
ANNALS OF
K-THEORY

A JOURNAL OF THE K-THEORY FOUNDATION

Paul Balmer

Guillermo Cortiñas

Hélène Esnault

Eric Friedlander

Max Karoubi

Huaxin Lin

Alexander Merkurjev

Amnon Neeman

Birgit Richter

Jonathan Rosenberg

Marco Schlichting

Charles Weibel

Guoliang Yu

vol. 3 no. 3 2018

msp



ANNALS OF K-THEORY
msp.org/akt

EDITORIAL BOARD

Paul Balmer University of California, Los Angeles, USA
balmer@math.ucla.edu

Guillermo Cortiñas Universidad de Buenos Aires and CONICET, Argentina
gcorti@dm.uba.ar

Hélène Esnault Freie Universität Berlin, Germany
liveesnault@math.fu-berlin.de

Eric Friedlander University of Southern California, USA
ericmf@usc.edu

Max Karoubi Institut de Mathématiques de Jussieu – Paris Rive Gauche, France
max.karoubi@imj-prg.fr

Huaxin Lin University of Oregon, USA
livehlin@uoregon.edu

Alexander Merkurjev University of California, Los Angeles, USA
merkurev@math.ucla.edu

Amnon Neeman Australian National University
amnon.neeman@anu.edu.au

Birgit Richter Universität Hamburg, Germany
birgit.richter@uni-hamburg.de

Jonathan Rosenberg (Managing Editor)
University of Maryland, USA
jmr@math.umd.edu

Marco Schlichting University of Warwick, UK
schlichting@warwick.ac.uk

Charles Weibel (Managing Editor)
Rutgers University, USA
weibel@math.rutgers.edu

Guoliang Yu Texas A&M University, USA
guoliangyu@math.tamu.edu

PRODUCTION

Silvio Levy (Scientific Editor)
production@msp.org

Annals of K-Theory is a journal of the K-Theory Foundation (ktheoryfoundation.org). The K-Theory Foundation
acknowledges the precious support of Foundation Compositio Mathematica, whose help has been instrumental in
the launch of the Annals of K-Theory.

See inside back cover or msp.org/akt for submission instructions.

The subscription price for 2018 is US $475/year for the electronic version, and $535/year (+$30, if shipping
outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address
should be sent to MSP.

Annals of K-Theory (ISSN 2379-1681 electronic, 2379-1683 printed) at Mathematical Sciences Publishers, 798
Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Peri-
odical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

AKT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY
mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/

© 2018 Mathematical Sciences Publishers

http://msp.org/akt/
mailto:balmer@math.ucla.edu
mailto:gcorti@dm.uba.ar
mailto:ericmf@usc.edu
mailto:max.karoubi@imj-prg.fr
mailto:merkurev@math.ucla.edu
mailto:amnon.neeman@anu.edu.au
mailto:birgit.richter@uni-hamburg.de
mailto:jmr@math.umd.edu
mailto:schlichting@warwick.ac.uk
mailto:weibel@math.rutgers.edu
mailto:guoliangyu@math.tamu.edu
mailto:production@msp.org
http://www.ktheoryfoundation.org
http://www.ktheoryfoundation.org
http://www.compositio.nl/
http://dx.doi.org/10.2140/akt
http://msp.org/
http://msp.org/


msp
ANNALS OF K-THEORY

Vol. 3, No. 3, 2018

dx.doi.org/10.2140/akt.2018.3.369

Triple linkage

Karim Johannes Becher

We study the condition on a field that any triple of (bilinear) Pfister forms of a
given dimension are linked. This is a strengthening of the condition of linkage
investigated by Elman and Lam, which asks the same for pairs of Pfister forms.
In characteristic different from two this condition for triples of 2-fold Pfister
forms is related to the Hasse number.

1. Introduction

Milnor’s seminal article [1969/1970] on K-theory of fields had an enormous impact
on quadratic form theory. In a series of articles Elman and Lam explored the
correspondence between Pfister forms and symbols (canonical generators) in the K-
theory modulo 2 of a field. The notion of linkage for Pfister forms was introduced
in [Elman and Lam 1972a]. With the definition from [Elman and Lam 1972a,
Section 4] one can consider linkage of a finite number of Pfister forms. However,
the study of linkage has mostly been limited to pairs of Pfister forms. Initially, this
study was restricted to fields of characteristic different from 2, where quadratic
forms are characterised by their associated (symmetric bilinear) polar forms.

When trying to extend notions and statements to cover the case of characteristic
2, one has to choose between quadratic forms or symmetric bilinear forms. In this
article we work mainly in the setup of Milnor K-theory over a field of arbitrary
characteristic. We study linkage of symbols in the Milnor K-groups modulo 2,
or equivalently, of symmetric bilinear Pfister forms. In particular, we study the
condition that a certain Milnor K-group modulo 2 has triple linkage, i.e., that any
three symbols have a common linkage. This condition turns out to have stronger
consequences than usual linkage, in particular on the vanishing of higher K-groups.
In the last section we focus on fields of characteristic different from 2 and relate
the condition of triple linkage to quadratic forms and the Hasse number ũ (the
u-invariant if the field is nonreal).

For a recent study of triple linkage of quadratic Pfister forms covering fields of
characteristic 2, we refer the reader to [Chapman et al. 2018].

MSC2010: 11E04, 11E81, 19D45.
Keywords: field, Milnor K -theory, symbol, linkage, bilinear Pfister form, quadratic form, Hasse

number, u-invariant.
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2. Symbols and Pfister forms

We refer to [Elman et al. 2008] for standard results used from quadratic form theory.
Let E be a field. By a form over E we mean a pair (V, b) of a finite-dimensional
E-vector space V and a nondegenerate symmetric bilinear form b on V . We use
an equality sign to indicate that two forms are isometric.

Let n always denote a nonnegative integer. Given a1, . . . , an ∈ E× we denote
the bilinear n-fold Pfister form 〈1,−a1〉⊗ · · ·⊗ 〈1,−an〉 over E by 〈〈a1, . . . , an〉〉.
In the sequel we refer to bilinear Pfister forms simply as Pfister forms. Given a
Pfister form π , the orthogonal complement of the subform 〈1〉 in π is called the
pure part of π .

Theorem 2.1 (Elman–Lam). Let r ∈N. Let ρ be an anisotropic r-fold Pfister form
over E and let ρ ′ denote its pure part. Let π be a Pfister form over E such that
π ⊗ ρ is anisotropic and let c1 ∈ E× be such that −c1 is represented by π ⊗ ρ ′.
Then there exist c2, . . . , cr ∈ E× such that π ⊗ ρ = π ⊗〈〈c1, . . . , cr 〉〉.

Proof. See [Elman et al. 2008, Proposition 6.15] or [Elman and Lam 1972a, The-
orem 2.6]. �

We denote by kn E the n-th Milnor K-group of E modulo 2; this is the abelian
group generated by symbols {a1, . . . , an}, with a1, . . . , an ∈ E×, subject to the
defining relations that the map (E×)n→ kn E given by (a1, . . . , an) 7→ {a1, . . . , an}

is multilinear and further that {a1, . . . , an} = 0 whenever ai ∈ E×2 for some i 6 n
or ai + ai+1 = 1 for some i < n. The direct sum

⊕
n∈N kn E is a graded ring with

the multiplication induced by concatenation of symbols.
We recall some results from [Elman et al. 2008] on the relation of symbols and

Pfister forms, which for fields of characteristic different from 2 go back to [Elman
and Lam 1972a]. We begin with the one-to-one correspondence between symbols
and Pfister forms.

Theorem 2.2 (Elman–Lam). For a1 . . . , an, b1, . . . , bn ∈ E×, we have

{a1, . . . , an} = {b1, . . . , bn} if and only if 〈〈a1, . . . , an〉〉 = 〈〈b1, . . . , bn〉〉.

Proof. See [Elman et al. 2008, Theorem 6.20]. �

We denote by 6E2 the subgroup of E× consisting of the nonzero sums of
squares in E . Recall that the field E is real if −1 /∈ 6E2, nonreal otherwise.
For m ∈ N we denote by DE(m) the subset of 6E2 consisting of the elements that
are sums of m squares in E .

Corollary 2.3. For a ∈ E× and the symbol τ = {−1, . . . ,−1} in kn E , we have:

(a) a ∈ DE(2n) if and only if τ · {a} = 0 in kn+1 E.

(b) a ∈DE(2n
−1) if and only if τ ={−a, a2, . . . , an} for certain a2, . . . , an ∈ E×.
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Proof. This follows from Theorem 2.1 and Theorem 2.2. �

Lemma 2.4. Let τ and τ ′ be symbols in kn E and let a, a′ ∈ E× be such that
τ · {a} = τ ′ · {a′}. Then τ · {a} = τ · {c} = τ ′ · {c} = τ ′ · {a′} for some c ∈ E×.

Proof. This follows from [Elman et al. 2008, Corollary 6.16 and Theorem 6.20]. �

3. Linkage

Assume from now on that n > 2. Given two symbols σ1, σ2 ∈ kn E , the sum
σ1+ σ2 ∈ kn E is equal to a symbol if and only if there exists a symbol σ ′ ∈ kn−1 E
and b1, b2 ∈ E× such that σi = σ

′
· {bi } for i = 1, 2 (see [Elman and Lam 1972a,

Lemma 5.4]); in this case, we say that σ1 and σ2 are linked.
We say that kn E is linked if any two symbols in kn E are linked (which in the

terminology of [Elman and Lam 1973] corresponds to saying that In E is linked.)
Obviously, if kn E is linked, then so is km E for any integer m > n.

The following statement was obtained in [Elman and Lam 1973, Corollary 2.8
and Corollary 2.9]. For convenience of the reader we include a compact proof,
whose first lines follow [Elman and Lam 1972b, Section 3, Example 3]. The
statement should be compared with Theorem 5.1.

Theorem 3.1 (Elman–Lam). Assume that kn E is linked. Then 6E2
= DE(2n+1)

and kn+2 E = {−1, . . . ,−1} · k1 E. In particular, if E is nonreal then kn+2 E = 0.

Proof. Consider an arbitrary symbol τ ∈ kn−2 E and a1, a2, b1, b2 ∈ E×. Since kn E
is linked and by Lemma 2.4, there exist c1, c2 ∈ E× and a symbol σ ∈ kn−1 E such
that τ · {ai , bi } = τ · {ai , ci } = σ · {ci } for i = 1, 2. It follows that

τ · {a1, c1, c2} = σ · {c1, c2} = τ · {a2, c1, c2},

whereby

τ · {a1, b1, a2, b2} = τ · {a1, c1, a2, c2} = τ · {a2, c1, a2, c2} = {−1, c1} · τ · {a2, b2}.

This argument shows that for any a1, . . . , an+2 ∈ E×, there exists c ∈ E× such that

{a1, . . . , an+2} = {a2, . . . , an+1,−1, c}.

Applying this rule n+ 1 times, we conclude that every symbol in kn+2 E is of the
form {−1, . . . ,−1, c} with c ∈ E×. Hence kn+2 E = {−1, . . . ,−1} · k1 E .

Moreover, if a1, . . . , an+2 ∈ E× are such that a2 ∈DE(2), then {−1, a2} = 0 and
we obtain from the above rule that {a1, . . . , an+2}= 0. Thus we have {a}·kn+1 E = 0
for any a ∈ DE(2).

Consider an element c ∈ DE(2n+1
+ 1). We write c = a + b with a ∈ DE(2)

and b ∈ DE(2n+1
− 1). In kn+1 E we obtain that {−1, . . . ,−1} = {−b} · τ for a



372 KARIM JOHANNES BECHER

symbol τ in kn E , by Corollary 2.3. Since c−b= a we have {−b, c} = {a, bc}. As
{a} · kn+1 E = 0, we obtain in kn+2 E that

{−1, . . . ,−1, c} = {−b, c} · τ = {a, bc} · τ = 0,

which shows that c ∈ DE(2n+1). This argument shows that 6E2
= DE(2n+1).

Assume finally that E is nonreal. If −1 ∈ E×2 then {−1} = {1} = 0 in k1 E .
If char(E) 6= 2 then E× = 6E2

= DE(2n+1). Hence, in any case we obtain that
kn+2 E = {−1, . . . ,−1} · k1 E = 0. �

If E is nonreal and kn E is linked with n>2, then kn+2 E vanishes by Theorem 3.1,
but we may have that kn+1 E 6= 0, as the following well-known example shows.

Example 3.2. For E = C((t1)) · · · ((tn+1)), kn E is linked and kn+1 E ' Z/2Z.

4. The linkage pairing

We are going to investigate an operation on linked symbols. Let n > 2. To any pair
of linked symbols in kn E we associate a symbol in kn+1 E .

Proposition 4.1. Let σ1, σ2 ∈ kn E be two linked symbols. There is a unique symbol
ρ ∈ kn+1 E such that, for any symbol τ ∈ kn−1 E and any a1,a2∈ E×with σi = τ ·{ai }

for i = 1, 2, we have ρ = τ · {a1, a2}.

Proof. By the hypothesis there exist a symbol τ ∈ kn−1 E and elements a1, a2 ∈ E×

with σi = τ · {ai } for i = 1, 2. Suppose we have another symbol τ ′ ∈ kn−1 E and
a′1, a′2 ∈ E× with σi = τ

′
· {a′i } for i = 1, 2. By Lemma 2.4 there exist c1, c2 ∈ E×

such that τ · {ci } = σi = τ
′
· {ci } holds for i = 1, 2. We obtain that

τ · {a1, a2} = τ · {c1, c2} = τ
′
· {c1, c2} = τ

′
· {a′1, a′2}. �

Corollary 4.2. Suppose a, b, c ∈ E× and let τ be a symbol in kn−1 E such that
τ · {−1, a} = 0. Assume there exist a symbol ρ in kn E and x, y, z ∈ E× such that
τ · {a, b} = ρ · {x}, τ · {a, c} = ρ · {y} and τ · {b, c} = ρ · {z}. Then τ · {a, b, c} = 0.

Proof. By Proposition 4.1 we obtain that ρ ·{x, z}= τ ·{a, b, c}=ρ ·{y, z}, whereby
ρ · {xy, z} = 0. We have τ · {b,−bc} = τ · {b, c} = ρ · {z}. Since τ · {−1, a} = 0 we
further have τ · {a,−bc} = τ · {a, bc} = ρ · {xy}. We conclude with Proposition 4.1
that τ · {a, b, c} = τ · {a, b,−bc} = ρ · {xy, z} = 0. �

Corollary 4.3. Assume that kn E is linked. We obtain a surjective pairing

〈 · , · 〉 : kn E × kn E→ kn+1 E

by letting 〈τ · {a1}, τ · {a2}〉 = τ · {a1, a2} for any symbol τ ∈ kn−1 E and any
a1, a2 ∈ E×.
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Proof. Let σ1, σ2 ∈ kn E be given. As kn E is linked, there exist a1, a2 ∈ E× and
a symbol τ ∈ kn−1 E such that σi = τ · {ai } for i = 1, 2. By Proposition 4.1 the
symbol ρ = τ · {a1, a2} ∈ kn+1 E only depends on σ1 and σ2 but not on the choice
of τ and a1, a2 ∈ E×. Hence, the pairing is well-defined. As kn E is linked, so
is kn+1 E , and it follows that the pairing is surjective. �

If kn E is linked then we call the pairing in Corollary 4.3 the linkage pairing
on kn E .

Theorem 4.4. Assume that kn E is linked. Then the following are equivalent:

(i) The linkage pairing on kn E is bilinear.

(ii) 6E2
= DE(2n) and kn+1 E = {−1, . . . ,−1} · k1 E.

(iii) Either kn+1 E = 0, or E is real and the rule c 7→ {−1, . . . ,−1, c} determines
an isomorphism E×/6E2

→ kn+1 E.

Proof. As a consequence of the definition of the linkage pairing

〈 · , · 〉 : kn E × kn E→ kn+1 E,

we have for any ρ, ρ ′ ∈ kn E that 〈ρ, ρ ′〉 = ρ · {d} for some d ∈ E×.

(i)⇒(ii): Consider an arbitrary symbol τ ∈ kn−2 E and a, b, c∈ E×. Set σ1={a, b},
σ2={a, c}, σ3={b, c} and σ4={−ab, c}. We obtain that 〈τ ·σi , τ ·σ1〉= τ ·{a, b, c}
for i = 2, 3, 4. Assuming that the pairing is bilinear, we get that

〈τ · (σ2+ σ3+ σ4), τ · σ1〉 = τ · {a, b, c}.

Since σ2+ σ3+ σ4 = {−1, c}, we conclude that

τ · {a, b, c} = 〈τ · {−1, c}, τ · {a, b}〉 = τ · {−1, c, d}

for some d ∈ E×. This argument shows that, for any c1, . . . , cn, cn+1 ∈ E×, there
exists d ∈ E× such that {c1, . . . , cn, cn+1}= {−1, c1, . . . , cn−1, d} in kn+1 E . Using
this rule n times we obtain for any c1, . . . , cn, cn+1 ∈ E× that

{c1, . . . , cn+1} = {−1, . . . ,−1, c1, d} = {−1, . . . ,−1, d ′}

for some d, d ′ ∈ E×. This shows that kn+1 E = {−1, . . . ,−1} · k1 E and that
{a} · kn E = 0 for any a ∈ DE(2n−1).

Consider now an element c ∈ DE(2n
+ 1). We choose a, b ∈ DE(2n−1) such

that c− a− b is a square in E . Then we have {−a,−b, c} = 0 in k3 E , whereby
{a,−b, c} = {−1,−b, c}. For the symbol ε = {−1, . . . ,−1} in kn−2 E we obtain
that ε · {−1, b} = 0 and conclude that

ε · {−1,−1, c} = ε · {−1,−b, c} = ε · {a,−b, c} = 0
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for a ∈ DE(2n−1). Hence {−1, . . . ,−1, c} = 0 in kn+1 E , whereby c ∈ DE(2n).
This shows that 6E2

= DE(2n).

(ii)⇒(iii): This implication is obvious.

(iii)⇒(i): Let ε = {−1, . . . ,−1} in kn−1 E . For any symbol τ ∈ kn−1 E and any
a, b ∈ E× we have τ · {a} · τ · {b} = ε · τ · {a, b} = ε · 〈τ · {a}, τ · {b}〉. Since kn E is
linked, this means that

ρ · ρ ′ = ε · 〈ρ, ρ ′〉 in k2n E for any ρ, ρ ′ ∈ kn E .

Hence, the pairing kn E×kn E→ k2n E, (ρ, ρ ′) 7→ ε ·〈ρ, ρ ′〉 is bilinear. On the other
hand, (iii) implies that kn+1 E→ k2n E, ξ 7→ ε · ξ is an isomorphism. Therefore the
pairing 〈 · , · 〉 is bilinear. �

5. Triple linkage

Let n > 2. We say kn E has triple linkage if for any three symbols σ1, σ2, σ3 ∈ kn E
there exist a symbol τ ∈ kn−1 E and a1, a2, a3 ∈ E× such that σi = τ · {ai } for
i = 1, 2, 3. Note that this implies that kn E is linked.

Theorem 5.1. Assume that kn E has triple linkage. Then 6E2
= DE(2n) and

kn+1 E = {−1, . . . ,−1} · k1 E. In particular, if E is nonreal then kn+1 E = 0.

Proof. Let 〈 · , · 〉 : kn E × kn E → kn+1 E be the linkage pairing. Consider three
symbols σ1, σ2, σ3 ∈ kn E . By the hypothesis there exist a symbol τ ∈ kn−1 E and
a1, a2, a3 ∈ E× such that σi = τ · {ai } for i = 1, 2, 3. As σ1+ σ2 = τ · {a1a2} we
obtain that

〈σ1+ σ2, σ3〉 = τ · {a1a2, a3} = τ · {a1, a3}+ τ · {a2, a3} = 〈σ1, σ3〉+ 〈σ2, σ3〉.

Hence the linkage pairing is bilinear and Theorem 4.4 yields the statement. �

Question 5.2. If kn E has triple linkage, do then any finite number of symbols in
kn E have a common linkage (by a symbol in kn−1 E)?

Triple linkage holds for kn E if E is a Cn-field, in the terms of Tsen–Lang theory
(see [Pfister 1995, Chapter 5]). This is a direct consequence of the next statement.
For n = 1 and |S| = 3 the statement corresponds to [Sivatski 2014, Proposition 9].

Proposition 5.3. Assume that there exists a finite system S of nonzero symbols in
kn E that do not have a common linkage. Then there exists an anisotropic system
of |S| − 1 quadratic forms in |S| · 3 · 2n−2 variables over E.

Proof. Let m ∈ N be as large as possible such that there exist a1, . . . , am ∈ E×

for which the symbol {a1, . . . , am} factors every element of S. By the hypothesis,
m 6 n − 2. We set π = 〈〈a1, . . . , am〉〉. Using Theorem 2.1 and the one-to-one
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correspondence between Pfister forms and symbols, we choose for σ ∈S an (n−m)-
fold Pfister form ρσ over E such that σ corresponds to the n-fold Pfister form π⊗ρσ

over E , and we denote by ρ ′σ the pure part of ρσ . Note that dim(π⊗ρ ′σ )= 2n
−2m

for any σ ∈ S. By Theorem 2.1 and by the maximality of m, there exists no
element c ∈ E× such that −c is represented by all the forms π ⊗ ρ ′σ with σ ∈ S.
We fix σ0 ∈ S and set S ′ = S r {σ0}. Considering each of the forms π ⊗ ρ ′σ for
σ ∈ S with its own variables, we obtain an anisotropic system of quadratic forms
(π ⊗ ρ ′σ0

−π ⊗ ρ ′σ )σ∈S ′ in |S| · (2n
− 2m) variables over E . If m < n− 2 we may

substitute zero for some of these variables. So in any case we obtain an anisotropic
system of |S| − 1 quadratic forms over E in exactly |S| · 3 · 2n−2 variables. �

Let ũ(E) denote the Hasse number of E , which is defined as the supremum in
N∪ {∞} on the dimension of anisotropic totally indefinite quadratic forms over E ;
see [Pfister 1995, Chapter 8, Section 3]. The study of this invariant was initiated in
[Elman et al. 1973], and the notation was introduced in [Elman 1977]. The defini-
tion of the Hasse number captures one of several possibilities to study bounds on the
dimension of anisotropic quadratic forms in a meaningful way without restriction
to nonreal fields. The results below have their main interest in the case where E is
nonreal, and in this case ũ(E) is the usual u-invariant; see [Pfister 1995, Chapter 8;
Elman et al. 2008, Chapter VI].

Corollary 5.4. If ũ(E(t))6 2n+1 then kn E has triple linkage.

Proof. Suppose first that E is real and ũ(E(t)) <∞. It follows by [Elman et al.
1973, Theorem I] that E is hereditarily euclidean. Hence kn E ' Z/2Z, whereby
kn E has triple linkage.

Assume now that E is nonreal and ũ(E(t)) 6 2n+1 < 9 · 2n−2. By the Amer–
Brumer theorem [Pfister 1995, Chapter 9, Proposition 1.10], it follows that every
pair of quadratic forms in 9 · 2n−2 variables over E is isotropic. Hence kn E has
triple linkage, by Proposition 5.3. �

The next example shows that the converse to the statement in Corollary 5.4 does
not hold.

Example 5.5. Let E0 be a quadratically closed field of characteristic not 2 having a
finite field extension of even degree. (One can for example take E0 as the quadratic
closure of Q: any polynomial over Q having as Galois group a dihedral group of
order 2m for an odd positive integer m will have as splitting field over E0 an
extension of order 2m. See also the discussion of finite extensions of quadratically
closed fields in [Lam 2005, Chapter VII, §7].) It follows from this choice of E0

that ũ(E0)= 1 while ũ(F0)> 2 for some finite separable extension F0/E0. Thus
k1 F0 6= 0. Consider the fields of iterated power series in n variables

E = E0((u1)) · · · ((un)) and F = F0((u1)) · · · ((un)).



376 KARIM JOHANNES BECHER

We obtain ũ(E)= 2n and kn+1 F 6= 0. Since F/E is a finite separable extension, F is
the residue field of a discrete valuation on E(t). We conclude that kn+2 E(t) 6= 0.
After translation to Pfister forms via [Elman et al. 2008, Theorem 6.20], the Arason–
Pfister Hauptsatz [Elman et al. 2008, Theorem 6.18] yields ũ(E(t))> 2n+2.

Note that {u1, . . . , un} is the only nonzero symbol in kn E . In particular kn E has
triple linkage. Finally, kn F does not have triple linkage, for kn+1 F 6= 0.

The following reformulates and enhances [Elman et al. 1973, Theorem G]. The
notation In E refers to the n-th power of the fundamental ideal IE in the Witt ring
(of symmetric bilinear forms) of E ; recall that In E is additively generated by the
classes of the n-fold Pfister forms over E .

Theorem 5.6 (Elman–Lam–Prestel). Assume that char(E) 6= 2. The following are
equivalent:

(i) ũ(E)6 4.

(ii) E is linked and I3 E is torsion-free.

(iii) E is linked and the linkage pairing k2 E × k2 E→ k3 E is bilinear.

(iv) 6E2
= DE(4) and k3 E = {−1,−1} · k1 E.

(v) k2 E is linked and either k3 E = 0, or E is real and c 7→ {−1,−1, c} defines
an isomorphism E×/6E2

→ k3 E.

Proof. Conditions (iii)–(v) are equivalent by Theorem 4.4. The equivalence of (i)
and (ii) is shown in [Elman et al. 1973, Theorem G] and in [Elman 1977, Theo-
rem 4.7]. By [Elman and Lam 1973, Corollary 2.9], (ii) implies that I3 E = 4 · IE .
Therefore, the equivalence of (ii) and (iv) follows using Theorem 2.2. �

Corollary 5.7. Assume that char(E) 6= 2 and that k2 E has triple linkage. Then
ũ(E)6 4.

Proof. This follows from Theorem 5.1 together with Theorem 5.6. �

In the case where E is nonreal, one can show the converse of Corollary 5.7
by using the following statement, which is a direct consequence of a deep result
of Peyre [1995, Proposition 6.1] combined with an observation by Sivatski [2014,
Corollary 11]. This was pointed out to the author of the present article by Adam
Chapman and David Leep.

Proposition 5.8 (Peyre–Sivatski). Assume that char(E) 6= 2. Let H be a subgroup
of k2 E with |H|6 8. Assume that every element of H is a symbol and that I3 E = 0.
Then there exists a ∈ E× such that for every σ ∈H one has σ = {a, bσ } for some
bσ ∈ E×.

Proof. By the hypothesis, every σ ∈H corresponds to an E-quaternion algebra. Let
σ1, σ2, σ3 ∈ k2 E be three symbols that generate H and let Q1, Q2, Q3 denote the
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corresponding quaternion algebras. Since I3 E = 0 we have H 3(E,Z/Q(2)) = 0.
It follows by [Peyre 1995, Proposition 6.1] that there exists a field extension F/E
with [F : E] = 2m for an odd integer m and such that (Qi )F is split for i = 1, 2, 3.
Then, by [Sivatski 2014, Corollary 11], Q1, Q2, Q3 have a common slot a ∈ E×.
It follows that any σ ∈H is of the form σ = {a, bσ } with bσ ∈ E×. �

In [Sivatski 2014], Sivatski seems to be unaware that he provides a proof of
Proposition 5.8. In [Sivatski 2014, Corollary 12] he comes to a closely related
conclusion, but at the end of his article he asks whether fields of cohomological
2-dimension 2 satisfy the conclusion stated in Proposition 5.8.

Corollary 5.9. Assume that E is nonreal with char(E) 6= 2. Then ũ(E)6 4 if and
only if k2 E has triple linkage.

Proof. One of the implications is Corollary 5.7, while the converse follows from
Proposition 5.8. �

The hypothesis in Proposition 5.8 on E can be weakened. Instead of assuming
I3 E = 0, which requires E to be nonreal, it is sufficient to assume that I3 E is torsion-
free and that E has the so-called ED-property about field orderings introduced in
[Prestel and Ware 1979]. This can be proven by using algebras with involution
and skew-hermitian forms over quaternion algebras. In this way Proposition 5.8 is
recovered with a different proof, which in particular is independent of the algebraic
geometry behind Peyre’s result [1995, Proposition 6.1].

Since ũ(E) <∞ implies that E satisfies the ED-property, the generalisation
carries over to Corollary 5.9 and makes the condition that E is nonreal superfluous:
if char(E) 6= 2, then ũ(E)6 4 if and only if k2 E has triple linkage.

The author is planning to give details on this argument in a future article.
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A1-equivalence of zero cycles on surfaces, II

Qizheng Yin and Yi Zhu

Using recent developments in the theory of mixed motives, we prove that the
log Bloch conjecture holds for an open smooth complex surface if the Bloch
conjecture holds for its compactification. This verifies the log Bloch conjecture
for all Q-homology planes and for open smooth surfaces which are not of log
general type.

1. Introduction

Throughout this paper, we work with varieties over the complex numbers.

1A. Statement of the main theorem. Let U be a smooth quasiprojective algebraic
variety. Let

a : h0(U )0→ Alb(U )

be the Albanese morphism from the zeroth Suslin homology of degree zero to the
Albanese variety of U , and let T (U ) := ker(a) be the Albanese kernel. When U is
projective, h0(U ) reduces to the Chow group of zero cycles CH0(U ). Indeed, we
get the classical Albanese map.

In dimension one, the Albanese morphism is well-understood by the classical
work of Abel and Jacobi in the projective case, and by Rosenlicht in the open case.

Theorem 1.1 (Abel–Jacobi; Rosenlicht [1952; 1954]). When dim U = 1, the Al-
banese morphism is an isomorphism.

The higher-dimensional analogue of Theorem 1.1 is much more subtle, although
the torsion part of the Albanese morphism is known.

Theorem 1.2 [Rojtman 1980; Spieß and Szamuely 2003]. In arbitrary dimension,
the Albanese morphism induces an isomorphism on torsion subgroups.

In this paper, we study the two-dimensional case. In one direction, the log
Mumford theorem says that the Albanese morphism fails to be injective as long as
pg(U ) 6= 0.
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Theorem 1.3 [Mumford 1968; Zhu 2018]. Let U be a smooth algebraic surface
with pg(U ) 6= 0. Then T (U ) is infinite-dimensional.

In the other direction, we expect the following conjecture. When U is projective,
it is famously known as the Bloch conjecture [1980].

Conjecture 1.4 (log Bloch conjecture). Let U be a smooth algebraic surface with
pg(U )= 0. Then

T (U )= 0.

Using recent developments in the theory of mixed motives [Ayoub and Barbieri-
Viale 2009; Ayoub 2011; Barbieri-Viale and Kahn 2016; Ayoub 2017], we prove
the following theorem.

Theorem 1.5. Let (X, D) be a log smooth projective surface pair with interior U.
If pg(U )= 0, in particular, pg(X)= 0 as well, then the log Bloch conjecture holds
for U if and only if it holds for X.

Since the Bloch conjecture holds for any smooth projective surface X with
κ(X)≤ 1 [Bloch et al. 1976], our main theorem yields the following corollary.

Corollary 1.6. The log Bloch conjecture holds for U if κ(X)≤ 1. �

Since κ(X) ≤ κ(U ), Corollary 1.6 generalizes the result of Bloch, Kas, and
Lieberman [Bloch et al. 1976] to open surfaces of κ(U ) ≤ 1. It also covers
the second author’s previous result [Zhu 2018] on the log Bloch conjecture for
κ(U )=−∞.

Further, we may apply Theorem 1.5 to the case where X is of general type and
the Bloch conjecture is true. The Bloch conjecture holds in a great number of
cases; see [Bauer et al. 2011; Pedrini and Weibel 2016; Voisin 2014] for recent
developments.

During the preparation of this paper, Binda and Krishna [2018] proved more
general results in the context of Chow groups with modulus using cycle-theoretic
methods.

1B. Applications of Theorem 1.5 and Corollary 1.6. The birational geometry of
open surfaces is developed by Kawamata [1979], while it is almost impossible to
hope for a complete classification even for κ(U )≤ 1. We would like to focus on
three special classes of surfaces whose geometry is extremely complicated.

Example 1.7 (κ(U )=−∞: log del Pezzo surfaces). Let U be the smooth locus
of a singular del Pezzo surface of Picard number one with at worst quotient sin-
gularities. In general, such singular del Pezzos form an unbounded family. Partial
classifications are obtained in [Keel and McKernan 1999] with more than sixty
exceptional collections. A difficult theorem of [Keel and McKernan 1999] states
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that U is log rationally connected. In particular, it implies the log Bloch conjecture
for U [Zhu 2018, Proposition 4.3].

Since Theorem 1.5 and Corollary 1.6 do not depend on Keel and McKernan’s
result, we give a new proof of the following result.

Corollary 1.8. With the notation as above, we have h0(U )= Z.

Example 1.9 (κ(U )= 0: log Enriques surfaces). A projective normal surface Y
is said to be a log Enriques surface if

(1) Y has at worst quotient singularities;

(2) NKY ∼OY for some positive integer N ;

(3) dim H 1(Y,OY )= 0.

Since KY is Q-Cartier, we define the index I of Y to be the smallest positive
integer such that IKY ∼ OY . By [Kawamata 1979; Tsunoda 1983; Zhang 1991],
the index is bounded by 66, while classically (when Y is smooth projective) it is
bounded by 6.

Corollary 1.10. Let U be the smooth locus of a log Enriques surface of index ≥ 2
defined as above. Then h0(U )= Z.

Log Enriques surfaces are partially classified in [Zhang 1991; 1993; Kudryavt-
sev 2002; 2004]. There are more than 1000 examples of log Enriques surfaces with
δ-invariant 2 [Kudryavtsev 2002].

