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Maarten Solleveld

Let H(R, q) be an affine Hecke algebra with a positive parameter function q.
We are interested in the topological K-theory of its C∗-completion C∗r (R, q).
We prove that K∗(C∗r (R, q)) does not depend on the parameter q, solving a
long-standing conjecture of Higson and Plymen. For this we use representation-
theoretic methods, in particular elliptic representations of Weyl groups and Hecke
algebras.

Thus, for the computation of these K-groups it suffices to work out the case
q = 1. These algebras are considerably simpler than for q 6= 1, just crossed prod-
ucts of commutative algebras with finite Weyl groups. We explicitly determine
K∗(C∗r (R, q)) for all classical root data R. This will be useful for analyzing the
K-theory of the reduced C∗-algebra of any classical p-adic group.

For the computations in the case q = 1, we study the more general situation
of a finite group 0 acting on a smooth manifold M . We develop a method to
calculate the K-theory of the crossed product C(M) o 0. In contrast to the
equivariant Chern character of Baum and Connes, our method can also detect
torsion elements in these K-groups.
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Introduction

Affine Hecke algebras can be realized in two completely different ways. On the
one hand, they are deformations of group algebras of affine Weyl groups, and on
the other hand they appear as subalgebras of group algebras of reductive p-adic
groups. Via the second interpretation, affine Hecke algebras (AHAs) have proven
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very useful in the representation theory of such groups. This use is in no small part
due to their explicit construction in terms of root data, which makes them amenable
to concrete calculations.

This paper is motivated by our desire to understand and compute the (topolog-
ical) K-theory of the reduced C∗-algebra C∗r (G) of a reductive p-adic group G.
This is clearly related to the representation theory of G. For instance, when G is
semisimple, every discrete series G-representation gives rise to a one-dimensional
direct summand in the K-theory of C∗r (G).

The problem can be transferred to AHAs in the following way. By the Bernstein
decomposition, the Hecke algebra of G can be written as a countable direct sum
of two-sided ideals:

H(G)=
⊕

s∈B(G)H(G)
s.

Borel [1976] and Iwahori and Matsumoto [1965] have shown that one particular
summand, say H(G)IM, is Morita equivalent to an AHA, say H(R, q)IM. It is
expected that all other summands H(G)s are also Morita equivalent to AHAs, or
to closely related algebras. Indeed, this has been proven in many cases; see [Aubert
et al. 2017a, §2.4] for an overview.

The reduced C∗-algebra of G is a completion of H(G), and it admits an analo-
gous Bernstein decomposition

C∗r (G)=
⊕

s∈B(G) C∗r (G)
s,

where C∗r (G)
s is the closure of H(G)s in C∗r (G). By [Bushnell et al. 2011], the

Morita equivalence H(G)IM ∼M H(R, q) extends to a Morita equivalence between
C∗r (G)

IM and the natural C∗-completion of H(R, q)IM. Again it can be expected
that every summand C∗r (G)

s is Morita equivalent to the C∗-completion C∗r (R, q)s

of some AHA H(R, q)s. However, this is currently not yet proven in several cases
where the Morita equivalence is known on the algebraic level. We will return to
this issue in a subsequent paper. Assuming it for the moment, we get

K∗(C∗r (G))∼=
⊕

s∈B(G) K∗(C∗r (R, q)s).

The left-hand side figures in the Baum–Connes conjecture for reductive p-adic
groups [Baum et al. 1994]. For applications to the Baum–Connes conjecture for al-
gebraic groups over local fields, it would be useful to understand K∗(C∗r (G)) better,
in particular its torsion subgroup. Namely, from the work of Kasparov [1988] it is
known that for many groups G the Baum–Connes assembly map is injective, and
that its image is a direct summand of K∗(C∗r (G)). There exist methods [Solleveld
2009, §3.4] which enable one to prove that the assembly map becomes an iso-
morphism after tensoring its domain and range by Q, but which say little about
the torsion elements in the K-groups. If one knew in advance that K∗(C∗r (G)) is
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torsion-free, then one could prove instances of the Baum–Connes conjecture with
such methods.

To construct an affine Hecke algebra, we use a root datum R in a lattice X . These
give a Weyl group W = W (R) and an extended affine Weyl group W e

= X o W.
As parameters we take a tuple of nonzero complex numbers q = (qi )i . The AHA
H(R, q) is a deformation of the group algebra C[W e

], in the following sense: as a
vector space it is C[W e

], with a multiplication rule depending algebraically on q,
such that H(R, 1) = C[W e

]. See Section 1C for the precise definition. To get a
nice C∗-completion C∗r (R, q), we must assume that q is positive, that is, qi ∈ R>0

for all i . For q = 1 the C∗-completion can be described easily:

C∗r (R, 1)= C∗r (W
e)= C(Tun)o W,

where Tun = HomZ(X, S1) is a compact torus.
All AHAs obtained from reductive p-adic groups G have rather special param-

eters: there are ni ∈ Z≥0 such that qi = pni/2, where p is the characteristic of
the local nonarchimedean field underlying G. Thus the realization of AHAs via
root data admits more parameters than the realization as subalgebras of H(G). In
particular the algebras H(R, q) admit continuous parameter deformations, whereas
the AHAs from reductive p-adic groups do not, since the prime powers pn/2 are
discrete in R>0.

In fact, for fixed R the family C∗r (R, q), with varying positive q , form a contin-
uous field of C∗-algebras. For a given q 6= 1 we have the half-line of parameters
qε = (qεi )i with ε ∈ R≥0. It is known from [Solleveld 2012a, Theorem 4.4.2] that
there exists a family of C∗-homomorphisms

ζε : C∗r (R, qε)→ C∗r (R, q), ε ≥ 0,

such that ζε is an isomorphism for all ε > 0 and depends continuously on ε ∈ R≥0.
Via a general deformation principle, this yields a canonical homomorphism

K∗(C∗r (W
e))= K∗(C∗r (R, q0))→ K∗(C∗r (R, q)). (0.1)

Loosely speaking, the construction goes as follows. Take a projection p0 (or a
unitary u0) in a matrix algebra Mn(C∗r (W

e))= Mn(C∗r (R, q0)). For ε > 0 small,
we can apply holomorphic functional calculus to p0 to produce a new projection
pε ∈ Mn(C∗r (R, qε)) (or a unitary uε). Then (0.1) sends [p0] ∈ K0(C∗r (R, q0)) to
the image of pε , and u0 ∈ K1(C∗r (R, q0)) to the image of uε , under the isomorphism
Mn(C∗r (R, qε))∼= Mn(C∗r (R, q)).

Actually, more is true: by [Solleveld 2012a, Lemma 5.1.2] the map K∗(ζ0)

equals (0.1). Furthermore, by [Solleveld 2012a, Theorem 5.1.4] ζ0 induces an
isomorphism

K∗(C∗r (R, q0))⊗Z C→ K∗(C∗r (R, q))⊗Z C.
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In view of the aforementioned relation with the Baum–Connes conjecture for p-
adic groups, we also want to understand the torsion parts of these K-groups. We
will prove:

Theorem 1 (see Theorem 2.11). The map (0.1) is a canonical isomorphism

K∗(C∗r (R, 1))→ K∗(C∗r (R, q)).

This theorem was conjectured first by Higson and Plymen (see [Plymen 1993,
6.4] and [Baum et al. 1994, 6.21]), at least when all parameters qi are equal. It is
similar to the Connes–Kasparov conjecture for Lie groups; see [Baum et al. 1994,
Sections 4–6] for more background. Independently, Opdam [2004, Section 1.0.1]
conjectured Theorem 1 for unequal parameters.

Unfortunately it is unclear how Theorem 1 could be proven by purely noncom-
mutative geometric means. The search for an appropriate technique was a major
drive behind the author’s Ph.D. project (2002–2006), and partial results appeared
already in his Ph.D. thesis [Solleveld 2007]. At that time, we hoped to derive
representation consequences from a K-theoretic proof of Theorem 1. But so far,
such a proof remains elusive.

In the meantime, substantial progress has been made in the representation the-
ory of Hecke algebras; see in particular [Opdam and Solleveld 2010; Ciubotaru
and Opdam 2015; Ciubotaru et al. 2014]. This enables us to turn things around
(compared to 2004); now we can use representation theory to study the K-theory
of C∗r (R, q).

Given an algebra or group A, let Mod f (A) be the category of finite length A-
modules, and let RZ(A) be the Grothendieck group thereof. We deduce Theorem 1
from the following:

Theorem 2 (see Theorem 1.52). The map

Mod f (C∗r (R, q))→Mod(C∗r (W
e)) : π 7→ π ◦ ζ0

induces Z-linear bijections

RZ(C∗r (R, q))→ RZ(C∗r (W
e)), RZ(H(R, q))→ RZ(W e).

A substantial part of the proof of Theorem 2 boils down to representations of
the finite Weyl group W. Following [Reeder 2001], we study the group RZ(W )

of elliptic representations, that is, RZ(W ) modulo the subgroup spanned by all
representations induced from proper parabolic subgroups of W. First we show
that RZ(W ) is always torsion-free (Theorem 1.12). Then we compare it with the
analogous group of elliptic representations of H(R, q), which leads to Theorem 2.

Having established the general framework, we set out to compute K∗(C∗r (R, q))
explicitly, for some root data R associated to well-known groups. By Theorem 1,
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we only have to consider one q for each R. In most examples, the easiest is to take
q = 1. Then we must determine

Kr (C∗r (R, 1))= K∗(C(Tun)o W )∼= K ∗W (Tun),

where the right-hand side denotes the W-equivariant K-theory of the compact Haus-
dorff space Tun. Let Tun//W be the extended quotient. Of course, the equivariant
Chern character from [Baum and Connes 1988] gives a natural isomorphism

K ∗W (Tun)⊗Z C→ H∗(Tun//W ;C).

But this does not suffice for our purposes, because we are particularly interested in
the torsion subgroup of K ∗W (Tun). Remarkably, that appears to be quite difficult to
determine, already for cyclic groups acting on tori [Langer and Lück 2012]. Using
equivariant cohomology, we develop a technique to facilitate the computation of
K∗(C(6)o W ) for any finite group W acting smoothly on a manifold 6. With
extra conditions it can be made more explicit:

Theorem 3 (see Theorem 2.45). Suppose that every isotropy group Wt (t ∈6) is
a Weyl group, and that H∗(6//W ;Z) is torsion-free. Then

K∗(C(6)o W )∼= H∗(6//W ;Z).

We note that H∗(6//W ;Z) can be computed relatively easily. Theorem 3 can
be applied to all classical root data, and to some others as well. Let us summarize
the outcome of our computations.

Theorem 4. Let R be a root datum of type GLn , SLn , PGLn , SOn , Sp2n or G2. Let
q be any positive parameter function for R. Then K∗(C∗r (R, q)) is a free abelian
group, whose rank is given explicitly in Section 3.

Whether or not torsion elements can pop up in K∗(C∗r (R, q)) for other root data
remains to be seen. In view of our results it does not seem very likely, but we do
not have a general principle to rule it out.

1. Representation theory

1A. Weyl groups. In this first subsection we show that the representation ring
RZ(W ) of any finite Weyl group W is the direct sum of two parts: the subgroup
spanned by representations induced from proper parabolic subgroups, and an el-
liptic part RZ(W ). We exhibit a Z-basis of RZ(W ) in terms of the Springer corre-
spondence. These results rely mainly on case-by-case considerations in complex
simple groups.

Let a be a finite-dimensional real vector space and let a∗ be its dual. Let Y ⊂ a

be a lattice and X = HomZ(Y,Z)⊂ a∗ the dual lattice. Let

R= (X, R, Y, R∨,1) (1.1)
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be a based root datum. Thus, R is a reduced root system in X, R∨ ⊂ Y is the
dual root system, 1 is a basis of R and the set of positive roots is denoted R+.
Furthermore, we are given a bijection R → R∨, α 7→ α∨ such that 〈α, α∨〉 = 2
and such that the corresponding reflections sα : X→ X and s∨α : Y → Y stabilize
R and R∨, respectively. We do not assume that R spans a∗. The reflections sα
generate the Weyl group W =W (R) of R, and S1 := {sα : α ∈1} is the collection
of simple reflections.

For a set of simple roots P ⊂1 we let RP be the root system they generate, and
we let WP =W (RP) be the corresponding parabolic subgroup of W.

Let RZ(W ) be the Grothendieck group of the category of finite-dimensional com-
plex W-representations, and write RC(W )=C⊗Z RZ(W ). For any P ⊂1 the induc-
tion functor indW

WP
gives linear maps RZ(WP)→ RZ(W ) and RC(WP)→ RC(W ).

In this subsection we are mainly interested in the abelian group of “elliptic W-
representations”

RZ(W )= RZ(W )
/ ∑

P(1
indW

WP
(RZ(WP)). (1.2)

In the literature [Reeder 2001; Ciubotaru et al. 2014], one more often encounters
the vector space

RC(W )= RC(W )
/ ∑

P(1
indW

WP
(RC(WP)).

Recall that an element w ∈W is called elliptic if it fixes only the zero element of
SpanR(R), or equivalently if it does not belong to any proper parabolic subgroup
of W. It was shown in [Reeder 2001, Proposition 2.2.2] that RC(W ) is naturally
isomorphic to the space of all class functions on W supported on elliptic elements.
In particular, dimC RC(W ) is the number of elliptic conjugacy classes in W.

In [Ciubotaru et al. 2014], RZ(W ) is defined as the subgroup of RC(W ) gen-
erated by the W-representations. So in that work it is by definition a lattice. If
RZ(W ) (in our sense) is torsion-free, then it can be identified with the subgroup
of RC(W ) to which it is naturally mapped. For our purposes it will be essential to
stick to the definition (1.2) and to use some results from [Ciubotaru et al. 2014].
Therefore we want to prove that (1.2) is always a torsion-free group.

In the analysis we will make ample use of Springer’s construction of represen-
tations of Weyl groups, and of Reeder’s results [2001]. Let G be a connected
reductive complex group with a maximal torus T such that R ∼= R(G, T ) and
W ∼=W (G, T ). For u ∈ G let Bu

= Bu
G be the complex variety of Borel subgroups

of G containing u. The group ZG(u) acts on Bu by conjugation, and that induces
an action of AG(u) := π0(ZG(u)/Z(G)) on the cohomology of Bu . For a pair
(u, ρ) with u ∈ G unipotent and ρ ∈ Irr(AG(u)) we define
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H(u, ρ)= HomAG(u)(ρ, H∗(Bu
;C)),

π(u, ρ)= HomAG(u)(ρ, H top(Bu
;C)),

(1.3)

where top indicates the highest dimension in which the cohomology is nonzero,
namely the dimension of Bu as a real variety. Let us call ρ geometric if π(u, ρ) 6= 0.
Springer [1978] proved that

• W × AG(u) acts naturally on H i (Bu
;C) for each i ∈ Z≥0,

• π(u, ρ) is an irreducible W-representation whenever it is nonzero,

• this gives a bijection between Irr(W ) and the G-conjugacy classes of pairs
(u, ρ) with u ∈ G unipotent and ρ ∈ Irr(AG(u)) geometric.

It follows from a result of Borho and MacPherson [1981] that the W-representations
H(u, ρ), parametrized by the same data (u, ρ), also form a basis of RZ(W ); see
[Reeder 2001, Lemma 3.3.1]. Moreover, π(u, ρ) appears with multiplicity one
in H(u, ρ).

Example 1.4. • Type A. Only the n-cycles in W = Sn are elliptic, and they form
one conjugacy class. The only quasidistinguished unipotent class in GLn(C) is
the regular unipotent class. Then AGLn(C)(ureg)= 1 for every regular unipotent
element ureg and H(ureg, triv)= H 0(Bureg;C) is the sign representation of Sn

(with our convention for the Springer correspondence).

• Types B and C . The elliptic classes in W (Bn) = W (Cn) ∼= Sn o (Z/2Z)n

are parametrized by partitions of n. We will write them down explicitly as
σ(∅, λ) with λ ` n in (3.26).

• Type D. The elliptic classes in W (Dn)= Sn o (Z/2Z)nev are precisely the ellip-
tic classes of W (Bn) that are contained in W (Dn). They can be parametrized
by partitions λ ` n such that λ has an even number of terms.

• Type G2. There are three elliptic classes in W (G2) = D6: the rotations of
order two, of order three and of order six. The quasidistinguished unipotent
classes in G2(C) are the regular and the subregular class.

We have AG(ureg) = 1 and H(ureg, triv) = π(ureg, triv) is the sign repre-
sentation of D6. For u subregular AG(u)∼= S3, and the sign representation of
AG(u) is not geometric. For ρ the two-dimensional irreducible representation
of AG(u), π(u, ρ)= H(u, ρ) is the character of W (G2) which is 1 on the re-
flections for long roots and −1 on the reflections for short roots. Furthermore
π(u, triv) is the standard two-dimensional representation of D6 and H(u, triv)
is the direct sum of π(u, triv) and the sign representation.

For a subset P ⊂ 1 let GP be the standard Levi subgroup of G generated by
T and the root subgroups for roots α ∈ RP . The irreducible representations of
WP =W (GP , T ) are parametrized by GP -conjugacy classes of pairs (uP , ρP) with
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uP ∈ GP unipotent and ρP ∈ Irr(AGP (uP)) geometric, and the WP -representations
HP(uP , ρP) form another basis of RZ(WP).

Recall from [Reeder 2001, §3.2] that AGP (uP) can be regarded as a subgroup
of AG(uP). By [Kato 1983, Proposition 2.5 and 6.2],

indW
WP
(H i (BuP

GP
;C))∼= H i (BuP ;C) as W × AG(uP)-representations. (1.5)

It follows that for any (uP , ρP) as above there are natural isomorphisms

indW
WP
(HP(uP , ρP))∼= HomAGP (uP )(ρP , H∗(BuP ;C))

∼=

⊕
ρ∈Irr(AG(uP ))

HomAGP (uP )(ρP , ρ)⊗ H(uP , ρ). (1.6)

For a unipotent conjugacy class C ⊂ G and P ⊂1, let RZ(WP , C) be the subgroup
of RZ(WP) generated by the HP(uP , ρP) with uP ∈GP ∩C and ρP ∈ Irr(AGP (uP)).
(Notice that GP ∩ C can consist of zero, one or more conjugacy classes.) In view
of (1.6) we can define

RZ(W, C)= RZ(W, C)
/ ∑

P(1
indW

WP
(RZ(WP , C)).

We obtain a decomposition as in [Reeder 2001, §3.3]:

RZ(W )=
⊕
C

RZ(W, C). (1.7)

Following [Reeder 2001], we also define elliptic representation theories for the
component groups AG(u). For u, uP ∈ C the groups AG(u) and AG(uP) are iso-
morphic. In general the isomorphism is not natural, but it is canonical up to inner
automorphisms. This gives a natural isomorphism RZ(AG(u)) ∼= RZ(AG(uP)),
which enables us to write

RZ(AG(u))= RZ(AG(u))
/ ∑

P(1,uP∈C∩GP

indAG(uP )
AGP (uP )

(
RZ(AGP (uP))

)
. (1.8)

For any uP , u′P ∈ C ∩GP there is a natural isomorphism

indAG(uP )
AGP (uP )

(
RZ(AGP (uP))

)
∼= indAG(u′P )

AGP (u
′

P )

(
RZ(AGP (u

′

P))
)
,

so on the right-hand side of (1.8) it actually suffices to use only one uP whenever
C ∩GP is nonempty.

Let R◦Z(AG(u)) be the subgroup of RZ(AG(u)) generated by the geometric irre-
ducible AG(u)-representations. By [Reeder 2001, §10],

indAG(u)
AG(uP )

(
R◦Z(AGP (uP))

)
⊂ R◦Z(AG(u)).
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Using this we can define

R◦Z(AG(u))= R◦Z(AG(u))
/ ∑

P(1, uP∈C∩GP

indAG(uP )
AGP (uP )

(
R◦Z(AGP (uP))

)
.

It follows from (1.6) that every ρP ∈ Irr(AGP (uP)) which appears in ρ is itself geo-
metric. Hence the inclusions R◦Z(AGP (uP))→ RZ(AGP (uP)) induce an injection

R◦Z(AG(u))→ RZ(AG(u)). (1.9)

By [Reeder 2001, Proposition 3.4.1] the maps ρP 7→HomAGP (uP )(ρP , H∗(BuP ;C))

for P ⊂1 induce a Z-linear bijection

R◦Z(AG(u))→ RZ(W, C). (1.10)

(In [Reeder 2001] these groups are by definition subsets of complex vector spaces.
But with the above definitions Reeder’s proof still applies.) From (1.7), (1.10) and
(1.9) we obtain an injection

RZ(W )→
⊕

u

RZ(AG(u)), (1.11)

where u runs over a set of representatives for the unipotent classes of G.

