelian. Let Mg be the fixed point set of g.

Let E = E+⊕ E−→M be a Z2-graded, Hermitian vector bundle. Let D be an
odd, essentially self-adjoint, elliptic differential operator, with principal symbol σD .
(For example, D can be a Dirac-type operator on a complete manifold.) We will
also write D for the self-adjoint closure of D. Then we have the element

[D] :=
[

L2(E), D
√

D2+1
, πM

]
(2.1)
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of the equivariant K-homology group KKG(M, pt) := KKG(C0(M),C). Here
πM : C0(M)→ B(L2(E)) is given by pointwise multiplication. For background
material on KK-theory, see [Blackadar 1998, Chapter VIII].

2A. Localisation. Let R(G)g := R(G)Ig be the localisation of the representation
ring R(G) at the prime ideal

Ig := {χ ∈ R(G) : χ(g)= 0}.

For any module M over R(G), we write Mg := MIg for the corresponding lo-
calised module over R(G)g. Similarly, if m ∈M, and ϕ :M→M′ is a module
homomorphism to another such module, we write mg ∈Mg and

ϕg :Mg→M′g

for the corresponding localised versions.
For any two G-C∗-algebras A and B, the group KKG(A, B) is a module over the

ring R(G)= KKG(C,C), via the exterior Kasparov product. Fix a G-C∗-algebra A.
The inclusion map

j M
Mg : Mg ↪→ M

induces
( j M

Mg )
∗

g : KKG(A,C0(M))g→ KKG(A,C0(Mg))g.

Theorem 2.2. If A is separable, the map ( j M
Mg )
∗
g is an isomorphism of Abelian

groups. This is still true if M \Mg is a manifold, rather than all of M.

Remark 2.3. If A= C, then this reduces to [Atiyah and Segal 1968, Theorem 1.1].
We need this more general statement, because in the noncompact case, princi-
pal symbols define classes in KKG(C0(M),C0(TM)) as in (4.4), rather than in
KKG(C,C0(TM)) when M is compact.

We will also use an analogue of Theorem 2.2 for the first entry in KK-theory.
Its formulation is slightly more subtle.

Theorem 2.4. Suppose that Mg is compact and that A is σ -unital. Let U, V ⊂ M
be two G-invariant, relatively compact open neighbourhoods of Mg, such that
U ⊂ V . Then the map

(( j V
U
)∗)g : KKG(C0(U ), A)g→ KKG(C0(V ), A)g

is an isomorphism of Abelian groups. This is still true if M is only a locally
compact Hausdorff topological space rather than a manifold, as long as the open
subset M \Mg is a manifold.

Theorems 2.2 and 2.4 will be proved in Section 3 for graded KK-theory, i.e.,
the combination of even and odd KK-theory. We will only apply the even versions,
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however. The cases where only M \Mg is a manifold were included because we will
also apply Theorem 2.4 to one-point compactifications of manifolds. Theorems 2.2
and 2.4 are similar to Theorem 3.2 in [Rosenberg 1999].

2B. The g-index. Suppose the fixed point set Mg is compact. Let U, V be as
in Theorem 2.4. Consider the proper map pU

:U → pt, and the inclusion map
k M

V : C0(V )→ C0(M) given by extending function by zero outside V . Let A be a
σ -unital G-C∗-algebra. By Theorem 2.4, we have the maps

KKG(C0(M), A)g
(k M

V )
∗
g

−−−→ KKG(C0(V ), A)g
(( j V

U
)∗)
−1
g

−−−−−→ KKG(C(U ), A)g
(pU
∗ )g
−−−→ KKG(C, A)g. (2.5)

Lemma 2.6. The composition (2.5) is independent of the sets U and V .

Proof. To prove independence of U , let U ′ be a G-invariant, relatively compact
neighbourhood of Mg such that U ′ ⊂U . Then we have the commutative diagram

KKG(C(U ′), A)
pU ′
∗

((

( j V
U ′
)∗

vv

( jU
U ′
)∗

��

KKG(C0(V ), A) KKG(C(U ), A)
pU
∗

//

( j V
U
)∗

oo KKG(C, A)

Commutativity of this diagram implies that

(pU ′
∗
)g ◦ (( j V

U ′
)∗)
−1
g = (p

U
∗
)g ◦ (( j V

U
)∗)
−1
g .

So (2.5) is indeed independent of U .
To prove independence of V , let V ′ be a G-invariant, relatively compact open

subset of M containing V . Then the following diagram commutes:

KKG(C0(V ′), A)

(kV ′
V )∗

��

KKG(C0(M), A)
(k M

V )
∗

//

(k M
V ′ )
∗

55

KKG(C0(V ), A) KKG(C(U ), A)
( j V

U
)∗

oo

( j V ′

U
)∗

ii

Therefore, we have

(( j V ′

U
)∗)
−1
g ◦ (k

M
V ′)
∗

g = (( j V
U
)∗)
−1
g ◦ (k

M
V )
∗

g,

so that (2.5) is independent of V . �

To define the g-index, we only need the case of Lemma 2.6 where A = C. Later
we will also use the general case, however.
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Let
evg : R(G)→ C

be defined by evaluating characters at g, i.e., evg(χ) := χ(g), for χ ∈ R(G). In
view of Lemma 2.6, we obtain a well-defined index as follows.

Definition 2.7. The g-index is the map

indexg : KKG(M, pt)→ C

defined as the composition

KKG(M, pt) ↪→ KKG(M, pt)g
(pU
∗ )g◦(( j V

U
)∗)
−1
g ◦(k

M
V )
∗
g

−−−−−−−−−−−−−→ KKG(pt, pt)g ∼= R(G)g
(evg)g
−−−→ C. (2.8)

We will write
indexg(D) := indexg[D],

where [D] ∈ KKG(M, pt) is the class (2.1).

Note that (k M
V )
∗
g[D]g is simply the localisation at g of the K-homology class of

the restriction of D to V .

Remark 2.9. The g-index of D could also have been called the D-Lefschetz num-
ber of g.

2C. Properties of the g-index. If M is compact, then we may take U = V = M
in Definition 2.7. Furthermore, the map pM

: M→ pt is proper. In that case, the
composition (2.5) simply equals the map

(pM
∗
)g : KKG(C0(M), A)g→ KKG(C, A)g.

If A = C, then it follows that for compact M , the g-index of D equals

indexg(D)= indexG(D)(g), (2.10)

the usual equivariant index of D evaluated at g. Note that on the right-hand side
of (2.10), G can be any compact Lie group acting isometrically on M if the action
lifts to E , commutes with D, and contains g.

In general, however, the g-indices on noncompact manifolds give us something
more general than the equivariant index in the compact case. In the examples
in Section 6, we will see that the g-index can be used to describe characters of
infinite-dimensional representations. These cannot be realised as indices on com-
pact manifolds. And even on compact manifolds, an equivariant index can be
decomposed into g-indices which individually correspond to infinite-dimensional
representations. See Section 6D.

The g-index has an excision property.
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Lemma 2.11. Let V be a G-invariant, relatively compact, open neighbourhood
of Mg. Suppose there is a G-equivariant open embedding V ↪→ M̃ into a G-
manifold M̃. Suppose the action by G on M̃ has no fixed points outside V . Suppose
there is a Hermitian, Z2-graded G-vector bundle Ẽ→ M̃ and an odd, self-adjoint,
elliptic differential operator D̃ on Ẽ such that Ẽ |V = E |V and D̃|V = D|V . Then

indexg(D)= indexg(D̃).

Proof. By Proposition 10.8.8 in [Higson and Roe 2000], we have

(k M
V )
∗
[D] = (k M̃

V )
∗
[D̃] ∈ KKG(V, pt).

This implies the claim. �

Example 2.12. Suppose M has a G-equivariant Spin-structure, and let D be the
Spin-Dirac operator. Let M ↪→ M̃ be a G-equivariant open embedding into a
compact G-manifold M̃ with a G-equivariant Spin-structure. If G is connected
and indexg(D) 6= 0, then g must have a fixed point in M̃ \ M . Indeed, Atiyah
and Hirzebruch [1970] showed that the g-index of the Spin-Dirac operator on M̃
is zero in this case. So the claim follows by Lemma 2.11.

Another property of the g-index is multiplicativity. Let D1 and D2 be operators
like D on manifolds M1 and M2, respectively, and consider the product operator

D1× D2 := D1⊗ 1+ 1⊗ D2

on M1 × M2 (where graded tensor products are used). Then functoriality of the
Kasparov product implies that

indexg(D1× D2)= indexg(D1) indexg(D2).

In the index theory of deformed Dirac operators developed in [Braverman 2002],
the deformation used means that an analogous multiplicativity property is highly
nontrivial; see [Hochs and Song 2017b; Ma and Zhang 2014; Paradan 2011].

2D. Fixed points. Having defined the g-index, we can state the main result of this
paper. We will use the fact that the connected components of the fixed point set Mg

are smooth submanifolds of M , possibly of different dimensions.
Since Mg is compact, the restriction to TMg of the principal symbol σD of D

defines a class
[σD|TMg ] ∈ KKG(pt, TMg). (2.13)

Let N→ Mg be the union of the normal bundles to each of the components of Mg.
Consider the topological K-theory class[∧

NC

]
:=
[⊕

j
∧2 j N ⊗C

]
−
[⊕

j
∧2 j+1 N ⊗C

]
∈ KKG(pt,Mg). (2.14)



244 PETER HOCHS AND HANG WANG

For any trivial G-space X , we have

KKG(pt, X)∼= KK(pt, X)⊗ R(G).

We can evaluate the factor in R(G) of any class a ∈ KKG(pt, X) at g, to obtain
a(g) ∈ KK(pt, X)⊗C. In this way, evaluating the classes (2.13) and (2.14) at g
gives the classes

[σD|TMg ](g) ∈ KK(pt, TMg)⊗C

and [∧
NC

]
(g) ∈ KK(pt,Mg)⊗C, (2.15)

respectively.
Consider the Chern characters

ch : KK(pt, TMg)→ H∗(TMg),

ch : KK(pt,Mg)→ H∗(Mg),

defined on each smooth component of Mg separately. By [Atiyah and Segal 1968,
Lemma 2.7], the K-theory class (2.15) is invertible; hence so is its Chern character.
An explicit expression for the inverse

1
ch
([∧

NC

]
(g)
) ∈ H∗(Mg)⊗C

of this element is given in [Atiyah and Singer 1968b, (3.8)]. The cohomology
group H∗(Mg) acts on H∗(TMg) via the pullback along the tangent bundle projec-
tion τMg . Let Todd(TMg

⊗C) be the cohomology class on Mg obtained by putting
together the Todd-classes of the complexified tangent bundles to all components
of Mg.

Theorem 2.16 (fixed point formula). The g-index of D equals

indexg(D)=
∫

TMg

ch([σD|TMg ](g))Todd(TMg
⊗C)

ch
([∧

NC

]
(g)
) . (2.17)

The integral in this expression is the sum of the integrals over all connected
components of TMg of the integrand corresponding to each component.

If M is compact, then (2.10) implies that Theorem 2.16 reduces to the Atiyah–
Segal–Singer fixed point formula [Atiyah and Singer 1968b, Theorem 3.9].

2E. The index pairing. In the course of the proof of Theorem 2.16, we will also
find a fixed point formula for the index pairing (i.e., the Kasparov product)

KKG(pt,M)× KKG(M, pt)→ KKG(pt, pt).

Note that any element of the equivariant topological K-theory group KKG(pt,M)
can be represented by a formal difference [F0]− [F1], for two G-equivariant vec-
tor bundles F0, F1 → M that are equal outside a compact set. We will write
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F := F0 ⊕ F1, with the Z2-grading where F0 is the even part and F1 the odd
part, and [F] := [F0] − [F1] ∈ KKG(pt,M).

Theorem 2.18 (fixed point formula for the index pairing). We have

([F]⊗M [D])(g)=
∫

TMg

ch([F |Mg ](g)) ch([σD|TMg ](g))Todd(TMg
⊗C)

ch
([∧

NC

]
(g)
) .

Recall that Mg was assumed to be compact, and that we use the action by the
cohomology of Mg on the cohomology of TMg via the pullback along τMg .

Theorem 3.33 in [Carey et al. 2014] is a nonequivariant index formula for the
index pairing in a more general context. Theorem 2.18 is an equivariant version of
this result, for operators like D.

The proof of Theorem 2.18 is simpler than that of Theorem 2.16, because it does
not involve localisation in the first entry of KK-theory. Theorem 2.16 is needed for
the examples and applications in Section 6, such as the relation with characters of
discrete series representations. The reason for this is that Theorem 2.16 provides
an expression for an index of the operator D itself, without the need to twist it by
a K-theory class.

3. Localisation

We now turn to a proof of Theorems 2.2 and 2.4. This involves certain module
structures discussed in Section 3A, which are used to prove vanishing results in
Section 3B. In this section, we consider graded KK-theory, i.e., the direct sum of
even and odd KK-theory.

3A. Module structures. Let H be a locally compact group, and let H ′ < H be a
compact subgroup.

Proposition 3.1. Let Y be a locally compact, Hausdorff , proper H-space for
which there is an equivariant, continuous map Y → H/H ′. Then for any H-C∗-
algebra A, the groups

KK H (A,C0(Y )) and KK H (C0(Y ), A)

have structures of unital R(H ′)-modules.

Proposition 3.1 follows from the fact that vector bundles, even on noncompact
spaces, define classes in KK-theory in the following way. This is probably well-
known, but we include a proof for completeness’ sake.

Let X be a locally compact Hausdorff space on which H acts properly. Let
E → X be a Hermitian H -vector bundle. The space 00(E) of continuous sec-
tions of E vanishing at infinity is a right Hilbert C0(X)-module by pointwise
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multiplication and inner products. Let πX : C0(X) → B(00(E)) be given by
pointwise multiplication.

Lemma 3.2. The triple
(00(E), 0, πX ) (3.3)

is an H-equivariant Kasparov (C0(X),C0(X))-cycle.

For compact spaces X , this fact is noted for example in (3.1) in [Rosenberg
1999]. In general, we will denote the class in KK H (X, X) defined by (3.3) by [E].

Proof. We show that for all f ∈ C0(X), the operator πX ( f ) on 00(E) is compact.
This implies the claim.

Let U ⊂ X be a relatively compact open subset admitting an orthonormal frame
{e1, . . . , er } of E |U . Let s ∈ 00(E). Then

s|U =
r∑

j=1

(e j , s)E e j .

Here (− ,−)E is the metric on E . So if f ∈ C0(X) is supported inside U , then

πX ( f )s =
r∑

j=1

(e j , f s)e j =

r∑
j=1

( f̄ e j , s)e j .

By extending the sections e j outside U to elements of 00(E), we find that πX ( f )
is a finite-rank operator.

For a general f ∈ Cc(X), there is a finite open cover {U j }
n
j=1 of supp( f ) such

that every set U j admits a local orthonormal frame for E . Let {ϕ j }
n
j=1 be functions

such that supp(ϕ j ) ⊂ U j , and
∑n

j=1 ϕ j equals one on supp( f ). Then, by the
preceding argument,

πX ( f )=
n∑

j=1

πX (ϕ j f )

is a finite-rank operator. Hence, for all f ∈ C0(X), the operator πX ( f ) on 00(E)
is indeed compact. �

Now consider the situation of Proposition 3.1. Let p : Y → H/H ′ be an equi-
variant, continuous map. Let V be a finite-dimensional representation space of H ′.
We have the H -vector bundles

H ×H ′ V → H/H ′

and
EV := p∗(H ×H ′ V )→ Y.

By Lemma 3.2, this vector bundle defines a class

[EV ] ∈ KK H (Y, Y ).
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Lemma 3.4. The map from R(H ′) to KK H (Y, Y ) given by

[V ] 7→ [EV ],

with [EV ] defined as above, is a ring homomorphism.

Proof. This follows from the fact that in the setting of Lemma 3.2, for any two
Hermitian H -vector bundles E, E ′→ X , one has

[E]⊗X [E ′] = [E ⊗ E ′]. �

The ring homomorphism of Lemma 3.4 defines the module structures sought in
Proposition 3.1, which has therefore been proved. If A = C and Y is compact, the
R(H ′)-module structure on KK H (C,C0(Y )) defined in this way is the one used in
[Atiyah and Segal 1968].

3B. Vanishing results. We will prove Theorems 2.2 and 2.4 by generalising Atiyah
and Segal’s proof of [Atiyah and Segal 1968, Theorem 1.1]. An important step is
the following generalisation of [Atiyah and Segal 1968, Corollary 1.4].

Proposition 3.5. Let H < G be a closed subgroup such that g 6∈ H. Let Y be
a compact G-space for which there is an equivariant map Y → G/H , and A a
G-C∗-algebra. Then

KKG(A,C0(Y ))g = KKG(C0(Y ), A)g = 0.

Proof. By [Atiyah and Segal 1968, Corollary 1.3], we have R(H)g = 0. As
Atiyah and Segal argued below that corollary, it is therefore enough to show that
KKG(A,C0(Y )) and KKG(C0(Y ), A) are unital R(H)-modules. Hence, the claim
follows from Proposition 3.1. �

We will deduce Theorems 2.2 and 2.4 from the following special cases.

Proposition 3.6. In the setting of Theorem 2.2, suppose g has no fixed points in M.
Then, if A is separable, we have

KKG(A,C0(M))g = 0. (3.7)

If A is σ -unital, then for all G-invariant, relatively compact open subsets U ⊂ M ,

KKG(C0(U ), A)g = 0. (3.8)

If A = C, then (3.7) is precisely [Atiyah and Segal 1968, Proposition 1.5]. By
a generalisation of the arguments in [Atiyah and Segal 1968, Section 1], we will
deduce Proposition 3.6 from Proposition 3.5.

By Palais’ slice theorem [1961, Proposition 2.2.2], there is an open cover {U j }
∞

j=1
of M by G-invariant open sets such that for all j ,

U j ∼= G×H j S j
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(via the action map), for the stabiliser H j <G of a point in U j , and an H j -invariant
submanifold S j ⊂ M . Suppose that g has no fixed points. Then it does not lie in
any of the stabilisers H j . Therefore, Proposition 3.5 implies that

KKG(A,C0(U j ))g = KKG(C0(U j ), A)g = 0.

Let X ⊂ M be any G-invariant, compact subset. The proof of Proposition 3.6
is based on the following fact.

Lemma 3.9. If A is separable, then

KKG(A,C0(X))g = 0. (3.10)

If A is σ -unital, then
KKG(C0(X), A)g = 0. (3.11)

Proof. We use an induction argument based on exact sequences in KK-theory. We
work out the details for (3.10). Then (3.11) can be proved in the same way, with
exact sequences in the second entry in KK-theory replaced by the corresponding
exact sequences in the first entry. The conditions that A is separable or σ -unital
imply that these exact sequences exist.

For j, n ∈ N, write X j := U j ∩ X , and Yn := X1 ∪ · · · ∪ Xn . Fix n ∈ N, and
consider the exact sequence of C∗-algebras

0→ C0(Xn+1 \ Yn)→ C0(Xn+1)→ C0(Xn+1 ∩ Yn)→ 0.

It induces the exact triangle

KKG(A,C0(Xn+1)) // KKG(A,C0(Xn+1 ∩ Yn))

∂

��

KKG(A,C0(Xn+1 \ Yn))

jj

(See, e.g., [Blackadar 1998, Theorem 19.5.7].) By Proposition 3.5, we have

KKG(A,C0(Xn+1))g = KKG(A,C0(Xn+1 ∩ Yn))g = 0.

Since localisation at g preserves exactness, we find that

KKG(A,C0(Xn+1 \ Yn))g = 0. (3.12)

Using the exact sequence

0→ C0(Yn+1 \ Yn)→ C0(Yn+1)→ C0(Yn)→ 0

in a similar way, we obtain the exact triangle
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KKG(A,C0(Yn+1))g // KKG(A,C0(Yn))g

∂

��

KKG(A,C0(Yn+1 \ Yn))g

jj

Since Yn+1 \ Yn = Xn+1 \ Yn , the vanishing of (3.12) implies that

KKG(A,C0(Yn+1))g = KKG(A,C0(Yn))g.

Because Y1 = X1, Proposition 3.5 implies that

KKG(A,C0(Y1))g = 0.

Since X is compact, it can be covered by finitely many of the sets X j . Hence, the
claim follows by induction on n. �

Proof of Proposition 3.6. Let U ⊂ M be a G-invariant, relatively compact open
subset. Consider the exact sequence

0→ C0(U )→ C0(U )→ C0(∂U )→ 0.

If A is σ -unital, this induces the localised exact triangle

KKG(C0(U ), A)g

))

KKG(C0(∂U ), A)goo

KKG(C0(U ), A)g

∂

OO

Lemma 3.9 implies that

KKG(C0(U ), A)g = KKG(C0(∂U ), A)g = 0.

So we find that KKG(C0(U ), A)g = 0.
Similarly, if A is separable, we have the exact triangle

KKG(A,C0(U ))g // KKG(A,C0(∂U ))g

∂

��

KKG(A,C0(U ))g

ii

Applying Lemma 3.9 in the same way, we find that KKG(A,C0(U ))g = 0. The
equality (3.7) follows, because M is the direct limit of sets U as above, and because
KK-theory commutes with direct limits in the second entry. �

Remark 3.13. The reason why (3.8) does not hold if U is replaced by M , and
hence why Theorem 2.4 has to be stated more subtly than Theorem 2.2, is that
KK-theory does not commute with direct limits in the first entry. For example, the
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domain of the analytic assembly map in the Baum–Connes conjecture [Baum et al.
1994] is the representable K-homology group

RK H
∗
(X) := lim

−−→
Y⊂X; Y/H cpt

KK H (C0(Y ),C),

for a locally compact Hausdorff space X on which a locally compact group H acts
properly. This does not equal the usual K-homology group KK H (C0(X),C) in
general.

3C. Proofs of localisation results.

Proof of Theorem 2.2. Consider the exact sequence

0→ C0(M \Mg)→ C0(M)
( j M

Mg )
∗

−−−→ C0(Mg)→ 0.

It induces the exact triangle

KKG(A,C0(M))
( j M

Mg )
∗

// KKG(A,C0(Mg))

∂

��

KKG(A,C0(M \Mg))

jj

After localisation at g, the first part of Proposition 3.6 yields the exact triangle

KKG(A,C0(M))g
( j M

Mg )
∗
g
// KKG(A,C0(Mg))g

∂
��

0 �

jj

Proof of Theorem 2.4. Let U and V be as in Theorem 2.4. Similarly to the proof
of Theorem 2.2, we have an exact triangle

KKG(C0(V ), A)g

))

KKG(C0(U ), A)g
(( j V

U
)∗)g

oo

KKG(C0(V \U ), A)g

∂

OO

Because V \ U is a relatively compact subset of M \ Mg, the second part of
Proposition 3.6 implies that the bottom localised KK-group in this triangle equals
zero. �
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4. Kasparov’s index theorem

In the proof of the Atiyah–Segal–Singer fixed point theorem, the Atiyah–Singer
index theorem is used to relate topological and analytical indices to each other. In
the noncompact case discussed in this paper, a roughly similar role is played by
an index theorem of Kasparov. We state Kasparov’s index theorem in Section 4A.
In Section 4B, we discuss the fibrewise Bott element for the normal bundle of
a submanifold in KK-theory, which is dual to the class of the Dolbeault–Dirac
operator in a sense. This Bott element will play an important role in the proof
of Theorem 2.16. In Section 4D, we show how the Bott element can be used to
deduce the Atiyah–Singer index theorem from Kasparov’s index theorem in the
compact case. (The main step in the argument used there will be used in the proof
of Theorem 2.16.)

Most of the material in this section is based on [Atiyah and Singer 1968b; Kas-
parov 2016] and explanations to the authors by Kasparov. Although the results
here are not ours, we found it worthwhile to include the details, because they have
not appeared in print yet.

4A. The index theorem. To state the theorem, we recall the definition of the Dol-
beault operator class

[DTM ] ∈ KKG(TM, pt) (4.1)

in [Kasparov 2016, Definition 2.8]. The tangent bundle T (TM) of TM has a natural
almost complex structure J . For m ∈ M and v ∈ Tm M , we have

Tv(TM)= Tm M ⊕ Tv(Tm M)= Tm M ⊕ Tm M.

With respect to this decomposition, the almost complex structure J is given by the
matrix

[ 0
−1

1
0

]
. Let ∂̄ + ∂̄∗ be the Dolbeault–Dirac operator on smooth sections of

the vector bundle
∧0,∗T ∗(TM)→ TM , for this almost complex structure. We will

identify this vector bundle with τ ∗M
∧

TMC→ TM . The class (4.1) is the class of
this operator, as in (2.1). In our arguments however, it will be more convenient
to use the Spinc-Dirac operator DTM , on the same vector bundle. This defines the
same K-homology class as ∂̄ + ∂̄∗.

Definition 4.2. The topological index is the map

indext : KKG(M, TM)→ KKG(M, pt)

given by the Kasparov product with [DTM ].

Consider the principal symbol σ̃D := σD/
√

σ 2
D + 1 of the operator D/

√
D2+ 1.

For f ∈ C0(M), we have for all m ∈ M and v ∈ Tm M ,

f (m)(1− σ̃D(v)
2)= f (m)(σD(v)

2
+ 1)−1.
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Since the operator D is elliptic and of positive order, this expression tends to zero
as m or v tends to infinity. It therefore defines a compact operator on the Hilbert
C0(TM)-module 00(τ

∗

M E), analogously to the proof of Lemma 3.2. Therefore, the
triple

(00(τ
∗

M E), σ̃D, πTM ◦ τ
∗

M) (4.3)

is a G-equivariant Kasparov (C0(M),C0(TM))-cycle. Here, πTM : Cb(TM)→
B(00(τ

∗

M E)) is given by pointwise multiplication. Denote by

[σD] ∈ KKG(M, TM) (4.4)

the class of (4.3). In view of the following lemma, this symbol class is a natural
generalisation of the K-theory symbol class defined in [Atiyah and Singer 1968a]
when M is compact.

Lemma 4.5. If M is compact, consider the map pM from M to a point. The image

pM
∗
[σD] ∈ K ∗G(TM)

is the usual symbol class.

Proof. Since πTM ◦ τ
∗

M ◦ (p
M)∗ is the representation of C in 00(τ

∗

M E) by scalar
multiplication, we have

pM
∗
[σD] = [00(τ

∗

M E), σ̃D] ∈ KKG(pt, TM).

This corresponds to the class

[σD+ : τ
∗

M E+→ τ ∗M E−] ∈ K 0
G(TM)

in the sense of [Lawson and Michelsohn 1989, Chapter III, (1.7)], where TM is
identified with the open unit ball bundle BM over M . (Restricting σD+ to BM and
then identifying BM ∼= TM has the same effect as normalising σD+ .) The lemma
is then proved. �

We conclude this subsection by stating Kasparov’s index theorem, which will
be used to obtain a cohomological formula for the g-index.

Theorem 4.6 (Kasparov’s index theorem [2016, Theorem 4.2]). The K-homology
class of the elliptic operator in (2.1) is equal to the topological index of its symbol
class (4.4), i.e.,

[D] = indext [σD] ∈ KKG(M,C). (4.7)

Remark 4.8. In [Kasparov 2016, Theorem 4.2], the operator in question is as-
sumed to be properly supported, which is not true for the operator D/

√
1+ D2 in

general. However, let {χ j }
∞

j=1 be a sequence of G-invariant, compactly supported
functions, such that {χ2

j }
∞

j=1 is a partition of unity. (This exists since G is compact.)
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Then the operator
∞∑
j=1

χ j
D

√
1+D2

χ j

is properly supported, and also satisfies the other assumptions of [Kasparov 2016,
Theorem 4.2]. Since this operator defines the same K-homology class as D/

√
1+D2,

we can apply [Kasparov 2016, Theorem 4.2] to the class of the latter operator in
this way.

4B. The Bott element. If S is a closed (as a topological subspace, i.e., not neces-
sarily compact), G-invariant submanifold of M , then the Dolbeault operator classes
on TS and on a tubular neighbourhood of TS in TM are related by a (fibrewise) Bott
element. This is a technical tool that will be used several times in the paper. The
material here is analogous to Definition 2.6 and Theorem 2.7 in [Kasparov 2016].

Consider the tangent bundle projections

τS : TS→ S,

τN : TN → N .

Denote by π : N → S the normal bundle of S in M . Let Tπ : TN → TS be
the tangent map of π . It again defines a vector bundle. The following diagram
commutes:

TN
τN
//

Tπ
��

N

π

��

TS
τS
// S

(4.9)

This defines a vector bundle TN → S. Consider the vector bundle∧
ÑC := Tπ∗

(
τ ∗S
∧

N ⊗C
)
→ TN .

Let s ∈ S. Then

(TN )s := Tπ−1(τ−1
S (s))= τ−1

N (Ns)= Ts S× Ns × Ns .

Let w ∈ (TN )s , and let (η, ζ ) ∈ Ns × Ns be the projection of w according to this
decomposition. Note that (∧

ÑC

)
w
=
∧

Ns ⊗C.

We define the vector bundle endomorphism B of
∧

ÑC by

Bw = ext
(
ζ +
√
−1η

)
− int

(
ζ +
√
−1η

)
,

for all s, w, η and ζ as above. Here ext denotes the wedge product, and int denotes
contraction. With respect to the grading of

∧
ÑC by even and odd exterior powers,

the operator B is odd.
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As B is fibrewise selfadjoint, we have the bounded operator B(1+ B2)−1/2 on
00
(
TN,

∧
ÑC

)
. The space 00

(
TN,

∧
ÑC

)
is a right Hilbert C0(TN )-module in the

usual way, with respect to pointwise multiplication by functions and the pointwise
inner product. Consider the representation

π̃TS := πTN ◦ Tπ∗ : C0(TS)→B
(
00
(
TN,

∧
ÑC

))
,

where πTN is given by pointwise multiplication by functions in Cb(TN ).

Lemma 4.10. The triple(
00
(
TN,

∧
ÑC

)
, B(1+ B2)−1/2, π̃TS

)
(4.11)

is a G-equivariant Kasparov (C0(TS),C0(TN ))-cycle.

Proof. Let f ∈ C0(TS). Since B(1+ B2)−1/2 is a vector bundle endomorphism, it
commutes with π̃TS( f ). Moreover, we have for all w ∈ (TN )s as above,(

π̃TS( f )
(
1− [B(1+ B2)−1/2

]
2))

w
=

f (v)
1+‖η‖2+‖ζ‖2

,

with v := Tπ(w) ∈ Ts S. This defines a function in C0(TN ), and hence acts on the
Hilbert C0(TN )-module 00

(
TN ,

∧
ÑC

)
as a compact operator. As G preserves the

metric on TN , the operator B(1+ B2)−1/2 is G-equivariant. �

Definition 4.12. The (fibrewise) Bott element of the normal bundle N → S is the
class

βN ∈ KKG(TS, TN )
of the cycle (4.11).

4C. The Bott element and Dolbeault classes. The Bott element is useful to us
because of the following property. This was used in [Kasparov 2016, second para-
graph on p. 1326]; we work out some details of the proof in this subsection.

Proposition 4.13. Under the Kasparov product

KKG(TS, TN )× KKG(TN , pt)→ KKG(TS, pt),
one has

βN ⊗TN [DTN ] = [DTS].

To prove this proposition, one can use the part D1 of the Spinc-Dirac operator
DTN acting in the fibre directions of TN → TS. For s ∈ S and v ∈ Ts S, we
have Tπ−1(v) = Ns ⊕ TvN . Let a be the rank of N , and let { f1, . . . , fa} be a
local orthonormal frame of N → S. This defines coordinate functions κ j and λ j

on the parts Ns and TvN of the fibres Tπ−1(v) of TN → TS, respectively. For
j = 1, . . . , a, consider the vector bundle endomorphisms

e j := ext( f j )− int( f j ) and ε j := ext( f j )+ int( f j )



A FIXED POINT THEOREM ON NONCOMPACT MANIFOLDS 255

of
∧

N ⊗C→ S, pulled back along (4.9) to endomorphisms of
∧

ÑC→ TN . Then
D1 is the operator

D1 :=

a∑
j=1

e j
∂

∂κ j
+
√
−1ε j

∂

∂λ j

on 0∞
(
TN ,

∧
ÑC

)
. This can be viewed as a family of operators on the fibres

of TN → TS.
It defines a class in KK-theory as follows. Let 0c

(
TN ,

∧
ÑC

)
be the space of

continuous compactly supported sections of
∧

ÑC. Let E0 be the completion of
this space into a Hilbert C0(TS)-module with respect to the C0(TS)-valued inner
product

〈 f, h〉(v) :=
∫

Tπ−1(v)

f (t)h(t) dt (4.14)

for f, h ∈ 0c
(
TN ,

∧
ÑC

)
and v ∈ TS. The operator D1 gives rise to the class

[D1] :=
[
E0, D1(1+ D2

1)
−1/2, πTN

]
∈ KKG(TN , TS). (4.15)

Lemma 4.16. We have

[D1]⊗TS [DTS] = [DTN ] ∈ KKG(TN , pt).

Proof. Regarding N as an open subset of M , we identify their tangent bundles
when restricted to S, i.e., TN |S = TM |S . Therefore, as vector bundles over TN ,
we have∧

ÑC⊗ Tπ∗τ ∗S
∧

TSC = Tπ∗τ ∗S
∧

NC⊗ Tπ∗τ ∗S
∧

TSC

= Tπ∗τ ∗S
∧
(N ⊕ TS)C = Tπ∗τ ∗S

∧
(TM |S)C

= Tπ∗τ ∗S
∧
(TN |S)C = τ ∗N

∧
TNC.

The last equality follows from commutativity of (4.9). Thus, as Hilbert spaces with
representations of C0(TN ),

E0⊗C0(TS) L2(TS, τ ∗S
∧

TSC

)
∼= L2

(
TN , τ ∗N

∧
TNC

)
. (4.17)

Under this identification, we have

D1⊗ 1+ 1⊗ DTS = DTN .

(Here we use graded tensor products.) Consider the bounded operator

F :=
D1⊗ 1+ 1⊗ DTS

√

1+ D2
1 ⊗ 1+ 1⊗ D2

TS

(4.18)
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on E0⊗C0(TS) L2
(
TS, τ ∗S

∧
TSC

)
. Write

F1 :=
D1√

1+ D2
1

, FTS :=
DTS√

1+ D2
TS

.

We can verify that F is an 1⊗FTS-connection, and the graded commutator [F1⊗1, F]
is positive modulo compact operators. Thus, by [Blackadar 1998, Definition 18.4.1],
the Kasparov product [D1]⊗TS [DTS] is represented by the operator F on the space
L2
(
TN , τ ∗N

∧
TNC

)
. The lemma is then proved. �

Lemma 4.19. The product
βN ⊗TN [D1]

is the identity element of the ring KKG(TS, TS).

Proof. The idea is that in this product, we pair fibrewise Bott classes and Dolbeault
classes, and thus obtain the trivial line bundle over TS. To see this, observe first
the isomorphism

0c
(
TN ,

∧
ÑC

)
⊗Cc(TN ) 0c

(
TN ,

∧
ÑC

)
∼= 0c

(
TN ,

∧
ÑC⊗

∧
ÑC

)
(4.20)

as Cc(TS)-modules. Denote by E′ the completion of the right-hand side under the
C0(TS)-valued inner product defined in a similar way as (4.14). It can be checked
that

F0 :=
B⊗ 1+ 1⊗ D1√

1+ B2⊗ 1+ 1⊗ D2
1

(4.21)

is a 1⊗ D1/
√

1+ D2
1-connection, and that for all a in C0(TS), the operator

π̃TS(a)[B(1+ B2)−1/2
⊗ 1, F0]π̃TS(a)∗

is positive modulo compact operators on E′. Hence, the Kasparov product of βN ,
given by (4.11), and the class [D1], given by (4.15), is equal to

[E′, F0, π̃TS] ∈ KKG(TS, TS). (4.22)

As in the proof of [Kasparov 2016, Theorem 2.7(2)], we apply the rotation homo-
topy

Ft :=
(B+ sin(t)D1)⊗ 1+ 1⊗ cos(t)D1√

1+ (B2
+ sin(t)2 D2

1)⊗ 1+ 1⊗ cos(t)2 D2
1

,

for t ∈
[
0, π2

]
. Then the operator F0 in the cycle (4.22) is transformed into Fπ/2 =

F ′⊗ 1, where
F ′ := (B+ D1)(1+ B2

+ D2
1)
−1/2.

In summary, βN and [D1] are families of operators indexed by TS whose Kasparov
product is represented by F ′. At every v ∈ Ts S, the square of B+D1 is the harmonic
oscillator operator
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a∑
j=1

(
κ2

j + λ
2
j −

∂

∂κ2
j
−
∂2

∂λ2
j

)
+ 2 deg−a

on Tπ−1(v)∼= Ns × Ns . (Here deg is the degree in
∧

N .) It has a one-dimensional
kernel, concentrated in degree zero, generated by

(η, ζ ) 7→ e−(‖η‖
2
+‖ζ‖2)/2

∈ C0(Ns × Ns). (4.23)

Thus, over each fibre, F ′ is a Fredholm operator with index 1, and βN ⊗TN [D1] is
equal to the exterior product of this Fredholm operator in KKG(C,C) and the class
[C0(TS), 0, πTS] ∈ KKG(TS, TS), both representing the respective ring identities.
Hence the claim follows. �

Proof of Proposition 4.13. Using Lemmas 4.16 and 4.19, and associativity of the
Kasparov product, we find that

βN ⊗TN [DTN ] = (βN ⊗TN [D1])⊗TS [DTS] = [DTS].

This finishes the proof. �

We will later need the restriction of the Bott element to TS. Consider the class[
τ ∗S
∧

NC

]
:=
[⊕

j
∧2 j

τ ∗S N ⊗C
]
−
[⊕

j
∧2 j+1

τ ∗S N ⊗C
]
∈ KKG(TS, TS),

defined as in Lemma 3.2.

Lemma 4.24. We have

( j TN
TS )
∗βN = [τ

∗

S
∧

NC] ∈ KKG(TS, TS).

Proof. The Hilbert C0(TS)-module in ( j TN
TS )
∗βN is 00

(
TS, τ ∗S

∧
NC

)
. Because B|TS

is the zero operator, the claim follows. �

4D. The Atiyah–Singer index theorem. Suppose for now that M is compact and
G is trivial. Then Kasparov’s index theorem reduces to the Atiyah–Singer index
theorem; see [Kasparov 2016, Remark 4.5]. We provide the details of this impli-
cation here, because these will be used in the proof of Theorem 2.16.