Proof of Corollaries 1.8 and 1.10. Let (X, D) be a minimal log resolution of
U. By Corollary 1.6, the log Bloch conjecture holds in both cases. It suffices
to show q(U ) = 0. Since D is the exceptional set of the resolution of quotient
singularities, we have q(U )= q(X). Now the del Pezzo case follows from [Zhang
1989, Lemma 1.1(3)] and the Enriques case from [Zhang 1991, Lemma 1.2]. �

Example 1.11. Q-homology planes A smooth surface U is a Q-homology plane
if H i (U,Q) = H i (A2,Q) for any i . A Q-homology plane can have log Kodaira
dimension −∞, 0, 1, or 2. Ramanujam [1971] constructed the first homology plane
of log general type which is topologically contractible. They are classified for log
Kodaira dimension ≤ 1, but there is no thorough classification of Q-homology
planes of log general type [Miyanishi 2001, Section 3.4].

As all Q-homology planes are rational [Gurjar and Pradeep 1999], Corollary 1.6
implies the following:

Corollary 1.12. Let U be a Q-homology plane. Then the log Bloch conjecture
holds, that is, h0(U )= Z. �

The Bloch conjecture for fake projective planes remains unknown.
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1C. Ideas of proof. The proof of our main theorem has two major ingredients.
One is the work in [Ayoub and Barbieri-Viale 2009; Ayoub 2011; Barbieri-Viale
and Kahn 2016] on the derived category of 1-motives, especially the construction
of a derived Albanese functor. The use is twofold: first, it gives a motivic interpre-
tation of the Albanese morphism, allowing us to apply results from the theory of
mixed motives. Second, it provides a way to eliminate “easy” pieces of the motive
of U (essentially 1-motives) while keeping track of the homological realization.

The other ingredient is the famous conservativity conjecture; see [Ayoub 2017].
Regarded as a key conjecture in the study of motives, it notably says that a geomet-
ric motive is trivial if and only if its homological realization is trivial. By truncating
the motive of U using the derived Albanese functor, we eventually arrive at a motive
which has trivial homological realization and whose motivic homology controls
the Albanese kernel T (U ). Therefore, the conservativity conjecture implies the
log Bloch conjecture for U. Part of our main theorem then follows from a special
case of the conservativity conjecture proven by Wildeshaus [2015].

1D. Notation. A log pair (X, D)means a variety X with a reduced Weil divisor D.
We say that (X, D) is log smooth if X is smooth and D is a simple normal crossing
divisor on X . A log pair is projective if the ambient variety is projective.

Given any smooth quasiprojective variety U, by the resolution of singulari-
ties, we may choose a log smooth projective compactification (X, D) with inte-
rior U. We use κ(X, D) to denote the log Kodaira dimension. We define the
log geometric genus pg(X, D) := dim H 0(�dim X

X (log D)) and the log irregularity
q(X, D) := dim H 0(�1

X (log D)). Since they do not depend on the compactification,
we may write κ(U ), pg(U ), and q(U ) as well.

2. Preliminaries

By Theorem 1.2, it suffices to consider the Albanese morphism with Q-coefficients.
From now on, all (co)homology, cycle groups, and motives are taken with Q-
coefficients.

2A. Mixed motives and conservativity. We refer to [Voevodsky et al. 2000; Mazza
et al. 2006] for Voevodsky’s theory of mixed motives. With Q-coefficients, the
categories of mixed motives in the Nisnevich and étale topologies are equivalent.

Let DMgm denote the triangulated category of geometric motives, and let DMeff
gm

denote the triangulated category of effective geometric motives. We follow the
homological convention. The unit object of DMgm is denoted by Q(0), or sim-
ply Q, and the Tate object Q(1). Given an object M ∈ DMgm, its dual object
HomDMgm(M,Q) is denoted by M∨. The motive of a smooth variety Y is denoted
by M(Y ) ∈ DMeff

gm.
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The i-th motivic homology of M ∈ DMgm is defined to be

hi (M)= HomDMgm(Q[i],M).

For M = M(Y ), this recovers the i-th Suslin homology hi (Y )= hi (M(Y )).
Further, we refer to [Huber 2000] for the Hodge realization functor

RH
: DMgm→ Db(MHS).

Here we use the covariant version of RH. Composing with the forgetful functor
Db(MHS)→ Db(Q), we obtain the Betti realization

RB
: DMgm→ Db(Q).

Recall the statement of the conservativity conjecture.

Conjecture 2.1 (see [Ayoub 2017, Conjecture 2.1]). The Betti realization functor
RB is conservative. In other words, a morphism f : M → N in DMgm is an
isomorphism if and only if RB( f ) : RB(M)→ RB(N ) is an isomorphism.

Using consequences of the standard conjecture D for abelian varieties [André
and Kahn 2002], Kimura–O’Sullivan finiteness [Kimura 2005], and Bondarko’s
weight structures [2009; 2010], Wildeshaus proved the following special case of
the conservativity conjecture.

Theorem 2.2 [Wildeshaus 2015, Theorem 1.12]. Let DMab
gm ⊂ DMgm denote the

smallest triangulated subcategory containing the motives of smooth curves and
closed under direct summands, tensor products, and duality. Then the restriction
of RB to DMab

gm is conservative.

With the notion of DMab
gm, we now state our main theorem extending Theorem 1.5.

Theorem 2.3. Let (X, D) be a log smooth projective surface pair with interior U.
Then the following four conditions are equivalent:

(1) T (U )= 0;

(2) T (X)= 0;

(3) M(U ) ∈ DMab
gm;

(4) M(X) ∈ DMab
gm.

2B. Derived category of 1-motives. We mainly follow the book [Barbieri-Viale
and Kahn 2016]. Let M1 denote Deligne’s category of 1-motives [Deligne 1974]
with Q-coefficients. By [Orgogozo 2004, Théorème 3.4.1], the bounded derived
category Db(M1) can be naturally identified with the thick triangulated subcate-
gory of DMeff

gm generated by the motives of smooth curves, denoted by d≤1 DMeff
gm.

The identification is compatible with realizations [Vologodsky 2012]. For simplic-
ity we always make this identification.
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One of the main results of [Barbieri-Viale and Kahn 2016] is the construction
of a derived Albanese functor.

Theorem 2.4 [Barbieri-Viale and Kahn 2016, Corollary 6.2.2]. The inclusion

d≤1 DMeff
gm ↪→ DMeff

gm

admits a left adjoint
L Alb : DMeff

gm→ d≤1 DMeff
gm .

We list a number of results and facts about the functor L Alb which will be used
in the proof of our main theorem. To begin with, when Y is a smooth variety, we
write L Alb(Y ) = L Alb(M(Y )). Then the natural morphism M(Y )→ L Alb(Y )
induces a morphism in motivic homology

h0(Y )→ h0(L Alb(Y )). (2.5)

By [Barbieri-Viale and Kahn 2016, Lemma 13.4.2], we have

h0(L Alb(Y ))0 = Alb(Y )⊗Q,

and the degree zero part of (2.5) coincides with the Albanese morphism.
The next statement concerns the Hodge realization of L Alb(M) for M ∈DMeff

gm.
Recall that a mixed Hodge structure H is effective if the (i, j)-th part of the weight-
graded piece GrW

i+ j H vanishes unless i , j ≤ 0. Given an effective mixed Hodge
structure H , let H≤1 denote the maximal quotient of H of weights ≥ −2 and of
types (0, 0), (0,−1), (−1, 0), and (−1,−1).

Theorem 2.6 [Barbieri-Viale and Kahn 2016, Theorem 15.3.1]. For M ∈ DMeff
gm,

the morphism M→ L Alb(M) induces isomorphisms

Hi (RH (M))≤1
∼
−→ Hi

(
RH (L Alb(M))

)
.

The theorem above applies to L Alb(Y ) and also to the Borel–Moore variant
of L Alb(Y ). Let Mc(Y ) ∈ DMeff

gm denote the motive of Y with compact support.
Note that by [Voevodsky et al. 2000, Chapter 5, Theorem 4.3.7], there is an iso-
morphism

Mc(Y )' M(Y )∨(dim Y )[2 dim Y ]. (2.7)

We write L Albc(Y )= L Alb(Mc(Y )).

Corollary 2.8 [Barbieri-Viale and Kahn 2016, Corollary 15.3.2]. By Theorem 2.6,
we have
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Hi
(
RH (L Alb(Y ))

)
=


H0(Y,Q), i = 0,
H1(Y,Q), i = 1,
H2(Y,Q)≤1, i = 2,
0, i < 0 or i > 2,

Hi
(
RH (L Albc(Y ))

)
=


H BM

0 (Y,Q), i = 0,
H BM

1 (Y,Q), i = 1,
H BM

i (Y,Q)≤1, 2≤ i ≤ dim Y + 1,
0, i < 0 or i > dim Y + 1.

Finally, we recall the fact that M1 is of cohomological dimension one [Orgogozo
2004, Proposition 3.2.4]. Hence, all elements in Db(M1) can be represented by
complexes with zero differentials. In particular, we have

L Alb(Y )'
2⊕

i=0

L i Alb(Y )[i] and L Albc(Y )'
dim Y+1⊕

i=0

L i Albc(Y )[i], (2.9)

with L i Alb(Y ), L i Albc(Y ) ∈ M1; see [Barbieri-Viale and Kahn 2016, Corol-
lary 9.2.3 and Proposition 10.6.2]. When dim Y = 1, this gives the “Chow–Künneth”
decomposition of M(Y ) [Barbieri-Viale and Kahn 2016, Corollary 11.1.1]

M(Y )' L Alb(Y )'
2⊕

i=0

L i Alb(Y )[i]. (2.10)

3. Proof of the main theorem

In this section we prove our main theorem, that is, Theorem 2.3.

3A. Proof of (1) ⇒ (2) ⇒ (3) ⇔ (4). For (1)⇒ (2), consider a partial compactifi-
cation U ⊂ Y ⊂ X such that C = Y \U is a smooth curve. By induction, it suffices
to show that T (U )= 0 implies T (Y )= 0.

Recall the Gysin distinguished triangle [Voevodsky et al. 2000, Chapter 5, Propo-
sition 3.5.4]

M(U )→ M(Y )→ M(C)(1)[2] → M(U )[1]. (3.1)

By applying the functor L Alb, we find a morphism of distinguished triangles

M(U ) M(Y ) M(C)(1)[2] M(U )[1]

L Alb(U ) L Alb(Y ) Q(1)[2] L Alb(U )[1]

(3.2)

Here we used the fact that L Alb(M(C)(1))'Q(1) [Barbieri-Viale and Kahn 2016,
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Proposition 8.2.3]. Moreover, the morphism

M(C)(1)→ L Alb(M(C)(1))'Q(1)

coincides with the projection in (2.10),

M(C)→ L0 Alb(C)'Q,

twisted by Q(1).
Now we apply motivic homology to the distinguished triangles in (3.2). Since

h0(U )→ h0(Y ) is surjective [Zhu 2018, Lemma 4.2] and

h0(Q(1)[2])= CH−1(pt)= 0,

we obtain a commutative diagram with exact rows

h1(M(C)(1)[2]) h0(U ) h0(Y ) 0

h1(Q(1)[2]) h0(L Alb(U )) h0(L Alb(Y )) 0

The first vertical arrow is surjective since it comes from a projection. The middle
vertical arrows are given by the Albanese morphisms of U and Y . Our assumption
T (U )= 0 says that the second vertical arrow is injective. Then, by the five lemma,
the third vertical arrow is also injective, and hence T (Y )= 0.

The implication (2)⇒ (4) is essentially due to Guletskiı̆ and Pedrini [2003, The-
orem 7]. The precise statement can be found in [Kahn et al. 2007, Corollary. 4.9],
where it is shown that T (X)= 0 is equivalent to the vanishing of the transcendental
part in the Chow–Künneth decomposition of M(X), and that the remaining parts
belong to DMab

gm. Further, by the distinguished triangle (3.1) and the fact that
M(C) ∈ DMab

gm, we see that M(U ) ∈ DMab
gm if and only if M(Y ) ∈ DMab

gm. The
equivalence (3)⇔ (4) then follows by induction. �

3B. Proof of (3) ⇒ (1). We define the motive M ′(U )∈DMeff
gm by the distinguished

triangle
M ′(U )→ M(U )→ L Alb(U )→ M ′(U )[1]. (3.3)

Our assumption pg(U)=0 says that H2(U,Q)=H2(U,Q)≤1. Then, by Theorem 2.6
and Corollary 2.8, we have

Hi
(
RB(M ′(U ))

)
=


H3(U,Q), i = 3,
H4(U,Q), i = 4,
0, i < 3 or i > 4.

Now consider the motive M ′(U )∨(2)[4]. By the duality

H BM
i (U,Q)= H4−i (U,Q)∨(2),
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we have

Hi
(
RB(M ′(U )∨(2)[4])

)
=


H BM

0 (U,Q), i = 0,
H BM

1 (U,Q), i = 1,
0, i < 0 or i > 1.

(3.4)

There is a dual distinguished triangle to (3.3),

L Alb(U )∨(2)[4] → M(U )∨(2)[4] → M ′(U )∨(2)[4] → L Alb(U )∨(2)[5].

By (2.7), we have M(U )∨(2)[4] ∈ DMeff
gm. Since L Alb(U )∨(2)[4] ∈ DMeff

gm by
Cartier duality [Barbieri-Viale and Kahn 2016, Proposition 4.5.1], we also have
M ′(U )∨(2)[4] ∈DMeff

gm. This allows us to apply the functor L Alb to M ′(U )∨(2)[4].
By Theorem 2.6 and Corollary 2.8, the morphism

M ′(U )∨(2)[4] → L Alb(M ′(U )∨(2)[4]) (3.5)

induces an isomorphism

RB(M ′(U )∨(2)[4]) ∼−→ RB(L Alb(M ′(U )∨(2)[4])
)
.

We are ready to apply conservativity. Our assumption M(U ) ∈ DMab
gm im-

plies M(U )∨(2)[4] ∈ DMab
gm. Furthermore, since d≤1 DMeff

gm ⊂ DMab
gm, we have

L Alb(U )∨(2)[4] ∈ DMab
gm and thus M ′(U )∨(2)[4] ∈ DMab

gm. Then, according to
Theorem 2.2, the morphism (3.5) is itself an isomorphism.

We thus obtain from (3.3) a distinguished triangle

L Alb(M ′(U )∨(2)[4])∨(2)[4] → M(U )→ L Alb(U )

→ L Alb(M ′(U )∨(2)[4])∨(2)[5]. (3.6)

Taking motivic homology, we have an exact sequence

h0
(
L Alb(M ′(U )∨(2)[4])∨(2)[4]

)
→ h0(U )→ h0(L Alb(U )),

where the second arrow is given by the Albanese morphism of U. Hence, to prove
T (U )= 0, it suffices to show that

h0
(
L Alb(M ′(U )∨(2)[4])∨(2)[4]

)
= 0.

By [Deligne 1974, Construction 10.1.3], the Hodge realization gives a full em-
bedding M1 ⊂MHS. A comparison of realizations yields the isomorphisms
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L Alb(M ′(U )∨(2)[4])'
1⊕

i=0

L i Alb(M ′(U )∨(2)[4])[i]

'

1⊕
i=0

L i Alb(M(U )∨(2)[4])[i]

'

1⊕
i=0

L i Albc(U )[i]. (3.7)

More precisely, the first isomorphism is a consequence of (2.9) and (3.4). The last
two isomorphisms follow from the duality (2.7), Corollary 2.8, and (3.4). Alter-
natively, one may also deduce (3.7) from Theorem 2.2 since all motives involved
belong to DMab

gm.
We compute

h0
(
L Alb(M ′(U )∨(2)[4])∨(2)[4]

)
= h0

( 1⊕
i=0

(L i Albc(U )[i])∨(2)[4]
)

= HomDMgm

(
Q,

1⊕
i=0

(L i Albc(U )[i])∨(2)[4]
)

= HomDMgm

( 1⊕
i=0

L i Albc(U )[i],Q(2)[4]
)

= HomDMgm(L0 Albc(U ),Q(2)[4])⊕HomDMgm(L1 Albc(U ),Q(2)[3]).

By [Barbieri-Viale and Kahn 2016, Proposition 10.6.2], we have

L0 Albc(U )'
{

Q if U is projective,
0 if not.

Since
HomDMgm(Q,Q(2)[4])= CH−2(pt)= 0,

we find in both cases HomDMgm(L0 Albc(U ),Q(2)[4])= 0.
Further, by [Barbieri-Viale and Kahn 2016, Corollary 12.11.2], the 1-motive

L1 Albc(U ) is represented by a two-term complex in degrees 0 and 1

Q⊕r
→ A⊗Q,

where A is an abelian variety and r = #{connected components of D}−1. In other
words, there is an extension of 1-motives

0→ (A⊗Q)[−1] → L1 Albc(U )→Q⊕r
→ 0, (3.8)
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which yields an exact sequence

HomDMgm(Q,Q(2)[3])⊕r
→ HomDMgm(L1 Albc(U ),Q(2)[3])

→ HomDMgm((A⊗Q)[−1],Q(2)[3]).

Since
HomDMgm(Q,Q(2)[3])= CH−2(pt, 1)= 0,

it suffices to show that HomDMgm((A⊗Q)[−1],Q(2)[3])= 0.
We may assume A to be the Albanese variety of a smooth projective surface

S. If dim A > 2, the surface S is obtained by taking a sequence of general hy-
perplane sections of A. Then we have Alb(S) ' Alb(A) ' A by the Lefschetz
hyperplane theorem. Recall the Chow–Künneth decomposition of M(S) [Murre
1990, Theorem 3]:

M(S)'
4⊕

i=0

Mi (S)[i].

We have M4−i (S)' Mi (S)∨(2) and M1(S)' (A⊗Q)[−1]. Hence

HomDMgm((A⊗Q)[−1],Q(2)[3])= HomDMgm(M1(S),Q(2)[3])

= HomDMgm(Q,M3(S)[3])

= CH0(M3(S)[3])

= 0, (3.9)

where the last equality follows again from [Murre 1990, Theorem 3]. The proof of
Theorem 2.3 is now complete. �

3C. “Chow–Künneth” decomposition. Our proof of Theorem 2.3 also leads to
the following consequence.

Corollary 3.10. Assume one of the equivalent conditions in Theorem 2.3. Then
M(U ) admits a “Chow–Künneth” decomposition

M(U )'
2⊕

i=0

L i Alb(U )[i]⊕
4⊕

i=3

L4−i Albc(U )∨(2)[i].

In particular, it is Kimura–O’Sullivan finite.

Proof. Consider the distinguished triangle (3.6) obtained under the assumption
M(U ) ∈ DMab

gm. By (2.9) and (3.7), there are isomorphisms

L Alb(U )'
2⊕

i=0

L i Alb(U )[i] and L Alb(M ′(U )∨(2)[4])'
1⊕

i=0

L i Albc(U )[i].



390 QIZHENG YIN AND YI ZHU

Hence (3.6) induces a distinguished triangle

4⊕
i=3

L4−i Albc(U )∨(2)[i] → M(U )→
2⊕

i=0

L i Alb(U )[i]

→

4⊕
i=3

L4−i Albc(U )∨(2)[i + 1].

For the distinguished triangle to split, it suffices to show that

HomDMgm

( 2⊕
i=0

L i Alb(U )[i],
4⊕

i=3

(L4−i Albc(U ))∨(2)[i + 1]
)
= 0.

The left-hand side consists of six direct summands, all of which can be computed
explicitly. To keep the paper short we only do the most complicated one, that is,

HomDMgm(L1 Alb(U )[1], L1 Albc(U )∨(2)[4]). (3.11)

By [Barbieri-Viale and Kahn 2016, Corollary 9.2.3], the 1-motive L1 Alb(U ) is
represented by the two-term complex in degrees 0 and 1

0→ Alb(U )⊗Q.

Since the abelian part of the semiabelian variety Alb(U ) is Alb(X), this gives an
extension of 1-motives

0→ (Gm ⊗Q)⊕s
[−1] → L1 Alb(U )→ (Alb(X)⊗Q)[−1] → 0. (3.12)

We have (Gm ⊗Q)[−1] 'Q(1) and (Alb(X)⊗Q)[−1] ' M1(X).
Combining (3.8) and (3.12), we see that (3.11) sits in the middle of several

extensions involving the following four terms:

(1) HomDMgm(M1(X)[1],M3(S)[4]);

(2) HomDMgm(M1(X)[1],Q(2)[4]);

(3) HomDMgm(Q(1)[1],M3(S)[4]);

(4) HomDMgm(Q(1)[1],Q(2)[4]).

The vanishing of the second term is shown in (3.9) (with X replaced by S). The van-
ishing of the three other terms follows from the fact that given two Chow motives
M and M ′, we have HomDMgm(M,M ′[i])=0 for all i >0. This in turn follows from
[Voevodsky et al. 2000, Chapter 5, Corollary 4.2.6] and the cancellation theorem
[Voevodsky et al. 2000, Chapter 5, Theorem 4.3.1]. Hence (3.11) vanishes.

Finally, by [Mazza 2004, Remark 5.11], all elements in d≤1 DMeff
gm are Kimura–

O’Sullivan finite. The last statement follows since Kimura–O’Sullivan finiteness
is closed under direct sums and tensor products. �
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On the other hand, there exist motives of smooth surfaces which are not Kimura–
O’Sullivan finite [Mazza 2004, Theorem 5.18].
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Topological K-theory of affine Hecke algebras

Maarten Solleveld

Let H(R, q) be an affine Hecke algebra with a positive parameter function q.
We are interested in the topological K-theory of its C∗-completion C∗r (R, q).
We prove that K∗(C∗r (R, q)) does not depend on the parameter q, solving a
long-standing conjecture of Higson and Plymen. For this we use representation-
theoretic methods, in particular elliptic representations of Weyl groups and Hecke
algebras.

Thus, for the computation of these K-groups it suffices to work out the case
q = 1. These algebras are considerably simpler than for q 6= 1, just crossed prod-
ucts of commutative algebras with finite Weyl groups. We explicitly determine
K∗(C∗r (R, q)) for all classical root data R. This will be useful for analyzing the
K-theory of the reduced C∗-algebra of any classical p-adic group.

For the computations in the case q = 1, we study the more general situation
of a finite group 0 acting on a smooth manifold M . We develop a method to
calculate the K-theory of the crossed product C(M) o 0. In contrast to the
equivariant Chern character of Baum and Connes, our method can also detect
torsion elements in these K-groups.
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Introduction

Affine Hecke algebras can be realized in two completely different ways. On the
one hand, they are deformations of group algebras of affine Weyl groups, and on
the other hand they appear as subalgebras of group algebras of reductive p-adic
groups. Via the second interpretation, affine Hecke algebras (AHAs) have proven
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very useful in the representation theory of such groups. This use is in no small part
due to their explicit construction in terms of root data, which makes them amenable
to concrete calculations.

This paper is motivated by our desire to understand and compute the (topolog-
ical) K-theory of the reduced C∗-algebra C∗r (G) of a reductive p-adic group G.
This is clearly related to the representation theory of G. For instance, when G is
semisimple, every discrete series G-representation gives rise to a one-dimensional
direct summand in the K-theory of C∗r (G).

The problem can be transferred to AHAs in the following way. By the Bernstein
decomposition, the Hecke algebra of G can be written as a countable direct sum
of two-sided ideals:

H(G)=
⊕

s∈B(G)H(G)
s.

Borel [1976] and Iwahori and Matsumoto [1965] have shown that one particular
summand, say H(G)IM, is Morita equivalent to an AHA, say H(R, q)IM. It is
expected that all other summands H(G)s are also Morita equivalent to AHAs, or
to closely related algebras. Indeed, this has been proven in many cases; see [Aubert
et al. 2017a, §2.4] for an overview.

The reduced C∗-algebra of G is a completion of H(G), and it admits an analo-
gous Bernstein decomposition

C∗r (G)=
⊕

s∈B(G) C∗r (G)
s,

where C∗r (G)
s is the closure of H(G)s in C∗r (G). By [Bushnell et al. 2011], the

Morita equivalence H(G)IM ∼M H(R, q) extends to a Morita equivalence between
C∗r (G)

IM and the natural C∗-completion of H(R, q)IM. Again it can be expected
that every summand C∗r (G)

s is Morita equivalent to the C∗-completion C∗r (R, q)s

of some AHA H(R, q)s. However, this is currently not yet proven in several cases
where the Morita equivalence is known on the algebraic level. We will return to
this issue in a subsequent paper. Assuming it for the moment, we get

K∗(C∗r (G))∼=
⊕

s∈B(G) K∗(C∗r (R, q)s).

The left-hand side figures in the Baum–Connes conjecture for reductive p-adic
groups [Baum et al. 1994]. For applications to the Baum–Connes conjecture for al-
gebraic groups over local fields, it would be useful to understand K∗(C∗r (G)) better,
in particular its torsion subgroup. Namely, from the work of Kasparov [1988] it is
known that for many groups G the Baum–Connes assembly map is injective, and
that its image is a direct summand of K∗(C∗r (G)). There exist methods [Solleveld
2009, §3.4] which enable one to prove that the assembly map becomes an iso-
morphism after tensoring its domain and range by Q, but which say little about
the torsion elements in the K-groups. If one knew in advance that K∗(C∗r (G)) is
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torsion-free, then one could prove instances of the Baum–Connes conjecture with
such methods.

To construct an affine Hecke algebra, we use a root datum R in a lattice X . These
give a Weyl group W = W (R) and an extended affine Weyl group W e

= X o W.
As parameters we take a tuple of nonzero complex numbers q = (qi )i . The AHA
H(R, q) is a deformation of the group algebra C[W e

], in the following sense: as a
vector space it is C[W e

], with a multiplication rule depending algebraically on q,
such that H(R, 1) = C[W e

]. See Section 1C for the precise definition. To get a
nice C∗-completion C∗r (R, q), we must assume that q is positive, that is, qi ∈ R>0

for all i . For q = 1 the C∗-completion can be described easily:

C∗r (R, 1)= C∗r (W
e)= C(Tun)o W,

where Tun = HomZ(X, S1) is a compact torus.
All AHAs obtained from reductive p-adic groups G have rather special param-

eters: there are ni ∈ Z≥0 such that qi = pni/2, where p is the characteristic of
the local nonarchimedean field underlying G. Thus the realization of AHAs via
root data admits more parameters than the realization as subalgebras of H(G). In
particular the algebras H(R, q) admit continuous parameter deformations, whereas
the AHAs from reductive p-adic groups do not, since the prime powers pn/2 are
discrete in R>0.

In fact, for fixed R the family C∗r (R, q), with varying positive q , form a contin-
uous field of C∗-algebras. For a given q 6= 1 we have the half-line of parameters
qε = (qεi )i with ε ∈ R≥0. It is known from [Solleveld 2012a, Theorem 4.4.2] that
there exists a family of C∗-homomorphisms

ζε : C∗r (R, qε)→ C∗r (R, q), ε ≥ 0,

such that ζε is an isomorphism for all ε > 0 and depends continuously on ε ∈ R≥0.
Via a general deformation principle, this yields a canonical homomorphism

K∗(C∗r (W
e))= K∗(C∗r (R, q0))→ K∗(C∗r (R, q)). (0.1)

Loosely speaking, the construction goes as follows. Take a projection p0 (or a
unitary u0) in a matrix algebra Mn(C∗r (W

e))= Mn(C∗r (R, q0)). For ε > 0 small,
we can apply holomorphic functional calculus to p0 to produce a new projection
pε ∈ Mn(C∗r (R, qε)) (or a unitary uε). Then (0.1) sends [p0] ∈ K0(C∗r (R, q0)) to
the image of pε , and u0 ∈ K1(C∗r (R, q0)) to the image of uε , under the isomorphism
Mn(C∗r (R, qε))∼= Mn(C∗r (R, q)).

Actually, more is true: by [Solleveld 2012a, Lemma 5.1.2] the map K∗(ζ0)

equals (0.1). Furthermore, by [Solleveld 2012a, Theorem 5.1.4] ζ0 induces an
isomorphism

K∗(C∗r (R, q0))⊗Z C→ K∗(C∗r (R, q))⊗Z C.
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In view of the aforementioned relation with the Baum–Connes conjecture for p-
adic groups, we also want to understand the torsion parts of these K-groups. We
will prove:

Theorem 1 (see Theorem 2.11). The map (0.1) is a canonical isomorphism

K∗(C∗r (R, 1))→ K∗(C∗r (R, q)).

This theorem was conjectured first by Higson and Plymen (see [Plymen 1993,
6.4] and [Baum et al. 1994, 6.21]), at least when all parameters qi are equal. It is
similar to the Connes–Kasparov conjecture for Lie groups; see [Baum et al. 1994,
Sections 4–6] for more background. Independently, Opdam [2004, Section 1.0.1]
conjectured Theorem 1 for unequal parameters.

Unfortunately it is unclear how Theorem 1 could be proven by purely noncom-
mutative geometric means. The search for an appropriate technique was a major
drive behind the author’s Ph.D. project (2002–2006), and partial results appeared
already in his Ph.D. thesis [Solleveld 2007]. At that time, we hoped to derive
representation consequences from a K-theoretic proof of Theorem 1. But so far,
such a proof remains elusive.

In the meantime, substantial progress has been made in the representation the-
ory of Hecke algebras; see in particular [Opdam and Solleveld 2010; Ciubotaru
and Opdam 2015; Ciubotaru et al. 2014]. This enables us to turn things around
(compared to 2004); now we can use representation theory to study the K-theory
of C∗r (R, q).

Given an algebra or group A, let Mod f (A) be the category of finite length A-
modules, and let RZ(A) be the Grothendieck group thereof. We deduce Theorem 1
from the following:

Theorem 2 (see Theorem 1.52). The map

Mod f (C∗r (R, q))→Mod(C∗r (W
e)) : π 7→ π ◦ ζ0

induces Z-linear bijections

RZ(C∗r (R, q))→ RZ(C∗r (W
e)), RZ(H(R, q))→ RZ(W e).

A substantial part of the proof of Theorem 2 boils down to representations of
the finite Weyl group W. Following [Reeder 2001], we study the group RZ(W )

of elliptic representations, that is, RZ(W ) modulo the subgroup spanned by all
representations induced from proper parabolic subgroups of W. First we show
that RZ(W ) is always torsion-free (Theorem 1.12). Then we compare it with the
analogous group of elliptic representations of H(R, q), which leads to Theorem 2.

Having established the general framework, we set out to compute K∗(C∗r (R, q))
explicitly, for some root data R associated to well-known groups. By Theorem 1,
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we only have to consider one q for each R. In most examples, the easiest is to take
q = 1. Then we must determine

Kr (C∗r (R, 1))= K∗(C(Tun)o W )∼= K ∗W (Tun),

where the right-hand side denotes the W-equivariant K-theory of the compact Haus-
dorff space Tun. Let Tun//W be the extended quotient. Of course, the equivariant
Chern character from [Baum and Connes 1988] gives a natural isomorphism

K ∗W (Tun)⊗Z C→ H∗(Tun//W ;C).

But this does not suffice for our purposes, because we are particularly interested in
the torsion subgroup of K ∗W (Tun). Remarkably, that appears to be quite difficult to
determine, already for cyclic groups acting on tori [Langer and Lück 2012]. Using
equivariant cohomology, we develop a technique to facilitate the computation of
K∗(C(6)o W ) for any finite group W acting smoothly on a manifold 6. With
extra conditions it can be made more explicit:

Theorem 3 (see Theorem 2.45). Suppose that every isotropy group Wt (t ∈6) is
a Weyl group, and that H∗(6//W ;Z) is torsion-free. Then

K∗(C(6)o W )∼= H∗(6//W ;Z).

We note that H∗(6//W ;Z) can be computed relatively easily. Theorem 3 can
be applied to all classical root data, and to some others as well. Let us summarize
the outcome of our computations.

Theorem 4. Let R be a root datum of type GLn , SLn , PGLn , SOn , Sp2n or G2. Let
q be any positive parameter function for R. Then K∗(C∗r (R, q)) is a free abelian
group, whose rank is given explicitly in Section 3.

Whether or not torsion elements can pop up in K∗(C∗r (R, q)) for other root data
remains to be seen. In view of our results it does not seem very likely, but we do
not have a general principle to rule it out.

1. Representation theory

1A. Weyl groups. In this first subsection we show that the representation ring
RZ(W ) of any finite Weyl group W is the direct sum of two parts: the subgroup
spanned by representations induced from proper parabolic subgroups, and an el-
liptic part RZ(W ). We exhibit a Z-basis of RZ(W ) in terms of the Springer corre-
spondence. These results rely mainly on case-by-case considerations in complex
simple groups.

Let a be a finite-dimensional real vector space and let a∗ be its dual. Let Y ⊂ a

be a lattice and X = HomZ(Y,Z)⊂ a∗ the dual lattice. Let

R= (X, R, Y, R∨,1) (1.1)
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be a based root datum. Thus, R is a reduced root system in X, R∨ ⊂ Y is the
dual root system, 1 is a basis of R and the set of positive roots is denoted R+.
Furthermore, we are given a bijection R → R∨, α 7→ α∨ such that 〈α, α∨〉 = 2
and such that the corresponding reflections sα : X→ X and s∨α : Y → Y stabilize
R and R∨, respectively. We do not assume that R spans a∗. The reflections sα
generate the Weyl group W =W (R) of R, and S1 := {sα : α ∈1} is the collection
of simple reflections.

For a set of simple roots P ⊂1 we let RP be the root system they generate, and
we let WP =W (RP) be the corresponding parabolic subgroup of W.