Theorem 1.12. The group of elliptic representations RZ(W ) is torsion-free.

Proof. If W is a product of irreducible Weyl groups Wi , then it follows readily
from (1.2) that

RZ(W )=
⊗

i

RZ(Wi ).

Hence we may assume that W =W (R) is irreducible. By (1.11) it suffices to show
that each RZ(AG(u)) is torsion-free. If u is distinguished, then C ∩GP =∅ for all
P (1, and RZ(AG(u))= RZ(AG(u)). That is certainly torsion-free, so we do not
have to consider distinguished unipotent u anymore.

For root systems of type A and of exceptional type, the tables of component
groups in [Carter 1985, §13.1] show that AG(u) is isomorphic to Sn with n ≤ 5.
Moreover, S4 and S5 only occur when u is distinguished. For AG(u) ∼= S2 and
for AG(u)∼= S3 one checks directly that RZ(AG(u)) is torsion-free, by listing all
subgroups of AG(u) and all irreducible representations thereof.

That leaves the root systems of type B, C and D. As group of type Bn we take
G = SO2n+1(C). By the Bala–Carter classification, the unipotent classes C in G
are parametrized by pairs of partitions (α, β) such that 2|α| + |β| = 2n + 1 and
β has only odd parts, all distinct. A typical u ∈ C is distinguished in the standard
Levi subgroup

Gα := GLα1(C)× · · ·×GLαd (C)×SO|β|(C).
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The part of u in SO|β| depends only on β; it has Jordan blocks of sizes β1, β2, . . . .
Let α′ be a partition consisting of a subset of the terms of α, say

α′ = (n)m
′
n (n− 1)m

′

n−1 · · · (1)m
′

1 . (1.13)

Let α′′ be a partition of |α| − |α′| obtained from the remaining terms of α by
repeatedly replacing some αi , α j by αi +α j . All the standard Levi subgroups of G
containing this u are of the form Gα′′ . The GL-factors of Gα′′ do not contribute to
AGα′′

(u). The part u′ of u in SO2(n−|α′′|)+1(C) is parametrized by (α′, β) and the
quotient of ZSO2(n−|α′′|)+1(C)

(u′) by its unipotent radical is isomorphic to∏
i even

Sp2m′i
(C) ×

∏
i odd, not in β

O2m′i (C)× S
( ∏

i odd, in β

O2m′i+1(C)

)
, (1.14)

where the S indicates that we take the subgroup of elements of determinant 1. From
this one can deduce the component group:

AGα′′
(u)∼= ASp2(n−|α′′|)(C)

(u′) ∼=
∏

i odd, not in β,m′i>0

Z/2Z× S
(∏

i in β

Z/2Z

)
. (1.15)

We see that if

• α has an even term,

• or α has an odd term with multiplicity > 1,

• or α has an odd term which also appears in β,

then there is a standard Levi subgroup Gα′′ ( G with AGα′′
(u)∼= AG(u), namely

with α′′ just that one term of α. In these cases RZ(AG(u))= 0.
Suppose now that α has only distinct odd terms, and that none of those appears

in β. Then (1.15) becomes

AG(u)∼=
∏

i in α

Z/2Z× A where A = S
(∏

i in β

Z/2Z

)
.

We get∑
P(1, uP∈C∩GP

indAG(uP )
AGP (uP )

(
RZ(AGP (uP))

)
∼=

∑
j in α

indAG(u)
AGα−( j) (u)

RZ

( ∏
i in α−( j)

Z/2Z× A
)

∼=

∑
j in α

indZ/2Z

{1} RZ({1})⊗Z RZ

( ∏
i in α−( j)

Z/2Z

)
⊗Z RZ(A). (1.16)

We conclude that RZ(AG(u))= RZ(A).
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So RZ(AG(u)) is torsion free for all unipotent u ∈ SO2n+1(C), which settles the
case Bn . The root systems of types Cn and Dn can be handled in a completely
analogous way, using the explicit descriptions in [Carter 1985, §13.1]. �

For every w ∈ W there exists (more or less by definition) a unique parabolic
subgroup W̃ ⊂W such that w is an elliptic element of W̃. Let C(W ) be the set of
conjugacy classes of W. For P ⊂ 1 let CP(W ) be the subset consisting of those
conjugacy classes that contain an elliptic element of WP . Let P(1)/W be a set of
representatives for the W-association classes of subsets of 1. Since every parabolic
subgroup is conjugate to a standard one, for every conjugacy class C in W there
exists a unique P ∈ P(1)/W such that C ∈ CP(W ).

Recall from [Reeder 2001, §3.3] that a unipotent element u ∈ G is called quasi-
distinguished if there exists a semisimple t ∈ ZG(u) such that tu is not contained
in any proper Levi subgroup of G.

Proposition 1.17. For every P ∈ P(1)/W there exists an injection from CP(W ) to
the set of GP -conjugacy classes of pairs (uP , ρP) with uP ∈ GP quasidistinguished
unipotent and ρP ∈ Irr(AGP (uP)) geometric, denoted w 7→ (uP,w, ρP,w), such that:

(a) {H(uw, ρw) : w ∈ C1(W )} is a Z-basis of RZ(W ).

(b) The set {
indW

WP
(HP(uP,w, ρP,w)) : P ∈ P(1)/W, w ∈ CP(W )

}
is a Z-basis of RZ(W ).

Proof. (a) By [Reeder 2001, Proposition 2.2.2] the rank of RZ(W ) is the number
of elliptic conjugacy classes of W. With Theorem 1.12 we find RZ(W )∼= Z|C1(W )|.
By (1.11) and (1.10), RZ(W ) has a basis consisting of representations of the form
H(u, ρ) with ρ ∈ Irr(AG(u)) geometric. By [Reeder 2001, Proposition 3.4.1] we
need only quasidistinguished unipotent u. We choose such a set of pairs (u, ρ),
and we parametrize it in an arbitrary way by C1(W ).

(b) We prove this by induction on |1|. For |1| = 0 the statement is trivial.
Suppose now that |1| ≥ 1 and α ∈1. By the induction hypothesis we can find

maps w 7→ (uP , ρP) such that the set{
indW1\{α}

WP
(HP(uP,w, ρP,w)) : P ∈ P(1 \ {α})/W1\{α}, w ∈ CP(W1\{α})

}
is a Z-basis of RZ(W1\{α}). By means of any setwise splitting of NG(T )→ W
we can arrange that (uP,w, ρP,w) and (uP ′,w′, ρP ′,w′) are G-conjugate whenever
(P, w) and (P ′, w′) are W-associate. Then (P, w) and (P ′, w′) give rise to the
same W-representation. Consequently,{

indW
WP
(HP(uP,w, ρP,w)) : P ∈ P(1)/W, P 6=1,w ∈ CP(W )

}
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is well-defined and has |C(W ) \ C1(W )| elements. By the induction hypothesis it
spans

∑
P(1 indW

WP
(RZ(WP)), so it forms a Z-basis thereof. Combine this with

(1.2) and part (a). �

1B. Graded Hecke algebras. We consider the Grothendieck group RZ(H) of finite
length modules of a graded Hecke algebra H with parameters k. We show that it is
the direct sum of the subgroup spanned by modules induced from proper parabolic
subalgebras and an elliptic part RZ(H). We prove that RZ(H) is isomorphic to
the elliptic part of the representation ring of the Weyl group associated to H. By
Section 1A, RZ(H) is free abelian and does not depend on the parameters k. The
main ingredients are the author’s work [Solleveld 2010] on the periodic cyclic
homology of graded Hecke algebras, and the study of discrete series representations
by Ciubotaru, Opdam and Trapa [Ciubotaru and Opdam 2017; Ciubotaru et al.
2014].

Graded Hecke algebras are also known as degenerate (affine) Hecke algebras.
They were introduced in [Lusztig 1989]. In the notation from (1.1) we call

R̃= (a∗, R, a, R∨,1) (1.18)

a degenerate root datum. We pick complex numbers kα for α ∈1, such that kα = kβ
if α and β are in the same W-orbit. We put t= C⊗R a.

The graded Hecke algebra associated to these data is the complex vector space

H= H(R̃, k)=O(t)⊗C[W ],

with multiplication defined by the following rules:

• C[W ] and O(t) are canonically embedded as subalgebras;

• for ξ ∈ t∗ and sα ∈ S1 we have the cross relation

ξ · sα − sα · sα(ξ)= kα〈ξ, α∨〉. (1.19)

Notice that H(R̃, 0)=O(t)o W.
Multiplication with any ε ∈C× defines a bijection t∗→ t∗, which clearly extends

to an algebra automorphism of O(t)= S(t∗). From the cross relation (1.19) we see
that it extends even further, to an algebra isomorphism

H(R̃, εk)→ H(R̃, k) (1.20)

which is the identity on C[W ]. For ε = 0 this map is well-defined, but obviously
not bijective.



TOPOLOGICAL K-THEORY OF AFFINE HECKE ALGEBRAS 407

For a set of simple roots P ⊂1 we write

RP =QP ∩ R, R∨P =QR∨P ∩ R∨,

aP = RP∨, aP
= (a∗P)

⊥,

a∗P = RP, aP∗
= (aP)

⊥,

R̃P = (a
∗

P , RP , aP , R∨P , P), R̃P
= (a∗, RP , a, R∨P , P).

(1.21)

Let kP be the restriction of k to RP . We call

HP
= H(R̃P, kP)

a parabolic subalgebra of H. It contains HP = H(R̃P , kP) as a direct summand.
The centre of H(R̃, k) is O(t)W = O(t/W ) [Lusztig 1989, Proposition 4.5].

Hence the central character of an irreducible H(R̃, k)-representation is an element
of t /W.

Let (π, V ) be an H(R̃, k)-representation. We say that λ ∈ t is an O(t)-weight
of V (or of π ) if

{v ∈ V : π(ξ)v = λ(ξ)v for all ξ ∈ t∗}

is nonzero. Let Wt(V )⊂ t be the set of O(t)-weights of V .
Temperedness of a representation is defined via its O(t)-weights. We write

a+ = {µ ∈ a : 〈α,µ〉 ≥ 0 ∀α ∈1},

a∗+ := {x ∈ a∗ : 〈x, α∨〉 ≥ 0 ∀α ∈1},

a− = {λ ∈ a : 〈x, λ〉 ≤ 0 ∀x ∈ a∗+} =
{∑

α∈1 λαα
∨
: λα ≤ 0

}
.

The interior a−− of a− equals
{∑

α∈1λαα
∨
: λα < 0

}
if 1 spans a∗, and is empty

otherwise.
We regard t= a⊕ ia as the polar decomposition of t, with associated real part

map < : t → a. By definition, a finite-dimensional H(R̃, k)-module (π, V ) is
tempered <(Wt(V )) ⊂ a−. More restrictively, we say that (π, V ) belongs to the
discrete series if <(Wt(V ))⊂ a−−.

We are interested in the restriction map

r :Mod(H(R̃, k))→Mod(C[W ]), V 7→ V |W .

We can also regard it as the composition of representations with the algebra homo-
morphism (1.20) for ε = 0, then its image consists of O(t)o W-representations on
which O(t) acts via 0 ∈ t.

Let Irr0(H) be the set of irreducible tempered H(R̃, k)-modules with central
character in a/W. It is known from [Solleveld 2010, Theorem 6.5] that, for real-
valued k, r induces a bijection

rC : C Irr0(H(R̃, k))→ RC(W ). (1.22)
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Using work of Lusztig, Ciubotaru [2008, Corollary 3.6] showed that, for parame-
ters of “geometric” type,

rZ : Z Irr0(H(R̃, k))→ RZ(W ) is bijective. (1.23)

We will generalize this to arbitrary real parameters. (Parameters k of geometric
type need not be real-valued, but via (1.20) they can be reduced to that.)

We recall some notions from [Ciubotaru and Opdam 2015]. Let RZ(H(R̃, k)) be
the Grothendieck group of (the category of) finite-dimensional H(R̃, k)-modules.
For any parabolic subalgebra HP

=H(R̃P, kP), the induction functor indH
HP induces

a map RZ(H
P)→ RZ(H). If the O(t)-weights of V ∈Mod(HP) are contained in

some U ⊂ t, then by [Barbasch and Moy 1993, Theorem 6.4], the O(t)-weights of
indH

HP V are contained in W PU , where W P is the set of shortest length represen-
tatives of W/WP . This implies that indH

HP preserves temperedness [Barbasch and
Moy 1993, Corollary 6.5] and central characters. In particular, it induces a map

indH
HP : Z Irr0(H

P)→ Z Irr0(H). (1.24)

Many arguments in this section make use of the group of “elliptic H-representations”

RZ(H)= RZ(H(R̃, k))
/∑

P(1 indH
HP (RZ(H

P)). (1.25)

Since H(R̃, k)=O(t)⊗C[W ] as vector spaces,

r ◦ indH
HP = indW

WP
◦ rP, (1.26)

where rP denotes the analogue of r for HP. Hence r induces a Z-linear map

r̄ : RZ(H(R̃, k))→ RZ(W ). (1.27)

Proposition 1.28. The map (1.27) is surjective, and its kernel is the torsion sub-
group of RZ(H(R̃, k)).

Proof. By Theorem 1.12, RZ(W ) is torsion-free, so it can be identified with its im-
age in RC(W ). This means that our definition of RZ(W ) agrees with that in [Ciubo-
taru et al. 2014]. Likewise, in [Ciubotaru et al. 2014] the subgroup R′Z(H(R̃, k)) of
RC(H(R̃, k)) generated by the actual representations is considered. In other words,
R′Z(H(R̃, k)) is defined as the quotient of RZ(H(R̃, k)) by its torsion subgroup.

By [Ciubotaru et al. 2014, Proposition 5.6] the map

r̄ : R′Z(H(R̃, k))→ RZ(W ) (1.29)

is bijective, except possibly when R has type F4 and k is not a generic parameter.
However, in view of the more recent work [Ciubotaru and Opdam 2017, §3.2], the
limit argument given (for types Bn and G2) in [Ciubotaru et al. 2014, §5.1] also
applies to F4. Thus (1.29) is bijective for all R̃ and all real-valued parameters k. �
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Lemma 1.30. Let k be real-valued. The canonical map

Z Irr0(H(R̃, k))→ RZ(H(R̃, k))

is surjective.

Proof. It was noted in [Opdam and Solleveld 2013, Lemma 6.3] (in the con-
text of affine Hecke algebras) that every element of RZ(H(R̃, k)) can be repre-
sented by a tempered virtual representation. Consider any irreducible tempered
H-representation π . By [Solleveld 2012b, Proposition 8.2] there exists a P ⊂1,
a discrete series representation δ of HP and an element ν ∈ iaP such that π is a
direct summand of

π(P, δ, ν)= indH
HP⊗O(tP )

(δ⊗Cν).

By [Solleveld 2012b, Proposition 8.3] the reducibility of π(P, δ, ν) is determined
by intertwining operators π(w, P, δ, ν) for elements w ∈W that stabilize (P, δ, ν).
Suppose that ν 6= 0. Then Wν is a proper parabolic subgroup of W , so the stabilizer
of (P, δ, ν) is contained in WQ for some P ⊂ Q (1. In that case, π = indH

HQ (πQ)

for some irreducible representation πQ of HQ , so π becomes zero in RZ(H(R̃, k)).
Therefore we need only Z-linear combinations of summands of π(δ, P, 0) (with

varying P, δ) to surject to RZ(H(R̃, k)). Since k is real, discrete series represen-
tations of HP have central characters in aP/WP [Slooten 2006, Lemma 2.13]. It
follows that π(P, δ, 0) and all its constituents (among which is π ) admit a central
character in a/W. �

Theorem 1.31. Let k be real-valued. The restriction-to-W maps

rZ : Z Irr0(H(R̃, k)) → RZ(W ),

r : RZ(H(R̃, k)) → RZ(W )

are bijective.

Proof. We show this by induction on the semisimple rank of R̃ (i.e., the rank of R).
Suppose first that the semisimple rank is zero. Then W = 1 and H = O(t). For
λ ∈ t the character

evλ : f 7→ f (λ)

is a tempered O(t)-representation if and only if <(λ)= 0. If λ is at the same time
a real central character (i.e., λ ∈ a), then λ= 0. Hence Irr0(H) consists just of ev0.
It is mapped to the trivial W-representation by r, so the theorem holds in this case.

Now let R̃ be of positive semisimple rank. It is a direct sum of degenerate root
data with R irreducible or R empty, and H(R̃, k) decomposes accordingly. As we
already know the result when R is empty, it remains to establish the case where R
is irreducible.
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Any proper parabolic subalgebra HP
⊂ H has smaller semisimple rank, so by

the induction hypothesis

rP
: Z Irr0(H

P)→ Z Irr0(WP) is bijective. (1.32)

Consider the commutative diagram

0 //
∑

P(1 indH
HP (Z Irr0(H

P)) //

��

Z Irr0(H) //

��

RZ(H) //

��

0

0 //
∑

P(1 indW
WP
(RZ(WP)) // RZ(W ) // RZ(W ) // 0

(1.33)

The second row is exact by definition. By (1.32) and (1.26) the left vertical arrow
is bijective and by Proposition 1.28 the right vertical arrow is surjective. Together
with Lemma 1.30 these imply that the middle vertical arrow is surjective. By (1.22)
both Z Irr0(H) and RZ(W ) are free abelian groups of the same rank |Irr(W )| =

|Irr0(H)|, so the middle vertical arrow is in fact bijective.
The results so far imply that the kernel of Z Irr0(H)→ RZ(W ) is precisely∑

P(1 indH
HP (Z Irr0(H

P)).

The latter group is already killed in RZ(H), so RZ(H)→ RZ(W ) is injective as
well. We conclude that (1.33) is a bijection between two short exact sequences. �

We will need Theorem 1.31 for somewhat more general algebras. Let 0 be a
finite group acting on R̃; it acts R-linearly on a, and the dual action on a∗ stabilizes
R and 1. We assume that kγ (α) = kα for all α ∈ R, γ ∈ 0. Then 0 acts on H(R̃, k)
by the algebra automorphisms satisfying

γ (ξNw)= γ (ξ)Nγwγ−1, γ ∈ 0, ξ ∈ a∗, w ∈W.

Let \ : 02
→ C× be a 2-cocycle and let C[0, \] be the twisted group algebra. We

recall that it has a standard basis {Nγ : γ ∈ 0} and multiplication rules

Nγ Nγ ′ = \(γ, γ ′)Nγ γ ′, γ, γ ′ ∈ 0.

We can endow the vector space H(R̃, k)⊗C[0, \] with the algebra structure such
that

• H(R̃, k) and C[0, \] are embedded as subalgebras,

• Nγ hN−1
γ = γ (h) for γ ∈ 0, h ∈ H(R̃, k).

We denote this algebra by H(R̃, k)o C[0, \] and call it a twisted graded Hecke
algebra. If \ is trivial, then it reduces to the crossed product H(R̃, k)o0. All our
previous notions for graded Hecke algebras admit natural generalizations to this
setting.
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Notice that W0 is a group with W as normal subgroup and 0 as quotient. The
2-cocycle \ can be lifted to (W0)2→ 02

→ (C×)2, and that yields a twisted group
algebra C[W0, \] in H(R̃, k)oC[0, \]. It is worthwhile to note the case k = 0:

H(R̃, 0)oC[0, \] =O(t)oC[W0, \]). (1.34)

We consider the restriction map

r :Mod(H(R̃, k)oC[0, \])→Mod(C[W0, \]). (1.35)

Every C[W0, \]-module can be extended in a unique way to an O(t)oC[W0, \])-
module on which O(t) acts via evaluation at 0 ∈ t, so the right-hand side of (1.35)
can be considered as a subcategory of Mod(H(R̃, 0)oC[0, \]).

Proposition 1.36. Let k : R/W0→R be a parameter function and let \ :02
→C×

be a 2-cocycle. The map (1.35) induces a bijection

rZ : Z Irr0(H(R̃, k)oC[0, \])→ RZ(C[W0, \]).

Proof. Let 0̃ → 0 be a finite central extension such that \ becomes trivial in
H 2(0̃,C×). Such a group always exists: one can take the Schur extension from
[Curtis and Reiner 1962, Theorem 53.7]. Then there exists a central idempotent
p\ ∈ C[ker(0̃→ 0)] such that

C[0, \] ∼= p\C[0̃]. (1.37)

The map rZ becomes

Z Irr0(H(R̃, k)o p\C[0̃])→ RZ(p\C[W 0̃]). (1.38)

Since p\C[0̃] is a direct summand of C[0̃], (1.38) is just a part of

rZ : Z Irr0(H(R̃, k)o 0̃)→ RZ(W o 0̃).