Consider the Atiyah–Singer topological index map

indexAS
t : KK(pt, TM)→ Z,

which maps a class σ ∈ KK(pt, TM) to∫
TM

ch(σ )Todd(TM ⊗C). (4.25)

Note that we do not have the factor (−1)dim M in (4.25) as in [Atiyah and Singer
1968b, Theorem 2.12], because we use a different almost complex structure on TM
than in [Atiyah and Singer 1968b, p. 554], giving the opposite orientation.
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Lemma 4.26. As a map KK(pt, TM)→ KK(pt, pt), right multiplication by [DTM ]

is the Atiyah–Singer topological index.

Because of Lemma 4.26, Theorem 4.6 implies the Atiyah–Singer index theorem.
Indeed, since M is compact, the map pM

: M→ pt is proper. By functoriality of
the Kasparov product, Lemma 4.26 implies that the following diagram commutes:

KK(M, TM)
indext

//

pM
∗

��

KK(M, pt)

pM
∗

��

KK(pt, TM)
indexAS

t
// Z= KK(pt, pt)

By Lemma 4.5, applying the map pM
∗

to both sides of (4.7), and using commuta-
tivity of the above diagram, one obtains the Atiyah–Singer index theorem.

Proof of Lemma 4.26. The proof is a reformulation of the arguments in [Atiyah
and Singer 1968b], using KK-theory. There are embeddings M ↪→ Rn with normal
bundle N of rank a, and TM ↪→ T Rn

= Cn with normal bundle TN . As N is
homeomorphic to a tubular neighbourhood of M in Rn , we can identify TN with
an open neighbourhood of TM in Cn . (Note that here, the submanifold S of M in
Section 4B is replaced by the submanifold M of Rn .)

Denote by
βN ∈ KK(TM, TN )

the fibrewise Bott element over TM in TN , in the sense of Definition 4.12. Then
by Proposition 4.13,

[DTM ] = βN ⊗[DTN ]. (4.27)

The Chern character is compatible with the pairing of K-theory and K-homology.
The Chern character of the Bott generator β of K 0(R2) is a generator of H 2(R2). As
the Dolbeault class [DR2] of R2 is dual to β, its Chern character is the Poincaré dual
of ch(β). So ch[DR2] is the fundamental class [R2

] of R2. Similarly, working with
the exterior Kasparov product of n copies of β, we conclude that ch[DR2n ] = [R2n

].
Noting that T Rn

= R2n , by functoriality of the Chern character we have

ch[DTN ] = ch
((

kT Rn

TN
)
∗
[DT Rn ]

)
=
(
kT Rn

TN
)
∗

ch[DT Rn ]

=
(
kT Rn

TN
)
∗
[T Rn
] = [TN ]. (4.28)

Thus, the Chern character of [DTN ] is the fundamental class [TN ] ∈ H2n(TN ). Let
σ ∈ KK(pt, TM) be given. Then (4.27) and (4.28) imply that

σ ⊗TM [DTM ] =

∫
TN

ch(σ )∧ ch(βN ). (4.29)



A FIXED POINT THEOREM ON NONCOMPACT MANIFOLDS 259

The Thom isomorphism ψTN : H∗(TM)→ H∗(TN ) (mapping between compactly
supported cohomologies) is an isomorphism of H∗(TM)-modules. So we can
rewrite the integral (4.29) as∫

TN
ch(σ )∧ ch(βN )=

∫
TM
ψ−1

TN (ch(σ )∧ ch(βN ))

=

∫
TM

ch(σ )∧ψ−1
TN (ch(βN )). (4.30)

To calculate u := ψ−1
TN (ch(βTN )), we make use of the following diagram:

K ∗(TM)
ψTN
//

ch
��

K ∗(TN )
( j TN

TM )
∗

//

ch
��

K ∗(TM)

ch
��

H∗(TM)
ψTN
// H∗(TN )

( j TN
TM )
∗

// H∗(TM)

Note that in the second line, the composition is equal to the exterior product by the
Euler class e(TN ). In the above diagram, we have

βN
� ( j TN

TM )
∗

//
_

ch
��

∑
j (−1) j∧ j TN

_

ch
��

u � ψTN
// ch(βN )

� ( j TN
TM )
∗

// u · e(TN )

by Lemma 4.24. As the above square commutes by functoriality of the Chern
character, and since TN = τ ∗M NC and NC⊕ (TM ⊗C)= M ×Cn , we obtain

u =
ch
(∑

j (−1) j∧j TN
)

e(TN )
= τ ∗M

(
e(TM)

ch
(∑

j (−1) j
∧j TM)

))= τ ∗M(Todd(TM ⊗C)).

Therefore, together with (4.29) and (4.30) one has

σTM ⊗[DTM ] =

∫
TM

ch(σ )Todd(TM ⊗C),

and the lemma is proved. �

5. Proof of the fixed point formula

After proving Theorems 2.2 and 2.4 and discussing Kasparov’s index theorem, we
are ready to prove Theorem 2.16.

We start in Section 5A, by generalising Gysin maps, or wrong-way functoriality
maps in K-theory, that play a key role in [Atiyah and Singer 1968a]. We use these
generalised Gysin maps in Section 5B to set up the commutative diagrams we need.
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We discuss a map defined by evaluating characters at g in Section 5C. Then we
introduce a class in the topological K-theory of TM , localised at g, defined by the
principal symbol of D. The properties of that class allow us to finish the proof of
Theorem 2.16.

5A. Gysin maps. Let S ⊂ M be a G-invariant submanifold, with inclusion map
j M
S : S ↪→M . (In the applications of what follows, S will be a connected component

of the fixed point set Mg.) Let N → S be the normal bundle of S in M . The
inclusion map j TN

TS : TS ↪→ TN induces a map

( j TN
TS )
∗
: C0(TN )→ C0(TS)

by restriction. We identify TN with an open neighbourhood of TS in TM , via a
G-equivariant embedding TN ↪→ TM. In this way, we have the injective map

kTM
TN : C0(TN ) ↪→ C0(TM),

defined by extending functions by zero.

Definition 5.1. Let A be any G-C∗-algebra. The map

( j TM
TS )! : KKG(A,C0(TS))→ KKG(A,C0(TM))

is the composition

KKG(A,C0(TS))
−⊗C0(TS)βN
−−−−−−→ KKG(A,C0(TN ))

(kTM
TN )∗
−−−→ KKG(A,C0(TM)).

Here βN ∈ KKG(TS, TN ) is the Bott element, as in Definition 4.12.

We also have the usual map

( j TM
TS )

∗
: KKG(A,C0(TM))→ KKG(A,C0(TS)).

Lemma 5.2. The map

( j TM
TS )

∗
◦ ( j TM

TS )! : KKG(A,C0(TS))→ KKG(A,C0(TS))

is given by the Kasparov product from the right with

( j TN
TS )
∗βN ∈ KKG(C0(TS),C0(TS)).

Proof. For all x ∈ KKG(A,C0(TS)), functoriality of the Kasparov product implies
that

( j TM
TS )

∗
◦ ( j TM

TS )!(x)= ( j TM
TS )

∗
◦ (kTM

TN )∗(x ⊗C0(TS) βN )

= x ⊗C0(TS) (( j TM
TS )

∗
◦ (kTM

TN )∗βN ).

Since ( j TM
TS )

∗
◦ (kTM

TN )∗ = ( j TN
TS )
∗, the claim follows. �
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Lemma 5.3. For any G-invariant closed subset X ⊂ M , and any G-invariant
neighbourhood V of X , the following diagram commutes:

KKG(X, TS)
−⊗TS[DTS]

//

( j V
X )∗

��

KKG(X, pt)

( j V
X )∗

��

KKG(V, TS)

( j TM
TS )!

��

KKG(V, TM)
−⊗TM [DTM ]

// KKG(V, pt)

Proof. For all a ∈ KKG(X, TS), functoriality and associativity of the Kasparov
product imply that

(( j TM
TS )! ◦ ( j V

X )∗(a))⊗TM [DTM ] = (kTM
TN )∗(( j V

X )∗(a)⊗TS βN )⊗TM [DTM ]

= ( j V
X )∗(a)⊗TS ((kTM

TN )∗(βN )⊗TM [DTM ]).

Now (kTM
TN )
∗
[DTM ] = [DTN ], so

(kTM
TN )∗(βN )⊗TM [DTM ] = βN ⊗TN (kTM

TN )
∗
[DTM ] = βN ⊗TN [DTN ] = [DTS],

where the last equality was proved in Proposition 4.13. �

5B. Localisation and Gysin maps. Let U and V be as in Theorem 2.4. Consider
the following diagram:

KKG(M, TM)
indext

//

(k M
V )
∗

��

KKG(M, pt)

(k M
V )
∗

��

KKG(V, TM)
−⊗TM [DTM ]

//

( j TM
TMg )

∗

��

KKG(V, pt)

KKG(V, TMg)

KKG(V, TMg)

−⊗TMg ( j TN
TMg )

∗βN

OO
( j TM

TMg )!

^^

KKG(U , TMg)
−⊗TMg [DTMg ]

//

( j V
U
)∗

OO

KKG(U , pt)

( j V
U
)∗

OO

(5.4)

The top part of this diagram commutes because of functoriality of the Kasparov
product. The part with the product with ( j TM

TMg )
∗βN in it commutes by Lemma 5.2,

applied with A = C0(V ), and S running over the connected components of Mg.
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The remaining part of the diagram commutes by Lemma 5.3, applied in a similar
way with S a connected component of Mg, and X =U .

Diagram (5.4) can be extended as follows:

KKG(M, TM)
indext

//

(k M
V )
∗

��

KKG(M, pt)

(k M
V )
∗

��
KKG(pt, TM)

( j TM
TMg )

∗

��

KKG(U, TM)

( j TM
TMg )

∗

��

pU
∗

oo
( j V

U
)∗
//KKG(V, TM)

−⊗TM [DTM ]
//

( j TM
TMg )

∗

��

KKG(V, pt)

KKG(pt, TMg) KKG(U, TMg)
pU
∗

oo
( j V

U
)∗
//KKG(V, TMg)

KKG(pt, TMg)

−⊗TMg ( j TN
TMg )

∗βN

OO

−⊗TMg [DTMg ]

��

KKG(U, TMg)

−⊗TMg ( j TN
TMg )

∗βN

OO

pU
∗

oo
( j V

U
)∗
//

−⊗TMg [DTMg ]

��

KKG(V, TMg)

−⊗TMg ( j TN
TMg )

∗βN

OO ( j TM
TMg )!

]]

KKG(pt, pt) KKG(U, pt)
pU
∗

oo

( j V
U
)∗

KK

(5.5)

The right-hand part of this diagram is diagram (5.4), and hence commutes. The
other parts commute by functoriality of KK-theory and the Kasparov product.

Theorem 2.4 implies that the maps ( j V
U
)∗ become invertible after localisation

at g. We will also use inverses of the localised classes

(( j TN
TMg )

∗βN )g ∈ KKG(TMg, TMg)g. (5.6)

Lemma 5.7. The element (5.6) is invertible.

Proof. By Lemma 4.24, we have

( j TN
TMg )

∗βN =
[
τ ∗Mg

∧
NC

]
.

Atiyah and Segal [1968, Lemma 2.7] showed that
[∧

NC

]
is invertible in K 0

G(M
g)g.

The map
τ ∗Mg : K 0

G(M
g)→ KKG(TMg, TMg)

sending a class [E] ∈ K 0
G(M

g) to [τ ∗Mg E] is a unital ring homomorphism. Hence,
so is its localisation at g. Therefore, the class[

τ ∗Mg
∧

NC

]
g = (τ

∗

Mg )g
[∧

NC

]
g ∈ KKG(TMg, TMg)g

is invertible. �
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5C. Evaluation. Let X and Y be locally compact Hausdorff spaces with trivial
actions by a compact group G. Then the exterior Kasparov product

KK(X, Y )× KKG(pt, pt)→ KKG(X, Y )

defines an isomorphism

KK(X, Y )⊗ R(G)∼= KKG(X, Y ). (5.8)

If X is a point, this is a classical fact. We will also apply this isomorphism to
the class [DTMg ] ∈ KKG(TMg, pt). There it is trivial, since G acts trivially on the
Hilbert space in question. In the only other case where we will use the isomorphism
(5.8), we will have X = Y , and this space has finitely many connected components.
(To be precise, we will have X = Y = TMg.) Let us work out the isomorphism
explicitly in that case, for the cycles we will apply it to. These are G-equivariant
Kasparov (C0(X),C0(X))-cycles of the form (00(E), F, π), where E → X is
a vector bundle (of finite rank). Let a ∈ KKG(X, X) be the class of a cycle of
this form, and let b ∈ KK(X, X) be the class defined by the same cycle, where the
group action is ignored. As G acts trivially on X , each fibre of E is a representation
space of G. Suppose for simplicity that X is connected; the general case follows by
applying the arguments to its connected components. (This works since there are
finitely many of them.) Since X is connected, the representations by G on all fibres
of E are equivalent. Let V be any one of these fibres, viewed as a representation
space of G. Denote by 1G the ring identity of R(G), i.e., the trivial representation
of G. Let E0 := X × V → X be the trivial bundle with fibre V . Consider the
representations

π X
X : C0(X)→B(C0(X)),

π
E0
X : C0(X)→B(00(E0)),

defined by pointwise multiplication. Then([
C0(X), 0, π X

X
]
⊗[V ]

)
+ (b⊗ 1G)

=
([
00(E0), 0, π E0

X

]
⊗ 1G

)
+ a ∈ KKG(X, X). (5.9)

In fact, both sides of (5.9) are represented by the cycle(
00(E0⊕ E), 0⊕ F, π E0

X ⊕π
)
, (5.10)

but, initially, with different G-actions. Namely, for the left-hand side of (5.9), G
acts on the first summand E0 in (5.10), while for the right-hand side of (5.9), G
acts on the second summand E in (5.10). As G acts trivially on X , representations
of G commute with those of C0(X). Since, in addition, F is G-invariant, these
two actions by G can be connected by a rotation homotopy, so (5.9) follows. In
that equality, a is represented as an element of KK(X, Y )⊗ R(G).
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In general, using (5.8), one can apply the evaluation evg = 1⊗ evg as a map

evg : KKG(X, Y )→ KK(X, Y )⊗C. (5.11)

This map is compatible with localisation at g, in the sense that the following dia-
gram commutes:

KKG(X, Y )
evg
//

��

KK(X, Y )⊗C

KKG(X, Y )g
(evg)g

66

If a ∈ KKG(X, Y ), we will also write

a(g) := evg(a) ∈ KK(X, Y )⊗C.

The evaluation map (5.11) is compatible with Kasparov products. This follows
from the facts that the isomorphism (5.8) is compatible with the product, that Kas-
parov products in R(G) coincide with tensor products of representations, and that
the character of the tensor product of two finite-dimensional representations is the
product of the characters of the individual representations.

Hence, we can attach the following commutative diagram to the lower left-hand
side of (5.5):

KK(pt, TMg)⊗C KKG(pt, TMg)
evg
oo

KK(pt, TMg)⊗C

(−⊗TMg [DTMg ])⊗1

��

(−⊗TMg ( j TM
TMg )

∗βN (g))⊗1

OO

KKG(pt, TMg)

−⊗TMg ( j TN
TMg )

∗βN

OO

−⊗TMg [DTMg ]

��

evg
oo

C KKG(pt, pt)evg
oo

(5.12)

Here, [DTMg ]∈ KK(TMg, pt) is identified with [DTMg ]⊗1∈ KK(TMg, pt)⊗R(G),
so that evg([DTMg ])= [DTMg ]⊗ 1. In particular, when Mg

= pt, the vertical map
on the lower left corner is the identity.

By Lemma 4.26 and compactness of Mg, the map

−⊗TMg [DTMg ] : KK(pt, TMg)→ KK(pt, pt)

is the Atiyah–Singer topological index map indexAS
t . We will use the same notation

for its extension to a map KK(pt, TMg)⊗C→ C.
Using commutativity of (5.5) and (5.12), and invertibility of the localised maps

(( j V
U
)∗)g and classes (5.6), we obtain the commutative diagram
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KKG(M, TM)g
(indext )g

//

(pU
∗ )g◦(( j V

U
)∗)
−1
g ◦(k M

V )
∗
g

��

KKG(M, pt)g

(( j V
U
)∗)
−1
g ◦(k M

V )
∗
g

��

KKG(pt, TM)g

( j TM
TMg )

∗

��
KK(pt, TMg)⊗C

indexAS
t (−⊗TMg (( j TN

TMg )
∗βN )

−1(g))

��

KKG(pt, TMg)g
(evg)g

oo

−⊗TMg (( j TN
TMg )

∗βN )
−1
g ⊗TMg [DTMg ]g

��
C KKG(pt, pt)g

(evg)g

oo KKG(U, pt)g
(pU
∗ )g

oo

(5.13)

5D. The g-symbol class. Recall that in (4.4) we defined the class

[σD] ∈ KKG(M, TM).

The last ingredient of the proof of Theorem 2.16 is a class defined by σD in the
topological K-theory of TM , localised at g. In Section 7, we will describe this
class more explicitly, and use it to obtain another expression for the g-index.

Definition 5.14. The g-symbol class of D is the class σ D
g in the localised topolog-

ical K-theory of TM defined by

σ D
g := (p

U
∗
)g ◦ (( j V

U
)∗)
−1
g ◦ (k

M
V )
∗

g[σD]g ∈ KKG(pt, TM)g. (5.15)

The g-symbol class generalises the usual symbol class in the compact case.

Lemma 5.16. If M is compact, then σ D
g is the localisation at g of the usual class

of σD in KKG(pt, TM).

Proof. If M is compact, then we can choose U = V = M . Then, since the map
pM
: M→ pt is proper, we have

σ D
g = (p

M
∗
[σD])g,

which is the usual symbol class by Lemma 4.5. �

We now prove some properties of the g-symbol class that will be used in the
proof of Theorem 2.16. As before, we write σ̃D := σD/

√
σ 2

D + 1.

Lemma 5.17. The class

(k M
V )
∗

g[σD]g ∈ KKG(V, TM)g

is the localisation at g of the class

[σD|V ]TM := [00(τ
∗

V (E |V )), σ̃D|TV , πV ] ∈ KKG(V, TM).
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Here, the C0(TM)-valued inner product on 00(E |V ) is defined by the natural
C0(TV )-valued inner product, composed with the inclusion kTM

TV .

Proof. The class
(k M

V )
∗
[σD] ∈ KKG(V, TM)

is represented by the Kasparov cycle

(00(τ
∗

M E), σ̃D, (k M
V )
∗πM)= (00(τ

∗

V (E |V )), σ̃D|TV , πV )

⊕ (00(τ
∗

M\V (E |M\V )), σ̃D|TM\TV , 0).

The second summand on the right-hand side is a degenerate cycle, so the claim
follows. �

Consider the class

U [σD|TMg ] :=
[
00(τ

∗

Mg (E |Mg )), σ̃D|TMg ,
(

jU
Mg

)
∗
πMg

]
∈ KKG(U , TMg).

Lemma 5.18. We have(
j V
U

)
∗

(
U [σD|TMg ]

)
= ( j TM

TMg )
∗
[σD|V ]TM ∈ KKG(V, TMg).

Proof. By definition,

( j TM
TMg )

∗
[σD|V ]TM =

[
00(τ

∗

V (E |V ))⊗ j TM
TMg

C0(TMg), σ̃D|V ⊗ 1, πV ⊗ 1
]
.

The map
00(τ

∗

V (E |V ))⊗ j TM
TMg

C0(TMg)→ 00(τ
∗

Mg (E |Mg ))

that maps s ⊗ ϕ to ϕs|TMg , for s ∈ 00(τ
∗

V (E |V )) and ϕ ∈ C0(TMg), is an iso-
morphism of Hilbert C0(TMg)-modules. It intertwines the operators σ̃D|V ⊗ 1
and σ̃D|TMg , and the representations πV ⊗ 1 and

( j V
Mg )∗πMg =

(
j V
U

)
∗

(
jU
Mg

)
∗
πMg .

The lemma is then proved. �

Proposition 5.19. The class

( j TM
TMg )

∗

gσ
D
g ∈ KKG(pt, TMg)g

is the localisation at g of the usual class [σD|TMg ] in the equivariant topological
K-theory of TMg.

Proof. By commutativity of (the top left part of) diagram (5.5), we have

( j TM
TMg )

∗

gσ
D
g =

(
pU
∗

)
g ◦
((

j V
U

)
∗

)−1
g ◦ ( j TM

TMg )
∗

g ◦ (k
M
V )
∗

g[σD]g.

By Lemma 5.17, we have

(k M
V )
∗

g[σD]g = ([σD|V ]TM)g.
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By Lemma 5.18 we have((
j V
U

)
∗

)−1
g ◦ ( j TM

TMg )
∗

g([σD|V ]TM)g =U [σD|TMg ]g.

By Lemma 4.5, we have

pU
∗

(
U [σD|TMg ]

)
= [σD|TMg ] ∈ KKG(pt, TMg).

So the claim follows. �

We have now finished all preparation needed to prove Theorem 2.16.

Proof of Theorem 2.16. Using Kasparov’s index theorem, Theorem 4.6, and com-
mutativity of (5.13), we find that

indexg(D)= (evg)g ◦
(

pU
∗

)
g ◦
((

j V
U

)
∗

)−1
g ◦ (k

M
V )
∗

g[D]

= (evg)g ◦
(

pU
∗

)
g ◦
((

j V
U

)
∗

)−1
g ◦ (k

M
V )
∗

g ◦ (indext)g[σD]g

= indexAS
t
(
(( j TM

TMg )
∗σ D

g )(g)⊗TMg (( j TN
TMg )

∗βN )
−1(g)

)
.

By Lemma 4.24 and Proposition 5.19, the latter expression equals

indexAS
t
(
[σD|TMg ](g)⊗TMg

[∧
NC

]−1
(g)
)
.

Furthermore,

[σD|TMg ](g)⊗TMg
[
τ ∗Mg

∧
NC

]−1
(g)= [σD|TMg ](g) ·

[∧
NC

]−1
(g),

where the dot means the right K 0
G(M

g)-module structure of K 0
G(TMg). We con-

clude that
indexg(D)= indexAS

t
(
[σD|TMg ](g) ·

[∧
NC

]−1
(g)
)
.

Theorem 2.16 now follows from the definition of the topological index map (4.25),
and multiplicativity of the Chern character. �

5E. The index pairing. The arguments used to prove Theorem 2.16 also imply
Theorem 2.18 about the index pairing. In fact, the parts of the proof of Theorem 2.16
about localisation in the first entry of KK-theory are not needed in the proof of
Theorem 2.18.

The key step is a localisation property of the K-homology class of D, localised
at g.

Proposition 5.20. We have

[D]g = ( j TM
TMg )

∗

g[σD]g ⊗TMg
[
τ ∗Mg

∧
NC

]−1
g ⊗TMg [DTMg ]g ∈ KKG(M, pt)g.
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Proof. Lemmas 5.2 and 5.3 imply that the following diagram commutes:

KKG(M, TM)
−⊗TM [DTM ]

//

( j TM
TMg )

∗

��

KKG(M, pt)

KKG(M, TMg) KKG(M, TMg)

( j TM
TMg )!

kk

−⊗TMg [DTMg ]

OO

−⊗TMg ( j TN
TMg )

∗βN

oo

Therefore, the claim follows from Lemmas 4.24 and 5.7, and Theorem 4.6. �

Proof of Theorem 2.18. Let [F] ∈ KKG(pt,M) be as in Section 2E. By compat-
ibility of the Kasparov product with localisation and evaluation, Proposition 5.20
implies that

([F]⊗M [D])(g)

= ([F]g ⊗M [D]g)(g)

= ([F]g ⊗M ( j TM
TMg )

∗

g[σD]g)(g)⊗TMg
[
τ ∗Mg

∧
NC

]
(g)−1

⊗TMg [DTMg ](g).
Now

([F]g⊗M ( j TM
TMg )

∗

g[σD]g)(g)=[τ ∗Mg (F |Mg )](g)⊗[σD|TMg ](g)∈ KK(pt, TMg)⊗C,

where on the right-hand side, the tensor product denotes the ring structure on the
topological K-theory of TMg. Therefore, and because [DTMg ](g)= [DTMg ]⊗ 1 is
in KK(TMg, pt)⊗C, the claim follows from Lemma 4.26. �

6. Examples and applications

The g-index was defined in terms of KK-theory, but Theorem 2.16 allows us to
express it entirely in cohomological terms. Using this theorem, we can compute
the g-index explicitly in examples, and show how it is related to other indices.

For finite fixed point sets, Theorem 2.16 has a simpler form, as discussed in
Section 6A. In Section 6B, we give a linearisation theorem for the g-index of a
twisted Dolbeault–Dirac operator on a complex manifold, in the case of a finite
fixed point set. We then work out the example of the Dolbeault–Dirac operator
on the complex plane, acted on by the circle, in Section 6C. An illustration of the
linearisation theorem is given in Section 6D, where we apply it to the two-sphere,
to decompose the usual equivariant index. In Section 6E, we realise characters
of discrete series representations of semisimple Lie groups on regular points of a
maximal torus, in terms of the g-index. For Fredholm operators, and in particular
Callias-type deformations of Dirac operators, we describe the relation between the
g-index and the character of the action by g on the kernel of such an operator,
in Section 6F. We then give a relation with an index studied by Braverman in
Section 6G, and a relative index theorem along the lines of work by Gromov and
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Lawson in Section 6H. In Section 6I, we mention some geometric consequences
of the vanishing or nonvanishing of the g-index of a Hodge–Dirac or Spin-Dirac
operator.

6A. Finite fixed point sets. If the fixed point set Mg is zero-dimensional, then
TMg

= Mg, τMg is the identity map, Todd(TMg
⊗C) is trivial and

ch([σD|TMg ](g))= Tr(g|E+)−Tr(g|E−).

Furthermore, since Mg only consists of isolated points, we have

K 0(Mg)=
⊕

m∈Mg

Z= H∗(Mg),

and the Chern character is the identity map. So we now have, at a fixed point
m ∈ Mg,

ch
([∧

NC

]
(g)
)

m = ch
([∧

TMC|Mg
]
(g)
)

m = detR(1− g|Tm M).

The last equality is obtained by evaluating the virtual character of
∧

Tm MC at g,
so one obtains

TrC(g|∧even Tm MC
)−TrC(g|∧odd Tm MC

).

Therefore, Theorem 2.16 implies the following generalisation of Atiyah and Bott’s
fixed point theorem [1968, Theorem A] to noncompact manifolds, but for com-
pact G.

Corollary 6.1. When Mg is a finite set of points,

indexg(D)=
∑

m∈Mg

Tr(g|E+m )−Tr(g|E−m )

detR(1− g−1|Tm M)
. (6.2)

Remark 6.3. In the statement of the Atiyah–Bott fixed point theorem, the denom-
inator is |detR(1− g|Tm M)|. In our case, g is contained in a compact group G, so
the real eigenvalues of g are 1 or −1. Thus detR(1− g−1

|Tm M) is always positive.
See also page 186 in [Berline et al. 1992]. Also, the fact that g acts orthogonally
on Tm M implies that detR(1− g−1

|Tm M)= detR(1− g|Tm M).

Now suppose that M is a complex manifold, and g is holomorphic. Let F→ M
be a holomorphic vector bundle, and consider the Dolbeault–Dirac operator ∂̄F+ ∂̄

∗

F
on M , coupled to F .

Corollary 6.4. If Mg is a finite set of points, then

indexg(∂̄F + ∂̄
∗

F )=
∑

m∈Mg

TrC(g|Fm )

detC(1− g−1|Tm M)
. (6.5)
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For equivalent expressions, note that

detC(1− g−1
|T 1,0

m M)= detC(1− g−1
|Tm M)= detC(1− g|T 0,1

m M)

in (6.5).

Proof. In Theorem 4.12 of [Atiyah and Bott 1968], it is shown that in this situation,
the right-hand side of (6.2) equals the right-hand side of (6.5). The key observation
is that the supertrace of g|∧∗(T 0,1 M) is cancelled by the second factor in

detR(1− g−1
|Tm M)= detC(1− g−1

|T 1,0
m M)detC(1− g−1

|T 0,1
m M).

(See also [Berline et al. 1992, Corollary 6.8].) �

6B. A holomorphic linearisation theorem. A tool used in some index problems
is a linearisation theorem, relating an index to indices on vector spaces. See for
example Chapter 4 of [Guillemin et al. 2002] and Theorem 7.2 in [Braverman
2002]. A version for Callias-type operators can be deduced from Theorem 2.16 in
[Braverman and Shi 2016]. In those references, cobordism arguments are used to
prove linearisation theorems. We will use the excision property of the g-index to
obtain an analogous result. (So we do not use Theorem 2.16 here.) We will state
and prove this result in the setting of Corollary 6.4, where M is a complex manifold,
D is the Dolbeault–Dirac operator coupled to a holomorphic vector bundle F→M ,
and Mg is finite. A more general statement, where Mg is not finite or D is not a
Dolbeault–Dirac operator, is possible, but would be less explicit.

Under these assumptions, for any m ∈ Mg, let ∂̄Tm M be the Dolbeault operator
on the complex vector space Tm M .

Corollary 6.6 (holomorphic linearisation theorem). We have

indexg(∂̄F + ∂̄
∗

F )=
∑

m∈Mg

TrC(g|Fm ) indexg(∂̄
Tm M
+ (∂̄Tm M)∗).

Proof. By Lemma 2.11, the g-index of ∂̄F+ ∂̄
∗

F equals the g-index of the Dolbeault–
Dirac operator on the union over m ∈ Mg of the tangent spaces Tm M , coupled to
the vector bundle which on every space Tm M is trivial with fibre Fm . It follows
directly from the definition that the g-index is additive with respect to disjoint
unions. Hence

indexg(∂̄F + ∂̄
∗

F )=
∑

m∈Mg

indexg(∂̄
Tm M
⊗ 1Fm + (∂̄

Tm M)∗⊗ 1Fm )

=

∑
m∈Mg

TrC(g|Fm ) indexg(∂̄
Tm M
+ (∂̄Tm M)∗). �

An example on computing and explicitly realising an index of the form

indexg(∂̄
Tm M
+ (∂̄Tm M)∗),
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as in Corollary 6.6, is given in the next subsection. An example showing that the
linearisation theorem gives a natural result if M is compact is given in Section 6D.

6C. The circle acting on the plane. Consider the usual action by the circle T1
=

U(1) on the complex plane C, and the (untwisted) Dolbeault–Dirac operator ∂̄+ ∂̄∗

on C. We will compute the distribution 2 on T1 given by the function

g 7→ indexg(∂̄ + ∂̄
∗). (6.7)

This function is defined on the set of elements g ∈ T1 with dense powers, i.e., the
elements of the form g = e

√
−1α, where α ∈ R \ 2πQ. So the function is defined

almost everywhere.
By Corollary 6.4, we have for such g

indexg(∂̄ + ∂̄
∗)=

1
1−g−1 .

So the function (6.7) is given by g 7→ 1/(1− g−1) almost everywhere. One can
deduce that the sum of functions

∞∑
k=0

(g 7→ g−k) (6.8)

converges as a distribution on T1 to 2.
This allows us to describe the g-index of ∂̄+∂̄∗ in terms of its kernel. Indeed, con-

sider the Euclidean density dz = dx dy on C, and the corresponding space L2(C).
Let O(C) be the space of holomorphic functions on C. Let ψ ∈ C∞(C) be a
positive, T1-invariant function. Let L2(C, ψ) be the completion of C∞c (C) to a
Hilbert space with respect to the inner product

( f1, f2)ψ := (ψ f1, ψ f2)L2(C). (6.9)

Let π be the representation of T1 in L2(C, ψ) given by

(π(g) f )(z)= f (g−1z),

for all g ∈ T1, f ∈ L2(C, ψ) and z ∈ C.
Set

OL2(C, ψ) := O(C)∩ L2(C, ψ).

For k ∈ Z≥0, let ek
∈ O(C) be the function z 7→ zk . Then for all k ∈ Z≥0 and z ∈ C,

π(g)ek
= g−kek . (6.10)

Suppose ψ was chosen so that ek
∈ L2(C, ψ) for all k. For example, one can take

ψ(z)= e−|z|
2/2.
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Let �0,∗
L2 (C) be the Hilbert space of square-integrable forms of type (0, ∗). Let

�
0,∗
L2 (C, ψ) be the analogous Hilbert space with the inner product weighted by ψ

as in (6.9). Set

kerL2,ψ(∂̄ + ∂̄
∗)± := ker(∂̄ + ∂̄∗)± ∩�0,∗

L2 (C, ψ).

We can realise the distribution 2 given by the g-indices of ∂̄ + ∂̄∗ in terms of the
representation of T1 in this space.

Proposition 6.11. The restriction of the representation π of T1 to kerL2,ψ(∂̄+ ∂̄
∗)±

has a distributional character χ±, and we have

2= χ+−χ− ∈D′(T1).

Proof. First note that
ker(∂̄ + ∂̄∗)+ = O(C),

ker(∂̄ + ∂̄∗)− = 0.

So we only need to consider the even part of kerL2,ψ(∂̄ + ∂̄
∗), which equals

kerL2,ψ(∂̄ + ∂̄
∗)+ = OL2(C, ψ). (6.12)

The functions {ek
}k≥0 form an orthogonal basis of OL2(C, ψ). By (6.10), the char-

acter of the representation π on the space (6.12) equals the series (6.8), which
converges to 2. �

Remark 6.13. The L2(C, ψ)-kernel of ∂̄ + ∂̄∗ can be identified as the L2-kernel
of a deformed operator. For example, let ψ(z)= e−|z|

2/2. Recall that ∂̄ + ∂̄∗ is an
operator on �0,∗(C), given by

∂̄ + ∂̄∗ = c(dz) ∂
∂z
+ c(dz̄) ∂

∂ z̄
,

where now c(dz̄)= 1
√

2
ext(dz̄) and c(dz)=− 1

√
2

int(dz). (See [Berline et al. 1992,
Section 3.6].) Set

b := 1
2

zc(dz̄).

Then b∗ =− 1
2 z̄c(dz). We have the deformed operator

∂̄ + b = c(dz̄)
(
∂

∂ z̄
+

z
2

)
:�0,0(C)→�0,1(C),

(∂̄ + b)∗ = c(dz)
(
∂

∂z
−

z̄
2

)
:�0,1(C)→�0,0(C).

The operator U : �0,∗(C) → �0,∗(C, ψ) given by U (α) = ψ−1α is a unitary
isomorphism. We have

∂̄U ( f )= ∂̄(ψ−1 f )= ψ−1
(
∂̄ +

z
2

)
f =U

((
∂̄ +

z
2

)
f
)
.
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Similarly, U intertwines ∂̄∗ and (∂̄ + b)∗. It then follows that

kerL2(∂̄ + b)∼= kerL2,ψ(∂̄),

kerL2(∂̄ + b)∗ ∼= kerL2,ψ(∂̄
∗)= 0.

6D. The circle acting on the two-sphere. As in Section 6C, we consider the circle
group T1, this time acting by rotations on the two-sphere S2. In this compact setting,
the usual index theory, and the Atiyah–Segal–Singer theorem apply. But we can
use the g-index to decompose indices in this case.

We embed T1 ∼= SO(2) into SO(3) in the top-left corner. Then S2
= SO(3)/T1.

Identifying this space with P1(C), we obtain a complex structure on it. Fix n ∈Z≥0.
Let Cn be the space of complex numbers, on which T1 acts by

g · z = gnz,

for g ∈ T1 and z ∈ Cn . We have the line bundle

Ln := SO(3)×T1 Cn→ S2.

Let ∂̄n + ∂̄
∗
n be the Dolbeault–Dirac operator on S2, coupled to Ln . Since S2 is

compact, we have the equivariant index

indexSO(3)(∂̄n + ∂̄
∗

n ) ∈ R(SO(3)).

By the Borel–Weil–Bott theorem, this index is the irreducible representation Vn of
SO(3) with highest weight n (with respect to the positive root corresponding to the
identification of S2 with P1(C)).

Fix an element g ∈ T1 with dense powers. By the Atiyah–Segal–Singer theorem,
or Corollary 6.4, the character of Vn evaluated at g equals

indexT1(∂̄n + ∂̄
∗

n )(g)=
gn

1− g−1 +
g−n

1− g
. (6.14)

The two terms on the right-hand side correspond to the two fixed points of the
action by T1. This expression can be rewritten as the finite sum

2n∑
j=0

g j−n.

This is the usual decomposition of Vn|T1 into irreducible representations of T1.
So far, we have done nothing new in this example. But let ∂̄C

+ (∂̄C)∗ be the
Dolbeault–Dirac operator on C. Then the linearisation theorem, Corollary 6.6,
implies that

indexT1(∂̄n + ∂̄
∗

n )(g)= indexg(∂̄
C
+ (∂̄C)∗)gn

+ indexg−1(∂̄C
+ (∂̄C)∗)g−n.
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As we saw in Section 6C, Corollary 6.4 implies that

indexg(∂̄
C
+ (∂̄C)∗)=

1
1− g−1 ,

and likewise with g replaced by g−1. This agrees with (6.14). Using Proposition 6.11,
we can realise the latter index as the character of the representation of T1 in

kerL2,ψ(∂̄ + ∂̄
∗)+,

with ψ as in Section 6C.

6E. Discrete series characters. In this subsection only, we use the letter G to
denote a connected, semisimple Lie group. Let T < G be a maximal torus, and
suppose it is a Cartan subgroup of G, i.e., G has discrete series representations.
(The torus T plays the role that the group G plays in the rest of this paper; we have
changed notation because this is standard in the current setting.) Let K < G be a
maximal compact subgroup containing T . We denote the normalisers of T in G
and K by NG(T ) and NK (T ), respectively.

Lemma 6.15. The fixed point set of the action by T on G/T is NK (T )/T , the Weyl
group Wc of (kC, tC).

Proof. Since
(G/T )T = NG(T )/T,

it is enough to show that
NG(T )= NK (T ).