Let RZ(W ) be the Grothendieck group of the category of finite-dimensional com-
plex W-representations, and write RC(W )=C⊗Z RZ(W ). For any P ⊂1 the induc-
tion functor indW

WP
gives linear maps RZ(WP)→ RZ(W ) and RC(WP)→ RC(W ).

In this subsection we are mainly interested in the abelian group of “elliptic W-
representations”

RZ(W )= RZ(W )
/ ∑

P(1
indW

WP
(RZ(WP)). (1.2)

In the literature [Reeder 2001; Ciubotaru et al. 2014], one more often encounters
the vector space

RC(W )= RC(W )
/ ∑

P(1
indW

WP
(RC(WP)).

Recall that an element w ∈W is called elliptic if it fixes only the zero element of
SpanR(R), or equivalently if it does not belong to any proper parabolic subgroup
of W. It was shown in [Reeder 2001, Proposition 2.2.2] that RC(W ) is naturally
isomorphic to the space of all class functions on W supported on elliptic elements.
In particular, dimC RC(W ) is the number of elliptic conjugacy classes in W.

In [Ciubotaru et al. 2014], RZ(W ) is defined as the subgroup of RC(W ) gen-
erated by the W-representations. So in that work it is by definition a lattice. If
RZ(W ) (in our sense) is torsion-free, then it can be identified with the subgroup
of RC(W ) to which it is naturally mapped. For our purposes it will be essential to
stick to the definition (1.2) and to use some results from [Ciubotaru et al. 2014].
Therefore we want to prove that (1.2) is always a torsion-free group.

In the analysis we will make ample use of Springer’s construction of represen-
tations of Weyl groups, and of Reeder’s results [2001]. Let G be a connected
reductive complex group with a maximal torus T such that R ∼= R(G, T ) and
W ∼=W (G, T ). For u ∈ G let Bu

= Bu
G be the complex variety of Borel subgroups

of G containing u. The group ZG(u) acts on Bu by conjugation, and that induces
an action of AG(u) := π0(ZG(u)/Z(G)) on the cohomology of Bu . For a pair
(u, ρ) with u ∈ G unipotent and ρ ∈ Irr(AG(u)) we define
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H(u, ρ)= HomAG(u)(ρ, H∗(Bu
;C)),

π(u, ρ)= HomAG(u)(ρ, H top(Bu
;C)),

(1.3)

where top indicates the highest dimension in which the cohomology is nonzero,
namely the dimension of Bu as a real variety. Let us call ρ geometric if π(u, ρ) 6= 0.
Springer [1978] proved that

• W × AG(u) acts naturally on H i (Bu
;C) for each i ∈ Z≥0,

• π(u, ρ) is an irreducible W-representation whenever it is nonzero,

• this gives a bijection between Irr(W ) and the G-conjugacy classes of pairs
(u, ρ) with u ∈ G unipotent and ρ ∈ Irr(AG(u)) geometric.

It follows from a result of Borho and MacPherson [1981] that the W-representations
H(u, ρ), parametrized by the same data (u, ρ), also form a basis of RZ(W ); see
[Reeder 2001, Lemma 3.3.1]. Moreover, π(u, ρ) appears with multiplicity one
in H(u, ρ).

Example 1.4. • Type A. Only the n-cycles in W = Sn are elliptic, and they form
one conjugacy class. The only quasidistinguished unipotent class in GLn(C) is
the regular unipotent class. Then AGLn(C)(ureg)= 1 for every regular unipotent
element ureg and H(ureg, triv)= H 0(Bureg;C) is the sign representation of Sn

(with our convention for the Springer correspondence).

• Types B and C . The elliptic classes in W (Bn) = W (Cn) ∼= Sn o (Z/2Z)n

are parametrized by partitions of n. We will write them down explicitly as
σ(∅, λ) with λ ` n in (3.26).

• Type D. The elliptic classes in W (Dn)= Sn o (Z/2Z)nev are precisely the ellip-
tic classes of W (Bn) that are contained in W (Dn). They can be parametrized
by partitions λ ` n such that λ has an even number of terms.

• Type G2. There are three elliptic classes in W (G2) = D6: the rotations of
order two, of order three and of order six. The quasidistinguished unipotent
classes in G2(C) are the regular and the subregular class.

We have AG(ureg) = 1 and H(ureg, triv) = π(ureg, triv) is the sign repre-
sentation of D6. For u subregular AG(u)∼= S3, and the sign representation of
AG(u) is not geometric. For ρ the two-dimensional irreducible representation
of AG(u), π(u, ρ)= H(u, ρ) is the character of W (G2) which is 1 on the re-
flections for long roots and −1 on the reflections for short roots. Furthermore
π(u, triv) is the standard two-dimensional representation of D6 and H(u, triv)
is the direct sum of π(u, triv) and the sign representation.

For a subset P ⊂ 1 let GP be the standard Levi subgroup of G generated by
T and the root subgroups for roots α ∈ RP . The irreducible representations of
WP =W (GP , T ) are parametrized by GP -conjugacy classes of pairs (uP , ρP) with
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uP ∈ GP unipotent and ρP ∈ Irr(AGP (uP)) geometric, and the WP -representations
HP(uP , ρP) form another basis of RZ(WP).

Recall from [Reeder 2001, §3.2] that AGP (uP) can be regarded as a subgroup
of AG(uP). By [Kato 1983, Proposition 2.5 and 6.2],

indW
WP
(H i (BuP

GP
;C))∼= H i (BuP ;C) as W × AG(uP)-representations. (1.5)

It follows that for any (uP , ρP) as above there are natural isomorphisms

indW
WP
(HP(uP , ρP))∼= HomAGP (uP )(ρP , H∗(BuP ;C))

∼=

⊕
ρ∈Irr(AG(uP ))

HomAGP (uP )(ρP , ρ)⊗ H(uP , ρ). (1.6)

For a unipotent conjugacy class C ⊂ G and P ⊂1, let RZ(WP , C) be the subgroup
of RZ(WP) generated by the HP(uP , ρP) with uP ∈GP ∩C and ρP ∈ Irr(AGP (uP)).
(Notice that GP ∩ C can consist of zero, one or more conjugacy classes.) In view
of (1.6) we can define

RZ(W, C)= RZ(W, C)
/ ∑

P(1
indW

WP
(RZ(WP , C)).

We obtain a decomposition as in [Reeder 2001, §3.3]:

RZ(W )=
⊕
C

RZ(W, C). (1.7)

Following [Reeder 2001], we also define elliptic representation theories for the
component groups AG(u). For u, uP ∈ C the groups AG(u) and AG(uP) are iso-
morphic. In general the isomorphism is not natural, but it is canonical up to inner
automorphisms. This gives a natural isomorphism RZ(AG(u)) ∼= RZ(AG(uP)),
which enables us to write

RZ(AG(u))= RZ(AG(u))
/ ∑

P(1,uP∈C∩GP

indAG(uP )
AGP (uP )

(
RZ(AGP (uP))

)
. (1.8)

For any uP , u′P ∈ C ∩GP there is a natural isomorphism

indAG(uP )
AGP (uP )

(
RZ(AGP (uP))

)
∼= indAG(u′P )

AGP (u
′

P )

(
RZ(AGP (u

′

P))
)
,

so on the right-hand side of (1.8) it actually suffices to use only one uP whenever
C ∩GP is nonempty.

Let R◦Z(AG(u)) be the subgroup of RZ(AG(u)) generated by the geometric irre-
ducible AG(u)-representations. By [Reeder 2001, §10],

indAG(u)
AG(uP )

(
R◦Z(AGP (uP))

)
⊂ R◦Z(AG(u)).
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Using this we can define

R◦Z(AG(u))= R◦Z(AG(u))
/ ∑

P(1, uP∈C∩GP

indAG(uP )
AGP (uP )

(
R◦Z(AGP (uP))

)
.

It follows from (1.6) that every ρP ∈ Irr(AGP (uP)) which appears in ρ is itself geo-
metric. Hence the inclusions R◦Z(AGP (uP))→ RZ(AGP (uP)) induce an injection

R◦Z(AG(u))→ RZ(AG(u)). (1.9)

By [Reeder 2001, Proposition 3.4.1] the maps ρP 7→HomAGP (uP )(ρP , H∗(BuP ;C))

for P ⊂1 induce a Z-linear bijection

R◦Z(AG(u))→ RZ(W, C). (1.10)

(In [Reeder 2001] these groups are by definition subsets of complex vector spaces.
But with the above definitions Reeder’s proof still applies.) From (1.7), (1.10) and
(1.9) we obtain an injection

RZ(W )→
⊕

u

RZ(AG(u)), (1.11)

where u runs over a set of representatives for the unipotent classes of G.

Theorem 1.12. The group of elliptic representations RZ(W ) is torsion-free.

Proof. If W is a product of irreducible Weyl groups Wi , then it follows readily
from (1.2) that

RZ(W )=
⊗

i

RZ(Wi ).

Hence we may assume that W =W (R) is irreducible. By (1.11) it suffices to show
that each RZ(AG(u)) is torsion-free. If u is distinguished, then C ∩GP =∅ for all
P (1, and RZ(AG(u))= RZ(AG(u)). That is certainly torsion-free, so we do not
have to consider distinguished unipotent u anymore.

For root systems of type A and of exceptional type, the tables of component
groups in [Carter 1985, §13.1] show that AG(u) is isomorphic to Sn with n ≤ 5.
Moreover, S4 and S5 only occur when u is distinguished. For AG(u) ∼= S2 and
for AG(u)∼= S3 one checks directly that RZ(AG(u)) is torsion-free, by listing all
subgroups of AG(u) and all irreducible representations thereof.

That leaves the root systems of type B, C and D. As group of type Bn we take
G = SO2n+1(C). By the Bala–Carter classification, the unipotent classes C in G
are parametrized by pairs of partitions (α, β) such that 2|α| + |β| = 2n + 1 and
β has only odd parts, all distinct. A typical u ∈ C is distinguished in the standard
Levi subgroup

Gα := GLα1(C)× · · ·×GLαd (C)×SO|β|(C).
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The part of u in SO|β| depends only on β; it has Jordan blocks of sizes β1, β2, . . . .
Let α′ be a partition consisting of a subset of the terms of α, say

α′ = (n)m
′
n (n− 1)m

′

n−1 · · · (1)m
′

1 . (1.13)

Let α′′ be a partition of |α| − |α′| obtained from the remaining terms of α by
repeatedly replacing some αi , α j by αi +α j . All the standard Levi subgroups of G
containing this u are of the form Gα′′ . The GL-factors of Gα′′ do not contribute to
AGα′′

(u). The part u′ of u in SO2(n−|α′′|)+1(C) is parametrized by (α′, β) and the
quotient of ZSO2(n−|α′′|)+1(C)

(u′) by its unipotent radical is isomorphic to∏
i even

Sp2m′i
(C) ×

∏
i odd, not in β

O2m′i (C)× S
( ∏

i odd, in β

O2m′i+1(C)

)
, (1.14)

where the S indicates that we take the subgroup of elements of determinant 1. From
this one can deduce the component group:

AGα′′
(u)∼= ASp2(n−|α′′|)(C)

(u′) ∼=
∏

i odd, not in β,m′i>0

Z/2Z× S
(∏

i in β

Z/2Z

)
. (1.15)

We see that if

• α has an even term,

• or α has an odd term with multiplicity > 1,

• or α has an odd term which also appears in β,

then there is a standard Levi subgroup Gα′′ ( G with AGα′′
(u)∼= AG(u), namely

with α′′ just that one term of α. In these cases RZ(AG(u))= 0.
Suppose now that α has only distinct odd terms, and that none of those appears

in β. Then (1.15) becomes

AG(u)∼=
∏

i in α

Z/2Z× A where A = S
(∏

i in β

Z/2Z

)
.

We get∑
P(1, uP∈C∩GP

indAG(uP )
AGP (uP )

(
RZ(AGP (uP))

)
∼=

∑
j in α

indAG(u)
AGα−( j) (u)

RZ

( ∏
i in α−( j)

Z/2Z× A
)

∼=

∑
j in α

indZ/2Z

{1} RZ({1})⊗Z RZ

( ∏
i in α−( j)

Z/2Z

)
⊗Z RZ(A). (1.16)

We conclude that RZ(AG(u))= RZ(A).
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So RZ(AG(u)) is torsion free for all unipotent u ∈ SO2n+1(C), which settles the
case Bn . The root systems of types Cn and Dn can be handled in a completely
analogous way, using the explicit descriptions in [Carter 1985, §13.1]. �

For every w ∈ W there exists (more or less by definition) a unique parabolic
subgroup W̃ ⊂W such that w is an elliptic element of W̃. Let C(W ) be the set of
conjugacy classes of W. For P ⊂ 1 let CP(W ) be the subset consisting of those
conjugacy classes that contain an elliptic element of WP . Let P(1)/W be a set of
representatives for the W-association classes of subsets of 1. Since every parabolic
subgroup is conjugate to a standard one, for every conjugacy class C in W there
exists a unique P ∈ P(1)/W such that C ∈ CP(W ).

Recall from [Reeder 2001, §3.3] that a unipotent element u ∈ G is called quasi-
distinguished if there exists a semisimple t ∈ ZG(u) such that tu is not contained
in any proper Levi subgroup of G.

Proposition 1.17. For every P ∈ P(1)/W there exists an injection from CP(W ) to
the set of GP -conjugacy classes of pairs (uP , ρP) with uP ∈ GP quasidistinguished
unipotent and ρP ∈ Irr(AGP (uP)) geometric, denoted w 7→ (uP,w, ρP,w), such that:

(a) {H(uw, ρw) : w ∈ C1(W )} is a Z-basis of RZ(W ).

(b) The set {
indW

WP
(HP(uP,w, ρP,w)) : P ∈ P(1)/W, w ∈ CP(W )

}
is a Z-basis of RZ(W ).

Proof. (a) By [Reeder 2001, Proposition 2.2.2] the rank of RZ(W ) is the number
of elliptic conjugacy classes of W. With Theorem 1.12 we find RZ(W )∼= Z|C1(W )|.
By (1.11) and (1.10), RZ(W ) has a basis consisting of representations of the form
H(u, ρ) with ρ ∈ Irr(AG(u)) geometric. By [Reeder 2001, Proposition 3.4.1] we
need only quasidistinguished unipotent u. We choose such a set of pairs (u, ρ),
and we parametrize it in an arbitrary way by C1(W ).

(b) We prove this by induction on |1|. For |1| = 0 the statement is trivial.
Suppose now that |1| ≥ 1 and α ∈1. By the induction hypothesis we can find

maps w 7→ (uP , ρP) such that the set{
indW1\{α}

WP
(HP(uP,w, ρP,w)) : P ∈ P(1 \ {α})/W1\{α}, w ∈ CP(W1\{α})

}
is a Z-basis of RZ(W1\{α}). By means of any setwise splitting of NG(T )→ W
we can arrange that (uP,w, ρP,w) and (uP ′,w′, ρP ′,w′) are G-conjugate whenever
(P, w) and (P ′, w′) are W-associate. Then (P, w) and (P ′, w′) give rise to the
same W-representation. Consequently,{

indW
WP
(HP(uP,w, ρP,w)) : P ∈ P(1)/W, P 6=1,w ∈ CP(W )

}
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is well-defined and has |C(W ) \ C1(W )| elements. By the induction hypothesis it
spans

∑
P(1 indW

WP
(RZ(WP)), so it forms a Z-basis thereof. Combine this with

(1.2) and part (a). �

1B. Graded Hecke algebras. We consider the Grothendieck group RZ(H) of finite
length modules of a graded Hecke algebra H with parameters k. We show that it is
the direct sum of the subgroup spanned by modules induced from proper parabolic
subalgebras and an elliptic part RZ(H). We prove that RZ(H) is isomorphic to
the elliptic part of the representation ring of the Weyl group associated to H. By
Section 1A, RZ(H) is free abelian and does not depend on the parameters k. The
main ingredients are the author’s work [Solleveld 2010] on the periodic cyclic
homology of graded Hecke algebras, and the study of discrete series representations
by Ciubotaru, Opdam and Trapa [Ciubotaru and Opdam 2017; Ciubotaru et al.
2014].

Graded Hecke algebras are also known as degenerate (affine) Hecke algebras.
They were introduced in [Lusztig 1989]. In the notation from (1.1) we call

R̃= (a∗, R, a, R∨,1) (1.18)

a degenerate root datum. We pick complex numbers kα for α ∈1, such that kα = kβ
if α and β are in the same W-orbit. We put t= C⊗R a.

The graded Hecke algebra associated to these data is the complex vector space

H= H(R̃, k)=O(t)⊗C[W ],

with multiplication defined by the following rules:

• C[W ] and O(t) are canonically embedded as subalgebras;

• for ξ ∈ t∗ and sα ∈ S1 we have the cross relation

ξ · sα − sα · sα(ξ)= kα〈ξ, α∨〉. (1.19)

Notice that H(R̃, 0)=O(t)o W.
Multiplication with any ε ∈C× defines a bijection t∗→ t∗, which clearly extends

to an algebra automorphism of O(t)= S(t∗). From the cross relation (1.19) we see
that it extends even further, to an algebra isomorphism

H(R̃, εk)→ H(R̃, k) (1.20)

which is the identity on C[W ]. For ε = 0 this map is well-defined, but obviously
not bijective.
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For a set of simple roots P ⊂1 we write

RP =QP ∩ R, R∨P =QR∨P ∩ R∨,

aP = RP∨, aP
= (a∗P)

⊥,

a∗P = RP, aP∗
= (aP)

⊥,

R̃P = (a
∗

P , RP , aP , R∨P , P), R̃P
= (a∗, RP , a, R∨P , P).

(1.21)

Let kP be the restriction of k to RP . We call

HP
= H(R̃P, kP)

a parabolic subalgebra of H. It contains HP = H(R̃P , kP) as a direct summand.
The centre of H(R̃, k) is O(t)W = O(t/W ) [Lusztig 1989, Proposition 4.5].

Hence the central character of an irreducible H(R̃, k)-representation is an element
of t /W.

Let (π, V ) be an H(R̃, k)-representation. We say that λ ∈ t is an O(t)-weight
of V (or of π ) if

{v ∈ V : π(ξ)v = λ(ξ)v for all ξ ∈ t∗}

is nonzero. Let Wt(V )⊂ t be the set of O(t)-weights of V .
Temperedness of a representation is defined via its O(t)-weights. We write

a+ = {µ ∈ a : 〈α,µ〉 ≥ 0 ∀α ∈1},

a∗+ := {x ∈ a∗ : 〈x, α∨〉 ≥ 0 ∀α ∈1},

a− = {λ ∈ a : 〈x, λ〉 ≤ 0 ∀x ∈ a∗+} =
{∑

α∈1 λαα
∨
: λα ≤ 0

}
.

The interior a−− of a− equals
{∑

α∈1λαα
∨
: λα < 0

}
if 1 spans a∗, and is empty

otherwise.
We regard t= a⊕ ia as the polar decomposition of t, with associated real part

map < : t → a. By definition, a finite-dimensional H(R̃, k)-module (π, V ) is
tempered <(Wt(V )) ⊂ a−. More restrictively, we say that (π, V ) belongs to the
discrete series if <(Wt(V ))⊂ a−−.

We are interested in the restriction map

r :Mod(H(R̃, k))→Mod(C[W ]), V 7→ V |W .

We can also regard it as the composition of representations with the algebra homo-
morphism (1.20) for ε = 0, then its image consists of O(t)o W-representations on
which O(t) acts via 0 ∈ t.

Let Irr0(H) be the set of irreducible tempered H(R̃, k)-modules with central
character in a/W. It is known from [Solleveld 2010, Theorem 6.5] that, for real-
valued k, r induces a bijection

rC : C Irr0(H(R̃, k))→ RC(W ). (1.22)
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Using work of Lusztig, Ciubotaru [2008, Corollary 3.6] showed that, for parame-
ters of “geometric” type,

rZ : Z Irr0(H(R̃, k))→ RZ(W ) is bijective. (1.23)

We will generalize this to arbitrary real parameters. (Parameters k of geometric
type need not be real-valued, but via (1.20) they can be reduced to that.)

We recall some notions from [Ciubotaru and Opdam 2015]. Let RZ(H(R̃, k)) be
the Grothendieck group of (the category of) finite-dimensional H(R̃, k)-modules.
For any parabolic subalgebra HP

=H(R̃P, kP), the induction functor indH
HP induces

a map RZ(H
P)→ RZ(H). If the O(t)-weights of V ∈Mod(HP) are contained in

some U ⊂ t, then by [Barbasch and Moy 1993, Theorem 6.4], the O(t)-weights of
indH

HP V are contained in W PU , where W P is the set of shortest length represen-
tatives of W/WP . This implies that indH

HP preserves temperedness [Barbasch and
Moy 1993, Corollary 6.5] and central characters. In particular, it induces a map

indH
HP : Z Irr0(H

P)→ Z Irr0(H). (1.24)

Many arguments in this section make use of the group of “elliptic H-representations”

RZ(H)= RZ(H(R̃, k))
/∑

P(1 indH
HP (RZ(H

P)). (1.25)

Since H(R̃, k)=O(t)⊗C[W ] as vector spaces,

r ◦ indH
HP = indW

WP
◦ rP, (1.26)

where rP denotes the analogue of r for HP. Hence r induces a Z-linear map

r̄ : RZ(H(R̃, k))→ RZ(W ). (1.27)

Proposition 1.28. The map (1.27) is surjective, and its kernel is the torsion sub-
group of RZ(H(R̃, k)).

Proof. By Theorem 1.12, RZ(W ) is torsion-free, so it can be identified with its im-
age in RC(W ). This means that our definition of RZ(W ) agrees with that in [Ciubo-
taru et al. 2014]. Likewise, in [Ciubotaru et al. 2014] the subgroup R′Z(H(R̃, k)) of
RC(H(R̃, k)) generated by the actual representations is considered. In other words,
R′Z(H(R̃, k)) is defined as the quotient of RZ(H(R̃, k)) by its torsion subgroup.

By [Ciubotaru et al. 2014, Proposition 5.6] the map

r̄ : R′Z(H(R̃, k))→ RZ(W ) (1.29)

is bijective, except possibly when R has type F4 and k is not a generic parameter.
However, in view of the more recent work [Ciubotaru and Opdam 2017, §3.2], the
limit argument given (for types Bn and G2) in [Ciubotaru et al. 2014, §5.1] also
applies to F4. Thus (1.29) is bijective for all R̃ and all real-valued parameters k. �
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Lemma 1.30. Let k be real-valued. The canonical map

Z Irr0(H(R̃, k))→ RZ(H(R̃, k))

is surjective.

Proof. It was noted in [Opdam and Solleveld 2013, Lemma 6.3] (in the con-
text of affine Hecke algebras) that every element of RZ(H(R̃, k)) can be repre-
sented by a tempered virtual representation. Consider any irreducible tempered
H-representation π . By [Solleveld 2012b, Proposition 8.2] there exists a P ⊂1,
a discrete series representation δ of HP and an element ν ∈ iaP such that π is a
direct summand of

π(P, δ, ν)= indH
HP⊗O(tP )

(δ⊗Cν).

By [Solleveld 2012b, Proposition 8.3] the reducibility of π(P, δ, ν) is determined
by intertwining operators π(w, P, δ, ν) for elements w ∈W that stabilize (P, δ, ν).
Suppose that ν 6= 0. Then Wν is a proper parabolic subgroup of W , so the stabilizer
of (P, δ, ν) is contained in WQ for some P ⊂ Q (1. In that case, π = indH

HQ (πQ)

for some irreducible representation πQ of HQ , so π becomes zero in RZ(H(R̃, k)).
Therefore we need only Z-linear combinations of summands of π(δ, P, 0) (with

varying P, δ) to surject to RZ(H(R̃, k)). Since k is real, discrete series represen-
tations of HP have central characters in aP/WP [Slooten 2006, Lemma 2.13]. It
follows that π(P, δ, 0) and all its constituents (among which is π ) admit a central
character in a/W. �

Theorem 1.31. Let k be real-valued. The restriction-to-W maps

rZ : Z Irr0(H(R̃, k)) → RZ(W ),

r : RZ(H(R̃, k)) → RZ(W )

are bijective.

Proof. We show this by induction on the semisimple rank of R̃ (i.e., the rank of R).
Suppose first that the semisimple rank is zero. Then W = 1 and H = O(t). For
λ ∈ t the character

evλ : f 7→ f (λ)

is a tempered O(t)-representation if and only if <(λ)= 0. If λ is at the same time
a real central character (i.e., λ ∈ a), then λ= 0. Hence Irr0(H) consists just of ev0.
It is mapped to the trivial W-representation by r, so the theorem holds in this case.

Now let R̃ be of positive semisimple rank. It is a direct sum of degenerate root
data with R irreducible or R empty, and H(R̃, k) decomposes accordingly. As we
already know the result when R is empty, it remains to establish the case where R
is irreducible.
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Any proper parabolic subalgebra HP
⊂ H has smaller semisimple rank, so by

the induction hypothesis

rP
: Z Irr0(H

P)→ Z Irr0(WP) is bijective. (1.32)

Consider the commutative diagram

0 //
∑

P(1 indH
HP (Z Irr0(H

P)) //

��

Z Irr0(H) //

��

RZ(H) //

��

0

0 //
∑

P(1 indW
WP
(RZ(WP)) // RZ(W ) // RZ(W ) // 0

(1.33)

The second row is exact by definition. By (1.32) and (1.26) the left vertical arrow
is bijective and by Proposition 1.28 the right vertical arrow is surjective. Together
with Lemma 1.30 these imply that the middle vertical arrow is surjective. By (1.22)
both Z Irr0(H) and RZ(W ) are free abelian groups of the same rank |Irr(W )| =

|Irr0(H)|, so the middle vertical arrow is in fact bijective.
The results so far imply that the kernel of Z Irr0(H)→ RZ(W ) is precisely∑

P(1 indH
HP (Z Irr0(H

P)).

The latter group is already killed in RZ(H), so RZ(H)→ RZ(W ) is injective as
well. We conclude that (1.33) is a bijection between two short exact sequences. �

We will need Theorem 1.31 for somewhat more general algebras. Let 0 be a
finite group acting on R̃; it acts R-linearly on a, and the dual action on a∗ stabilizes
R and 1. We assume that kγ (α) = kα for all α ∈ R, γ ∈ 0. Then 0 acts on H(R̃, k)
by the algebra automorphisms satisfying

γ (ξNw)= γ (ξ)Nγwγ−1, γ ∈ 0, ξ ∈ a∗, w ∈W.

Let \ : 02
→ C× be a 2-cocycle and let C[0, \] be the twisted group algebra. We

recall that it has a standard basis {Nγ : γ ∈ 0} and multiplication rules

Nγ Nγ ′ = \(γ, γ ′)Nγ γ ′, γ, γ ′ ∈ 0.

We can endow the vector space H(R̃, k)⊗C[0, \] with the algebra structure such
that

• H(R̃, k) and C[0, \] are embedded as subalgebras,

• Nγ hN−1
γ = γ (h) for γ ∈ 0, h ∈ H(R̃, k).

We denote this algebra by H(R̃, k)o C[0, \] and call it a twisted graded Hecke
algebra. If \ is trivial, then it reduces to the crossed product H(R̃, k)o0. All our
previous notions for graded Hecke algebras admit natural generalizations to this
setting.
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Notice that W0 is a group with W as normal subgroup and 0 as quotient. The
2-cocycle \ can be lifted to (W0)2→ 02

→ (C×)2, and that yields a twisted group
algebra C[W0, \] in H(R̃, k)oC[0, \]. It is worthwhile to note the case k = 0:

H(R̃, 0)oC[0, \] =O(t)oC[W0, \]). (1.34)

We consider the restriction map

r :Mod(H(R̃, k)oC[0, \])→Mod(C[W0, \]). (1.35)

Every C[W0, \]-module can be extended in a unique way to an O(t)oC[W0, \])-
module on which O(t) acts via evaluation at 0 ∈ t, so the right-hand side of (1.35)
can be considered as a subcategory of Mod(H(R̃, 0)oC[0, \]).

Proposition 1.36. Let k : R/W0→R be a parameter function and let \ :02
→C×

be a 2-cocycle. The map (1.35) induces a bijection

rZ : Z Irr0(H(R̃, k)oC[0, \])→ RZ(C[W0, \]).

Proof. Let 0̃ → 0 be a finite central extension such that \ becomes trivial in
H 2(0̃,C×). Such a group always exists: one can take the Schur extension from
[Curtis and Reiner 1962, Theorem 53.7]. Then there exists a central idempotent
p\ ∈ C[ker(0̃→ 0)] such that

C[0, \] ∼= p\C[0̃]. (1.37)

The map rZ becomes

Z Irr0(H(R̃, k)o p\C[0̃])→ RZ(p\C[W 0̃]). (1.38)

Since p\C[0̃] is a direct summand of C[0̃], (1.38) is just a part of

rZ : Z Irr0(H(R̃, k)o 0̃)→ RZ(W o 0̃).

Hence it suffices to prove the proposition when \ is trivial, which we assume from
now on. By [Solleveld 2010, Theorem 6.5(c)],

rC : C Irr0(H(R̃, k)o0)→ RC(W0) (1.39)

is a C-linear bijection. So at least

rZ : Z Irr0(H(R̃, k)o0)→ RZ(W0) (1.40)

is injective and has image of finite index in RZ(W0).
Given (π, V ) ∈ Irr(H(R̃, k)), let 0π be the stabilizer in 0 of the isomorphism

class of π . For every γ ∈ 0π we can find I γ ∈ AutC(V ) such that

I γ ◦π(Nγ hN−1
γ )= π(h) ◦ I γ for all h ∈ H(R̃, k).
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By Schur’s lemma there exists a 2-cocycle \π : 02
π → C× such that

I γ γ
′

= \π (γ, γ
′)I γ I γ

′

for all γ, γ ′ ∈ 0.

Let (τ,M) ∈ Irr(C[0π , \π ]). Then M⊗V becomes an irreducible Ho0π -module.
Clifford theory (see, e.g., [Ram and Ramagge 2003, Appendix], [Curtis and Reiner
1962, §51] or [Solleveld 2012b, Appendix]) tells us that indHo0

Ho0π (M ⊗ V ) is an
irreducible Ho0-module. Moreover, this construction provides a bijection

Irr(Ho0)→ {(π,M) : π ∈ Irr(H)/0,M ∈ Irr(C[0π , \π ])}.

We note that
r
(
indHo0

Ho0π(M ⊗ V )
)
= indWo0

Wo0π(M ⊗ r(V )). (1.41)

Similarly, Clifford theory provides a bijection

Irr(W o0)→ {(τ, N ) : τ ∈ Irr(W )/0, N ∈ Irr(C[0τ , \τ ])}.

Since W is a Weyl group, the 2-cocycle \τ is always trivial [Aubert et al. 2017c,
Proposition 4.3]. With (1.41) it follows that \π is also trivial for all π ∈ Irr(H(R̃, k)).

Consider any indWo0
Wo0τ(N⊗Vτ )∈ Irr(W o0). Theorem 1.31 guarantees the exis-

tence of unique mπ ∈ Z such that Vτ =
∑

(π,V )∈Irr0(H)
mπ r(V ). By the uniqueness,

0π ⊃ 0τ whenever mπ 6= 0. Hence N ⊗ V is a well-defined H o0π -module (it
may be reducible though), and

indWo0
Wo0τ(N ⊗ Vτ )= indWo0

Wo0τ
(
N ⊗

∑
(π,V )∈Irr0(H)

mπ r(V )
)

= r
(∑

(π,V )∈Irr0(H)
mπ indHo0

Ho0π(N ⊗ V )
)
.

This proves that (1.40) is also surjective. �

1C. Affine Hecke algebras. Let H be an affine Hecke algebra with positive pa-
rameters q. We compare its Grothendieck group of finite length modules RZ(H)
with the analogous group for the parameters q = 1. By some of the main results
of [Solleveld 2012a], the Q-vector space Q⊗Z RZ(H) is canonically isomorphic
to its analogue for q = 1. We show that this is already an isomorphism for RZ(H),
without tensoring by Q. This follows from the results of the previous paragraph,
in combination with the standard reduction from affine Hecke algebras to graded
Hecke algebras [Lusztig 1989].

As before, let R= (X, R, Y, R∨,1) be a based root datum. We have the affine
Weyl group W aff

= ZR o W and the extended (affine) Weyl group W e
= X o W.

Both can be considered as groups of affine transformations of a∗. We denote the
translation corresponding to x ∈ X by tx . As is well-known, W aff is a Coxeter
group, and the basis 1 of R gives rise to a set Saff of simple (affine) reflections.
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More explicitly, let 1∨M be the set of maximal elements of R∨, with respect to the
dominance ordering coming from 1. Then

Saff
= S1 ∪ {tαsα : α∨ ∈1∨M}.

The length function ` of the Coxeter system (W aff, Saff) extends naturally to W e.
The elements of length zero form a subgroup �⊂W e and W e

=W aff o�.
A complex parameter function for R is a map q : Saff

→C× such that q(s)=q(s ′)
if s and s ′ are conjugate in W e. This extends naturally to a map q :W e

→C× which
is 1 on � and satisfies

q(ww′)= q(w)q(w′) if `(ww′)= `(w)+ `(w′).

Equivalently (see [Lusztig 1989, §3.1]), one can define q as a W-invariant function

q : R ∪ {2α : α∨ ∈ 2Y } → C×. (1.42)

We speak of equal parameters if q(s) = q(s ′) for all s, s ′ ∈ Saff and of positive
parameters if q(s) ∈ R>0 for all s ∈ Saff. We fix a square root q1/2

: Saff
→ C×.