Hence it suffices to prove the proposition when \ is trivial, which we assume from
now on. By [Solleveld 2010, Theorem 6.5(c)],

rC : C Irr0(H(R̃, k)o0)→ RC(W0) (1.39)

is a C-linear bijection. So at least

rZ : Z Irr0(H(R̃, k)o0)→ RZ(W0) (1.40)

is injective and has image of finite index in RZ(W0).
Given (π, V ) ∈ Irr(H(R̃, k)), let 0π be the stabilizer in 0 of the isomorphism

class of π . For every γ ∈ 0π we can find I γ ∈ AutC(V ) such that

I γ ◦π(Nγ hN−1
γ )= π(h) ◦ I γ for all h ∈ H(R̃, k).
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By Schur’s lemma there exists a 2-cocycle \π : 02
π → C× such that

I γ γ
′

= \π (γ, γ
′)I γ I γ

′

for all γ, γ ′ ∈ 0.

Let (τ,M) ∈ Irr(C[0π , \π ]). Then M⊗V becomes an irreducible Ho0π -module.
Clifford theory (see, e.g., [Ram and Ramagge 2003, Appendix], [Curtis and Reiner
1962, §51] or [Solleveld 2012b, Appendix]) tells us that indHo0

Ho0π (M ⊗ V ) is an
irreducible Ho0-module. Moreover, this construction provides a bijection

Irr(Ho0)→ {(π,M) : π ∈ Irr(H)/0,M ∈ Irr(C[0π , \π ])}.

We note that
r
(
indHo0

Ho0π(M ⊗ V )
)
= indWo0

Wo0π(M ⊗ r(V )). (1.41)

Similarly, Clifford theory provides a bijection

Irr(W o0)→ {(τ, N ) : τ ∈ Irr(W )/0, N ∈ Irr(C[0τ , \τ ])}.

Since W is a Weyl group, the 2-cocycle \τ is always trivial [Aubert et al. 2017c,
Proposition 4.3]. With (1.41) it follows that \π is also trivial for all π ∈ Irr(H(R̃, k)).

Consider any indWo0
Wo0τ(N⊗Vτ )∈ Irr(W o0). Theorem 1.31 guarantees the exis-

tence of unique mπ ∈ Z such that Vτ =
∑

(π,V )∈Irr0(H)
mπ r(V ). By the uniqueness,

0π ⊃ 0τ whenever mπ 6= 0. Hence N ⊗ V is a well-defined H o0π -module (it
may be reducible though), and

indWo0
Wo0τ(N ⊗ Vτ )= indWo0

Wo0τ
(
N ⊗

∑
(π,V )∈Irr0(H)

mπ r(V )
)

= r
(∑

(π,V )∈Irr0(H)
mπ indHo0

Ho0π(N ⊗ V )
)
.

This proves that (1.40) is also surjective. �

1C. Affine Hecke algebras. Let H be an affine Hecke algebra with positive pa-
rameters q. We compare its Grothendieck group of finite length modules RZ(H)
with the analogous group for the parameters q = 1. By some of the main results
of [Solleveld 2012a], the Q-vector space Q⊗Z RZ(H) is canonically isomorphic
to its analogue for q = 1. We show that this is already an isomorphism for RZ(H),
without tensoring by Q. This follows from the results of the previous paragraph,
in combination with the standard reduction from affine Hecke algebras to graded
Hecke algebras [Lusztig 1989].

As before, let R= (X, R, Y, R∨,1) be a based root datum. We have the affine
Weyl group W aff

= ZR o W and the extended (affine) Weyl group W e
= X o W.

Both can be considered as groups of affine transformations of a∗. We denote the
translation corresponding to x ∈ X by tx . As is well-known, W aff is a Coxeter
group, and the basis 1 of R gives rise to a set Saff of simple (affine) reflections.
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More explicitly, let 1∨M be the set of maximal elements of R∨, with respect to the
dominance ordering coming from 1. Then

Saff
= S1 ∪ {tαsα : α∨ ∈1∨M}.

The length function ` of the Coxeter system (W aff, Saff) extends naturally to W e.
The elements of length zero form a subgroup �⊂W e and W e

=W aff o�.
A complex parameter function for R is a map q : Saff

→C× such that q(s)=q(s ′)
if s and s ′ are conjugate in W e. This extends naturally to a map q :W e

→C× which
is 1 on � and satisfies

q(ww′)= q(w)q(w′) if `(ww′)= `(w)+ `(w′).

Equivalently (see [Lusztig 1989, §3.1]), one can define q as a W-invariant function

q : R ∪ {2α : α∨ ∈ 2Y } → C×. (1.42)

We speak of equal parameters if q(s) = q(s ′) for all s, s ′ ∈ Saff and of positive
parameters if q(s) ∈ R>0 for all s ∈ Saff. We fix a square root q1/2

: Saff
→ C×.

The affine Hecke algebra H=H(R, q) is the unique associative complex algebra
with basis {Nw : w ∈W e

} and multiplication rules

NwNw′ = Nww′ if `(ww′)= `(w)+ `(w′),

(Ns − q(s)1/2)(Ns + q(s)−1/2)= 0 if s ∈ Saff.
(1.43)

In the literature one also finds this algebra defined in terms of the elements q(s)1/2 Ns ,
in which case the multiplication can be described without square roots. This ex-
plains why q1/2 does not appear in the notation H(R, q). For q = 1, (1.43) just
reflects the defining relations of W e, so H(R, 1)= C[W e

].
The set of dominant elements in X is

X+ = {x ∈ X : 〈x, α∨〉 ≥ 0 ∀α ∈1}.

The subset {Ntx : x ∈ X+}⊂H(R, q) is closed under multiplication, and isomorphic
to X+ as a semigroup. For any x ∈ X we put

θx = Ntx1
N−1

tx2
, where x1, x2 ∈ X+ and x = x1− x2.

This does not depend on the choice of x1 and x2, so θx ∈H(R, q)× is well-defined.
The Bernstein presentation of H(R, q) [Lusztig 1989, §3] says that:

• {θx : x ∈ X} forms a C-basis of a subalgebra of H(R, q) isomorphic to
C[X ] ∼=O(T ), which we identify with O(T ).

• H(W, q) := C{Nw : w ∈ W } is a finite-dimensional subalgebra of H(R, q)
(known as the Iwahori–Hecke algebra of W ).
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• The multiplication map O(T )⊗H(W, q)→H(R, q) is a C-linear bijection.

• There are explicit cross relations between H(W, q) and O(T ), deformations
of the standard action of W on O(T ).

To define parabolic subalgebras of affine Hecke algebras, we associate some objects
to any P ⊂1:

X P = X/(X ∩ (P∨)⊥), X P
= X/(X ∩QP),

YP = Y ∩QP∨, Y P
= Y ∩ P⊥,

TP = HomZ(X P ,C×), T P
= HomZ(X P,C×),

RP = (X P , RP , YP , R∨P , P), RP
= (X, RP , Y, R∨P , P),

HP =H(RP , qP), HP
=H(RP, q P).

Here qP and q P are derived from q via (1.42). Both HP and HP are called para-
bolic subalgebras of H. One can regard HP as a “semisimple” quotient of HP.

Any t ∈ T P and any u ∈ T P
∩ TP give rise to algebra automorphisms

ψu :HP →HP , θxP Nw 7→ u(xP)θxP Nw,

ψt :HP
→HP , θx Nw 7→ t (x)θx Nw.

(1.44)

Let 0 be a finite group acting on R, i.e., it acts Z-linearly on X and preserves R
and 1. We also assume that 0 acts on T by affine transformations, whose linear
part comes from the action on X . Thus 0 acts on O(T )∼= C[X ] by

γ (θx)= zγ (x)θγ x (1.45)

for some zγ ∈ T . Since this is a group action, we must have zγ ∈ T W.
We suppose throughout that q1/2 is 0-invariant, so that γ ∈ 0 acts on H(R, q)

by the algebra automorphism∑
w∈W, x∈X

cx,wθx Nw 7→
∑

w∈W, x∈X

cx,wzγ (x)θγ (x)Nγwγ−1 . (1.46)

We can build the crossed product algebra

H(R, q)o0. (1.47)

In [Solleveld 2012a] we considered a slightly less general action of 0 on H(R, q),
where the elements zγ ∈ T W from (1.45) were all equal to 1. But the relevant
results from [Solleveld 2012a] do not rely on 0 fixing the unit element of T , so
they are also valid for the actions as in (1.46). In this paper we will tacitly use some
results from [Solleveld 2012a] in the generality of (1.46). We note that nontrivial
zγ ∈ T W are sometimes needed to describe Hecke algebras coming from p-adic
groups, for example [Roche 2002, §4].
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We can also endow the group 0 with a 2-cocycle \ : 02
→ C×. Then the vector

space H(R, q)⊗C[0, \] obtains a multiplication such that H(R, q) and C[0, \]

are subalgebras and

Nγ hN−1
γ = γ (h) for all γ ∈ 0, h ∈H(R, q).

We denote this by H(R, q)o C[0, \] and call it a twisted affine Hecke algebra.
Such twists seem necessary to describe algebras appearing in the representation
theory of nonsplit p-adic groups; see, e.g., [Aubert et al. 2017b, Example 5.5]. For
reference we record the case q = 1:

H(R, 1)oC[0, \] =O(T )oC[W0, \]. (1.48)

The representation theory of (twisted) affine Hecke algebras is closely related to
that of (twisted) graded Hecke algebras, as first shown by Lusztig [1989]. Since
H(R, q) is of finite rank as a module over its commutative subalgebra O(T ), all
irreducible H(R, q)-modules have finite dimension. The set of O(T )-weights of
an H(R, q)-module V is denoted by Wt(V ).

The vector space t= a⊕ ia can now be interpreted as the Lie algebra of the com-
plex torus T = HomZ(X,C×). The latter has a polar decomposition T = Trs× Tun,
where Trs =HomZ(X,R>0) and Tun is the unique maximal compact subgroup of T .
The polar decomposition of an element t ∈ T is written as t = |t | (t |t |−1).

We write T−= exp(a−)⊂ Trs and T−−= exp(a−−)⊂ Trs. We say that a module
V for H(R, q) (or for H(R, q)oC[0, \]) is tempered if |Wt(V )| ⊂ T−, and that
it is discrete series if |Wt(V )| ⊂ T−−. (The latter is only possible if R spans a, for
otherwise a−− and T−− are empty.)

By the Bernstein presentation, the centre of H(R, q)oC[0, \] contains O(T )W0.
For any W0-invariant subset U ⊂ T , let

Mod f,U (H(R, q)oC[0, \])

be the category of finite-dimensional H(R, q)oC[0, \]-modules whose O(T )W0-
weights all lie in U/W0. We denote the Grothendieck group of this category by
RZ,U (H(R, q)oC[0, \]).

The centre of H(R̃, k)oC[0, \] contains O(t)W0. For any W0-invariant subset
V ⊂ t we define Mod f,V (H(R̃, k)oC[0, \]) analogously.

Fix u ∈ Tun. To R and u we can associate some new objects. First we define the
root system

Ru = {α ∈ R : sα(u)= u},

and we let 1u be the unique basis of Ru contained in R+. Then

(W0)u =W (Ru)o0′u, 0′u = {w ∈W0 : w(u)= u, w(1u)=1u}.
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Now we can define the based root data

Ru = (X, Ru, Y, R∨u ,1u) and R̃u = (a
∗, Ru, a, R∨u ,1u).

We define a parameter function ku : Ru→ R for R̃u by

2ku,α = log(q(sα))+α(u) log(q(tαsα)).

Let \u : (0
′
u)

2
→ C× be the restriction to \. With a slight variation on Lusztig’s

reduction theorems [Lusztig 1989, §8–9], one can prove:

Theorem 1.49. Let q :W e
→R>0 be a positive parameter function. The categories

Mod f,W0uTrs(H(R, q)oC[0, \]) and Mod f,a(H(R̃u, ku)oC[0′u, \u])

are equivalent. The equivalence respects parabolic induction, temperedness and
discrete series.

Proof. Let 0̃ and the central idempotent p\ be as in (1.38). Then

H(R, q)oC[0, \] = p\(H(R, q)o 0̃),

H(R̃u, ku)oC[0′u, \u] = p\(H(R̃u, ku)o 0̃′u).
(1.50)

By [Solleveld 2012a, Corollary 2.15] the theorem holds for H(R, q) o 0̃ and
H(R̃u, ku)o 0̃′u . The claimed properties of this equivalence were checked in detail
in [Aubert et al. 2016, §2.1].

This is based on a comparison of localizations of these algebras, as in [Lusztig
1989]. The comparison maps [Solleveld 2012a, Theorems 2.1.2 and 2.1.4] are the
identity on C[0̃′u ∩ 0̃], so they preserve p\. Hence we can restrict the result from
[Solleveld 2012a] to the direct summands (1.50). �

From Theorem 1.49 and (1.35) (and (1.34) and (1.48) for the bottom line) we
construct a diagram

Mod f,W0uTrs(H(R, q)oC[0, \])
∼
//

ru
��

Mod f,a(H(R̃u, ku)oC[0′u, \u])

r
��

Mod f,W0u(H(R, 1)oC[0, \]) Mod f,0(H(R̃u, 0)oC[0′u, \u])
∼

oo

Mod f,W0u(O(T )oC[W0, \]) Mod f,0(O(t)oC[(W0)u, \u])
∼

oo

where ru is the unique map that makes the diagram commutative. Using the tech-
nique in the proof of Theorem 1.49, we can immediately extend all relevant results
in [Solleveld 2012a] from H(R, q)o 0̃ to twisted affine Hecke algebras. In view
of this, we will freely use results from [Solleveld 2012a] in that generality.
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As shown in [Solleveld 2012a, §2.3], there exists a unique system of Z-linear
maps

ζ∨ : RZ(H(R, q)oC[0, \])→ RZ(H(R, 1)oC[0, \]) (1.51)

(for all possible R, q, 0) such that

• ζ∨(π)= ru(π) for tempered representations in Mod f,W0uTrs(H(R, q)oC[0, \]),

• ζ∨ commutes with parabolic induction,

• ζ∨ respects the formation of standard modules for the Langlands classification,
in the sense of [Solleveld 2012a, Corollary 2.2.5].

Theorem 1.52. The map (1.51) is bijective for every positive parameter function q.

Proof. Proposition 1.36 and Theorem 1.49 imply that (1.51) gives a bijection

RZ,temp,W0uTrs(H(R, q)oC[0, \])→ RZ,temp,W0u(H(R, 1)oC[0, \]), (1.53)

where the subscripts “temp” indicate that we formed these Grothendieck groups by
starting with tempered modules only. Any tempered O(T )oC[W0, \]-module only
has O(T )-weights in Tun, so on the right-hand side of (1.53) we may just as well
replace W0u by W0uTrs. Thus (1.51) restricts to a bijection between subgroups
generated by tempered modules on both sides.

In [Solleveld 2012a, Corollary 2.3.2] it was shown that (1.51) becomes a Q-
linear bijection upon tensoring both sides with Q. The second half of the proof
of that result (see [Solleveld 2012a, §3.4]) extends the statement from the tem-
pered to the general case. It says essentially that whatever happens in the space
Irr(H(R, q)oC[0, \]) can be detected and understood already by looking at tem-
pered representations. From that, the bijectivity in the tempered case and the mul-
tiplicity one property of the Langlands classification (every standard module has
a unique irreducible quotient, appearing with multiplicity one [Solleveld 2012a,
Theorem 2.2.4]), we obtain the bijectivity of (1.51) in general. �

2. Topological K-theory

2A. The C∗-completion of an affine Hecke algebra. In this paragraph we recall
the structure of C∗-algebras associated to affine Hecke algebras. These deep results
mainly stem from [Opdam 2004; Delorme and Opdam 2008; 2011].

Recall that q is a positive parameter function for R. We define a *-operation
and a trace on H(R, q) by(∑

w∈W e cwNw
)∗
=
∑

w∈W e cwNw−1, τ
(∑

w∈W e cwNw
)
= ce.

Since q(sα) > 0, * preserves the relations (1.43) and defines an anti-involution
of H(R, q). The set {Nw : w ∈ W e

} is an orthonormal basis of H(R, q) for the
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inner product
〈h1, h2〉 = τ(h∗1h2).

This gives H(R, q) the structure of a Hilbert algebra. The Hilbert space completion
L2(R) of H(R, q) is a module over H(R, q), via left multiplication. Moreover,
every h ∈H(R, q) acts as a bounded linear operator [Opdam 2004, Lemma 2.3].
The reduced C∗-algebra of H(R, q) [Opdam 2004, §2.4], denoted by C∗r (R, q),
is defined as the closure of H(R, q) in the algebra of bounded linear operators
on L2(R).

As in (1.47), we can extend this to a C∗-algebra C∗r (R, q)o0, provided that
q is 0-invariant. We will not bother about twisted group algebras C[0, \] in this
section, for with the technique from (1.50) it is easy to generalize our results to
that setting, and in the context of C∗-algebras, crossed products with groups look
much more natural.

Let us recall some background about C∗r (R, q)o0, mainly from [Opdam 2004;
Solleveld 2012a]. It follows from [Delorme and Opdam 2008, Corollary 5.7] that it
is a finite type I C∗-algebra and that Irr(C∗r (R, q)) is precisely the tempered part of
Irr(H(R, q)). The structure of C∗r (R, q)o0 is described in terms of parabolically
induced representations. As induction data we use triples (P, δ, t), where

• P ⊂1,

• δ is an irreducible discrete series representation of HP ,

• t ∈ T P.

We regard two triples (P, δ, t) and (P ′, δ′, t ′) as equivalent if P = P ′, t = t ′ and
δ ∼= δ′. Notice that HP comes from a semisimple root datum, so it can have discrete
series representations. For every t ∈ T P there exists a surjection φt :HP

→HP ,
which combines the projection X → XP with evaluation at t . To such a triple
(P, δ, t) we associate the Ho0-representation

π0(P, δ, t)= indHo0
HP (δ ◦φt).

(When 0 = 1, we often suppress it from these and similar notations.) For any
t ∈ T P

un = T P
∩ Tun these representations extend continuously to the respective

C∗-completions of the involved algebras. Let 4un be the set of triples (P, δ, t)
as above, such that moreover t ∈ Tun. Considering P and δ as discrete variables,
we regard 4un as a disjoint union of finitely many compact real tori (of different
dimensions).

Let V04 be the vector bundle over 4un whose fibre at (P, δ, t) is the vector space
underlying π0(P, δ, t). That vector space is independent of t , so the vector bundle
is trivial. Let End(V04) be the algebra bundle with fibres EndC(π

0(P, δ, t)). Every
element of C∗r (R, q)o0 naturally defines a continuous section of End(V04).
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There exists a finite groupoid G which acts on End(V04). It is made from elements
of W o0 and of KP := TP ∩ T P. More precisely, its base space is the power set
of 1, and for P, Q ⊆1 the collection of arrows from P to Q is

GPQ = {(g, u) : g ∈ 0n W, u ∈ KP , g(P)= Q}. (2.1)

Whenever it is defined, the multiplication in G is

(g′, u′) · (g, u)= (g′g, g−1(u′)u).

In particular, writing W0(P, P)= {w ∈W0 : w(P)= P}, we have the group

GPP =W0(P, P)o KP . (2.2)

Usually we will write elements of G simply as gu. For γ ∈0W with γ (P)= Q⊂1,
there are algebra isomorphisms

ψγ :HP →HQ, θxP Nw 7→ θγ (xP )Nγwγ−1,

ψγ :HP
→HQ, θx Nw 7→ θγ x Nγwγ−1 .

(2.3)

The groupoid G acts from the left on 4un by

(g, u) · (P, δ, t) := (g(P), δ ◦ψ−1
u ◦ψ

−1
g , g(ut)), (2.4)

the action being defined if and only if g(P) ⊂ 1. Suppose that g(P) = Q ⊂ 1
and δ′ ∼= δ ◦ψ−1

u ◦ψ
−1
g . By [Opdam 2004, Theorem 4.33] and [Solleveld 2012a,

Theorem 3.1.5], there exists an intertwining operator

π0(gu, P, δ, t) ∈ HomH(R,q)o0
(
π0(P, δ, t), π0(Q, δ′, g(ut))

)
(2.5)

which depends algebraically on t ∈ T P
un. Then the action of G on the continuous

sections C(4un;End(V04)) is given by

(g· f )(ξ)=π0(g, g−1ξ) f (g−1ξ)π0(g, g−1ξ)−1, g∈GPQ, ξ=(Q, δ′, t ′). (2.6)

Theorem 2.7 [Delorme and Opdam 2008, Corollary 5.7; Solleveld 2012a, Theo-
rem 3.2.2]. There exists a canonical isomorphism of C∗-algebras

C∗r (R, q)o0 ∼
−→ C(4un;End(V04))

G .