To prove this, let g= p⊕ k be the Cartan decomposition of g. Suppose X ∈ p, such
that exp(t X) ∈ NG(T ) for all t ∈ R. Then for all H ∈ t,

exp(t X) exp(H) exp(−t X)= exp(Ad(exp(t X))H) ∈ T .

So [X, H ] ∈ t. Because X ∈p and H ∈ t⊂ k, we have [X, H ] ∈p. Hence [X, H ]=0.
Since t is maximal commutative, we find that X ∈ t, so that X = 0. Therefore, an
element Y ∈ g such that exp(tY ) ∈ NG(T ) for all t ∈ R must lie in k. Since G is
connected, the claim follows. �

Example 6.16. If G = SL(2,R), then a strongly elliptic coadjoint orbit of G is
equivariantly diffeomorphic to G/T . This is now a hyperbolic plane, on which T
acts by rotations. This action has one fixed point, corresponding to the trivial Weyl
group of K = T .

Let λ∈ it∗ be regular (in the sense that (α, λ) 6= 0 for all roots α, for a Weyl group
invariant inner product). Fix a set R+ of positive roots for (gC, tC) by defining a
root α to be positive if (α, λ) > 0. Let ρ be half the sum of the positive roots.
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The choice of positive roots determines a G-invariant complex structure on the
manifold G/T , defined by

T 0,1
eT (G/T )= (g/t)0,1 :=

⊕
α∈R+

(gC)−α. (6.17)

Suppose λ+ρ is an integral weight. Then λ−ρ is integral as well, and we have
the holomorphic line bundle

Lλ−ρ := G×T Cλ−ρ→ G/T,

where T acts on Cλ−ρ := C via the weight eλ−ρ . Let

∂̄Lλ−ρ + ∂̄
∗

Lλ−ρ

be the Dolbeault–Dirac operator on G/T , coupled to Lλ−ρ .
Let 2λ be the distributional character of the discrete series representation of G

with infinitesimal character λ.

Proposition 6.18. Let g ∈ T be such that the powers of g are dense in T . (Then in
particular, g is a regular element.) One has

indexg(∂̄Lλ−ρ + ∂̄
∗

Lλ−ρ )= (−1)dim(G/K )/22λ(g).

Proof. The proof is analogous to Atiyah and Bott’s derivation of the Weyl character
formula from their fixed point theorem in [Atiyah and Bott 1968, Section 5]. By
Corollary 6.4 and Lemma 6.15, we have

indexg(∂̄Lλ−ρ + ∂̄
∗

Lλ−ρ )=
∑

aT∈NK (T )/T

eλ−ρ(a−1ga)

det(1−Ad0,1
g/t(a−1ga))

. (6.19)

Here Ad0,1
g/t : T → GL((g/t)0,1) is induced by the adjoint representation. Because

of (6.17), we have

det(1−Ad0,1
g/t(a

−1ga))=
∏
α∈R+

(1− e−α(a−1ga)).

Since in the identification NK (T )/T = Wc, the normaliser NK (T ) acts on it∗

via the coadjoint action, we find that (6.19) equals∑
w∈Wc

ew·(λ−ρ)∏
α∈R+(1− e−w·α)

(g). (6.20)

Consider the Weyl denominator

1 := eρ
∏
α∈R+

(1− e−α).
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One has, for all w ∈Wc,

w ·1 := ew·ρ
∏
α∈R+

(1− e−w·α)= ε(w)1,

where ε(w)= detw is the sign of w. Hence we find that (6.20) equals∑
w∈Wc

ε(w)ew·λ

1
(g).

(This expression still makes sense if ρ is not an integral weight.) By Harish-
Chandra’s character formula for the discrete series (see [Harish-Chandra 1966,
Theorem 16] or [Knapp 2001, Theorem 12.7]), this is (−1)dim(G/K )/22λ(g). �

Note that Proposition 6.18 only relates the value of the character 2λ at g to
the g-index of ∂̄Lλ−ρ + ∂̄

∗

Lλ−ρ if g is a regular element of some maximal torus.
Such elements form an open subset of G, and characters are not determined by
their restrictions to this set. However, we can still use Proposition 6.18 to give a
description of the g-index in terms of the kernel of ∂̄Lλ−ρ + ∂̄

∗

Lλ−ρ .

Proposition 6.21. Suppose G is a linear group. Then the representation of G in
the L2-kernel of (∂̄Lλ−ρ + ∂̄

∗

Lλ−ρ )
± has a distributional character 2± that can be

evaluated at g, and one has

indexg(∂̄Lλ−ρ + ∂̄
∗

Lλ−ρ )=2
+(g)−2−(g).

Proof. This follows from Proposition 6.18 and Schmid’s realisation of the discrete
series in the L2-Dolbeault cohomology of G/T with values in Lλ−ρ , in [Schmid
1976, Theorem 1.5]. Schmid’s result implies that the space

kerL2(∂̄Lλ−ρ + ∂̄
∗

Lλ−ρ )
±

equals zero if ±=−(−1)dim(G/K )/2, and the representation of G in this space is the
discrete series representation with infinitesimal character λ if ±= (−1)dim(G/K )/2.
(The integer k in Schmid’s result now equals dim(G/K )/2, and his λ is our λ−ρ.)
Hence,

2+−2− = (−1)dim(G/K )/22λ.

So the claim follows from Proposition 6.18. �

Paradan [2003] gave a realisation of restrictions of discrete series representa-
tions to maximal compact subgroups, as an equivariant index of a deformation of
the operator ∂̄Lλ−ρ + ∂̄

∗

Lλ−ρ . That realisation allowed him to apply the quantisation
commutes with reduction principle to find a geometric formula for multiplicities of
K-types.

In the paper [Hochs and Wang 2017], we further explore the relation between
index theory and characters of the discrete series.
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6F. Fredholm operators. We return to the notation used in the rest of this paper
except for Section 6E, where G is a compact Abelian group generated topologically
by an element g ∈ G.

For Fredholm operators, it is a natural question how the g-index of such an
operator is related to the traces of g acting on even and odd parts of its kernel. This
depends on the behaviour of the operator “towards infinity”. To make this more
explicit, let M+ be the one-point compactification of M . The point at infinity is
fixed by g. Let U, V ⊂ M be as in Section 2B. Let U ′, V ′ ⊂ M+ be g-invariant
neighbourhoods of the point at infinity, such that U ′ ⊂ V ′, and V ∩ V ′ =∅. Then
U tU ′ and V t V ′ are neighbourhoods of (M+)g as in (2.5). Lemma 2.6 therefore
implies that for any σ -unital G-C∗ algebra A, the following diagram commutes:

KKG(C(M+), A)g

(pM+
∗ )g

��

(k M+
V )∗g⊕(k

M+
V ′ )

∗
g

// KKG(C0(V ), A)g ⊕ KKG(C0(V ′), A)g

(( j V
U
)∗)
−1
g ⊕(( j V ′

U ′
)∗)
−1
g

��

KKG(C(U ), A)g ⊕ KKG(C(U ′), A)g

(pU
∗ )g⊕(p

U ′
∗ )g

��

KKG(C, A)g KKG(C, A)g ⊕ KKG(C, A)g
+

oo

(6.22)

Indeed, since M+ is compact, one can apply Lemma 2.6 to the pairs of neighbour-
hoods U tU ′ ⊂ V t V ′ and M+ ⊂ M+ of (M+)g.

Now suppose that (D2
+ 1)−1 is a compact operator. Then F := D/

√
D2+ 1 is

Fredholm, so kerL2(D) is finite-dimensional. Let the representation

πM+ : C(M+)→B(L2(E))

be defined for f ∈ C0(M) and z ∈ C by

πM+( f + z)= πM( f )+ z. (6.23)

Then the triple (L2(E), F, πM+) is a Kasparov (C(M+),C)-module. Let

M+[D] ∈ KKG(M+, pt) (6.24)

be its class. In this case, we will write index∞g (D) for a version of the g-index of
D that captures the behaviour of D at infinity:

index∞g (D) := (evg) ◦
(

pU ′
∗

)
g ◦
((

j V ′

U ′
)
∗

)−1
g ◦ (k

M+
V ′ )

∗

g(M+[D]g). (6.25)

Proposition 6.26. If (D2
+ 1)−1 is compact, then

Tr(g on kerL2(D+))−Tr(g on kerL2(D−))= indexg(D)+ index∞g (D). (6.27)
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Proof. By commutativity of (6.22), with A = C, we have

(evg)g ◦ (pM+
∗
)g[D] = indexg(D)+ index∞g (D). (6.28)

Now
pM+
∗
[D] = [L2(E), F] = [ker F, 0] ∈ KKG(pt, pt),

so the left-hand sides of (6.27) and (6.28) are equal. �

In concrete situations, knowledge of index∞g (D) then allows one to use the fixed
point formula in Theorem 2.16 to compute the left-hand side of (6.27).

This can be made more explicit in a situation relevant to the treatment of Callias-
type deformations of Dirac operators in the context of KK-theory in [Bunke 1995;
Kucerovsky 2001]. Suppose that 8∈End(E)G is an odd, self-adjoint vector bundle
endomorphism. Suppose that 82

− 1E tends to zero at infinity, so that it is a
compact operator on 00(E). Then (00(E),8, πM+) is an equivariant Kasparov
(C(M+),C0(M))-cycle. Let [8] ∈ KKG(M+,M) be its class. Now we do not
assume that (D2

+ 1)−1 itself is compact, but that

[D8] := [8]⊗M [D] ∈ KKG(M+, pt)

is the class of an elliptic operator D8 as in (6.24). Then (D2
8+ 1)−1 is compact.

(The idea is that D8 = D +8 if D8+8D is sufficiently small; compare this
with [Bunke 1995, Proposition 2.18].) By functoriality of the Kasparov product,
we have for U ′, V ′ ⊂ M as above,

index∞g (D8)= (evg)g
(((

pU ′
∗

)
g ◦
((

j V ′

U ′
)
∗

)−1
g ◦ (k

M+
V ′ )

∗

g[8]g
)
⊗M [D]g

)
. (6.29)

This expression has the advantage that 8 is a vector bundle endomorphism, which
makes (6.29) easier to evaluate than (6.25). In particular, if 82

= 1E on V ′ ∩M ,
then (k M+

V ′ )
∗
[8] = 0. In that case, Theorem 2.16 and Proposition 6.26 imply that

Tr(g on kerL2(D+8))−Tr(g on kerL2(D−8))

=

∫
TMg

ch([σD8
|TMg ](g))Todd(TMg

⊗C)

ch
([∧

NC

]
(g)
) . (6.30)

Example 6.31. Let M = Cn, and let g be the diagonal action by n nontrivial ele-
ments of U(1). Then Mg

= {0}, and N = Cn. Let βCn ∈ KKG(pt,C2n) be the Bott
element as in Definition 4.12. Now the class [D1] ∈ KKG(C

2n, pt) as in (4.15) is
the Dolbeault class of C2n. The Kasparov product

βCn ⊗C2n [D1] ∈ KKG(pt, pt)

is represented by the elliptic operator DB := B⊗ 1+ 1⊗ D1 as in (4.21). Hence
(D2

B + 1)−1 is a compact operator. In the proof of Lemma 4.19, we saw that the
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L2-kernel of DB is spanned by the g-invariant function (4.23). So

Tr(g on kerL2(D+B ))−Tr(g on kerL2(D−B ))= 1. (6.32)

On the other hand, let b∈C∞(R) be an odd function, with values in [−1, 1], such
that b(x)= 1 for all x ≥ 1. If we replace B(1+ B2)−1/2 by b(B) in (4.11), then the
resulting class in KKG(pt,C2n) is the same class βCn . But with this normalisation
function, we have b(B)2 = 1 outside the unit ball in Cn . So

index∞g (DB)= 0. (6.33)

Finally, by Corollary 6.4, with F =
∧

ÑC =
∧

C2n , we have

indexg(DB)= 1. (6.34)

The equalities (6.32), (6.33) and (6.34) illustrate Proposition 6.26 in this case.

Example 6.35. In the setting of Theorem 2.18, the index pairing [F] ⊗M [D] in
KKG(pt, pt) is represented by a Fredholm operator DF . Analogously to (6.29),
we have index∞g (DF ) = 0, so that Proposition 6.26 and Theorem 2.16 yield an
expression for Tr(g on kerL2(D+F ))−Tr(g on kerL2(D−F )). But in this setting, the
same expression follows directly from Theorem 2.18.

See Remark 7.10 for the construction of a Fredholm operator D f v as a deforma-
tion of any elliptic operator D, with index∞g (D f v)= 0.

6G. Braverman’s index. Suppose X ∈ g such that g = exp X . Let X M be the
vector field on M defined by X . Suppose D is a Dirac-type operator, and consider
the deformed operator

D f
X := D+

√
−1 fc(X M).

Here f ∈ C∞(M)G , and c : TM → End(E) is a given Clifford action, used to
define the Dirac operator D. Braverman [2002, Theorem 7.5] obtained a fixed
point theorem for such operators. This implies that the g-index equals Braverman’s
index in this case.

Corollary 6.36. If f is admissible [Braverman 2002, Definition 2.6], then the rep-
resentation of G in kerL2(D f

X )
± has a character χ± that can be evaluated at g,

and one has
indexg(D)= χ+(g)−χ−(g).

Proof. The fixed point formula for indexg(D) in Theorem 2.16 is precisely the
evaluation at g of the right-hand side of the formula in [Braverman 2002, Theorem
7.5]. (This equality also shows that kerL2(D f

X ) has a character that can be evaluated
at g.) �
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Remark 6.37. In the above construction, the element X ∈ g, which represents the
taming map used in [Braverman 2002], depends on the group element g. So the g-
index of D is not the character of the Braverman index of D deformed by a single
taming map, but the taming map depends on g.

6H. A relative index theorem. Gromov and Lawson [1983, Theorem 4.18] obtain
a relative index formula for pairs of elliptic operators that coincide outside compact
sets. (See Theorem 2.18 in [Braverman and Shi 2016] for a version for Callias-type
operators.) There is an analogue of this result for the g-index.

For j = 0, 1, let M j be a manifold with the same structure and properties as M .
Let E j → M j be a vector bundle like E → M , and let D j be an operator on
E j like D on E . Suppose there are relatively compact neighbourhoods U j of Mg

j
outside of which M j , E j and D j can be identified. As on page 38 of [Gromov and
Lawson 1983], we compactify M j to a manifold M̃ j , by taking a neighbourhood
V j of U j , and attaching a compact manifold X to it. Since M0 \ V0 = M1 \ V1, the
same manifold X can be used for j = 0, 1. Extend the vector bundles E j and the
operators D j to vector bundles Ẽ j→ M̃ j and elliptic operators D̃ j on Ẽ j . Suppose
the map g extends to M̃ j and Ẽ j , commuting with D̃ j ; this extends to continuous
actions by G on M̃ j and Ẽ j preserving D̃ j .

Proposition 6.38 (relative index theorem). We have

indexg(D1)− indexg(D0)= indexG(D̃1)(g)− indexG(D̃0)(g).

Since the manifolds M̃ j are compact, the indices on the right-hand side of this
equality are given by the usual equivariant index.

Proof. By the Atiyah–Segal–Singer fixed point theorem (or Theorem 2.16), we
have, for j = 0, 1,

indexG(D̃ j )(g)=
∫

TMg
j

ch
(
[σD̃ j
|TMg

j
](g)

)
Todd(TMg

j ⊗C)

ch
([∧

(N j )C
]
(g)
)

+

∫
TX g

ch
(
[σD̃ j
|TX g ](g)

)
Todd(TX g

⊗C)

ch
([∧

(NX )C
]
(g)
) .

Here N j → Mg
j and NX → X g are normal bundles to fixed point sets. Since

σD̃1
|TX g = σD̃0

|TX g , Theorem 2.16 implies the claim. �

6I. Some geometric consequences. The g-index of a G-equivariant elliptic opera-
tor is a topological invariant of the group action that can be used to detect geometric
properties of the action. We illustrate this in the cases of the Hodge–de Rham and
Spin-Dirac operators.
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Let D = d + d∗ : �even
C
(M) → �odd

C
(M) be the Hodge–de Rham operator

on M , acting on complex differential forms. The symbol class of this operator
is
[
τ ∗M
∧

TMC

]
, whose restriction to TMg equals

[σD|TMg ] =
[
τ ∗Mg

∧
NC

]
⊗
[
τ ∗Mg

∧
TMg

C

]
. (6.39)

Let DMg be the componentwise defined Hodge–de Rham operator on Mg. Then
Theorem 2.16 and (6.39) imply that

indexg(d+d∗)=
∫

TMg
ch(σDMg )Todd(TMg

⊗C)= index(DMg )=χ(Mg), (6.40)

the Euler characteristic of Mg. (See also [Lawson and Michelsohn 1989, p. 262].)

Corollary 6.41. If indexg(d + d∗) 6= 0, then every g-invariant vector field on M
has a zero on Mg.

Proof. A g-invariant vector field on M restricts to a vector field on Mg. If it does
not vanish there, then χ(Mg)= 0. So the claim follows from (6.40). �

Next, suppose that M is a Spin manifold, and that g lifts to the spinor bundle.
Let D be the Spin-Dirac operator.

Corollary 6.42. If G is connected, M is noncompact, and indexg(D)= 0, then the
one-point compactification M+ of M is not a G-equivariant Spin manifold.

Proof. If M+ is a G-equivariant Spin manifold with Dirac operator DM+ , then the
vanishing result of Atiyah and Hirzebruch [1970] and Theorem 2.16 imply that

0= indexg(DM+)= indexg(D)+ a∞.

Here a∞ is the contribution to the right-hand side of (2.17) of the fixed point at
infinity, which is nonzero by [Atiyah and Bott 1968, Theorem 8.35]. �

7. A nonlocalised index formula

In the compact case, the Kirillov formula is a nonlocalised expression for the
equivariant index of an elliptic operator; see [Berline et al. 1992, Theorem 8.2].
This can be deduced from the fixed point formula in the compact case. In the
case of noncompact manifolds, there is also a nonlocalised expression for the g-
index, Proposition 7.8 below. This follows from Kasparov’s index theorem and
the properties of the g-symbol class introduced in Section 5D, rather than from
Theorem 2.16.

A potentially interesting feature of this nonlocalised formula is that it involves
the same kind of deformed symbols as the ones used for Dirac operators on sym-
plectic manifolds in [Paradan 2011]. Those deformed symbols are transversally
elliptic rather than elliptic. Berline and Vergne obtained a generalisation of the
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Atiyah–Segal–Singer fixed point formula to transversally elliptic operators or sym-
bols; see [Berline and Vergne 1996a, Main Theorem 1; 1996b, Theorem 20]. This
formula involves a distribution on the group. It was pointed out to the authors by
Vergne that this formula implies that for the deformed symbols we will consider,
at points g where this distribution is given by a function, it is given by the g-index.

The index of such a deformed symbol was shown to equal the index of a de-
formed Dirac operator in Theorem 5.5 in [Braverman 2002]. In Theorem 1.5 in
[Ma and Zhang 2014], this index is proved to be equal to another index of deformed
Dirac operators, defined using the Atiyah–Patodi–Singer index on manifolds with
boundary. In contrast to [Braverman 2002; Ma and Zhang 2014; Paradan 2011],
the expression for the g-index in terms of deformed symbols is independent of the
choices made in this deformation. Furthermore, it applies to more general elliptic
operators than Dirac operators.

We shall describe the g-symbol class σ D
g of Definition 5.14 more explicitly,

using a deformed symbol. Let v be a G-invariant vector field on M that does not
vanish outside V .

Example 7.1. If X ∈ g such that g = exp(X), one can take the vector field v
induced by X . This vector field obviously depends on g.

Example 7.2. If H is a compact Lie group acting on M , containing G, then it
can be possible to choose a single vector field v that works for all elements of H .
Indeed, suppose there is an H -equivariant map ψ :M→ h, and consider the Kirwan
vector field v, defined by

vm :=
d
dt

∣∣∣
t=0

exp(tψ(m)) ·m,

for m ∈ M . Suppose this vector field is nonzero outside a compact set. Then ψ
is a taming map as in Definition 2.4 in [Braverman 2002]. In this case, the vector
field v can be used for any element of H .

Let f : V → R≥0 be a G-invariant continuous function, such that f (m) = 0
when m ∈U and limm→m′ f (m)=∞ if m′ ∈ ∂V . Consider the deformed symbol
σD, f v ∈ End(τ ∗V (E |V )), given by

σD, f v(u) := σD(u+ f (m)vm) (7.3)

for m ∈ V and u ∈ Tm M . Set

σ̃D, f v :=
σD, f v

√

σ 2
D, f v + 1

.

This defines an odd, self-adjoint, bounded operator on the Hilbert C0(TV )-module
00(τ

∗

V (E |V )). Furthermore, we have for every vector field u on M , and every
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m′ ∈ ∂V ,
lim

m→m′
σ̃D, f v(um)= sgn(σD(vm′)).

We extend σ̃D, f v to a continuous vector bundle endomorphism of τ ∗M E by setting

σ̃D, f v(u) := sgn(σD(vm))

for all u ∈ Tm M , where m ∈ M \ V . (Since vm 6= 0 if m ∈ M \ V , this operator is
invertible outside V .)

Note that
σ̃D, f v(u)2− 1→ 0 (7.4)

as u→∞ in TM . Indeed, let m ∈M and u ∈ Tm M be given. If m 6∈ V , then vm 6= 0
and σ̃D, f v(u)2 = 1. And if m ∈ V , then

σ̃D, f v(u)2− 1= (σD(u+ f (m)vm)
2
+ 1)−1.

Since D is elliptic and has first order, this goes to zero as u →∞ in TV . We
therefore find that (00(τ

∗

M E), σ̃D, f v) is a Kasparov (C,C0(TM))-cycle. Let

pt[σD, f v] ∈ KKG(pt, TM)

be its class, which will be called the deformed symbol class.

Lemma 7.5. The localisation of the deformed symbol class at g is σ D
g , i.e.,

pt[σD, f v]g = σ
D
g ∈ KKG(pt, TM)g.

Proof. As in Section 6F, let M+ be the one-point compactification of M . Let
U, V,U ′, V ′ ⊂ M+ be as in that subsection. Consider the class

M+[σD, f v] := [00(τ
∗

M E), σ̃D, f v, πM+] ∈ KKG(M+, TM),

where πM+ is as in (6.23). Then by commutativity of (6.22), for A = C0(TM), we
have

pt[σD, f v]g =
(

pM+
∗

)
g(M+[σD, f v])

=
(

pU
∗

)
g ◦
((

j V
U

)
∗

)−1
g ◦

(
k M+

V
)∗

g(M+[σD, f v]g)

+ (pU ′
∗
)g ◦

((
j V ′

U ′
)
∗

)−1
g ◦

(
k M+

V ′
)∗

g(M+[σD, f v]g). (7.6)

Now since f = 0 on V , we have(
k M+

V
)∗
(M+[σD, f v])=

(
k M

V
)∗
[σD].

So the first term in (7.6) equals σ D
g . Furthermore,(

k M+
V ′
)∗
(M+[σD, f v])= [0

∞(E |V ′), sgn(σD(v)), πV ′] = 0,

since this class is represented by a degenerate cycle. �
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Remark 7.7. Instead of (7.3), we could have used a more general deformed symbol
of the form

σD, f8(u) := σD(u)+ f (m)8m,

for m ∈ M , u ∈ Tm M and a G-equivariant, fibrewise self-adjoint, odd vector bundle
endomorphism 8 of E , which is invertible outside V . We have used the natural
choice 8= σD(v).

The realisation of the g-symbol class in Lemma 7.5 leads to the following non-
local formula for the g-index.

Proposition 7.8 (nonlocalised formula for the g-index). The g-index of D is cal-
culated by

indexg(D)= (pt[σD, f v]⊗TM [DTM ])(g). (7.9)

Proof. It follows from Definitions (2.8) and 5.14, and Theorem 4.6, that

indexg(D)= (σ D
g ⊗TM [DTM ]g)(g).

The claim therefore follows from Lemma 7.5. �

Remark 7.10. Recall that when M is noncompact, indexg(D) is defined using
KK-functorial maps. In Proposition 7.8, the class

pt[σD, f v]⊗TM [DTM ] ∈ KKG(pt, pt)

is represented by a Fredholm operator D f v , defined in terms of the deformed sym-
bol σD, f v and the Dolbeault–Dirac operator DTM . Proposition 7.8 states that

indexg(D)= Tr(g on kerL2(D+f v))−Tr(g on kerL2(D−f v)). (7.11)

Then Theorem 2.16 yields a cohomological expression for the right-hand side
of (7.11). (Note the analogy with (6.30); we now have index∞g (D f v)= 0.)
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Connectedness of cup products for
polynomial representations of GLn and applications

Antoine Touzé

We find conditions such that cup products induce isomorphisms in low degrees
for extensions between stable polynomial representations of the general linear
group. We apply this result to prove generalizations and variants of the Steinberg
tensor product theorem. Our connectedness bounds for cup product maps depend
on numerical invariants which seem also relevant to other problems, such as the
cohomological behavior of the Schur functor.

1. Introduction

Let k be a field of positive characteristic p, and let G be an algebraic group over k.
The category of rational representations of G (as in [Jantzen 2003]) is equipped
with a tensor product, which induces a cup product on extension groups:

Ext∗G(M, N )⊗Ext∗G(P, Q)
∪
−→ Ext∗G(M ⊗ P, N ⊗ Q).

Of course the cup product is injective (but usually not surjective) in cohomological
degree zero, and in general it is neither injective nor surjective in higher degrees. If
G =GLn(k), it was observed in [Touzé 2010] that the cup product is injective in all
degrees when M , N , P , Q are stable polynomial representations, i.e., when M , N ,
P , Q are polynomial representations in the usual sense [Green 2007; Martin 1993]
and furthermore when n is big enough with respect to their degrees. This surprising
fact is easily proved by using the description of stable polynomial representations
in terms of the strict polynomial functors of Friedlander and Suslin [1997].

The first main result of this article is Theorem 3.6, which establishes conditions
under which cup products are not only injective, but also surjective in low degrees.
Theorem 3.6 actually applies to the case where N and Q are representations twisted
r times by the Frobenius morphism, i.e., for cup products of the form

Ext∗G(M, N )⊗Ext∗G(P
(r), Q(r))

∪
−→ Ext∗G(M ⊗ P (r), N ⊗ Q(r)).

This work was supported in part by the Labex CEMPI (ANR-11–LABX–0007–01).
MSC2010: primary 20G10; secondary 18G15.
Keywords: cup products, strict polynomial functors, Steinberg’s tensor product theorem, Schur
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As for injectivity in [Touzé 2010], the natural home for stating and proving this
connectedness property of cup products is the category of strict polynomial func-
tors. We note that already in degrees 0 and 1, our theorem looks much stronger
than what was previously known for the behavior of cup products; see Remark 4.7.

We then give concrete applications of Theorem 3.6 to the representation theory
of GLn(k). Namely, we prove the following two new generalizations of Steinberg’s
tensor product theorem.

• We call tensor products of Steinberg type the stable polynomial representa-
tions of the form M ⊗ N (r), where all the composition factors of M have
pr-restricted highest weights. Representations of this form appear naturally,
e.g., in the theory of good p-filtrations [Andersen 2001].

In Theorem 5.8, we describe the structure of the abelian subcategory gen-
erated by these tensor products of Steinberg type (with r and deg M fixed). In
particular, we prove that the GLn(k)-module M ⊗ N (r) has the same structure
as the GLn(k) × GLn(k)-module M ⊗ N . This is interesting because the
latter is much easier to study. (The classical Steinberg tensor product theorem
corresponds to the very special case where M and N are simple. Indeed, in
that case M ⊗ N is simple as a GLn(k)×GLn(k)-module, and thus by our
theorem the GLn(k)-module M ⊗ N (r) is simple too).

• As made explicit in [Krause 2013], stable polynomial representations are
equipped with an internal tensor product (Day convolution product), dual to
the internal Hom used in Ext-computations, e.g., in [Touzé 2013b; 2014]. In
Theorem 6.2 we explain how to reduce the computation of internal tensor
products of simples to the case of simples with p-restricted highest weights.
Thus, Theorem 6.2 plays the same role for understanding internal tensor prod-
ucts of simples as the classical Steinberg tensor product theorem does for
understanding ordinary tensor products of simples.

In Appendix B we show that Theorem 3.6 can also be used to derive new proofs
of two well-known fundamental theorems for simple representations of GLn(k):
Steinberg’s tensor product theorem and Clausen and James’ theorem. We note that
another functor technology proof of Steinberg’s tensor product theorem is given in
[Kuhn 2002]. The proof given here seems quite different; see Remark B.11.

The bounds for connectedness given in Theorem 3.6 depend on some cohomo-
logical constants p(M, r) and i(N , r). To be more specific, a projective stable
polynomial module is pr-bounded if its socle is a direct sum of simples with pr-
restricted highest weights; see Corollary 4.2. The integer p(M, r) is characterized
by:

p(M, r)≥ k if and only if there exists a resolution P of M in which the
first k terms P0, . . . , Pk−1 are pr-bounded projectives.
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The integer i(N , r) is defined dually; see Definition 3.4. Although we use this
definition for stable polynomial representations, it makes sense for unstable poly-
nomial representations as well. We are not aware of previous occurrences of these
constants in the literature. We study their basic properties and give characteriza-
tions of these constants, as well as elementary computation rules and examples. In
most examples, we limit ourselves to giving estimates for these constants rather
than exact values, and leave the following challenging problem open.

Problem. Compute (or obtain a reasonable understanding of) the exact value of
p(M, r) and i(M, r) for the most important GLn(k)-modules (simple modules,
standard or costandard modules).

One further motivation for this problem is that the constants p(M, r) and i(M, r)
seem to be related to other problems of interest. Let us give two examples.
• In Theorem 8.2, we prove that the constants p(M, 1) and i(M, 1) govern the

connectedness of the Schur functor on the level of extensions. The cohomo-
logical behavior of the Schur functor was already studied in a series of papers
[Doty et al. 2004; Kleshchev and Nakano 2001; Kleshchev and Sheth 1999].
Our Theorem 8.2 gives a simpler and effective approach to this problem. For
example, with our first computations of i(F, 1) and p(F, 1), we recover and
generalize many results from [Kleshchev and Nakano 2001].

• It seems that the values of p(L , r) capture some interesting concrete proper-
ties of simple functors L . Clausen and James’ theorem [Clausen 1980; James
1980] says that p(L , 1)> 0 if and only if the highest weight of L is p-restricted.
Reischuk [2016] has proved that p(L , 1) > 1 if and only if Qd

⊗ L is simple,
where Qd is the simple head of Sd (see Section 6 and in particular Theorem 6.2
and Corollaries 6.6 and 6.9 to understand why this particular internal tensor
product is interesting). It would be interesting to understand if higher inequal-
ities p(L , 1) > k (of cohomological nature) are directly connected to some
nonhomological representation-theoretic properties of L .

We finish by explaining a wider perspective behind the work presented here.
Functor category techniques have proved useful for studying representations and
cohomology of many variants of classical matrix groups. See, e.g., [Touzé 2010]
for symplectic and orthogonal group schemes, [Axtell 2013; Drupieski 2016] for
super Schur algebras, [Hong and Yacobi 2017] for quantum GLn , [Franjou et al.
1999; Djament and Vespa 2010] for finite classical groups or more generally [Dja-
ment 2012] for discrete unitary groups. In these examples, the functor categories in
play share many properties with the category of strict polynomial functors used here.
So we expect that the techniques and results developed in this article can be adapted
to these cases. For example, we prove in [Touzé 2017a] an analogue of Theorem 3.6
for polynomial representations of orthogonal and symplectic group schemes.
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This article has been written in such a way that the main thread of ideas and
proofs is self-contained. In particular, only very basic facts of the representation
theory of general linear groups are used (the highest weight category structure
is used only for the results of Section 7B) and no combinatorics of the symmetric
group is used (except a result of Bessenrodt and Kleshchev [2000] in Corollary 6.6).
These basic facts are recalled in Section 2. In the same spirit, we have also added
an appendix on representations of tensor products of finite dimensional algebras,
whose results are used in Section 5.

2. Background

2A. Strict polynomial functors and Schur algebras. In this article k is a field
of positive characteristic p, and Pd,k denotes the category of homogeneous strict
polynomial functors of degree d over k (with possibly infinite dimensional values).
We refer, e.g., to [Friedlander 2003], [Friedlander and Suslin 1997] or [Krause
2013] for an introduction to strict polynomial functors. If one considers an infinite
ground field k, strict polynomial functors have a nice description like the one in
[Macdonald 1995] (where they are simply called “polynomial functors”). Namely,
strict polynomial functors are functors from finite dimensional k-vector spaces to
k-vector spaces, such that for all pairs of finite dimensional vector spaces (V,W ),
the map

Homk(V,W )→ Homk(F(V ), F(W )),

f 7→ F( f )

is given by a homogeneous polynomial of degree d (that is, given by an element
of Sd(Homk(V,W )∗)⊗Homk(F(V ), F(W ))).

For example, the category P0,k is equivalent to the category of constant functors,
which is equivalent to the category of k-vector spaces. Typical examples of homo-
geneous functors of higher degree d are the tensor product functors ⊗d

: V 7→ V⊗d ,
the symmetric power functors Sd

: V 7→ (V⊗d)Sd and the divided power functors
0d
: V 7→ (V⊗d)Sd . (Here the symmetric group Sd acts on V⊗d by permuting the

factors of the tensor product). Note that S0
=⊗

0
= 00

= k and S1
=⊗

1
= 01, but

for d ≥ p the functor Sd is not isomorphic to 0d .
We denote by Pk the category of strict polynomial functors (of bounded degree),

that is, Pk=
⊕

d≥0 Pd,k. Thus, objects of Pk decompose as finite direct sums of ho-
mogeneous functors, and there are no nonzero morphisms between homogeneous
functors of different degrees. All functors of vector spaces considered in this article
will actually be strict polynomial functors of bounded degree, and hence we will
always omit the terms “of bounded degree”, and we will often omit the terms “strict
polynomial”.
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By evaluating a strict polynomial functor F on kn , one obtains a polynomial
GLn(k)-module F(kn). Restricting to homogeneous strict polynomial functors of
degree d , one obtains a functor

Pd,k
evkn
−−→ Pold,GLn(k) ' S(n, d)-Mod,

where Pold,GLn(k) denotes the category of homogeneous polynomial representa-
tions of GLn(k) of degree d , and S(n, d)-Mod the equivalent category of modules
over the Schur algebra S(n, d) (which is finite dimensional). It is an equivalence
of categories, provided n ≥ d . (Friedlander and Sulin [1997] proved it for functors
with finite dimensional values, but their proof actually works in the general case;
see also [Krause 2013].) In particular, Pk has nice properties similar to those of
modules over a finite dimensional algebra. We shall use the following ones in the
sequel.

(1) Simple functors are homogeneous functors, and their values are finite dimen-
sional vector spaces. A functor has a finite composition series if and only if
it has finite dimensional values; such functors are called finite. Finally, every
functor is the union of its finite subfunctors.

(2) Arbitrary direct sums of injective functors are injective, and every functor can
be embedded into a direct sum of finite injectives.

(3) Any nonzero strict polynomial functor has a nonzero socle, a nonzero head
and a finite Loewy length.

2B. Frobenius twists. let k be a field of positive characteristic p. For all r ≥ 0, we
denote by I (r) the r -th Frobenius twist functor. The functor I (0)= I = S1

=01
=31

is the identity functor. More generally, for all r ≥ 0 the functor I (r) is the unique
simple additive functor of degree pr (up to isomorphism).

Notation 2.1. We use the traditional notation F (r) = F ◦ I (r). We also denote by
F ⊗G(r) the tensor product of F and G(r), i.e., Frobenius twists have a priority
higher than tensor products in our notations.

The effect on Ext∗ of precomposition by Frobenius twist is now well understood
in all degrees [Touzé 2013a; Chałupnik 2015]. In particular, in degrees i = 0 or
i = 1, the k-linear morphism

ExtiPk
(F,G)→ ExtiPk

(F (r),G(r))

induced by precomposition by I (r) is an isomorphism. This description of the
effect of precomposition by Frobenius twists in degrees 0 and 1 can be proved by
very elementary means; see, e.g., [Breen et al. 2016, Appendix A]. We will not
need to know about higher degrees, except in the proof of Proposition 7.3.
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2C. Elementary facts regarding simple functors. Traditionally, simple polyno-
mial GLn(k)-modules are classified by examining the action of a maximal torus on
GLn(k)-modules, that is, using the concept of highest weights; see, e.g., [Martin
1993, Chapter 1]. In the sequel of the article, we shall use the following conse-
quences of this classification.

(1) Isomorphism classes of simple functors are in bijective correspondence with
partitions. For each partition λ= (λ1, . . . , λk) we fix a simple functor Lλ in the
corresponding isomorphism class. Then Lλ is homogeneous of degree

∑
λi .

We call λ the highest weight of Lλ. Indeed, by evaluating on kn , we obtain
a simple polynomial module Lλ(kn) with highest weight λ. For example, the
only simple functor of degree 0 is L(0) = k.

(2) Simple functors are self-dual. To be more specific, each simple functor L is
isomorphic to its dual L], defined by L](V ) := L(V ∗)∗.

(3) Simple functors have endomorphism rings of dimension 1.

(4) For all partitions λ and µ and all r ≥ 0, Lλ+prµ is a composition factor of
Lλ⊗ L(r)µ .

Remark 2.2. Actually, one needs the fact that k is algebraically closed to obtain
easily (by Schur’s lemma) that the endomorphism ring of a simple functor has
dimension one. When k is not algebraically closed, this can be proved using the
fact that Schur algebras are quasihereditary; see, e.g., [Martin 1993, Chapter 3].

2D. Bifunctors and sum-diagonal adjunction. We will need strict polynomial
functors with several variables for intermediate computations, as well as in the
study of tensor products of Steinberg type in Section 5. Definitions and basic
properties of strict polynomial functors extend without problem to the case of
functors with several variables, and we refer to [Suslin et al. 1997, Section 2],
[Touzé 2010, Section 2] or [Touzé 2017b, Section 3] for details. We recall here the
main features of the theory in the context of bifunctors, and leave to the reader the
obvious formulas with three variables or more.