The affine Hecke algebra H=H(R, q) is the unique associative complex algebra
with basis {Nw : w ∈W e

} and multiplication rules

NwNw′ = Nww′ if `(ww′)= `(w)+ `(w′),

(Ns − q(s)1/2)(Ns + q(s)−1/2)= 0 if s ∈ Saff.
(1.43)

In the literature one also finds this algebra defined in terms of the elements q(s)1/2 Ns ,
in which case the multiplication can be described without square roots. This ex-
plains why q1/2 does not appear in the notation H(R, q). For q = 1, (1.43) just
reflects the defining relations of W e, so H(R, 1)= C[W e

].
The set of dominant elements in X is

X+ = {x ∈ X : 〈x, α∨〉 ≥ 0 ∀α ∈1}.

The subset {Ntx : x ∈ X+}⊂H(R, q) is closed under multiplication, and isomorphic
to X+ as a semigroup. For any x ∈ X we put

θx = Ntx1
N−1

tx2
, where x1, x2 ∈ X+ and x = x1− x2.

This does not depend on the choice of x1 and x2, so θx ∈H(R, q)× is well-defined.
The Bernstein presentation of H(R, q) [Lusztig 1989, §3] says that:

• {θx : x ∈ X} forms a C-basis of a subalgebra of H(R, q) isomorphic to
C[X ] ∼=O(T ), which we identify with O(T ).

• H(W, q) := C{Nw : w ∈ W } is a finite-dimensional subalgebra of H(R, q)
(known as the Iwahori–Hecke algebra of W ).
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• The multiplication map O(T )⊗H(W, q)→H(R, q) is a C-linear bijection.

• There are explicit cross relations between H(W, q) and O(T ), deformations
of the standard action of W on O(T ).

To define parabolic subalgebras of affine Hecke algebras, we associate some objects
to any P ⊂1:

X P = X/(X ∩ (P∨)⊥), X P
= X/(X ∩QP),

YP = Y ∩QP∨, Y P
= Y ∩ P⊥,

TP = HomZ(X P ,C×), T P
= HomZ(X P,C×),

RP = (X P , RP , YP , R∨P , P), RP
= (X, RP , Y, R∨P , P),

HP =H(RP , qP), HP
=H(RP, q P).

Here qP and q P are derived from q via (1.42). Both HP and HP are called para-
bolic subalgebras of H. One can regard HP as a “semisimple” quotient of HP.

Any t ∈ T P and any u ∈ T P
∩ TP give rise to algebra automorphisms

ψu :HP →HP , θxP Nw 7→ u(xP)θxP Nw,

ψt :HP
→HP , θx Nw 7→ t (x)θx Nw.

(1.44)

Let 0 be a finite group acting on R, i.e., it acts Z-linearly on X and preserves R
and 1. We also assume that 0 acts on T by affine transformations, whose linear
part comes from the action on X . Thus 0 acts on O(T )∼= C[X ] by

γ (θx)= zγ (x)θγ x (1.45)

for some zγ ∈ T . Since this is a group action, we must have zγ ∈ T W.
We suppose throughout that q1/2 is 0-invariant, so that γ ∈ 0 acts on H(R, q)

by the algebra automorphism∑
w∈W, x∈X

cx,wθx Nw 7→
∑

w∈W, x∈X

cx,wzγ (x)θγ (x)Nγwγ−1 . (1.46)

We can build the crossed product algebra

H(R, q)o0. (1.47)

In [Solleveld 2012a] we considered a slightly less general action of 0 on H(R, q),
where the elements zγ ∈ T W from (1.45) were all equal to 1. But the relevant
results from [Solleveld 2012a] do not rely on 0 fixing the unit element of T , so
they are also valid for the actions as in (1.46). In this paper we will tacitly use some
results from [Solleveld 2012a] in the generality of (1.46). We note that nontrivial
zγ ∈ T W are sometimes needed to describe Hecke algebras coming from p-adic
groups, for example [Roche 2002, §4].
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We can also endow the group 0 with a 2-cocycle \ : 02
→ C×. Then the vector

space H(R, q)⊗C[0, \] obtains a multiplication such that H(R, q) and C[0, \]

are subalgebras and

Nγ hN−1
γ = γ (h) for all γ ∈ 0, h ∈H(R, q).

We denote this by H(R, q)o C[0, \] and call it a twisted affine Hecke algebra.
Such twists seem necessary to describe algebras appearing in the representation
theory of nonsplit p-adic groups; see, e.g., [Aubert et al. 2017b, Example 5.5]. For
reference we record the case q = 1:

H(R, 1)oC[0, \] =O(T )oC[W0, \]. (1.48)

The representation theory of (twisted) affine Hecke algebras is closely related to
that of (twisted) graded Hecke algebras, as first shown by Lusztig [1989]. Since
H(R, q) is of finite rank as a module over its commutative subalgebra O(T ), all
irreducible H(R, q)-modules have finite dimension. The set of O(T )-weights of
an H(R, q)-module V is denoted by Wt(V ).

The vector space t= a⊕ ia can now be interpreted as the Lie algebra of the com-
plex torus T = HomZ(X,C×). The latter has a polar decomposition T = Trs× Tun,
where Trs =HomZ(X,R>0) and Tun is the unique maximal compact subgroup of T .
The polar decomposition of an element t ∈ T is written as t = |t | (t |t |−1).

We write T−= exp(a−)⊂ Trs and T−−= exp(a−−)⊂ Trs. We say that a module
V for H(R, q) (or for H(R, q)oC[0, \]) is tempered if |Wt(V )| ⊂ T−, and that
it is discrete series if |Wt(V )| ⊂ T−−. (The latter is only possible if R spans a, for
otherwise a−− and T−− are empty.)

By the Bernstein presentation, the centre of H(R, q)oC[0, \] contains O(T )W0.
For any W0-invariant subset U ⊂ T , let

Mod f,U (H(R, q)oC[0, \])

be the category of finite-dimensional H(R, q)oC[0, \]-modules whose O(T )W0-
weights all lie in U/W0. We denote the Grothendieck group of this category by
RZ,U (H(R, q)oC[0, \]).

The centre of H(R̃, k)oC[0, \] contains O(t)W0. For any W0-invariant subset
V ⊂ t we define Mod f,V (H(R̃, k)oC[0, \]) analogously.

Fix u ∈ Tun. To R and u we can associate some new objects. First we define the
root system

Ru = {α ∈ R : sα(u)= u},

and we let 1u be the unique basis of Ru contained in R+. Then

(W0)u =W (Ru)o0′u, 0′u = {w ∈W0 : w(u)= u, w(1u)=1u}.
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Now we can define the based root data

Ru = (X, Ru, Y, R∨u ,1u) and R̃u = (a
∗, Ru, a, R∨u ,1u).

We define a parameter function ku : Ru→ R for R̃u by

2ku,α = log(q(sα))+α(u) log(q(tαsα)).

Let \u : (0
′
u)

2
→ C× be the restriction to \. With a slight variation on Lusztig’s

reduction theorems [Lusztig 1989, §8–9], one can prove:

Theorem 1.49. Let q :W e
→R>0 be a positive parameter function. The categories

Mod f,W0uTrs(H(R, q)oC[0, \]) and Mod f,a(H(R̃u, ku)oC[0′u, \u])

are equivalent. The equivalence respects parabolic induction, temperedness and
discrete series.

Proof. Let 0̃ and the central idempotent p\ be as in (1.38). Then

H(R, q)oC[0, \] = p\(H(R, q)o 0̃),

H(R̃u, ku)oC[0′u, \u] = p\(H(R̃u, ku)o 0̃′u).
(1.50)

By [Solleveld 2012a, Corollary 2.15] the theorem holds for H(R, q) o 0̃ and
H(R̃u, ku)o 0̃′u . The claimed properties of this equivalence were checked in detail
in [Aubert et al. 2016, §2.1].

This is based on a comparison of localizations of these algebras, as in [Lusztig
1989]. The comparison maps [Solleveld 2012a, Theorems 2.1.2 and 2.1.4] are the
identity on C[0̃′u ∩ 0̃], so they preserve p\. Hence we can restrict the result from
[Solleveld 2012a] to the direct summands (1.50). �

From Theorem 1.49 and (1.35) (and (1.34) and (1.48) for the bottom line) we
construct a diagram

Mod f,W0uTrs(H(R, q)oC[0, \])
∼
//

ru
��

Mod f,a(H(R̃u, ku)oC[0′u, \u])

r
��

Mod f,W0u(H(R, 1)oC[0, \]) Mod f,0(H(R̃u, 0)oC[0′u, \u])
∼

oo

Mod f,W0u(O(T )oC[W0, \]) Mod f,0(O(t)oC[(W0)u, \u])
∼

oo

where ru is the unique map that makes the diagram commutative. Using the tech-
nique in the proof of Theorem 1.49, we can immediately extend all relevant results
in [Solleveld 2012a] from H(R, q)o 0̃ to twisted affine Hecke algebras. In view
of this, we will freely use results from [Solleveld 2012a] in that generality.
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As shown in [Solleveld 2012a, §2.3], there exists a unique system of Z-linear
maps

ζ∨ : RZ(H(R, q)oC[0, \])→ RZ(H(R, 1)oC[0, \]) (1.51)

(for all possible R, q, 0) such that

• ζ∨(π)= ru(π) for tempered representations in Mod f,W0uTrs(H(R, q)oC[0, \]),

• ζ∨ commutes with parabolic induction,

• ζ∨ respects the formation of standard modules for the Langlands classification,
in the sense of [Solleveld 2012a, Corollary 2.2.5].

Theorem 1.52. The map (1.51) is bijective for every positive parameter function q.

Proof. Proposition 1.36 and Theorem 1.49 imply that (1.51) gives a bijection

RZ,temp,W0uTrs(H(R, q)oC[0, \])→ RZ,temp,W0u(H(R, 1)oC[0, \]), (1.53)

where the subscripts “temp” indicate that we formed these Grothendieck groups by
starting with tempered modules only. Any tempered O(T )oC[W0, \]-module only
has O(T )-weights in Tun, so on the right-hand side of (1.53) we may just as well
replace W0u by W0uTrs. Thus (1.51) restricts to a bijection between subgroups
generated by tempered modules on both sides.

In [Solleveld 2012a, Corollary 2.3.2] it was shown that (1.51) becomes a Q-
linear bijection upon tensoring both sides with Q. The second half of the proof
of that result (see [Solleveld 2012a, §3.4]) extends the statement from the tem-
pered to the general case. It says essentially that whatever happens in the space
Irr(H(R, q)oC[0, \]) can be detected and understood already by looking at tem-
pered representations. From that, the bijectivity in the tempered case and the mul-
tiplicity one property of the Langlands classification (every standard module has
a unique irreducible quotient, appearing with multiplicity one [Solleveld 2012a,
Theorem 2.2.4]), we obtain the bijectivity of (1.51) in general. �

2. Topological K-theory

2A. The C∗-completion of an affine Hecke algebra. In this paragraph we recall
the structure of C∗-algebras associated to affine Hecke algebras. These deep results
mainly stem from [Opdam 2004; Delorme and Opdam 2008; 2011].

Recall that q is a positive parameter function for R. We define a *-operation
and a trace on H(R, q) by(∑

w∈W e cwNw
)∗
=
∑

w∈W e cwNw−1, τ
(∑

w∈W e cwNw
)
= ce.

Since q(sα) > 0, * preserves the relations (1.43) and defines an anti-involution
of H(R, q). The set {Nw : w ∈ W e

} is an orthonormal basis of H(R, q) for the
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inner product
〈h1, h2〉 = τ(h∗1h2).

This gives H(R, q) the structure of a Hilbert algebra. The Hilbert space completion
L2(R) of H(R, q) is a module over H(R, q), via left multiplication. Moreover,
every h ∈H(R, q) acts as a bounded linear operator [Opdam 2004, Lemma 2.3].
The reduced C∗-algebra of H(R, q) [Opdam 2004, §2.4], denoted by C∗r (R, q),
is defined as the closure of H(R, q) in the algebra of bounded linear operators
on L2(R).

As in (1.47), we can extend this to a C∗-algebra C∗r (R, q)o0, provided that
q is 0-invariant. We will not bother about twisted group algebras C[0, \] in this
section, for with the technique from (1.50) it is easy to generalize our results to
that setting, and in the context of C∗-algebras, crossed products with groups look
much more natural.

Let us recall some background about C∗r (R, q)o0, mainly from [Opdam 2004;
Solleveld 2012a]. It follows from [Delorme and Opdam 2008, Corollary 5.7] that it
is a finite type I C∗-algebra and that Irr(C∗r (R, q)) is precisely the tempered part of
Irr(H(R, q)). The structure of C∗r (R, q)o0 is described in terms of parabolically
induced representations. As induction data we use triples (P, δ, t), where

• P ⊂1,

• δ is an irreducible discrete series representation of HP ,

• t ∈ T P.

We regard two triples (P, δ, t) and (P ′, δ′, t ′) as equivalent if P = P ′, t = t ′ and
δ ∼= δ′. Notice that HP comes from a semisimple root datum, so it can have discrete
series representations. For every t ∈ T P there exists a surjection φt :HP

→HP ,
which combines the projection X → XP with evaluation at t . To such a triple
(P, δ, t) we associate the Ho0-representation

π0(P, δ, t)= indHo0
HP (δ ◦φt).

(When 0 = 1, we often suppress it from these and similar notations.) For any
t ∈ T P

un = T P
∩ Tun these representations extend continuously to the respective

C∗-completions of the involved algebras. Let 4un be the set of triples (P, δ, t)
as above, such that moreover t ∈ Tun. Considering P and δ as discrete variables,
we regard 4un as a disjoint union of finitely many compact real tori (of different
dimensions).

Let V04 be the vector bundle over 4un whose fibre at (P, δ, t) is the vector space
underlying π0(P, δ, t). That vector space is independent of t , so the vector bundle
is trivial. Let End(V04) be the algebra bundle with fibres EndC(π

0(P, δ, t)). Every
element of C∗r (R, q)o0 naturally defines a continuous section of End(V04).
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There exists a finite groupoid G which acts on End(V04). It is made from elements
of W o0 and of KP := TP ∩ T P. More precisely, its base space is the power set
of 1, and for P, Q ⊆1 the collection of arrows from P to Q is

GPQ = {(g, u) : g ∈ 0n W, u ∈ KP , g(P)= Q}. (2.1)

Whenever it is defined, the multiplication in G is

(g′, u′) · (g, u)= (g′g, g−1(u′)u).

In particular, writing W0(P, P)= {w ∈W0 : w(P)= P}, we have the group

GPP =W0(P, P)o KP . (2.2)

Usually we will write elements of G simply as gu. For γ ∈0W with γ (P)= Q⊂1,
there are algebra isomorphisms

ψγ :HP →HQ, θxP Nw 7→ θγ (xP )Nγwγ−1,

ψγ :HP
→HQ, θx Nw 7→ θγ x Nγwγ−1 .

(2.3)

The groupoid G acts from the left on 4un by

(g, u) · (P, δ, t) := (g(P), δ ◦ψ−1
u ◦ψ

−1
g , g(ut)), (2.4)

the action being defined if and only if g(P) ⊂ 1. Suppose that g(P) = Q ⊂ 1
and δ′ ∼= δ ◦ψ−1

u ◦ψ
−1
g . By [Opdam 2004, Theorem 4.33] and [Solleveld 2012a,

Theorem 3.1.5], there exists an intertwining operator

π0(gu, P, δ, t) ∈ HomH(R,q)o0
(
π0(P, δ, t), π0(Q, δ′, g(ut))

)
(2.5)

which depends algebraically on t ∈ T P
un. Then the action of G on the continuous

sections C(4un;End(V04)) is given by

(g· f )(ξ)=π0(g, g−1ξ) f (g−1ξ)π0(g, g−1ξ)−1, g∈GPQ, ξ=(Q, δ′, t ′). (2.6)

Theorem 2.7 [Delorme and Opdam 2008, Corollary 5.7; Solleveld 2012a, Theo-
rem 3.2.2]. There exists a canonical isomorphism of C∗-algebras

C∗r (R, q)o0 ∼
−→ C(4un;End(V04))

G .

For q = 1 this simplifies to the well-known isomorphism

C∗r (R, 1)o0 = C(Tun)o W0
∼
−→ C(Tun;EndC(C[W0]))W0. (2.8)

Let GP,δ be the setwise stabilizer of (P, δ, T P
un) in the group GPP . Let (P, δ)/G

be a set of representatives for the action of G on pairs (P, δ) obtained from (2.4).
Theorem 2.7 can be rephrased as an isomorphism

C∗r (R, q)o0 ∼
−→

⊕
(P,δ)/G

C
(
T P

un;EndC(π
0(P, δ, t))

)GP,δ
. (2.9)
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Let us discuss the representation theory of C∗r (R, q)o0 (i.e., the tempered uni-
tary representations of H(R, q)o 0)) in more detail. Our approach, following
Harish-Chandra and Opdam, starts with the discrete series of a parabolic sub-
algebra H(RP , qP) = HP . It is known from [Opdam 2004, Lemma 3.31] that
the central character of any (irreducible) discrete series representation δ of HP (a
WP -orbit in TP ) has a very specific property: it must consist of residual points
in TP , with respect to (RP , qP).

For t ∈ TP we write

Rz
P(t)= {α ∈ RP : α(t) ∈ {1,−1}},

R p
P(t)=

{
α ∈ RP : α(t) ∈ {q(sα)1/2q(sαtα)1/2,−q(sα)1/2q(sαtα)−1/2

}
}
.

(We remark that there is only one irreducible root datum for which q(sαtα) need
not be equal to q(sα), namely with R = Bn .) By definition t ∈ TP is residual if

|R p
P(t)| − |R

z
P(t)| = dimC(TP)= |P|.

Residuality depends in a subtle way on the parameters q . For instance, when q = 1
and X P 6= 0, there are no residual points. Residual points have been classified
in [Heckman and Opdam 1997]. It turns out that all the coordinates of a residual
point t are monomials in the parameters q(s)±1/2, s ∈ Saff. Thus we can write
t = t (q1/2).

Let Q(R) be the space of all maps q : Saff
→ R>0 such that q(s) = q(s ′) if s

and s ′ are conjugate in X o W0. Given t = t (q1/2), there is a Zariski-open subset
of the real variety Q(R) on which t (q1/2) defines a residual point. For this reason
we call the map

Q(R)→ T : q 7→ t (q1/2)

a generic residual point. We say that a parameter function q ∈Q(R) is generic if
all generic residual points for parabolic subalgebras HP of H are actually residual
points for that q .

When there is only one free parameter in q, for instance when R is of type
A, D or E , then every positive parameter function q 6= 1 is generic. On the other
hand, when R contains root systems of type B, C , F or G, then usually no equal
parameter function (q(s)= q(s ′) for all s, s ′ ∈ Saff) is generic.

The discrete series representations of H(RP , qP) were classified in [Opdam and
Solleveld 2010], at least when R is irreducible and qP generic. Later the classifi-
cation was extended to the nongeneric cases, along with an actual construction of
the representations, in [Ciubotaru and Opdam 2017]. Using these papers, it is in
principle always possible to find a set of representatives for the action of G on the
pairs (P, δ) as in (2.9).
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Now we describe a single direct summand C
(
T P

un;EndC(π
0(P, δ, t))

)GP,δ of
(2.9) more explicitly. Fix t ∈ T P

un and let Gξ be the isotropy group of ξ = (P, δ, t)
in G. The intertwining operators π0(g, ξ), g ∈ Gξ make π0(ξ) into a projective
Gξ -representation. Decompose it as

π0(ξ)=
⊕

ρ Cmρ ⊗ Vρ,

where (ρ, Vρ) runs through the set of (equivalence classes of) irreducible projective
Gξ -representations. From (2.6) we see that the evaluation at t of any element of
C
(
T P

un;EndC(π
0(P, δ, t))

)GP,δ lies in

EndGξ (π
0(ξ))∼=

⊕
ρ EndC(C

mρ ).

The action of Gξ on π0(P, δ, t) can be analyzed further with the theory of R-groups
from [Delorme and Opdam 2011]. In that paper there is no group 0, but with
the intertwining operators as in [Solleveld 2012a, Theorem 3.1.5] the extension
to the case with 0 is straightforward. By [Delorme and Opdam 2011, Proposi-
tions 4.5 and 4.7] there exists a root system Rξ on which Gξ acts, and an R-group
Rξ = StabGξ (Rξ ∩ R+P ), such that

Gξ =W (Rξ )oRξ . (2.10)

By [Delorme and Opdam 2011, Theorem 4.3(iv)] the intertwining operator π0(g, ξ)
is a scalar multiple of the identity if g ∈W (Rξ ). Hence,

EndGξ (π
0(ξ))= EndRξ

(π0(ξ)).

Moreover, the operators

π0(r, ξ) ∈ EndC(π
0(ξ)), r ∈Rξ ,

are linearly independent by [Delorme and Opdam 2011, Theorem 5.4]. To clas-
sify all irreducible representations of C

(
T P

un;EndC(π
0(P, δ, t))

)GP,δ, it remains
to determine (2.10) and to study π0(ξ) as a projective Rξ -representation, for all
ξ = (P, δ, t). In all cases that we will encounter in this paper, Rξ is abelian and
π0(ξ) is actually a linear Rξ -representation. Together with Theorem 1.52 this
enables us to determine Irr(C∗r (R, q)o0) in those cases.

2B. K-theory and equivariant cohomology. The computation of the topological
K-theory of C∗r (R, q)o 0 is the main goal of this paper. It follows from (2.9),
especially the compactness of T P

un , that the abelian group

K∗(C∗r (R, q)o0)= K0(C∗r (R, q)o0)⊕ K1(C∗r (R, q)o0)

is finitely generated; see [Solleveld 2012a, Lemma 5.1.3] and its proof. By [Solleveld
2012a, Theorem 5.1.4], which relies on the study of the representation theory and
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of parameter deformations of affine Hecke algebras in [Solleveld 2012a], the group
Q⊗Z K∗(C∗r (R, q)o0) does not depend on the parameters q . Combining this with
the conclusions from Section 1C, we will deduce that also K∗(C∗r (R, q)o0) itself
is independent of q.

Next we use equivariant cohomology and the equivariant Chern character to
express K∗(C∗r (R, q)o0) in terms of the cohomology of a sheaf on a CW-complex.
This is inspired by the equivariant Chern characters with values in Bredon coho-
mology developed in [Słomińska 1976; Lück and Oliver 2001]. Our version also
applies to certain noncommutative algebras, and provides more information about
the torsion elements than [Słomińska 1976; Lück and Oliver 2001].

In [Solleveld 2012a, Theorem 4.4.2] an injective homomorphism of C∗-algebras

ζ0 : C∗r (R, 1)o0→ C∗r (R, q)o0

was constructed, with the property

π ◦ ζ0 ∼= ζ
∨(π) for all π ∈Mod f (C∗r (R, q)o0).

Theorem 2.11. The map K∗(ζ0) : K∗(C∗r (R, 1)o0)→ K∗(C∗r (R, q)o0) is an
isomorphism.

Proof. Let u ∈ Tun. Then (1.53) says that ζ∨ provides a bijection between the
Grothendieck group of finite length C∗r (R, q)o0-modules with Z(H(R, q)o0)-
character in W0uTrs and the analogous group for C∗r (X o W )o0. For tempered
modules ζ∨ agrees with the map ζ ∗ from [Solleveld 2012a, §2.3].

These C∗-completions have the same irreducible representations as the respec-
tive Schwartz completions of these algebras (see [Opdam 2004, §6] or [Solleveld
2012a, §3.2]), namely the irreducible tempered representations of the underlying
affine Hecke algebras. That follows from the comparison of Theorem 2.7 with its
analogue for Schwartz completions [Solleveld 2012a, Theorem 3.2.2]. With these
translation steps we see that part (c) of [Solleveld 2012a, Lemma 5.1.5] holds.
Then [Solleveld 2012a, Lemma 5.1.5] tells us that also its part (a) holds, which is
the statement of the theorem. �

When we want to compute K∗(C∗r (R, q)o 0), we can use Theorem 2.11 to
replace q by 1, then apply it another time to replace 1 by any positive parameter
function q ′ we like. We will do the actual computation either when q = 1 or when
q is generic among all possible parameter functions.

In Section 3 we will encounter many root data R which are a product of root
data R1 and R2. If 0i is a group acting on Ri in the usual way, then 0 := 01×02

acts on R. In this case C∗r (R, q)o0 is defined as an algebra of bounded linear
operators on

L2(R)⊗C[0] = L2(R1)⊗C[01]⊗ L2(R2)⊗C[02].
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It is the closure of the algebraic tensor product of the algebras C∗r (R1, q1)o 01

and C∗r (R2, q2)o02 in B(L2(R)⊗C[0]), which means that

C∗r (R, q)o0 = C∗r (R1, q1)o01⊗min C∗r (R2, q2)o02, (2.12)

the minimal tensor product of C∗-algebras. These C∗-algebras are separable and
of type I, so the paper [Schochet 1982] applies to them. The Künneth theorem
[Schochet 1982] says that there exists a natural Z/2Z-graded short exact sequence

0→ K∗(C∗r (R1, q1)o01)⊗Z K∗(C∗r (R2, q2)o02)→ K∗(C∗r (R, q)o0)

→ TorZ

(
K∗(C∗r (R1, q1)o01), K∗(C∗r (R2, q2)o02)

)
→ 0. (2.13)

In particular, this becomes an isomorphism

K∗(C∗r (R1, q1)o01)⊗Z K∗(C∗r (R2, q2)o02)
∼
−→ K∗(C∗r (R, q)o0)

if K∗(C∗r (Ri , qi )o0i ) has no torsion for i = 1, 2. With (2.13) we can often reduce
the computation of K-groups to the case where R is irreducible.

By (2.8) and the Green–Julg Theorem [Julg 1981],

K∗(C∗r (R, 1)o0)= K∗(C(Tun)o W0)∼= K W0
∗
(C(Tun)).

Moreover, by the equivariant Serre–Swan theorem [Phillips 1987, Theorem 2.3.1],

K W0
∗
(C(Tun))∼= K ∗W0(Tun). (2.14)

Together with Theorem 2.7 we get

K∗(C∗r (R, q)o0)∼= K ∗W0(Tun). (2.15)

The right-hand side in (2.14) and (2.15) is just Atiyah’s W0-equivariant K-theory
of the compact Hausdorff space Tun. Let Tun//W0 be the extended quotient (see
also Section 2C). We recall from [Baum and Connes 1988, Theorem 1.19] that the
equivariant Chern character gives a natural isomorphism

K ∗W0(Tun)⊗Z C
∼
−→ H∗(Tun//W0;C). (2.16)

(Here H∗ could be many cohomology theories; in this paper we stick to Čech
cohomology.) With (2.14) we find a canonical isomorphism

K∗(C∗r (R, q)o0)⊗Z C∼= H∗(Tun//W0;C). (2.17)

In (2.16) it is essential to use complex coefficients, so this does not tell us much
about the torsion in K∗(C∗r (R, q)o0). To study the torsion elements better, we will
compare the topological K-theory of relevant C∗-algebras with a suitable version
of equivariant cohomology from [Bredon 1967]. Let 6 be a countable, locally
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finite and finite dimensional G-CW-complex, where G is a finite group. Assume
that all cells are oriented and that the action of G preserves these orientations.

We define a category K whose objects are the finite subcomplexes of 6. The
morphisms from K to K ′ are the maps K → K ′ : x → gx for g ∈ G such that
gK ⊂ K ′. Now a local coefficient system on 6 is a covariant functor from K to
the category of abelian groups, and the group Cq(6;L) of q-cochains is the set
of all functions f on the q-cells of 6 with the property that f (τ ) ∈ L(τ ) for all τ .
Furthermore, we define a coboundary map d : Cq(6;L)→ Cq+1(6;L) by

(d f )(σ )=
∑
τ∈6(q)

[τ : σ ]L(τ → σ) f (τ ), (2.18)

where the sum runs over the set 6(q) of all q-cells and the incidence number [τ : σ ]
is the degree of the attaching map from ∂σ (the boundary of σ in the standard
topological sense) to τ/∂τ . The group G acts naturally on this complex by cochain
maps so, for any K ⊂6, (C∗(K ;L)G, d) is a differential complex. We define the
equivariant cohomology of K with coefficients in L as

Hq
G(K ;L) := Hq(C∗(K ;L)G, d). (2.19)

More generally, for K ′ ⊂ K , C∗(K , K ′;L) is the kernel of the restriction map
C∗(K ;L)→ C∗(K ′;L) and

Hq
G(K , K ′;L)= Hq(C∗(K , K ′;L)G, d). (2.20)

By construction there exists a local coefficient system LG (more or less consisting
of the G-invariant elements of L) on the CW-complex 6/G such that the differen-
tial complexes (C∗(K , K ′;L)G, d) and (C∗(K/G, K ′/G;LG), d) are isomorphic.
Notice that LG defines a sheaf over 6/G (with the cells as cover), such that

Hq
G(K , K ′;L)∼= Ȟq(K/G, K ′/G;LG). (2.21)

Let 6 p be the p-skeleton of 6. We capture all the above things in a spectral
sequence (E p,q

r )r≥1, degenerating already for r ≥ 2, as follows:

E p,q
1 = H p+q

G (6 p, 6 p−1
;L)=

{
C p(6;L)G if q = 0,
0 if q > 0,

(2.22)

E p,q
2 =

{
H p

G(6;L) if q = 0,
0 if q > 0.

(2.23)

The differential d E
1 is the composition

E p,q
1 → C p+q(6 p

;L)G→ E p+1,q
1 (2.24)

of the maps induced by the inclusion (6 p,∅)→ (6 p, 6 p−1) and the coboundary d.
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We are mostly interested in this cohomology theory for a particular coefficient
system, which we now define. Consider the Fréchet algebra

B = C(6;MN (C))= MN (C(6)). (2.25)

(It is a C∗-algebra if 6 is compact.) We assume that we have ug ∈ B× such that

gb(x)= ug(x)b(g−1x)u−1
g (x) (2.26)

defines an action of G on B. Then the invariants BG constitute a Fréchet subalgebra
of B. Notice that by (2.6) and (2.9) the C∗-completion of an affine Hecke algebra
is a direct sum of algebras of this form.

To associate a local coefficient system to BG. we first assume that K is con-
nected. In that case we let

GK := {g ∈ G : gx = x ∀x ∈ K } (2.27)

be the isotropy group of K and we define Lu(K ) to be the free abelian group on
the (equivalence classes of) irreducible projective GK -representations contained in
(πx ,CN ), where πx(g) = ug(x) for g ∈ GK , x ∈ K . By the continuity of the ug

we get the same group for any x ∈ K . If K is not connected, then we let {Ki }i be
its connected components, and we define

Lu(K )=
∏

i Lu(Ki ). (2.28)

Suppose that gK ⊂ K ′ and that ρ is a projective GK -representation. Then we
define a projective GK ′-representation by

Lu(g : K → K ′)ρ(g′)= ρ(g−1g′g), g′ ∈ GK ′ . (2.29)

If h ∈ G gives the same map from K to K ′ as g then h−1g ∈ GK and

Lu(h : K → K ′)ρ(g′)= ρ(h−1g′h)= ρ(h−1g)ρ(g−1g′g)ρ(g−1h), (2.30)

so Lu(h : K → K ′)ρ is isomorphic to Lu(g : K → K ′)ρ as a projective represen-
tation. This makes Lu into a functor. We can regard Lu as a sheaf on 6, where a
section s is continuous on U if and only if s(K )|G K ′

= s(K ′) for every inclusion
K ⊂ K ′ ⊂U .

Example 2.31. Suppose that ug(x)= 1 for all x ∈6, g ∈ G. Then Lu and LG
u are

the constant sheaves Z over 6 and 6/G, respectively, and

H∗G(6;Lu)∼= Ȟ∗(6/G;Z) (2.32)

is the ordinary cellular cohomology of 6/G. Furthermore,

K∗(BG)∼= K∗(C(6/G;MN (C)))= K∗(C(6/G)),

which is isomorphic to Ȟ∗(6/G;Z) modulo torsion.
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It turns out that a relation like (2.16), between K∗(BG) and the Čech cohomol-
ogy H∗(6/G;LG

u ), is valid in the generality of the algebras BG from (2.25) and
(2.26). Notice that we do not require 6 to be compact; we consider the K-theory
of BG as a Fréchet algebra. The skeleton of the CW-complex 6 gives rise to the
following filtration:

K∗(BG) = K 0
∗
(BG)⊃ K 1

∗
(BG)⊃ · · · ⊃ K dim6

∗
(BG)⊃ K 1+dim6

∗
(BG)= 0,

K p
∗
(BG) := im

(
K∗(C0(6/6

p−1
;MN (C))

G)→ K∗(C(6;MN (C))
G)
)
. (2.33)

Theorem 2.34. The graded group associated with the filtration (2.33) is isomor-
phic to Ȟ∗(6/G;LG

u ). In particular, there is an (unnatural) isomorphism

K∗(BG)⊗Q∼= Ȟ∗(6/G;LG
u ⊗Q) (2.35)

and
K∗(BG)∼= Ȟ∗(6/G;LG

u )

if the right-hand side is torsion free.