For q = 1 this simplifies to the well-known isomorphism

C∗r (R, 1)o0 = C(Tun)o W0
∼
−→ C(Tun;EndC(C[W0]))W0. (2.8)

Let GP,δ be the setwise stabilizer of (P, δ, T P
un) in the group GPP . Let (P, δ)/G

be a set of representatives for the action of G on pairs (P, δ) obtained from (2.4).
Theorem 2.7 can be rephrased as an isomorphism

C∗r (R, q)o0 ∼
−→

⊕
(P,δ)/G

C
(
T P

un;EndC(π
0(P, δ, t))

)GP,δ
. (2.9)
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Let us discuss the representation theory of C∗r (R, q)o0 (i.e., the tempered uni-
tary representations of H(R, q)o 0)) in more detail. Our approach, following
Harish-Chandra and Opdam, starts with the discrete series of a parabolic sub-
algebra H(RP , qP) = HP . It is known from [Opdam 2004, Lemma 3.31] that
the central character of any (irreducible) discrete series representation δ of HP (a
WP -orbit in TP ) has a very specific property: it must consist of residual points
in TP , with respect to (RP , qP).

For t ∈ TP we write

Rz
P(t)= {α ∈ RP : α(t) ∈ {1,−1}},

R p
P(t)=

{
α ∈ RP : α(t) ∈ {q(sα)1/2q(sαtα)1/2,−q(sα)1/2q(sαtα)−1/2

}
}
.

(We remark that there is only one irreducible root datum for which q(sαtα) need
not be equal to q(sα), namely with R = Bn .) By definition t ∈ TP is residual if

|R p
P(t)| − |R

z
P(t)| = dimC(TP)= |P|.

Residuality depends in a subtle way on the parameters q . For instance, when q = 1
and X P 6= 0, there are no residual points. Residual points have been classified
in [Heckman and Opdam 1997]. It turns out that all the coordinates of a residual
point t are monomials in the parameters q(s)±1/2, s ∈ Saff. Thus we can write
t = t (q1/2).

Let Q(R) be the space of all maps q : Saff
→ R>0 such that q(s) = q(s ′) if s

and s ′ are conjugate in X o W0. Given t = t (q1/2), there is a Zariski-open subset
of the real variety Q(R) on which t (q1/2) defines a residual point. For this reason
we call the map

Q(R)→ T : q 7→ t (q1/2)

a generic residual point. We say that a parameter function q ∈Q(R) is generic if
all generic residual points for parabolic subalgebras HP of H are actually residual
points for that q .

When there is only one free parameter in q, for instance when R is of type
A, D or E , then every positive parameter function q 6= 1 is generic. On the other
hand, when R contains root systems of type B, C , F or G, then usually no equal
parameter function (q(s)= q(s ′) for all s, s ′ ∈ Saff) is generic.

The discrete series representations of H(RP , qP) were classified in [Opdam and
Solleveld 2010], at least when R is irreducible and qP generic. Later the classifi-
cation was extended to the nongeneric cases, along with an actual construction of
the representations, in [Ciubotaru and Opdam 2017]. Using these papers, it is in
principle always possible to find a set of representatives for the action of G on the
pairs (P, δ) as in (2.9).
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Now we describe a single direct summand C
(
T P

un;EndC(π
0(P, δ, t))

)GP,δ of
(2.9) more explicitly. Fix t ∈ T P

un and let Gξ be the isotropy group of ξ = (P, δ, t)
in G. The intertwining operators π0(g, ξ), g ∈ Gξ make π0(ξ) into a projective
Gξ -representation. Decompose it as

π0(ξ)=
⊕

ρ Cmρ ⊗ Vρ,

where (ρ, Vρ) runs through the set of (equivalence classes of) irreducible projective
Gξ -representations. From (2.6) we see that the evaluation at t of any element of
C
(
T P

un;EndC(π
0(P, δ, t))

)GP,δ lies in

EndGξ (π
0(ξ))∼=

⊕
ρ EndC(C

mρ ).

The action of Gξ on π0(P, δ, t) can be analyzed further with the theory of R-groups
from [Delorme and Opdam 2011]. In that paper there is no group 0, but with
the intertwining operators as in [Solleveld 2012a, Theorem 3.1.5] the extension
to the case with 0 is straightforward. By [Delorme and Opdam 2011, Proposi-
tions 4.5 and 4.7] there exists a root system Rξ on which Gξ acts, and an R-group
Rξ = StabGξ (Rξ ∩ R+P ), such that

Gξ =W (Rξ )oRξ . (2.10)

By [Delorme and Opdam 2011, Theorem 4.3(iv)] the intertwining operator π0(g, ξ)
is a scalar multiple of the identity if g ∈W (Rξ ). Hence,

EndGξ (π
0(ξ))= EndRξ

(π0(ξ)).

Moreover, the operators

π0(r, ξ) ∈ EndC(π
0(ξ)), r ∈Rξ ,

are linearly independent by [Delorme and Opdam 2011, Theorem 5.4]. To clas-
sify all irreducible representations of C

(
T P

un;EndC(π
0(P, δ, t))

)GP,δ, it remains
to determine (2.10) and to study π0(ξ) as a projective Rξ -representation, for all
ξ = (P, δ, t). In all cases that we will encounter in this paper, Rξ is abelian and
π0(ξ) is actually a linear Rξ -representation. Together with Theorem 1.52 this
enables us to determine Irr(C∗r (R, q)o0) in those cases.

2B. K-theory and equivariant cohomology. The computation of the topological
K-theory of C∗r (R, q)o 0 is the main goal of this paper. It follows from (2.9),
especially the compactness of T P

un , that the abelian group

K∗(C∗r (R, q)o0)= K0(C∗r (R, q)o0)⊕ K1(C∗r (R, q)o0)

is finitely generated; see [Solleveld 2012a, Lemma 5.1.3] and its proof. By [Solleveld
2012a, Theorem 5.1.4], which relies on the study of the representation theory and
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of parameter deformations of affine Hecke algebras in [Solleveld 2012a], the group
Q⊗Z K∗(C∗r (R, q)o0) does not depend on the parameters q . Combining this with
the conclusions from Section 1C, we will deduce that also K∗(C∗r (R, q)o0) itself
is independent of q.

Next we use equivariant cohomology and the equivariant Chern character to
express K∗(C∗r (R, q)o0) in terms of the cohomology of a sheaf on a CW-complex.
This is inspired by the equivariant Chern characters with values in Bredon coho-
mology developed in [Słomińska 1976; Lück and Oliver 2001]. Our version also
applies to certain noncommutative algebras, and provides more information about
the torsion elements than [Słomińska 1976; Lück and Oliver 2001].

In [Solleveld 2012a, Theorem 4.4.2] an injective homomorphism of C∗-algebras

ζ0 : C∗r (R, 1)o0→ C∗r (R, q)o0

was constructed, with the property

π ◦ ζ0 ∼= ζ
∨(π) for all π ∈Mod f (C∗r (R, q)o0).

Theorem 2.11. The map K∗(ζ0) : K∗(C∗r (R, 1)o0)→ K∗(C∗r (R, q)o0) is an
isomorphism.

Proof. Let u ∈ Tun. Then (1.53) says that ζ∨ provides a bijection between the
Grothendieck group of finite length C∗r (R, q)o0-modules with Z(H(R, q)o0)-
character in W0uTrs and the analogous group for C∗r (X o W )o0. For tempered
modules ζ∨ agrees with the map ζ ∗ from [Solleveld 2012a, §2.3].

These C∗-completions have the same irreducible representations as the respec-
tive Schwartz completions of these algebras (see [Opdam 2004, §6] or [Solleveld
2012a, §3.2]), namely the irreducible tempered representations of the underlying
affine Hecke algebras. That follows from the comparison of Theorem 2.7 with its
analogue for Schwartz completions [Solleveld 2012a, Theorem 3.2.2]. With these
translation steps we see that part (c) of [Solleveld 2012a, Lemma 5.1.5] holds.
Then [Solleveld 2012a, Lemma 5.1.5] tells us that also its part (a) holds, which is
the statement of the theorem. �

When we want to compute K∗(C∗r (R, q)o 0), we can use Theorem 2.11 to
replace q by 1, then apply it another time to replace 1 by any positive parameter
function q ′ we like. We will do the actual computation either when q = 1 or when
q is generic among all possible parameter functions.

In Section 3 we will encounter many root data R which are a product of root
data R1 and R2. If 0i is a group acting on Ri in the usual way, then 0 := 01×02

acts on R. In this case C∗r (R, q)o0 is defined as an algebra of bounded linear
operators on

L2(R)⊗C[0] = L2(R1)⊗C[01]⊗ L2(R2)⊗C[02].
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It is the closure of the algebraic tensor product of the algebras C∗r (R1, q1)o 01

and C∗r (R2, q2)o02 in B(L2(R)⊗C[0]), which means that

C∗r (R, q)o0 = C∗r (R1, q1)o01⊗min C∗r (R2, q2)o02, (2.12)

the minimal tensor product of C∗-algebras. These C∗-algebras are separable and
of type I, so the paper [Schochet 1982] applies to them. The Künneth theorem
[Schochet 1982] says that there exists a natural Z/2Z-graded short exact sequence

0→ K∗(C∗r (R1, q1)o01)⊗Z K∗(C∗r (R2, q2)o02)→ K∗(C∗r (R, q)o0)

→ TorZ

(
K∗(C∗r (R1, q1)o01), K∗(C∗r (R2, q2)o02)

)
→ 0. (2.13)

In particular, this becomes an isomorphism

K∗(C∗r (R1, q1)o01)⊗Z K∗(C∗r (R2, q2)o02)
∼
−→ K∗(C∗r (R, q)o0)

if K∗(C∗r (Ri , qi )o0i ) has no torsion for i = 1, 2. With (2.13) we can often reduce
the computation of K-groups to the case where R is irreducible.

By (2.8) and the Green–Julg Theorem [Julg 1981],

K∗(C∗r (R, 1)o0)= K∗(C(Tun)o W0)∼= K W0
∗
(C(Tun)).

Moreover, by the equivariant Serre–Swan theorem [Phillips 1987, Theorem 2.3.1],

K W0
∗
(C(Tun))∼= K ∗W0(Tun). (2.14)

Together with Theorem 2.7 we get

K∗(C∗r (R, q)o0)∼= K ∗W0(Tun). (2.15)

The right-hand side in (2.14) and (2.15) is just Atiyah’s W0-equivariant K-theory
of the compact Hausdorff space Tun. Let Tun//W0 be the extended quotient (see
also Section 2C). We recall from [Baum and Connes 1988, Theorem 1.19] that the
equivariant Chern character gives a natural isomorphism

K ∗W0(Tun)⊗Z C
∼
−→ H∗(Tun//W0;C). (2.16)

(Here H∗ could be many cohomology theories; in this paper we stick to Čech
cohomology.) With (2.14) we find a canonical isomorphism

K∗(C∗r (R, q)o0)⊗Z C∼= H∗(Tun//W0;C). (2.17)

In (2.16) it is essential to use complex coefficients, so this does not tell us much
about the torsion in K∗(C∗r (R, q)o0). To study the torsion elements better, we will
compare the topological K-theory of relevant C∗-algebras with a suitable version
of equivariant cohomology from [Bredon 1967]. Let 6 be a countable, locally
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finite and finite dimensional G-CW-complex, where G is a finite group. Assume
that all cells are oriented and that the action of G preserves these orientations.

We define a category K whose objects are the finite subcomplexes of 6. The
morphisms from K to K ′ are the maps K → K ′ : x → gx for g ∈ G such that
gK ⊂ K ′. Now a local coefficient system on 6 is a covariant functor from K to
the category of abelian groups, and the group Cq(6;L) of q-cochains is the set
of all functions f on the q-cells of 6 with the property that f (τ ) ∈ L(τ ) for all τ .
Furthermore, we define a coboundary map d : Cq(6;L)→ Cq+1(6;L) by

(d f )(σ )=
∑
τ∈6(q)

[τ : σ ]L(τ → σ) f (τ ), (2.18)

where the sum runs over the set 6(q) of all q-cells and the incidence number [τ : σ ]
is the degree of the attaching map from ∂σ (the boundary of σ in the standard
topological sense) to τ/∂τ . The group G acts naturally on this complex by cochain
maps so, for any K ⊂6, (C∗(K ;L)G, d) is a differential complex. We define the
equivariant cohomology of K with coefficients in L as

Hq
G(K ;L) := Hq(C∗(K ;L)G, d). (2.19)

More generally, for K ′ ⊂ K , C∗(K , K ′;L) is the kernel of the restriction map
C∗(K ;L)→ C∗(K ′;L) and

Hq
G(K , K ′;L)= Hq(C∗(K , K ′;L)G, d). (2.20)

By construction there exists a local coefficient system LG (more or less consisting
of the G-invariant elements of L) on the CW-complex 6/G such that the differen-
tial complexes (C∗(K , K ′;L)G, d) and (C∗(K/G, K ′/G;LG), d) are isomorphic.
Notice that LG defines a sheaf over 6/G (with the cells as cover), such that

Hq
G(K , K ′;L)∼= Ȟq(K/G, K ′/G;LG). (2.21)

Let 6 p be the p-skeleton of 6. We capture all the above things in a spectral
sequence (E p,q

r )r≥1, degenerating already for r ≥ 2, as follows:

E p,q
1 = H p+q

G (6 p, 6 p−1
;L)=

{
C p(6;L)G if q = 0,
0 if q > 0,

(2.22)

E p,q
2 =

{
H p

G(6;L) if q = 0,
0 if q > 0.

(2.23)

The differential d E
1 is the composition

E p,q
1 → C p+q(6 p

;L)G→ E p+1,q
1 (2.24)

of the maps induced by the inclusion (6 p,∅)→ (6 p, 6 p−1) and the coboundary d.
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We are mostly interested in this cohomology theory for a particular coefficient
system, which we now define. Consider the Fréchet algebra

B = C(6;MN (C))= MN (C(6)). (2.25)

(It is a C∗-algebra if 6 is compact.) We assume that we have ug ∈ B× such that

gb(x)= ug(x)b(g−1x)u−1
g (x) (2.26)

defines an action of G on B. Then the invariants BG constitute a Fréchet subalgebra
of B. Notice that by (2.6) and (2.9) the C∗-completion of an affine Hecke algebra
is a direct sum of algebras of this form.

To associate a local coefficient system to BG. we first assume that K is con-
nected. In that case we let

GK := {g ∈ G : gx = x ∀x ∈ K } (2.27)

be the isotropy group of K and we define Lu(K ) to be the free abelian group on
the (equivalence classes of) irreducible projective GK -representations contained in
(πx ,CN ), where πx(g) = ug(x) for g ∈ GK , x ∈ K . By the continuity of the ug

we get the same group for any x ∈ K . If K is not connected, then we let {Ki }i be
its connected components, and we define

Lu(K )=
∏

i Lu(Ki ). (2.28)

Suppose that gK ⊂ K ′ and that ρ is a projective GK -representation. Then we
define a projective GK ′-representation by

Lu(g : K → K ′)ρ(g′)= ρ(g−1g′g), g′ ∈ GK ′ . (2.29)

If h ∈ G gives the same map from K to K ′ as g then h−1g ∈ GK and

Lu(h : K → K ′)ρ(g′)= ρ(h−1g′h)= ρ(h−1g)ρ(g−1g′g)ρ(g−1h), (2.30)

so Lu(h : K → K ′)ρ is isomorphic to Lu(g : K → K ′)ρ as a projective represen-
tation. This makes Lu into a functor. We can regard Lu as a sheaf on 6, where a
section s is continuous on U if and only if s(K )|G K ′

= s(K ′) for every inclusion
K ⊂ K ′ ⊂U .

Example 2.31. Suppose that ug(x)= 1 for all x ∈6, g ∈ G. Then Lu and LG
u are

the constant sheaves Z over 6 and 6/G, respectively, and

H∗G(6;Lu)∼= Ȟ∗(6/G;Z) (2.32)

is the ordinary cellular cohomology of 6/G. Furthermore,

K∗(BG)∼= K∗(C(6/G;MN (C)))= K∗(C(6/G)),

which is isomorphic to Ȟ∗(6/G;Z) modulo torsion.
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It turns out that a relation like (2.16), between K∗(BG) and the Čech cohomol-
ogy H∗(6/G;LG

u ), is valid in the generality of the algebras BG from (2.25) and
(2.26). Notice that we do not require 6 to be compact; we consider the K-theory
of BG as a Fréchet algebra. The skeleton of the CW-complex 6 gives rise to the
following filtration:

K∗(BG) = K 0
∗
(BG)⊃ K 1

∗
(BG)⊃ · · · ⊃ K dim6

∗
(BG)⊃ K 1+dim6

∗
(BG)= 0,

K p
∗
(BG) := im

(
K∗(C0(6/6

p−1
;MN (C))

G)→ K∗(C(6;MN (C))
G)
)
. (2.33)

Theorem 2.34. The graded group associated with the filtration (2.33) is isomor-
phic to Ȟ∗(6/G;LG

u ). In particular, there is an (unnatural) isomorphism

K∗(BG)⊗Q∼= Ȟ∗(6/G;LG
u ⊗Q) (2.35)

and
K∗(BG)∼= Ȟ∗(6/G;LG

u )

if the right-hand side is torsion free.

Proof. For p, r ≥0 we set K (p, p+r)= K∗(C0(6
p+r−1/6 p−1

;MN (C))
G). When

p′ ≥ p and p′+ r ′ ≥ p+ r , the map

(6 p+r−1, 6 p−1)→ (6 p′+r ′−1, 6 p′−1)

induces a group homomorphism K (p′, p′+ r ′)→ K (p, p+ r). For any s ≥ 0 the
sequence

(6 p+r−1, 6 p−1)→ (6 p+r+s−1, 6 p−1)→ (6 p+r+s−1, 6 p+r−1) (2.36)

gives rise to a connecting homomorphism K (p, p + r)→ K (p + r, p + r + s).
Using [Cartan and Eilenberg 1956, Section XV.7] we construct a spectral sequence
(F p

r )r≥1 with terms

F p
1 = K (p, p+ 1)/K (p, p)= K∗(C0(6

p/6 p−1
;MN (C))

G),

F p
∞
= K (p,∞)/K (p+ 1,∞)= K p

∗
(BG)/K p+1

∗
(BG).

(2.37)

The entire setting is Z/2Z-graded by the K-degree. We put

K q(p, p+ r)= K p+q(C0(6
p+r−1/6 p−1

;MN (C))
G)

and we refine (2.37) to

F p,q
1 = K p+q(C0(6

p/6 p−1
;MN (C))

G),

F p,q
∞
= K p

p+q(B
G)/K p+1

p+q (B
G).

(2.38)
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By the definition of a G-CW-complex, the pointwise stabilizer of a p-cell σ is
equal to its setwise stabilizer in G. Consequently,

C0(6
p/6 p−1

;MN (C))
G ∼=

∏
σ∈6(p)/G

C0(R
p)⊗MN (C)

Gσ

and F p,1
1 = 0. From Bott periodicity and the definition of Lu in (2.28) we see that

F p,0
1
∼=

∏
σ∈6(p)/G

Lu(σ )∼=

( ∏
σ∈6(p)

Lu(σ )

)G

.

Now replace L in (2.22) by Lu and sum over all q to obtain E p
r . If we compare

the result with F p
1 = F p,0

1 ⊕ F p,1
1 , we see that E p

1
∼= F p

1 . So we get a diagram

F p,q
1

d F
1

//

∼

F p+1,q
1

∼∏
n∈Z E p,q+2n

1

d E
1
//
∏

n∈Z E p+1,q+2n
1

(2.39)

The differential d F
1 for F∗1 is induced from the construction of a mapping cone

of a Puppe sequence in the category of C∗-algebras, coming from (2.36). This is
the noncommutative counterpart of the construction of the differential in cellular
cohomology, so by naturality d F

1 corresponds to d E
1 under the above isomorphism.

Therefore, the spectral sequences E p
r and F p

r are isomorphic, and in particular F p
r

degenerates for r ≥ 2. Now the isomorphism (2.35) follows from (2.21).
If Ȟ∗(6/G;LG

u ) is torsion free, then every term E p
∞
∼= F p

∞ must be torsion free.
Hence in this case both K∗(BG) and Ȟ∗(6/G;LG

u ) are free abelian groups, of the
same rank. �

Theorem 2.34 allows us to reduce the computations of K∗(C∗r (R, q)) to Čech
cohomology, where a lot of tools are available. For several root data it is easiest
to look at the case q = 1, for which we will develop more machinery in the next
subsection. For some other root data (in particular of type PGLn) it is more con-
venient to study K∗(C∗r (R, q)) with q 6= 1, for then there are fewer possibilities
for torsion elements, compared to q = 1. In those cases we need the full force of
Theorem 2.34.