Given two nonnegative integers d1 and d2, we denote by Pd1,d2,k the category
of homogeneous strict polynomial bifunctors of bidegree (d1, d2) (with possibly
infinite dimensional values). Typical examples of objects of this category are the
bifunctors of separable type, which are the bifunctors of the form

F �G : (V,W ) 7→ F(V )⊗G(W ),

where F and G are homogeneous strict polynomial functors of degree d1 and d2,
respectively. Just as in the one variable case, evaluating bifunctors on a pair of
vector spaces (kn, km) yields a functor

Pd1,d2,k→ S(n, d1)⊗ S(m, d2)-Mod,
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where S(m, d1) and S(m, d2) are Schur algebras (which are finite dimensional).
Moreover, this functor is an equivalence of categories if n ≥ d1 and m ≥ d2. In
particular Pd1,d2,k satisfies the three properties mentioned at the end of Section 2A.
We have a Künneth morphism

Ext∗Pd1,k
(F1,G1)⊗Ext∗Pd2,k

(F2,G2)
κ
−→ Ext∗Pd1,d2,k

(F1 � F2,G1 �G2),

which is an isomorphism if the quadruple (F1,G1, F2,G2) satisfies the following
condition.

Condition 2.3 (Künneth condition). In the quadruple (F1,G1, F2,G2), F1 and F2

are both finite functors, or F1 and G1 are both finite functors.

We also denote by Pd,k(2) the category of homogeneous strict polynomial bi-
functors of total degree d , and by Pk(2) the category of strict polynomial functors
of bounded degree, with possibly infinite dimensional values. We have decompo-
sitions

Pk(2)=
⊕
d≥0

Pd,k(2), Pd,k(2) =
⊕

d1+d2=d

Pd1,d2,k.

In particular, each bifunctor B decomposes uniquely as a direct sum B=
⊕

B(d1,d2),
where B(d1,d2) is a homogeneous strict polynomial bifunctor of bidegree (d1, d2).
We shall refer to B(d1,d2) as the homogeneous component of bidegree (d1, d2) of B.
A typical example of (degree d homogeneous) bifunctor is the bifunctor

F� : (V,W ) 7→ F(V ⊕W ),

where F is a (degree d homogeneous) strict polynomial functor of degree d . Con-
versely, from a (degree d homogeneous) bifunctor B of total degree d one can
construct a (degree d homogeneous) strict polynomial functor with one variable
by diagonal evaluation:

B1 : V 7→ B(V, V ).

These two constructions are exact and adjoint to each other on both sides. Hence
we have graded isomorphisms

Ext∗Pk(2)(B, F�)' Ext∗Pk
(B1, F),

Ext∗Pk(2)(F�, B)' Ext∗Pk
(F, B1).

These two isomorphisms were first used in the context of strict polynomial functors
in [Franjou et al. 1999]. In this article, they will be the key tool for Theorem 3.6.
As in [Franjou et al. 1999], we will often use them when B is of separable type
B = G � H , and hence when B1 = G⊗ H .
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2E. The internal tensor product. The category Pd,k is endowed with a closed
symmetric monoidal structure. We denote this internal tensor product by ⊗, and
by Hom the associated internal hom. We refer the reader to [Krause 2013] for a
presentation of this internal tensor product. We study the internal tensor product
of simple functors in Section 6. For this purpose, we will use the following facts.

(1) If F is a functor, we denote by F V the parametrized functor

W 7→ F(Homk(V,W )).

Then the internal Hom is the functor given by

Hom(F,G)(V )= HomPd,k(F
V,G).

(2) The study of internal tensor products can be reduced to the study of internal
Hom by using the isomorphism natural with respect to F,G:

(F ⊗G)] ' Hom(F,G]).

Here ] is the duality defined by F](V ) = F(V ∗)∗, where ∗ is the k-linear
duality of vector spaces.

Remark 2.4. Schur algebras do not have a Hopf algebra structure in general. (In-
deed, Schur algebras have finite global dimension, and a Hopf algebra structure
would make them self-injective in addition, and hence semisimple.) Thus the in-
ternal tensor product on Pd,k is an example of a monoidal product which does not
come from a Hopf algebra structure.

2F. Connection with representations of symmetric groups. The Schur functors
relate strict polynomial functors to representations of the symmetric groups Sd .
We will use these Schur functors in Sections 6 and 8. Let d be a positive integer.
Consider the right action of the symmetric group Sd on ⊗d given by permuting
the factors of the tensor product. The Schur functor is the functor

fd := HomPd,k(⊗
d, – ) : Pd,k→ kSd -Mod.

Since ⊗d is projective, the Schur functor fd is exact. It has adjoints on both sides.
To be more specific, the left adjoint `d is defined by `d(M)= (⊗d)⊗Sd M , while
the right adjoint rd is defined by rd(M)= ((⊗d)⊗M)Sd . The unit and counit of
adjunction induce natural isomorphisms

M
'
−→ fd(`d(M)), fd(rd(M))

'
−→ M.

In particular, the Schur functor fd is a quotient functor.
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3. Exts in low degrees between tensor products

3A. Definition of i(F, r) and p(F, r). For all tuples λ= (λ1, . . . , λn) of nonneg-
ative integers, we let

0λ := 0λ1 ⊗ · · ·⊗0λn and Sλ := Sλ1 ⊗ · · ·⊗ Sλn .

Let T denote the set of all tuples of nonnegative integers. Then the family (0λ)λ∈T
forms a projective generator of Pk, while the family (Sλ)λ∈T forms an injective
cogenerator of Pk.

Definition 3.1. Let r be a nonnegative integer. A tuple of nonnegative integers
λ= (λ1, . . . , λn) is pr-bounded if λk < pr for all k. A basic pr-bounded projective
(resp. injective) is a functor of the form 0λ (resp. Sλ), where λ is pr-bounded. A
strict polynomial functor F is left pr-bounded if it is a quotient of a direct sum of
basic pr-bounded projectives. Similarly, F is right pr-bounded if it embeds in a
product of basic pr-bounded injectives.

Remark 3.2. If r = 0, the tuple (0, . . . , 0) is the only pr-bounded tuple. Since
00
= S0

= k, a functor is p0-bounded if and only if it is constant.

The following lemma collects elementary facts on pr-bounded functors.

Lemma 3.3. (1) The following statements are equivalent:
(i) F is right pr-bounded,

(ii) Soc(F) is right pr-bounded,
(iii) F embeds into a direct sum of basic pr-bounded injectives.

(2) The following statements are equivalent:
(i′) F is left pr-bounded,

(ii′) Head(F) is left pr-bounded,
(iii′) F is the union of finite left pr-bounded subfunctors.

Proof. (1) It is clear that (iii)⇒(i)⇒(ii). If (ii) holds, then each simple summand of
Soc(F) embeds into a basic pr-bounded injective. Thus Soc(F) embeds into a di-
rect sum of basic pr-bounded injectives J . Since J is injective, the monomorphism
Soc(F) ↪→ J extends to a map φ : F→ J . But Soc(kerφ)⊂ kerφ ∩ Soc(F)= 0
so φ is injective. This proves (iii).

(2) It is clear that (i′)⇒(ii′). The proof of (ii′)⇒(i′) is dual to the one of (ii)⇒(iii).
Let us prove (i′)⇔(iii′). If F is left pr-bounded, there is a map π :

⊕
λ∈A 0

λ � F .
Thus F is the union of the images of the π

(⊕
λ∈B 0

λ
)
, where B is a finite subset

of A. Conversely, if F is the union of a family of finite left pr-bounded functors Fα ,
then F is a quotient of

⊕
Fα. Hence F is left pr-bounded. �

Definition 3.4. Let r be a nonnegative integer, and let F be a strict polynomial
functor.
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(1) We define p(F, r) ∈ [0,+∞] as the supremum of all the integers n ≥ 0
such that F admits a projective resolution P in which the first n objects
P0, . . . , Pn−1 are left pr-bounded.

(2) We define i(F, r)∈[0,+∞] as the supremum of all the integers n≥0 such that
F admits an injective resolution J in which the first n objects J 0, . . . , J n−1

are right pr-bounded.

Remark 3.5. (i) By definition p(F, r) > 0 if and only if F is left pr-bounded,
and i(F, r) > 0 if and only if F is right pr-bounded.

(ii) If pr > deg F , then all projectives or injectives appearing in any resolution of
F are pr-bounded, so p(F, r)= i(F, r)=+∞. In particular, if F is constant,
it is homogeneous of degree 0 and i(F, r)= p(F, r)=+∞ for all r ≥ 0.

(iii) In the definition, p(F, r) and i(F, r) belong to [0,+∞]. However, the cat-
egory Pd,k has finite global dimension gldim(d, k), which is explicitly com-
puted in [Totaro 1997]. If F is homogeneous of degree d, then p(F, r) and
i(F, r) actually belong to [0, . . . , gldim(d, k)] ∪ {+∞}.

3B. Application to the connectedness of cup products. The tensor product on Pk ,
⊗ : Pk×Pk→ Pk, induces a cup product on extension groups in the usual way;
see, e.g., [Benson 1998, Section 3.2]. The purpose of this section is to prove the
following result.

Theorem 3.6. Let (F,G, X, Y ) be a quadruple of homogeneous strict polynomial
functors satisfying the Künneth condition (Condition 2.3), and let r ≥ 0. The cup
product induces a graded injective map

Ext∗Pk
(F,G)⊗Ext∗Pk

(X (r), Y (r)) ↪→ Ext∗Pk
(F ⊗ X (r),G⊗ Y (r)).

Moreover, this graded injective map is an isomorphism in degree k in the following
situations:

(1) when deg F < deg G, and k < i(G, r);

(2) when deg F > deg G, and k < p(F, r);

(3) when deg F = deg G, and k < p(F, r)+ i(G, r).

Remark 3.7. If deg F 6= deg G then the domain of the cup product is zero, as there
is no nonzero Ext between homogeneous functors of different degrees. Thus, in
cases (1) and (2), Theorem 3.6 merely says that the codomain of the cup product
is zero in low degrees.

The remainder of Section 3 is devoted to the proof of Theorem 3.6. Observe
that we have a factorization of cup products
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Ext∗Pk
(F,G)⊗Ext∗Pk

(X (r), Y (r))

κ

��

∪ // Ext∗Pk
(F ⊗ X (r),G⊗ Y (r))

Ext∗Pk(2)(F � X (r),G � Y (r))

–1

33

In particular, Theorem 3.6 is a consequence of the following slightly more general
statement, in which the Künneth condition is removed.

Theorem 3.8. Let F,G, X, Y be homogeneous functors, and let r ≥ 0 . Diagonal
evaluation induces a graded injective map

Ext∗Pk(2)(F � X (r),G � Y (r)) ↪→ Ext∗Pk
(F ⊗ X (r),G⊗ Y (r)).

Moreover, this graded injective map is an isomorphism in degree k in the situations
listed in Theorem 3.6.

The proof of Theorem 3.8 relies on a series of lemmas. The proofs of these lem-
mas are all based upon the sum-diagonal adjunction technique recalled in Section 2D.

Lemma 3.9. Let F,G, F ′,G ′ be homogeneous functors satisfying deg F = deg G
and deg F ′ = deg G ′. Diagonal evaluation yields an injective map

Ext∗Pk(2)(F � F ′,G �G ′) ↪→ Ext∗Pk
(F ⊗ F ′,G⊗G ′)

whose cokernel is isomorphic to the following direct sum, indexed by the tuples of
nonnegative integers (d1, d2, e1, e2) such that d2 > 0 and e1 > 0:⊕

0<d2,e1
0≤d1,e2

Ext∗Pk(2)
(
F � F ′, (G�)

(d1,d2)⊗ (G ′�)
(e1,e2)

)
.

This cokernel is also isomorphic to the direct sum⊕
0<d2,e1
0≤d1,e2

Ext∗Pk(2)
(
(F�)

(d1,d2)⊗ (F ′�)
(e1,e2),G �G ′

)
.

Proof. We recall the proof of injectivity from [Touzé 2010] and prove the first
description of the cokernel. The proof of the second description is similar. The
map given by diagonal evaluation is equal to the composite of the map

η∗ : Ext∗Pk(2)(F � F ′,G �G ′)→ Ext∗Pk(2)(F � F ′, (G⊗G ′)�)

induced by the canonical map η :G�G ′→ (G⊗G ′)�, together with the adjunction
isomorphism

Ext∗Pk(2)(F � F ′, (G⊗G ′)�)' Ext∗Pk
(F ⊗ F ′,G⊗G ′).
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Thus, to prove Lemma 3.9, it suffices to prove that η∗ is injective and to identify
its cokernel. But

(G⊗G ′)� = G�⊗G ′�,

and there is a decomposition

(G⊗G ′)� = G �G ′⊕
⊕

d2>0 or e1>0

(G�)
(d1,d2)⊗ (G ′�)

(e1,e2).

The map η identifies with the inclusion of G � G ′ into the right-hand side, and
since the decomposition is a direct sum, it follows that η∗ admits a section, and the
cokernel of η∗ is isomorphic to⊕

d2>0 or e1>0

Ext∗Pk(2)(F � F ′, (G�)
(d1,d2)⊗ (G ′�)

(e1,e2)).

This is almost the description of the cokernel given in Lemma 3.9, but the sum-
mation index is different. Since there are no nonzero extensions between ho-
mogeneous bifunctors of different degrees, all the terms in the direct sum are
zero, except the ones satisfying d1 + e1 = deg F and d2 + e2 = deg F ′. Since
d1+d2 = deg G = deg F , the nonzero terms in the direct sum satisfy e1 = d2. Thus
we can replace the summation index “d2 > 0 or e1 > 0” by “e1 > 0 and d2 > 0”
and we are done. �

The proof of the next lemma is omitted since it is very similar to the proof of
Lemma 3.9.

Lemma 3.10. Let F, F ′,G,G ′ be homogeneous functors. If deg F > deg G, then
Ext∗Pk

(F ⊗ F ′,G⊗G ′) is isomorphic to the following direct sum, indexed by the
tuples of nonnegative integers (d1, d2, e1, e2) such that e1 > 0:⊕

0<e1
0≤d1,d2,e2

Ext∗Pk
(F � F ′, (G�)

(d1,d2)⊗ (G ′�)
(e1,e2)).

If deg F < deg G, then it is isomorphic to⊕
0<e1

0≤d1,d2,e2

Ext∗Pk
((F�)

(d1,d2)⊗ (F ′�)
(e1,e2),G �G ′).

The next two vanishing lemmas are analogues of the key vanishing result (i.e.,
Pirashvili’s vanishing) of [Friedlander and Suslin 1997, Theorem 2.13].

Lemma 3.11. Let F and G be homogeneous functors with deg G > 0 and let λ be
a pr-bounded tuple. Then

HomPk(F ⊗G(r), Sλ)= 0= HomPk(0
λ, F ⊗G(r)).



CONNECTEDNESS OF CUP PRODUCTS AND APPLICATIONS 299

Proof. We prove the first equality. The proof of the second one is similar. We will
use the fact that for all homogeneous G of positive degree and for all pr-bounded
tuples ν,

HomPk(G
(r), Sν)= 0. (∗)

This is proved when G has finite dimensional values in [Touzé 2012, Lemma 2.3],
and it holds for an arbitrary G because any functor is the colimit of its finite
subfunctors. (Alternatively, one could also prove this vanishing by sum-diagonal
adjunction.) To reduce the equality of Lemma 3.11 to formula (∗), we proceed as
follows. First, sum-diagonal adjunction yields an isomorphism:

HomPk(F ⊗G(r), Sλ)' HomPk(F �G(r), (Sλ)�).

We observe that (Sλ)� decomposes as a direct sum of tensor products of the form
Sµ� Sν such that µ and ν are pr-bounded. Thus Lemma 3.11 will be proved if we
can prove that HomPk(F �G(r), Sµ� Sν) is zero when µ and ν are pr-bounded.
So let φ : F �G(r)

→ Sµ� Sν be a morphism. By freezing the first variable of the
bifunctors, we obtain for all V a morphism of functors

φV : F(V )⊗G(r)( – )→ Sµ(V )⊗ Sν( – ).

By formula (∗), φV must be zero for all V . In particular, φ must be zero. �

Lemma 3.12. Let r be a positive integer, let J be a be a right pr-bounded injective
functor, let P be a left pr-bounded projective functor, let Z be a homogeneous
functor and let B and C be two homogeneous bifunctors. If deg C = (e1, e2) with
e1 > 0, and C (r) denotes the bifunctor (V,W ) 7→ C(V (r),W (r)), then

Ext∗Pk(2)(B⊗C (r), J � Z)= 0= Ext∗Pk(2)(P � Z , B⊗C (r)).

Proof. We prove the first equality. The proof of the second one is similar. If JZ is
an injective resolution of the functor Z , then J � JZ is an injective resolution of
the bifunctor J � Z . Thus, it is sufficient to do the proof in degree zero (i.e., for
Hom) and when Z is injective, the general case will follow by taking resolutions.
So let us take a morphism of bifunctors φ : B⊗C (r)

→ J � Z . Then by freezing
the first variable of the bifunctors, we obtain for all V a morphism of functors:

φV : B(V, – )⊗C (r)(V, – )→ J (V )⊗ Z( – ).

But by Lemma 3.11, φV is zero for all V . In particular, φ must be zero. �

Proof of Theorem 3.8. By Lemma 3.9, diagonal evaluation yields an injective mor-
phism on the Ext-level (if deg F 6= deg G or deg X 6= deg Y , the source of the cup
product morphism is zero for degree reasons, so that injectivity is trivial). Hence,
it remains to prove the cancellation in low degrees of the cokernel, described in
Lemmas 3.9 and 3.10.
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Assume that deg F ≥ deg G. Take a finite resolution of F of the form:

0→ F→ Fp(F,r)−1→ · · · → F0→ F→ 0

where the functors Fk with k < p(F, r) are left pr-bounded projective functors.
Take B and C as in Lemma 3.12. By using long exact sequences, we obtain that
for all k ∈ Z (with the convention that Ext are zero in nonpositive degrees):

Ext∗Pk(2)(F � X (r), B⊗C (r))' Ext∗−p(F,r)
Pk(2) (F � X (r), B⊗C (r)). (∗)

In particular the Ext on the left-hand side is (p(F, r)− 1)-connected, i.e., zero in
degrees ∗< p(F, r). By Lemmas 3.9 and 3.10, the case where B = (F�)

(d1,d2) and
C (r)
= (Y (r)� )(e1,e2) with e1> 0 implies that the cup product induces an isomorphism

in degrees less than p(F, r). A similar argument shows that the cup product is
an isomorphism in degrees less than i(G, r) if deg F ≤ deg G. Assume now that
deg F = deg G. By Lemma 3.9 and isomorphism (∗), the statement of Theorem 3.8
is equivalent to showing that

Ext∗Pk(2)
(
F � X (r), (G�)

(d1,d2)⊗ (Y (r)� )(e1,e2)
)

is (i(G, r)− 1)-connected for d2 > 0 and e1 > 0. By Lemma 3.9 again, this is
equivalent to showing that the cup product

Ext∗Pk
(F,G)⊗Ext∗Pk

(X (r), Y (r))→ Ext∗Pk
(F ⊗ X (r),G⊗ Y (r))

is an isomorphism in degrees less than i(G, r). But we have already proved that
the latter holds, since deg F ≤ deg G. �

4. An equivalent definition of p(F, r) and i(F, r)

The next proposition gives an equivalent definition of p(F, r) and i(F, r). While
the proof of Theorem 3.6 really relies on Definition 3.1, this new definition is useful
for applying Theorem 3.6 in concrete situations. In particular, the translation of
Theorem 3.6 in low degrees given in Corollary 4.4 will be used in Sections 5 and 6.

Recall that a partition λ= (λ1, . . . , λn) is pr-restricted (for some nonnegative
integer r ) if λn < pr and for i < n, λi −λi+1 < pr. By convention, the partition (0)
is pr-restricted for all r ≥ 0. Using euclidean division, one sees that any partition
λ can be written in a unique way as a sum λ= λ0

+ prλ1, where λ0 is pr-restricted.
A simple indexed by a pr-restricted partition will be loosely called a pr-restricted
simple. The proof of Proposition 4.1 relies on two classical fundamental results on
simple polynomial representations in positive characteristic. We state them here
with references to the literature, but we prove in Appendix B that both of them can
actually be derived from Theorem 3.6.
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(1) Steinberg’s tensor product theorem [Jantzen 2003, II.3.17]. If λ is pr-restricted
and µ is an arbitrary partition, then Lλ⊗ L(r)µ is isomorphic to Lλ+prµ.

(2) Clausen and James’ theorem [Clausen 1980; James 1980]. A partition λ of d
is p-restricted if and only if HomP(Lλ,⊗d)= HomP(⊗

d , Lλ) is nonzero.

Proposition 4.1. Let r be a nonnegative integer, and let F be a functor.

(1) The integer p(F, r) is the supremum of all n ≥ 0 such that F admits a projec-
tive resolution P , in which the first n objects P0, . . . , Pn−1 are direct sums of
projective covers of pr-restricted simples.

(2) The integer i(F, r) is the supremum of all n ≥ 0 such that F admits an injec-
tive resolution J , in which the first n objects J 0, . . . , J n−1 are direct sums of
injective envelopes of pr-restricted simples.

Proof. We restrict ourselves to proving the second statement; the proof of the first
one is similar. Let us denote by Jµ the injective envelope of Lµ. We have to prove
that

(i) for all pr-restricted partitions µ, there is a pr-bounded tuple λ such that Jµ is
a direct summand of Sλ, and

(ii) for all pr-bounded tuples λ, the indecomposable direct summands of Sλ are
all isomorphic to Jµ with µ pr-restricted.

Write µ=
∑n

i=0 piµi for p-restricted partitions µi . By Steinberg’s tensor prod-
uct theorem, Lµ is isomorphic to

L(0)
µ0 ⊗ · · ·⊗ L(n)µn .

By Clausen and James’ theorem, Lµ is a subfunctor of (I (0))⊗|µ
0
|
⊗· · ·⊗(I (n))⊗|µ

n
|.

Since I (i) ⊂ S pi
, we obtain that Lµ is a subfunctor of

⊗
0≤i≤n(S

pi
)⊗|µ

i
|. If µ is

pr-restricted then n < r , so Lµ (hence also Jµ) is a subfunctor of Sλ with λ pr-
bounded. This proves (i). Let λ be a pr-bounded tuple, and let µ be a partition
such that µ is not pr-restricted. By Steinberg’s tensor product theorem, Lµ is
isomorphic to Lµ′ ⊗ L(r)µ′′ for a pr-restricted partition µ′ and a nonzero partition µ′′.
So by Lemma 3.11, HomP(Lµ, Sλ) is zero, and hence Jµ is not a direct summand
of Sλ. This proves (ii). �

Corollary 4.2. For all F , i(F, r) > 0 if and only if Soc(F) is a direct sum of pr-
restricted simples. Likewise, p(F, r) > 0 if and only if Head(F) is a direct sum of
pr-restricted simples.

If (d0, . . . , dk) is a tuple of nonnegative integers, we let

T (d0,...,dk) = (⊗d0)⊗ (⊗d1)(1)⊗ · · ·⊗ (⊗dk )(k).

Corollary 4.3. Let L be a simple functor. The following are equivalent:
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(i) p(L , r) > 0,

(ii) i(L , r) > 0,

(iii) L is pr-restricted,

(iv) there exists a tuple (d0, . . . , dr−1) such that L is a quotient of T (d0,...,dr−1), and

(v) there exists a tuple (d0, . . . , dr−1) such that L embeds into T (d0,...,dr−1).

Proof. We have (i)⇔ (ii) ⇔ (iii) by Corollary 4.2, (iv) ⇔ (v) by Kuhn duality
(both L and T (d0,...,dr−1) are self-dual) and (iii)⇒ (iv) by Steinberg’s tensor product
theorem and Clausen and James’ theorem (as used in the proof of Proposition 4.1).
Finally, the functor T (d0,...,dr−1) is a quotient of (01)⊗d0 ⊗ · · ·⊗ (0 pr−1

)⊗dr , so that
p(T (d0,...,dr−1), r) > 0. Hence (iv)⇒(iii) by Corollary 4.2. �

The next corollary is a translation of Theorem 3.6 in low degrees in terms of
pr-restricted weights. It will be used in Sections 5 and 6.

Corollary 4.4. Let (F,G, X, Y ) be a quadruple of homogeneous strict polynomial
functors satisfying the Künneth condition (Condition 2.3), and let r ≥ 0. Precom-
posing by I (r) and taking cup products induces injective morphisms

HomPk(F,G)⊗HomPk(X, Y ) ↪→ HomPk(F ⊗ X (r),G⊗ Y (r)), (4.5)

HomPk(F,G)⊗Ext1Pk
(X, Y )

⊕ Ext1Pk
(F,G)⊗HomPk(X, Y )

↪→ Ext1Pk
(F ⊗ X (r),G⊗ Y (r)). (4.6)

If one of the conditions (C1) or (C2) below holds, morphism (4.5) is an isomor-
phism. If both (C1) and (C2) hold, then morphism (4.6) is also an isomorphism.

(C1) deg F ≤ deg G and Head(G) is a direct sum of pr-restricted simples.

(C2) deg F ≥ deg G and Soc(F) is a direct sum of pr-restricted simples.

Proof. Recall from Section 2B that precomposing by I (r) yields a k-linear iso-
morphism on the level of Hom and Ext1. Thus the statement of Corollary 4.4
is equivalent to the statement where X and Y are replaced by X (r) and Y (r) at the
source of the cup product maps. By Corollary 4.2, (C1) means that i(G, r) > 0, and
(C2) that i(F, r) > 0. Thus Corollary 4.2 follows directly from Theorem 3.6. �

Remark 4.7. In Sections 5 and 6 we will use Corollary 4.4 for quite general
functors F and G. However, this result is already interesting in the very special
case where F and G are pr-restricted simples. Indeed the isomorphism given
by Corollary 4.4 is then a stronger form, albeit valid only for stable polynomial
representations of GLn , of formulas of Donkin [1982] and Andersen [1984]; see
also [Jantzen 2003, II.10.16, II.10.17]. For example, Corollary 4.4 implies that if
λ 6= λ′ are partitions of d and G = GLn with n big enough, then the number of Lµ
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in the socle of the tensor product Ext1Gr
(Lλ, Lλ′)(−r)

⊗ L ′µ is zero, unless µ= µ′,
in which case it equals the dimension of Ext1G(Lλ, Lλ′).

5. Tensor products of Steinberg type

Recall that a simple functor L is a composition factor of an arbitrary functor F if
L is a subquotient of F . Equivalently, if 0= F−1

⊂ F0
⊂ · · · ⊂ F is an exhaustive

filtration of F whose successive quotients are semisimple (e.g., the Loewy filtration
of F), then L appears as a direct summand in one of these successive quotients.

Definition 5.1. A tensor product of Steinberg type is a strict polynomial functor
isomorphic to a tensor product F ⊗G(r), where r is a nonnegative integer and F
is a functor whose composition factors are all pr-restricted.

The purpose of the present section is to explore the structure of these tensor prod-
ucts of Steinberg type. Note that by Steinberg’s tensor product theorem (applied
to the tensor product of the socle filtration of F by the socle filtration of G(r)), all
composition factors of F ⊗G(r) are of the form Lλ⊗ L(r)µ , with Lλ a composition
factor of F and Lµ a composition factor of G. This observation motivates the
following definition.

Definition 5.2. Let e, d, r be nonnegative integers. We let St (d, e, r) be the full
subcategory of Pd+epr ,k supported by the strict polynomial functors whose com-
position factors are all of the form Lλ⊗ L(r)µ for pr-restricted partition λ of d and
partitions µ of e.

Lemma 5.3. The category St (d, e, r) contains all the tensor products of Steinberg
type F ⊗ G(r), where F is homogeneous of degree d and G is homogeneous of
degree e. Moreover, it is localizing and colocalizing, i.e., it is closed under sums,
products, subobjects, quotients and extensions.

Proof. Everything is straightforward from the definition of St (d, e, r) except
maybe that St (d, e, r) is closed under arbitrary products. Let L be a composition
factor of a product

∏
Xα. Then there is a nonzero map PL →

∏
Xα, where PL

denotes the projective cover of L . Thus there is an α such that HomPk(PL , Xα) 6= 0,
so that L = Lλ⊗ L(r)µ with λ pr-restricted. �

The next lemma makes critical use of Corollary 4.4.

Lemma 5.4. In the category St (d, e, r), any object X has a presentation P1 →

P0→ X→ 0 in which the Pi are direct sums of tensor products of Steinberg type
F⊗G(r) with F and G finite. Similarly, X has a copresentation 0→ X→Q0

→Q1

in which the Qi are products of such tensor products.

Proof. It suffices to prove that all the objects of St (d, e, r) are quotients of direct
sums of tensor products of Steinberg type with values in finite dimensional spaces
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(then using the duality ], they will also embed into products of such functors).
Let X be an object of St (d, e, r), and let X i denote the i-th term of the socle
filtration of X . Assume that X i−1 is a quotient of P i−1, where P i−1 has the required
form. Then X i/X i−1 is a direct sum of Lλ⊗ L(r)µ , and each of these functors is a
homomorphic quotient of Pλ⊗ P (r)µ , where Pµ and Pλ are projective functors, and
Pλ is left pr-bounded. Using Corollary 4.4 and the projectivity of Pµ and Pλ, we
obtain Ext1Pk

(Pλ ⊗ P (r)µ , X i−1) = 0. Hence the map Pλ ⊗ P (r)µ → X i/X i−1 lifts
to f : Pλ⊗ P (r)µ → X i . The functor Pλ has a unique largest quotient P ′λ whose
composition factors are pr-restricted. Let Kλ be the kernel of the quotient map
Pλ � P ′λ. By Corollary 4.4, HomPk(Kλ ⊗ P (r)µ , X i ) = 0. Therefore, f induces
a map P ′λ ⊗ P (r)µ → X i . In particular, if we define P i

:= P i−1
⊕
⊕

P ′λ ⊗ P (r)µ ,
then P i is a direct sum of tensor products of Steinberg type with values in finite
dimensional vector spaces, and X i is a quotient of P i . Since homogeneous strict
polynomial functors have finite socle filtrations, this proves the lemma. �

We will prove that the categories St (d, e, r) have an alternative description in
terms of bifunctors. To be more specific, we denote by

8 : Pd,e,k(2)→ Pd+pr e,k

the functor such that 8(B)(V ) = B(V, V (r)). We observe that 8 is exact, but it
is not an equivalence of categories. For example, if d = pr and e = 1, the bifunc-
tor I (r)� I is simple, while its image ⊗2(r) is not (32(r) is a proper subfunctor).
However, 8 behaves better if we suitably restrict its source and target categories.

Definition 5.5. Let e, d, r be nonnegative integers. We denote by St ′(d, e, r) the
full subcategory of Pd,e,k(2) supported by the strict polynomial bifunctors whose
composition factors are all of the form Lλ� Lµ, where λ is a pr-restricted partition
of weight d and µ is a partition of weight e.

We have the following analogues of Lemmas 5.3 and 5.4.

Lemma 5.6. The subcategory St ′(d, e, r) contains all the separable functors F�G,
where F is homogeneous of degree d with pr-restricted composition factors and G
is homogeneous of degree e. Moreover, St ′(d, e, r) is closed under sums, products,
subobjects, quotients and extensions.

Lemma 5.7. In the category St ′(d, e, r), any object B has a presentation P1→

P0→ X→ 0 in which the Pi are direct sums of tensor products of separable type
F �G, where F and G are finite and the composition factors of F are pr-restricted.
Similarly, B has a copresentation 0→ X→ Q0

→ Q1 in which the Qi are products
of such tensor products.

We can now state the central theorem of this section.
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Theorem 5.8. The functor 8 restricts to an equivalence of categories:

8 : St ′(d, e, r)
'
−→ St (d, e, r).

Proof. We first prove that 8 is fully faithful. Let T be the full subcategory of
St ′(d, e, r) supported by the bifunctors of separable type F � G with F and G
finite. By Lemma 5.7 and exactness of 8, it suffices to prove that the restriction
of 8 to T is fully faithful. This follows from Corollary 4.4. To prove that 8
is essentially surjective, we consider the functor 9 : Pd+epr ,k→ Pd,e,k(2) which
sends a functor F to the bifunctor

(9F)(V,W )= HomPd+pr e,k(0
d,V
⊗ (0e,W )(r), F).

If F ⊗G(r) is a tensor product of Steinberg type, by Corollary 4.2 F is right pr-
bounded, so that Corollary 4.4 and [Friedlander and Suslin 1997, Theorem 2.10]
yield isomorphisms of strict polynomial functors:

(89(F ⊗G(r)))(V )' HomPd,k(0
d,V, F)⊗HomPe,k(0

e,V (r)
,G)

' F(V )⊗G(V (r)).

Thus 8 ◦9 is the identity functor on the tensor products of Steinberg type. By
Lemma 5.4, all the functors of St (d, e, r) are kernels of products of tensor products
of Steinberg type. Thus by left exactness of 8 ◦9, the restriction of 8 ◦9 to
the whole category St (d, e, r) is isomorphic to the identity functor. Hence 8 is
essentially surjective (and 9 is the inverse of 8). �

Theorem 5.8 generalizes the Steinberg tensor product theorem. Indeed, exter-
nal tensor products Lλ � Lµ of simple functors are simple bifunctors, so that
Theorem 5.8 and the stability of St (d, e, r) by subobjects imply that the functors
8(Lλ� Lµ)= Lλ⊗ L(r)µ are simple. More generally, Theorem 5.8 can be used to
convert any question about the structure of the tensor products of Steinberg type
(socle length, submodule lattices, or even Ext1 issues) into similar questions about
the structure of bifunctors of separable type which are much easier to study. To
illustrate this, we give new properties of tensor products of Steinberg type, obtained
by translating some general properties of representations of tensor products of finite
dimensional algebras given in Appendix A (recall that the category Pd,e,k(2) is
equivalent to the category of S(d, d)⊗ S(e, e)-modules).

Remark 5.9. In the following corollaries, we do not assume that F and G are
homogeneous. In each case, the proof reduces easily to the homogeneous case by
additivity of tensor products. We also observe that each of these corollaries is a
stronger statement than the classical Steinberg tensor product theorem.
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Corollary 5.10 (socle series). If the composition factors of F are pr-restricted,
then for all G, the socle filtration of F ⊗ G(r) is the tensor product of the socle
filtration of F by the socle filtration of G, precomposed by I (r).

Corollary 5.11 (subfunctors). Assume that the composition factors of F are pr-
restricted. Let G be any functor. Assume that F or G is multiplicity free. Then the
subfunctors S ⊂ F ⊗G(r) are of the form

S =
∑
α

Fα ⊗G(r)
α

for some families of subfunctors Fα ⊂ F and Gα ⊂ G.

Corollary 5.12 (diagrams). Assume that F and G are multiplicity-free and the
composition factors of F are pr-restricted. Then the diagram associated to F⊗G(r)

as defined in [Alperin 1980] has the functors Lλ⊗ L(r)µ as vertices, where Lλ is a
composition factor of F and Lµ is a composition factor of G, and there is an edge
Lλ⊗ L(r)µ → L ′λ⊗ L ′µ

(r) if and only if one of the following two conditions holds:

(i) Lλ = L ′λ and there is an edge Lµ→ L ′µ in the diagram of G,

(ii) Lµ = L ′µ and there is an edge Lλ→ L ′λ in the diagram of F.

The next statement follows from Proposition A.8. It uses the fact that all simple
strict polynomial functors satisfy Ext1Pk

(L , L) = 0, which follows from the fact
that the Schur algebras are quasihereditary.

Corollary 5.13 (tensor products on the left). Let λ be a pr-restricted partition.
Let Lλ⊗P(r)k denote the full subcategory of Pk whose objects are the functors
isomorphic to tensor products of the form Lλ⊗ F (r). Then

(1) the subcategory Lλ⊗P(r)k is localizing and colocalizing,

(2) precomposing by I (r) and tensoring by Lλ yields an equivalence of categories
Pk ' Lλ⊗P(r)k .

6. Application to internal tensor products

The purpose of this section is to study the internal tensor product of simple functors.
In particular, Theorem 6.2 plays a role for internal tensor products similar to the
role of the Steinberg theorem for ordinary tensor products.

6A. Internal tensor products of simple functors. Let F1 and G1 be two homoge-
neous functors of degree d , and F2 and G2 homogeneous functors of degree e. The
internal tensor product is equipped with a coproduct

(F1⊗ F2)⊗ (G1⊗G2)→ (F1⊗G1)⊗ (F2⊗G2).
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To be more specific, this coproduct coincides on the standard projectives with the
following composite (where the first map is the canonical inclusion and the second
one is the canonical projection):

(0d,T
⊗0e,U )⊗ (0d,V

⊗0e,W ) ↪→ (0d+e,T⊕U
⊗0d+e,V⊕W )

= 0d+e,(T⊕U )⊗(V⊕W )

� 0d,T⊗V
⊗0e,U⊗W

= (0d,T
⊗0d,V )⊗ (0e,U

⊗0e,W ).

The following proposition is a consequence of Corollary 4.4.

Proposition 6.1. Let F,G, X, Y be homogeneous strict polynomial functors, and
let r ≥ 0. If deg F < deg G and G is left pr-bounded, or if deg F > deg G and F
is left pr-bounded, then

(F ⊗ X (r))⊗ (G⊗ Y (r))= 0.

If deg F = deg G and F or G is left pr-bounded, then the coproduct induces an
isomorphism

(F ⊗ X (r))⊗ (G⊗ Y (r))' (F ⊗G)⊗ (X ⊗ Y )(r).

Proof. In this proof, we assume that deg F ≥ deg G and F is pr-bounded (the
proof is similar if deg F ≤ deg G and G is pr-bounded). Since the internal tensor
product is right exact and commutes with arbitrary direct sums, it suffices to prove
Proposition 6.1 when G and Y are finite.

Since F is left pr-bounded, the parametrized functor F V also is. Hence, if
deg F > deg G, Corollary 4.4 implies that

Hom(F ⊗ X (r),G]
⊗ (Y ])(r))= 0. (∗)

Since G and Y are finite, G]
⊗ (Y ])(r) is isomorphic to (G ⊗ Y (r))]. Hence the

equality (∗) can be reinterpreted as

((F ⊗ X (r))⊗ (G⊗ Y (r)))] = 0.