Proof. For p, r ≥0 we set K (p, p+r)= K∗(C0(6
p+r−1/6 p−1

;MN (C))
G). When

p′ ≥ p and p′+ r ′ ≥ p+ r , the map

(6 p+r−1, 6 p−1)→ (6 p′+r ′−1, 6 p′−1)

induces a group homomorphism K (p′, p′+ r ′)→ K (p, p+ r). For any s ≥ 0 the
sequence

(6 p+r−1, 6 p−1)→ (6 p+r+s−1, 6 p−1)→ (6 p+r+s−1, 6 p+r−1) (2.36)

gives rise to a connecting homomorphism K (p, p + r)→ K (p + r, p + r + s).
Using [Cartan and Eilenberg 1956, Section XV.7] we construct a spectral sequence
(F p

r )r≥1 with terms

F p
1 = K (p, p+ 1)/K (p, p)= K∗(C0(6

p/6 p−1
;MN (C))

G),

F p
∞
= K (p,∞)/K (p+ 1,∞)= K p

∗
(BG)/K p+1

∗
(BG).

(2.37)

The entire setting is Z/2Z-graded by the K-degree. We put

K q(p, p+ r)= K p+q(C0(6
p+r−1/6 p−1

;MN (C))
G)

and we refine (2.37) to

F p,q
1 = K p+q(C0(6

p/6 p−1
;MN (C))

G),

F p,q
∞
= K p

p+q(B
G)/K p+1

p+q (B
G).

(2.38)
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By the definition of a G-CW-complex, the pointwise stabilizer of a p-cell σ is
equal to its setwise stabilizer in G. Consequently,

C0(6
p/6 p−1

;MN (C))
G ∼=

∏
σ∈6(p)/G

C0(R
p)⊗MN (C)

Gσ

and F p,1
1 = 0. From Bott periodicity and the definition of Lu in (2.28) we see that

F p,0
1
∼=

∏
σ∈6(p)/G

Lu(σ )∼=

( ∏
σ∈6(p)

Lu(σ )

)G

.

Now replace L in (2.22) by Lu and sum over all q to obtain E p
r . If we compare

the result with F p
1 = F p,0

1 ⊕ F p,1
1 , we see that E p

1
∼= F p

1 . So we get a diagram

F p,q
1

d F
1

//

∼

F p+1,q
1

∼∏
n∈Z E p,q+2n

1

d E
1
//
∏

n∈Z E p+1,q+2n
1

(2.39)

The differential d F
1 for F∗1 is induced from the construction of a mapping cone

of a Puppe sequence in the category of C∗-algebras, coming from (2.36). This is
the noncommutative counterpart of the construction of the differential in cellular
cohomology, so by naturality d F

1 corresponds to d E
1 under the above isomorphism.

Therefore, the spectral sequences E p
r and F p

r are isomorphic, and in particular F p
r

degenerates for r ≥ 2. Now the isomorphism (2.35) follows from (2.21).
If Ȟ∗(6/G;LG

u ) is torsion free, then every term E p
∞
∼= F p

∞ must be torsion free.
Hence in this case both K∗(BG) and Ȟ∗(6/G;LG

u ) are free abelian groups, of the
same rank. �

Theorem 2.34 allows us to reduce the computations of K∗(C∗r (R, q)) to Čech
cohomology, where a lot of tools are available. For several root data it is easiest
to look at the case q = 1, for which we will develop more machinery in the next
subsection. For some other root data (in particular of type PGLn) it is more con-
venient to study K∗(C∗r (R, q)) with q 6= 1, for then there are fewer possibilities
for torsion elements, compared to q = 1. In those cases we need the full force of
Theorem 2.34.

2C. Crossed products. In the special case of crossed products the technique from
Theorem 2.34 can be improved. A crucial role will be played by the extended
quotient, whose definition we recall now. Let G be a finite group G acting on a
topological space 6. We define

6̃ = {(g, t) ∈ G× Tun : g(t)= t},
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a closed subset of the topological space G×6. The group G acts on 6̃ by

g(g′, t)= (gg′g−1, g(t)).

The (geometric) extended quotient of 6 by G is defined as

6//G = 6̃/G. (2.40)

It decomposes as
6//G =

⊔
g∈cc(G)

6w/ZG(g), (2.41)

where cc(G) denotes a set of representatives for the conjugacy classes in G.
We will develop a method that allows one to pass from the G-equivariant K-

theory of 6 to the integral cohomology of 6//G. However, it does not work auto-
matically; we require that the cohomology is torsion-free and that all G-isotropy
groups of points of 6 are Weyl groups (and it uses some of our earlier results on
the representation rings of Weyl groups).

From now on we assume that 6 is a smooth manifold (possibly with boundary)
on which G acts smoothly. According to [Illman 1978] 6 also admits the structure
of a countable, locally finite, finite-dimensional G-simplicial complex. The crossed
product C(6)oG fits in the framework of (2.25) and (2.26) by the isomorphisms

C(6)oG ∼= C(6;EndC(C[G]))G = BG . (2.42)

In this case ug(x) is right multiplication by g−1 and πx is the direct sum of [G :Gx ]

copies of the regular representation of Gx . It is not hard to see that LG
u ⊗Z C is

isomorphic to the direct image of the constant sheaf C on 6̃, under the canoni-
cal map pr : 6̃/G → 6/G. Since pr is finite-to-one, there are no topological
complications, and we get an isomorphism

H∗G(6;Lu ⊗C)∼= Ȟ∗(6/G;LG
u ⊗Z C)∼= Ȟ∗(6̃/G;C). (2.43)

From this one can recover (2.16). Unfortunately, this approach does not automat-
ically lead to an isomorphism between Ȟ∗(6/G;LG

u ) and Ȟ∗(6̃/G;Z), for LG
u

need not be isomorphic to the direct image of the constant sheaf Z under pr .
Sometimes this can be approached better via a dual homology theory. Let

Cq(6;Lu) be the subgroup of Cq(6;Lu) consisting of functions supported on
finitely many q-cells. The graded Z-module C∗(6;Lu) admits a G-equivariant
boundary map, which in the notation of (2.18) can be written as

∂ : Cq+1(6;Lu)→ Cq(6;Lu), (∂ f )(τ )=
∑

σ∈6(q+1)

[τ : σ ] indGτ

Gσ
( f (σ )).

This is a natural perfect pairing on each Lu(σ )∼= RZ(Gσ ), since Gσ is a finite group.
With that one sees that the differential complex (C∗(6;Lu), d) is isomorphic to
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HomZ((C∗(6;Lu), ∂),Z). This persists to the G-invariants:

(C∗(6/G;LG
u ), d)∼= HomZ((C∗(6/G;LG

u ), ∂),Z). (2.44)

Suppose now that 6 is a manifold on which the finite group G acts smoothly. For
t ∈6 the isotropy G t acts R-linearly on the tangent space Tt(6). We say that G t

is a Weyl group if it is the Weyl group of some root system in Tt(6).

Theorem 2.45. Let G be a finite group acting smoothly on a manifold 6.

(a) Suppose that G t is a Weyl group for all t ∈6. Then

Hi (C∗(6/G;LG
u ), ∂)

∼= Hi (6//G;Z) for all i ∈ Z≥0.

(b) Suppose that the conclusion of part (a) holds, and that H∗(6//G;Z) is torsion-
free. Then

K∗(C(6)oG)∼= H∗(6//G;Z).

Proof. (a) For every subgroup H ⊂ G the set of fixpoints 6H is a submanifold
of 6 [Baum and Connes 1988, Lemma 4.1]. It follows that for every g ∈ cc(G)
and every connected component 6g

i of 6g, the map t 7→ G t is constant on an open
dense subset of 6g

i . Pick a point ti in this dense subset of 6g
i and write G ti =Wi .

By assumption Wi is a Weyl group and G t ⊃Wi for all t ∈6g
i .

For a cell τ and t ∈ τ \ ∂τ we have Gτ = G t . Using Proposition 1.36 we define,
for t ∈6g

i , t ∈ τ \ ∂τ ,

s(g, t)= s(g, τ )= indGτ

Wi
(H(ug, ρg)). (2.46)

We may and will assume that s(g, hτ)= h · s(g, τ ) for all h ∈ ZG(g). This extends
uniquely to a G-equivariant map 6g

→
⋃
τ⊂6g RZ(Gτ ), and hence defines an

element s(g) ∈ C∗(6;LG
u ). Thus s(g) is nonzero at Gt ∈ 6/G if and only if

Gt ∩6g is nonempty.
The s(g) with g ∈ cc(G) yield precisely one representation for each element of

the extended quotient
6//G =

⊔
g∈cc(G)

6g/ZG(g).

So for every t ∈ 6 we get exactly | cc(G t)| = | Irr(G t)| representations s(g, t).
By Proposition 1.17 the s(g, t) with g ∈ cc(G) and t ∈ G6g form a Z-basis of the
representation ring of the Weyl group G t . This also shows that for t ∈ τ \∂τ , the set{

h · indGσ

Wi
(H(ug, ρg)) : σ ⊂6

g, h ∈ Gτ \G, hσ = τ
}

(2.47)

is linearly independent in RZ(G t)= RZ(Gτ ).
Let τ ⊗ s(g, τ ) with τ ⊂ 6g be the terms of which s(g) is made. Then (2.46)

entails that the span of the τ ⊗ s(g, τ ) forms a subchain complex C(g, 6) of
(C∗(6/G;LG

u ), ∂) and (2.47) implies that C(g, 6) is isomorphic to the cellular



430 MAARTEN SOLLEVELD

homology complex C∗(6g/ZG(g);Z). Since the s(g, t) form a basis of RZ(G t)

for every t ∈6,
C∗(6/G;LG

u )=
⊕

g∈cc(G)

C(g, 6).

The claim about the homology of (C∗(6/G;LG
u ), ∂) follows.

(b) In the absence of torsion, the universal coefficient theorem says that the dual
of the homology of a different complex is naturally isomorphic to the cohomology
of the dual complex. This gives the horizontal isomorphisms in the following
commutative diagram:

H∗(6//G;Z) ∼
// HomZ(H∗(6//G;Z),Z)

��

H∗(C∗(6/G;LG
u ), d)

OO

∼
// HomZ(H∗(C∗(6/G;LG

u ), ∂),Z)

(2.48)

By assumption the right vertical arrow is an isomorphism. We define the left verti-
cal arrow to be the isomorphism such that the diagram becomes commutative. The
lower left corner of (2.48) is H∗G(6;L), which by Theorem 2.34 is isomorphic
to K∗(C(6)oG). �

Let us return to the case of C(Tun) o W = C∗r (W
e), where Tun, W and W e

come from a root datum R. Then W acts by algebraic group automorphisms on
the compact torus Tun.

Corollary 2.49. Let R be the root datum of a reductive algebraic group with
simply connected derived group, and assume that H∗(Tun//W ;Z) is torsion-free.
Then for any positive parameter function q,

K∗(C∗r (R, q))∼= H∗(Tun//W ;Z).

Proof. Let R be the root datum of (G(C), T ). By Steinberg’s connectedness the-
orem [Steinberg 1968], the group ZG(C)(t) is connected for every t ∈ T . Hence
Wt =W (ZG(C)(t), T ) is always a Weyl group. Now Theorem 2.45 says that

H∗(Tun//W ;Z)∼= K∗(C(Tun)o W )= K∗(C∗r (R, 1)).

Apply Theorem 2.11 to the right-hand side. �

In fact Corollary 2.49 also applies to some other root data, for example those of
type SO2n+1.

3. Examples

In this section, we compute the topological K-theory of the C∗-Hecke algebras
C∗r (R, q) associated to common root data R. As discussed after Theorem 2.11, it
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suffices to do so for q = 1 or for generic parameter functions. For q = 1 we apply
Theorem 2.45, when that is possible.

Our approach for q 6= 1 involves the following steps.

(1) Explicitly write down the root datum and the associated Weyl groups.

From (2.9) we get a canonical decomposition

C∗r (R, q)o0 =
⊕

P C∗r (R, q)P o0P , (3.1)

where P runs over a set of representatives for the action of G on the power set
of 1 and 0P is the setwise stabilizer of P in 0.

(2) List a good set of representatives P .

For every chosen P we do the following:

(3) Determine the root datum RP and the residual points.

(4) Determine the discrete series of H(RP , qP), and all the relevant intertwining
operators.

(5) Describe C∗r (R, q)P o0P and its space of irreducible representations.

(6) Calculate K∗(C∗r (R, q)P o0P).

Often the final step can be reduced to commutative C∗-algebras. When this is not
possible, we transfer the problem to sheaf cohomology via Theorem 2.34.

3A. Type GLn. The easiest root data to study are those associated with the reduc-
tive group GLn . The right way to do this was shown by Plymen. From [Plymen
1987, Lemma 5.3] we know that the topological K-groups of these affine Hecke
algebras are free abelian, of a finite rank which is explicitly given. Strictly speaking,
we do not really need to study this root datum, as we could just refer to Plymen’s
results. Nevertheless, since many other examples rely on this case, we include an
analysis.

From now on many things will be parametrized by partitions and permutations,
so let us agree on some notations. We write partitions in decreasing order and
abbreviate (x)3 = (x, x, x). A typical partition looks like

µ= (µ1, µ2, . . . , µd)= (n)mn · · · (2)m2(1)m1, (3.2)

where some of the multiplicities mi may be 0. By µ ` n we mean that the weight
of µ is

|µ| = µ1+ · · ·+µd = n.

The number of different µi (i.e., the number of blocks in the diagram of µ) is
denoted by b(µ) and the dual partition (obtained by reflecting the diagram of µ)
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by µ∨. Sometimes we abbreviate

gcd(µ)= gcd(µ1, . . . , µd),

µ! = µ1!µ2! · · ·µd ! .
(3.3)

With a such partition µ of n we associate the permutation

σ(µ)= (1 2 · · · µ1)(µ1+ 1 · · · µ1+µ2) · · · (n+ 1−µd · · · n) ∈ Sn.

As is well-known, this gives a bijection between partitions of n and conjugacy
classes in the symmetric group Sn . The centralizer ZSn (σ (µ)) is generated by the
cycles

((µ1+ · · ·+µi + 1)(µ1+ · · ·+µi + 2) · · · (µ1+ · · ·+µi +µi+1))

and the “permutations of cycles of equal length” — for example, if µ1 = µ2,

(1µ1+ 1)(2µ1+ 2) · · · (µ1 2µ1). (3.4)

Using the second presentation of µ, this means that

ZSn (σ (µ))
∼=

n∏
l=1

(Z/ lZ)ml o Sml .

Let us recall the definition of R(GLn) and the associated groups. Below Q and
Q∨ are the root and coroot lattices.

X = Zn, Q = {x ∈ X : x1+ · · ·+ xn = 0},

Y = Zn, Q∨ = {y ∈ Y : y1+ · · ·+ yn = 0},

T = (C×)n, t = (t (e1), . . . , t (en))= (t1, . . . , tn),

R = {ei − e j ∈ X : i 6= j}, α0 = e1− en,

R∨ = {ei − e j ∈ Y : i 6= j}, α∨0 = e1− en,

si = sαi = sei−ei+1, s0 = tα0sα0 = tα1sα0 t−α1 : x→ x +α0−〈α
∨

0 , x〉α0,

W = 〈s1, · · · , sn−1 | s2
i = (si si+1)

3
= (si s j )

2
= e : |i − j |> 1〉 ∼= Sn,

Saff
= {s0, s1, . . . , sn−1},

W aff
= 〈s0,W0 | s2

0 = (s0si )
2
= (s0s1)

3
= (s0sn−1)

3
= e if 2≤ i ≤ n− 2〉,

W e
=W aff o�, �= 〈te1(1 2 · · · n)〉 ∼= Z.

Because all roots of R are conjugate, s0 is conjugate to any si ∈ Saff. Hence for
any label function we have q(s0)= q(si ) := q . Every point of T is W-conjugate to
one of the form t = ((t1)µ1(tµ1+1)

µ2 · · · (tn)µd ) ∈ T and

Wt = Sµ1 × Sµ2 × · · ·× Sµd . (3.5)
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• Case q = 1.

By (2.17) and (2.41) we have

K∗(C∗r (W
e))⊗C∼= Ȟ∗(T̃un/Sn;C)∼=

⊕
µ`n

Ȟ∗
(
T σ(µ)

un /ZSn (σ (µ));C
)
. (3.6)

Therefore, we want to determine T σ(µ)
un /ZSn (σ (µ)). If µ is as in (3.2) then

T σ(µ)
= {(t1)µ1(tµ1+1)

µ2 · · · (tn)µd ∈ T },

T σ(µ)/ZSn (σ (µ))
∼= (C

×)mn/Smn × · · ·× (C
×)m1/Sm1,

(3.7)

where Sml acts on (C×)ml by permuting the coordinates. To handle this space
we use the following nice, elementary result, a proof of which can be found for
example in [Plymen 1987, Lemma 5.1].

Lemma 3.8. For any m ∈ N there is an isomorphism of algebraic varieties

(C×)m/Sm ∼= Cm−1
×C×.

Consequently, T σ(µ)
un /ZSn (σ (µ)) has the homotopy type of (S1)b(µ). In particu-

lar, its integral cohomology is torsion-free, so Corollary 2.49 is applicable. It says
that (3.6) can be refined to

K∗(C∗r (W
e))∼=

⊕
µ`n

Ȟ∗((S1)b(µ);Z)∼=
⊕
µ`n

Z2b(µ)
. (3.9)

• Generic, equal parameter case q 6= 1.

Inequivalent subsets of 1 are parametrized by partitions µ of n. For the typical
partition (3.2) we have

Pµ =1 \ {αµ1, αµ1+µ2, . . . , αn−µd },

RPµ
∼= (An−1)

mn × · · ·× (A1)
m2 ∼= R∨Pµ,

X Pµ ∼= Z(e1+ · · ·+ eµ1)/µ1+ · · ·+Z(en+1−µd + · · ·+ en)/µd ,

X Pµ
∼= (Z

n/Z(e1+ · · ·+ en))
mn + · · ·+ (Z2/Z(e1+ e2))

m2,

Y Pµ = Z(e1+ · · ·+ eµ1)+ · · ·+Z(en+1−µd + · · ·+ en),

YPµ = {y ∈ Zn
: y1+ · · ·+ yµ1 = · · · = yn+1−µd + · · ·+ yn = 0},

T Pµ = {(t1)µ1 · · · (tn)µd ∈ T },

TPµ = {t ∈ T : t1t2 · · · tµ1 = · · · = tn+1−µd · · · tn = 1},

KPµ = {t ∈ T Pµ : tµ1
1 = · · · = tµd

n = 1},

WPµ
∼= (Sn)

mn × · · ·× (S2)
m2, W (Pµ, Pµ)∼= Smn × · · ·× Sm2 × Sm1,

GPµPµ = KPµ o W (Pµ, Pµ), ZSn (σ (µ))=W (Pµ, Pµ)n
∏n

l=1(Z/ lZ)ml .
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The WPµ-orbits of residual points for HPµ are parametrized by

KPµ
(
(q(µ1−1)/2, q(µ1−3)/2, . . . , q(1−µ1)/2) · · · (q(µd−1)/2, q(µd−3)/2, . . . , q(1−µd )/2)

)
.

This set is obviously in bijection with KPµ , and indeed the intertwiners π(k) with
k ∈ KPµ act on it by multiplication. From the classification of the discrete series we
know that here every residual point carries precisely one discrete series represen-
tation, namely a twist of a Steinberg representation. The quickest way to see this
is with the Kazhdan–Lusztig classification of irreducible representations of affine
Hecke algebras with equal parameters, in particular [Kazhdan and Lusztig 1987,
Theorems 7.12 and 8.13]. This implies⋃

δ

(Pµ, δ, T Pµ)/KPµ
∼= T Pµ,⋃

δ

(Pµ, δ, T Pµ)/GPµPµ
∼= T Pµ/W (Pµ, Pµ)= T σ(µ)/ZSn (σ (µ)).

If a point ξ = (Pµ, δ, t) has a nontrivial stabilizer Gξ , then by the above this sta-
bilizer is contained in W (Pµ, Pµ) ∼=

∏n
l=1 Sml . It is easily seen that this isotropy

group is actually a Weyl group, and that it equals the group W (Rξ ) from (2.10). In
other words, all R-groups are trivial for this root datum and q 6= 1, and all inter-
twining operators π(g, ξ) from a representation π(ξ) to itself are scalar multiples
of the identity. So the action of WPµPµ on

C
(⊔

δ

T Pµ
un ;Mn!/µ!(C)

)
(3.10)

is essentially only on
⊔
δ T Pµ

u and the conjugation part doesn’t really matter. In
particular, we deduce that

C∗r (R, q)∼=
⊕
µ`n

Mn!/µ!

(
C
(⊔

δ

T Pµ
un

))
∼=

⊕
µ`n

Mn!/µ!
(
T σ(µ)

un /ZSn (σ (µ))
)
. (3.11)

In particular, C∗r (R, q) is Morita-equivalent with the commutative C∗-algebra of
continuous functions on Tun//Sn . Similar results were obtained by completely
different methods in [Mischenko 1982].

We remark that Irr(C∗r (R, q)) has a clear relation with the elliptic representation
theory of symmetric groups. Every δ is essentially a Steinberg representation, so

ζ∨(δ ◦φt) ∈Mod(O(T )o ZSn (σ (µ)))

is given by the O(T )-character t and the sign representation of the Weyl group
ZSn(σ (µ))t . Moreover, the group ZSn(σ (µ))t can be identified with R(ξ), where
ξ = (Pµ, δ, t). Then ζ∨(π(ξ))= ind(Sn)t

W (Rξ )(sign) as (Sn)t -representations, and this
is exactly a member of the basis RZ((Sn)t) exhibited in Proposition 1.17(b).
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Using the analysis from the case q = 1, it follows that

K∗(C∗r (R, q))∼=
⊕
µ`n

K ∗
(
T σ(µ)

un /ZSn (σ (µ))
)

∼=

⊕
µ`n

K ∗((S1)b(µ))∼=
⊕
µ`n

Z2b(µ)
. (3.12)

Recall that the even cohomology of (S1)b has the same dimension as its odd co-
homology, unless b= 0. The same holds for K-theory, and b(µ)= 0 does not occur
because b(µ) counts the number of different terms in a partition of n ≥ 1. So we
can refine (3.12) to

K0(C∗r (R, q))=
⊕
µ`n

Z2b(µ)−1
, K1(C∗r (R, q))=

⊕
µ`n

Z2b(µ)−1
. (3.13)

3B. Type SLn. The affine Hecke algebra associated to a root datum of type SLn

describes the category of Iwahori-spherical representations of PGLn(Qp). Since
that is a subcategory of the Iwahori-spherical representations of GLn(Qp), it can be
expected this affine Hecke algebra behaves very similarly to those in the previous
subsection. Indeed, we will see that the calculations of the K-theory are essentially
the same as in Section 3A.

The root datum R(SLn) is given by:

X = Zn/Z(e1+ · · · en)∼= Q+ ((e1+ · · ·+ en)/n− en),

Q = {x ∈ Zn
: x1+ · · ·+ xn = 0},

Y = Q∨ = {y ∈ Zn
: y1+ · · ·+ yn = 0},

T = {t ∈ (C×)n : t1 · · · tn = 1}, t = (t (e1), . . . , t (en))= (t1, . . . , tn),

R = {ei − e j ∈ X : i 6= j}, α0 = e1− en,

R∨ = {ei − e j ∈ Y : i 6= j}, α0 = e1− en,

si = sαi = sei−ei+1, s0 = tα0sα0 = tα1sα0 t−α1 : x→ x +α0−〈α
∨

0 , x〉α0,

W =
〈
s1, · · · , sn−1 | s2

i = (si si+1)
3
= (si s j )

2
= e if |i − j |> 1

〉
∼= Sn,

Saff
= {s0, s1, . . . , sn−1},

W aff
=
〈
s0,W0 | s2

0 = (s0si )
2
= (s0s1)

3
= (s0sn−1)

3
= e if 2≤ i ≤ n− 2

〉
,

W e
=W aff o�, �= 〈te1−(e1+···en)/n(12 · · · n)〉 ∼= Z/nZ.

Because all roots are conjugate, s0 is conjugate to any si ∈ Saff, and for any label
function q(s0)= q(si )= q. The W-stabilizer of ((t1)µ1(tµ1+1)

µ2 · · · (tn)µd ) is iso-
morphic to Sµ1× · · · × Sµd . Generically, there are n! n residual points, and they
all satisfy t (αi ) = q or t (αi ) = q−1 for 1 ≤ i < n. These residual points form n
conjugacy classes, unless q = 1.
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• Group case q = 1.

In view of (2.17) and (2.41), we want to determine T σ(µ)
un /ZSn (σ (µ)), where µ

is any partition of n. Write it as in (3.2); then

T σ(µ)
= {(t1)µ1(tµ1+1)

µ2 · · · (tn)µd ∈ T }
∼= {(t1)µ1(tµ1+1)

µ2 · · · (tn)µd ∈ (C×)n}/C×

×{(e2π ik/n)n : 0≤ k < gcd(µ)},

T σ(µ)/ZSn (σ (µ))
∼=
(
(C×)mn/Smn × · · ·× (C

×)m1/Sm1

)
/C×

×{(e2π ik/n)n : 0≤ k < gcd(µ)},

where C× acts diagonally. By Lemma 3.8, each factor (C×)mi /Smi is homotopy
equivalent to a circle. The induced action of S1

⊂ C× on this direct product of
circles identifies with a direct product of rotations. Hence, T σ(µ)/ZSn (σ (µ)) is
homotopy equivalent with Tb(µ)−1

× {gcd(µ) points}, and the extended quotient
T//W has torsion-free cohomology. By Corollary 2.49,

K∗(C∗r (W
e))∼= Zd(n), d(n) :=

∑
µ`n

gcd(µ)2b(µ)−1. (3.14)

• Generic, equal parameter case q 6= 1.

Inequivalent subsets of 1 are parametrized by partitions µ of n. For the typical
partition (3.2) we put

Pµ =1 \ {αµ1, αµ1+µ2, . . . , αn−µd },

RPµ
∼= (An−1)

mn × · · ·× (A1)
m2 ∼= R∨Pµ,

X Pµ ∼=
(
Z(e1+· · ·+eµ1)/µ1+· · ·+Z(en+1−µd+· · ·+en)/µd

)
/Z(e1+· · ·+en)/g,

XPµ
∼= (Z

n/Z(e1+ · · ·+ en))
mn + · · ·+ (Z2/Z(e1+ e2))

m2,

Y Pµ = {y ∈ Z(e1+ · · ·+ eµ1)+ · · ·+Z(en+1−µd + · · ·+ en) : y1+ · · ·+ yn = 0},

YPµ = {y ∈ Y : y1+ · · ·+ yµ1 = · · · = yn+1−µd + · · ·+ yn = 0},

T Pµ = {(t1)µ1 · · · (tn)µd ∈ T : tµ1/g
1 · · · tµd/g

n = 1}, g = gcd(µ),

TPµ = {t ∈ T : t1t2 · · · tµ1 = · · · = tn+1−µd · · · tn = 1},

KPµ = {t ∈ T Pµ : tµ1
1 = · · · = tµd

n = 1},

WPµ
∼= (Sn)

mn× · · ·× (S2)
m2, W (Pµ, Pµ)∼= Smn× · · ·× Sm2 × Sm1,

GPµPµ = KPµ o W (Pµ, Pµ), ZSn (σ (µ))=W (Pµ, Pµ)n
∏n

l=1(Z/ lZ)ml .

Theorem 3.15. For q 6= 1 the C∗-algebra C∗r (R(SLn), q) is Morita equivalent
with the commutative algebra of continuous functions on Tun//W.
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Its K-theory is given by

K0(C∗r (R, q))=
⊕

µ`n, b(µ)>1

Zgcd(µ)2b(µ)−2
⊕

⊕
µ`n, b(µ)=1

Zgcd(µ),

K1(C∗r (R, q))=
⊕

µ`n, b(µ)>1

Zgcd(µ)2b(µ)−2
.

Proof. The WPµ-orbits of residual points for HPµ are represented by the points(
(q(µ1−1)/2, q(µ1−3)/2, . . . , q(1−µ1)/2) · · · (q(µd−1)/2, q(µd−3)/2, . . . , q(1−µd )/2)

)
·
(
(e2π ik1/µ1)µ1 · · · (e2π ikd/µd )µd

)
, 0≤ ki < µi . (3.16)

These points are in bijection with KPµ ×Z/gcd(µ)Z. Also T σ(µ) consists of ex-
actly gcd(µ) components, one of which is T Pµ . Just as in the type GLn case, this
leads to ⋃

δ

(Pµ, δ, T Pµ)/KPµ
∼= T Pµ ×Z/gcd(µ)Z∼= T σ(µ),⋃

δ

(Pµ, δ, T Pµ)/WPµPµ
∼= T σ(µ)/ZSn (σ (µ)),

C∗r (R, q)∼=
⊕
µ`n

Mn!/µ!

(
C
(⊔

δ

T Pµ
u

))
∼=

⊕
µ`n

Mn!/µ!
(
T σ(µ)

u /ZSn (σ (µ))
)
.

The extended quotient Tun//W is
⊔
µ`n T σ(µ)

u /ZSn (σ (µ)), which gives the desired
Morita equivalence. It follows that

K∗(C∗r (R, q))∼=
⊕
µ`n

K ∗
(
T σ(µ)

u /ZSn (σ (µ))
)
∼=

⊕
µ`n

K ∗((S1)b(µ)−1)gcd(µ). (3.17)

This a free abelian group of rank d(n)=
∑

µ`n gcd(µ)2b(µ)−1 with b(µ) as on
page 431. Since the even K-theory of (S1)b has the same rank as the odd K-theory
unless b = 0, (3.17) leads to K0 and K1 as claimed. �

3C. Type PGLn. The root datum for the algebraic group PGLn gives rise to

X = Q = {x ∈ Zn
: x1+ · · ·+ xn = 0},

Q∨ = {y ∈ Zn
: y1+ · · ·+ yn = 0},

Y = Zn/Z(e1+ · · ·+ en)∼= Q∨+ ((e1+ · · ·+ en)/n− e1),

T = (C×)n/C×, t = (t1, . . . , tn)= (t (e1), . . . , t (en)),

R = {ei − e j ∈ X : i 6= j}, α0 = e1− en,

R∨ = {ei − e j ∈ Y : i 6= j}, α0 = e1− en,

si = sαi = sei−ei+1, s0 = tα0sα0 : x→ x +α0−〈α
∨

0 , x〉α0,
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W = 〈s1, . . . , sn−1 | s2
i = (si si+1)

3
= (si s j )

2
= e if |i − j |> 1〉 ∼= Sn,

Saff
= {s0, s1, . . . , sn−1}, �= {e},

W e
=W aff

= 〈s0,W0 | s2
0 = (s0si )

2
= (s0s1)

3
= (s0sn−1)

3
= e if 2≤ i ≤ n− 2〉.

For n > 2, s0 is conjugate to s1 in W aff, for n = 2 it is not. So for n > 2 there
is only one parameter q = q(si ), 0 ≤ i ≤ n − 1, whereas for n = 2, q0 may
differ from q1. In particular, for n = 2 the equal parameter function q(s0)= q(s1)

is not generic. Nevertheless, we only consider equal parameter functions in this
subsection, explicit computations for the other parameter functions on R(PGL2)

can be found in [Solleveld 2007, §6.1].
For q 6= 1, there are n! residual points. They form one W-orbit, and a typical

residual point is
(q(1−n)/2, q(3−n)/2, . . . , q(n−1)/2).

To determine the isotropy group of points of T we have to be careful. In general
the W-stabilizer of

((t1)µ1(tµ1+1)
µ2 · · · (tn)µd ) ∈ T

is isomorphic to
Sµ1 × Sµ2 × · · ·× Sµd ⊂W.

However, in some special cases the diagonal action of C× on (C×)n gives rise to
extra stabilizing elements. Let r be a divisor of n, k ∈ (Z/rZ)× and λ= (λ1, . . . , λl)

a partition of n/r . The isotropy group of

(t1)λ1(e2π ik/rt1)λ1 · · ·(e−2π ik/rt1)λ1(trλ1+1)
λ2 · · ·(e−2π ik/rtrλ1+1)

λ2 · · ·(e−2π ik/rtn)λl

is isomorphic to
Sr
λ1
× Sr

λ2
× · · ·× Sr

λl
oZ/rZ. (3.18)

Explicitly, the subgroup Z/rZ is generated by

(1 λ1+1 2λ1+1 · · ·(r−1)λ1+1)(2 λ1+2 2λ1+2 · · ·(r−1)λ1+2) · · ·(λ1 2λ1 · · · rλ1)

· · · (n+1−rλd n+1+(1−r)λd · · · n+1+(r−1)λd)(n+(1−r)λd n+(2−r)λd · · · n),

and it acts on every factor Sr
λ j

in (3.18) by cyclic permutations.

• Case q = 1.

As we noted before, we have to analyze T σ(µ)
un /ZSn (σ (µ)). For the typical par-

tition µ we have

T σ(µ)
={(t1)µ1(tµ1+1)

µ2 · · · (tn)µd }/C××{t : t (e j )= e2π i jk/g, 0≤ k< g}, (3.19)

which is the disjoint union of g = gcd(µ) complex tori of dimension mn +mn−1+

· · ·+m1− 1. We obtain
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T σ(µ)/ZSn (σ (µ))
∼=
(
(C×)mn/Smn × · · ·× (C

×)m1/Sm1

)
/C×

×{t : t (e j )= e2π i jk/g, 0≤ k < g}. (3.20)

Remarkably enough, these sets are diffeomorphic to the corresponding sets for
R(SLn). We take advantage of this by reusing our deduction that (3.20) is homo-
topy equivalent with (S1)b(µ)−1

×{gcd(µ) points}. With (2.17) we conclude that
K∗(C∗r (W

e))⊗Z C has dimension d(n)=
∑

µ`n gcd(µ)2b(µ)−1.