2C. Crossed products. In the special case of crossed products the technique from
Theorem 2.34 can be improved. A crucial role will be played by the extended
quotient, whose definition we recall now. Let G be a finite group G acting on a
topological space 6. We define

6̃ = {(g, t) ∈ G× Tun : g(t)= t},
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a closed subset of the topological space G×6. The group G acts on 6̃ by

g(g′, t)= (gg′g−1, g(t)).

The (geometric) extended quotient of 6 by G is defined as

6//G = 6̃/G. (2.40)

It decomposes as
6//G =

⊔
g∈cc(G)

6w/ZG(g), (2.41)

where cc(G) denotes a set of representatives for the conjugacy classes in G.
We will develop a method that allows one to pass from the G-equivariant K-

theory of 6 to the integral cohomology of 6//G. However, it does not work auto-
matically; we require that the cohomology is torsion-free and that all G-isotropy
groups of points of 6 are Weyl groups (and it uses some of our earlier results on
the representation rings of Weyl groups).

From now on we assume that 6 is a smooth manifold (possibly with boundary)
on which G acts smoothly. According to [Illman 1978] 6 also admits the structure
of a countable, locally finite, finite-dimensional G-simplicial complex. The crossed
product C(6)oG fits in the framework of (2.25) and (2.26) by the isomorphisms

C(6)oG ∼= C(6;EndC(C[G]))G = BG . (2.42)

In this case ug(x) is right multiplication by g−1 and πx is the direct sum of [G :Gx ]

copies of the regular representation of Gx . It is not hard to see that LG
u ⊗Z C is

isomorphic to the direct image of the constant sheaf C on 6̃, under the canoni-
cal map pr : 6̃/G → 6/G. Since pr is finite-to-one, there are no topological
complications, and we get an isomorphism

H∗G(6;Lu ⊗C)∼= Ȟ∗(6/G;LG
u ⊗Z C)∼= Ȟ∗(6̃/G;C). (2.43)

From this one can recover (2.16). Unfortunately, this approach does not automat-
ically lead to an isomorphism between Ȟ∗(6/G;LG

u ) and Ȟ∗(6̃/G;Z), for LG
u

need not be isomorphic to the direct image of the constant sheaf Z under pr .
Sometimes this can be approached better via a dual homology theory. Let

Cq(6;Lu) be the subgroup of Cq(6;Lu) consisting of functions supported on
finitely many q-cells. The graded Z-module C∗(6;Lu) admits a G-equivariant
boundary map, which in the notation of (2.18) can be written as

∂ : Cq+1(6;Lu)→ Cq(6;Lu), (∂ f )(τ )=
∑

σ∈6(q+1)

[τ : σ ] indGτ

Gσ
( f (σ )).

This is a natural perfect pairing on each Lu(σ )∼= RZ(Gσ ), since Gσ is a finite group.
With that one sees that the differential complex (C∗(6;Lu), d) is isomorphic to



TOPOLOGICAL K-THEORY OF AFFINE HECKE ALGEBRAS 429

HomZ((C∗(6;Lu), ∂),Z). This persists to the G-invariants:

(C∗(6/G;LG
u ), d)∼= HomZ((C∗(6/G;LG

u ), ∂),Z). (2.44)

Suppose now that 6 is a manifold on which the finite group G acts smoothly. For
t ∈6 the isotropy G t acts R-linearly on the tangent space Tt(6). We say that G t

is a Weyl group if it is the Weyl group of some root system in Tt(6).

Theorem 2.45. Let G be a finite group acting smoothly on a manifold 6.

(a) Suppose that G t is a Weyl group for all t ∈6. Then

Hi (C∗(6/G;LG
u ), ∂)

∼= Hi (6//G;Z) for all i ∈ Z≥0.

(b) Suppose that the conclusion of part (a) holds, and that H∗(6//G;Z) is torsion-
free. Then

K∗(C(6)oG)∼= H∗(6//G;Z).

Proof. (a) For every subgroup H ⊂ G the set of fixpoints 6H is a submanifold
of 6 [Baum and Connes 1988, Lemma 4.1]. It follows that for every g ∈ cc(G)
and every connected component 6g

i of 6g, the map t 7→ G t is constant on an open
dense subset of 6g

i . Pick a point ti in this dense subset of 6g
i and write G ti =Wi .

By assumption Wi is a Weyl group and G t ⊃Wi for all t ∈6g
i .

For a cell τ and t ∈ τ \ ∂τ we have Gτ = G t . Using Proposition 1.36 we define,
for t ∈6g

i , t ∈ τ \ ∂τ ,

s(g, t)= s(g, τ )= indGτ

Wi
(H(ug, ρg)). (2.46)

We may and will assume that s(g, hτ)= h · s(g, τ ) for all h ∈ ZG(g). This extends
uniquely to a G-equivariant map 6g

→
⋃
τ⊂6g RZ(Gτ ), and hence defines an

element s(g) ∈ C∗(6;LG
u ). Thus s(g) is nonzero at Gt ∈ 6/G if and only if

Gt ∩6g is nonempty.
The s(g) with g ∈ cc(G) yield precisely one representation for each element of

the extended quotient
6//G =

⊔
g∈cc(G)

6g/ZG(g).

So for every t ∈ 6 we get exactly | cc(G t)| = | Irr(G t)| representations s(g, t).
By Proposition 1.17 the s(g, t) with g ∈ cc(G) and t ∈ G6g form a Z-basis of the
representation ring of the Weyl group G t . This also shows that for t ∈ τ \∂τ , the set{

h · indGσ

Wi
(H(ug, ρg)) : σ ⊂6

g, h ∈ Gτ \G, hσ = τ
}

(2.47)

is linearly independent in RZ(G t)= RZ(Gτ ).
Let τ ⊗ s(g, τ ) with τ ⊂ 6g be the terms of which s(g) is made. Then (2.46)

entails that the span of the τ ⊗ s(g, τ ) forms a subchain complex C(g, 6) of
(C∗(6/G;LG

u ), ∂) and (2.47) implies that C(g, 6) is isomorphic to the cellular
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homology complex C∗(6g/ZG(g);Z). Since the s(g, t) form a basis of RZ(G t)

for every t ∈6,
C∗(6/G;LG

u )=
⊕

g∈cc(G)

C(g, 6).

The claim about the homology of (C∗(6/G;LG
u ), ∂) follows.

(b) In the absence of torsion, the universal coefficient theorem says that the dual
of the homology of a different complex is naturally isomorphic to the cohomology
of the dual complex. This gives the horizontal isomorphisms in the following
commutative diagram:

H∗(6//G;Z) ∼
// HomZ(H∗(6//G;Z),Z)

��

H∗(C∗(6/G;LG
u ), d)

OO

∼
// HomZ(H∗(C∗(6/G;LG

u ), ∂),Z)

(2.48)

By assumption the right vertical arrow is an isomorphism. We define the left verti-
cal arrow to be the isomorphism such that the diagram becomes commutative. The
lower left corner of (2.48) is H∗G(6;L), which by Theorem 2.34 is isomorphic
to K∗(C(6)oG). �

Let us return to the case of C(Tun) o W = C∗r (W
e), where Tun, W and W e

come from a root datum R. Then W acts by algebraic group automorphisms on
the compact torus Tun.

Corollary 2.49. Let R be the root datum of a reductive algebraic group with
simply connected derived group, and assume that H∗(Tun//W ;Z) is torsion-free.
Then for any positive parameter function q,

K∗(C∗r (R, q))∼= H∗(Tun//W ;Z).

Proof. Let R be the root datum of (G(C), T ). By Steinberg’s connectedness the-
orem [Steinberg 1968], the group ZG(C)(t) is connected for every t ∈ T . Hence
Wt =W (ZG(C)(t), T ) is always a Weyl group. Now Theorem 2.45 says that

H∗(Tun//W ;Z)∼= K∗(C(Tun)o W )= K∗(C∗r (R, 1)).

Apply Theorem 2.11 to the right-hand side. �

In fact Corollary 2.49 also applies to some other root data, for example those of
type SO2n+1.

3. Examples

In this section, we compute the topological K-theory of the C∗-Hecke algebras
C∗r (R, q) associated to common root data R. As discussed after Theorem 2.11, it
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suffices to do so for q = 1 or for generic parameter functions. For q = 1 we apply
Theorem 2.45, when that is possible.

Our approach for q 6= 1 involves the following steps.

(1) Explicitly write down the root datum and the associated Weyl groups.

From (2.9) we get a canonical decomposition

C∗r (R, q)o0 =
⊕

P C∗r (R, q)P o0P , (3.1)

where P runs over a set of representatives for the action of G on the power set
of 1 and 0P is the setwise stabilizer of P in 0.

(2) List a good set of representatives P .

For every chosen P we do the following:

(3) Determine the root datum RP and the residual points.

(4) Determine the discrete series of H(RP , qP), and all the relevant intertwining
operators.

(5) Describe C∗r (R, q)P o0P and its space of irreducible representations.

(6) Calculate K∗(C∗r (R, q)P o0P).

Often the final step can be reduced to commutative C∗-algebras. When this is not
possible, we transfer the problem to sheaf cohomology via Theorem 2.34.

3A. Type GLn. The easiest root data to study are those associated with the reduc-
tive group GLn . The right way to do this was shown by Plymen. From [Plymen
1987, Lemma 5.3] we know that the topological K-groups of these affine Hecke
algebras are free abelian, of a finite rank which is explicitly given. Strictly speaking,
we do not really need to study this root datum, as we could just refer to Plymen’s
results. Nevertheless, since many other examples rely on this case, we include an
analysis.

From now on many things will be parametrized by partitions and permutations,
so let us agree on some notations. We write partitions in decreasing order and
abbreviate (x)3 = (x, x, x). A typical partition looks like

µ= (µ1, µ2, . . . , µd)= (n)mn · · · (2)m2(1)m1, (3.2)

where some of the multiplicities mi may be 0. By µ ` n we mean that the weight
of µ is

|µ| = µ1+ · · ·+µd = n.

The number of different µi (i.e., the number of blocks in the diagram of µ) is
denoted by b(µ) and the dual partition (obtained by reflecting the diagram of µ)
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by µ∨. Sometimes we abbreviate

gcd(µ)= gcd(µ1, . . . , µd),

µ! = µ1!µ2! · · ·µd ! .
(3.3)

With a such partition µ of n we associate the permutation

σ(µ)= (1 2 · · · µ1)(µ1+ 1 · · · µ1+µ2) · · · (n+ 1−µd · · · n) ∈ Sn.

As is well-known, this gives a bijection between partitions of n and conjugacy
classes in the symmetric group Sn . The centralizer ZSn (σ (µ)) is generated by the
cycles

((µ1+ · · ·+µi + 1)(µ1+ · · ·+µi + 2) · · · (µ1+ · · ·+µi +µi+1))

and the “permutations of cycles of equal length” — for example, if µ1 = µ2,

(1µ1+ 1)(2µ1+ 2) · · · (µ1 2µ1). (3.4)

Using the second presentation of µ, this means that

ZSn (σ (µ))
∼=

n∏
l=1

(Z/ lZ)ml o Sml .

Let us recall the definition of R(GLn) and the associated groups. Below Q and
Q∨ are the root and coroot lattices.

X = Zn, Q = {x ∈ X : x1+ · · ·+ xn = 0},

Y = Zn, Q∨ = {y ∈ Y : y1+ · · ·+ yn = 0},

T = (C×)n, t = (t (e1), . . . , t (en))= (t1, . . . , tn),

R = {ei − e j ∈ X : i 6= j}, α0 = e1− en,

R∨ = {ei − e j ∈ Y : i 6= j}, α∨0 = e1− en,

si = sαi = sei−ei+1, s0 = tα0sα0 = tα1sα0 t−α1 : x→ x +α0−〈α
∨

0 , x〉α0,

W = 〈s1, · · · , sn−1 | s2
i = (si si+1)

3
= (si s j )

2
= e : |i − j |> 1〉 ∼= Sn,

Saff
= {s0, s1, . . . , sn−1},

W aff
= 〈s0,W0 | s2

0 = (s0si )
2
= (s0s1)

3
= (s0sn−1)

3
= e if 2≤ i ≤ n− 2〉,

W e
=W aff o�, �= 〈te1(1 2 · · · n)〉 ∼= Z.

Because all roots of R are conjugate, s0 is conjugate to any si ∈ Saff. Hence for
any label function we have q(s0)= q(si ) := q . Every point of T is W-conjugate to
one of the form t = ((t1)µ1(tµ1+1)

µ2 · · · (tn)µd ) ∈ T and

Wt = Sµ1 × Sµ2 × · · ·× Sµd . (3.5)
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• Case q = 1.

By (2.17) and (2.41) we have

K∗(C∗r (W
e))⊗C∼= Ȟ∗(T̃un/Sn;C)∼=

⊕
µ`n

Ȟ∗
(
T σ(µ)

un /ZSn (σ (µ));C
)
. (3.6)

Therefore, we want to determine T σ(µ)
un /ZSn (σ (µ)). If µ is as in (3.2) then

T σ(µ)
= {(t1)µ1(tµ1+1)

µ2 · · · (tn)µd ∈ T },

T σ(µ)/ZSn (σ (µ))
∼= (C

×)mn/Smn × · · ·× (C
×)m1/Sm1,

(3.7)

where Sml acts on (C×)ml by permuting the coordinates. To handle this space
we use the following nice, elementary result, a proof of which can be found for
example in [Plymen 1987, Lemma 5.1].

Lemma 3.8. For any m ∈ N there is an isomorphism of algebraic varieties

(C×)m/Sm ∼= Cm−1
×C×.

Consequently, T σ(µ)
un /ZSn (σ (µ)) has the homotopy type of (S1)b(µ). In particu-

lar, its integral cohomology is torsion-free, so Corollary 2.49 is applicable. It says
that (3.6) can be refined to

K∗(C∗r (W
e))∼=

⊕
µ`n

Ȟ∗((S1)b(µ);Z)∼=
⊕
µ`n

Z2b(µ)
. (3.9)

• Generic, equal parameter case q 6= 1.

Inequivalent subsets of 1 are parametrized by partitions µ of n. For the typical
partition (3.2) we have

Pµ =1 \ {αµ1, αµ1+µ2, . . . , αn−µd },

RPµ
∼= (An−1)

mn × · · ·× (A1)
m2 ∼= R∨Pµ,

X Pµ ∼= Z(e1+ · · ·+ eµ1)/µ1+ · · ·+Z(en+1−µd + · · ·+ en)/µd ,

X Pµ
∼= (Z

n/Z(e1+ · · ·+ en))
mn + · · ·+ (Z2/Z(e1+ e2))

m2,

Y Pµ = Z(e1+ · · ·+ eµ1)+ · · ·+Z(en+1−µd + · · ·+ en),

YPµ = {y ∈ Zn
: y1+ · · ·+ yµ1 = · · · = yn+1−µd + · · ·+ yn = 0},

T Pµ = {(t1)µ1 · · · (tn)µd ∈ T },

TPµ = {t ∈ T : t1t2 · · · tµ1 = · · · = tn+1−µd · · · tn = 1},

KPµ = {t ∈ T Pµ : tµ1
1 = · · · = tµd

n = 1},

WPµ
∼= (Sn)

mn × · · ·× (S2)
m2, W (Pµ, Pµ)∼= Smn × · · ·× Sm2 × Sm1,

GPµPµ = KPµ o W (Pµ, Pµ), ZSn (σ (µ))=W (Pµ, Pµ)n
∏n

l=1(Z/ lZ)ml .
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The WPµ-orbits of residual points for HPµ are parametrized by

KPµ
(
(q(µ1−1)/2, q(µ1−3)/2, . . . , q(1−µ1)/2) · · · (q(µd−1)/2, q(µd−3)/2, . . . , q(1−µd )/2)

)
.

This set is obviously in bijection with KPµ , and indeed the intertwiners π(k) with
k ∈ KPµ act on it by multiplication. From the classification of the discrete series we
know that here every residual point carries precisely one discrete series represen-
tation, namely a twist of a Steinberg representation. The quickest way to see this
is with the Kazhdan–Lusztig classification of irreducible representations of affine
Hecke algebras with equal parameters, in particular [Kazhdan and Lusztig 1987,
Theorems 7.12 and 8.13]. This implies⋃

δ

(Pµ, δ, T Pµ)/KPµ
∼= T Pµ,⋃

δ

(Pµ, δ, T Pµ)/GPµPµ
∼= T Pµ/W (Pµ, Pµ)= T σ(µ)/ZSn (σ (µ)).

If a point ξ = (Pµ, δ, t) has a nontrivial stabilizer Gξ , then by the above this sta-
bilizer is contained in W (Pµ, Pµ) ∼=

∏n
l=1 Sml . It is easily seen that this isotropy

group is actually a Weyl group, and that it equals the group W (Rξ ) from (2.10). In
other words, all R-groups are trivial for this root datum and q 6= 1, and all inter-
twining operators π(g, ξ) from a representation π(ξ) to itself are scalar multiples
of the identity. So the action of WPµPµ on

C
(⊔

δ

T Pµ
un ;Mn!/µ!(C)

)
(3.10)

is essentially only on
⊔
δ T Pµ

u and the conjugation part doesn’t really matter. In
particular, we deduce that

C∗r (R, q)∼=
⊕
µ`n

Mn!/µ!

(
C
(⊔

δ

T Pµ
un

))
∼=

⊕
µ`n

Mn!/µ!
(
T σ(µ)

un /ZSn (σ (µ))
)
. (3.11)

In particular, C∗r (R, q) is Morita-equivalent with the commutative C∗-algebra of
continuous functions on Tun//Sn . Similar results were obtained by completely
different methods in [Mischenko 1982].

We remark that Irr(C∗r (R, q)) has a clear relation with the elliptic representation
theory of symmetric groups. Every δ is essentially a Steinberg representation, so

ζ∨(δ ◦φt) ∈Mod(O(T )o ZSn (σ (µ)))

is given by the O(T )-character t and the sign representation of the Weyl group
ZSn(σ (µ))t . Moreover, the group ZSn(σ (µ))t can be identified with R(ξ), where
ξ = (Pµ, δ, t). Then ζ∨(π(ξ))= ind(Sn)t

W (Rξ )(sign) as (Sn)t -representations, and this
is exactly a member of the basis RZ((Sn)t) exhibited in Proposition 1.17(b).
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Using the analysis from the case q = 1, it follows that

K∗(C∗r (R, q))∼=
⊕
µ`n

K ∗
(
T σ(µ)

un /ZSn (σ (µ))
)

∼=

⊕
µ`n

K ∗((S1)b(µ))∼=
⊕
µ`n

Z2b(µ)
. (3.12)

Recall that the even cohomology of (S1)b has the same dimension as its odd co-
homology, unless b= 0. The same holds for K-theory, and b(µ)= 0 does not occur
because b(µ) counts the number of different terms in a partition of n ≥ 1. So we
can refine (3.12) to

K0(C∗r (R, q))=
⊕
µ`n

Z2b(µ)−1
, K1(C∗r (R, q))=

⊕
µ`n

Z2b(µ)−1
. (3.13)

3B. Type SLn. The affine Hecke algebra associated to a root datum of type SLn

describes the category of Iwahori-spherical representations of PGLn(Qp). Since
that is a subcategory of the Iwahori-spherical representations of GLn(Qp), it can be
expected this affine Hecke algebra behaves very similarly to those in the previous
subsection. Indeed, we will see that the calculations of the K-theory are essentially
the same as in Section 3A.

The root datum R(SLn) is given by:

X = Zn/Z(e1+ · · · en)∼= Q+ ((e1+ · · ·+ en)/n− en),

Q = {x ∈ Zn
: x1+ · · ·+ xn = 0},

Y = Q∨ = {y ∈ Zn
: y1+ · · ·+ yn = 0},

T = {t ∈ (C×)n : t1 · · · tn = 1}, t = (t (e1), . . . , t (en))= (t1, . . . , tn),

R = {ei − e j ∈ X : i 6= j}, α0 = e1− en,

R∨ = {ei − e j ∈ Y : i 6= j}, α0 = e1− en,

si = sαi = sei−ei+1, s0 = tα0sα0 = tα1sα0 t−α1 : x→ x +α0−〈α
∨

0 , x〉α0,

W =
〈
s1, · · · , sn−1 | s2

i = (si si+1)
3
= (si s j )

2
= e if |i − j |> 1

〉
∼= Sn,

Saff
= {s0, s1, . . . , sn−1},

W aff
=
〈
s0,W0 | s2

0 = (s0si )
2
= (s0s1)

3
= (s0sn−1)

3
= e if 2≤ i ≤ n− 2

〉
,

W e
=W aff o�, �= 〈te1−(e1+···en)/n(12 · · · n)〉 ∼= Z/nZ.