This proves the asserted cancellation. Assume now that deg F = deg G. Then by
Corollary 4.4 the cup product induces an isomorphism

Hom(F,G)⊗Hom(X, Y )(r) ' Hom(F ⊗ X (r), Y ⊗ Y (r)). (∗∗)

But the coproduct is dual to the cup product; that is, for all functors F , G, H and
K there is a commutative diagram in which the horizontal isomorphisms are the
canonical isomorphisms recalled in Section 2E:
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(F ⊗ H)]⊗ (G⊗ K )]

can
��

' // Hom(F, H ])⊗Hom(G, K ])

∪

��
((F ⊗ H)⊗ (G⊗ K ))]

coproduct]

��

Hom(F ⊗ H,G]
⊗ K ])

can
��

((F ⊗ H)⊗ (G⊗ K ))] ' // Hom(F ⊗ H, (G⊗ K )])

If the functors G and K are finite, so is G⊗K and the canonical maps denoted “can”
in the diagram above are isomorphisms. Thus, the isomorphism of Proposition 6.1
can be deduced from the diagram above with H = X (r) and K = Y (r), and from
the isomorphism (∗∗). �

The following theorem reduces the study of internal tensor products of simple
functors to the case of p-restricted simple functors. In other terms, it plays the same
role for internal tensor products as the classical Steinberg tensor product theorem
does for ordinary tensor products.

Theorem 6.2. Let λ0, . . . , λr and µ0, . . . , µs be p-restricted partitions, and let
λ=

∑
piλi and µ=

∑
piµi .

(1) If r = s and µi and λi have the same weight for all i , then Lλ⊗ Lµ is nonzero
and there is an isomorphism

Lλ⊗ Lµ ' (Lλ0 ⊗ Lµ0)⊗ (Lλ1 ⊗ Lµ1)(1)⊗ · · ·⊗ (Lλr ⊗ Lµr )(r).

(2) Otherwise, Lλ⊗ Lµ is zero.

Proof. The classical Steinberg tensor product theorem shows that

Lλ = Lλ0 ⊗ · · ·⊗ L(r)λr and Lµ = Lµ0 ⊗ · · ·⊗ L(s)µs ,

where the Lλi and the Lµ j are p-restricted, hence right p-bounded by Corollary 4.2.
Thus the result follows by applying Proposition 6.1. �

6B. The case of p-restricted simple functors. To investigate internal tensor prod-
ucts of p-restricted simple functors, we rely on the Schur functor.

Lemma 6.3. For all strict polynomial functors F, there are isomorphisms of func-
tors, natural with respect to F :

F ⊗⊗d
' Hom(⊗d, F)'⊗d

⊗ fd(F).

Moreover, if we consider the action of Sd on the left-hand side induced by the
left action of Sd on ⊗d, the action on the middle term induced by the right action
of Sd on ⊗d, and the diagonal action of Sd on the right-hand side, then these
isomorphisms are Sd -equivariant.
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Proof. We have isomorphisms of strict polynomial functors, natural with respect
to V and F :

Hom(0d,V, F)' FV ' F ⊗0d
V . (∗)

Take V = kd and let the torus (Gm)
×d act on kd by (λ1, . . . , λd) · (x1, . . . , xd) =

(λ1x1, . . . , λd xd). Then the summand of weight (1, . . . , 1) of the right-hand side
of isomorphism (∗) is F ⊗⊗d , and it is isomorphic to the summand of weight
(1, . . . , 1) of the left-hand side, which is Hom(⊗d, F). Moreover, Hom(⊗d, F) is
isomorphic to the functor U 7→ HomPk((⊗

d)U, F). Since (⊗d)U is isomorphic to
(U∗)⊗d

⊗⊗
d, we get an isomorphism of strict polynomial functors with variable U :

Hom(⊗d, F)' HomPk((U
∗)⊗d
⊗⊗

d, F)'U⊗d
⊗ fd(F).

Finally, one easily checks that these explicit constructions of the isomorphisms of
Lemma 6.3 yield Sd -equivariant isomorphisms. �

Proposition 6.4. For all functors F , G, there is an isomorphism of kSd -modules

fd(F ⊗G)' fd(F)⊗ fd(G),

where the tensor product on the right is the Kronecker product of fd(F) and fd(G)
(i.e., Sd acts diagonally).

Proof. Lemma 6.3 yields a chain of isomorphisms:

F⊗ (G⊗⊗d)' F⊗ (⊗d
⊗ fd(G))' (F⊗⊗d)⊗ fd(G)'⊗d

⊗ fd(F)⊗ fd(G).

Thus the evaluation of F⊗ (G⊗⊗d) at k is isomorphic to fd(F)⊗ fd(G). On the
other hand, F ⊗ (G⊗⊗d) is isomorphic to (F ⊗G)⊗⊗d and Lemma 6.3 shows
that the evaluation of the latter at k is isomorphic to fd(F ⊗G). �

The following corollary shows that in the first case of Theorem 6.2, the internal
tensor product is always nonzero.

Corollary 6.5. Let L and L ′ be two p-restricted simples. Then L ⊗ L ′ is nonzero.

Proof. By Clausen and James’ theorem, fd(L) and fd(L ′) are nonzero. Hence, by
Proposition 6.4, fd(L ⊗ L ′) is nonzero. Thus L ⊗ L ′ is nonzero. �

Given two p-restricted simples L and L ′, a natural question is to determine if
the analogue of Theorem B.12 holds, i.e., if the nonzero functor L ⊗ L ′ is simple.
In fact, Bessenrodt and Kleshchev [2000] have proved that the Kronecker product
of two simple representations of symmetric groups is almost never simple. In
particular, Proposition 6.4 has the following consequence in odd characteristic.

Corollary 6.6. Assume that p is odd. Let L and L ′ be two p-restricted simples
such that fd(L) and fd(L ′) both have dimension at least two. Then L ⊗ L ′ is not
simple.
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Proof. Since the right adjoint of fd satisfies fd ◦ rd = Id, fd(L) sends simple
functors either to simple kSd -modules or to zero. But fd(L⊗L ′)' fd(L)⊗ fd(L ′)
is a Kronecker product of two simple kSd -modules, so is not simple by [Bessenrodt
and Kleshchev 2000, Theorem 2]. Thus L ⊗ L ′ cannot be simple. �

Remark 6.7. Corollary 6.6 uses [Bessenrodt and Kleshchev 2000, Theorem 2],
which is a nontrivial result on symmetric groups. It would be interesting to find a
more elementary proof of Corollary 6.6, in the spirit of the proof of Theorem B.12.

To solve completely (in odd characteristic) the problem of knowing if an internal
tensor product L ⊗ L ′ can be simple, it remains to study the case where fd(L ′)
has dimension 1. The remainder of the section is devoted to this study. In our
discussion below, we show in Corollary 6.10 that when fd(L ′) has dimension one,
L⊗ L ′ may sometimes be simple and sometimes not, and in Corollary 6.9 we show
that it suffices to study the case L ′ = Qd. The latter case is studied in [Reischuk
2016], where the simplicity of L ⊗ Qd is shown to be equivalent to p(L , 1) > 1.

There are two kSd-modules of dimension 1, namely the signature module kalt

and the trivial module k. The signature module is the image by the Schur functor of
3d
= L(1,...,1). Since HomPd,k(⊗

d, Sd) has dimension 1 and since Sd is a quotient
of ⊗d, the head of Sd is a p-restricted simple functor. This functor is known under
the name of truncated symmetric powers, and we denote it by Qd as in [Breen et al.
2016]. Then fd(Qd) is the trivial kSd -module. Thus, to solve completely (in odd
characteristic) the problem of knowing if an internal tensor product L ⊗ L ′ can be
simple, it remains to investigate the internal tensor products L ⊗ Qd and L ⊗3d

for p-restricted simples L .

Proposition 6.8. Let F be a homogeneous functor of degree d. Consider the right
action of Sd on ⊗d given by permuting the factors of the tensor product. If p 6= 2
then

F ⊗3d
' (⊗d)⊗Sd (k

alt
⊗ fd(F)).

If Head(F) is a direct sum of p-restricted simples (and p arbitrary), then

F ⊗ Qd
' (⊗d)⊗Sd fd(F).

Proof. Lemma 6.3 yields an Sd-equivariant isomorphism F ⊗⊗d
'⊗

d
⊗ fd(F).

Taking the coinvariants under the signed action of Sd and using right exactness of
internal tensor products, we obtain the first isomorphism. For the second, let Rd be
the radical of Sd. Since fd(Sd)= fd(Qd) and the Schur functor is exact, we have
fd(Rd)= 0. Hence, by Lemma 6.3, Rd

⊗⊗
d is zero. But if P is left p-bounded

projective, it is a direct summand in a direct sum of copies of⊗d, and hence Rd
⊗P

is zero. Now F is left p-bounded by Corollary 4.2, so Rd
⊗ F = F ⊗ Rd

= 0. By
right exactness of tensor products we thus obtain an isomorphism F⊗Sd

' F⊗Qd .
Then the computation of F ⊗ Sd is done in the same fashion as that of F ⊗3d . �
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If M is a simple Sd-module, then M ⊗ kalt is also simple. Let Lµ be the
simple p-restricted functor such that fd(Lµ) = M . We denote by m(µ) the p-
restricted partition such that fd(Lm(µ))= M ⊗ kalt. The involution µ 7→ m(µ) (or
rather µ′ 7→ m(µ′) where µ′ stands for the conjugate partition of µ) is known as
the Mullineux correspondence [Martin 1993, Section 4.2], and its combinatorial
description has been proved by Ford and Kleshchev [1997]; see also the work of
Brundan and Kujawa [2003] for a more recent and different proof. Proposition 6.8
has the following consequence.

Corollary 6.9. Let µ be a p-restricted partition. Then

Lµ⊗3d
' Lm(µ)⊗ Qd .

As another consequence of Proposition 6.8, we obtain that the internal tensor
product of two simple functors may sometimes be simple and sometimes not. The
problem of knowing exactly for which p-restricted partitions µ the functor Lµ⊗3d

is simple is studied in [Reischuk 2016].

Corollary 6.10. Assume that p is odd. Then Qd
⊗3d is isomorphic to 3d , and

3d
⊗3d is isomorphic to Sd .

7. Estimates for p(F, r) and i(F, r)

7A. Basic properties of p(F, r) and i(F, r). Let r be a positive integer. We
introduce the following two homogeneous functors of degree d , where T (d0,...,dk) =

(⊗d0)⊗ (⊗d1)(1)⊗ · · ·⊗ (⊗dk )(k) as in Corollary 4.3:

L(d, r) =
⊕

λ not pr-restricted
and |λ| = d

Lλ , T (d, r) =
⊕

∑
0≤i<r pi di<d∑

0≤i pi di=d

T (d0,...,dk).

These functors are defined so that they contain all the simples of degree d, or all
the twisted tensor powers of degree d , which have at least one factor precomposed
by I (s) with s ≥ r . Hence they are nonzero if and only if d ≥ pr. By Corollary 4.3,
L(d, r) is a quotient of T (d, r). Since these two functors are self-dual, it follows
that L(d, r) is also a subfunctor of T (d, r).

Proposition 7.1. Let F be a homogeneous functor of degree d, and let G(d, r)
be equal to either L(d, r) or T (d, r). Then p(F, r) is the lowest (possibly +∞)
degree k such that the vector space ExtkPk

(F,G(d, r)) is nonzero, and i(F, r) is
the lowest k such that ExtkPk

(G(d, r), F) is nonzero.

Proof. Let P be a degree d homogeneous pr-bounded projective. Then Theorem 3.6
implies that Ext∗Pk

(P,G(d, r)) is zero. Take a projective resolution Q of F whose
first p(F, r)-terms (i.e., up to index p(F, r)− 1) are left pr-bounded projectives,
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and let K be the kernel of Q p(F,r)−1→ Q p(F,r)−2. By definition of p(F, r), K
is not pr-bounded. By Corollary 4.2, this means that there exists a nonzero map
K → L(d, r), and hence also a nonzero map K → T (d, r). By dimension shifting,

ExtiPk
(F,G(d, r))'

{
0 if i < p(F, r),
HomPk(K ,G(d, r)) 6= 0 if i = p(F, r).

The proof for i(F, r) is similar. �

Since T (d, r) is a self-dual functor, Ext∗Pk
(T (d, r), F]) is always isomorphic to

Ext∗Pk
(F, T (d, r)). Thus we obtain the following corollary.

Corollary 7.2. For all functors F , we have i(F], r)= p(F, r).

We now indicate how i(F, r) behaves with respect to some usual operations
on strict polynomial functors. There are similar statements for p(F, r) which can
be deduced from the formula p(F, r) = i(F], r) or by repeating the proofs with
projective resolutions. We leave this to the reader.

Proposition 7.3. Let F and G be two functors. The following hold:

(a) i(FV , r)= i(F, r).

(b) i(F, r)= i(F (s), r + s).

(c) i(F ⊗G, r)=min{i(F, r), i(G, r)}.

(d) i(F ⊕G, r)=min{i(F, r), i(G, r)}.

(e) i(F, r)≥min{i(S, r) : S is finite and S ⊂ F}.

Proof. Statement (d) is straightforward from the characterization of i(F, r) in terms
of Ext∗ provided by Proposition 7.1, and implies that for the remaining statements,
we can assume that F and G are homogeneous. We let d := deg F and g := deg G.
Statement (e) follows from the interpretation of i(F, r) given in Proposition 7.1
and the fact that Ext∗(T (d, r), – ) commutes with directed colimits. To prove (a),
observe that F is a direct summand in F V so that i(F, r)≥ i(FV , r). Moreover, if J
is a standard pr-bounded injective then JV is a direct sum of standard pr-bounded
injectives. Hence if Q is an injective resolution of F whose first i(F, r) terms are
left pr-bounded injectives, then QV is an injective resolution of FV whose first
i(F, r) terms are left pr-bounded injectives, so that i(FV , r)≥ i(F, r).

To prove (b), we use the isomorphisms

Ext∗P,k(T (d, r + s), F (s))' Ext∗Pk
(T (d, r)(s), F (s))' Ext∗Pk

(T (d, r), FEs ).

The first isomorphism is induced by the inclusion T (d, r)(s) ⊂ T (d, r + s); the
cokernel of this split inclusion is easily seen to be zero by using the sum diagonal
adjunction. The second isomorphism is proved in [Touzé 2013a; Chałupnik 2015].
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In this formula FEs is a nonnegatively graded functor, and the degree on the right-
hand side is the total degree. The graded functor FEs equals Fkps in an ungraded
way, so that the lowest nonzero degree k on the right-hand side of the isomorphism
is greater or equal to i(Fkps , r) = i(F, r). Hence i(F (s), r + s) ≥ i(F, r). Con-
versely, the degree zero component of FEs is isomorphic to F , so that the lowest
nonzero degree k on the right-hand side of the isomorphism is lower or equal to
i(F, r), and hence i(F (s), r + s)≤ i(F, r).

It remains to prove (c). Assume for example that i(F, r) ≤ i(G, r). If Q and
Q′ are injective resolutions of F and G, respectively, whose first i(F, r) terms
are pr-bounded, then Q ⊗ Q′ is an injective resolution of F ⊗ G whose first
i(F, r) terms are pr-bounded, and hence i(F ⊗ G, r) ≥ i(F, r). Conversely, let
x be a nonzero extension in Exti(F,r)(T (d, r), F). Let L be a simple subfunctor
of G. As L is a quotient of a functor T (d0,...,d`) for some tuple (d0, . . . , d`) by
Corollary 4.3, there is a nonzero map f : T (d0,...,d`) → G. Since cup products
are injective (by Theorem 3.6 with r = 0 or by Lemma 3.9), x ∪ f is a nonzero
element of Exti(F,r)(T (d, r)⊗ T (d0,...,d`), F ⊗ G). But T (d, r)⊗ T (d0,...,d`) is a
direct summand of T (d + g, r), so that i(F ⊗G, r)≤ i(F, r). �

7B. A few examples.

Proposition 7.4. Let r be a nonnegative integer. The following hold:

(1) If deg F < pr, then i(F, r)=+∞.

(2) If d ≥ pr, then i(Sd, r)= 0.

(3) If d ≥ pr, then i(3d, r)= pr
− 1.

(4) If d ≥ pr, then i(0d, r)= 2(pr
− 1).

Proof. The first statement follows from the fact that when d < pr, all basic injectives
of degree d are pr-bounded. If d ≥ pr, the multiplication of the symmetric algebra
and the natural inclusion I (r) ↪→ S pr

induce a nonzero map ⊗d−pr
⊗ I (r)→ Sd .

Hence, by Proposition 7.1, i(Sd, r)= 0. Let us prove that i(3d, pr )= pr
− 1. The

homogeneous part of degree d of the reduced bar construction of the symmetric
algebra S provides an injective resolution of 3d whose first pr

− 1 terms are basic
pr-bounded injectives; see, e.g., [Totaro 1997]. Thus i(3d, r) ≥ pr

− 1. Con-
versely, using sum-diagonal adjunction one obtains that Ext∗Pk

(⊗d−pr
⊗ I (r),3d)

is isomorphic to the tensor product

Ext∗Pk
(⊗d−pr

,3d−pr
)⊗Ext∗Pk

(I (r),3pr
).

The factor on the left-hand side of the tensor product is concentrated in degree
zero (as ⊗d−pr

is projective) and one-dimensional by [Friedlander and Suslin 1997,
Corollary 2.12], and by [Friedlander and Suslin 1997, (4.5.1), p. 251], the factor
on the right-hand side of the tensor product is one-dimensional and concentrated in
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degree pr
−1. Now⊗d−pr

⊗ I (r) is a direct summand in T (d, r), so that i(3d , r)≤
pr
− 1 by Proposition 7.1. A similar argument applies to (4): the homogeneous

part of degree d of the twofold reduced bar construction of the symmetric algebra
yields an injective resolution whose first 2(pr

− 1) terms are basic pr-bounded
injectives, and on the other hand, one can compute that Ext∗Pk

(⊗d−pr
⊗ I (r), 0d)

is one-dimensional and concentrated in degree 2(pr
− 1). �

Let us denote by Sλ the Schur functor associated to a partition λ and by Wλ

the Weyl functor associated to λ. These are finite homogeneous strict polynomial
functors, whose degree is the weight of the partition λ, and we have Wλ = S]λ. They
generalize the functors Sd , 3d and 0d . Indeed,

W(d,0,0,... ) = 0
d , S(d,0,0,... ) = Sd , S(1,...,1) =W(1,...,1) =3

d .

The Sλ are the costandard, and the Wλ the standard, objects of the highest weight
category structure of Pk. In particular Soc(Sλ) = Lλ = Head(Wλ). We refer
the reader to [Touzé 2013b, Section 6.1.1] or [Krause 2017] for more details and
references on these functors. The following lemma may be useful for computations.

Lemma 7.5. Let λ be a partition and let λ′ be the dual partition. For all tuples
(d0, . . . , dk) there is a graded isomorphism (where Ext is understood as zero in
negative degrees):

Ext∗Pk
(T (d0,...,dk), Sλ)' Ext∗+s

Pk
(T (d0,...,dk),Wλ′),

where s = d1(p− 1)+ d2(p2
− 1)+ · · ·+ dk(pk

− 1).

Proof. We use Ringel duality 2, which is an autoequivalence of D(Pd,k). See,
e.g., [Touzé 2013b, Section 3; Chałupnik 2008, Section 2]. We have 2Sλ = Wλ′

and 2T (d0,...,dk) = T (d0,...,dk)[−s], so that the lemma follows from interpreting mor-
phisms of degree s in the derived category as extensions of degree s. �

Proposition 7.6. Let λ be a partition and λ′ the dual partition. Then we have

i(Sλ, r)+ pr
− 1≤ i(Wλ′, r).

Assume, moreover, that λ= λ0
+ pλ1

+· · ·+ pkλk , where each λk is a p-restricted
partition of dk , and k ≥ r . Then

i(Wλ′, r)≤
k∑

i=1

di (pi
− 1).

Proof. We use the isomorphism of Lemma 7.5. If T (d0,...,dr ) is a direct summand
of T (d, r), then the associated shift s is always greater than or equal to pr

−

1. This proves the first inequality. As regards the second inequality, we have
Lλ = Lλ0 ⊗ · · ·⊗ L(k)

λk by the Steinberg tensor product theorem. By Clausen and
James’ theorem, Lλ is then a quotient of T (d0,...,dk). Thus we get a nonzero element
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in HomPk(T
(d0,...,dk), Sλ) by composing the quotient map T (d0,...,dk)→ Lλ with the

inclusion Lλ ⊂ Sλ. Therefore, by Lemma 7.5, there is a nonzero extension of
degree

∑k
i=1 di (pi

− 1) between T (d0,...,dk) (hence T (d, r)) and Wλ′ . �

We finish this section by computing the integers i(F, r) when F is any Schur or
Weyl functor of degree 4 in characteristic p= 2. The result is already known for S4,
34 and 04 by Proposition 7.4. For the three remaining partitions, the computation
relies on the following short exact sequences.

Lemma 7.7. Let k be a field of characteristic p = 2. There are short exact se-
quences

(1) 0→34
→33

⊗31
→ S(2,1,1)→ 0,

(2) 0→ S(3,1)→ S3
⊗ S1
→ S4

→ 0,

(3) 0→ S(2,2)→ S2
⊗ S2
→ S(3,1)⊕ S4

→ 0.

Proof. The first two sequences are the standard presentation and copresentation of
Schur functors and are valid over an arbitrary ring [Akin et al. 1982]. Only the last
one is specific to the characteristic 2 case and needs to be proved. As proved in
[Akin et al. 1982], the Schur functor S(2,2) has copresentation given by

0→ S(2,2)→ S2
⊗ S2 (φ,mult)
−−−−→ S3

⊗ S1
⊕ S4, (∗)

where mult denotes the map induced by the multiplication for the symmetric alge-
bra and φ is defined as the composite map

S2
⊗ S2 S2

⊗1
−−−→ S2

⊗⊗
2 mult⊗S1

−−−−→ S3
⊗ S1,

for 1 induced by the comultiplication of the symmetric algebra. Since the field has
characteristic 2, there is a surjective map π : S2

→32, and φ factors in a unique
way as φ = ψ ◦ (S2

⊗π). Now the composite mult ◦ψ : S2
⊗32

→ S4 is zero, so
that the image of ψ is contained in S(3,1). Thus the copresentation (∗) induces a
copresentation

0→ S(2,2)→ S2
⊗ S2
→ S(3,1)⊕ S4.

The last map on the right is surjective for Euler characteristic reasons (the dimen-
sions being independent of the characteristic, one can do the computation in charac-
teristic zero, where S2

⊗S2 is isomorphic to S(2,2)⊕S(3,1)⊕S4 by the Pieri rule). �

The extension groups between ⊗2
⊗ I (1), I (1)⊗ I (1) or I (2) on the one hand, and

tensor products of symmetric or exterior powers on the other, are easy to compute.
Now one can completely compute the extension groups between T (4, r) and the
Schur functors simply by inspecting the (not very) long exact Ext∗Pk

(T (d, r), – )-
sequences associated to the short exact sequences of Lemma 7.7. One can then
obtain the corresponding computations with Weyl functors by Lemma 7.5. We
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record the resulting computations of i(F, r) in the following proposition. Since
p3
= 23 > 4= d, only the cases r = 1 and r = 2 are interesting.

Proposition 7.8. Let k be a field of characteristic 2. The following computations
hold.

F 04 W(3,1) W(2,2) W(2,1,1) 3
4 S(2,1,1) S(2,2) S(3,1) S4

i(F, 1) 2 2 2 1 1 1 0 0 0
i(F, 2) 6 5 4 4 2 2 1 1 0

Remark 7.9. One sees in this example that the integers i(F, r) are increasing with
respect to the dominance order for Weyl functors, and decreasing with respect to
the dominance order for Schur functors. It would be quite interesting to know if
this is the shadow of some general phenomenon.

8. Application to symmetric groups

Lemma 8.1. The Schur functor sends p-bounded projectives and injectives to pro-
jective and injective kSd-modules, respectively. Moreover, if F is a p-bounded
projective or if G is a p-bounded injective, then the Schur functor induces an
isomorphism

HomPd,k(F,G)
'
−→ HomSd ( fd(F), fd(G)).

Proof. The left adjoint of fd sends kSd to⊗d. Thus fd(⊗
d)= fd(`d(kSd))'kSd

is projective. Moreover, the map induced by fd ,

HomPd,k(⊗
d,G)→ HomSd (kSd , fd(G)),

is an isomorphism because it identifies with the adjunction isomorphism for (`d , fd).
This proves Lemma 8.1 for the p-bounded projective ⊗d. If i < p then 0i is
a direct summand of ⊗i (the retract of the canonical inclusion 0i ↪→ ⊗i is the
natural transformation which sends v1 ⊗ · · · ⊗ vi to

∑
σ∈Si

vσ(1)⊗ · · ·⊗ vσ(i).).
Thus p-bounded projectives are direct summands of direct sums of copies of ⊗d .
As fd commutes with arbitrary direct sums, this implies that Lemma 8.1 holds for
all p-bounded projectives. The proof for p-bounded injectives is similar, using the
right adjoint rd . �

The next theorem generalizes many theorems in [Kleshchev and Nakano 2001].
In particular, Theorem 8.2 does not require any restriction on the characteristic, and
works for all F and all G. As regards concrete computations, the explicit bounds for
i(G, 1) for Weyl functors G given in Section 7B yield connectedness bounds which
are at least as good as those given in [Kleshchev and Nakano 2001]. However,
we have not investigated estimates for i(G, 1) when G is simple. Hence, unlike
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[Kleshchev and Nakano 2001], we don’t have concrete connectedness estimates
for simple functors.

Theorem 8.2. Let F and G be homogeneous strict polynomial functors of degree d.
The map induced by the Schur functor

ExtkPd,k
(F,G)→ ExtkkSd

( fd(F), fd(G))

is an isomorphism in degrees k < p(F, 1)+ i(G, 1)−1, and it is injective in degree
k = p(F, 1)+ i(G, 1)− 1.

Proof. Assume that there is a short exact sequence 0→ H→ J→ H ′→ 0, where J
is a p-bounded injective. The Schur functor induces a morphism from the induced
Ext∗Pd,k

(F, – )-long exact sequence to the induced Ext∗Sd
( fd(F), fd(– ))-long exact

sequence. Using Lemma 8.1 together with the five lemma, we see that the Schur
functor is k-connected for the pair (F, H) (i.e., an isomorphism in Ext-degree < k
and injective in Ext-degree k) if and only if it is (k − 1)-connected for the pair
(F, H ′). Using this argument, we reduce the proof of Theorem 8.2 to the case
where i(G, 1)= 0. By a similar argument applied to the contravariant variable of
Ext, we reduce the proof further to the case where i(F, 1)= 1. In the latter case,
F is a quotient of a p-bounded projective P and we have a commutative diagram

HomPd,k(P,G)
fd

'

// HomSd ( fd(P), fd(G))

HomPd,k(F,G)
?�

OO

fd // HomSd ( fd(F), fd(G))
?�

OO

which proves that for the pair (F,G) the Schur functor is indeed p(F, 1)− 1 con-
nected (i.e., injective in degree zero). �

The following examples show that the bounds in Theorem 8.2 are optimal.

Example 8.3. Let Q p be the socle of 0 p. Then Q p is the simple functor with
highest weight (p− 1, 1). In particular, i(Q p, 1)≥ 1 by Corollary 4.2. Since 0 p

is the middle term of a nonsplit extension

0→ Q p
→ 0 p

→ I (1)→ 0,

we have Ext1Pk
(I (1), Q p) 6= 0, which proves that i(Q p, 1)≤ 1 by Proposition 7.1.

Thus i(Q p, 1)= 1. We claim that the following map is not an isomorphism:

Exti(Q
p,1)−1

Pp,k
(0 p, Q p)→ Exti(Q

p,1)−1
kSp

( f p(Q p), f p(0
p)).

Indeed, the domain HomPk(0
p, Q p) is zero as Head(0 p) = I (1) 6= Q p. But

f p(0
p) = f p(Q p) = k. Thus the codomain HomkSp( f p(0

p), f p(Q p)) has di-
mension one.
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Example 8.4. Let F be a homogeneous functor of degree d. By Proposition 7.1,
Exti(F,1)Pk,d

(T (d,1), F) is nonzero. On the other hand fd(T (d,1))=0 by Corollary 4.4,
so that the following map is not injective:

Exti(F,1)Pd,k
(T (d, 1), F)→ Exti(F,1)kSd

( fd(T (d, 1)), fd(F)).

Appendix A. Representations of tensor product algebras

This appendix collects some results about representations of tensor product alge-
bras. All these results are standard (except maybe Proposition A.6), but they are
scattered in the literature and not always stated under the form that we want to use.

In the remainder of the section, we fix two finite dimensional algebras A and B
over a ground field k. We assume furthermore that k is a splitting field for these
two algebras; that is, the endomorphism rings of simple modules have dimension
one over k. (This hypothesis is satisfied for quasihereditary algebras, and of course
for all algebras if k is algebraically closed).

If M is an A-module and N a B-module, we denote by M�N their tensor product,
viewed as an A⊗ B-module. The tensor product yields a Künneth morphism

Ext∗A(M,M ′)⊗Ext∗B(N , N ′)
κ
−→ Ext∗A⊗B(M � N ,M ′� N ′).

Proposition A.1. The Künneth morphism κ is an isomorphism if M and M ′ have
finite dimension or if M and N have finite dimension.

Proof. If M has finite dimension, then it has a projective resolution by finite dimen-
sional projective A-modules. Thus, it suffices to prove the result in degree zero (i.e.,
for Hom), the general result follows formally by taking resolutions. Using semi-
exactness and additivity of Hom and � with respect to their first variable, one
reduces furthermore to the case M = A. If M ′ has finite dimension, the Künneth
morphism in degree zero identifies with the map

M ′⊗HomB(N , N ′)→ HomB(N ,M ′⊗ N ′),

which is an isomorphism since M ′ has finite dimension. If N has finite dimension,
one can also reduce to the case N = B, and in the latter case it is clear that κ is an
isomorphism. �

Proposition A.2. Up to isomorphism, the simple A⊗ B-modules are the tensor
products L1 � L2 where L1 is a simple module over A and L2 a simple module
over B. Moreover, two such simple modules L1 � L2 and L ′1 � L ′2 are isomorphic
if and only if L1 ' L ′1 and L2 ' L ′2.

Proof. The fact that L1 � L2 is simple if L1 and L2 are simple follows from
the density theorem [Curtis and Reiner 1981, (3.27)]. If two such tensor prod-
ucts L1 � L2 and L ′1 � L ′2 are isomorphic, then L1 ' L ′1 and L2 ' L ′2 because
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HomA⊗B(L1 � L2, L ′1 � L ′2) is isomorphic to HomA(L1, L ′1) ⊗ HomB(L2, L ′2).
It remains to prove that any simple A⊗ B-module is of the form L1 � L2. The
Jacobson radical J (A⊗ B) of A⊗ B contains J (A)⊗ B + A⊗ J (B), since the
latter is a nilpotent ideal [Curtis and Reiner 1981, (5.15)]. Thus we have a surjective
morphism

π : A/J (A)⊗ B/J (B)� A⊗ B/J (A⊗ B).

Since the quotient C/J (C) of a k-algebra C is a semisimple ring [Curtis and Reiner
1981, (5.19)] with the same simple modules as C , it follows form the Wedderburn
theorem and dimension counting that π is an isomorphism and that all simple
A⊗ B-modules have the form L1 � L2. �

Lemma A.3. For all modules M and N , Soc(M)�Soc(N )= Soc(M � N ).

Proof. By Proposition A.2, Soc(M)�Soc(N ) is a semisimple submodule of M�N .
Moreover, for all simple modules L1 � L2, we have

HomA⊗B(L1 � L2,M � N )= HomA(L1,M)⊗HomB(L2, N )

= HomA(L1,Soc(M))⊗HomB(L2,Soc(N ))

= HomA⊗B(L1 � L2,Soc(M)�Soc(N )).

Consequently, all simple submodules of M�N are submodules of Soc(M)�Soc(N ).
This proves the lemma. �

Lemma A.4. For all modules M and N , Head(M � N )= Head(M)�Head(N ).

Proof. If M and N have finite dimension, the proof is dual to the proof of Lemma A.3.
By additivity of � with respect to both variables, the result is then true when M
and N are arbitrary projectives. In general, let P and Q be projective covers of
Head(M) and Head(N ), respectively. One has quotient maps

P � Q � M � N � Head(M)�Head(N ),

and the result follows by taking heads of these modules. �

Lemma A.3 can be applied iteratively to identify the socle filtration of M � N .
We index socle filtrations of modules so that the (−1)-th term is zero and the zeroth
term is the socle of the modules.

Proposition A.5. For all modules M and N , the socle filtration of M � N is the
tensor product of the socle filtration of M with the socle filtration of N .

Proof. Let M i , N i and (M � N )i be the terms of the socle filtrations of M , N
and M � N , and let Fn

:=
∑

i+ j=n M i � N j . We prove Fn
= (M � N )n by

induction on n. We have F0
= M0 � N 0

= (M � N )0 by Lemma A.3. Assume
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that Fn
= (M � N )n . Let ι be the canonical inclusion⊕
i+ j=n+1

(M i/M i−1)� (N j/N j−1)= Fn+1/Fn ↪→ (M � N )/Fn.

Let φ denote the canonical inclusion

(M � N )/Fn ↪→
⊕

i+ j=n+1

(M/M j−1)� (N/N j−1).

The composite φ ◦ ι is the direct sum of the canonical inclusions

(M i+1/M i )� (N j+1/N j ) ↪→ (M/M i )� (N/N j ).

Thus, it follows from Lemma A.3 that φ ◦ ι maps the semisimple module Fn+1/Fn

isomorphically onto the socle of the target of φ. In particular, the inclusion ι is in
fact an isomorphism. �

Recall that a finite module is multiplicity free if it has a composition series
whose composition factors are pairwise nonisomorphic.

Proposition A.6. Assume that one of the modules M or N is multiplicity free. Then
for all submodules S ⊂ M � N , there are submodules Uα of M and submodules Vα
of N such that S =

∑
Uα � Vα.

Proof. Since any module over a finite dimensional algebra is the sum of its finite
submodules, it suffices to prove Proposition A.6 when all modules have finite di-
mension. Assume for example that M is multiplicity free, and fix a submodule
S ⊂ M � N .

Let T be a submodule of S such that T/Rad(T )' L1 � L2 is simple. There is
a submodule U ⊂ M such that Head(U )' L1. We claim that T ⊂U � N . Indeed,
since M is multiplicity free, L1 � L2 is not a composition factor of (M/U )� N .
Since Head(T )= L1�L2, no nontrivial homomorphic image of T can be contained
in (M/U )� N . Thus T ⊂U � N .

We now construct a strictly decreasing sequence of modules V0 = N ⊃ V1 ⊃

· · · ⊃ Vn such that U �Vn = T . Assume that Vi is constructed such that T ⊂U �Vi .
If the inclusion is an equality then the construction is finished. Otherwise, the
canonical map φ : Head(T )→ Head(U � Vi ) is not surjective. By Lemma A.4,
Head(U � Vi )= Head(U )�Head(Vi ) and by using the Künneth formula, we see
that all submodules of Head(U � Vi ) are of the form Head(U )� W , where W is
a submodule of Head(Vi ). In particular, Imφ is of the form Head(U )� Wφ . The
inverse image of Imφ by the quotient map

π �πi :U � Vi � Head(U )�Head(Vi )

is Rad(U )�Vi +U �π−1
i (Wφ). This is a submodule of U �Vi which contains T .
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But Head(T )' L1 � L2 is not a composition factor of

Rad(U )� (Vi/π
−1
i (Wφ))'

Rad(U )� Vi +U �π−1
i (Wφ)

U �π−1
i (Wφ)

.

Thus T is actually a submodule of U � π−1
i (Wφ). We define Vi+1 := π

−1
i (Wφ).

Since φ is not surjective, Vi+1 is a strict submodule of Vi and T ⊂U �Vi+1. Since
V0 = N has finite dimension, we cannot indefinitely repeat this construction and
decrease the dimension of the submodules Vi . Hence there must be an integer n
such that U � Vn = T .

We have proved so far that all submodules of T ⊂ S with simple head are of the
form U � V for some submodules U ⊂ M and V ⊂ N . But for each composition
factor Lα of S we can find a Tα with Tα/Rad(Tα) = Lα. Then S =

∑
Tα =∑

Uα � Vα and we are done. �

The submodule lattice of multiplicity free modules can be described in terms of
certain oriented diagrams [Alperin 1980]. To be more specific, the diagram D(M)
associated to a module M has the composition factors of M as vertices, and there is
an edge L→ L ′ if and only if there is a submodule U ⊂ M such that Head(U )' L
and L ′ is a homomorphic image of Rad(U ) (such a module U is unique [Alperin
1980, Lemma 4]). The following proposition describes the diagrams of tensor
products M � N .

Proposition A.7. The tensor product M � N is multiplicity free if and only if both
M and N are multiplicity free. If this happens, then the vertices of D(M � N )
are the tensor products L1 � L2, where L1 is a composition factor of M and L2 a
composition factor of N. Moreover, there is an edge L1 � L2→ L ′1 � L ′2 if and
only if either L1 = L ′1 and there is an edge L2→ L ′2 in D(N ) or if L2 = L ′2 and
there is an edge L1→ L ′1 in D(M).

Proof. We only prove the statement about the edges of D(M � N ). Let L1 � L2 be
a composition factor of M �N and let U ⊂ M such that Head(U )= L1 and V ⊂ N
such that Head(V )= L2. Then by Lemma A.4, Head(U�V )= L1�L2. Thus there
is an edge L1 � L2→ L ′1 � L ′2 if and only if L ′1 � L ′2 is a homomorphic image of
Rad(U )�V+U�Rad(V ), that is, if and only if HomA�B(Rad(U )�V, L ′1�L ′2) 6=0
or HomA�B(U�Rad(V ), L ′1�L ′2) 6= 0. By the Künneth formula, the first condition
is equivalent to the fact that L ′1 is a homomorphic image of Rad(U ) and that L ′2=L2

while the second one is equivalent to the fact that L ′2 is a homomorphic image of
Rad(V ) and that L ′1 = L1. �

Proposition A.8. Let L be a simple A-module satisfying Ext1A(L , L)= 0, let C be
a localizing and colocalizing subcategory of B-Mod, and let L � C denote the full
subcategory of A⊗ B-Mod whose objects are isomorphic to tensor products of the
form L � M , where M is an object of C. Then
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(i) L � C is a localizing and colocalizing subcategory of A⊗ B-Mod,

(ii) tensor product by L induces an equivalence of categories C ' L � C.