• Equal parameter case q 6= 1.
This is noticeably different from the generic cases for R(GLn) and R(A∨n−1),

because C∗r (R(An−1, q)) is not Morita equivalent to a commutative C∗-algebra.
Of course the inequivalent subsets of 1 are still parametrized by partitions µ of n:

Pµ =1 \ {αµ1, αµ1+µ2, . . . , αn−µd },

RPµ
∼= (An−1)

mn × · · ·× (A1)
m2 ∼= R∨Pµ,

X Pµ ∼= {x ∈ Z(e1+ · · ·+ eµ1)/µ1+ · · ·+Z(en+1−µd + · · ·+ en)/µd :

x1+ · · ·+ xn = 0},

X Pµ
∼= {x ∈ Zµ1/Z(e1+ · · ·+ eµ1)+ · · ·+Zµd/Z(en+1−µd + · · ·+ en) :

x1+ · · ·+ xn ∈ gZ/gZ},

Y Pµ ∼= Z(e1+ · · ·+ eµ1)+ · · ·+Z(en+1−µd + · · ·+ en)/Z(e1+ · · ·+ en),

YPµ
∼= {y : y1+ · · ·+ yµ1 = · · · = yn+1−µd + · · ·+ yn = 0}/Z(e1+ · · · en),

T Pµ = {(t1)µ1 · · · (tn)µd }/C×,

TPµ = {t : t1t2 · · · tµ1 = · · · = tn+1−µd · · · tn = 1}/{z ∈ C : zg
= 1},

KPµ = {(t1)
µ1 · · · (tn)µd : tµ1

1 = · · · = tµd
n = 1}/{z ∈ C : zg

= 1},

WPµ
∼= Smn

n × Smn−1
n−1 × · · ·× Sm2

2 , W (Pµ, Pµ)∼= Smn× · · ·× Sm2× Sm1 .

We note that

T σ(µ)
= T Pµ ×{t : t (e j )= e2π i jk/g, 0≤ k < g}.

The WPµ-orbits of residual points for HPµ are represented by the points of

KPµ(q
(µ1−1)/2, q(µ1−3)/2, . . . , q(1−µ1)/2, q(µ2−1)/2, . . . , q(µd−1)/2, . . . , q(1−µd )/2).

Hence, the intertwiners π(k) with k ∈ KPµ permute the set of discrete series repre-
sentations of HPµ faithfully, and⊔

δ

(Pµ, δ, T Pµ)/KPµ
∼= T Pµ = (T σ(µ))◦.

Just before (3.10) we saw that the intertwiners for R(GLn), q 6= 1, have the property

w(t)= t ⇒ π(w, Pµ, δ, t)= 1.
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This implies that in our present setting we can have w(t)= t and π(w, Pµ, δ, t) 6= 1
only if w(t)= t does not hold without taking the action of C× into account.

Let us classify such w ∈W (Pµ, Pµ) and t ∈ T Pµ up to conjugacy. For a divisor
r of g∨ := gcd(µ∨) we have the partition

µ1/r
:= (nr)mn/r

· · · (2r)m2/r (r)m1/r .

Notice that
b(µ1/r )= b(µ)= b(µ∨).

There exists a σ ∈ Sn which is conjugate to σ(µ1/r ) and satisfies σ r
= σ(µ). We

construct a particular such σ as follows. If r = g∨ then (starting from the left)
replace every block

(d+1 d+2 · · · d+m)(d+1+m · · · d+2m) · · · (d+(g∨−1)m · · · d+g∨m)

of σ(µ) by

(d+1 d+1+m · · · d+1+(g∨−1)m 2 d+2+m · · · d+2+(g∨−1)m d+3 · · · d+g∨m).

We denote the resulting element by σ(µ)1/g∨, and for general r | g∨ we define

σ(µ)1/r
:=
(
σ(µ)1/g∨)g∨/r

.

Consider the cosets of subtori

T Pµ
r,k :=

(
T σ(µ)1/r )◦(

(1)g
∨µ1/r (e2π ik/r )g

∨µ1+g∨/r/r
· · · (e−2π ik/r )g

∨µd/r), k ∈ Z.

If gcd(k, r)= 1, then the generic points of T Pµ
r,k have W (Pµ, Pµ)-stabilizer

〈WPµ, σ (µ)
1/r
〉 ∩W (Pµ, Pµ)∼= Z/rZ.

Note that for r ′ | g∨,
T Pµ

r ′,k ⊂ T Pµ
r,k if r | r ′. (3.21)

If a point t ∈ T Pµ
r,k does not lie on any T Pµ

r ′,k′ with r ′> r , then its W (Pµ, Pµ)-stabilizer
may still be larger than Z/rZ. However, it is always of the form

Sr
λ1
× · · ·× Sr

λl
oZ/rZ.

Here the product of symmetric groups is W (Rξ ) from (2.10), and Rξ =Z/rZ. With
[Delorme and Opdam 2011] it follows that the intertwiners π(w, Pµ, δ, t) are scalar
for w ∈ Sr

λ1
×· · ·× Sr

λl
and nonscalar for w ∈ (Z/rZ)\ {e}. Because Z/rZ is cyclic

this implies that π(Pµ, δ, t) is the direct sum of exactly r inequivalent irreducible
representations.

Different choices of σ(µ)1/r or of k ∈ (Z/rZ)× lead to conjugate subvarieties
of T Pµ , so we have a complete description of Irr(C∗r (R, q)Pµ). To calculate the



TOPOLOGICAL K-THEORY OF AFFINE HECKE ALGEBRAS 441

K-theory of this algebra we use Theorem 2.34, which says that (at least modulo
torsion) it is isomorphic to

H∗W (Pµ,Pµ)
(
T Pµ

u ;Lu
)
∼= Ȟ∗

(
T Pµ/W (Pµ, Pµ);L

W (Pµ,Pµ)
u

)
.

We can endow T Pµ
u with the structure of a finite W (Pµ, Pµ)-CW-complex, such

that every T Pµ
u,r,k is a subcomplex. The local coefficient system Lu is not very

complicated: Lu(B) ∼= Zr if and only if B \ ∂B consists of generic points in a
conjugate of T Pµ

u,r,k . In suitable coordinates the maps Lu(B → B ′) are all of the
form

Zr
→ Zr/d

: (x1, . . . , xr )→ (x1+ x2+ · · ·+ xd , . . . , x1+r−d + · · ·+ xr ).

Hence, the associated sheaf is the direct sum of several subsheaves F
µ
r , one for

each divisor r of gcd(µ∨). The support of Fµr is

W (Pµ, Pµ)T
Pµ

u,r,1/W (Pµ, Pµ)∼= T
P
µ1/r

u /ZSn (σ (µ
1/r )),

and on that space it has constant stalk Zφ(r). Here φ is the Euler φ-function, i.e.,

φ(r)= #{m ∈ Z : 0≤ m < r, gcd(m, r)= 1} = #(Z/rZ)×.

This is the rank of Fµr , because in every point of Tu,r,1 we have r irreducible rep-
resentations, but the ones corresponding to numbers that are not coprime to r are
already accounted for by the sheaves Fµr ′ with r ′ | r . We calculate

Ȟ∗
(
T Pµ

un /W (Pµ, Pµ);L
W (Pµ,Pµ)
u

)
∼=

⊕
r |gcd(µ∨)

Ȟ∗
(
T Pµ

un /W (Pµ, Pµ);Fµr
)

∼=

⊕
r |gcd(µ∨)

Ȟ∗
(
T

P
µ1/r

un /ZSn (σ (µ
1/r ));Zφ(r)

)
∼=

⊕
r |gcd(µ∨)

Ȟ∗
(
(S1)b(µ

1/r )−1
;Zφ(r)

)
∼=

⊕
r |gcd(µ∨)

Zφ(r)2
b(µ1/r )−1

=

⊕
r |gcd(µ∨)

Zφ(r)2
b(µ∨)−1

= Zgcd(µ∨)2b(µ∨)−1
. (3.22)

Now Theorem 2.34 says that K∗(C∗r (R, q)Pµ) is also a free abelian group of rank
gcd(µ∨)2b(µ∨)−1. Summing over partitions µ of n we find that K∗(C∗r (R, q)) is a
free abelian group of rank∑

µ`n

gcd(µ∨)2b(µ∨)−1
=

∑
µ`n

gcd(µ)2b(µ)−1.
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From Theorem 2.11 and the case q = 1 we see that these K-groups can also be
obtained as the K-theory of a disjoint union of compact tori, with gcd(µ) tori of
dimension b(µ)−1. This allows us to immediately determine K0 and K1 separately
as well:

K0(C∗r (R, q))=
⊕

µ`n,b(µ)>1

Zgcd(µ)2b(µ)−2
⊕

⊕
µ`n,b(µ)=1

Zgcd(µ),

K1(C∗r (R, q))=
⊕

µ`n,b(µ)>1

Zgcd(µ)2b(µ)−2
.

(3.23)

3D. Type SO2n+1. The root systems of type Bn are more complicated than those of
type An because there are roots of different lengths. This implies that the associated
root data allow label functions which have three independent parameters. Detailed
information about the representations of type Bn affine Hecke algebras is available
from [Slooten 2003].

Consider the root datum for the special orthogonal group SO2n+1:

X = Q = Zn,

Y = Zn, Q∨ = {y ∈ Y : y1+ · · ·+ yn even},

T = (C×)n, t = (t1, . . . , tn)= (t (e1), . . . , t (en)),

R = {x ∈ X : ‖x‖ = 1 or ‖x‖ =
√

2}, α0 = e1,

R∨ = {x ∈ X : ‖x‖ = 2 or ‖x‖ =
√

2}, α∨0 = 2e1,

1= {αi = ei − ei+1 : i = 1, . . . , n− 1} ∪ {αn = en},

si = sαi , s0 = tα0sα0 : x→ x +α0−〈α
∨

0 , x〉α0,

W = 〈s1, . . . , sn | s2
j = (si s j )

2
= (si si+1)

3
= (sn−1sn)

4
= e : i ≤ n−2, |i− j |> 1〉,

Saff
= {s0, s1, . . . , sn−1, sn}, �= {e},

W e
=W aff

= 〈W, s0 | s2
0 = (s0si )

2
= (s0s1)

4
= e : i ≥ 2〉.

For a generic parameter function, we have different parameters q0=q(s0), q1=q(si )

for 1≤ i < n and q2 = q(sn).
The finite reflection group W =W (Bn) is naturally isomorphic to (Z/2Z)n o Sn .

Let µ ` n and consider a point

t =
(
(t±1 )

µ1 · · · (t±n−µd−1−µd
)µd−2(1)µd−1(−1)µd

)
∈ T, (3.24)

where (t±1 )
µ1 means that µ1 coordinates are equal to t1 or t−1

1 , while the other
n−µ1 coordinates of t are different. The stabilizer Wt of t is isomorphic to

Sµ1× · · ·× Sµd−2×W (Bµd−1)×W (Bµd ). (3.25)

Notice that this is a Weyl group, generated by the reflections it contains.
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• Case q0 = q1 = q2 = 1.

In view of (2.17) we want to determine the extended quotient T̃un/W. Therefore,
we recall the explicit classification of conjugacy classes in W in terms of biparti-
tions, which be found (for example) in [Carter 1972]. We already know that the
quotient of W by the normal subgroup (Z/2Z)n of sign changes is isomorphic to Sn ,
and that conjugacy classes in Sn are parametrized by partitions of n. So we wonder
what the different conjugacy classes in (Z/2Z)nσ(µ) are, for µ ` n. To handle this
we introduce some notation, assuming |µ| + |λ| = n and |µ| + |λ| + |ρ| = n′:

εI =
∏

i∈I sei , I ⊂ {1, . . . , n},

Iλ = {1, 1+ λ1, 1+ λ1+ λ2, . . .}, λ= (λ1, λ2, λ3, . . .),

σ ′(λ)= εIλσ(λ) ∈W (B|λ|), (3.26)

σ(µ, λ)= σ(µ) (m→ m− |λ|mod n) σ ′(λ) (m→ m+ |λ|mod n),

σ (µ, λ, ρ)= σ(µ, λ) (m→ m− |ρ|mod n′) σ ′(ρ) (m→ m+ |ρ|mod n′).

Let I ⊂ {1, . . . ,m} and J ⊂ {m+1, . . . , 2m}. It is easily verified that εI (1 2 · · · m)
is conjugate to µJ (m+1 m+2 · · · 2m) if and only if |I |+|J | is even. Therefore the
conjugacy classes in W (Bn) are parametrized by ordered pairs of partitions of total
weight n. Explicitly (µ, λ) corresponds to σ(µ, λ) as in (3.26). The set T σ(µ,λ)

and the group ZW0(Bn)(σ (µ, λ)) are both the direct product of the corresponding
objects for the blocks of µ and λ, i.e., for the parts (m,m, . . . ,m). The centralizer
of σ((m)k) in W (Bkm) is generated by (1 2 · · · m), ε{1,2,...,m} and the transpositions
of cycles

(am+ 1 am+m+ 1)(am+ 2 am+m+ 2) · · · (am+m am+ 2m), (3.27)

where 0≤ a ≤ k− 2. It follows that

ZW (Bkm)(σ ((m)
k))∼=W(Bk)n (Z/mZ)k,

((C×)km)σ((m)
k)
= {((t1)m(tm+1)

m
· · · (tkm+1−m)

m) : ti ∈ C×}, (3.28)

((S1)km)σ((m)
k)/ZW0(Bkm)(σ ((m)

k))∼= (S1)k/W(Bk)∼= [−1, 1]k/Sk .

Now consider the following element of W(Bkm):

σ ′((m)k)= ε{1,m+1,...,km+1−m} (1 2 · · · m)(m+1 · · · 2m) · · · (km+1−m · · · km).

It has only 2k fixpoints, namely

((±1)m(±1)m · · · (±1)m). (3.29)

The centralizer of σ ′((m)k) is generated by ε{1}(1 2 · · · m), ε{1,2,...,m} and the ele-
ments (3.27). The latter two generate a subgroup isomorphic to W (Bk), which fits
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in a short exact sequence

1→W (Bk)→ ZW (Bmk)(σ
′((m)k))→ (Z/mZ)k→ 1, (3.30)

where the first factor Z/mZ is generated by the image of ε{1}(1 2 · · · m). We find

((S1)km)σ
′((m)k)/ZW (Bmk)(σ

′((m)k))∼= {(1)am(−1)(k−a)m
: 0≤ a ≤ k}. (3.31)

Now we can see what T σ(µ,λ)
un /ZW (σ (µ, λ)) looks like. Its number of components

N (λ) depends only on λ, and all these components are mutually homeomorphic
contractible orbifolds, the shape and dimension being determined by µ. More
precisely, for every block of µ of width k we get a factor [−1, 1]k/Sk , and for
every block of λ of width l we must multiply the number of components by l + 1.
Alternatively, we can obtain the same space (modulo the action of W ) as

T σ(µ,λ)
un /ZW (Bn)(σ (µ, λ))

=

⊔
λ1∪λ2=λ

T σ(µ,λ1,λ2)
un,c /ZW (Bn)(σ (µ, λ1, λ2))

=

⊔
λ1∪λ2=λ

((S1)|µ|)σ(µ)/ZW (B|µ|)(σ (µ)) (−1)|λ1| (1)|λ2|

= ([−1, 1]|µ|)σ(µ)/ZS|µ|(σ (µ))×
⊔

λ1∪λ2=λ

(−1)|λ1| (1)|λ2|, (3.32)

where the subscript c means that we take only the connected component containing
the point ((1)|µ|(−1)|λ1|(1)|λ2|).

In effect we parametrized the components of the extended quotient T̃un/W by
ordered triples of partitions (µ, λ1, λ2) of total weight n, and every such compo-
nent is contractible. In combination with (3.25) this shows that the conditions of
Theorem 2.45 are fulfilled.

Denote the number of ordered k-tuples of partitions of total weight n by P(k, n).
Now Theorem 2.45 says that

K∗(C∗r (W
e))= Ȟ∗(T̃un/W ;Z)= Ȟ 0(T̃un/W ;Z)∼= ZP(3,n). (3.33)

• Generic case.

The inequivalent subsets of 1 are parametrized by partitions µ of weight at
most n:

Pµ =1 \ {αµ1, αµ1+µ2, . . . , α|µ|},

RPµ
∼= (An−1)

mn × · · ·× (A1)
m2 × Bn−|µ|,

R∨Pµ
∼= (An−1)

mn × · · ·× (A1)
m2 ×Cn−|µ|,

X Pµ ∼= Z(e1+ · · ·+ eµ1)/µ1+ · · ·+Z(e|µ|+1−µd + · · ·+ e|µ|)/µd ,
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X Pµ
∼= (Z

n/Z(e1+ · · ·+ en))
mn + · · ·+ (Z2/Z(e1+ e2))

m2 +Zn−|µ|,

Y Pµ = Z(e1+ · · ·+ eµ1)+ · · ·+Z(e|µ|+1−µd + · · ·+ e|µ|),

YPµ = {y ∈ Zn
: y1+ · · ·+ yµ1 = · · · = y|µ|+1−µd + · · ·+ y|µ| = 0},

T Pµ = {(t1)µ1(tµ+1)
µ2 · · · (t|µ|)µd (1)n−|µ| : ti ∈ C×},

TPµ = {t ∈(C
×)n : t1 · · · tµ1= tµ1+1 · · · tµ1+µ2= · · ·= t|µ|+1−µd · · · t|µ|= 1},

KPµ = {t ∈ T Pµ : tµ1
1 = · · · = tµd

|µ| = 1},

WPµ
∼= Smn

n × · · ·× Sm2
2 ×W (Bn−|µ|),

W(Pµ, Pµ)∼=W (Bmn )× · · ·×W (Bm2)×W (Bm1).

We see that RPµ is the product of various root data of type SLm and one factor
R(SO2(n−|µ|)+1). Hence HPµ is the tensor product of a type A part and a type B
part. From our study of R(SLm), we recall that the discrete series representations
of the type A part of HPµ are in bijection with KPµ . From [Heckman and Opdam
1997, Proposition 4.3] and [Opdam 2004, Appendix A.2] we know that the residual
points for R(SO2(n−|µ|)+1, q) are parametrized by ordered pairs (λ1, λ2) of total
weight n− |µ|. The unitary part of such a residual point is in the component we
indicated in (3.32). Let RP(R, q) denote the collection of residual points for the
pair (R, q). The above gives canonical bijections⊔
t∈RP(RPµ ,qPµ )

tT Pµ
un /WPµPµ

∼=

⊔
t∈RP(R(SO2(n−|µ|)+1,q))

tT Pµ
un /W (Pµ, Pµ)

∼= T Pµ
un /ZW0(B|µ|)(σ (µ))×

⊔
(λ1,λ2):|λ1|+|λ2|=n

(−1)|λ1|(1)|λ2|. (3.34)

Theorem 3.35. (a) For generic q, C∗r (R(SO2n+1), q) is Morita equivalent with
the commutative C∗-algebra of continuous functions on (3.34).

(b) K1(C∗r (R(SO2n+1), q)) = 0 and K0(C∗r (R(SO2n+1, q))) is a free abelian
group of rank P(3, n).

Proof. (a) First we note that (3.34) can be identified with the extended quotient
T̃un/W described in (3.32) and the subsequent lines.

Fix any u ∈ Tun. The fibre over u of the projection

p : T̃un/W → Tun/W

is in bijection with the set of conjugacy classes of W. By Clifford theory, |p−1(Wu)|
is also the number of inequivalent irreducible representations of C(Tun)o W with
central character Wu. Equivalently, |p−1(Wu)| is the number of inequivalent tem-
pered irreducible representations of O(T ) o W with central character Wu. By
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Theorem 1.52 the latter equals the number of inequivalent irreducible tempered
H(R, q)-representations with central character in WuTrs.

By Theorem 2.7 every point of (3.34) is the Z(C∗r (R, q))-character of at least one
irreducible C∗r (R, q)-representation. The projection p′ from (3.34) to T/W corre-
sponds to restriction from Z(C∗r (R, q))∼= C(4un/G) to Z(H(R, q))∼=O(T/W ).

Suppose that a point of p′−1(WuTrs) would carry more than one inequivalent
irreducible C∗r (R, q)-representation. Then the inverse image of WuTrs under

Irr(C∗r (R, q))= Irrtemp(H(R, q))→ T/W

would have more than |p−1(u)| elements. This would contradict what we con-
cluded above, using Theorem 1.52. Thus every π(Pµ, δ, t) with (Pµ, δ, t) ∈ 4un

is irreducible and (3.34) is exactly the space Irr(C∗r (R, q)).
When we compare this with Theorem 2.7 and (2.6), we see that all intertwining

operators π(g, Pµ, δ, t) with g(Pµ, δ, t)= (Pµ, δ, t) must be scalar. Recall from
(2.9) that every indecomposable direct summand of C∗r (R, q) is of the form

C
(
T Pµ

un ;EndC(π(Pµ, δ, t))
)GPµ,δ

. (3.36)

From (3.31) we know that the space T Pµ
un /GPµ,δ is a direct product of factors

(S1)k/W (Bk)∼= [−1, 1]/Sk . We note that

{(z1, z2, . . . , zk) ∈ (S1)k : =(zi )≥ 0,<(z1)≥<(z2)≥ · · · ≥ <(zk)}

is a closed, connected fundamental domain for action of W (Bk) on (S1)k . With
this it is easy to find a closed fundamental domain DPµ,δ for the action of GPµ,δ

on T Pµ
δ , such that DPµ,δ is homeomorphic to T Pµ

δ /GPµ,δ. Then restriction from
T Pµ

un to DPµ,δ gives a monomorphism of C∗-algebras from (3.36) to

C(DPµ,δ;EndC(π(Pµ, δ, t)))= C(DPµ,δ)⊗EndC(π(Pµ, δ, t)).

It is surjective because the intertwining operators π(g, Pµ, δ, t), g ∈ GPµ,δ, from
(2.5) depend continuously on t ∈ T Pµ

un and are scalar multiples of the identity when-
ever they map a representation to itself. Hence C∗r (R, q) is Morita equivalent with⊕

(Pµ,δ)/G C(DPµ,δ), as required.

(b) By the Serre–Swan theorem, K∗(C∗r (R, q)) is the topological K-theory of
the underlying space (3.34). Since every connected component of this space is
contractible, K1(C∗r (R, q))= 0 and K0(C∗r (R, q)) is a free abelian group whose
rank equals the number of connected components of (3.34). In the lines following
(3.32) we showed that that number is P(3, n). By Theorem 2.11 these K-groups
are independent of the parameters q . �
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3E. Type Sp2n. The root datum for the symplectic group Sp2n is dual to that
for SO2n+1. Concretely, R(Sp2n) is given by

X = {y ∈ Y : y1+ · · ·+ yn even}, Q = Zn, Y = Q∨ = Zn,

T = (C×)n, t = (t1, . . . , tn)= (t (e1), . . . , t (en)),

R = {x ∈ X : ‖x‖ = 2 or ‖x‖ =
√

2}, α0 = e1+ e2,

R∨ = {x ∈ X : ‖x‖ = 1 or ‖x‖ =
√

2}, α∨0 = e1+ e2,

1= {αi = ei − ei+1 : i = 1, . . . , n− 1} ∪ {αn = 2en},

si = sαi , s0 = tα0sα0 = te1sα0 t−e1 : x→ x +〈α∨0 , x〉α0,

W = 〈s1, . . . , sn | s2
j = (si s j )

2
= (si si+1)

3
= (sn−1sn)

4
= e : i ≤ n−2, |i− j |> 1〉,

Saff
= {s0, s1, . . . , sn−1, sn}, �= {e, te1s2e1},

W aff
= 〈W, s0 | s2

0 = (s0si )
2
= (s0s2)

3
= e : i 6= 2〉, W e

=W aff o�.

For a generic parameter function we have two independent parameters q1 = q(s1)

and q2 = q(sn).
The groups X , W and W e are exactly the same as for R(SO2n+1). Everything

that we said in Section 3D about the stabilizers in W of points of T obviously is
valid here as well. In particular, for q = 1 the algebra H(R(Sp2n), 1) is identical
to H(R(SO2n+1), 1), and the entire analysis of the K-theory of its C∗-completion
can be found in the previous paragraph.

For all other q we can use Theorem 2.11. Thus, we get

K∗(C∗r (R(Sp2n), q))∼= K∗(C∗r (R(Sp2n), 1))

= K∗(C∗r (R(SO2n+1), 1))∼= K∗(C∗r (R(SO2n+1), q)).

The last group is the one we actually computed, for generic parameters. Let us
phrase the results explicitly:

K0(C∗r (R(Sp2n), q))∼= ZP(3,n), K1(C∗r (R(Sp2n), q))= 0. (3.37)

3F. Type SO2n. The root datum for the even special orthogonal group SO2n has
groups contained in those for the root datum of type SO2n+1:

X = Zn, Q = {y ∈ Y : y1+ · · ·+ yn even},

Y = Zn, Q∨ = {y ∈ Y : y1+ · · ·+ yn even},

T = (C×)n, t = (t1, . . . , tn)= (t (e1), . . . , t (en)),

R = {x ∈ X : ‖x‖ =
√

2}, α0 = e1+ e2,

R∨ = {x ∈ X : ‖x‖ =
√

2}, α∨0 = e1+ e2,

1= {αi = ei − ei+1 : i = 1, . . . , n− 1} ∪ {αn = en−1+ en},
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si = sαi , s0 = tα0sα0 = te1sα0 t−e1 : x→ x +α0−〈α
∨

0 , x〉α0,

W = 〈s1, . . . , sn | s2
j = (si s j )

2
= (si si+1)

3
= (sn−2sn)

4
= e : i ≤ n−2, |i− j |> 1〉,

Saff
= {s0, s1, . . . , sn−1, sn}, �= {e, te1se1sen },

W aff
= 〈W, s0 | s2

0 = (s0si )
2
= (s0s2)

3
= e : i 6= 2〉( W e.

When n > 2, all the simple affine reflections are conjugate in W e, and

q(si )= q, i = 0, 1, . . . , n,

for every parameter function. For n = 2 the root system R ∼= A1× A1 is reducible,
there is an additional simple affine reflection and there are more possible parameter
functions. For n = 1, R(SO2) is the root datum of a one-dimensional torus, in
particular W = 1.

The based root datum R(SO2n) has one nontrivial automorphism, which ex-
changes the roots αn−1 and αn . It is easily seen that

W e(SO2n)oAut(R(SO2n))∼=W e(SO2n+1).

With Theorem 2.11 we conclude that, for every equal parameter function q,

K∗
(
C∗r (R(SO2n), q)oAut(R(SO2n))

)
∼= K∗

(
W e(SO2n)oAut(R(SO2n))

)
= K∗

(
C∗r (W

e(SO2n+1))
)
∼= K∗

(
C∗r (R(SO2n+1), q)

)
. (3.38)

Unfortunately, no such shortcut is available for K∗(C∗r (R(SO2n), q)). Therefore
we will just compute K∗(W e(SO2n)) by hand, in several steps:

• We determine the extended quotient Tun//W (Dn) and its cohomology.

• We analyze the (elliptic) representations of the W (Dn)-isotropy groups of
points of T .

• We relate the second bullet to the sheaf LW (Dn)
u on Tun/W (Dn).

• Then we are finally in the right position to apply Theorem 2.34.

The finite reflection group W (Dn) is naturally isomorphic to the index two sub-
group of W (Bn)=W (Cn) consisting of those elements that involve an even number
of sign changes. In other words, let (Z/2Z)nev be the kernel of the summation map
(Z/2Z)n→ Z/2Z. Then

W (Dn)= (Z/2Z)nev o Sn.

The conjugacy classes in W (Dn) are similar to but slightly different from those in
W (Bn). We rephrase Young’s parametrization in the notations from (3.26). For ev-
ery bipartition (µ, λ) of n where λ has an even number of parts, σ(µ, λ) represents
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one class in W (Dn). Suppose now that µ ` n has only even terms, and define

σ ′′(µ)= σ(µ)ε{n−1,n} = ε
−1
{n}σ(µ)ε{n}. (3.39)

Then σ ′′(µ) represents a class of W (Dn) different from the above. The σ(µ, λ)
and the σ ′′(µ) form a set of representatives for all conjugacy classes of W (Dn).

In the representation theory of classical groups, some almost direct products of
root data of type D arise [Goldberg 1994; Heiermann 2011]. Therefore it will be
useful to investigate a more general situation, as in the Appendix. Fix n1, . . . , nd

with n1+ · · ·+ nd = n and consider the root datum

R′
En =R(SO2n1)× · · ·×R(SO2nd ).

Let W ′
En =W (DEn)o0 be as in (A.1), so 0 ∼= (Z/2Z)dev. The conjugacy classes for

W ′
En are a mixture of those for W (Dn) and for W (BEn). Let us analyze them and the

extended quotient Tun//W ′
En together.

Recall that for w ∈ W (BEn), the groups Tw
un and ZW (BEn)(w) were already com-

puted in Section 3D; see in particular (3.28), (3.29) and (3.30). We say that Eµ ` En
if Eµ is a d-tuple of partitions (µ(1), . . . , µ(d)) with |µ(i)| = ni , and that ( Eµ, Eλ) ` En
if Eλ= (λ(1), . . . , λ(n)) such that |µ(i)| + |λ(i)|. To these we can associate σ( Eµ) and
σ( Eµ, Eλ), as products of (3.26) over the indices i .

• Consider σ( Eµ, Eλ), where Eλ is nonempty and has an even number of terms.
Notice that ZW (BEn)(σ ( Eµ,

Eλ)) contains an element not in W (Dn) which fixes
T σ( Eµ,Eλ) pointwise, namely a single factor ε{a1}(a1 · · · am) of Eλ. Hence the
W (BEn)-conjugacy class of σ( Eµ, Eλ) is precisely the W ′

En-conjugacy class of
σ( Eµ, Eλ). Furthermore,

T σ( Eµ,Eλ)
un /ZW ′

En
(σ ( Eµ, Eλ))= T σ( Eµ,Eλ)

un /ZW (BEn)(σ ( Eµ,
Eλ)),

and as described in (3.32), this is a disjoint union of contractible spaces. The
number of components is given explicitly in terms of Eλ.

• Suppose that Eµ ` En and that all terms of Eµ are even. Then the W (BEn)-
conjugacy class of σ( Eµ) splits into two W ′

En-conjugacy classes, the other one
represented by

σ ′′( Eµ)= σ( Eµ)ε{n−1,n}.

Both ZW (BEn)(σ ( Eµ)) and

ZW (BEn)(σ
′′( Eµ))= ε−1

{n} ZW (BEn)(σ ( Eµ))ε{n}

are contained in W ′
En . Let ml be the multiplicity of l in Eµ. By (3.32),

T σ ′′( Eµ)
un /ZW ′

En
(σ ′′( Eµ))∼= T σ( Eµ)

un /ZW ′
En
(σ ( Eµ))∼=

n∏
l=1

[−1, 1]ml/Sml ,

which is a contractible space.
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• Let µ ` n be a partition with at least one odd term. Again, the W (BEn)-
conjugacy class of σ( Eµ) is precisely the W ′

En-conjugacy class of σ( Eµ). Now

ZW ′
En
(σ ( Eµ))( ZW (BEn)(σ ( Eµ)),

and this really makes a difference. From (3.28) we deduce

T σ( Eµ)
un /ZW ′

En
(σ ( Eµ))∼=

n∏
l=1

(S1)ml
/( n∏

l=1

W (Bml )∩W (Dn)

)
. (3.40)

The group
∏n

l=1 W (Bml )∩W (Dn) equals
(∏n

l=1(Z/2Z)ml
)
+
o
∏ml

l=1 Sml , where
the subscript + means that the total number of sign changes for odd l must be
even. The quotient map∏

l odd

(S1)ml
/(∏

l odd

(Z/2Z)ml

)
+

→

∏
l odd

(S1)ml/(Z/2Z)ml ∼=

∏
l odd

[−1, 1]ml (3.41)

is a two-fold cover which ramifies precisely at the boundary of the unit cube∏
l odd[−1, 1]ml . Therefore the left-hand side of (3.41) is homeomorphic to

the unit sphere of dimension m1+m3+m5+ · · · . This entails that (3.40) is
homeomorphic to∏

l even

([−1, 1]ml/Sml )× Sm1+m3+ ···
/ ∏

l odd

Sml . (3.42)

This space is contractible unless ml = 1 for all odd l; then it is homotopic
to Sm1+m3+···.

The extended quotient Tun//W ′
En is the disjoint union of the spaces Tw

un /ZW ′
En
(w),

as w runs over representatives for the conjugacy classes of W ′
En . Since we covered

all conjugacy classes for W (BEn) intersecting W ′
En , we have a complete description of

conjugacy classes for the latter group. From the above calculations we immediately
get the cohomology of the extended quotient.

Lemma 3.43. The abelian group Ȟ∗(Tun//W ′
En) is torsion-free.

In the case En=n,W ′
En=W (Dn), we can describe the cohomology of Tun//W (Dn)

explicitly. The rank of the odd cohomology is the number of partitions µ ` n such
that every odd term appears with multiplicity one, and there is an odd number of
odd terms.

The rank of the even cohomology of Tun//W (Dn) is the sum of four contribu-
tions:

•
∏

i (ki + 1), for every bipartition (µ, λ) of n with λ= (n)kn · · · (1)k1 such that∑
i ki is positive and even;

• two times the number of partitions of n with only even terms;
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• the number of partitions of n with at least one odd term;

• the number of partitions of n such that every odd term appears only once, and
the number of odd terms is positive and even.