Because all roots are conjugate, s0 is conjugate to any si ∈ Saff, and for any label
function q(s0)= q(si )= q. The W-stabilizer of ((t1)µ1(tµ1+1)

µ2 · · · (tn)µd ) is iso-
morphic to Sµ1× · · · × Sµd . Generically, there are n! n residual points, and they
all satisfy t (αi ) = q or t (αi ) = q−1 for 1 ≤ i < n. These residual points form n
conjugacy classes, unless q = 1.
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• Group case q = 1.

In view of (2.17) and (2.41), we want to determine T σ(µ)
un /ZSn (σ (µ)), where µ

is any partition of n. Write it as in (3.2); then

T σ(µ)
= {(t1)µ1(tµ1+1)

µ2 · · · (tn)µd ∈ T }
∼= {(t1)µ1(tµ1+1)

µ2 · · · (tn)µd ∈ (C×)n}/C×

×{(e2π ik/n)n : 0≤ k < gcd(µ)},

T σ(µ)/ZSn (σ (µ))
∼=
(
(C×)mn/Smn × · · ·× (C

×)m1/Sm1

)
/C×

×{(e2π ik/n)n : 0≤ k < gcd(µ)},

where C× acts diagonally. By Lemma 3.8, each factor (C×)mi /Smi is homotopy
equivalent to a circle. The induced action of S1

⊂ C× on this direct product of
circles identifies with a direct product of rotations. Hence, T σ(µ)/ZSn (σ (µ)) is
homotopy equivalent with Tb(µ)−1

× {gcd(µ) points}, and the extended quotient
T//W has torsion-free cohomology. By Corollary 2.49,

K∗(C∗r (W
e))∼= Zd(n), d(n) :=

∑
µ`n

gcd(µ)2b(µ)−1. (3.14)

• Generic, equal parameter case q 6= 1.

Inequivalent subsets of 1 are parametrized by partitions µ of n. For the typical
partition (3.2) we put

Pµ =1 \ {αµ1, αµ1+µ2, . . . , αn−µd },

RPµ
∼= (An−1)

mn × · · ·× (A1)
m2 ∼= R∨Pµ,

X Pµ ∼=
(
Z(e1+· · ·+eµ1)/µ1+· · ·+Z(en+1−µd+· · ·+en)/µd

)
/Z(e1+· · ·+en)/g,

XPµ
∼= (Z

n/Z(e1+ · · ·+ en))
mn + · · ·+ (Z2/Z(e1+ e2))

m2,

Y Pµ = {y ∈ Z(e1+ · · ·+ eµ1)+ · · ·+Z(en+1−µd + · · ·+ en) : y1+ · · ·+ yn = 0},

YPµ = {y ∈ Y : y1+ · · ·+ yµ1 = · · · = yn+1−µd + · · ·+ yn = 0},

T Pµ = {(t1)µ1 · · · (tn)µd ∈ T : tµ1/g
1 · · · tµd/g

n = 1}, g = gcd(µ),

TPµ = {t ∈ T : t1t2 · · · tµ1 = · · · = tn+1−µd · · · tn = 1},

KPµ = {t ∈ T Pµ : tµ1
1 = · · · = tµd

n = 1},

WPµ
∼= (Sn)

mn× · · ·× (S2)
m2, W (Pµ, Pµ)∼= Smn× · · ·× Sm2 × Sm1,

GPµPµ = KPµ o W (Pµ, Pµ), ZSn (σ (µ))=W (Pµ, Pµ)n
∏n

l=1(Z/ lZ)ml .

Theorem 3.15. For q 6= 1 the C∗-algebra C∗r (R(SLn), q) is Morita equivalent
with the commutative algebra of continuous functions on Tun//W.
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Its K-theory is given by

K0(C∗r (R, q))=
⊕

µ`n, b(µ)>1

Zgcd(µ)2b(µ)−2
⊕

⊕
µ`n, b(µ)=1

Zgcd(µ),

K1(C∗r (R, q))=
⊕

µ`n, b(µ)>1

Zgcd(µ)2b(µ)−2
.

Proof. The WPµ-orbits of residual points for HPµ are represented by the points(
(q(µ1−1)/2, q(µ1−3)/2, . . . , q(1−µ1)/2) · · · (q(µd−1)/2, q(µd−3)/2, . . . , q(1−µd )/2)

)
·
(
(e2π ik1/µ1)µ1 · · · (e2π ikd/µd )µd

)
, 0≤ ki < µi . (3.16)

These points are in bijection with KPµ ×Z/gcd(µ)Z. Also T σ(µ) consists of ex-
actly gcd(µ) components, one of which is T Pµ . Just as in the type GLn case, this
leads to ⋃

δ

(Pµ, δ, T Pµ)/KPµ
∼= T Pµ ×Z/gcd(µ)Z∼= T σ(µ),⋃

δ

(Pµ, δ, T Pµ)/WPµPµ
∼= T σ(µ)/ZSn (σ (µ)),

C∗r (R, q)∼=
⊕
µ`n

Mn!/µ!

(
C
(⊔

δ

T Pµ
u

))
∼=

⊕
µ`n

Mn!/µ!
(
T σ(µ)

u /ZSn (σ (µ))
)
.

The extended quotient Tun//W is
⊔
µ`n T σ(µ)

u /ZSn (σ (µ)), which gives the desired
Morita equivalence. It follows that

K∗(C∗r (R, q))∼=
⊕
µ`n

K ∗
(
T σ(µ)

u /ZSn (σ (µ))
)
∼=

⊕
µ`n

K ∗((S1)b(µ)−1)gcd(µ). (3.17)

This a free abelian group of rank d(n)=
∑

µ`n gcd(µ)2b(µ)−1 with b(µ) as on
page 431. Since the even K-theory of (S1)b has the same rank as the odd K-theory
unless b = 0, (3.17) leads to K0 and K1 as claimed. �

3C. Type PGLn. The root datum for the algebraic group PGLn gives rise to

X = Q = {x ∈ Zn
: x1+ · · ·+ xn = 0},

Q∨ = {y ∈ Zn
: y1+ · · ·+ yn = 0},

Y = Zn/Z(e1+ · · ·+ en)∼= Q∨+ ((e1+ · · ·+ en)/n− e1),

T = (C×)n/C×, t = (t1, . . . , tn)= (t (e1), . . . , t (en)),

R = {ei − e j ∈ X : i 6= j}, α0 = e1− en,

R∨ = {ei − e j ∈ Y : i 6= j}, α0 = e1− en,

si = sαi = sei−ei+1, s0 = tα0sα0 : x→ x +α0−〈α
∨

0 , x〉α0,
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W = 〈s1, . . . , sn−1 | s2
i = (si si+1)

3
= (si s j )

2
= e if |i − j |> 1〉 ∼= Sn,

Saff
= {s0, s1, . . . , sn−1}, �= {e},

W e
=W aff

= 〈s0,W0 | s2
0 = (s0si )

2
= (s0s1)

3
= (s0sn−1)

3
= e if 2≤ i ≤ n− 2〉.

For n > 2, s0 is conjugate to s1 in W aff, for n = 2 it is not. So for n > 2 there
is only one parameter q = q(si ), 0 ≤ i ≤ n − 1, whereas for n = 2, q0 may
differ from q1. In particular, for n = 2 the equal parameter function q(s0)= q(s1)

is not generic. Nevertheless, we only consider equal parameter functions in this
subsection, explicit computations for the other parameter functions on R(PGL2)

can be found in [Solleveld 2007, §6.1].
For q 6= 1, there are n! residual points. They form one W-orbit, and a typical

residual point is
(q(1−n)/2, q(3−n)/2, . . . , q(n−1)/2).

To determine the isotropy group of points of T we have to be careful. In general
the W-stabilizer of

((t1)µ1(tµ1+1)
µ2 · · · (tn)µd ) ∈ T

is isomorphic to
Sµ1 × Sµ2 × · · ·× Sµd ⊂W.

However, in some special cases the diagonal action of C× on (C×)n gives rise to
extra stabilizing elements. Let r be a divisor of n, k ∈ (Z/rZ)× and λ= (λ1, . . . , λl)

a partition of n/r . The isotropy group of

(t1)λ1(e2π ik/rt1)λ1 · · ·(e−2π ik/rt1)λ1(trλ1+1)
λ2 · · ·(e−2π ik/rtrλ1+1)

λ2 · · ·(e−2π ik/rtn)λl

is isomorphic to
Sr
λ1
× Sr

λ2
× · · ·× Sr

λl
oZ/rZ. (3.18)

Explicitly, the subgroup Z/rZ is generated by

(1 λ1+1 2λ1+1 · · ·(r−1)λ1+1)(2 λ1+2 2λ1+2 · · ·(r−1)λ1+2) · · ·(λ1 2λ1 · · · rλ1)

· · · (n+1−rλd n+1+(1−r)λd · · · n+1+(r−1)λd)(n+(1−r)λd n+(2−r)λd · · · n),

and it acts on every factor Sr
λ j

in (3.18) by cyclic permutations.

• Case q = 1.

As we noted before, we have to analyze T σ(µ)
un /ZSn (σ (µ)). For the typical par-

tition µ we have

T σ(µ)
={(t1)µ1(tµ1+1)

µ2 · · · (tn)µd }/C××{t : t (e j )= e2π i jk/g, 0≤ k< g}, (3.19)

which is the disjoint union of g = gcd(µ) complex tori of dimension mn +mn−1+

· · ·+m1− 1. We obtain
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T σ(µ)/ZSn (σ (µ))
∼=
(
(C×)mn/Smn × · · ·× (C

×)m1/Sm1

)
/C×

×{t : t (e j )= e2π i jk/g, 0≤ k < g}. (3.20)

Remarkably enough, these sets are diffeomorphic to the corresponding sets for
R(SLn). We take advantage of this by reusing our deduction that (3.20) is homo-
topy equivalent with (S1)b(µ)−1

×{gcd(µ) points}. With (2.17) we conclude that
K∗(C∗r (W

e))⊗Z C has dimension d(n)=
∑

µ`n gcd(µ)2b(µ)−1.

• Equal parameter case q 6= 1.
This is noticeably different from the generic cases for R(GLn) and R(A∨n−1),

because C∗r (R(An−1, q)) is not Morita equivalent to a commutative C∗-algebra.
Of course the inequivalent subsets of 1 are still parametrized by partitions µ of n:

Pµ =1 \ {αµ1, αµ1+µ2, . . . , αn−µd },

RPµ
∼= (An−1)

mn × · · ·× (A1)
m2 ∼= R∨Pµ,

X Pµ ∼= {x ∈ Z(e1+ · · ·+ eµ1)/µ1+ · · ·+Z(en+1−µd + · · ·+ en)/µd :

x1+ · · ·+ xn = 0},

X Pµ
∼= {x ∈ Zµ1/Z(e1+ · · ·+ eµ1)+ · · ·+Zµd/Z(en+1−µd + · · ·+ en) :

x1+ · · ·+ xn ∈ gZ/gZ},

Y Pµ ∼= Z(e1+ · · ·+ eµ1)+ · · ·+Z(en+1−µd + · · ·+ en)/Z(e1+ · · ·+ en),

YPµ
∼= {y : y1+ · · ·+ yµ1 = · · · = yn+1−µd + · · ·+ yn = 0}/Z(e1+ · · · en),

T Pµ = {(t1)µ1 · · · (tn)µd }/C×,

TPµ = {t : t1t2 · · · tµ1 = · · · = tn+1−µd · · · tn = 1}/{z ∈ C : zg
= 1},

KPµ = {(t1)
µ1 · · · (tn)µd : tµ1

1 = · · · = tµd
n = 1}/{z ∈ C : zg

= 1},

WPµ
∼= Smn

n × Smn−1
n−1 × · · ·× Sm2

2 , W (Pµ, Pµ)∼= Smn× · · ·× Sm2× Sm1 .

We note that

T σ(µ)
= T Pµ ×{t : t (e j )= e2π i jk/g, 0≤ k < g}.

The WPµ-orbits of residual points for HPµ are represented by the points of

KPµ(q
(µ1−1)/2, q(µ1−3)/2, . . . , q(1−µ1)/2, q(µ2−1)/2, . . . , q(µd−1)/2, . . . , q(1−µd )/2).

Hence, the intertwiners π(k) with k ∈ KPµ permute the set of discrete series repre-
sentations of HPµ faithfully, and⊔

δ

(Pµ, δ, T Pµ)/KPµ
∼= T Pµ = (T σ(µ))◦.

Just before (3.10) we saw that the intertwiners for R(GLn), q 6= 1, have the property

w(t)= t ⇒ π(w, Pµ, δ, t)= 1.
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This implies that in our present setting we can have w(t)= t and π(w, Pµ, δ, t) 6= 1
only if w(t)= t does not hold without taking the action of C× into account.

Let us classify such w ∈W (Pµ, Pµ) and t ∈ T Pµ up to conjugacy. For a divisor
r of g∨ := gcd(µ∨) we have the partition

µ1/r
:= (nr)mn/r

· · · (2r)m2/r (r)m1/r .

Notice that
b(µ1/r )= b(µ)= b(µ∨).

There exists a σ ∈ Sn which is conjugate to σ(µ1/r ) and satisfies σ r
= σ(µ). We

construct a particular such σ as follows. If r = g∨ then (starting from the left)
replace every block

(d+1 d+2 · · · d+m)(d+1+m · · · d+2m) · · · (d+(g∨−1)m · · · d+g∨m)

of σ(µ) by

(d+1 d+1+m · · · d+1+(g∨−1)m 2 d+2+m · · · d+2+(g∨−1)m d+3 · · · d+g∨m).

We denote the resulting element by σ(µ)1/g∨, and for general r | g∨ we define

σ(µ)1/r
:=
(
σ(µ)1/g∨)g∨/r

.

Consider the cosets of subtori

T Pµ
r,k :=

(
T σ(µ)1/r )◦(

(1)g
∨µ1/r (e2π ik/r )g

∨µ1+g∨/r/r
· · · (e−2π ik/r )g

∨µd/r), k ∈ Z.

If gcd(k, r)= 1, then the generic points of T Pµ
r,k have W (Pµ, Pµ)-stabilizer

〈WPµ, σ (µ)
1/r
〉 ∩W (Pµ, Pµ)∼= Z/rZ.

Note that for r ′ | g∨,
T Pµ

r ′,k ⊂ T Pµ
r,k if r | r ′. (3.21)

If a point t ∈ T Pµ
r,k does not lie on any T Pµ

r ′,k′ with r ′> r , then its W (Pµ, Pµ)-stabilizer
may still be larger than Z/rZ. However, it is always of the form

Sr
λ1
× · · ·× Sr

λl
oZ/rZ.

Here the product of symmetric groups is W (Rξ ) from (2.10), and Rξ =Z/rZ. With
[Delorme and Opdam 2011] it follows that the intertwiners π(w, Pµ, δ, t) are scalar
for w ∈ Sr

λ1
×· · ·× Sr

λl
and nonscalar for w ∈ (Z/rZ)\ {e}. Because Z/rZ is cyclic

this implies that π(Pµ, δ, t) is the direct sum of exactly r inequivalent irreducible
representations.

Different choices of σ(µ)1/r or of k ∈ (Z/rZ)× lead to conjugate subvarieties
of T Pµ , so we have a complete description of Irr(C∗r (R, q)Pµ). To calculate the
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K-theory of this algebra we use Theorem 2.34, which says that (at least modulo
torsion) it is isomorphic to

H∗W (Pµ,Pµ)
(
T Pµ

u ;Lu
)
∼= Ȟ∗

(
T Pµ/W (Pµ, Pµ);L

W (Pµ,Pµ)
u

)
.

We can endow T Pµ
u with the structure of a finite W (Pµ, Pµ)-CW-complex, such

that every T Pµ
u,r,k is a subcomplex. The local coefficient system Lu is not very

complicated: Lu(B) ∼= Zr if and only if B \ ∂B consists of generic points in a
conjugate of T Pµ

u,r,k . In suitable coordinates the maps Lu(B → B ′) are all of the
form

Zr
→ Zr/d

: (x1, . . . , xr )→ (x1+ x2+ · · ·+ xd , . . . , x1+r−d + · · ·+ xr ).

Hence, the associated sheaf is the direct sum of several subsheaves F
µ
r , one for

each divisor r of gcd(µ∨). The support of Fµr is

W (Pµ, Pµ)T
Pµ

u,r,1/W (Pµ, Pµ)∼= T
P
µ1/r

u /ZSn (σ (µ
1/r )),

and on that space it has constant stalk Zφ(r). Here φ is the Euler φ-function, i.e.,

φ(r)= #{m ∈ Z : 0≤ m < r, gcd(m, r)= 1} = #(Z/rZ)×.

This is the rank of Fµr , because in every point of Tu,r,1 we have r irreducible rep-
resentations, but the ones corresponding to numbers that are not coprime to r are
already accounted for by the sheaves Fµr ′ with r ′ | r . We calculate

Ȟ∗
(
T Pµ

un /W (Pµ, Pµ);L
W (Pµ,Pµ)
u

)
∼=

⊕
r |gcd(µ∨)

Ȟ∗
(
T Pµ

un /W (Pµ, Pµ);Fµr
)

∼=

⊕
r |gcd(µ∨)

Ȟ∗
(
T

P
µ1/r

un /ZSn (σ (µ
1/r ));Zφ(r)

)
∼=

⊕
r |gcd(µ∨)

Ȟ∗
(
(S1)b(µ

1/r )−1
;Zφ(r)

)
∼=

⊕
r |gcd(µ∨)

Zφ(r)2
b(µ1/r )−1

=

⊕
r |gcd(µ∨)

Zφ(r)2
b(µ∨)−1

= Zgcd(µ∨)2b(µ∨)−1
. (3.22)

Now Theorem 2.34 says that K∗(C∗r (R, q)Pµ) is also a free abelian group of rank
gcd(µ∨)2b(µ∨)−1. Summing over partitions µ of n we find that K∗(C∗r (R, q)) is a
free abelian group of rank∑

µ`n

gcd(µ∨)2b(µ∨)−1
=

∑
µ`n

gcd(µ)2b(µ)−1.
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From Theorem 2.11 and the case q = 1 we see that these K-groups can also be
obtained as the K-theory of a disjoint union of compact tori, with gcd(µ) tori of
dimension b(µ)−1. This allows us to immediately determine K0 and K1 separately
as well:

K0(C∗r (R, q))=
⊕

µ`n,b(µ)>1

Zgcd(µ)2b(µ)−2
⊕

⊕
µ`n,b(µ)=1

Zgcd(µ),

K1(C∗r (R, q))=
⊕

µ`n,b(µ)>1

Zgcd(µ)2b(µ)−2
.

(3.23)

3D. Type SO2n+1. The root systems of type Bn are more complicated than those of
type An because there are roots of different lengths. This implies that the associated
root data allow label functions which have three independent parameters. Detailed
information about the representations of type Bn affine Hecke algebras is available
from [Slooten 2003].

Consider the root datum for the special orthogonal group SO2n+1:

X = Q = Zn,

Y = Zn, Q∨ = {y ∈ Y : y1+ · · ·+ yn even},

T = (C×)n, t = (t1, . . . , tn)= (t (e1), . . . , t (en)),

R = {x ∈ X : ‖x‖ = 1 or ‖x‖ =
√

2}, α0 = e1,

R∨ = {x ∈ X : ‖x‖ = 2 or ‖x‖ =
√

2}, α∨0 = 2e1,

1= {αi = ei − ei+1 : i = 1, . . . , n− 1} ∪ {αn = en},

si = sαi , s0 = tα0sα0 : x→ x +α0−〈α
∨

0 , x〉α0,

W = 〈s1, . . . , sn | s2
j = (si s j )

2
= (si si+1)

3
= (sn−1sn)

4
= e : i ≤ n−2, |i− j |> 1〉,

Saff
= {s0, s1, . . . , sn−1, sn}, �= {e},

W e
=W aff

= 〈W, s0 | s2
0 = (s0si )

2
= (s0s1)

4
= e : i ≥ 2〉.

For a generic parameter function, we have different parameters q0=q(s0), q1=q(si )

for 1≤ i < n and q2 = q(sn).
The finite reflection group W =W (Bn) is naturally isomorphic to (Z/2Z)n o Sn .

Let µ ` n and consider a point

t =
(
(t±1 )

µ1 · · · (t±n−µd−1−µd
)µd−2(1)µd−1(−1)µd

)
∈ T, (3.24)

where (t±1 )
µ1 means that µ1 coordinates are equal to t1 or t−1

1 , while the other
n−µ1 coordinates of t are different. The stabilizer Wt of t is isomorphic to

Sµ1× · · ·× Sµd−2×W (Bµd−1)×W (Bµd ). (3.25)

Notice that this is a Weyl group, generated by the reflections it contains.