Proof. The second statement follows from the Künneth formula and the fact
that EndA(L) = k. Let us prove (i). The stability of L � C by arbitrary di-
rect sums is obvious, and since L is finite dimensional the canonical morphism
L �

∏
Mi →

∏
L � Mi is an isomorphism, which proves the stability by direct

products. If S ⊂ L � N then S =
∑

Uα � Vα by Proposition A.6. But the only
nonzero submodule of L is L itself, so that S =

∑
L � Vα ' L �

(∑
Vα
)

is an
object of L � C. The stability by quotients follows from the stability by subobjects.
Finally, since Ext1A(L , L)= 0 and EndA(L)= k, the Künneth formula shows that
Ext1A⊗B(L � N , L � N ′) is isomorphic to Ext1B(N , N ′). Thus, all extensions of
L � N by L � N ′ are of the form L � E , where E is an extension of N by N ′.
Hence L � C is stable by extensions. �

Appendix B. On theorems of Steinberg and Clausen–James

In this appendix, we give new proofs of Steinberg’s tensor product theorem for
GLn and Clausen and James’ theorem, based on Theorem 3.6.

Lemma B.1. A strict polynomial functor is simple if and only if it is self-dual and
its endomorphism ring has dimension one.

Proof. The condition is necessary by facts (2) and (3) from Section 2C. We prove
it is sufficient. Let L be a simple subfunctor of F . The composite

F ' F] � L] ' L ↪→ F

is a nonzero endomorphism of F . Since the endomorphism ring of F has dimen-
sion one, this morphism must be a nonzero multiple of the identity, and hence an
isomorphism. Thus one must have L = F . �

Proposition B.2 (weak Steinberg theorem). Let r ≥ 0, let L1 be a left pr-bounded
simple functor, and let L2 be any simple functor. Then L1⊗ L(r)2 is simple.

Proof. Self-duality of L1, L2 and I (r) and general properties of duality imply that
L1⊗ L(r)2 is self-dual. Moreover, since L1 is left pr-bounded, Theorem 3.6 yields
an isomorphism:

EndPk(L1⊗ L(r)2 )' EndPk(L1)⊗EndPk(L2)' k⊗ k= k.

Hence, L1⊗ L(r)2 is simple by Lemma B.1. �

Our next task is to prove that the p-restricted simple functors are left p-bounded.
Our proof will use the following proposition, which extends the classification of
additive strict polynomial functors proved in [Touzé 2017b].
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Proposition B.3. Let F ∈ Pd0,d1,...,dn,k be a strict polynomial functor with 1+ n
variables, such that F is nonzero and additive with respect to each of the last n vari-
ables. Let G be the strict polynomial functor defined by G(V ) = F(V, k, . . . , k).
Then the di s, 1≤ i ≤ n, are powers of p, i.e., di = pri and there is an isomorphism

F ' G � I (r1)� · · ·� I (rn).

Proof. By induction, we can reduce ourselves to proving that dn = prn and that F is
isomorphic to F � I (rn), where F(V0, . . . , Vn−1) := F(V0, . . . , Vn−1, k). The func-
tors with n+ 1 variables of the form P �0µ, where P is a projective functor with
n variables, homogeneous of multidegree (d0, . . . , dn−1), and µ= (µ1, . . . , µk) is
a tuple with

∑
µi = dn , form a projective generator of Pd0,d1,...,dn,k. Thus F is a

quotient of a direct sum
⊕

Pi �0µ
i
.

Observe that if µ has more than one nonzero coefficient, then there are no
nonzero morphisms from a functor of the form P � 0µ to F . Indeed, for some
n-tuple V = (V0, . . . , Vn−1), such a nonzero morphism would induce a nonzero
morphism of strict polynomial functors from P(V )⊗0µ(– ) to the additive functor
F(V , – ). This would contradict [Friedlander and Suslin 1997, Theorem 2.13].

In particular, F is in fact a quotient of
⊕

Pi �0dn = P �0dn with P =
⊕

Pi .
Moreover, the following composite is zero, where φ = P � mult, with “mult”
referring to the multiplication of the divided power algebra:

dn⊕
k=1

P � (0k
⊗0dn−k)

φ
−→ P �0dn → F.

Hence F is a quotient of P � (Cokerφ). But Cokerφ is nonzero if and only if
dn = prn for some rn , and in this case it is equal to I (rn). Thus dn = prn , and
we have a surjective map ψ : P � I (rn) � F . By replacing the last variable by k,
we obtain a surjective map ψ : P � F . We then take a projective functor with n
variables Q and a map χ : Q→ P whose image is Kerψ . Then using additivity
with respect with the last variable, one sees that we have a right exact sequence:

Q � I (rn)
χ�I (r)
−−−→ P � I (rn)

ψ
−→ F→ 0.

This implies that F is isomorphic to F � I (rn). �

Corollary B.4. If L is a simple functor, there exists nonnegative integers d0, . . . , dr

such that L is a quotient of the functor T (d0,...,dr ) =
⊗

0≤i≤r (⊗
di )(i).

Proof. If L has degree zero, then L is the constant functor k. Hence it is a quotient
of T (0)

=⊗
0
= k. Assume L is not constant. Then there exists a positive integer n,

the Eilenberg–Mac Lane degree of L , such that the functor with n variables

L�n : (V1, . . . , Vn) 7→ L(V1⊕ · · ·⊕ Vn)
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contains a nonzero homogeneous direct summand F which is additive with respect
to each of its variables (see, e.g., [Touzé 2017b, Section 2] for more details on
Eilenberg–Mac Lane degrees for strict polynomial functors). By Proposition B.3,
F is of the form

F = G � I (r1)� · · ·� I (rn)

where G is a homogeneous functor of degree zero, i.e., a constant functor. In
particular, F (hence also L�n ) contains I (r1) � · · ·� I (rn) as a direct summand.
Thus we have

0 6= HomPk(n)(I
(r1)� · · ·� I (rn), L�n )' HomPk(I

(r1)⊗ · · ·⊗ I (rn), L).

Since L is simple, any nonzero morphism with target L is surjective. Thus the
inequality above proves that L is a quotient of I (r1)⊗· · ·⊗ I (rn). By reordering the
factors of this tensor product (and using that (I (k))⊗dk = (⊗dk )(k)), we obtain the
result. �

We now consider two assertions, indexed by a nonnegative integer k.

A(k) If L is a p-restricted functor of degree d with d ≤ k, then L is a quotient
of ⊗d.

B(k) Let d be a nonnegative integer and let T be a homogeneous functor of
positive degree e. If d + pe ≤ k + 1, then no p-restricted simple functor
occurs as a composition factor of the tensor product ⊗d

⊗ T (1).

Lemma B.5. Assertion A(0) is true.

Proof. If L is a simple functor of degree 0, then L is the constant functor k. Hence
it is a quotient of ⊗0

= k. �

Lemma B.6. If A(k) is true, then B(k) is true.

Proof. The functor ⊗d
⊗ T (1) admits a filtration whose successive quotients are

direct sums of functors of the form Lλ ⊗ T (1), where Lλ is a simple functor of
degree d. Thus, it suffices to prove that these tensor products Lλ ⊗ T (1) have
no p-restricted composition factors. Let us write λ = α + pβ, where α is a p-
restricted partition and β is a partition. Since |α| ≤ d ≤ k, assertion A(k) implies
that the simple functor Lα is left p-bounded. By the weak Steinberg theorem of
Proposition B.2, Lλ' Lα⊗L(1)β is simple, and it is isomorphic to Lλ by elementary
highest weight theory (see item (4) in Section 2C). Hence,

Lλ⊗ T (1)
' Lα ⊗ (Lβ ⊗ T )(1).

The functor (Lβ ⊗ T )(1) has composition factors of the form (Lγ )(1) with γ 6= (0).
Since Lα is left p-bounded, Proposition B.2 implies that the composition factors
of Lλ⊗ T (1) have the form Lα ⊗ L(1)γ = Lα+pγ , and hence are not p-restricted. �
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Lemma B.7. If A(k) and B(k) are true, then A(k+ 1) is true.

Proof. By elementary highest weight theory (see (4) in Section 2C), Lλ is a com-
position factor of

Lλ0 ⊗ L(1)
λ1 ⊗ · · ·⊗ L(r)λr .

Thus it suffices to prove that the latter is a simple functor. Since A(k) is true,
it remains to prove that a p-restricted functor L of degree k + 1 is necessarily a
quotient of ⊗k+1. By Corollary B.4, there exists a tuple of nonnegative integers
(d0, . . . , dr ) such that L is a quotient of a tensor product of the form T (d0,...,dr ).
But assertion B(k) says that such tensor products have no p-restricted composition
factor except maybe if (d0, . . . , dr )= (k+ 1, 0, . . . , 0). �

Lemmas B.5, B.6 and B.7 imply that A(k) is true for all k ≥ 0. We are now
ready to prove:

Theorem B.8 (Steinberg’s tensor product theorem). Let λ0, . . . , λr be p-restricted
partitions, and let λ=

∑r
i=0 piλi . There is an isomorphism

Lλ ' Lλ0 ⊗ L(1)
λ1 ⊗ · · ·⊗ L(r)λr .

Proof. Since A(k) is true for all k ≥ 0, p-restricted simples are quotients of tensor
powers ⊗d . Moreover (⊗d)(i) = (I (i))⊗d is a quotient of (0 pi

)⊗d . Thus, for all
k ≤ r ,

⊗
i<k L(i)

λi is left pk-bounded. An induction on k using Proposition B.2
shows that each tensor product

⊗
i≤k L(i)

λi is simple. �

Remark B.9. If λ = (λ1, . . . , λk), then Lλ(kn) is a simple polynomial GLn(k)-
module if n ≥ k and is zero if n < k (This follows from the properties of the
deflating Schur functor dN ,n given in [Martin 1993, pp. 109–110], and the fact
that evkn = dN ,n ◦ evkN .) Thus, Theorem B.8 actually implies the Steinberg tensor
product theorem for polynomial representations of GLn(k), for all values of n
(and in particular without requiring that the representations are stable). Finally,
all simple rational representations of GLn(k) can be obtained by tensoring simple
polynomial representations of GLn(k) by a power of the determinant representation.
Thus, Theorem B.8 implies the classical Steinberg tensor product theorem as in
[Jantzen 2003, II.3.17].

Theorem B.10 (Clausen and James’ theorem). A simple functor L is p-restricted
if and only if HomPk(L ,⊗

d)= HomPk(⊗
d , L) is nonzero.

Proof. Property A(k) gives the “only if” part. Conversely, assume that the highest
weight λ of L is not p-restricted. Using euclidean division, we write λ= λ0

+ pλ1

with λ0 p-restricted and λ1 nonzero. Thus L ' Lλ0 ⊗ L(1)
λ1 by Steinberg’s tensor

product theorem. By property A(k), Lλ0 is left and right p-bounded, so that by
Theorem 3.6, HomP(L ,⊗d)= HomP(⊗

d , L)= 0. �
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Remark B.11. There already exists a functorial proof of Steinberg’s tensor product
theorem in the literature [Kuhn 2002, Theorem 7.11]. However, the proof given
in this appendix is quite different from that in [Kuhn 2002]. Let us stress two
differences. First, the proof in [Kuhn 2002] uses finite fields, while the size of
the ground field plays no role in our proof. Second, to obtain a concrete form
of [Kuhn 2002, Theorem 7.11], one needs to know the classification of simple
representations of symmetric groups. On the contrary, our proof does not use
any knowledge of representations of symmetric groups. Better still, our reasoning
also proves Clausen and James’ theorem, so we can actually use our approach to
derive the classification of simple representations of symmetric groups from the
classification of simple representations of GLn .

Steinberg’s tensor product theorem tells us that if Lλ is simple and p-restricted
and Lµ is simple, then Lλ⊗ L(1)µ is simple. The following statement completes the
picture regarding tensor products of simple objects.

Theorem B.12. Let L and L ′ be both simple and p-restricted. Then L ⊗ L ′ is not
simple, unless one of the two is the constant functor k.

The remainder of the section is devoted to the proof of Theorem B.12.

Lemma B.13. Let d be a positive integer, and let L be a simple quotient of ⊗d .
The following injection induced by the tensor product is not surjective:

HomPk(⊗
d , L)⊗HomPk(I, I ) ↪→ HomPk(⊗

d+1, L ⊗ I ).

Proof. Fix a vector space V equipped with an isomorphism kd
⊕ k ' V . Let

ι1 : k ↪→ V , ι2 : kd ↪→ V , π1 : V → k and π2 : V → kd be the associated canonical
maps. Since EndPk(I ) ' k, any nonzero map φ in the image of the injection of
Lemma B.13 is of the form φ = f ⊗ Id for a nonzero f . Thus the following
composite is nonzero (it equals the map induced by f ):

(kd)⊗d
⊗ k

(ι2)
⊗d
⊗ι1

−−−−−→ V⊗d+1 φ
−→ L(V )⊗ V

L(π2)⊗π1
−−−−−→ L(kd)⊗ k. (∗)

For all morphisms f : ⊗d
→ L , we define a morphism ψ f : ⊗

d+1
→ L ⊗ I by

ψ f (x1⊗· · ·⊗xd+1)= f (x2⊗· · ·⊗xd+1)⊗x1. If f is nonzero, then ψ f is nonzero,
while for φ = ψ f the composite (∗) is zero. In particular ψ f is not in the image of
the inclusion. �

Lemma B.14. Let d be a positive integer, and let L be a simple quotient of ⊗d .
Let L(d−1,1) be the homogeneous summand of bidegree (d − 1, 1) of the bifunctor
(V,W ) 7→ L(V ⊕W ). There is an isomorphism L(d−1,1)

' FL � I , where FL is a
nonzero homogeneous functor of degree d − 1.
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Proof. Proposition B.3 provides an isomorphism L(d−1,1)
' FL � I . We have to

prove that FL is nonzero. By using the sum-diagonal adjunction and the Künneth
formula, we obtain that HomPk(⊗

d+1, L ⊗ I ) is isomorphic to

HomPk(⊗
d , L)⊗EndPk(I ) ⊕ HomPk(⊗

d , FL ⊗ I )⊗EndPk(I ).

For dimension reasons, Lemma B.13 implies that HomPk(⊗
d , FL ⊗ I ) is nonzero.

Hence FL is nonzero. �

Proof of Theorem B.12. We will show that the dimension of EndPk(L ⊗ L ′) is
not one. To this purpose, we use the sum-diagonal adjunction and the Künneth
formula. We obtain that the vector space EndPk(L ⊗ L ′) contains

EndPk(L)⊗EndPk(L
′)⊕HomPk(L , FL ⊗ I )⊗HomPk(L

′, FL ′ ⊗ I )

as a direct summand, with FL and FL ′ defined as in Lemma B.14. Again using the
sum-diagonal adjunction and the Künneth formula, we get that HomPk(L , FL ⊗ I )
contains EndPk(FL)⊗EndPk(I ) as a direct summand (and similarly for L ′). But
Lemma B.14 asserts that FL and FL ′ are nonzero, so that the dimension of the corre-
sponding endomorphism spaces is at least one. So, the dimension of EndPk(L⊗L ′)
is at least two. �
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Stable A1-connectivity over Dedekind schemes

Johannes Schmidt and Florian Strunk

We show that A1-localization decreases the stable connectivity by at most one
over a Dedekind scheme with infinite residue fields. For the proof, we establish
a version of Gabber’s geometric presentation lemma over a henselian discrete
valuation ring with infinite residue field.

Introduction

Background. Morel [2005] formulated the following property on a scheme S, called
the stable A1-connectivity property:

The A1-localization of a connected spectrum on the smooth Nisnevich
site over S is still connected.

Here, the notion of connectivity refers to the associated Nisnevich homotopy sheaves
or equivalently to the connectivity of the Nisnevich stalks. Further, he proved this
property for S = Spec(k), where k is a field. This celebrated result is known as
the stable A1-connectivity theorem [Morel 2005, Theorem 6.1.8] and has diverse
implications. Most of the content from Morel’s monograph [2012] is based on
this result, such as the unstable A1-connectivity theorem and its implication, the
Hurewicz theorem in A1-homotopy theory [Morel 2012, Theorem 6.37]. This leads
to a computation of the 0-line of the stable homotopy groups of motivic spheres
as the Milnor–Witt K-theory K MW

∗
(S) of the base S [Morel 2012, Corollary 6.43].

More immediately, the A1-connectivity theorem implies the vanishing of the neg-
ative lines which is analogous to the vanishing of the negative stable homotopy
groups of the sphere in topology.

Morel [2005, Conjecture 2] conjectured that the stable A1-connectivity property
holds over every regular base. However, Ayoub [2006] constructed a counterexam-
ple to this conjecture (see Remark 4.4 below).
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Aim and results. In this paper, we want to replace Morel’s stable A1-connectivity
property by the following weaker property on a base scheme S of Krull-dimension
d which is consistent with Ayoub’s counterexample:

The A1-localization of a d-connected spectrum on the smooth Nisnevich
site over S is still connected.

We refer to this property as the shifted stable A1-connectivity property. In other
words, S has this property if A1-localization lowers the connectivity by at most the
dimension of S. Question 4.12 below asks whether every regular base scheme has
this shifted stable A1-connectivity property. Morel’s stable connectivity theorem is
a positive answer in the case d = 0. In the main theorem of this paper, we give a
positive answer in the one-dimensional case, assuming infinite residue fields (see
also Theorem 4.16):

Theorem A. A Dedekind scheme with only infinite residue fields has the shifted
stable A1-connectivity property: if E is an i-connected spectrum, then its A1-
localization LA1E is (i − 1)-connected.

Examples for such base schemes are algebraic curves over infinite fields in geo-
metric settings, or Spec(Znr

p ) for Znr
p /Zp the maximal unramified extension in more

arithmetic settings.
Morel’s proof of the A1-connectivity theorem needs a strong geometric input

referred to as Gabber’s geometric presentation lemma and written up in [Colliot-
Thélène et al. 1997, Theorem 3.1.1]. These authors show how Gabber’s presenta-
tion result leads to universal exactness of certain Cousin complexes. In particular,
they derive the Bloch–Ogus theorem and the Gersten conjecture for algebraic K-
theory for smooth varieties over a field, as first proved by Quillen [1973, Theorem
5.11]. In Section 2, we prove a version of this presentation result over a henselian
discrete valuation ring with infinite residue fields (compare Theorem 2.1):

Theorem B. Let o be a henselian discrete valuation ring with infinite residue field
and let σ denote the closed point of S = Spec(o). Let X be a smooth S-scheme of
finite type and let Z ↪→ X be a proper closed subscheme. Let z be a point in Z.
If z lies in the special fibre Zσ , suppose that Zσ 6= Xσ . Then, Nisnevich-locally
around z, there exists a smooth o-scheme V of finite type and a cartesian square

X \ Z //

��

X

p
��

A1
V \ p(Z) // A1

V

such that p is étale, the restriction p|Z : Z ↪→ A1
V is a closed subscheme and Z is

finite over V . In particular, this square is a Nisnevich-distinguished square.
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The proof is based on [Colliot-Thélène et al. 1997, Theorem 3.1.1] combined
with a Noether normalization over a Dedekind base; cf. [Kai 2015, Theorem 4.6].

Apart from this geometric input to the proof of Theorem A, we need a second
key ingredient of a more homotopical kind: In Section 3, we examine a vanishing
result for the nonsheafified homotopy classes of the A1-localization of a connected
spectrum. This is a slight generalization of the argument in [Morel 2005, Lemma
4.3.1] to arbitrary noetherian base schemes of finite Krull-dimension. As a byprod-
uct, we obtain that the S1- and the P1-homotopy t-structure over any base scheme
is left complete, i.e., a presheaf of spectra is recovered as the homotopy limit over
its Postnikov truncations (see Corollaries 3.6 and 3.8).

1. Preliminaries

In this paper, our base scheme S is always a noetherian scheme of finite Krull-
dimension. Let SmS be the category of smooth schemes of finite type over S.
The category SmS is essentially small and sometimes we choose a small skeleton
implicitly without mentioning. Let sPre+(S) be the category of pointed simplicial
presheaves on SmS . We mostly ignore S in the notation. For an object U ∈ SmS ,
let U+ denote the presheaf homSmS ( – ,U ) considered as a discrete simplicial set
with an additional disjoint basepoint. Whenever we speak of a category having
all limits and colimits we actually mean that it has all small limits and all small
colimits.

Model structures. In contrast to the foundational address [Morel and Voevodsky
1999] of A1-homotopy theory, we use projective analogues of the unstable model
structures and obtain the (pointed) objectwise, Nisnevich-local and A1-Nisnevich-
local model structure (see [Dundas et al. 2003, Section 2]). Throughout the whole
text, let Lob, Ls and LA1 denote fixed (pointed) objectwise, Nisnevich-local and
A1-Nisnevich-local fibrant replacement functors, respectively. Given a symbol
τ ∈ {ob, s,A1

}, a nonnegative integer n and F ∈ sPre+, define the n-th τ -homotopy
sheaf π τn (F) of F as the Nisnevich sheafification of the n-th τ -homotopy presheaf

[( – )+∧ Sn, Lτ F].

Here, the brackets denote (pointed) objectwise homotopy classes. Notice that
πob

n (F) ∼= π
s
n(F). Whenever the objectwise model structure is considered, we

omit the symbol ob from the notation.
Let SptS1(S) be the category of (nonsymmetric) S1-spectra on the category

sPre+(S) [Hovey 2001, Definition 1.1]. The functor ( – )0 sending an S1-spectrum
to its zeroth level and the S1-suspension spectrum functor 6∞S1 fit into an ad-
junction 6∞S1 : sPre+ � SptS1 : ( – )0. For an integer n ≥ 0, there is also an
adjunction [−n] : SptS1 � SptS1 : [n] of shift functors defined for an integer n
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by E[n]m := En+m whenever n + m ≥ 0 and E[n]m := ∗ otherwise. Follow-
ing the general procedure of [Hovey 2001], we equip the category SptS1(S) with
stable model structures (see Hovey’s Definition 3.3) having homotopy categories
SHob

S1 (S), SHs
S1(S) and SHA1

S1 (S). The two above-mentioned adjunctions turn into
Quillen adjunctions. Each of these stable homotopy categories is a triangulated
category with distinguished triangles given by the homotopy cofibre sequences
[Hovey 1999, Proposition 7.1.6]. In fact, by choosing symmetric spectra as a more
elaborate model, these homotopy categories carry the structure of a closed symmet-
ric monoidal category with a compatible triangulation in the sense of [May 2001,
Definition 4.1]. For details of this construction we refer to [Hovey 2001; Jardine
2000; Ayoub 2007]. There are functors

– ∧6∞S1 ( – ) : SptS1 ×sPre+→ SptS1,

hom(6∞S1 ( – ), – ) : sPreop
+
×SptS1 → SptS1,

defined in the obvious way. For a cofibrant F ∈ sPre+, they fit into a Quillen
adjunction

– ∧6∞S1 F : SptS1 � SptS1 : hom(6∞S1 F, – )

whose derived adjunction models the monoidal structure from before.
Let �S1 denote the functor hom(6∞S1 S1, – ). We mention that a concrete fibrant

replacement functor for the stable τ -model structure on SptS1 is given by

2τS1 E = colim
(
(Lτ E)→�S1(Lτ E)[1] → (�S1)2(Lτ E)[2] → · · ·

)
, (1.1)

where τ ∈ {ob, s,A1
} and where the application of Lτ to a spectrum is levelwise

[Hovey 2001, Theorem 4.12]. We write �∞S1 : SptS1 → sPre+ for the composition
of this fibrant replacement functor with ( – )0.

As for the unstable structures, we define the n-th stable τ -homotopy sheaf π τn (E)
of a spectrum E ∈ SptS1 as the Nisnevich sheafification of the n-th stable τ -
homotopy presheaf

[6∞S1 ( –+ )[n], Lτ E].

Here, the brackets denote the morphism sets of SHob
S1 . Since it will be evident from

the context if the unstable or the stable homotopy sheaf is considered, we do not
introduce an extra decoration.

We use the following explicit model for LA1 in the stable context introduced in
[Morel 2004, Lemma 4.2.4].

Lemma 1.2 (Morel). Let S be an arbitrary base scheme. For each integer k ≥ 0,
we set Lk(E) := hom(F∧k, Ls(E)) with F := 6∞S1 C[−1], where C is a cofibrant
replacement of the cofibre of the morphism

S0 0,1
−−→ A1
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in sPre+. Then the functor L∞ : SptS1 → SptS1 defined by

L∞(E) := hocolim
k→∞

Lk(E)

is a fibrant replacement functor for the stable A1-Nisnevich-local model.

Remark 1.3. Likewise, the spectrum F from the above Lemma 1.2 may be defined
by the distinguished triangle

F −−→6∞S1 S0 0,1
−−→6∞S1 A1.

Let k ≥ 1 be an integer. After rotation and smashing with the spectrum F∧(k−1),
the above triangle becomes 6∞S1 A1

∧ F∧(k−1)
[−1] → F∧k

→ F∧(k−1). Applying
hom( – , Ls(E)) yields the distinguished triangle

Lk−1(E)→ Lk(E)→ hom(6∞S1 A1, Lk−1(E)[1]).

Here Lk−1(E)[1] ' Lk−1(E[1]) holds by definition and homotopy-exactness of Ls.

Base change. We briefly recall the construction of base change functors in A1-
homotopy theory. For details, see the monograph [Ayoub 2007] and [Hu 2001].

Let f : R → S be a morphism between noetherian schemes of finite Krull-
dimension. There is an adjunction

f ∗ : sPre+(S)� sPre+(R) : f∗

where the direct image functor f∗ is defined by ( f∗G)( – ) :=G( – ×S R) and where
the left adjoint inverse image is determined by f ∗(U+) := (U ×S R)+ for U ∈ SmS .
The functor f ∗ is strong symmetric monoidal with respect to the smash product
and there is a natural isomorphism f∗ hom

+
( f ∗F,G)∼= hom

+
(F, f∗G) [Fausk et al.

2003, (3.4)]. If the morphism f : R→ S is smooth and of finite type, the inverse
image functor has a left adjoint

f] : sPre+(R)� sPre+(S) : f ∗

determined by f](V+) = f](V+→ R) := (V t S→ R t S→ S) = f unpointed
] (V )+.

We emphasize that throughout the whole text, the functor f] is considered in this
pointed sense: it does not only postcompose with f but also quotients out the base-
point along f . In the case of a smooth f of finite type, the inverse image is given
by f ∗F = F ∧ R+, and one has a projection formula f](G∧ f ∗F)∼= f]G∧ F (see,
e.g., [Hoyois 2017, Section 5.1]) and a natural isomorphism

f ∗ hom
+
(A, B)∼= hom

+
( f ∗A, f ∗B) (1.4)

by [Fausk et al. 2003, Proposition 4.1]. Note that, since S is noetherian, any open
immersion R ↪→ S is smooth and of finite type.
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The adjunction ( f ∗, f∗) is a Quillen adjunction for the objectwise, the Nisnevich-
local and the A1-Nisnevich-local model structures. If f : R→ S is smooth and of
finite type, then the adjunction ( f], f ∗) is a Quillen adjunction for the objectwise,
the Nisnevich-local and the A1-Nisnevich-local model structures as well and f ∗

preserves all weak equivalences; see [Ayoub 2007, Theorem 4.5.10].

Remark 1.5. For the projective versions of the model structures, it is easy to see
that f ∗ and f] preserve the generating cofibrations and hence all cofibrations. By
the same reason, the objectwise acyclic cofibrations are preserved, so ( f], f ∗) and
( f ∗, f∗) are Quillen adjunctions for the objectwise structures. In order to see that
the right adjoints f∗ and f ∗ preserve fibrations for the Nisnevich-local and the A1-
Nisnevich-local model structure, it suffices to show that they preserve fibrations be-
tween fibrant objects [Dugger 2001, Corollary A.2]. As the right adjoints preserve
objectwise fibrations, it suffices to show that they preserve fibrant objects. The
fibrant objects of a Bousfield localization may be detected by a particular set J ′ of
acyclic cofibrations [Hirschhorn 2003, Lemma 3.3.11]. It remains to be shown that
the left adjoints preserve these acyclic cofibrations in J ′, which is straightforward;
see [Dundas et al. 2003, Definition 2.14].

In particular, Remark 1.5 implies the following lemma.

Lemma 1.6. Suppose f : R→ S is a smooth morphism of finite type. For each
F ∈ sPre+(S), there are canonical (objectwise) weak equivalences

Ls( f ∗F)∼ f ∗(Ls F) and LA1
( f ∗F)∼ f ∗(LA1F)

in sPre+(R).

The spectrum Sh
s := Spec(Oh

S,s) of a henselian local ring of a point s ∈ S is
usually not of finite type over S. Hence, Lemma 1.6 does not apply directly to the
canonical morphism s : Sh

s → S. Instead, we treat Sh
s as a cofiltered limit of the

diagram D given by the affine Nisnevich neighbourhoods of s in S and invoke the
following lemma.

Lemma 1.7. Let d : D→ S be a noetherian S-scheme of finite Krull-dimension.
Suppose d is the limit of a cofiltered diagram D : I→ SmS with affine transition
morphisms, where di : Di → S denotes the structure morphism of each Di := D(i).
Assume that each Di is quasiseparated. Let V → D be an element of SmD. Then
the following statements hold:

(1) There is a cofinal functor IV → I, a cofiltered diagram V : IV → SmS with
affine transition morphisms and a natural transformation V → D|IV inducing
V → D on the limit over IV in SchS .

(2) For V → V as in (1) and for each F ∈ sPre+(S), the morphism of diagrams
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0(V , d∗F)→ 0(V, d∗F) induces a canonical natural isomorphism

0(V, d∗F)∼= colim
i∈IV

0(Vi , d∗i F).

(3) For V → V as in (1) and for each F ∈ sPre+(S), there is a canonical natural
isomorphism of pointed (objectwise) homotopy classes

[V+, d∗F] ∼= colim
i∈IV
[Vi+, d∗i F].

(4) In (1), open embeddings, étale morphisms, smooth morphisms and Nisnevich-
distinguished squares in SmD can be approximated by their sectionwise coun-
terparts in SmS .

(5) For each F ∈ sPre+(S), there are canonical (objectwise) weak equivalences

Ls(d∗F)∼ d∗(Ls F) and LA1
(d∗F)∼ d∗(LA1F)

in sPre+(D).

Proof. (1) This follows from [EGA IV3 1966, Theorem 8.8.2, Proposition 17.7.8].
In fact, we may (and always will) even assume that IV = I ↓ i0 for a suitable object
i0 ∈ I and V = Vi0 ×Di0

D|I↓i0 for a suitable smooth morphism Vi0 → Di0 .

(2) We may assume F to be simplicially discrete, i.e., a presheaf. As we may write
F as the colimit over representable presheaves, and pullback- as well as section-
functors preserve colimits in the category of presheaves, we may assume that F
is representable by a suitable object U → S in SmS . Then d∗F = U ×S D and
d∗i F =U ×S Di , and (2) follows from (1) and [EGA IV3 1966, Theorem 8.8.2].

(3) Let us first observe that d∗ preserves objectwise fibrant objects. Indeed, this
holds for the d∗i by Remark 1.5. Taking sections and applying (2), it suffices to ob-
serve that a filtered colimit of fibrant simplicial sets is again fibrant. The assertion
of (3) now follows by taking homotopies with respect to the functorial standard
cylinder ( – )×11.

(4) Let f : V ′→ V be an open embedding (resp. an étale or smooth morphism)
in SmD . We apply (1) first to the structural map V → D of the target and then to
V ′→ V itself. We get approximations V , V ′ : I f → SmS and a natural transforma-
tion f : V ′→ V inducing f after taking limits. By [EGA IV3 1966, Proposition
8.6.3] (resp. [EGA IV3 1966, Proposition 17.7.8]) we may assume that f is sec-
tionwise an open embedding (resp. an étale or smooth morphism). As in (1), we
may assume f = fi0 ×Di0

D|I↓i0 .
Let f be étale and j : U ↪→ V an open immersion inducing a Nisnevich-

distinguished square. Choose an approximation f = fi0 ×Di0
D|I↓i0 of f as above.

By possibly enlarging i0, we can find an approximation j = ji0 ×Di0
D|I↓i0 of j
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by open immersions. We get a levelwise pullback square

U ×V V ′ //

��

V ′

f
��

U
j

// V

In particular, the sectionwise definition of f ∗(Z)→ Z := V \U (sectionwise with
the reduced structure) gives a well defined approximation of f ∗(Z)→ Z := V \U .
By [EGA IV3 1966, Corollary 8.8.2.4] we may even assume that this approxima-
tion is sectionwise an isomorphism, i.e., the above square of approximations is
sectionwise a Nisnevich-distinguished square.

(5) Note that the first assertion is equivalent to d∗ preserving Nisnevich-local
fibrant objects and that the second assertion is equivalent to d∗ preserving A1-
Nisnevich-local fibrant objects. Let F ∈ sPre+ be Nisnevich-local fibrant. We have
to show that d∗F sends Nisnevich-distinguished squares to homotopy pullback
squares of simplicial sets. Let Q be a Nisnevich-distinguished square in SmD . By
(4), Q may be approximated by a diagram Q of Nisnevich-distinguished squares.
By (2), we have (d∗F)(Q)∼= colim(d∗i F)(Qi ). Again, as the d∗i admit Quillen left
adjoints for the Nisnevich-local model, it suffices to show that a filtered colimit
of homotopy pullback squares of simplicial sets is again a homotopy pullback
square. This, in turn, follows from the fact that those colimits preserve categorical
pullback squares, fibrations and weak equivalences of simplicial sets. This shows
Ls(d∗F)∼ d∗(Ls F).

For the second assertion it suffices to show that d∗ preserves A1-invariant sim-
plicial presheaves. This is the case for the d∗i as they admit left adjoints di,]. The
assertion follows directly from (2). �

We need the following glueing property. Let S be a base scheme of finite Krull
dimension and i : Z ↪→ S a closed subscheme with complementary open immersion
j : U ↪→ S. For a pointed simplicial presheaf F ∈ sPre+(S), there is a homotopy
cofibre sequence

j] j∗F→ F→ i∗LA1i∗F (1.8)

for the pointed A1-Nisnevich-local model structure. This fact follows (e.g., by
[Hoyois 2017, Section 5.1]) from the unpointed analogue due to Morel and Vo-
evodsky [1999, Theorem 3.2.21] (see also [Ayoub 2006, Theorem 4.5.36]).

For a morphism f : R→ S of noetherian schemes of finite Krull dimension,
there is also an adjunction

f ∗ : SptS1(S)� SptS1(R) : f∗
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on the level of spectra where one defines f ∗(E)n := f ∗(En) and f∗(D)n := f∗(Dn)

with obvious structure maps. If the morphism f : R→ S is smooth and of finite
type, there is an adjunction

f] : SptS1(R)� SptS1(S) : f ∗

with f](D)n := f](Dn) and structure maps given by the projection formula. The
adjunction ( f ∗, f∗) is a Quillen adjunction for the stable objectwise, the stable
Nisnevich-local and the stable A1-Nisnevich-local model structures, respectively.
If f : R→ S is smooth and of finite type, then the adjunction ( f], f ∗) is a Quillen
adjunction for these stable model structures as well and f ∗ preserves all stable
weak equivalences; see [Ayoub 2007, Theorem 4.5.23].

We have the following analogue of Lemma 1.6 and Lemma 1.7 in the stable
setting.

Lemma 1.9. Let D and V → D be as in Lemma 1.7. Let f : R → S be either
smooth of finite type or the canonical map lim D → S. Let E ∈ SptS1(S) be a
spectrum. Then the following statements hold:

(1) Lob( f ∗E)∼ f ∗(Lob E), Ls( f ∗E)∼ f ∗(Ls E) and LA1
( f ∗E)∼ f ∗(LA1E).

(2) With the notation of Lemma 1.7(1), there is a canonical natural isomorphism
of pointed (stable objectwise) homotopy classes

[6∞S1 (V+), d∗E] ∼= colim
i∈IV
[6∞S1 (Vi+), d∗i E].

Proof. The assertions follow from (1.4) and the explicit form of a fibrant replace-
ment (1.1) using Lemma 1.6 and Lemma 1.7. �

Corollary 1.10. Let E ∈ SptS1(S) be a spectrum. Then the following statements
are equivalent:

(1) The homotopy sheaf π0(E) is trivial.

(2) For all schemes V ∈ SmS with structure morphism p : V → S and all points
v ∈ V with canonical morphism v : V h

v := Spec(Oh
V,v)→ V , the homotopy

sheaf π0(v
∗ p∗E) is trivial.

(3) For all points s ∈ S with canonical morphism s : Sh
s → S, the homotopy sheaf

π0(s
∗E) is trivial.

Proof. First suppose (2) holds. We want to show (1), i.e., we have to show that the
Nisnevich stalk at (V, v) of the sheaf π0(E) is trivial for all such (V, v). By (2) of
the previous lemma, we get

π0(E)(V,v) = colim
f :(W,w)→(V,v)

[6∞S1 (W+), f ∗ p∗E] ∼= [6∞S1 (V h
v,+), v

∗ p∗E],
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where the colimit runs over the Nisnevich neighbourhoods of (V, v). The iden-
tity id(V h

v ,v)
is cofinal in the Nisnevich neighbourhoods of (V h

v , v), so we obtain
6∞S1 (V h

v,+), v
∗ p∗E] = π0(v

∗ p∗E)(V h
v ,v)

, which is trivial by assumption.
For the implication (1) ⇒ (2), suppose that π0(E) = 0. Let Vi → V be the

diagram given by the affine Nisnevich neighbourhoods of (V, v). In particular,
we have limi Vi ∼= V h

v . By Lemma 1.7(4), every object in SmV h
v

has the form
W h
v :=W ×V V h

v for a suitable W ∈ SmV . Take a point w ∈W h
v and let w0 be its

image in W . Again by Lemma 1.7(4), we find a diagram of étale maps W j →W
such that (W h

v )
h
w
∼= lim j (W j )

h
v
∼= lim j limi W j ×V Vi . Using Lemma 1.9(2), we

compute

π0(v
∗ p∗E)(W h

v ,w)
∼= colim j [6

∞

S1 ((W j )
h
v,+), v

∗ p∗E]

∼= colim j colimi [6
∞

S1 ((W j ×V Vi )+), p∗E].