Every point of T ∼= (C×)n is W (BEn)-conjugate to one of the form

t= (t (1), . . . , t (d)), t (i)=
(
(t1)µ

(i)
1 · · · (tni−m(i)

1 −m(i)
2
)µdi (1)m

(i)
1 (−1)m

(i)
2
)
∈ (C×)ni .

The isotropy group of t in W ′
En is

(W ′
En)t =

( d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di
×W (Bm(i)

1
)×W (Bm(i)

2
)

)
∩W (Dn)

=

( d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di

)
×

( d∏
i=1

W
(
Bm(i)

1

)
×W

(
Bm(i)

2

))
∩W

(
Dm(1)

1 +···+m(d)
2

)
. (3.44)

We note that (W ′
En)t is generated by the reflections it contains if t has no coordinates

1 or −1. Otherwise the reflection subgroup of W (Dn)t is

(W ′
En)
◦

t :=

d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di
×W

(
Dm(i)

1

)
×W

(
Dm(i)

2

)
,

where W(D0)=W(D1)= 1. In that case,

(W ′
En)t =

( d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di

)
×W ′

Em, (3.45)

where Em consists of those terms m(i)
1 ,m(i)

2 which are nonzero. The group W ′
Em is a

particular instance of the almost Weyl groups studied in the Appendix. Thus (W ′
En)t

is an example of the groups considered in Lemma A.9, and we may use that result.

Proposition 3.46. For any positive parameter function q , K∗(C∗r (R′En, q)) is a free
abelian group, isomorphic to H∗(Tun//W ′

En;Z).
In particular, for En = n,R′

En =R(SO2n),W ′
En =W (Dn), the free abelian group

K∗(C∗r (R(SO2n), q))∼= H∗(Tun//W (Dn);Z)

has even and odd ranks as given in Lemma 3.43.

Proof. By Theorem 1.52 it suffices to prove this when q = 1.
We adapt the notations from (3.32) to the present setting. Let ( Eµ, Eλ1, Eλ2) be a

d-tuple of tripartitions of n1, . . . , nd , respectively, and such that Eλ1 ∪ Eλ2 has an
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even number of terms. As in (3.45) we write

W
Eµ,Eλ1,Eλ2

:=

( d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di
×W

(
B
|λ
(i)
1 |

)
×W

(
B
|λ
(i)
2 |

))
∩W (Dn)

=

( d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di

)
×W ′

Em,

where Em consists of the nonzero terms among the |λ(i)1 |, |λ
(i)
2 |. The group W

Eµ,Eλ1,Eλ2

is the full stabilizer of some point of Tun, and of the form considered in Lemma A.9.
We note that σ( Eµ, Eλ1, Eλ2) is an elliptic element of W

Eµ,Eλ1,Eλ2
.

For every t ∈ T σ(µ,λ1,λ2)
un,c we have (W ′

En)t ⊃W
Eµ,Eλ1,Eλ2

. Using Lemma A.9 we define

s(σ ( Eµ, Eλ1, Eλ2), t)= ind
(W ′
En)t

W
Eµ,Eλ1,Eλ2

H(uσ( Eµ,Eλ1,Eλ2)
, ρσ( Eµ,Eλ1,Eλ2)

). (3.47)

Suppose that Eµ ` En and that Eµ has only even terms. Then σ ′′( Eµ) = ε{n−1,n}σ( Eµ)

is conjugate to σ( Eµ) in W (BEn) but not in W ′
En . The element σ ′′( Eµ) is elliptic in

ε{n}
(∏d

i=1 S
µ
(i)
1
× · · ·× S

µ
(i)
di

)
ε{n}, and for every t ∈ T σ ′′( Eµ) we have

(W ′
En)t ⊃ ε{n}

( d∏
i=1

S
µ
(i)
1
× · · ·× S

µ
(i)
di

)
ε{n}.

For such t we define

s(σ ′′( Eµ), t)= ind
(W ′
En)t

ε{n}(
∏d

i=1 S
µ
(i)
1
×···×S

µ
(i)
di

)ε{n}
H(uσ ′′( Eµ), ρσ ′′( Eµ)). (3.48)

As discussed before Lemma 3.43, every conjugacy class of W ′
En appears precisely

once in (3.47) and (3.48) together.
With this information and Lemma A.9 available, the same argument as in the

proof of Theorem 2.45(a) works in the present setting, and shows that the conclu-
sion of Theorem 2.45(a) is fulfilled. Then we apply Theorem 2.45(b). �

3G. Type G2. As basis for the root lattice X of type G2, we take the two simple
roots. We coordinatize the dual lattice Y so that the pairing between X and Y
becomes the standard pairing on Z2. Explicitly, R(G2) becomes

X = Q = Z2, Y = Q∨ = Z2,

T = (C×)2, t = (t (e1), t (e2))= (t1, t2),
R+= {e1, e2, e1+ e2, 2e1+ e2, 3e1+ e2, 3e1+ 2e2}, R = R+∪−R+,

R∨,+= {2e1− 3e2, 2e1− e2, 3e2− e1, e1, e1− e2, e2}, R∨= R∨,+∪−R∨,+,

1= {e1, e2}, α∨0 = e1, α0 = 2e1+ e2,
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s1 = se1, s2 = se2, s0 = tα0sα0 = te1sα0 t−e1 : x→ x +α0−〈α
∨

0 , x〉α0,

W = 〈s1, s2 | s2
1 = s2

2 = (s1s2)
6
= e〉 ∼= D6,

Saff
= {s0, s1, s2}, �= {e},

W e
=W aff

= 〈s0,W0 | s2
0 = (s0s2)

2
= (s0s1)

3
= e〉.

A generic parameter function q for R(G2) has two independent parameters q1=q(s1)

and q2 = q(s2).
The group W ∼= D6 has six conjugacy classes: the identity, reflections associ-

ated to short roots, reflections associated to long roots, the rotation of order two,
rotations of order three and rotations of order six. Representatives are e, s1, s2,
ρπ = (s1s2)

3, ρ2π/3 = (s1s2)
2 and ρπ/6 = s1s2. We determine the connected com-

ponents of the extended quotient Tun//W :

w Tw Z D6(w) Tw
un/Z D6(w)

e T D6 (S1)2/D6 ∼= solid triangle
s1 {(1, t2) : t2 ∈ C×} 〈s1, s3e1+2e2〉 S1/〈s3e1+2e2〉

∼= [−1, 1]
s2 {(t1, 1) : t1 ∈ C×} 〈s2, s2e1+e2〉 S1/〈s2e1+e2〉

∼= [−1, 1]
ρπ {(a, b) : a, b ∈ {±1}} D6 2 points
ρ2π/3 {(1, 1), (ζ3, 1), (ζ 2

3 , 1)} C6 = 〈ρπ/3〉 2 points
ρπ/3 {(1, 1)} C6 = 〈ρπ/3〉 1 point

Here ζ3 is a primitive third root of unity. We see that every connected component
of Tun//W is contractible, and that its cohomology is zero in positive degrees and
Z8 in degree zero.

The root datum R(G2) is simply connected, so Wt is a Weyl group for every
t ∈ T . This can also be checked directly: For t ∈ T with Wt = {e} or Wt generated
by one reflection it is true. For all t ∈ T not of that form, Wt contains a nontrivial
rotation. All rotations (or their inverses) appear in the above table, along with their
fixpoints. We list the isotropy groups of those points:

W(1,1) = D6,

W(ζ3,1) =W(ζ 2
3 ,1)
= 〈s2, ρ2π/3〉 ∼= S3,

W(−1,−1) ∼=W(−1,1) ∼=W(1,−1) = 〈s1, s3e1+2e2〉
∼= S2× S2.

We have checked all the conditions of Theorem 2.45. By Corollary 2.49, for every
positive parameter function q ,

K0(C∗r (R(G2), q))∼= Z8,

K1(C∗r (R(G2), q))= 0.
(3.49)
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Appendix: Some almost Weyl groups

We study some finite groups which are almost Weyl groups. Such groups can
arise as the component groups of unipotent elements of classical complex groups,
and they play a role in the affine Hecke algebras associated to general Bernstein
components for classical p-adic groups [Goldberg 1994; Heiermann 2011]. The
results from this appendix are only needed in Section 3F.

Fix n1, n2, . . . , nd ∈ Z≥1 with n1+ · · ·+ nd = n and consider

W ′
En := (W (Bn1)× · · ·×W (Bnd ))∩W (Dn).

We use the convention that W (D1) is the trivial group. The group W ′
En acts on the

root system
DEn := Dn1 × · · ·× Dnd .

Let 1En be the standard basis of DEn and let 0 be the stabilizer of 1En in W ′
En . Since

W (DEn) acts simply transitively on the collection of bases of DEn ,

W ′
En =W (DEn)o0. (A.1)

Explicitly, the group 0 ∼= (Z/2Z)d−1 is generated by the elements ε(k)ε(k+1) for
k = 1, . . . , d − 1, where ε(k) = senk

is the reflection associated to the short simple
root of Bnk .

The Springer correspondence was extended to groups of this kind in [Kato 1983;
Aubert et al. 2017c]. Let T be the diagonal torus of the connected complex group

G◦ = SO2n1(C)× · · ·×SO2nd (C). (A.2)

Then W ′
En acts naturally on T and we recover W (DEn) as the Weyl group of (G◦, T ).

The Lie algebra of T can be identified with the defining representation of

W (BEn) :=W (Bn1)× · · ·×W (Bnd ). (A.3)

Since 0 consists of diagram automorphisms of DEn , we can build the reductive
group

G = G◦o0. (A.4)

Then W ′
En becomes the “Weyl” group of this disconnected group:

W ′
En =W (G, T ) := NG(T )/T .

For u ∈ G◦ unipotent let Bu
= Bu

G◦ be the variety of Borel subgroups of G◦ con-
taining u. The group ZG(u) acts naturally on Bu

×0, and that induces an action
of AG(u)= π0(ZG(u)/Z(G)) on H i (Bu

;C)⊗C[0]. For ρ ′ ∈ Irr(AG(u)) we form
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the W ′
En-representations

H(u, ρ ′)= HAG(u)(ρ, H∗(Bu
;C)⊗C[0]),

π(u, ρ ′)= HAG(u)(ρ, H top(Bu
;C)⊗C[0]).

We call ρ ′ geometric if π(u, ρ) 6= 0. Then [Aubert et al. 2017c, Theorem 4.4] says
that π(u, ρ ′) ∈ Irr(W ′

En) and that this yields a bijection between Irr(W ′
En) and the

G-conjugacy classes of pairs (u, ρ ′) with u ∈ G◦ unipotent and ρ ′ ∈ Irr(AG(u))
geometric.

The W ′
En-representations H ′(u, ρ ′), with (u, ρ ′) as above, form another Z-basis

of RZ(W ′En). Indeed, this can be shown in the same way as for Weyl groups in
[Reeder 2001, Lemma 3.3.1]; the input from [Borho and MacPherson 1981] holds
for W ′ by [Aubert et al. 2017c, Lemma 4.5].

For P ⊂1En we define the standard parabolic subgroup

W ′P := 〈sα : α ∈ P〉oStab0(P).

As usual, a parabolic subgroup of W ′
En is a conjugate of some W ′P . Let PA be the

standard basis of the union of the type A root subsystems of RP and let PB be the
standard basis of the union of the type B root subsystems of QRP ∩ BEn . (So PB

need not be contained in P .) It is easily seen that

W ′P =WPA ×WPB ∩W (Dn)=WPA ×W ′
En P
, (A.5)

where En P consists of the numbers |PB ∩ Bni | which are nonzero.
All the above notions for W ′

En have natural analogues for W ′P , which we indicate
by an additional subscript P . In particular, [Kato 1983, Proposition 6.2] entails
that, as in (1.5) and (1.6),

ind
W ′
En

W ′P
(HW ′P (uP , ρ

′

P))
∼= HomAGP (uP )(ρP , H∗(BuP ;C)⊗C[0]).

Lemma A.6. The parabolic subgroups of W ′
En are precisely the isotropy groups of

the points of Lie(T ).

Proof. Considering the standard representation of W (BEn) on Lie(T ), we see that for
any y ∈Lie(T ) the isotropy group (W ′

En)y is W (BEn)-conjugate to W (BEn)Q∩W (DEn),
where W (BEn)Q is a standard parabolic subgroup of W (BEn). From (A.5) we see
that the group W (BEn)Q ∩ W (DEn) equals W ′P for RP = RQ ∩ DEn . Hence every
isotropy group (W ′

En)y is W (BEn)-conjugate to some standard parabolic subgroup
of W ′

En . Since the diagram automorphisms ε(k) stabilize the collection of parabolic
subgroups of W ′

En and W (BEn) is generated by W (DEn) and the ε(k), we conclude that
(W ′
En)y is W ′

En-conjugate to a parabolic subgroup of W ′
En . �

With Lemma A.6 we can define ellipticity in two equivalent ways. An element of
W ′
En is elliptic if it is not contained in a proper parabolic subgroup, or equivalently, if
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it fixes a nonzero element of Lie(T ). With these notions we can develop the elliptic
representation theory of W ′

En , exactly as in [Reeder 2001] and as in Section 1A. In
particular, (1.11) remains valid.

Lemma A.7. The group of elliptic representations RZ(W ′En) is torsion-free.

Proof. We follow the proof of Theorem 1.12, with the group G◦ from (A.2). Every
Levi subgroup of G◦ can be described by a d-tuple of partitions Eα= (α(1), . . . , α(d)).
The standard Levi subgroup associated to Eα is

G◦
Eα =

d∏
i=1

SO2ni (C)α(i) =

d∏
i=1

GL
α
(i)
1
(C)× · · ·×GL

α
(i)
di
(C)×SO2(ni−|α(i)|)

(C).

(We note that sometimes several P ⊂ 1 are associated to one Eα, as already for
SO2n(C).) We mimic (A.4) by putting

G Eα = G◦
Eα o

〈
ε(i)ε( j)

: |α(i)|< ni and |α( j)
|< n j

〉
=

( d∏
i=1

GL
α
(i)
1
(C)× · · ·×GL

α
(i)
di
(C)

)
× S

( d∏
i=1

O2(ni−|α(i)|)
(C)

)
.

Then W (G Eα, T )∼=W ′P for P ⊂1 corresponding to Eα.
The Bala–Carter classification says that the unipotent classes in G◦ can be

parametrized by d-tuples of bipartitions (Eα, Eβ) such that 2|α(i)| + |β(i)| = 2ni , β(i)

has only odd parts and all parts of β(i) are distinct. A typical u in this conjugacy
class is distinguished in the standard Levi subgroup G◦

Eα
.

Like in (1.13) and (1.14), let G Eα′′ be a standard Levi subgroup containing u.
Then u = u′′u′ with u′ in a product of groups GLnk (C) and

u′ ∈ S
( d∏

i=1

O2(ni−|α
′′(i)|)(C)

)
=: H.

The GL-factors and u′′ do not contribute to AG Eα′′ (u).
In the upcoming calculations we omit the case that Eβ is empty; that case is a bit

different but can be handled in the same way.
With [Carter 1972, §13.1], we find that the quotient of Z H (u′) by its unipotent

radical is
d∏

i=1

∏
j even

Sp
2m
′(i)
j
(C)×

d∏
i=1

∏
j odd, not in β(i)

O
2m
′(i)
j
(C)× S

( d∏
i=1

∏
j odd, in β(i)

O
2m
′(i)
j +1

(C)

)
.

The component groups become

AG Eα′′ (u)
∼= AH (u′)∼=

( d∏
i=1

∏
j odd, in α′(i), not in β(i)

Z/2Z

)
× S

( d∏
i=1

∏
j odd, in β(i)

Z/2Z

)
.
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In the same way as after (1.15), we see that RZ(AG(u))= 0 unless each α(i) has only
distinct odd terms, none of them appearing in β(i). For such (Eα, Eβ), the maximal
reductive quotient of ZG(u) simplifies to( d∏

i=1

∏
j odd, in α(i)

O2(C)

)
× S

( d∏
i=1

∏
j odd, in β(i)

O1(C)

)
(A.8)

and the component group becomes

AG(u)=
d∏

i=1

∏
j odd, in α(i)

Z/2Z× A with A = S
( d∏

i=1

∏
j odd, in β(i)

Z/2Z

)
.

Just as in (1.16), we can calculate that RZ(AG(u))∼= RZ(A). �

With Lemmas A.6 and A.7 at hand the proof of Proposition 1.17 also becomes
valid for W ′

En . Let us formulate this somewhat more generally. Let W ′ be a finite
group which is a direct product of a Weyl group and a number of groups of the
form W ′

En . Let G ′ be the corresponding direct product of the groups called G in
(1.3) and (A.4). We denote the basis of the root system R′ underlying W ′ by 1′,
and the standard parabolic subgroup associated to P ⊂1 by W ′P .

Lemma A.9. For every w ∈ CP(W ′), there exists a pair (uP,w, ρ
′

P,w) such that

• uP,w is quasidistinguished unipotent in G ′P ,

• ρ ′P,w ∈ Irr(AG ′P (uP,w)) is geometric,

• the set{
ind

W ′
En

W ′P
(HP(uP,w, ρ

′

P,w)) : P ∈ P(1En)/W ′
En, w ∈ CP,ell(W ′En)

}
forms a Z-basis of RZ(W ′).

Proof. Let (W ′i )i be the indecomposable factors of W ′, with root systems R′i . For
every P ⊂1′,

W ′P =
∏

i

W ′P∩R′i
and RZ(W ′P)=

⊗
i

RZ(W ′P∩R′i
).

Thus we reduce to the case of a single W ′i . If W ′i is an irreducible Weyl group, then
Proposition 1.17 applies immediately, so we may assume that W ′i =W ′

En .
Let u ∈ G be unipotent and assume that RZ(AG(u)) 6= 0. From the proof of

Lemma A.7, we see that a maximal reductive subgroup of ZG(u) is of the form
(A.8). For each (i, j) with j in α(i), we pick an element ti, j ∈ SO2(C) \

{
±
( 1

0
0
1

)}
,

all different. This gives a semisimple element

t :=
d∏

i=1

( ∏
j in α(i)

ti, j ×
∏

j in β(i)

1
)
∈ ZG(u)◦.
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Furthermore, t does not lie in any proper Levi subgroup of G◦ containing u, so tu
does lie in any proper Levi subgroup of G◦. Thus, u is quasidistinguished in G.

Knowing this and Lemma A.7, the proof of Proposition 1.17 goes through. �
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On a localization formula of epsilon factors
via microlocal geometry

Tomoyuki Abe and Deepam Patel

Given a lisse l-adic sheaf G on a smooth proper variety X and a lisse sheaf F on
an open dense U in X , Kato and Saito conjectured a localization formula for the
global l-adic epsilon factor εl(X,F ⊗G) in terms of the global epsilon factor of
F and a certain intersection number associated to det(G) and the Swan class of F .
In this article, we prove an analog of this conjecture for global de Rham epsilon
factors in the classical setting of DX -modules on smooth projective varieties over
a field of characteristic zero.

1. Introduction

Let X denote a smooth proper variety of dimension d over a finite field F of
characteristic p, and let G be a smooth étale Ql (or Fl) sheaf. Then, one has the
usual global l-adic epsilon factor

εl(X,F) :=
2d∏

q=0

det(−σ : Hq
c (UF ,F))

(−1)q+1
,

where σ ∈ Gal(F/F) is the geometric Frobenius. In this setting, Kato and Saito
conjectured the following “localization” formula for the epsilon factor of the tensor
product:

Conjecture [Kato and Saito 2008, Conjecture 4.3.11]. Let F be a constructible
sheaf on X , and G a smooth sheaf on X . Then one has

εl(X,F ⊗G)= εl(X,F)rG · 〈det(G),CC(F)〉.

Here rG denotes the rank of G, and 〈 – , – 〉 denotes a pairing defined using the class
field theory which we do not recall here.
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When X is a proper smooth variety over a field k of characteristic 0, the second
author constructed the de Rham epsilon factor formalism in [Patel 2012]. More
precisely, let K(DX ) denote the K-theory spectrum of coherent DX -modules, and
K(T ∗X) denote the K-theory spectrum of coherent sheaves. Then he constructed
a map of spectra

ε : K(DX )→ K(T ∗X).

At the level of Grothendieck groups, given a holonomic module F , the class
[ε(F)] ∈ K0(T ∗X) is the class [grF (F)], where F is a good filtration of F . It
is well-known that the class is independent of the choice of good filtration. The
composition of ε with the pull-back by a certain twist of the zero-section followed
by the push-forward R0 :K(X)→K(k) is homotopic to the de Rham cohomology
map R0dR (see Lemma 2.7.5). In particular, passing to Grothendieck groups, we
may proceed via ε in order to compute the Euler–Poincaré characteristic. Moreover,
an automorphism f of F determines an element in π1K(DX ) whose image under
the morphism R0dR gives an element of π1K(k)∼= k×. The latter is precisely the
determinant of the induced automorphism on the de Rham cohomology of F . In
[Patel 2012], a “microlocalized” version of ε was also constructed, which allows
one to pass to the K-theory of holonomic DX -modules and construct a morphism
of spectra

CC : Khol(DX )→ K(d)(X, – ).

Here Khol(DX ) is the K-theory spectrum of holonomic DX -modules, and K(d)(X, – )
is part of Levine’s homotopy coniveau tower. We do not recall the definition here,
but only note that π0(K(d)(X, – ))= CH0(X) and, at the level of π0, CC associates
to the class of a holonomic DX -module the zero cycle given by pulling back its
characteristic cycle by the zero section. Our main result is the following analog of
the Kato–Saito localization formula in the de Rham and K-theoretic setting. Below,
we let KX (DX ) denote the K-theory spectrum of DX -modules with singular support
contained in the zero section. Since any such DX -module is just a flat connection,
one has a natural morphism KX (DX )

for∇
−−→K(X) given by forgetting the connection.

Theorem 4.1.1. Let d be the dimension of X. The following diagram commutes
up to homotopy:

KX (DX )∧Khol(DX )
⊗

//

for∇ ∧CC
��

Khol(DX )

R0dR
��

K(X)∧K(d)(X, – )
〈 – , – 〉K(d,– )

// K(k)

The pairing 〈 – , – 〉K(d,– ) is an analog in our setting of the pairing appearing in
the conjecture above. The usual dictionary between connective spectra and Picard
groupoids allows one to get formulas for determinants of endomorphisms, and, in
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particular, by taking π1 of the commutative diagram above we get an equality of
actual numbers analogous to that in the conjecture above. We refer the reader to
Theorem 4.3.1 for a precise statement. We note that this particular consequence can
be shown with a much simpler argument as described in the proof of Theorem 4.3.1.
On the other hand, by the same method, we also obtain similar formulas in the
setting of correspondences (and not just endomorphisms). In particular, suppose
we are given an automorphism ϕ of X . Then a correspondence of a DX -module F
is an isomorphism F→ ϕ∗F . Given a correspondence, it induces an automorphism
on the cohomology R0dR(X,F), and we may again consider the determinant of
this automorphism. We also obtain a localization formula in this setting.

We note that, after most of this paper was written, the original conjecture of Kato
and Saito was proven, with some modification of the definition of characteristic
cycles and following recent developments in ramification theory for l-adic sheaves,
in [Umezaki et al. 2018]. However, following the philosophy of Beilinson [2007],
we believe that the K-theoretic method gives a different perspective on localization
formulas for epsilon factors. In principle, proving the formula at the level of K-
theory spectra should also give formulas in higher K-theory. At the level of K0 one
gets formulas for the Euler characteristic, and at the level of K1, for determinants. It
would be interesting to see the consequences at the level of K2 (or higher K-groups).

Let us explain the structure of the paper. We begin with collecting some ma-
terials from K-theory used in this paper. In particular, we recall some basic prop-
erties of Levine’s homotopy coniveau tower. In Section 3, we define the pairing
〈 – , – 〉K(d,– ), and prove a key vanishing lemma (Lemma 3.7.1). This allows us to
compute the pairing in the setting of correspondences. We formulate and prove the
localization formula in the last section. The localization formula as an equality of
values is especially easy to prove when we are given actual automorphism of mod-
ules. We conclude the paper by providing an elementary proof of this simple case.

2. Background

In this article, we shall make use of K-theory spectra and their associated Picard
groupoids. However, our applications will mostly use these constructions in a
formal manner. We briefly recall the required concepts and constructions for ease
of exposition.

2.1. Spectra. In the following, we fix a symmetric monoidal category of spectra
and denote it by S. For example, one could take for S Lurie’s (∞, 1)-category of
spectra or the category of symmetric spectra. We only make use of this category
in a formal manner. Moreover, our results on traces only depend on the associated
homotopy category (which are all known to be equivalent for the various models
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for spectra). Recall that S is a proper simplicial model category. In particular, one
has functorial fibrant-cofibrant replacements. In the following, we assume all our
spectra are fibrant-cofibrant. We denote by ∧ the monoidal structure in S.

The homotopy category of S is denoted by Ho(S). By definition, this is the
localization of S with respect to the weak equivalences. A weak equivalence of
spectra P→ Q can be inverted as a morphism in the homotopy category. However,
in general such a morphism cannot be inverted as a morphism of spectra. To remedy
this situation, one can use the more general notion of a homotopy morphism of
spectra. A homotopy morphism P→ Q consists of a contractible simplicial set K
and a genuine morphism of spectra f : K ∧P→ Q. We refer to K as the base of the
homotopy morphism, and by abuse of notation we denote the homotopy morphism
simply by f : P→ Q. Given two homotopy morphisms f, g with bases K f , Kg,
an identification of f and g is a homotopy morphism h with base Kh together with
morphisms K f → Kh← Kg such that f, g are the respective pull-backs of h. One
can define the composition of two homotopy morphisms f : P→ Q and g : Q→ R
as the composition Kg ∧ K f ∧ P→ Kg ∧ Q→ R. A homotopy morphism from a
sphere spectrum to a given spectrum P will be referred to as a homotopy point of
P . If f and g are identified, then they induce the same maps on homotopy groups.
A weak equivalence between fibrant-cofibrant spectra can be canonically inverted
as a homotopy morphism. We refer to [Patel 2012, Section 2.1] or [Beilinson
2007, Section 1.4, Example (ii)] for the details. We note that in the following the
language of homotopy morphisms is not necessary, since, for our purposes, we
could work directly in the homotopy category. However, it is a convenient notion
for constructions at the level of actual spectra (rather than the homotopy category).

2.2. K-theory spectra. Let E be a small exact category. Then Quillen’s K-theory
construction gives a functor from the category of small exact categories to the
category of spectra. If F1 : E1→ E2 and F2 : E2→ E3 are exact functors, then one
has

K(F2) ◦K(F1)= K(F2 ◦ F1).

More generally, a natural isomorphism of functors induces a homotopy equivalence
of the corresponding morphisms of K-theory spectra. By taking a large enough
Grothendieck universe, we may assume all our categories are small.

More generally, Waldhausen associates to any category with cofibrations and
weak equivalences a corresponding K-theory spectrum. Moreover, an exact functor
between Waldhausen categories induces a morphism between the corresponding
spectra. In this article, we are mostly interested in complicial bi-Waldhausen
categories and complicial exact functors; we refer the reader to [Thomason and
Trobaugh 1990] for details. If E is an exact category, then Cb(E) is a complicial bi-
Waldhausen category with weak equivalences. A fundamental result of Thomason,
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Trobaugh, Waldhausen, and Gillet [Thomason and Trobaugh 1990] shows that the
inclusion of E into Cb(E) as degree zero morphisms induces a canonical weak
equivalence of spectra K(E)→ K(Cb(E)). Here the right side is the Waldhausen
K-theory spectrum associated to Cb(E). This allows us to canonically identify
various Quillen and Waldhausen K-theory spectra. In the following, we always
assume all our spectra to be fibrant-cofibrant. In particular, the machinery from
the previous section allows us to invert various weak equivalences canonically as
homotopy morphisms.

Given a Waldhausen category A, we denote by Atri the associated homotopy
category given by inverting the weak equivalences; note that this is a triangulated
category. If F : A→ B is a complicial exact functor between two complicial bi-
Waldhausen categories such that the induced map on homotopy categories is an
equivalence of categories, then the induced map on K-theory spectra is a weak
equivalence. We often consider derived functors which are a priori only defined
on Atri. Usually, these can be lifted to functors on certain full complicial bi-
Waldhausen subcategories C ⊂ A such that the inclusion induces an equivalence
on the associated triangulated categories. Using the formalism of homotopy mor-
phisms, we can lift the derived functor to a morphism of K-theory spectra. A typical
application is the following: Let X be a proper scheme over k, and let K(X) be the
K-theory spectrum of perfect complexes on X . Since X is proper, we can define
R0 : Db

perf(X)→ Db
perf(k). The above approach allows us to lift this to a homotopy

morphism R0 : K(X)→ K(k), where K(X) is the K-theory spectrum of the cat-
egory of perfect complexes on X and similarly for K(k). First, we may consider
the (full) complicial bi-Waldhausen subcategory of flasque perfect complexes. On
this subcategory, R0 is represented by 0. Furthermore, the properness assumption
implies that 0 preserves perfectness. We refer to [Thomason and Trobaugh 1990]
for more details.

Remark 2.2.1. Let X be a smooth projective variety over a field k, and DX the
sheaf of differential operators on X . Let K(DX ) denote the K-theory spectrum
of complexes of coherent-DX -modules. Then, via the above procedure, the DX -
module push-forward induces a homotopy morphism R0dR : K(DX )→ K(k). For
example, one can take the usual locally free resolution by the de Rham complex
and restrict to flasque complexes.

2.3. Picard groupoids, determinants, and traces. We recall some basic facts about
Picard groupoids and determinants which will be useful in the following. We refer
to the beautiful article [Deligne 1987] for the basic theory of Picard groupoids and
determinants.

A Picard groupoid P is a symmetric monoidal category in which every object is
invertible, which satisfies natural commutativity and associativity constraints. We
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refer the reader to [Patel 2012, Section 5.2] for a discussion of the definition. In the
following, we always assume that our Picard groupoids come with a fixed unit I.
In order to avoid confusion, we denote by + the monoidal structure in a Picard
groupoid. The following will be one of our main examples of a Picard groupoid.

Example 2.3.1. Let PicZ(X) denote the category whose objects are pairs (L, α),
where L is a line bundle on X , and α : X→ Z is a continuous function. We define
Hom((L, α), (L′, α′)) to be the set of isomorphisms L→ L′ if α = α′ and the
empty set if α 6= α′. The monoidal structure is given by setting

(L, α)+ (L′, α′) := (L⊗L′, α+α′).

The commutativity constraint

cL,L′ : (L, α)+ (L′, α′)∼= (L′, α′)+ (L, α)

is given (locally) by sending lx ⊗ l ′x to (−1)α(x)·α
′(x)(l ′x ⊗ lx).

Given a vector bundle V on X , one can associate to it an object det(V )∈PicZ(X),
where α(x) is taken to be the rank of V at x . This construction gives rise to a
determinant functor

det : Vect(X)iso
→ PicZ(X).

Here Vect(X)iso denotes the category whose objects are vector bundles on X , and
morphisms are isomorphisms of vector bundles. We do not recall the definition of
a determinant functor and refer to [Deligne 1987] for details. We only note here
that there are natural isomorphisms

det(x ⊕ y)∼= det(x)+ det(y)

which are compatible with commutativity constraints. In fact, one can define the
notion of a P-valued determinant functor for any exact category E or even derived
categories of exact categories; see [Knudsen 2002]. Moreover, one can extend the
determinant functor det above to the category of coherent sheaves or even derived
category of perfect complexes on X [Knudsen and Mumford 1976; Knudsen 2002].

One can associate natural homotopy groups to a Picard groupoid. By definition,
π0(P) is the group of isomorphism classes of objects in P and π1(P) := EndP(I).
We note that if L ∈ P , then there is a canonical isomorphism

EndP(L)→ π1(P)

defined as follows. If f : L→ L is an endomorphism, then it induces an endomor-
phism

f ⊗ Id : L⊗L−1
→ L⊗L−1,
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and composing this with the natural isomorphisms I→ L⊗L−1 and L⊗L−1
→ I

gives an element of EndP(I). We call this the trace of f , denoted Tr( f | L)∈ π1(P).
The following example explains this terminology.

Example 2.3.2. For a field k, π1(PicZ(k))= k×. An automorphism f : V → V of
a finite dimensional vector space over k gives a map

det( f ) : (det(V ), dim(V ))→ (det(V ), dim(V ))

in PicZ(k). One can check that Tr(det( f ) | det(V )) ∈ k× is the usual determinant
of f .

The following lemma is immediate, and only recorded here for future use

Lemma 2.3.3. Let P be a Picard groupoid and L ∈ P .

(1) If Id : L→ L is the identity, then Tr(Id | L)= Id ∈ EndP(I).

(2) If f, g : L→ L are two automorphisms, then

Tr( f ◦ g | L)= Tr( f | L) ◦Tr(g | L).

2.4. Picard groupoids and spectra. Let Pic be the category of Picard groupoids.
We let Ho(Pic) denote the homotopy category of Picard groupoids. This is by
definition the category of Picard groupoids localized at equivalences of Picard
groupoids. It is well-known that the category of Picard groupoids identifies ho-
motopically with the category of spectra [Patel 2012, §5] with homotopy groups
concentrated in degrees 0 and 1. In particular, there are natural adjoint functors
5 : S≥0

→ Pic and B : Pic→ S≥0 which induce an equivalence on the associated
homotopy categories when restricted to spectra with only nonvanishing homotopy
groups in degree 0 or 1. Here B takes a Picard groupoid to its usual classifying
space, 5 is the fundamental groupoid associated to a connective spectrum, and
S≥0 denotes the category of spectra with nonvanishing homotopy groups only in
nonnegative degrees.