TOPOLOGICAL K-THEORY OF AFFINE HECKE ALGEBRAS 443

• Case q0 = q1 = q2 = 1.

In view of (2.17) we want to determine the extended quotient T̃un/W. Therefore,
we recall the explicit classification of conjugacy classes in W in terms of biparti-
tions, which be found (for example) in [Carter 1972]. We already know that the
quotient of W by the normal subgroup (Z/2Z)n of sign changes is isomorphic to Sn ,
and that conjugacy classes in Sn are parametrized by partitions of n. So we wonder
what the different conjugacy classes in (Z/2Z)nσ(µ) are, for µ ` n. To handle this
we introduce some notation, assuming |µ| + |λ| = n and |µ| + |λ| + |ρ| = n′:

εI =
∏

i∈I sei , I ⊂ {1, . . . , n},

Iλ = {1, 1+ λ1, 1+ λ1+ λ2, . . .}, λ= (λ1, λ2, λ3, . . .),

σ ′(λ)= εIλσ(λ) ∈W (B|λ|), (3.26)

σ(µ, λ)= σ(µ) (m→ m− |λ|mod n) σ ′(λ) (m→ m+ |λ|mod n),

σ (µ, λ, ρ)= σ(µ, λ) (m→ m− |ρ|mod n′) σ ′(ρ) (m→ m+ |ρ|mod n′).

Let I ⊂ {1, . . . ,m} and J ⊂ {m+1, . . . , 2m}. It is easily verified that εI (1 2 · · · m)
is conjugate to µJ (m+1 m+2 · · · 2m) if and only if |I |+|J | is even. Therefore the
conjugacy classes in W (Bn) are parametrized by ordered pairs of partitions of total
weight n. Explicitly (µ, λ) corresponds to σ(µ, λ) as in (3.26). The set T σ(µ,λ)

and the group ZW0(Bn)(σ (µ, λ)) are both the direct product of the corresponding
objects for the blocks of µ and λ, i.e., for the parts (m,m, . . . ,m). The centralizer
of σ((m)k) in W (Bkm) is generated by (1 2 · · · m), ε{1,2,...,m} and the transpositions
of cycles

(am+ 1 am+m+ 1)(am+ 2 am+m+ 2) · · · (am+m am+ 2m), (3.27)

where 0≤ a ≤ k− 2. It follows that

ZW (Bkm)(σ ((m)
k))∼=W(Bk)n (Z/mZ)k,

((C×)km)σ((m)
k)
= {((t1)m(tm+1)

m
· · · (tkm+1−m)

m) : ti ∈ C×}, (3.28)

((S1)km)σ((m)
k)/ZW0(Bkm)(σ ((m)

k))∼= (S1)k/W(Bk)∼= [−1, 1]k/Sk .

Now consider the following element of W(Bkm):

σ ′((m)k)= ε{1,m+1,...,km+1−m} (1 2 · · · m)(m+1 · · · 2m) · · · (km+1−m · · · km).

It has only 2k fixpoints, namely

((±1)m(±1)m · · · (±1)m). (3.29)

The centralizer of σ ′((m)k) is generated by ε{1}(1 2 · · · m), ε{1,2,...,m} and the ele-
ments (3.27). The latter two generate a subgroup isomorphic to W (Bk), which fits
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in a short exact sequence

1→W (Bk)→ ZW (Bmk)(σ
′((m)k))→ (Z/mZ)k→ 1, (3.30)

where the first factor Z/mZ is generated by the image of ε{1}(1 2 · · · m). We find

((S1)km)σ
′((m)k)/ZW (Bmk)(σ

′((m)k))∼= {(1)am(−1)(k−a)m
: 0≤ a ≤ k}. (3.31)

Now we can see what T σ(µ,λ)
un /ZW (σ (µ, λ)) looks like. Its number of components

N (λ) depends only on λ, and all these components are mutually homeomorphic
contractible orbifolds, the shape and dimension being determined by µ. More
precisely, for every block of µ of width k we get a factor [−1, 1]k/Sk , and for
every block of λ of width l we must multiply the number of components by l + 1.
Alternatively, we can obtain the same space (modulo the action of W ) as

T σ(µ,λ)
un /ZW (Bn)(σ (µ, λ))

=

⊔
λ1∪λ2=λ

T σ(µ,λ1,λ2)
un,c /ZW (Bn)(σ (µ, λ1, λ2))

=

⊔
λ1∪λ2=λ

((S1)|µ|)σ(µ)/ZW (B|µ|)(σ (µ)) (−1)|λ1| (1)|λ2|

= ([−1, 1]|µ|)σ(µ)/ZS|µ|(σ (µ))×
⊔

λ1∪λ2=λ

(−1)|λ1| (1)|λ2|, (3.32)

where the subscript c means that we take only the connected component containing
the point ((1)|µ|(−1)|λ1|(1)|λ2|).

In effect we parametrized the components of the extended quotient T̃un/W by
ordered triples of partitions (µ, λ1, λ2) of total weight n, and every such compo-
nent is contractible. In combination with (3.25) this shows that the conditions of
Theorem 2.45 are fulfilled.

Denote the number of ordered k-tuples of partitions of total weight n by P(k, n).
Now Theorem 2.45 says that

K∗(C∗r (W
e))= Ȟ∗(T̃un/W ;Z)= Ȟ 0(T̃un/W ;Z)∼= ZP(3,n). (3.33)

• Generic case.

The inequivalent subsets of 1 are parametrized by partitions µ of weight at
most n:

Pµ =1 \ {αµ1, αµ1+µ2, . . . , α|µ|},

RPµ
∼= (An−1)

mn × · · ·× (A1)
m2 × Bn−|µ|,

R∨Pµ
∼= (An−1)

mn × · · ·× (A1)
m2 ×Cn−|µ|,

X Pµ ∼= Z(e1+ · · ·+ eµ1)/µ1+ · · ·+Z(e|µ|+1−µd + · · ·+ e|µ|)/µd ,
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X Pµ
∼= (Z

n/Z(e1+ · · ·+ en))
mn + · · ·+ (Z2/Z(e1+ e2))

m2 +Zn−|µ|,

Y Pµ = Z(e1+ · · ·+ eµ1)+ · · ·+Z(e|µ|+1−µd + · · ·+ e|µ|),

YPµ = {y ∈ Zn
: y1+ · · ·+ yµ1 = · · · = y|µ|+1−µd + · · ·+ y|µ| = 0},

T Pµ = {(t1)µ1(tµ+1)
µ2 · · · (t|µ|)µd (1)n−|µ| : ti ∈ C×},

TPµ = {t ∈(C
×)n : t1 · · · tµ1= tµ1+1 · · · tµ1+µ2= · · ·= t|µ|+1−µd · · · t|µ|= 1},

KPµ = {t ∈ T Pµ : tµ1
1 = · · · = tµd

|µ| = 1},

WPµ
∼= Smn

n × · · ·× Sm2
2 ×W (Bn−|µ|),

W(Pµ, Pµ)∼=W (Bmn )× · · ·×W (Bm2)×W (Bm1).

We see that RPµ is the product of various root data of type SLm and one factor
R(SO2(n−|µ|)+1). Hence HPµ is the tensor product of a type A part and a type B
part. From our study of R(SLm), we recall that the discrete series representations
of the type A part of HPµ are in bijection with KPµ . From [Heckman and Opdam
1997, Proposition 4.3] and [Opdam 2004, Appendix A.2] we know that the residual
points for R(SO2(n−|µ|)+1, q) are parametrized by ordered pairs (λ1, λ2) of total
weight n− |µ|. The unitary part of such a residual point is in the component we
indicated in (3.32). Let RP(R, q) denote the collection of residual points for the
pair (R, q). The above gives canonical bijections⊔
t∈RP(RPµ ,qPµ )

tT Pµ
un /WPµPµ

∼=

⊔
t∈RP(R(SO2(n−|µ|)+1,q))

tT Pµ
un /W (Pµ, Pµ)

∼= T Pµ
un /ZW0(B|µ|)(σ (µ))×

⊔
(λ1,λ2):|λ1|+|λ2|=n

(−1)|λ1|(1)|λ2|. (3.34)

Theorem 3.35. (a) For generic q, C∗r (R(SO2n+1), q) is Morita equivalent with
the commutative C∗-algebra of continuous functions on (3.34).

(b) K1(C∗r (R(SO2n+1), q)) = 0 and K0(C∗r (R(SO2n+1, q))) is a free abelian
group of rank P(3, n).

Proof. (a) First we note that (3.34) can be identified with the extended quotient
T̃un/W described in (3.32) and the subsequent lines.

Fix any u ∈ Tun. The fibre over u of the projection

p : T̃un/W → Tun/W

is in bijection with the set of conjugacy classes of W. By Clifford theory, |p−1(Wu)|
is also the number of inequivalent irreducible representations of C(Tun)o W with
central character Wu. Equivalently, |p−1(Wu)| is the number of inequivalent tem-
pered irreducible representations of O(T ) o W with central character Wu. By
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Theorem 1.52 the latter equals the number of inequivalent irreducible tempered
H(R, q)-representations with central character in WuTrs.

By Theorem 2.7 every point of (3.34) is the Z(C∗r (R, q))-character of at least one
irreducible C∗r (R, q)-representation. The projection p′ from (3.34) to T/W corre-
sponds to restriction from Z(C∗r (R, q))∼= C(4un/G) to Z(H(R, q))∼=O(T/W ).

Suppose that a point of p′−1(WuTrs) would carry more than one inequivalent
irreducible C∗r (R, q)-representation. Then the inverse image of WuTrs under

Irr(C∗r (R, q))= Irrtemp(H(R, q))→ T/W

would have more than |p−1(u)| elements. This would contradict what we con-
cluded above, using Theorem 1.52. Thus every π(Pµ, δ, t) with (Pµ, δ, t) ∈ 4un

is irreducible and (3.34) is exactly the space Irr(C∗r (R, q)).
When we compare this with Theorem 2.7 and (2.6), we see that all intertwining

operators π(g, Pµ, δ, t) with g(Pµ, δ, t)= (Pµ, δ, t) must be scalar. Recall from
(2.9) that every indecomposable direct summand of C∗r (R, q) is of the form

C
(
T Pµ

un ;EndC(π(Pµ, δ, t))
)GPµ,δ

. (3.36)

From (3.31) we know that the space T Pµ
un /GPµ,δ is a direct product of factors

(S1)k/W (Bk)∼= [−1, 1]/Sk . We note that

{(z1, z2, . . . , zk) ∈ (S1)k : =(zi )≥ 0,<(z1)≥<(z2)≥ · · · ≥ <(zk)}

is a closed, connected fundamental domain for action of W (Bk) on (S1)k . With
this it is easy to find a closed fundamental domain DPµ,δ for the action of GPµ,δ

on T Pµ
δ , such that DPµ,δ is homeomorphic to T Pµ

δ /GPµ,δ. Then restriction from
T Pµ

un to DPµ,δ gives a monomorphism of C∗-algebras from (3.36) to

C(DPµ,δ;EndC(π(Pµ, δ, t)))= C(DPµ,δ)⊗EndC(π(Pµ, δ, t)).

It is surjective because the intertwining operators π(g, Pµ, δ, t), g ∈ GPµ,δ, from
(2.5) depend continuously on t ∈ T Pµ

un and are scalar multiples of the identity when-
ever they map a representation to itself. Hence C∗r (R, q) is Morita equivalent with⊕

(Pµ,δ)/G C(DPµ,δ), as required.

(b) By the Serre–Swan theorem, K∗(C∗r (R, q)) is the topological K-theory of
the underlying space (3.34). Since every connected component of this space is
contractible, K1(C∗r (R, q))= 0 and K0(C∗r (R, q)) is a free abelian group whose
rank equals the number of connected components of (3.34). In the lines following
(3.32) we showed that that number is P(3, n). By Theorem 2.11 these K-groups
are independent of the parameters q . �
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3E. Type Sp2n. The root datum for the symplectic group Sp2n is dual to that
for SO2n+1. Concretely, R(Sp2n) is given by

X = {y ∈ Y : y1+ · · ·+ yn even}, Q = Zn, Y = Q∨ = Zn,

T = (C×)n, t = (t1, . . . , tn)= (t (e1), . . . , t (en)),

R = {x ∈ X : ‖x‖ = 2 or ‖x‖ =
√

2}, α0 = e1+ e2,

R∨ = {x ∈ X : ‖x‖ = 1 or ‖x‖ =
√

2}, α∨0 = e1+ e2,

1= {αi = ei − ei+1 : i = 1, . . . , n− 1} ∪ {αn = 2en},

si = sαi , s0 = tα0sα0 = te1sα0 t−e1 : x→ x +〈α∨0 , x〉α0,

W = 〈s1, . . . , sn | s2
j = (si s j )

2
= (si si+1)

3
= (sn−1sn)

4
= e : i ≤ n−2, |i− j |> 1〉,

Saff
= {s0, s1, . . . , sn−1, sn}, �= {e, te1s2e1},

W aff
= 〈W, s0 | s2

0 = (s0si )
2
= (s0s2)

3
= e : i 6= 2〉, W e

=W aff o�.

For a generic parameter function we have two independent parameters q1 = q(s1)

and q2 = q(sn).
The groups X , W and W e are exactly the same as for R(SO2n+1). Everything

that we said in Section 3D about the stabilizers in W of points of T obviously is
valid here as well. In particular, for q = 1 the algebra H(R(Sp2n), 1) is identical
to H(R(SO2n+1), 1), and the entire analysis of the K-theory of its C∗-completion
can be found in the previous paragraph.

For all other q we can use Theorem 2.11. Thus, we get

K∗(C∗r (R(Sp2n), q))∼= K∗(C∗r (R(Sp2n), 1))

= K∗(C∗r (R(SO2n+1), 1))∼= K∗(C∗r (R(SO2n+1), q)).

The last group is the one we actually computed, for generic parameters. Let us
phrase the results explicitly:

K0(C∗r (R(Sp2n), q))∼= ZP(3,n), K1(C∗r (R(Sp2n), q))= 0. (3.37)

3F. Type SO2n. The root datum for the even special orthogonal group SO2n has
groups contained in those for the root datum of type SO2n+1:

X = Zn, Q = {y ∈ Y : y1+ · · ·+ yn even},

Y = Zn, Q∨ = {y ∈ Y : y1+ · · ·+ yn even},

T = (C×)n, t = (t1, . . . , tn)= (t (e1), . . . , t (en)),

R = {x ∈ X : ‖x‖ =
√

2}, α0 = e1+ e2,

R∨ = {x ∈ X : ‖x‖ =
√

2}, α∨0 = e1+ e2,

1= {αi = ei − ei+1 : i = 1, . . . , n− 1} ∪ {αn = en−1+ en},
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si = sαi , s0 = tα0sα0 = te1sα0 t−e1 : x→ x +α0−〈α
∨

0 , x〉α0,

W = 〈s1, . . . , sn | s2
j = (si s j )

2
= (si si+1)

3
= (sn−2sn)

4
= e : i ≤ n−2, |i− j |> 1〉,

Saff
= {s0, s1, . . . , sn−1, sn}, �= {e, te1se1sen },

W aff
= 〈W, s0 | s2

0 = (s0si )
2
= (s0s2)

3
= e : i 6= 2〉( W e.

When n > 2, all the simple affine reflections are conjugate in W e, and

q(si )= q, i = 0, 1, . . . , n,

for every parameter function. For n = 2 the root system R ∼= A1× A1 is reducible,
there is an additional simple affine reflection and there are more possible parameter
functions. For n = 1, R(SO2) is the root datum of a one-dimensional torus, in
particular W = 1.

The based root datum R(SO2n) has one nontrivial automorphism, which ex-
changes the roots αn−1 and αn . It is easily seen that

W e(SO2n)oAut(R(SO2n))∼=W e(SO2n+1).

With Theorem 2.11 we conclude that, for every equal parameter function q,

K∗
(
C∗r (R(SO2n), q)oAut(R(SO2n))

)
∼= K∗

(
W e(SO2n)oAut(R(SO2n))

)
= K∗

(
C∗r (W

e(SO2n+1))
)
∼= K∗

(
C∗r (R(SO2n+1), q)

)
. (3.38)

Unfortunately, no such shortcut is available for K∗(C∗r (R(SO2n), q)). Therefore
we will just compute K∗(W e(SO2n)) by hand, in several steps:

• We determine the extended quotient Tun//W (Dn) and its cohomology.

• We analyze the (elliptic) representations of the W (Dn)-isotropy groups of
points of T .

• We relate the second bullet to the sheaf LW (Dn)
u on Tun/W (Dn).

• Then we are finally in the right position to apply Theorem 2.34.

The finite reflection group W (Dn) is naturally isomorphic to the index two sub-
group of W (Bn)=W (Cn) consisting of those elements that involve an even number
of sign changes. In other words, let (Z/2Z)nev be the kernel of the summation map
(Z/2Z)n→ Z/2Z. Then

W (Dn)= (Z/2Z)nev o Sn.

The conjugacy classes in W (Dn) are similar to but slightly different from those in
W (Bn). We rephrase Young’s parametrization in the notations from (3.26). For ev-
ery bipartition (µ, λ) of n where λ has an even number of parts, σ(µ, λ) represents
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one class in W (Dn). Suppose now that µ ` n has only even terms, and define

σ ′′(µ)= σ(µ)ε{n−1,n} = ε
−1
{n}σ(µ)ε{n}. (3.39)

Then σ ′′(µ) represents a class of W (Dn) different from the above. The σ(µ, λ)
and the σ ′′(µ) form a set of representatives for all conjugacy classes of W (Dn).

In the representation theory of classical groups, some almost direct products of
root data of type D arise [Goldberg 1994; Heiermann 2011]. Therefore it will be
useful to investigate a more general situation, as in the Appendix. Fix n1, . . . , nd

with n1+ · · ·+ nd = n and consider the root datum

R′
En =R(SO2n1)× · · ·×R(SO2nd ).

Let W ′
En =W (DEn)o0 be as in (A.1), so 0 ∼= (Z/2Z)dev. The conjugacy classes for

W ′
En are a mixture of those for W (Dn) and for W (BEn). Let us analyze them and the

extended quotient Tun//W ′
En together.

Recall that for w ∈ W (BEn), the groups Tw
un and ZW (BEn)(w) were already com-

puted in Section 3D; see in particular (3.28), (3.29) and (3.30). We say that Eµ ` En
if Eµ is a d-tuple of partitions (µ(1), . . . , µ(d)) with |µ(i)| = ni , and that ( Eµ, Eλ) ` En
if Eλ= (λ(1), . . . , λ(n)) such that |µ(i)| + |λ(i)|. To these we can associate σ( Eµ) and
σ( Eµ, Eλ), as products of (3.26) over the indices i .

• Consider σ( Eµ, Eλ), where Eλ is nonempty and has an even number of terms.
Notice that ZW (BEn)(σ ( Eµ,

Eλ)) contains an element not in W (Dn) which fixes
T σ( Eµ,Eλ) pointwise, namely a single factor ε{a1}(a1 · · · am) of Eλ. Hence the
W (BEn)-conjugacy class of σ( Eµ, Eλ) is precisely the W ′

En-conjugacy class of
σ( Eµ, Eλ). Furthermore,

T σ( Eµ,Eλ)
un /ZW ′

En
(σ ( Eµ, Eλ))= T σ( Eµ,Eλ)

un /ZW (BEn)(σ ( Eµ,
Eλ)),

and as described in (3.32), this is a disjoint union of contractible spaces. The
number of components is given explicitly in terms of Eλ.

• Suppose that Eµ ` En and that all terms of Eµ are even. Then the W (BEn)-
conjugacy class of σ( Eµ) splits into two W ′

En-conjugacy classes, the other one
represented by

σ ′′( Eµ)= σ( Eµ)ε{n−1,n}.