The pro-object {W j ×V Vi }i, j in SmS induces a Nisnevich point α of Sh(SmS).
Note that this point may not correspond to the henselian scheme Xh

x for some
X ∈ SmS and x ∈ X but to a subextension of the strict henselization W sh

w0
/W h

w0
.

The assumption π0(E)= 0 now implies

colim j colimi [6
∞

S1 ((W j ×V Vi )+), p∗E] ∼= α(π0(E))= 0.

As a special case we get the implication (3)⇒ (2). Finally, the reverse implication
(2)⇒ (3) is trivial. �

P1-spectra. In this subsection, we briefly recall a model for the P1-stable motivic
homotopy category. As an underlying category of this model structure, we use
(Gm, S1)-bispectra, i.e., the category SptGm

(SptS1(S)) of Gm-spectra with entries in
SptS1 ; see [Hovey 2001, Definition 1.1]. Here, by abuse of notation, Gm denotes the
S1-suspension spectrum of a cofibrant replacement of the pointed object (Gm, 1)
of sPre+(S); see [Morel 2004, Remark 5.1.10]. Again, by an abuse of notation, we
abbreviate this category by SptP1(S) and call its objects P1-spectra. Similarly to
the passage from sPre+ to S1-spectra, the zeroth entry of a P1-spectrum and the
Gm-suspension spectrum functor fit into an adjunction

6∞Gm
: SptS1 � SptP1 : ( – )0. (1.11)

For q ≥ 0, there is also an adjunction 〈−q〉 : SptP1 � SptP1 : 〈q〉 of shift functors
defined for an integer q by E〈q〉m := Eq+m whenever q +m ≥ 0 and E〈q〉m :=
∗ otherwise. Again by the general procedure of [Hovey 2001], we equip SptP1

with the stable model structure induced via (1.11) by the stable A1-Nisnevich-local
structure on SptS1 [Hovey 2001, Definition 3.3]. Its homotopy category SH(S) is
the (P1-stable) motivic homotopy category. The two above-mentioned adjunctions
turn into Quillen adjunctions for these structures, respectively.
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The motivic homotopy category SH is a triangulated category with distinguished
triangles again given by the homotopy cofibre sequences. Note that here the trian-
gulated shift is again induced by the simplicial shift [1] and not by the Gm-shift 〈1〉.

Finally, let us mention a concrete fibrant replacement functor for the above
model structure on SptP1 . This is completely analogous to the S1-stabilization
process from sPre+ to SptS1 . Let E ∈ SptP1 . By [Hovey 2001, Theorem 4.12], we
may use the functor

2Gm E = colim(E→�Gm E〈1〉 → (�Gm )
2 E〈2〉 → · · · )

if each level of E is already a fibrant spectrum in SptS1 . Otherwise we can first
apply the stable A1-Nisnevich-local fibrant replacement functor 2A1

S1 levelwise. We
write �∞

Gm
: SptP1 → SptS1 for the composition of this fibrant replacement functor

with ( – )0 from (1.11).

Preliminaries on t-structures. We briefly recall the definition of a homological t-
structure and basic properties. Details can be found in [Gelfand and Manin 2003].

Definition 1.12. A (homological) t-structure on a triangulated category D is a pair
of full subcategories D≤0 and D≥0 which are closed under isomorphisms in D such
that the following axioms hold, where for an integer n, one sets D≥n := D≥0[n]
and D≤n := D≤0[n].

(1) For all X ∈ D≥0 and all Y ∈ D≤−1 we have homD(X, Y )= 0.

(2) D≥0 is closed under [1] (i.e., D≥1 ⊆ D≥0) and dually D≤−1 ⊆ D≤0.

(3) For all Y ∈D there exists a distinguished X→ Y → Z→ X [1] with X ∈D≥0

and Z ∈ D≤−1.

Set D=n := D≥n ∩D≤n and call D=0 the heart of the t-structure. A t-structure is
called nondegenerate if

⋂
n≥0 D≥n = {0} and

⋂
n≤0 D≤n = {0}. A t-structure is

called left complete if for all X ∈ D the canonical morphism

X→ holim
n→∞

X≤n

is an isomorphism. Dually, a t-structure is called right complete if for all X ∈ D
the canonical morphism hocolim

n→−∞
X≥n→ X is an isomorphism.

Remark 1.13. The adjunctions

inclusion :D≥n � D : τ≥n

τ≤n : D� D≤n : inclusion

turn D≥n into a coreflective and D≤n into a reflective subcategory of D. The counit
of the first adjunction is denoted by ( – )≥n :D→D and called the n-skeleton. The
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unit of the second adjunction is denoted by ( – )≤n and called the n-coskeleton. The
skeleton and the coskeleton induce a distinguished triangle

X≥n→ X→ X≤n−1→ (X≥n)[1].

Remark 1.14. Let D be a triangulated category obtained from the homotopy cate-
gory of a stable model category together with a t-structure. If the t-structure is left
complete, then

⋂
n≥0 D≥n ={0}, which can be seen as follows. Take X ∈

⋂
n≥0 D≥n

and suppose that X→ holim X≤n is an isomorphism. The homotopy limit of the
diagram

�� �� ��

X≥n+1

��

∼=
// X // X≤n

��

X≥n
∼=
// X // X≤n−1

of triangles is the triangle holim X≥n→ X→ holim X≤n . Since the homotopy limit
of weak equivalences is a weak equivalence, the first morphism holim X≥n→ X
of this triangle is an isomorphism. This implies holim X≤n ∼= 0 and hence X ∼= 0.
In the same way, right completeness implies

⋂
n≤0 D≤n = {0}.

For the converse, consider [Lurie 2017, Proposition 1.2.1.19]: Suppose that D≥0

is stable under countable homotopy products. Then
⋂

n≥0 D≥n = {0} implies left
completeness. Dually, if D≤0 is stable under countable homotopy coproducts, the
relation

⋂
n≤0 D≤n = {0} implies right completeness.

Proposition 1.15 [Ayoub 2007, Proposition 2.1.70]. Let D be a triangulated cate-
gory with coproducts and let S be a set of compact objects of D. Define

• D≤−1 as the full subcategory of those Y of D with homD(S[n], Y )= 0 for all
n ≥ 0 and all S ∈ S,

• D≥0 as the full subcategory of those X of D with homD(X, Y ) = 0 for all
Y ∈ D≤−1.

The pair D≤0 = D≤−1[1] and D≥0 forms a t-structure. The category D≥0 is the
full subcategory of D generated under extensions, (small) sums and cones from
S and in particular S ⊆ D≥0. Moreover, the truncation functor τ≤−1 is given by
τ≤−1(X) := hocolim

k→∞
8k(X), where 8(X) is defined as the cone∐

Hom(S[n],X)
S∈S,n≥0

S[n] → X→8(X).

Remark 1.16. Let D be a triangulated category obtained from the homotopy cat-
egory of a stable model category and let S be a set of compact objects of D. The
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t-structure obtained from the previous Proposition 1.15 satisfies the property that
D≤0 is stable under countable homotopy coproducts. If D has an underlying cofi-
brantly generated model category and S equals (up to shifts) the set of cofibres of
the generating cofibrations, then

⋂
n≤0 D≤n = {0} by [Hovey 1999, Theorem 7.3.1]

and D is right complete by Remark 1.14. It is however usually a nontrivial issue
to show left completeness of a t-structure obtained from Proposition 1.15.

Canonical t-structures on S1-spectra. In this subsection we recall some basic
properties of canonical t-structures on S1-spectra arising in A1-homotopy theory.

Definition 1.17. Consider the set S := {6∞S1 U+ | U ∈ SmS}. The objectwise
t-structure (resp. Nisnevich-local t-structure, A1-Nisnevich-local t-structure) on
SHob

S1 (resp. SHs
S1 , SHA1

S1) is obtained by applying Proposition 1.15 to the trian-
gulated category SHob

S1 (resp. SHs
S1 , SHA1

S1) and to S.

Remark 1.18. In [Morel 2005] the Nisnevich-local t-structure on SHs
S1 is called

the standard t-structure. In [Morel 2004, Section 4.3] the A1-Nisnevich-local t-
structure on SHA1

S1 is called the homotopy t-structure (on S1-spectra).

Remark 1.19. By definition we have

SHob
S1≤−1 =

{
Y ∈ SHob

S1 |

Y has trivial homotopy presheaves [6∞S1 ( –+ )[i], Y ] for all i ≥ 0
}
.

Applying the classical [Margolis 1983, Proposition 3.6] objectwise, we get

SHob
S1≥0 =

{
X ∈ SHob

S1 |

X has trivial homotopy presheaves [6∞S1 ( –+ )[i], X ] for all i ≤−1
}
.

The objectwise t-structure is clearly nondegenerate as there are no nonzero spectra
without nontrivial homotopy presheaves. The objectwise t-structure is right com-
plete by Remark 1.16 and left complete by Remark 1.14 as SHob

S1≥0 is stable under
countable homotopy products.

Remark 1.20. Again, by definition we have

SHs
S1≤−1 =

{
Y ∈ SHs

S1 |

Y has trivial homotopy presheaves [6∞S1 ( –+ )[i], LsY ] for all i ≥ 0
}

and using on Nisnevich stalks the classical result [Margolis 1983, Proposition 3.6],
we get

SHs
S1≥0 = {X ∈ SH

s
S1 | X has trivial homotopy sheaves π s

i X for all i ≤−1},

SHs
S1≤−1 = {Y ∈ SH

s
S1 | Y has trivial homotopy sheaves π s

i Y for all i ≥ 0}.
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The Nisnevich-local t-structure is clearly nondegenerate as all nonzero spectra have
at least one nontrivial homotopy sheaf. The Nisnevich-local t-structure is right
complete by Remark 1.16 and left complete by, e.g., [Spitzweck 2014, Lemma 4.4].

Remark 1.21. A Nisnevich-local fibrant replacement functor Ls respects only
the truncation from above, i.e., if E is in SHob

S1≤−1, then the spectrum LsE is
in SHs

S1≤−1. The analogous statement is not true for the positive part SHob
S1≥0,

which can be seen as follows: By Hilbert’s Theorem 90, there is an isomorphism
Pic(X) ∼= H 1

Nis(X,Gm). The Eilenberg–Mac Lane spectrum HGm is in the heart
of the objectwise t-structure but

H 1
Nis(X,Gm)= [6

∞

S1 X+, Ls HGm[1]] = [6∞S1 X+[−1], Ls HGm]

and certainly there are schemes X with nontrivial Picard group.

Remark 1.22. By definition and Remark 1.20, one has

SHA1

S1≤−1 =
{
Y ∈ SHA1

S1 | Y has trivial homotopy presheaves

[6∞S1 ( –+ )[i], LA1 Y ] for all i ≥ 0
}

= {Y ∈ SHA1

S1 | Y has trivial homotopy sheaves πA1

i Y for all i ≥ 0}.

The A1-Nisnevich-local t-structure is right complete by Remark 1.16 and we have⋂
n≤0 SH

A1

S1≤n = {0}. It will be shown in Corollary 3.6 that the A1-Nisnevich-local
t-structure is left complete and hence nondegenerate.

Definition 1.23. We define

SHA1,π

S1≥0 := {X ∈ SH
A1

S1 | X has trivial homotopy sheaves πA1

i X for all i ≤−1}.

Remark 1.24. The full subcategory SHA1,π

S1≥0 in SHA1

S1 is closed under homotopy
colimits and extensions. There is an inclusion SHA1,π

S1≥0 ⊆ SHA1

S1≥0 due to [Spitzweck
2014, Lemmas 4.1 and 4.3]. Conversely, the other implication SHA1

S1≥0 ⊆ SHA1,π

S1≥0
holds if and only if LA1

6∞S1 U+∈ SHA1,π

S1≥0 for all U ∈ SmS . Unfortunately, there are
schemes S such that these two equivalent conditions do not hold (see Remark 4.4).
However, they hold true over the spectrum of a field S [Morel 2005, Theorem
6.1.8] and we have SHA1

S1≥0 = SHA1,π

S1≥0 in that case.

Homotopy t-structures on P1-spectra. In this subsection we recall the homotopy
t-structure on the motivic homotopy category SH. We remind the reader that 〈q〉
denotes the Gm-shift operation.

Definition 1.25. The homotopy t-structure on SH is the t-structure obtained by
applying Proposition 1.15 to the triangulated category SH and the set

S = {6∞
P1(U+)〈q〉 |U ∈ SmS and q ∈ Z}.
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Remark 1.26. We use the name “homotopy t-structure” in order to agree with the
terminology of [Morel 2004; 2005].

Remark 1.27. Unravelling the definitions, one identifies

SH≤−1 = {Y ∈ SH |�∞Gm
(Y 〈q〉) ∈ SHA1

S1≤−1 for all q ∈ Z}

= {Y ∈ SH | (colimk �
k
Gm

Yk+q) ∈ SHA1

S1≤−1 for all q ∈ Z}.

In particular,

�∞Gm
(SH≤−1)⊆ SHA1

S1≤−1 and 6∞Gm
(SHA1

S1≥0)⊆ SH≥0,

using [Ayoub 2006, Lemma 2.1.16] for the latter.

Remark 1.28. Over a field, using [Morel 2004, Lemma 4.3.11] and the equality
SHA1

S1≥0 = SHA1,π

S1≥0 from Remark 1.24, we can also identify

SH≥0 = {X ∈ SH |�∞Gm
(X〈q〉) ∈ SHA1

S1≥0 for all q ∈ Z};

cf. [Morel 2004, Section 5.2]. In particular, we have �∞
Gm
(SH≥0)⊆ SHA1

S1≥0 in this
case.

Remark 1.29. The homotopy t-structure on the motivic homotopy category is right
complete by Remark 1.16 and we have

⋂
n≤0 SH≤n = {0}. It will be shown in

Corollary 3.8 that the homotopy t-structure on the motivic homotopy category is
also left complete and hence nondegenerate.

2. Gabber presentations over henselian discrete valuation rings

Throughout this section, fix a henselian discrete valuation ring o with maximal
ideal mE o, local uniformizer π ∈m, residue field F= o/m and field of fractions k.
Assume that F is an infinite field. Let S be the spectrum of o and denote by σ the
closed point of S and by η the generic point of S. We want to prove the following
version of Gabber’s geometric presentation lemma over o.

Theorem 2.1. Let o be a henselian discrete valuation ring with infinite residue
field. Let X/o be a smooth o-scheme of finite type and let Z ↪→ X be a proper
closed subscheme. Let z be a point in Z. If z lies in the special fibre, suppose that
Zσ 6= Xσ . Then, Nisnevich-locally around z, there exists a smooth o-scheme V of
finite type and a cartesian square

X \ Z //

��

X

p
��

A1
V \ p(Z) // A1

V
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such that p is étale, the restriction p|Z : Z ↪→ A1
V is a closed subscheme and Z

is finite over V . In particular, this square is a Nisnevich-distinguished square and
therefore, the induced canonical morphism X/(X \ Z)→ A1

V /(A
1
V \ p(Z)) is an

isomorphism of Nisnevich sheaves.

Remark 2.2. The essential case of Theorem 2.1 is that of an effective Cartier-
divisor Z ↪→ X (see the proof of Theorem 2.4 below). Earlier results for relative ef-
fective Cartier-divisors Z ↪→ X over discrete valuation rings are [Gillet and Levine
1987, Lemma 1] and [Dutta 1995, Theorem 3.4]. These results are even Zariski
local and do not assume infinite residue fields. However, they do not include an
analogue for the crucial finiteness claim of Z/V .

The map p in Theorem 2.1 will be provided by a careful choice of suitable
linear projections. Before we give a short outline of the proof, let us first recall
some basic facts about linear projections.

Linear projections. Denote by Ax1/x0,...,xN /x0,S = Ax/x0,S the affine N -space AN
S

with coordinates x1/x0, . . . , xN/x0 and by Px0:···:xN ,S =Px,S the projective N -space
of PN

S with homogeneous coordinates x0 : · · · : xN . We get the standard open
embedding Ax/x0,S ↪→ Px,S . By abuse of notation, we identify x1/x0, . . . , xN/x0

with x1, . . . , xN and write just Ax,S for Ax/x0,S (and similarly for other coordinates).
Let A∨x1,...,xN ,S = Ax∗1 ,...,x

∗

N ,S be the dual affine space, i.e., for any o-algebra A,
A∨x1,...,xN ,S(A) is the free A-module generated by the coordinate functions x1, . . . , xN

of Ax,S . Dually, we can view Ax,S(A) as the free A-module generated by the dual
coordinate functions x∗1 , . . . , x∗N . To be more precise, take r copies of A∨x,S and de-
note the j -th copy by A

∨,( j)
x,S with coordinate functions x∗i, j := x∗i for 1≤ i ≤ N . Map-

ping t j 7→
∑

i xi ⊗ x∗i, j defines the dual pairing 〈 – , – 〉 : Ax,S ×S A
∨,( j)
x,S → At j ,S .

Via this pairing, each A-point u of A
∨,( j)
x,S induces a linear A-morphism (in abuse

of notation also denoted by) u defined as the composition

Ax,A
id×u

// Ax,A×A A
∨,( j)
x,A

〈 – ,– 〉
// At j ,A via t j

� //
∑

i 〈x
∗

i , u〉xi .

This map is precisely the linear form given by the A-point u seen as the correspond-
ing linear combination of the xi in A

∨,( j)
x,S (A)=

⊕
i Axi . We define

Er := A
∨,(1)
x,S ×S · · · ×S A

∨,(r)
x,S

and look at it as the space of linear projections Ax,S → At1,...,tr ,S . Indeed, each
A-point u of Er induces a linear A-morphism

u : Ax,A // At1,...,tr ,A via t j
� //
∑

i 〈x
∗

i , u j 〉xi .

Mapping t0 7→ x0, this extends to a rational map

u : Px,A // Pt0:···:tr ,A
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with locus of indeterminacy Lu := V+(x0, u1, . . . , ur )⊆ H∞, where u j is the linear
form in the coordinates x1, . . . , xN corresponding to the j-th component of u and
H∞ ⊂ Px,A is the hyperplane at infinity V+(x0).

Assume Y ↪→ Ax,A is a (reduced) closed subscheme with (reduced) projective
closure Y ↪→ Px,A such that Y ∩ Lu =∅. Then u induces regular maps

pu : Y // At1,...,tr ,A and p̄u : Y // Pt0:···:tr ,A

satisfying pu = p̄u ×Pt,A At,A. Observe that [Shafarevich 1994, Theorem I.5.3.7]
remains true in our setting:

Lemma 2.3. For any u ∈ Er (A) and any closed Y ↪→ Ax,S with Y ∩ Lu =∅, the
linear projections pu and p̄u are finite maps.

Proof. It suffices to show that p̄u is finite. As a map between projective schemes
over S, p̄u itself is projective. It remains to show that p̄u is quasifinite. Let σ̄
be a geometric point of S over σ , and likewise η̄ over η. By [Shafarevich 1994,
Theorem I.5.3.7], σ̄ ∗ p̄u and η̄∗ p̄u are finite. It follows that p̄u is finite on the special
fibre σ ∗ p̄u and the geometric fibre η∗ p̄u , hence quasifinite. �

Outline of the proof of Theorem 2.1. The proof of Theorem 2.1 principally fol-
lows the proof of Gabber’s geometric presentation lemma over fields in [Colliot-
Thélène et al. 1997]. The crucial part of Theorem 2.1 turns out to be the finiteness
claim for Z/V . We make the Ansatz p = pu for a closed embedding i : X ↪→

Ax1,...,xN ,S and a linear projection u ∈ En(o), for n the relative dimension of X/S.
Using Lemma 2.3, one can show that the property

the induced map p(u1,...,un−1)|Z : Z→ At1,...,tn−1,S is finite

is open in our space of linear projections En (see the proof of Lemma 2.11, be-
low). If W ↪→ En is the corresponding open locus, we first need to make sure that
the special fibre Wσ is nonempty — because the residue field F is infinite and En

isomorphic to an affine space, W (o) is automatically nonempty in this case. We
will see in the proof of Lemma 2.11 that Wσ is nonempty, as soon as X over S is
fibrewise dense inside its closure in Px0:···:xN ,S . In fact, we just need this closure to
be dense on the special fibre, but this obviously is equivalent to fibrewise density.
Therefore, special care needs to be taken about the choice of our initial closed
embedding i : X ↪→ Ax,S . In Proposition 2.6 we will provide a closed embedding
of this type, but the price to pay is that we need to replace (X, z) by a suitable
Nisnevich neighbourhood.

Let F = Fu denote the set of preimages under p(u1,...,un−1) of p(u1,...,un−1)(z)
in Z . The next goal is to find u in W (o) such that pu is étale around each point
of F and the restriction of pu to F is universally injective. This again corre-
sponds to nonempty open conditions in (the special fibre of) En (see the proof
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of Lemma 2.12). Shrinking W accordingly, we may assume that this is the case
for all u ∈W (o) (see Proposition 2.9).

Making use of the finiteness of p(u1,...,un−1)|Z , we get an open neighbourhood
V = Vu of p(u1,...,un−1)(z) in At1,...,tn−1,S such that pu is étale at all points in the inter-
section Z ∩ p−1

(u1,...,un−1)
(V ) and the restriction of pu induces a closed embedding

Z ∩ p−1
(u1,...,un−1)

(V ) ↪→ A1
V (see Lemma 2.13). Finally, replacing (X, z) by a suit-

able Zariski-neighbourhood, we establish in Lemma 2.14 the remaining properties
claimed in Theorem 2.1.

Summing up, we will in fact show slightly more, proving the following version
of [Colliot-Thélène et al. 1997, Theorem 3.2.2] over o.

Theorem 2.4. Let X = Spec(A)/S be a smooth affine S-scheme of finite type,
fibrewise of pure dimension n and let Z = Spec(B) ↪→ X be a proper closed
subscheme. Let z be a point in Z. If z lies in the special fibre, suppose that Zσ 6= Xσ .
Then, Nisnevich-locally around z, there exists a closed embedding X ↪→ AN

S and a
Zariski-open subset W ⊆ En with W (o) 6=∅ such that the following holds:

For all u ∈W (o) with linear projections

pu = p(u1,...,un−1)×S pun : X→ An
S = An−1

S ×S A1
S,

there are Zariski-open neighbourhoods V ⊆ An−1
S containing p(u1,...,un−1)(z) and

U ⊆ p−1
(u1,...,un−1)

(V ) containing z satisfying.

(1) p(u1,...,un−1)|Z : Z→ An−1
S is finite,

(2) Z ∩U = Z ∩ p−1
(u1,...,un−1)

(V ),

(3) pu|U :U→ An
S is étale and restricts to a closed embedding Z ∩U ↪→ A1

V and

(4) p−1
u (pu(Z ∩U ))∩U = Z ∩U.

The proof of Theorem 2.4 follows the proof in [Colliot-Thélène et al. 1997] and
the outline sketched above.

Proof. Clearly, we may assume that both X and Z are connected. Next, observe
that the case of z lying in the generic fibre Xη of X/S is already covered by [Colliot-
Thélène et al. 1997, Theorem 3.2.2]. Thus, we may assume that z lies in the special
fibre Xσ of X/S. Finally, observe that we may enlarge Z . In particular, picking
any element f in the kernel of A� B with f 6= 0 in the special fibre A⊗o F, we
may assume B = A/ f , i.e., Z = V ( f ).

We follow the outline of the proof sketched above: Up to a refinement by a
suitable Nisnevich neighbourhood (X ′, z′)→ (X, z), Proposition 2.6 provides a
closed embedding i0 : X ′ ↪→Ax1,...,xN ,S such that Z ′= Z×X X ′ is fibrewise dense in
its Zariski-closure Z ′ in Px0:···:xN ,S . Replacing our base-point z by a specialization
to a closed point z0 in the image of X ′ → X , we can assume that z is closed
itself (see Reduction 2.8). Further, we replace (X, z) by (X ′, z′), i.e., we assume
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X ′ = X . Composing the closed embedding i0 : X ↪→ Ax,S with a linear projection
Ax,S→ At1,...,tn,S , corresponding to an o-point u of the space of linear projections
En , we get maps

X
pu
//

p(u1,...,un−1)
$$

At1,...,tn,S

pr
��

At1,...,tn−1,S

Here n is the dimension of X . Proposition 2.9 provides an open W in our space
of linear projections En with W (o) nonempty, and for each linear projection u in
W (o) the restriction p(u1,...,un−1)|Z is finite (i.e., part (1) in Theorem 2.4), pu is
étale around

F = Fu = p−1
(u1,...,un−1)

(p(u1,...,un−1)(z))∩ Z

and pu|F : F→ pu(F) is universally injective.
Fix any such u in W (o). In Lemma 2.13, we will replace At1,...,tn−1,S by a Zariski-

neighbourhood V = Vu of p(u1,...,un−1)(z) such that pu is étale around every point
of Z ∩ p−1

(u1,...,un−1)
(V ) and such that the induced restriction

pu|Z∩p−1
(u1,...,un−1)

(V ) : Z ∩ p−1
(u1,...,un−1)

(V ) ↪→ Atn,V

is a closed embedding. In Lemma 2.14, we will shrink p−1
(u1,...,un−1)

(V ) to a Zariski-
neighbourhood U1 of z satisfying the analogue of (4) in Theorem 2.4, i.e.,

p−1
u (pu(Z ∩U1))∩U1 = Z ∩U1,

without changing Z ∩ p−1
(u1,...,un−1)

(V ) = Z ∩U1. In particular, pu restricts to a
closed embedding Z ∩U1→ Atn,V . Since pu is étale already around every point of
Z ∩U1, we may shrink U1 a bit more (by intersecting it with the open étale locus
of pu) to get the desired Zariski-neighbourhood U = Uu of (X, z) satisfying (2),
(3) and (4) in Theorem 2.4. �

Towards the finiteness part. The key part in the proof of Theorem 2.4 is the
finiteness assertion (1). By Lemma 2.3, we need to find a closed embedding
i0 : X ↪→ Ax,S and an o-point u ∈ En(o) such that the closure Z of Z in Px,S

intersects L(u1,...,un−1) trivially. Unfortunately, it is not enough to require that the
fibrewise closure of Z in Px,S misses L(u1,...,un−1). Indeed, Z might not be the
fibrewise projective closure of Z over S — the special fibre Zσ might be strictly
larger than the projective closure of Zσ , as seen in the next example.

Example 2.5. Let A = o[x1] and B = o[x1]/(πx2
1 + x1 + 1). Then Spec(B) ⊂

Px0:x1,S is fibrewise closed but at least one solution of πx2
1+x1+1 in kalg specializes

to∞ in Px0:x1,F, i.e., Spec(B)⊂ Px0:x1,S is not closed.
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To avoid these difficulties, we need to make a careful choice for the embedding
i0 : X ↪→ Ax,S .

Proposition 2.6. Nisnevich-locally around z, there exists a closed embedding

i0 : X ↪→ Ax,S

with Z fibrewise dense over S inside its closure Z in Px,S .

Proof. We need to adapt [Kai 2015, Theorem 4.6] to our situation. Since z lies in
the special fibre and o is henselian, [loc. cit.] gives us an affine Nisnevich neigh-
bourhood (Z ′, z′)→ (Z , z) and a closed embedding ī0 : Z ′ ↪→ Ax1,...,xm ,S , such
that Z ′ is fibrewise dense over S inside its closure Z ′ in Px0:···:xm ,S . Since both
Z and Z ′ are affine, the underlying étale morphism Z ′→ Z is standard smooth,
i.e., Z ′ = Spec(B ′) with B ′ = B[t1, . . . , ts]/(ḡ1, . . . , ḡs) and invertible Jacobi-
determinant det({∂ḡi/∂t j }i, j ) ∈ B ′×.

We want to extend (Z ′, z′) to a Nisnevich neighbourhood (X ′, z′) of (X, z).
Since the Jacobi-determinant det({∂ ḡi/∂t j }i, j ) is invertible in B ′, it is nontrivial
in B ′⊗ k(z′). Choose a lift gi ∈ A[t] for each ḡi and set A′ := A[t]/(g1, . . . , gs)

and X ′ = Spec(A′). By construction, B ′ = A′ ⊗A B, so z′ induces a point (also
denoted by) z′ in X ′. Since det({∂gi/∂t j }i, j )≡ det({∂ ḡi/∂t j }i, j ) 6= 0 in A′⊗ k(z′),
the Jacobi-determinant det({∂gi/∂t j }i, j ) is invertible around z′ in X ′. By shrinking
X ′ without changing Z ′ (since the Jacobi-determinant is invertible on the latter), we
may assume that (Z ′, z′)→ (Z , z) extends to an affine Nisnevich neighbourhood
(X ′, z′)→ (X, z). Further, lifting the images of xi in B ′ to A′, ī0 extends to a map
i ′0 : X

′
→ Ax1,...,xn,S .

Unfortunately, there is no reason for i ′0 to be a closed embedding. To repair this,
choose a closed embedding X ′ ↪→ Ay1,...,yr ,S over S, i.e., generators a j of A′ as an
o-algebra. Recall that we assumed B = A/ f for f in A nonzero in the special fibre
A⊗o F (see the proof of Theorem 2.4). Writing a j

= a j1
1 · . . . · a

jr
r , any element of

the ideal f · A′ is of the form
∑

j λ j · f a j , where λ j ∈ o and j runs over a finite
subset of Nr. Mapping y( j)

7→ f a j , we get a map X ′→ A{y( j)
| j∈Nr

},S into a copy
of the infinite affine space over S. Together with the map i ′0 : X

′
→ Ax1,...,xn,S , we

get a closed embedding

i∞ : X ′ ↪→ Ax1,...,xm ,S ×S A
{y( j)
| j∈Nr },S

∼= A∞S

into the fibre product. Indeed, i ′0 : o[x1, . . . , xm] → A′ is surjective modulo f
and o[y( j)

| j ∈ Nr
] → A′ has image o[ f · A′] by construction. By Lemma 2.7, i∞

induces i0 : X ′ ↪→ Ax1,...,xm ,S×S Ay(i1),...,y(il ),S , still a closed embedding for suitable
j1, . . . , j l ∈ Nr. Setting xm+s := y( j s) and N :=m+l, we have constructed a closed
embedding i0 : X ′ ↪→ Ax1,...,xN ,S such that i0|Z ′ factors over ī0 : Z ′ ↪→ Ax1,...,xm ,S =

V (xm+1, . . . , xN )⊆ Ax1,...,xN ,S . In particular, the closure of Z ′ in Px0:···:xN ,S is just
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Z ′ inside the linear subspace V+(xm+1, . . . , xN ) ⊆ Px0:···:xN ,S , so Z ′ is fibrewise
dense over S inside this closure. �

Lemma 2.7. Let C be an o-algebra of finite type. Let ι :Spec(C) ↪→At1,t2,...,S=A∞S
be a closed embedding and let pr≤N :At1,t2,...,S→At1,...,tN ,S =AN

S be the canonical
projection. Then pr≤N ◦ ι is a closed embedding for N � 0.

Proof. Suppose that C is generated as an o-algebra by c1, . . . , cr ∈ C . Since
the corresponding map on algebras o[t1, t2, . . . ]� C is surjective, we can find
polynomials fi ∈ o[t1, t2, . . . ] mapping to ci . Pick N � 0 such that all the fi lie
inside o[t1, . . . , tN ]. Then ι restricted to o[t1, . . . , tN ] is still surjective, hence the
claim. �

Choosing linear projections. In the next step, we want to find the Zariski-open
subset W ⊆ En parametrizing the linear projections pu in Theorem 2.4. To do so,
let us first make one further reduction.

Reduction 2.8. By Proposition 2.6, there is a Nisnevich neighbourhood (X ′, z′)→
(X, z) and a closed embedding X ′ ↪→ Ax,S such that Z ′ = Z ×X X ′ is fibrewise
dense in its Zariski-closure Z ′ in Px,S . Let z0 be a specialization of z in the image of
X ′→ X . We can find a point z′0 in Z ′ such that k(z′0)=k(z0), i.e., (X ′, z′0)→ (X, z0)

is a Nisnevich neighbourhood, too. The Nisnevich localization (X ′, z′)→ (X, z)
will be the only non-Zariski-localization in the proof of Theorem 2.4. Thus we
may assume that z is a closed point in the following. Further, from now on we may
identify X ′ = X .

The Zariski-open subset W ⊆ En in Theorem 2.4 will be provided in the follow-
ing proposition.

Proposition 2.9. Let X = Spec(A)/S be a connected smooth affine S-scheme of
finite type, fibrewise of pure dimension n, f an element in A which is nonzero in
A⊗o F and Z = Spec(B = A/ f ) ↪→ X the closed embedding. Let z be a closed
point in the special fibre of Z. Suppose there is a closed embedding i0 : X ↪→ Ax,S

such that Z is fibrewise dense over S inside its closure Z in Px,S .
Then there is a Zariski-open subset W ⊆ En with W (o) 6= ∅, such that for all

u ∈W (o) the following hold:

(1) p(u1,...,un−1)|Z : Z→ At1,...,tn−1,S is finite,

(2) pu is étale at all points of F = p−1
(u1,...,un−1)

(p(u1,...,un−1)(z))∩ Z and

(3) pu|F : F→ pu(F) is radicial.

Let us first fix the following notation.

Remark 2.10. For Y/S a smooth scheme, denote by red : Y (o)→ Y (F)= Yσ (F)
the reduction map we get by precomposing with the closed point σ. Because o is
henselian and Y/S smooth, this reduction map is always surjective.
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Proof of Proposition 2.9. We divide Proposition 2.9 into two parts: Lemma 2.11
will provide an open W1 of En such that W1(o) is nonempty and every u in W1(o)

satisfies claim (1), while Lemma 2.12 will provide an open W2 such that W2(o) is
nonempty and every u in W2(o) satisfies claims (2) and (3) in Proposition 2.9. The
intersection W =W1∩W2 has all the properties claimed by Proposition 2.9. For the
nonemptiness of W (o), recall that the reduction map W (o)�W (F) is surjective
and W1(F)∩W2(F) is nonempty as the special fibre of W1∩W2 is a nonempty open
subscheme of an affine space over the infinite field F. �

Lemma 2.11. Under the assumptions of Proposition 2.9, there is a Zariski-open
subset W1 ⊆ En with W1(o) 6= ∅, such that for all u ∈ W1(o) the restriction
p(u1,...,un−1)|Z : Z→ At1,...,tn−1,S is finite.

Lemma 2.12. Under the assumptions of Proposition 2.9, there is a Zariski-open
subset W2 ⊆ En with W2(o) 6= ∅, such that pu is étale at all points of F and
pu|F : F→ pu(F) is radicial for all u ∈W2(o).

Proof of Lemma 2.11. This is just a version of the arguments leading to [Grayson
1978, Proposition 1.1]. Recall that the j-th factor A

∨,( j)
x,S of En is Ax∗1, j ,...,x

∗

N , j ,S , i.e.,
En = A{x∗i, j |1≤i≤N ,1≤ j≤n},S . Define

L := V+

(
x0,
∑

j

x∗i, j ⊗ x j

∣∣∣ 1≤ i < n
)
⊆ En ×S H∞ and Z∞ := Z ∩ H∞.

Here, H∞ = V+(x0)⊂ Px,S is the hyperplane at infinity. By construction, L→ En

has fibre Lu = L(u1,...,un−1) over u ∈En(o). Since the projection pr :En×S H∞→En

is projective, hence closed,

W1 := En \ pr(L∩ (En ×S Z∞))

is open. Again by construction, for any u ∈ W1(o), L(u1,...,un−1) ∩ Z = ∅, so
p(u1,...,un−1)|Z : Z→ At1,...,tn−1,S is finite by Lemma 2.3.

It remains to show that W1(o) 6= ∅. The reduction map red : W1(o)� W1(F)

is surjective, so we have to show W1(F) = W1,σ (F) 6= ∅. The special fibre W1,σ

equals En,σ \ pr(Lσ ∩ (En,σ ×F Z∞,σ )). Further, Zσ ⊂ Zσ is dense by assumption
so Zσ is the closure Zσ of Zσ inside Px,F. It follows that Z∞,σ = Zσ ∩ H∞,σ , i.e.,
we are in the situation of [Grayson 1978, Proposition 1.1] and W1,σ (F) 6=∅. �

Lemma 2.12 can easily be derived from [Colliot-Thélène et al. 1997, Lemmas
3.4.1 and 3.4.2] applied over the special fibre.

Proof of Lemma 2.12. As a closed embedding of smooth S-schemes, i0 : X ↪→Ax,S

is regular. Let I = ( f1, . . . , fN−n)E o[x] be the ideal of i0 for f1, . . . , fN−n a
regular sequence. Write A=O(X) over o[t] (via pu) as o[t][x]/( fi , u j − t j | i, j).
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Then pu is étale at a point x ∈ X if it is standard smooth around x , i.e., if the
Jacobi-determinant

det
({

∂ fi

∂xs

}
i,s

∣∣∣ {∂(u j − t j )

∂xs

}
j,s

)
= det

({
∂ fi

∂xs

}
i,s

∣∣∣ {∂(u j )

∂xs

}
j,s

)
is invertible in OX,x . We may write the latter determinant as d f1 ∧ · · · ∧ d fN−n ∧

du1 ∧ · · · ∧ dun in �N
o[x]/o ⊗o[x] OX,x . Since X ↪→ Ax,S is a smooth pair, the

conormal sequence

0→ I/I 2
⊗A OX,x →�1

o[x]/o⊗o[x]OX,x →�1
A/o⊗A OX,x → 0

is split exact and

�N
o[x]/o⊗o[x]OX,x =

∧N−n
(I/I 2

⊗A OX,x)⊗OX,x (�
n
A/o⊗A OX,x).