Both ZW (BEn)(σ ( Eµ)) and

ZW (BEn)(σ
′′( Eµ))= ε−1

{n} ZW (BEn)(σ ( Eµ))ε{n}

are contained in W ′
En . Let ml be the multiplicity of l in Eµ. By (3.32),

T σ ′′( Eµ)
un /ZW ′

En
(σ ′′( Eµ))∼= T σ( Eµ)

un /ZW ′
En
(σ ( Eµ))∼=

n∏
l=1

[−1, 1]ml/Sml ,

which is a contractible space.
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• Let µ ` n be a partition with at least one odd term. Again, the W (BEn)-
conjugacy class of σ( Eµ) is precisely the W ′

En-conjugacy class of σ( Eµ). Now

ZW ′
En
(σ ( Eµ))( ZW (BEn)(σ ( Eµ)),

and this really makes a difference. From (3.28) we deduce

T σ( Eµ)
un /ZW ′

En
(σ ( Eµ))∼=

n∏
l=1

(S1)ml
/( n∏

l=1

W (Bml )∩W (Dn)

)
. (3.40)

The group
∏n

l=1 W (Bml )∩W (Dn) equals
(∏n

l=1(Z/2Z)ml
)
+
o
∏ml

l=1 Sml , where
the subscript + means that the total number of sign changes for odd l must be
even. The quotient map∏

l odd

(S1)ml
/(∏

l odd

(Z/2Z)ml

)
+

→

∏
l odd

(S1)ml/(Z/2Z)ml ∼=

∏
l odd

[−1, 1]ml (3.41)

is a two-fold cover which ramifies precisely at the boundary of the unit cube∏
l odd[−1, 1]ml . Therefore the left-hand side of (3.41) is homeomorphic to

the unit sphere of dimension m1+m3+m5+ · · · . This entails that (3.40) is
homeomorphic to∏

l even

([−1, 1]ml/Sml )× Sm1+m3+ ···
/ ∏

l odd

Sml . (3.42)

This space is contractible unless ml = 1 for all odd l; then it is homotopic
to Sm1+m3+···.

The extended quotient Tun//W ′
En is the disjoint union of the spaces Tw

un /ZW ′
En
(w),

as w runs over representatives for the conjugacy classes of W ′
En . Since we covered

all conjugacy classes for W (BEn) intersecting W ′
En , we have a complete description of

conjugacy classes for the latter group. From the above calculations we immediately
get the cohomology of the extended quotient.

Lemma 3.43. The abelian group Ȟ∗(Tun//W ′
En) is torsion-free.

In the case En=n,W ′
En=W (Dn), we can describe the cohomology of Tun//W (Dn)

explicitly. The rank of the odd cohomology is the number of partitions µ ` n such
that every odd term appears with multiplicity one, and there is an odd number of
odd terms.

The rank of the even cohomology of Tun//W (Dn) is the sum of four contribu-
tions:

•
∏

i (ki + 1), for every bipartition (µ, λ) of n with λ= (n)kn · · · (1)k1 such that∑
i ki is positive and even;

• two times the number of partitions of n with only even terms;
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• the number of partitions of n with at least one odd term;

• the number of partitions of n such that every odd term appears only once, and
the number of odd terms is positive and even.

Every point of T ∼= (C×)n is W (BEn)-conjugate to one of the form

t= (t (1), . . . , t (d)), t (i)=
(
(t1)µ

(i)
1 · · · (tni−m(i)

1 −m(i)
2
)µdi (1)m

(i)
1 (−1)m

(i)
2
)
∈ (C×)ni .

The isotropy group of t in W ′
En is

(W ′
En)t =

( d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di
×W (Bm(i)

1
)×W (Bm(i)

2
)

)
∩W (Dn)

=

( d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di

)
×

( d∏
i=1

W
(
Bm(i)

1

)
×W

(
Bm(i)

2

))
∩W

(
Dm(1)

1 +···+m(d)
2

)
. (3.44)

We note that (W ′
En)t is generated by the reflections it contains if t has no coordinates

1 or −1. Otherwise the reflection subgroup of W (Dn)t is

(W ′
En)
◦

t :=

d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di
×W

(
Dm(i)

1

)
×W

(
Dm(i)

2

)
,

where W(D0)=W(D1)= 1. In that case,

(W ′
En)t =

( d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di

)
×W ′

Em, (3.45)

where Em consists of those terms m(i)
1 ,m(i)

2 which are nonzero. The group W ′
Em is a

particular instance of the almost Weyl groups studied in the Appendix. Thus (W ′
En)t

is an example of the groups considered in Lemma A.9, and we may use that result.

Proposition 3.46. For any positive parameter function q , K∗(C∗r (R′En, q)) is a free
abelian group, isomorphic to H∗(Tun//W ′

En;Z).
In particular, for En = n,R′

En =R(SO2n),W ′
En =W (Dn), the free abelian group

K∗(C∗r (R(SO2n), q))∼= H∗(Tun//W (Dn);Z)

has even and odd ranks as given in Lemma 3.43.

Proof. By Theorem 1.52 it suffices to prove this when q = 1.
We adapt the notations from (3.32) to the present setting. Let ( Eµ, Eλ1, Eλ2) be a

d-tuple of tripartitions of n1, . . . , nd , respectively, and such that Eλ1 ∪ Eλ2 has an
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even number of terms. As in (3.45) we write

W
Eµ,Eλ1,Eλ2

:=

( d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di
×W

(
B
|λ
(i)
1 |

)
×W

(
B
|λ
(i)
2 |

))
∩W (Dn)

=

( d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di

)
×W ′

Em,

where Em consists of the nonzero terms among the |λ(i)1 |, |λ
(i)
2 |. The group W

Eµ,Eλ1,Eλ2

is the full stabilizer of some point of Tun, and of the form considered in Lemma A.9.
We note that σ( Eµ, Eλ1, Eλ2) is an elliptic element of W

Eµ,Eλ1,Eλ2
.

For every t ∈ T σ(µ,λ1,λ2)
un,c we have (W ′

En)t ⊃W
Eµ,Eλ1,Eλ2

. Using Lemma A.9 we define

s(σ ( Eµ, Eλ1, Eλ2), t)= ind
(W ′
En)t

W
Eµ,Eλ1,Eλ2

H(uσ( Eµ,Eλ1,Eλ2)
, ρσ( Eµ,Eλ1,Eλ2)

). (3.47)

Suppose that Eµ ` En and that Eµ has only even terms. Then σ ′′( Eµ) = ε{n−1,n}σ( Eµ)

is conjugate to σ( Eµ) in W (BEn) but not in W ′
En . The element σ ′′( Eµ) is elliptic in

ε{n}
(∏d

i=1 S
µ
(i)
1
× · · ·× S

µ
(i)
di

)
ε{n}, and for every t ∈ T σ ′′( Eµ) we have

(W ′
En)t ⊃ ε{n}

( d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di

)
ε{n}.

For such t we define

s(σ ′′( Eµ), t)= ind
(W ′
En)t

ε{n}(
∏d

i=1 S
µ
(i)
1
×···×S

µ
(i)
di

)ε{n}
H(uσ ′′( Eµ), ρσ ′′( Eµ)). (3.48)

As discussed before Lemma 3.43, every conjugacy class of W ′
En appears precisely

once in (3.47) and (3.48) together.
With this information and Lemma A.9 available, the same argument as in the

proof of Theorem 2.45(a) works in the present setting, and shows that the conclu-
sion of Theorem 2.45(a) is fulfilled. Then we apply Theorem 2.45(b). �

3G. Type G2. As basis for the root lattice X of type G2, we take the two simple
roots. We coordinatize the dual lattice Y so that the pairing between X and Y
becomes the standard pairing on Z2. Explicitly, R(G2) becomes

X = Q = Z2, Y = Q∨ = Z2,

T = (C×)2, t = (t (e1), t (e2))= (t1, t2),
R+= {e1, e2, e1+ e2, 2e1+ e2, 3e1+ e2, 3e1+ 2e2}, R = R+∪−R+,

R∨,+= {2e1− 3e2, 2e1− e2, 3e2− e1, e1, e1− e2, e2}, R∨= R∨,+∪−R∨,+,

1= {e1, e2}, α∨0 = e1, α0 = 2e1+ e2,
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s1 = se1, s2 = se2, s0 = tα0sα0 = te1sα0 t−e1 : x→ x +α0−〈α
∨

0 , x〉α0,

W = 〈s1, s2 | s2
1 = s2

2 = (s1s2)
6
= e〉 ∼= D6,

Saff
= {s0, s1, s2}, �= {e},

W e
=W aff

= 〈s0,W0 | s2
0 = (s0s2)

2
= (s0s1)

3
= e〉.

A generic parameter function q for R(G2) has two independent parameters q1=q(s1)

and q2 = q(s2).
The group W ∼= D6 has six conjugacy classes: the identity, reflections associ-

ated to short roots, reflections associated to long roots, the rotation of order two,
rotations of order three and rotations of order six. Representatives are e, s1, s2,
ρπ = (s1s2)

3, ρ2π/3 = (s1s2)
2 and ρπ/6 = s1s2. We determine the connected com-

ponents of the extended quotient Tun//W :

w Tw Z D6(w) Tw
un/Z D6(w)

e T D6 (S1)2/D6 ∼= solid triangle
s1 {(1, t2) : t2 ∈ C×} 〈s1, s3e1+2e2〉 S1/〈s3e1+2e2〉

∼= [−1, 1]
s2 {(t1, 1) : t1 ∈ C×} 〈s2, s2e1+e2〉 S1/〈s2e1+e2〉

∼= [−1, 1]
ρπ {(a, b) : a, b ∈ {±1}} D6 2 points
ρ2π/3 {(1, 1), (ζ3, 1), (ζ 2

3 , 1)} C6 = 〈ρπ/3〉 2 points
ρπ/3 {(1, 1)} C6 = 〈ρπ/3〉 1 point

Here ζ3 is a primitive third root of unity. We see that every connected component
of Tun//W is contractible, and that its cohomology is zero in positive degrees and
Z8 in degree zero.

The root datum R(G2) is simply connected, so Wt is a Weyl group for every
t ∈ T . This can also be checked directly: For t ∈ T with Wt = {e} or Wt generated
by one reflection it is true. For all t ∈ T not of that form, Wt contains a nontrivial
rotation. All rotations (or their inverses) appear in the above table, along with their
fixpoints. We list the isotropy groups of those points:

W(1,1) = D6,

W(ζ3,1) =W(ζ 2
3 ,1)
= 〈s2, ρ2π/3〉 ∼= S3,

W(−1,−1) ∼=W(−1,1) ∼=W(1,−1) = 〈s1, s3e1+2e2〉
∼= S2× S2.

We have checked all the conditions of Theorem 2.45. By Corollary 2.49, for every
positive parameter function q ,

K0(C∗r (R(G2), q))∼= Z8,

K1(C∗r (R(G2), q))= 0.
(3.49)
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Appendix: Some almost Weyl groups

We study some finite groups which are almost Weyl groups. Such groups can
arise as the component groups of unipotent elements of classical complex groups,
and they play a role in the affine Hecke algebras associated to general Bernstein
components for classical p-adic groups [Goldberg 1994; Heiermann 2011]. The
results from this appendix are only needed in Section 3F.

Fix n1, n2, . . . , nd ∈ Z≥1 with n1+ · · ·+ nd = n and consider

W ′
En := (W (Bn1)× · · ·×W (Bnd ))∩W (Dn).

We use the convention that W (D1) is the trivial group. The group W ′
En acts on the

root system
DEn := Dn1 × · · ·× Dnd .

Let 1En be the standard basis of DEn and let 0 be the stabilizer of 1En in W ′
En . Since

W (DEn) acts simply transitively on the collection of bases of DEn ,

W ′
En =W (DEn)o0. (A.1)

Explicitly, the group 0 ∼= (Z/2Z)d−1 is generated by the elements ε(k)ε(k+1) for
k = 1, . . . , d − 1, where ε(k) = senk

is the reflection associated to the short simple
root of Bnk .

The Springer correspondence was extended to groups of this kind in [Kato 1983;
Aubert et al. 2017c]. Let T be the diagonal torus of the connected complex group

G◦ = SO2n1(C)× · · ·×SO2nd (C). (A.2)

Then W ′
En acts naturally on T and we recover W (DEn) as the Weyl group of (G◦, T ).

The Lie algebra of T can be identified with the defining representation of

W (BEn) :=W (Bn1)× · · ·×W (Bnd ). (A.3)

Since 0 consists of diagram automorphisms of DEn , we can build the reductive
group

G = G◦o0. (A.4)

Then W ′
En becomes the “Weyl” group of this disconnected group:

W ′
En =W (G, T ) := NG(T )/T .

For u ∈ G◦ unipotent let Bu
= Bu

G◦ be the variety of Borel subgroups of G◦ con-
taining u. The group ZG(u) acts naturally on Bu

×0, and that induces an action
of AG(u)= π0(ZG(u)/Z(G)) on H i (Bu

;C)⊗C[0]. For ρ ′ ∈ Irr(AG(u)) we form
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the W ′
En-representations

H(u, ρ ′)= HAG(u)(ρ, H∗(Bu
;C)⊗C[0]),

π(u, ρ ′)= HAG(u)(ρ, H top(Bu
;C)⊗C[0]).

We call ρ ′ geometric if π(u, ρ) 6= 0. Then [Aubert et al. 2017c, Theorem 4.4] says
that π(u, ρ ′) ∈ Irr(W ′

En) and that this yields a bijection between Irr(W ′
En) and the

G-conjugacy classes of pairs (u, ρ ′) with u ∈ G◦ unipotent and ρ ′ ∈ Irr(AG(u))
geometric.

The W ′
En-representations H ′(u, ρ ′), with (u, ρ ′) as above, form another Z-basis

of RZ(W ′En). Indeed, this can be shown in the same way as for Weyl groups in
[Reeder 2001, Lemma 3.3.1]; the input from [Borho and MacPherson 1981] holds
for W ′ by [Aubert et al. 2017c, Lemma 4.5].

For P ⊂1En we define the standard parabolic subgroup

W ′P := 〈sα : α ∈ P〉oStab0(P).

As usual, a parabolic subgroup of W ′
En is a conjugate of some W ′P . Let PA be the

standard basis of the union of the type A root subsystems of RP and let PB be the
standard basis of the union of the type B root subsystems of QRP ∩ BEn . (So PB

need not be contained in P .) It is easily seen that

W ′P =WPA ×WPB ∩W (Dn)=WPA ×W ′
En P
, (A.5)

where En P consists of the numbers |PB ∩ Bni | which are nonzero.
All the above notions for W ′

En have natural analogues for W ′P , which we indicate
by an additional subscript P . In particular, [Kato 1983, Proposition 6.2] entails
that, as in (1.5) and (1.6),

ind
W ′
En

W ′P
(HW ′P (uP , ρ

′

P))
∼= HomAGP (uP )(ρP , H∗(BuP ;C)⊗C[0]).

Lemma A.6. The parabolic subgroups of W ′
En are precisely the isotropy groups of

the points of Lie(T ).

Proof. Considering the standard representation of W (BEn) on Lie(T ), we see that for
any y ∈Lie(T ) the isotropy group (W ′

En)y is W (BEn)-conjugate to W (BEn)Q∩W (DEn),
where W (BEn)Q is a standard parabolic subgroup of W (BEn). From (A.5) we see
that the group W (BEn)Q ∩ W (DEn) equals W ′P for RP = RQ ∩ DEn . Hence every
isotropy group (W ′

En)y is W (BEn)-conjugate to some standard parabolic subgroup
of W ′

En . Since the diagram automorphisms ε(k) stabilize the collection of parabolic
subgroups of W ′

En and W (BEn) is generated by W (DEn) and the ε(k), we conclude that
(W ′
En)y is W ′

En-conjugate to a parabolic subgroup of W ′
En . �

With Lemma A.6 we can define ellipticity in two equivalent ways. An element of
W ′
En is elliptic if it is not contained in a proper parabolic subgroup, or equivalently, if
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it fixes a nonzero element of Lie(T ). With these notions we can develop the elliptic
representation theory of W ′

En , exactly as in [Reeder 2001] and as in Section 1A. In
particular, (1.11) remains valid.

Lemma A.7. The group of elliptic representations RZ(W ′En) is torsion-free.

Proof. We follow the proof of Theorem 1.12, with the group G◦ from (A.2). Every
Levi subgroup of G◦ can be described by a d-tuple of partitions Eα= (α(1), . . . , α(d)).
The standard Levi subgroup associated to Eα is

G◦
Eα =

d∏
i=1

SO2ni (C)α(i) =

d∏
i=1

GL
α
(i)
1
(C)× · · ·×GL

α
(i)
di
(C)×SO2(ni−|α(i)|)

(C).

(We note that sometimes several P ⊂ 1 are associated to one Eα, as already for
SO2n(C).) We mimic (A.4) by putting

G Eα = G◦
Eα o

〈
ε(i)ε( j)

: |α(i)|< ni and |α( j)
|< n j

〉
=

( d∏
i=1

GL
α
(i)
1
(C)× · · ·×GL

α
(i)
di
(C)

)
× S

( d∏
i=1

O2(ni−|α(i)|)
(C)

)
.

Then W (G Eα, T )∼=W ′P for P ⊂1 corresponding to Eα.
The Bala–Carter classification says that the unipotent classes in G◦ can be

parametrized by d-tuples of bipartitions (Eα, Eβ) such that 2|α(i)| + |β(i)| = 2ni , β(i)

has only odd parts and all parts of β(i) are distinct. A typical u in this conjugacy
class is distinguished in the standard Levi subgroup G◦

Eα
.

Like in (1.13) and (1.14), let G Eα′′ be a standard Levi subgroup containing u.
Then u = u′′u′ with u′ in a product of groups GLnk (C) and

u′ ∈ S
( d∏

i=1

O2(ni−|α
′′(i)|)(C)

)
=: H.

The GL-factors and u′′ do not contribute to AG Eα′′ (u).
In the upcoming calculations we omit the case that Eβ is empty; that case is a bit

different but can be handled in the same way.
With [Carter 1972, §13.1], we find that the quotient of Z H (u′) by its unipotent

radical is
d∏

i=1

∏
j even

Sp
2m
′(i)
j
(C)×

d∏
i=1

∏
j odd, not in β(i)

O
2m
′(i)
j
(C)× S

( d∏
i=1

∏
j odd, in β(i)

O
2m
′(i)
j +1

(C)

)
.

The component groups become

AG Eα′′ (u)
∼= AH (u′)∼=

( d∏
i=1

∏
j odd, in α′(i), not in β(i)

Z/2Z

)
× S

( d∏
i=1

∏
j odd, in β(i)

Z/2Z

)
.
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In the same way as after (1.15), we see that RZ(AG(u))= 0 unless each α(i) has only
distinct odd terms, none of them appearing in β(i). For such (Eα, Eβ), the maximal
reductive quotient of ZG(u) simplifies to( d∏

i=1

∏
j odd, in α(i)

O2(C)

)
× S

( d∏
i=1

∏
j odd, in β(i)

O1(C)

)
(A.8)

and the component group becomes

AG(u)=
d∏

i=1

∏
j odd, in α(i)

Z/2Z× A with A = S
( d∏

i=1

∏
j odd, in β(i)

Z/2Z

)
.

Just as in (1.16), we can calculate that RZ(AG(u))∼= RZ(A). �

With Lemmas A.6 and A.7 at hand the proof of Proposition 1.17 also becomes
valid for W ′

En . Let us formulate this somewhat more generally. Let W ′ be a finite
group which is a direct product of a Weyl group and a number of groups of the
form W ′

En . Let G ′ be the corresponding direct product of the groups called G in
(1.3) and (A.4). We denote the basis of the root system R′ underlying W ′ by 1′,
and the standard parabolic subgroup associated to P ⊂1 by W ′P .

Lemma A.9. For every w ∈ CP(W ′), there exists a pair (uP,w, ρ
′

P,w) such that

• uP,w is quasidistinguished unipotent in G ′P ,

• ρ ′P,w ∈ Irr(AG ′P (uP,w)) is geometric,

• the set{
ind

W ′
En

W ′P
(HP(uP,w, ρ

′

P,w)) : P ∈ P(1En)/W ′
En, w ∈ CP,ell(W ′En)

}
forms a Z-basis of RZ(W ′).

Proof. Let (W ′i )i be the indecomposable factors of W ′, with root systems R′i . For
every P ⊂1′,

W ′P =
∏

i

W ′P∩R′i
and RZ(W ′P)=

⊗
i

RZ(W ′P∩R′i
).

Thus we reduce to the case of a single W ′i . If W ′i is an irreducible Weyl group, then
Proposition 1.17 applies immediately, so we may assume that W ′i =W ′

En .
Let u ∈ G be unipotent and assume that RZ(AG(u)) 6= 0. From the proof of

Lemma A.7, we see that a maximal reductive subgroup of ZG(u) is of the form
(A.8). For each (i, j) with j in α(i), we pick an element ti, j ∈ SO2(C) \

{
±
( 1

0
0
1

)}
,

all different. This gives a semisimple element

t :=
d∏

i=1

( ∏
j in α(i)

ti, j ×
∏

j in β(i)

1
)
∈ ZG(u)◦.
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Furthermore, t does not lie in any proper Levi subgroup of G◦ containing u, so tu
does lie in any proper Levi subgroup of G◦. Thus, u is quasidistinguished in G.

Knowing this and Lemma A.7, the proof of Proposition 1.17 goes through. �
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