Note that I/I 2 is free over A with basis given by the regular sequence f1, . . . , fN−n .
In particular, f1 ∧ · · · ∧ fn is invertible in

∧N−n
(I/I 2

⊗A OX,x)=OX,x and

d f1 ∧ · · · ∧ d fN−n ∧ du1 ∧ · · · ∧ dun = ( f1 ∧ · · · ∧ fn)⊗ (dū1 ∧ · · · ∧ dūn)

is invertible if and only if dū1∧· · ·∧dūn is invertible in �n
A/o⊗A OX,x =OX,x for

ū j the image of t j under o[t] → A. By Nakayama’s lemma, this is equivalent to
dū1 ∧ · · · ∧ dūn 6= 0 in �n

X/S ⊗OX k(x). Suppose x is contained in F . Since z lies
in the special fibre, so does x and �n

X/S ⊗OX k(x)=�n
Xσ /F⊗OXσ

k(x). Summing
up, pu is étale at x ∈ F if dū1 ∧ · · · ∧ dūn 6= 0 in �n

Xσ /F⊗OXσ
k(x). Thus, we are

in fact in the situation of [Colliot-Thélène et al. 1997, Lemma 3.4.1], i.e., we get
a nonempty open subset W ′2 ⊆ En,σ ⊗F Falg with pu étale around F for all u with
red(u) ∈W ′2(F

alg). Here, Falg/F is an algebraic closure.
For the universal injectivity, observe that pu|F = pred(u)|F . Thus, we are in the

situation of [Colliot-Thélène et al. 1997, Lemma 3.4.2], i.e., we get a nonempty
open subset W ′′2 ⊆ En,σ ⊗F Falg with pu|F⊗FFalg (universally) injective for all u with
red(u) ∈W ′′2(F

alg).
Finally, by a standard descent argument (see the proof of [Colliot-Thélène et al.

1997, Lemma 3.4.3]) for the intersection W ′2∩W ′′2 , we get an open subset W 2⊆En,σ

with W 2(F) 6= ∅, such that pu is étale at all points of F and pu|F is universally
injective for all u with red(u) ∈ W 2(F). Let W2 ⊆ En be any open subset with
special fibre W2,σ = W 2. Then u ∈ W2(o) if and only if red(u) ∈ W 2(F) and
W2(o) 6=∅, since the reduction map is surjective. �

Choosing neighbourhoods. Fix a linear projection pu for an o-point u in the open
subset W ⊆ En provided by Proposition 2.9. In the following, we construct the
open neighbourhoods V and U in Theorem 2.4.

As in [Colliot-Thélène et al. 1997], we first secure V ⊆At1,...,tn−1,S in Lemma 2.13
and an open neighbourhood z ∈U1 ⊆ p−1

(u1,...,un−1)
(V ) covering Theorem 2.4 parts
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(2) and (4) in Lemma 2.14. If we define U as the intersection of U1 with the
étale locus of pu , the pair V and U will finally satisfy claims (2), (3) and (4) of
Theorem 2.4. The proofs can almost literally be transferred from [Colliot-Thélène
et al. 1997].

Lemma 2.13 (cf. [Colliot-Thélène et al. 1997, Lemma 3.5.1]). Under the assump-
tions of Proposition 2.9 and any choice of linear projection u in W (o), there is a
Zariski-open neighbourhood V ⊆ At1,...,tn−1,S of p(u1,...,un−1)(z) such that pu is étale
in a Zariski-open neighbourhood of Z ∩ p−1

(u1,...,un−1)
(V ) and restricts to a closed

embedding Z ∩ p−1
(u1,...,un−1)

(V ) ↪→ A1
V .

Proof. We will get V as V1 ∩ V2, where V1 ⊆ At1,...,tn−1,S is an open neighbour-
hood of p(u1,...,un−1)(z) such that pu is étale at all points of Z ∩ p−1

(u1,...,un−1)
(V1)

and V2 ⊆ At1,...,tn−1,S is an open neighbourhood such that pu restricts to a closed
embedding Z ∩ p−1

(u1,...,un−1)
(V2)→ A1

V2
.

Let U ′ ⊆ X be the étale locus of pu . Since u ∈ W (o), U ′ is an open neigh-
bourhood of F = p−1

(u1,...,un−1)
(p(u1,...,un−1)(z)) ∩ Z in X (Proposition 2.9). As

p(u1,...,un−1)|Z is finite, p(u1,...,un−1)(Z \U ′) is closed and we set

V1 := At1,...,tn−1,S \ p(u1,...,un−1)(Z \U ′).

By construction, V1 is a Zariski-open neighbourhood of the image p(u1,...,un−1)(z) of
z and moreover Z∩ p−1

(u1,...,un−1)
(V1)⊆ Z∩U ′ is contained in the étale locus U ′ of pu .

To get the neighbourhood V2, consider pu|Z : Z → At,S = Atn,At1,...,tn−1,S
as a

family of maps over At1,...,tn−1,S . Since Z/At1,...,tn−1,S is finite, the property “pu|Z is
a closed embedding” is Zariski-open in the base At1,...,tn−1,S by Nakayama’s lemma.
Thus we have to show that the fibre of this family

pu|F : Z ∩ p−1
(u1,...,un−1)

(p(u1,...,un−1)(z))= F→ Atn,p(u1,...,un−1)(z)

over p(u1,...,un−1)(z) is a closed embedding. But pu(F)⊂ Atn,p(u1,...,un−1)(z) is closed
as a finite set of closed points and pu|F : F → pu(F) is a closed embedding as
by Proposition 2.9, it is radicial and pu is étale and hence unramified at each point
of F . �

Lemma 2.14 (cf. [Colliot-Thélène et al. 1997, Lemma 3.6.1]). Under the assump-
tions of Proposition 2.9 and any choice of linear projection u in W (o), let

Z ′ := Z ∩ p−1
(u1,...,un−1)

(V ) and U1 := p−1
(u1,...,un−1)

(V ) \ (p−1
u (pu(Z ′)) \ Z ′).

Then U1 ⊆ p−1
(u1,...,un−1)

(V ) is a Zariski-open neighbourhood of the point z and we
have Z ∩U1 = Z ′ and p−1

u (pu(Z ′))∩U1 = Z ′.

Proof. By definition of U1, z lies inside U1, Z∩U1= Z ′ and p−1
u (pu(Z ′))∩U1 = Z ′.

It remains to show that U1 ⊆ p−1
(u1,...,un−1)

(V ) is open. By Lemma 2.13, pu restricts
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to a closed embedding Z ′ → Atn,V , so p−1
u (pu(Z ′)) ⊂ p−1

(u1,...,un−1)
(V ) is closed.

We need to show that Z ′ ⊆ p−1
u (pu(Z ′)) is open.

To this end, consider the étale locus U ′′ of

pu|p−1
u (pu(Z ′)) : p−1

u (pu(Z ′))→ pu(Z ′).

By Lemma 2.13, pu is étale at all points of Z ′. Thus, the base change pu|p−1
u (pu(Z ′))

is still étale at all points of Z ′, that is, Z ′ is contained inside the open subset
U ′′ ⊆ p−1

u (pu(Z ′)). But Z ′→ pu(Z ′) is an isomorphism by Lemma 2.13, so both
Z ′/pu(Z ′) and U ′′/pu(Z ′) are étale and hence Z ′ ⊆U ′′ is open. �

3. Objectwise stable A1-connectivity

In this section, we derive connectivity results for homotopy presheaves (i.e., “ob-
jectwise” connectivity results). These are used in the proof of our main theorem
in the following section. Moreover, we show the left completeness of the A1-
Nisnevich-local t-structure on S1- and P1-spectra. Throughout this section, let
S be an arbitrary noetherian scheme of finite dimension.

Results for S1-spectra. We start with objectwise connectivity results for S1-spectra.

Proposition 3.1. Let U ∈ SmS be a scheme of dimension e. Then given E in
SHs

S1>i+e(S), one has
[6∞S1 (U+)[i], LA1E] = 0,

where LA1 is a fibrant replacement functor for the stable A1-Nisnevich-local model
structure.

Remark 3.2. Proposition 3.1 gives a connectivity result for a U -section of the
homotopy presheaf [6∞S1 ( –+ )[i], LA1E] with respect to the dimension of U . How-
ever, we are interested in a connectivity result depending only on the dimension
of the base scheme S. The price we have to pay for this is to sheafify the ho-
motopy presheaf, i.e., eventually we are interested in connectivity results for the
Nisnevich stalks of the presheaf [6∞S1 ( –+ )[i], LA1E]. Unfortunately we cannot
apply Proposition 3.1 directly to the stalks as their dimension is unbounded.

Proof of Proposition 3.1. We work with the explicit model L∞ of Lemma 1.2 as
an A1-Nisnevich-local fibrant replacement functor LA1. By homotopy-exactness of
L∞, we have to show that[

6∞S1 (U+), hocolim
k→∞

Lk(E)
]
= 0

for U ∈ SmS of dimension e and E ∈ SHs
S1>e. Since 6∞S1 (U+) is compact, every

homotopy class in question is represented by some 6∞S1 (U+)→ Lk(E). Hence, it
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suffices to show, that for every k ≥ 0,

[6∞S1 (U+), Lk E] = 0.

We argue by induction on k ≥ 0 for all U ∈ SmS of dimension e and all spectra
E ∈ SHs

S1>e at once.
For k = 0 the statement follows directly from Lemma 3.3 below. Let k ≥ 1. The

distinguished triangle in Remark 1.3 induces the long exact sequence

· · · → [6∞S1 (U+), L(k−1)E)] → [6∞S1 (U+), Lk E]

→ [6∞S1 (U+∧A1), L(k−1)E[1]] → · · · .

The abelian group on the left-hand side vanishes by the induction hypothesis on k.
In order to see the vanishing of the right-hand side, we observe that

U tA1 ∼=U+∨A1
→ (U ×A1)tA1 ∼=U+×A1

→U+∧A1

and therefore U+→(U×A1)+→U+∧A1 is a homotopy cofibre sequence in sPre+(S).
This yields a distinguished triangle after applying the left Quillen functor 6∞S1 .
Consider the long exact sequence obtained by an application of [ – , L(k−1)E[1]]
to this triangle. It suffices to show the vanishing of both of the abelian groups
[6∞S1 (U+)[1], L(k−1)E[1]] and [6∞S1 (U × A1)+, L(k−1)E[1]]. For the first group,
this follows from the inductive hypothesis on k and likewise for the second, since
the dimension of U ×A1 is e+ 1 and E[1] ∈ SHs

S1>e+1. �

Lemma 3.3. Let U ∈ SmS be a scheme of dimension e. Then for D ∈ SHs
S1>i+e(S),

one has
[6∞S1 (U+)[i], LsD] = 0.

Proof. It suffices to show that [6∞S1 (U+), LsD] = 0 for D ∈ SHs
S1>e. Indeed,

[6∞S1 (U+)[i], LsD] ∼= [6∞S1 (U+), Ls(D[−i])] as Ls is homotopy-exact. Recall that
the Nisnevich-cohomological dimension is bounded by the Krull-dimension, i.e.,
for any sheaf G of abelian groups on SmS and n > dim(U ), we have

[6∞S1 (U+), LsH G[n]] = H n
Nis(U,G)= 0;

see, e.g., [Thomason and Trobaugh 1990, Lemma E.6(c)].
By the left completeness of the Nisnevich-local structure, there is a filtration

0' holim
n→∞

LsD≥n // · · · // LsD≥e+2 // LsD≥e+1= LsD

· · · LsHπe+2(D)[e+ 2]
��

LsHπe+1(D)[e+ 1]
��

and a surjection 0= [6∞S1 (U+), holimn LsD≥n]� limn[6
∞

S1 (U+), LsD≥n] by the
Milnor-lim1-sequence. Hence, limn[6

∞

S1 (U+), LsD≥n] = 0. For i ≥ 1, there is a
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long exact sequence

· · · → [6∞S1 (U+), LsD≥e+i+1] → [6
∞

S1 (U+), LsD≥e+i ]

→ [6∞S1 (U+), LsHπe+i (D)[e+ i]] → · · · ,

where the abelian group on the right-hand side is zero by the above-mentioned
result on the Nisnevich-cohomological dimension. For this reason, the projection
lim[6∞S1 (U+), LsD≥n]� [6∞S1 (U+), LsD≥e+1] is surjective and therefore we get
[6∞S1 (U+), LsD≥e+1] = 0 as desired. �

Corollary 3.4. Let U ∈ SmS be an S-pointed scheme of dimension e. Then for
D ∈ SHs

S1>i+e(S), one has

[6∞S1 (U )[i], LsD] = 0.

Proof. The basepoint s : S→U is a splitting of the structure morphism p :U→ S.
In particular, dim(U )≥ dim(S). Consider the distinguished triangle

6∞S1 (S+)→6∞S1 (U+)→6∞S1 (U )→6∞S1 (S+)[1].

If dim(U ) > dim(S) then the assertion follows from the previous Lemma 3.3 ap-
plied to the entries 6∞S1 (U+) and 6∞S1 (S+)[1] of the triangle. Now we consider the
case dim(U )= dim(S). Because of the splitting s : S→U , p is surjective. Since
p is smooth of relative dimension zero, it follows that p is étale. Thus, the section
s itself is étale. As it is also a closed immersion, the image of s is a component
of U, i.e., U ∼= (U ′)+ for some U ′ ∈ SmS with dim(U ′)≤ dim(U ). The result then
follows from the previous Lemma 3.3 applied to 6∞S1 (U ′+). �

We get the following analogue as a corollary to Proposition 3.1.

Corollary 3.5. Let U ∈ SmS be an S-pointed scheme of dimension e. Then for
E ∈ SHs

S1>i+e(S), one has

[6∞S1 (U )[i], LA1E] = 0.

Proof. The proof is literally the same as that of Corollary 3.4 using Proposition 3.1
instead of Lemma 3.3. �

Corollary 3.6. The A1-Nisnevich-local t-structure on SHA1

S1(S) is left complete and
hence nondegenerate. In particular,

LA1 holim
n→∞

(E≤n)∼ holim
n→∞

LA1
(E≤n).

Proof. First note that the truncation functors of the A1-Nisnevich-local t-structure
are (after inclusion to SHs

S1) given by LA1
(( – )≤n) (see Proposition 1.15). Con-

sider a spectrum E ∈ SptS1(S). To see that LA1E → holimn LA1
(E≤n) is an iso-

morphism in SHs
S1 , we may equivalently show holimn LA1

(E≥n) ' 0, which is
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implied by the triviality of the group πi (holimn LA1
(E≥n))(U ) for every integer i

and every U ∈ SmS . Equivalently, we show that πi holimn(LA1
(E≥n)(U )) is trivial.

Proposition 3.1 yields [6∞S1 U+[i], LA1
(E≥n)] = 0 for all integers n > i + dim(U ).

Hence, we obtain limn πi (LA1
(E≥n)(U ))= 0. Using Milnor’s lim1-sequence, it

follows that the group πi holimn(LA1
(E≥n)(U )) is trivial. Indeed, the lim1-term is

trivial as the occurring groups are eventually zero. �

Results for P1-spectra. In this subsection, we show some analogous statements to
those of the preceding section for P1-spectra. The results of this subsection are not
needed for the rest of the paper but are of independent interest.

Proposition 3.7. Let U ∈ SmS be a scheme of dimension e. For E ∈ SH>i+e(S),
one has

[6∞
P1(U+)[i]〈q〉, E]SH = 0

for all q ∈ Z.

Proof. Set F := [6∞
P1(U+)[i]〈q〉, – ]SH for abbreviation. By the construction in

Proposition 1.15, the class SH>i+e is generated under extensions, (small) sums
and cones from S[i + e+ 1]. If E is obtained from an extension E ′→ E → E ′′

and F vanishes on E ′ and E ′′, then it also vanishes on E . If E is a (small)
sum of objects E ′α on which F vanishes, we use the homotopy-compactness of
6∞

P1(U+)[i]〈q〉 to conclude that F(E)= 0. Suppose that E sits in a distinguished
triangle E ′→ E ′′→ E→ E ′[1] and we know the vanishing of F on E ′′ and E ′[1].
Then we know it on E . Summing up, it suffices to show that F(S[n])= 0 for all
n ≥ i + e+ 1, i.e.,

[
6∞

P1(U+)[i]〈q〉, 6∞P1(V+)[n]〈q ′〉
]
SH = 0 for all V ∈ SmS and

q ′ ∈ Z. We compute[
6∞

P1(U+)[i]〈q〉, 6∞P1(V+)[n]〈q ′〉
]
SH

∼=
[
6∞

P1(U+)[i − n], 6∞
P1(V+)〈q ′− q〉

]
SH

∼=
[
6∞S1 (U+)[i − n], �∞Gm

(6∞Gm
6∞S1 (V+)〈q ′− q〉)

]
∼=
[
6∞S1 (U+)[i − n], colimk �

k
Gm

LA1
(6∞S1 (V+)∧G∧(k+q ′−q)

m )
]

∼= colimk
[
6∞S1 (U+)[i − n] ∧G∧k

m , LA1
(6∞S1 (V+)∧G∧(k+q ′−q)

m )
]
,

where the last isomorphism is due to compactness of 6∞S1 (U+). Now we use the
fact that A1-Nisnevich-locally there is an equivalence Gm ∼ P1

[−1]. Hence, it
suffices to show that for all but finitely many k ≥ 0 (and in particular, we may
assume k+ q ′− q ≥ 0), one has[
6∞S1 (U+)[i − n] ∧G∧k

m , LA1
(6∞S1 (V+)∧G∧(k+q ′−q)

m )
]

∼=
[
6∞S1 (U+∧ (P1)∧k)[i − n− k], LA1

6∞S1 (V+∧G∧(k+q ′−q)
m )

]
= 0.
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By the same arguments as in the proof of Proposition 3.1, this is implied by
the vanishing of the group

[
6∞S1 (U ×Pk)+[i − n− k], LA1

6∞S1 (V+∧G
∧(k+q ′−q)
m )

]
.

Since the spectrum 6∞S1 (V+∧G
∧(k+q ′−q)
m ) is in SHs

S1≥0, the result follows from
Proposition 3.1 as the scheme U ×Pk has dimension e+ k. �

Corollary 3.8. Let S be a noetherian scheme of finite Krull-dimension. Then the
homotopy t-structure on the motivic homotopy category SH(S) is left complete and
hence nondegenerate.

Proof. Let E ∈ SH. We have to show that the canonical morphism E→ holim E≤n

is an isomorphism in SH. Equivalently, we may show that holim E≥n ' 0. By
[Hovey 1999, Theorem 7.3.1], this is implied by the vanishing of the homotopy
classes [

6∞
P1(U+)[i]〈q〉, holim

n→∞
E≥n

]
in SH for all U ∈ SmS and all i, q ∈ Z. Using Milnor’s lim1-sequence as in
Corollary 3.6, this, in turn, is implied by the following statement: for all U ∈ SmS

and i, q ∈Z there exists an integer n0 with
[
6∞

P1(U+)[i]〈q〉, E≥n
]
= 0 for all n≥ n0.

Setting n0 := i + dim(U ), this is precisely the preceding Proposition 3.7. �

4. Stalkwise stable A1-connectivity

In this section, we derive our main connectivity result for homotopy sheaves (i.e.,
a “stalkwise” connectivity result). We formulate the shifted stable A1-connectivity
property on the base scheme and show that this property holds for every Dedekind
scheme with infinite residue fields.

Stable A1-connectivity. Let us recall the following property on a base scheme S
introduced by Morel [2005, Definition 1].

Definition 4.1. A noetherian scheme S of dimension d has the stable A1-connectivity
property, if for every integer i and every spectrum E in SHs

S1≥i (S), the A1-localiza-
tion LA1E is contained in SHs

S1≥i (S).

Theorem 4.2 [Morel 2005, Theorem 6.1.8]. If S is the spectrum of a field, then S
has the stable A1-connectivity property.

Corollary 4.3. If S is the spectrum of a field, then SHA1

S1≥0(S)= SHA1,π

S1≥0(S).

Remark 4.4. Ayoub [2006] gave examples of base schemes that do not have the
stable A1-connectivity property: Let S/k be a connected normal surface over k
an algebraically closed field, regular away from one closed singular point s. Let
S′→ S be a resolution with exceptional divisor E and let Ered be the underlying
reduced subscheme. Then by [op. cit., Corollary 3.3], S does not have the stable A1-
connectivity property if PicEred is not A1-invariant. Here, PicEred is the Nisnevich
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sheafification of the presheaf U 7→ Pic(U ×s Ered) on Smk(s). A family of concrete
examples for such a surface S (due to Barbieri-Viale) is given in the example in
[op. cit., Section 3] as hypersurfaces of P3

k . Even worse, it follows from [op. cit.,
Lemma 1.3] that no Pn

k for n ≥ 3 has the stable A1-connectivity property.

Towards stable A1-connectivity. We saw in Remark 4.4 that connectivity may drop
for general base schemes. Thus, it is an interesting question if, for a given base
scheme S, there is at least some uniform bound r for the loss of connectivity, i.e., for
E an i-connected spectrum, the A1-localization LA1E is at least (i − r)-connected.
In this subsection, we want to discuss a general recipe for finding such a bound,
based on Morel’s original work over a field.

Proposition 4.5. Let S be a noetherian scheme of finite Krull-dimension and let
r ≥ 0 be an integer. Let E ∈ SHs

S1
≥i (S) be a spectrum. Suppose for all V ∈ SmS ,

all integers k < i −r and all f ∈ [6∞S1 V+, LA1E[−k]], Nisnevich-locally in V, there
exists a Zariski-open W ↪→ V such that

(1) f |6∞
S1 W+= 0, and

(2) πA1

0 (V/W )= 0.

Then LA1E ∈ SHs
S1≥i−r (S).

Proof. We may assume k = 0. We have to show that the sheaf πA1

0 (E) is trivial.
Take a connected scheme V ∈ SmS with structure morphism p : V → S and a point
v ∈ V . It suffices to show that the Nisnevich stalk of πA1

0 (E) at (V, v) is trivial.
Let f(V,v) be a germ in this stalk. Possibly refining (V, v) Nisnevich-locally, we
may assume that f(V,v) is induced by an element f ∈ [6∞S1 V+, LA1E]. After a
further Nisnevich refinement of (V, v), we find a Zariski-open W ↪→ V satisfying
properties (1) and (2). The homotopy cofibre sequence W+→ V+→ V/W induces
a long exact sequence

· · · → [6∞S1 V/W, LA1E] → [6∞S1 V+, LA1E] → [6∞S1 W+, LA1E] → · · · .

Since the restriction of f to 6∞S1 W+ is trivial by (1), f is the image of an element in
the group [6∞S1 V/W, LA1E], i.e., a morphism g : V/W→ (LA1E)0 in the (unstable)
objectwise (pointed) homotopy category. We want to show the triviality of the germ
f(V,v), so it is enough to show that π0(g) is trivial. As the adjunction (6∞S1 , ( – )0) is
a Quillen-adjunction for the A1-Nisnevich-local model, (LA1E)0 is A1-Nisnevich-
local. Therefore, the morphism g factors through h : LA1

(V/W )→ (LA1E)0 and
it suffices to show that π0(h) is trivial, which follows from assumption (2). �

Now let us discuss how to obtain assumptions (1) and (2) from the previous
proposition. We start with assumption (2).
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We first recall a well-known construction. The singular functor Sing : sPre(S)→
sPre(S) is given on U -sections by the diagonal of the bisimplicial set Sing(F)(U )=
F•(11•×U ), where 11• denotes the standard cosimplicial object in SmS; see [Morel
and Voevodsky 1999, Section 2.3.2] in the analogous situation for simplicial sheaves.
An infinite alternating composition of a Nisnevich-local fibrant replacement functor
Ls and Sing yields an A1-Nisnevich-local fibrant replacement functor LA1 in the
unstable setting. We refer to [loc. cit.] for details of this construction.

Note that for Lemma 4.6 and its Corollary 4.7, we work in the unstable setting.

Lemma 4.6. Let V ∈ SmS be an irreducible scheme and W ↪→ V a nonempty open
subscheme. Let Z = (V \W )red be the reduced complement. Suppose, moreover,
that each point v of V admits a Nisnevich neighbourhood V ′ (with pullback W ′

and Z ′ to V ′) and an étale map p : V ′→ A1
Y in SmS with Z ′→ Y finite such that

W ′ //

��

V ′

p
��

A1
Y \ p(Z ′) // A1

Y

is a Nisnevich-distinguished square. Then π0(Sing(aNis(V/W ))) is trivial for aNis,
the Nisnevich sheafification.

Proof. We follow the proof of [Morel 2005, Lemma 6.1.4]. Since a simplicial
presheaf F has the same 0-simplices as the simplicial presheaf Sing(F), there is an
epimorphism [( – )+, F]� [( – )+,Sing(F)] of presheaves. As Nisnevich sheafifica-
tion preserves epimorphisms, we get a natural epimorphism π0(F)� π0(Sing(F))
of sheaves. Applying this to the discrete simplicial presheaf F = aNis(V/W ) and
precomposing with the epimorphism V = aNisV � aNis(V/W ) of sheaves, we get
a natural epimorphism of sheaves

V � aNis(V/W )= π0(aNis(V/W ))� π0(Sing(aNis(V/W ))).

Hence, it suffices to show that for each point v ∈ V there exists a Nisnevich neigh-
bourhood V ′ such that V ′→π0(Sing(aNis(V ′/W ′))) is zero where W ′ :=W×V V ′.

Let v ∈ V be a point and choose the Nisnevich neighbourhood V ′ from the
assumption of the proposition. In particular, V ′/W ′→ A1

Y /(A
1
Y \ Z ′) is an isomor-

phism of Nisnevich sheaves, so we may assume V ′ = A1
Y with closed Z ′ ↪→ A1

Y
and Z ′→ Y finite. By finiteness, the morphism Z ′→ A1

Y ↪→ P1
Y is proper and

hence a closed immersion. Therefore, we get a diagram

A1
Y \ Z ′ //

��

A1
Y

q
//

j
��

aNis
(
A1

Y /A1
Y \ Z ′

)
∼=

��

P1
Y \ Z ′ // P1

Y
q ′
// aNis

(
P1

Y /P1
Y \ Z ′

)
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where the right vertical morphism is an isomorphism of Nisnevich sheaves as the
left-hand square is a Zariski- and therefore a Nisnevich-distinguished square.

There exists an elementary A1-homotopy Y ×A1
→ P1

Y from the zero-section
s0 : Y → A1

Y ↪→ P1
Y to the section s∞ : Y → P1

Y at infinity, and the latter factorizes
over P1

Y \ Z ′. As by [Morel and Voevodsky 1999, Lemma 2.3.6] the functor Sing
turns elementary A1-homotopies into objectwise homotopies, the maps Sing(s0)

and Sing(s∞) are identified in the objectwise homotopy category. The morphism
Sing(Y ) ∼−→ Sing(A1

Y ) is an objectwise weak equivalence by [Morel and Voevodsky
1999, Corollary 2.3.5]. Hence, the composition Sing(q ′ ◦ j) is the constant map to
the point in the objectwise homotopy category. It follows that the same is true for
Sing(q), as desired. Note that the cited arguments of [Morel and Voevodsky 1999]
are valid for the objectwise structure on simplicial presheaves. �

Using the epimorphism π0(Sing(aNis(V/W )))� πA1

0 (V/W ) of sheaves [Morel
and Voevodsky 1999, Corollary 2.3.22], we get:

Corollary 4.7. In the situation of Lemma 4.6, we have

πA1

0 (V/W )= 0.

Remark 4.8. As explained in [Morel 2005, Remark 6.1.5], πA1

0 (V/W )= 0 might
fail for arbitrary open subschemes W ↪→ V . For example, let S be the spectrum
of a local ring with closed point i : σ ↪→ S and open complement j : W ↪→ S.
Define V := S and consider the A1-Nisnevich-local homotopy cofibre sequence
j] j∗(V/W ) → V/W → i∗LA1i∗(V/W ) from (1.8). We have j] j∗(S/W ) ' ∗

and therefore LA1
(V/W )' i∗LA1

(i∗(V/W )). On the other hand, i∗(S/W ) '

i∗(S)/ i∗(W )' σ/∅' S0
σ , and hence i∗LA1

(i∗(V/W )) has nontrivial π0.

Now we turn to assumption (1) of Proposition 4.5. For the special case that
S is the spectrum of a field, this is an observation of Morel [2004, Lemma 3.3.6].
Please note that the extra claim s∗(W ) 6=∅ in the next lemma excludes the obvious
obstacle to assumption (2) of Proposition 4.5 in our application (see Remark 4.8).

Lemma 4.9. Let S be a noetherian scheme of finite Krull-dimension together with
a codimension c point s ∈ S. Let E ∈ SHs

S1>c(S) be a spectrum. Then for any
V ∈ SmS with s∗(V ) 6= ∅ and any f ∈ [6∞S1 V+, LA1E] there exists an open sub-
scheme W ↪→ V with f |6∞

S1 W+= 0 and s∗(W ) 6=∅.

Proof. Let ηZ ∈ V be a generic point of an irreducible component Z of s∗(V ). In
particular, the ring OV,ηZ has dimension c. We write

j : U := Spec(OV,ηZ )
∼= lim

ji :Ui ↪→V
Ui → V,

where the limit on the right-hand side is indexed by the diagram constituted by the
open immersions ji :Ui ↪→ V with Ui affine and Ui ∩ Z 6=∅.
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Let p : V → S denote the structural morphism. We have

colim
ji :Ui ↪→V

[6∞S1 (Ui → S)+, LA1E]SptS1 (S)

∼= colim
ji :Ui ↪→V

[6∞S1 p]((Ui → V )+), LA1E]SptS1 (S)

∼= colim
ji :Ui ↪→V

[p]6∞S1 (Ui → V )+, LA1E]SptS1 (S)

∼= colim
ji :Ui ↪→V

[6∞S1 (Ui → V )+, p∗(LA1E)]SptS1 (V )

∼= colim
ji :Ui ↪→V

[6∞S1 (Ui → V )+, LA1
(p∗E)]SptS1 (V ) (by Lemma1.9(1))

∼= colim
ji :Ui ↪→V

[ ji,]6∞S1 (Ui →Ui )+, LA1
(p∗E)]SptS1 (V ) ( ji,]((Ui→Ui )+)=(Ui→V )+)

∼= colim
ji :Ui ↪→V

[6∞S1 (Ui →Ui )+, j∗i LA1
(p∗E)]SptS1 (Ui )

∼= [6
∞

S1 (U→ U)+, j
∗LA1

(p∗E)]SptS1 (U) (by Lemma1.9(2))

∼= [6
∞

S1 (U→ U)+, LA1
(j∗ p∗E)]SptS1 (U) (by Lemma1.9(1)).

Using the Quillen adjoint pair (p], p∗), we see that p∗ preserves connectivity. By
Lemma 1.9, the same is true for j∗, so j∗(p∗E) is contained in SHs

S1>c(U). By
Proposition 3.1, we get [6∞S1U+, j

∗ p∗E] = 0 as the scheme U has dimension c.
The restrictions of f ∈ [6∞S1 V+, LA1E] induce an element of the set

colim ji [6
∞

S1 Ui,+, LA1E] = 0

from the left-hand side of the chain of equations above. This means that there
exists an open subscheme W :=Ui ↪→ V with W ∩ Z 6=∅ and f |6∞

S1 W+= 0. Since
Z ⊆ s∗(V ), we have s∗(W ) 6=∅. �

Finally, let us mention that for connectivity results we may restrict ourselves to
local base schemes.

Lemma 4.10. Let S be a noetherian scheme of finite Krull-dimension and let r ≥ 0
be an integer. Let E ∈ SHs

S1≥i (S) be a spectrum. Suppose that for all points s ∈ S
and s : Sh

s → S, we have that LA1
s∗E ∈ SHs

S1≥i−r (S
h
s ). Then LA1E ∈ SHs

S1≥i−r (S).

Proof. After shifting, we can assume that i = r . We have to show that the sheaf
πA1

0 (E) is trivial. It follows from Corollary 1.10 that π0(LA1E) is trivial if and only
if π0(s

∗LA1E) is trivial for all s ∈ S. Hence the claim follows. �

Shifted stable A1-connectivity. In order to obtain a uniform bound for the loss of
connectivity of a spectrum E , we may restrict ourselves to a local base scheme
S by Lemma 4.10. We want to invoke Proposition 4.5. Given a V -section f of
a homotopy presheaf of E , we have to search for an open subscheme W ↪→ V
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fulfilling assumptions (1) and (2) of Proposition 4.5, i.e., f = 0 when restricted
to W , and V/W is A1-Nisnevich-locally connected. For the former condition, we
want to apply Lemma 4.9. To avoid the obstacle to the latter condition coming from
Remark 4.8, we need to take care that W has nonempty fibre over the closed point
of S. This point has codimension c equal to the dimension d of S. Thus, again by
Lemma 4.9, a natural candidate for a uniform bound on the loss of connectivity of
E is c = d . This motivates the following definition and question.

Definition 4.11. A noetherian scheme S of dimension d has the shifted stable A1-
connectivity property, if for every integer i and every spectrum E in SHs

S1≥i (S),
the A1-localization LA1E is contained in SHs

S1≥i−d(S).

Question 4.12. Let S be a regular noetherian scheme of dimension d . Does S have
the shifted stable A1-connectivity property?

Remark 4.13. Morel’s connectivity theorem (Theorem 4.2 above) provides a pos-
itive answer in the case of S the spectrum of a field. In the case of S a Dedekind
scheme with all residue fields infinite, we get a positive answer by Theorem 4.16
below. Unfortunately, we do not have a positive or negative answer for more gen-
eral base schemes.

Remark 4.14. The example of Ayoub discussed in Remark 4.4 does not provide a
negative answer to Question 4.12. In fact, Ayoub gave an example of a base scheme
S (of dimension ≥ 2) and a spectrum E whose homotopy sheaves πA1

i (E) are not
strictly A1-invariant. The latter property is a consequence of the nonshifted stable
A1-connectivity property, i.e., the property that A1-localization does not lower the
connectivity at all. However, the proof (see [Morel 2005, Theorem 6.2.7]) that the
nonshifted stable A1-connectivity property implies strictly A1-invariant homotopy
sheaves does not carry over from the nonshifted to the shifted stable connectivity
property of the base.

At least, a positive answer to Question 4.12 would follow from A1-invariance
of A1-homotopy sheaves πA1

k (E) as the following proposition shows. Note that the
property of a Nisnevich sheaf to be strictly A1-invariant is a stronger property than
just being A1-invariant (see Remark 4.14).

Proposition 4.15. Let S be a noetherian scheme of dimension d. Let i be an integer
and E ∈ SHs

≥i (S) be such that the sheaf πA1

k (E) is A1-invariant for all integers
k < i − d. Then LA1E ∈ SHs

S1≥i−d(S).

Proof. First note that for any open immersion j : S′ ↪→ S the functor j∗ preserves
A1-invariance of (simplicial) presheaves and j∗π0 ∼= π0 j∗. In particular, our as-
sumptions on the spectrum are stable under restriction to open subschemes of the
base. Let E be a spectrum in SHs

S1>d with A1-invariant homotopy sheaves πA1

k (E)
in degrees k ≤ 0. To prove Proposition 4.15, it is again enough to show that πA1

0 (E)
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is trivial. We argue by induction on the dimension d of the base S. The case d = 0
is Theorem 4.2. Let d > 0. By Corollary 1.10, we may assume that S is local
with closed point i : σ ↪→ S. Take a connected scheme V ∈ SmS with structure
morphism p : V → S and a point v ∈ V . It suffices to show that the Nisnevich stalk
of πA1

0 (E) at (V, v) is trivial. By the induction hypothesis, we may assume that v
lies in the fibre over σ as the open complement S \ σ has Krull-dimension strictly
smaller than d. Moreover, we may assume that i∗(V ) is connected. Let f(V,v) be
a germ in this stalk. We have to show that f(V,v) is trivial. After possibly refining
(V, v) Nisnevich-locally, we may assume that f(V,v) is induced by an element
f ∈ [6∞S1 V+, LA1E]. By Lemma 4.9, there exists an open subscheme W ↪→ V

with f |6∞
S1 W+= 0 and i∗(W ) 6= ∅. Clearly, we may assume that v /∈ W . The

cofibre sequence W+→ V+→ V/W induces an exact sequence

0→ π̃0(LA1E)(V/W )→ π̃0(LA1E)(V )→ π̃0(LA1E)(W )

of homotopy sheaves. Here we write π̃0(LA1E)(V/W ) for Hom(V/W, π̃0(LA1E)).
Since the restriction of f to W is trivial, it suffices to show that π̃0(LA1E)(V/W )

is trivial. The A1-Nisnevich-local homotopy cofibre sequence

j] j∗(V/W )→ V/W → i∗LA1i∗(V/W )

from (1.8) induces a long exact sequence

· · · → [i∗LA1i∗(V/W ), πA1

0 (E)] → [V/W, πA1

0 (E)] → [ j] j∗(V/W ), πA1

0 (E)]

by the A1-Nisnevich-local fibrancy of πA1

0 (E)= π0(LA1E). For the latter, note that
a sheaf considered as a discrete simplicial presheaf is Nisnevich-locally fibrant.
The right-hand side equals [ j∗(V/W ), j∗πA1

0 (E)], and j∗πA1

0 (E)∼= π
A1

0 ( j∗E) is
trivial by induction. The triviality of the set on the left-hand side follows from the
triviality of π0(i∗LA1i∗(V/W )). By [Spitzweck 2014, Proposition 4.2], the latter
is zero if πA1

0 (i
∗(V/W ))= 0. Since i∗(V ) is irreducible and i∗(W ) is nonempty,

we conclude by [Morel 2005, Lemma 6.1.4]. �

The one-dimensional case. Using the Gabber presentation given by Theorem 2.4,
we can give a positive answer to Question 4.12 for a Dedekind scheme S with
infinite residue fields.

Theorem 4.16. Let S be a Dedekind scheme and assume that all of its residue fields
are infinite. Then S has the shifted stable A1-connectivity property: E ∈ SHs

S1≥i (S)
implies LA1E ∈ SHs

S1≥i−1(S).

Proof. By Lemma 4.10, we may assume that S is henselian local of dimension
≤ 1 with infinite residue field and closed point σ . The case of dimension zero
is covered by Theorem 4.2. Hence we may assume that S is the spectrum of a
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henselian discrete valuation ring. We want to apply Proposition 4.5. Consider
an element f ∈ [6∞S1 V+, LA1E] for V ∈ SmS . We may assume that σ ∗(V ) 6= ∅,
since otherwise we argue as Morel in the proof of Theorem 4.2. By Lemma 4.9
applied to the closed point σ of S, we find an open subscheme W ↪→ V such that
f6∞

S1 W+= 0 and σ ∗(W ) 6= ∅. Let i : Z ↪→ V be the reduced closed complement
of W . In particular, Zσ 6= Vσ . By Theorem 2.1, the conditions of Lemma 4.6 are
fulfilled, and we get the second assumption πA1

0 (V/W )= 0 of Proposition 4.5 as
well. �
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