This construction allows one to view the Picard groupoid associated to K-theory
as a universal determinant functor. Let E be an exact category and Cb(E) the corre-
sponding Waldhausen category of bounded chain complexes in E . The homotopy
point construction gives rise to a natural universal determinant functor

det : (Db(E), qis)→5(K(Cb(E))).

In the following, we are mostly interested in applying this construction to the K-
theory spectrum of a scheme. In particular, let K(X) denote the K-theory spec-
trum of vector bundles (or coherent sheaves or perfect complexes) on a smooth
scheme X . In that case, there is a natural map

Det :5(K(X))→ PicZ(X).
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Moreover, the usual determinant functor det : (Db(X), qis)→ PicZ(X) is compati-
ble with the previous two. In particular, the following diagram is commutative:

(Db(X), qis) //

((

5(K(X))

��

PicZ(X)

We note that an explicit construction of a model for the Picard groupoid 5(K(X))
can be given by Deligne’s virtual categories [1987].

2.5. Distributive functors. In the following, we are interested in certain pairings
of Picard groupoids. Given two Picard groupoids P and P ′, let P ×P ′ denote the
product groupoid. Note that we consider this as a mere groupoid (and not a Picard
groupoid). A distributive functor is a functor

〈 – , – 〉 : P ×P ′→ P ′′

which satisfies some natural “bilinearity” or “distributive” conditions. We refer
to [Deligne 1987, 4.11] for the precise definitions. The definition, in particular,
implies that for fixed L ∈ P and L′ ∈ P , the induced functors 〈L, – 〉 and 〈 – ,L′〉
are morphisms of Picard groupoids. These morphisms are natural in L and L′,
respectively. Moreover, one also has natural isomorphisms

〈L1+L2,L′〉 ∼= 〈L1,L′〉+ 〈L2,L′〉 and 〈L,L′1+L′2〉 ∼= 〈L,L′1〉+ 〈L,L′1〉.

We refer to such a distributive functor simply as a pairing of Picard groupoids. The
following is one of our main examples of a pairing.

Example 2.5.1. Let X be an integral scheme over k. The tensor product ⊗ of line
bundles induces a distributive functor:

( – ⊗ – ) : PicZ(X)×PicZ(X)→ PicZ(X).

Explicitly, it sends (L, α)⊗ (L′, α′) := (L⊗α′ ⊗L′⊗α, αα′). Note that for vector
bundles G and G ′, one has det(G⊗G ′)∼= det(G)⊗ det(G ′) in PicZ(X).

Lemma 2.5.2. Let 〈–, – 〉 :P×P ′→P ′′ be a distributive functor. Given morphisms
f :L→L∈P and g :L′→L′ ∈P ′, let 〈L,L′〉( f, g) :=Tr(〈 f, g〉 | 〈L,L′〉)∈π1(P ′′).

(i) If f is the identity, then 〈L,L′〉(Id, g) is the image of Tr(g | L′) under the
induced map π1〈L, – 〉 : π1(P ′)→ π1(P ′′).

(ii) If fi : Li → Li ∈ P (i = 1, 2), then

〈L1+L2,L′〉( f1+ f2, g)= 〈L1,L′〉( f1, g)〈L2,L′〉( f2, g).
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Any abelian group can be considered as a Picard groupoid. We will sometimes
be interested in a pairing of a Picard groupoid P and an abelian group G with
values in a Picard groupoid P ′′. By definition, this means that for each g ∈ G, we
have a morphism of Picard groupoids Fg : P→ P ′′ such that Fe = I (where e ∈ G
is the identity), and there are natural isomorphisms Fg+h ∼= Fg + Fh . Note that
Hom(P,P ′′) is also a Picard groupoid, and such a pairing can be interpreted as a
morphism of groupoids

G→ Hom(P,P ′′).

The following is our central example of such a pairing.

Example 2.5.3. Let f : X→Spec(k) denote a smooth proper scheme over a field k,
and Z0(X) denote the abelian group of 0-cycles on X . Then we have a pairing

〈 – , – 〉 : PicZ(X)×Z0(X)→ PicZ(k)

defined as follows. If iZ : Z ⊂ X is a closed integral subscheme of dimension 0,
then we set

〈(L, α), [Z ]〉 :=
(
det(πZ ,∗OZ )

⊗α
⊗ N (i∗ZL),Tr(α)

)
.

Here πZ : Z→ Spec(k) is the structure map, N is the norm functor on line bundles,
and Tr is the trace map. Note Tr(α) is just given by nα, where n is the degree of
k(Z) over k. We refer the reader to [Deligne 1987, §7] for the details. This defines
the pairing for all effective cycles, and then we extend by linearity.

Finally, we note that pairings of spectra induce pairings of Picard groupoids. We
refer to [Schwede 2012, Chapter I, Section 5.1] for details on the notion of bilinear
pairings of spectra. Here we only note that a bilinear pairing of spectra K1 and K2

with values in K3 is equivalent to giving a morphism of spectra

K1 ∧K2→ K3.

Furthermore, a biexact functor of exact categories (or Waldhausen categories) in-
duces a bilinear pairing of the corresponding K-theory spectra [Thomason and
Trobaugh 1990, 3.15]. Moreover, under the equivalence of categories between
Picard groupoids and spectra, a bilinear map gives rise to a pairing of the associ-
ated Picard groupoids. In particular, the usual tensor product of vector bundles
induces a pairing of spectra K(X) ∧ K(X) → K(X) and, therefore, a pairing
5(K(X)) ×5(K(X))→ 5(K(X)). Moreover, this pairing is compatible with
the one from Example 2.5.1 under Det :5(K(X))→ PicZ(X). In the following,
we sometimes use the notation

P ∧P ′→ P ′′

to mean a pairing P ×P ′→ P ′′. We note that this should only be thought of as
formal notation, and the Picard groupoid P ∧P ′ has not been defined.
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Remark 2.5.4. We can take the fundamental Picard groupoid associated to BP∧BP ′

as the definition of P ∧P ′. Moreover, there is an equivalence between pairings
P×P ′→P ′′ and morphisms of Picard groupoids P∧P ′→P ′′. However, we shall
not need this in what follows. Note that for strictly commutative Picard groupoids
this construction is described in [SGA 43 1973, Exposé XVIII].

A homotopy equivalence between two morphisms of spectra induces a monoidal
natural transformation of the corresponding morphisms of Picard groupoids. In par-
ticular, it is compatible with the monoidal structures. A homotopy equivalence be-
tween bilinear pairing of spectra induces a natural transformation between the cor-
responding distributive functor, which is a monoidal natural transformation when
restricted to each variable. We refer to such a natural transformation as an equiva-
lence of distributive functors. In the following, a diagram of Picard groupoids

P1 ∧P2
F
//

G
��

P3

G ′
��

P ′1 ∧P
′

2
F ′
// P ′3

with horizontal maps distributive functors, right vertical map a morphism of Picard
groupoids, and left vertical map a functor which is a morphism of Picard groupoids
in each variable, is said to be commutative if the induced distributive functors

G ′ ◦ F, F ′ ◦G : P1 ∧P2→ P3

are equivalent. A homotopy commutative square of spectra

K1 ∧ K2 //

��

K3

��

K ′1 ∧ K ′2 // K ′3

induces a commutative diagram at the level of Picard groupoids.

2.6. Levine’s homotopy coniveau tower. In this subsection, X will be a smooth
scheme of finite type over a field k. Moreover, K(X) will denote the K-theory
spectrum of coherent sheaves on X . We recall the construction and some basic
properties of Levine’s homotopy coniveau tower associated to the K-theory of
schemes which shall be used in the following. We refer to [Levine 2006; 2008] for
details.

Let 1n
:= Spec

(
k[t0, . . . , tr ]/

(∑
j t j − 1

))
denote the usual n-simplex. These

form a cosimplicial scheme. A face of 1n is a closed subscheme defined by equa-
tions of the form ti1 = · · · = tis = 0. Then one defines

K(q)(X, p) := holim
−−−→W

KW (X ×1p),
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where the homotopy limit is taken over closed subschemes W ⊂ X ×1p such that

codimX×F (W ∩ (X × F))≥ q

for all faces F ⊂ 1p. We set K(q)(X) := K(q)(X, 0). The spectra K(q)(X, p)
form a simplicial spectrum, and we let K(q)(X, – ) denote the corresponding total
spectrum [Levine 2006, §1.5]. Moreover, one has a tower of spectra

· · · → K(q)(X, – )→ K(q−1)(X, – )→ · · · → K(0)(X, – ).

This tower of spectra is referred to as the homotopy coniveau tower. It satisfies the
following properties proved by Levine:

(1) Given a morphism of smooth schemes F : X → Y there is a natural pull-
back morphism on the corresponding coniveau towers [Levine 2008, Theorem
4.1.1].

(2) There are natural augmentation maps ηq : K(q)(X)→ K(q)(X, – ). Moreover,
the composition

η : K(X)→ K(0)(X)→ K(0)(X, – )

is a weak equivalence.

(3) The cofibers K(p/p+1)(X, – ) of the homotopy coniveau tower are naturally
weak equivalent to Bloch’s higher Chow groups cycles complex [Levine 2008,
Theorem 6.4.2]. In particular, there is a functorial (with respect to pull-backs)
isomorphism CHd(X)→π0(K(d)(X, – )) if d=dim(X), since π0K(d+1)(X, – )
is 0 for reasons of dimension.

(4) Finally, we note that the tensor product induces natural (functorial) pairings:

K(d)(X, – )∧K(d ′)(X, – )→ K(d+d ′)(X, – ).

Remark 2.6.1. The existence of a pairing as in (4) is a deep theorem and relies
on Levine’s moving lemma for the homotopy coniveau tower. However, we shall
only use the result in the case where d ′ = 0. In that case, η : K(X)→ K(0)(X, – )
is a weak equivalence, and the induced pairing

K(X)∧K(d)(X, – )→ K(d)(X, – )

is simply given by tensor product. In particular, no “moving” is required.

2.7. Microlocalization map of K-theory of DX -modules. In this paragraph, X
will denote a smooth projective variety over a field k of characteristic zero. Below
we recall the construction of a microlocalization map for K-theory spectra of DX -
modules. We refer to [Patel 2012] for details.
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Let K(DX ) denote the K-theory spectrum of the abelian category of coherent
DX -modules, and similarly let KS(DX ) denote the K-theory spectrum of the abelian
category of coherent DX -modules with singular support contained in S ⊂ T ∗X . Re-
call that any DX module M has a good filtration F • such that the associated graded
gives rise to a coherent OT ∗X -module. This construction gives rise to a well-defined
(i.e., independent of the choice of filtration) map K0(DX )→ K0(T ∗X). One has
an analogous statement in the setting of supports. The following theorem extends
this construction to the setting of higher K-theory. Below, let KF(DX ) denote the
K-theory spectrum of the exact category whose objects are pairs (M,F), where
(M,F) is a coherent DX -module and F is a good filtration. We can similarly define
KFS(DX ). There is a natural map grF

S : KFS(DX )→ KS(T ∗X) induced by sending
a pair (M,F) to grF (M). One also has a natural map ff : KFS(DX )→ KS(DX )

given by simply forgetting the filtration.

Theorem 2.7.1 [Patel 2012]. Let X be as above. There is a natural (in S) microlo-
calization morphism of K-theory spectra:

grS : KS(DX )→ KS(T ∗X).

In particular, these are compatible with respect to the inclusions S ⊂ S′. Moreover,
by construction, grS ◦ ff is homotopic to grF

S .

Let Khol(DX ) denote the K-theory spectrum of the abelian category of holo-
nomic DX -modules. The preceding theorem immediately gives the following corol-
lary by passing to homotopy colimits.

Corollary 2.7.2. With notation as above, one has a morphism of spectra:

ε : Khol(DX )→ K(d)(T ∗X).

Proof. By definition, we may view the category of holonomic DX -modules as a
direct limit of the categories of the full subcategories of DX -modules with singular
support in a fixed codimension d subset S ⊂ T ∗X . Since K-theory commutes
with direct limits, we may write Khol(DX ) as the colimit of the corresponding
spectra KS(DX ). The result now follows from the previous theorem by taking
limits. �

Remark 2.7.3. Note that there is a natural map Khol(DX )→ K(DX ). Moreover,
by the compatibility of grS , one has a natural commutative diagram:

K(DX )
gr
// K(T ∗X)

Khol(DX )
ε
//

OO

K(d)(T ∗X)

OO
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Let f : X→ Spec(k) denote the structure map, π : T ∗X→ X the projection map,
and σ : X→ T ∗X the zero section. Then f and σ induce morphisms of K-theory
spectra (Section 2.2) K(X) f∗

−→K(k) and K(T ∗X) σ
∗

−→K(X). The canonical bundle
ωX induces a natural morphism

K(X) ( –⊗ωX )
−−−−−→ K(X).

We define the twisted pull-back σ+ as the composition

K(T ∗X) σ
∗

−→ K(X) ( –⊗ωX )
−−−−−→ K(X).

These give rise to a morphism f∗ ◦ σ+ ◦ gr : K(DX )→ K(k). On the other hand,
the DX -module push-forward induces a morphism of K-theory spectra R0dR :

K(DX )→ K(k) (Remark 2.2.1). The next lemma is a restatement of the following
remark in terms of K-theory.

Remark 2.7.4. Let E be a coherent OX -module. Then there is a natural isomor-
phism R f∗(ωX ⊗OX E)∼= R f+(DX ⊗OX E). We refer to [Laumon 1983, 6.5] for the
details.

Lemma 2.7.5. The morphisms R0dR and f∗ ◦ σ+ ◦ gr are homotopic.

Proof. First note that the composition K(X) → K(DX ) → K(T ∗X) → K(X)
is homotopic to the identity. Here the first map is the natural map induced by
DX ⊗OX ( – ), which is a weak equivalence by a theorem of Quillen [Patel 2012].
Thus, one is reduced to showing the diagram

K(X)
( –⊗ωX )

//

(DX⊗ – )
��

K(X)

f∗
��

K(DX )
R0dR

// K(k).

is commutative. This follows from Remark 2.7.4. �

Remark 2.7.6. We think of R0dR as the global de Rham epsilon factor. Recall that
at the level of DX -modules, up to a shift, the DX -module push-forward computes
de Rham cohomology of the corresponding DX -modules.

2.8. Global epsilon factors and tensor products. We record an elementary lemma
computing the global epsilon factor of a tensor product. Below, we denote by
π∗ : KX (DX )→ K(T ∗X) the morphism given by pulling back a flat connection
under the projection map π : T ∗X → X . The following remark will be useful in
the proof of the lemma, and, in fact, the lemma itself is the K-theoretic version of
the remark.
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Remark 2.8.1. Let M be a flat connection on X , and N a filtered DX -module.
Note that M has a canonical good filtration given by taking the whole module in
degrees greater than or equal to 0 and 0 in negative degrees. Then gr(M⊗OX N )
is isomorphic to π∗(M)⊗OT∗X gr(N ).

Lemma 2.8.2. The following diagram is commutative:

KX (DX )∧K(DX )

π∗∧gr
��

( –⊗ – )
// K(DX )

gr
��

K(T ∗X)∧K(T ∗X)
( –⊗ – )

// K(T ∗X)

Proof. Consider the following diagram:

KX (DX )∧K(X) ?
//

∼Id∧(DX⊗ – )
��

KFX (DX )∧KF(DX )
⊗
//

ff∧ff

ss

KF(DX )

ff
��

KX (DX )∧K(DX )

π∗∧gr
��

⊗

// K(DX )

gr
��

K(T ∗X)∧K(T ∗X)
⊗

// K(T ∗X)

Here, ? is defined as follows: There is a natural map KX (DX )→KFX (DX ) induced
by giving a flat connection M the trivial filtration (i.e., it is M in degree greater
than or equal to 0 and 0 in negative degrees). Similarly, there is a natural map
K(X)→ KF(DX ) induced by (DX ⊗ – ) and taking the filtration induced by the
usual filtration by order on DX . The map ? is defined by taking ∧ of these two
maps.

Our goal is to show that the lower square is commutative. The upper square is
commutative. Since the first left vertical map is a weak equivalence, it suffices to
check the commutativity for the outer square. The composition of the top horizontal
and right vertical maps is given by sending a bundle with connection M and an
induced DX -module DX ⊗N to the associated graded of the tensor product. By
Remark 2.8.1 above, this composition is homotopic to

( – ⊗ – ) ◦ (π∗ ∧ (gr ◦(DX ⊗ – )). �

3. Comparison of traces for various pairings of Picard groupoids

In this subsection, we recall the construction of some pairings on K-theory spectra
at the level of Levine’s homotopy coniveau tower, and make some computations
of traces of tensor products in this setting. In this section, let X be a smooth and
connected scheme of finite type over k.
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3.1. Pairings on K-theory with supports. Given a closed subset Z ⊂ X , there is a
natural pairing of K-theory spectra

K(X)∧KZ (X)
⊗
−→ KZ (X)

induced by the tensor product [Thomason and Trobaugh 1990, 3.15]. Since X is
smooth, Quillen’s localization theorem implies that the natural map KZ (X)→G(Z)
is a weak equivalence. Here G(Z) is the K-theory spectrum of coherent sheaves. If
iZ : Z ↪→ X is a reduced closed subscheme of dimension 0, and hence regular, then
we may identify G(Z) with the K-theory spectrum K(Z) of locally free sheaves.
Below we shall make this assumption on Z . Moreover, one also has a natural
pairing

K(X)∧K(Z)
i∗Z∧Id
−−−→ K(Z)∧K(Z)→ K(Z).

We record the following standard lemma for future use.

Lemma 3.1.1. The following diagram is commutative:

K(X)∧KZ (X) // KZ (X)

K(X)∧K(Z) //

Id∧iZ ,∗

OO

K(Z)

OO

Proof. This is a special case of the projection formula [Thomason and Trobaugh
1990, Proposition 3.17]. �

One has a natural norm map (given by the push-forward):

N : K(Z)→ K(k).

Similarly, one has the usual push-forward π∗ : KZ (X)→ K(k). Composing the
pairings above with these push-forward maps give rise to pairings

〈 – , – 〉K : K(X)∧KZ (X)→ K(k) and 〈 – , – 〉K : K(X)∧K(Z)→ K(k).

By the previous lemma these two pairings are identified via the natural weak
equivalence iZ ,∗ : K(Z)→ KZ (X). Therefore, in the following we use the two
interchangeably and use the same notation to denote the two pairings.

Since the pairings above are compatible with respect to inclusions Z ′ ⊂ Z , we
may pass to homotopy limits and deduce a pairing

〈 – , – 〉K(d) : K(X)∧K(d)(X)→ K(k).

Note this pairing is simply the composition

K(X)∧K(d)(X) ( –⊗ – )
−−−−→ K(d)(X) π∗−→ K(k).
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Here we define π∗ as the one induced by taking homotopy limits of the maps
π∗ : KZ (X)→ K(k).

Remark 3.1.2. We may also define π∗ by taking homotopy limits of the composi-
tions KZ (X)→ K(Z) N

−→ K(k). The two constructions are homotopic.

3.2. Pairings on the homotopy coniveau tower. We now explain how the con-
structions of the previous paragraph lift to Levine’s homotopy coniveau tower. We
may consider the composition

K(X)∧K(d)(X)→ K(0)(X, – )∧K(d)(X, – )→ K(d)(X, – ),

where we refer to (2) in Section 2.6 for the first map and (4) for the last map.
Moreover, we have π (d)∗ : K(d)(X, – )→ K(0)(X, – ) ∼−→ K(X) f∗

−→ K(k), where the
isomorphism is induced by inverting η of (2). Composing with the map above, it
gives rise to a pairing

〈 – , – 〉K(d,– ) : K(X)∧K(d)(X, – )→ K(k).

This pairing is compatible with the pairing constructed in the previous paragraph.
Namely, we have the following lemma.

Lemma 3.2.1. The following diagram is commutative:

K(X)∧K(d)(X)
〈 – , – 〉K(d)

//

Id∧ηd
��

K(k)

Id
��

K(X)∧K(d)(X, – )
〈 – , – 〉K(d,– )

// K(k)

Proof. First, recall that the tensor product is compatible with the augmentation.
Therefore, one is reduced to showing that

K(d)(X) ηd
−→ K(d)(X, – ) π

(d)
∗−−→ K(k)

is homotopic to K(d)(X) π∗
−→ K(k). The latter is evident from the construction

of π (d)∗ . �

Remark 3.2.2. One also has a product K(T ∗X)∧K(d)(T ∗X, – )→ K(d)(T ∗X, – ).
By functoriality, the following diagram commutes:

K(T ∗X)∧K(d)(T ∗X, – ) //

σ ∗∧σ ∗
��

K(d)(T ∗X, – )

σ ∗
��

K(X)∧K(d)(X, – ) // K(d)(X, – )
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3.3. Pairings on Picard groupoids. Recall that pairings on spectra give rise to
pairings on the corresponding fundamental Picard groupoids (Section 2.5). In par-
ticular, the pairing 〈 – , – 〉K(d) induces a pairing

〈 – , – 〉5(d) :5(K(X))∧5(K
(d)(X))→5(K(k)).

By definition, it is defined as the composition

5(K(X))∧5(K(d)(X))→5(K(d)(X))→5(K(k)),

where the first map is induced by the tensor product and the second by π∗. On the
other hand, one has the following pairing which is a variant of Example 2.5.1:

〈 – , – 〉 : PicZ(X)∧PicZ(Z)→ PicZ(Z).

Explicitly, this pairing sends (L, α) ∈ PicZ(X) and (M, β) ∈ PicZ(Z) to the el-
ement (L|βZ ⊗Mα, α|Zβ). Recall that we have the universal determinant map
Det : 5(K(X)) → PicZ(X), and similarly for Z . As before (see Section 2.5),
this gives rise to a commutative diagram:

5(K(X))∧5(K(Z)) //

��

5(K(Z))

��

PicZ(X)∧PicZ(Z) // PicZ(Z)

The push-forward induces a norm map N : PicZ(Z)→ PicZ(k). In particular,
one has a natural pairing

N ◦ 〈 – , – 〉 : PicZ(X)∧PicZ(Z)→ PicZ(k).

By abuse of notation, we also denote this pairing by 〈 – , – 〉. Explicitly, this pairing
sends (L, α) ∈ PicZ(X) and (M, β) ∈ PicZ(Z) to the element(

det(πZ ,∗OZ )
⊗(α|Zβ)⊗ N (L|βZ ⊗Mα),Tr(α|Zβ)

)
,

where πZ : Z → Spec(k) is the natural structure map (see Example 2.5.3). The
previous remarks show that the following diagram commutes:

5(K(X))∧5(K(Z))
〈 – , – 〉5

//

��

5(K(k))

��

PicZ(X)∧PicZ(Z)
〈 – , – 〉

// PicZ(k)

Remark 3.3.1. Recall that the map Det :5(K(k))→ PicZ(k) is an isomorphism
of Picard groupoids. In the following, we make this identification in our resulting
pairings.
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3.4. Picard groupoid pairings coming from coniveau tower. We now descend
the pairings 〈 – , – 〉K(d,– ) to the level of Picard groupoids. In particular, taking
fundamental groupoids gives a pairing

〈 – , – 〉5(d,– ) :5(K(X))∧5(K
(d)(X, – ))→ PicZ(k).

Combining everything gives rise to the following commutative diagrams, which
we record as a lemma for future use.

Lemma 3.4.1. The following diagrams commute (up to natural transformations):

5(K(X))∧5(K(Z))

��

// PicZ(k)

��

5(K(X))∧5(K(d)(X)) // PicZ(k)

5(K(X))∧5(K(d)(X))

��

// PicZ(k)

��

5(K(X))∧5(K(d)(X, – )) // PicZ(k)

Proof. The commutativity of the first diagram follows from the remarks in Section 3.1
and that of the second follows from Lemma 3.2.1. �

3.5. Compatibility of various traces of endomorphisms. We explain how the con-
structions of the previous subsection pass to traces in the presence of endomor-
phisms. Given endomorphisms g of G ∈ PicZ(X) and f of F ∈ PicZ(Z), we
have an induced endomorphism g⊗ f of 〈G,F〉 ∈ PicZ(k). Therefore, we have an
element Tr(g⊗ f )∈ PicZ(k)= k×. We denote the latter trace by 〈G,F〉(g, f ). Sim-
ilarly, given endomorphisms g of G ∈5(K(X)), f of F ∈5(K(d)(X)), and f ′ of
F ′∈5(K (d)(X, – )), we can define the traces 〈G,F〉5(d)(g, f ) and 〈G,F ′〉5(d,– )(g, f ′)
in k×. Note that a pair (F, f ) of an object and an endomorphism in 5(K(d)(X))
can also be considered as an object and endomorphism of 5(K(d)(X, – )) simply
by considering its image under the natural map 5(K(d)(X))→5(K(d)(X, – )). We
record the following corollary of the previous result for future reference.

Corollary 3.5.1. Let G ∈5(K(X)) and F ∈5(K(d)(X)), and let g and f denote
endomorphisms of G and F , respectively. Then one has

〈G,F〉5(d,– )(g, f )= 〈G,F〉5(d)(g, f ).

Proof. This is a direct consequence of Lemma 3.4.1. �

By definition, πi (5(K(d)(X)))= limπi (K(Z)) for i ≤ 1, where the direct limit
is over closed reduced subschemes Z of dimension zero. Therefore, for any object
F ∈5(K(d)(X)) and endomorphism f : F→ F , we can choose a Z such that the
pair (F, f ) lifts to 5(K(Z)). In particular, there is a pair (FZ , fZ ) consisting of
an object and an endomorphism in 5(K(Z)), and an isomorphism h of the image
of this pair in 5(K(d)(X)) (under the natural map 5(K(Z))→5(K(d)(X))) with
the pair (F, f ). In this setting, we have the following lemma:
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Lemma 3.5.2. With notation as above, 〈G,F〉5(d)(g, f )= 〈G,FZ 〉
5(g, fZ ). More-

over, we have an equality 〈G,FZ 〉
5(g, fZ )= 〈Det(G),Det(FZ )〉(g, fZ ).

Proof. The first statement follows from commutativity of the second diagram in
Lemma 3.4.1 after passing to Picard groupoids and traces. The second similarly
follows from the remarks in Section 3.3. �

3.6. Formula for traces of tensor products of endomorphisms. In this subsection,
we prove an elementary formula for traces of tensor products of endomorphisms.
In Section 3.9, we shall prove a similar formula in the more general setting of
correspondences. The formula presented in this paragraph will be an easy corollary
of that more general formula. However, we present the simpler version here since
the proof has some features of the more general situation and might be useful in
understanding the more complicated version presented later.

Suppose we are given G ∈5(K(X)) and F ∈5(K(d)(X)) with endomorphisms
f :F→F and g :G→G as before. For any element of G ∈5(K(X)), we let rG (the
rank of G) denote its image by the canonical homomorphism π0(PicZ(X))→ Z. In
this setting, one has the following standard formula at the level of traces.

Proposition 3.6.1. With notation as above,

〈G,F〉5(d)(g, f )= Tr(π∗( f ) | π∗(F))rG ×〈G,F〉5(d)(g, Id).

Here, π∗( f ) and π∗(F) are the images under the natural map

5(K(d)(X)) π∗
−→ PicZ(k).

Proof. By Lemma 3.5.2, we are reduced to showing that

〈G,F〉(g, f )= Tr
(
det(πZ ,∗( f )) | det(πZ ,∗(F))

)rG
×〈G,F〉(g, Id),

where G ∈ PicZ(X) and F ∈ PicZ(Z). Here iZ : Z ↪→ X is a closed subscheme of
dimension zero and πZ : Z→ Spec(k) is the structure map. Since

〈G,F〉(g, f )= 〈G,F〉(g, Id)×〈G,F〉(Id, f )

by Lemma 2.3.3, we are reduced to showing that

〈G,F〉(Id, f )= Tr
(
det(πZ ,∗( f )) | det(πZ ,∗(F))

)rG
. (?)

We may assume Z is a closed integral point such that the degree of k(Z) over k is
n, and denote by Nk(Z)/k the field norm map. The map

ρ := π1〈G|Z , – 〉 : π1PicZ(Z)→ π1PicZ(Z)

is nothing but the map sending α ∈ π1PicZ(Z)∼= k(Z)× to αrG . Recall the notation
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of Section 3.3. We have

〈G,F〉(Id, f )= Tr
(
N 〈Id, f 〉 | 〈G,F〉

)
= Nk(Z)/kTr

(
〈Id, f 〉 | 〈G,F〉

)
= Nk(Z)/k

(
ρ(Tr( f | F))

)
= Nk(Z)/k(Tr( f | F)rG ),

where the third equality holds by Lemma 2.5.2, and we get the equality (?). �

3.7. A key vanishing lemma. We would like a formula similar to that of the last
subsection for 〈G,F〉5(d,– )(g, f ), where F ∈5(K(d)(X, – )). If the pair (F, f ) can
be lifted to 5(K(d)(X)), then we would get such a formula as a consequence of
the previous proposition. Unfortunately, while we may lift any such object F
to 5(K(d)(X)), it is not always possible to lift the endomorphism f . However, we
shall see that the desired formula (in the more general setting of correspondences)
is an easy consequence of the following lemma.

Lemma 3.7.1. Let X be a smooth projective variety of dimension d and W a closed
subscheme of codimension > 0. The map π1K(d)(X, – )→ π1K(d)(X, – ) induced
by ⊗OW is trivial.

Proof of Lemma 3.7.1. First, we remark that [Levine 2006, Theorem 2.6.2] holds
when X is projective. Below, we follow the notation of [loc. cit.]. Using that theo-
rem for C={W } and e= 0, we get a weak equivalence K(d)(X, – )C,e

∼
−→K(d)(X, – ).

Now, the map⊗OW factors through K(d+1)(X, – )C,e→K(d)(X, – )C,e, and we have
the commutative diagram

K(d)(X, – )C,e
⊗OW

//

��

K(d+1)(X, – )C,e //

��

K(d)(X, – )C,e

��

K(d)(X, – )

⊗OW

22
K(d+1)(X, – ) // K(d)(X, – )

For n ∈ {d, d + 1}, consider the spectral sequences

(E p,q
1 )

(n)
C,e = π−qK(n)(X,−p)C,e +3

��

π−p−qK(n)(X, – )C,e

∼

��

(E p,q
1 )(n) = π−qK(n)(X,−p) +3 π−p−qK(n)(X, – )

By dimension reasons, we have K(d+1)(X, 0)C,e = K(d+1)(X, 0)= {∗}, which im-
plies (E0,q

1 )
(d+1)
C,e = (E0,q

1 )(d+1)
= 0 for any q . Thus,

(E−1,0
2 )

(d+1)
C,e
∼= (E−1,0

2 )(d+1) ∼= π1K(d+1)(X, – ).
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Now, we have the following big commutative diagram:

π1K(d)(X, – )C,e
⊗OW

//

����

π1K(d+1)(X, – )C,e

∼

// π1K(d+1)(X, – )

∼

// π1K(d)(X, – )

(E−1,0
∞

)
(d)
C,e

∼
(E−1,0

2 )
(d)
C,e
⊗OW

// (E−1,0
2 )

(d+1)
C,e

// (E−1,0
2 )(d+1)

K

OOOO

// (E−1,0
1 )

(d+1)
C,e

OOOO

where K :=Ker
(
(E−1,0

1 )
(d)
C,e→(E

0,0
1 )

(d)
C,e
)
. Take α∈π1K(d)(X, – )∼=π1K(d)(X, – )C,e.

Our goal is to show that the image of α by the composition of the homomorphisms
of the first row is trivial. By the diagram above, there exists

α̃ ∈ K ⊂ (E−1,0
1 )

(d)
C,e = π0K(d)(X, 1)C,e

such that α⊗OW coincides with α̃⊗OW in π1K(d+1)(X, – )C,e. It suffices to show
that the image of α̃⊗OW in (E−1,0

2 )(d+1) is 0.
There exists a closed subscheme Z ⊂ X ×11 belonging to S(d)X,C,e(1) (in particu-

lar, dimension 1) such that α̃ can be lifted to KZ (X, 1), which we denote by α̃′. We
have α̃′⊗OW ∈ π0KZ∩pr−1(W )(X ×11) (where pr : X ×11

→ X is the projection).
Since Z ∈ S(d)X,C,e(1), the intersection Z ∩ pr−1(W ) is 0-dimensional. By definition
of S(d)X,C,e(1), note that Z ∩pr−1(W )⊂ X× (11

\{0, 1}). The canonical coordinates
of 12 are denoted by t1, t2. Take a closed point (w, s) ∈ X × (11

\ {0, 1}). Let

H(w,s) := {w}× {t1+ st2− s = 0} ⊂ X ×12,

namely the closed subscheme in {w} × 12 which is the line connecting (s, 0)
and (0, 1). We have the morphism ρ(w,s) : H(w,s)→{(w, s)} ↪→ X ×11. Now, put

β :=
⊕

(w,s)∈Z∩pr−1(W )

ρ∗(w,s)(α̃
′
⊗OW )∈π0KH (X×12) for H :=

⋃
(w,s)∈Z∩pr−1(W )

H(w,s).

By construction, this gives a homotopy between α̃′ ⊗ OW and 0. Indeed, let
f1 : X × 11 ↪→ X × 12 be the map defined by t2 = 1, f3 by t1 = 0, and f2

by t1+ t2 = 1 sending 0 and 1 to (0, 1) and (1, 0), respectively. The homotopy β
defines

f ∗1 (β)+ f ∗2 (β)∼ f ∗3 (β).

On the other hand, f ∗1 (β) = α̃
′
⊗OW and f ∗2 (β) = f ∗3 (β), and thus α̃′ ⊗OW is

homotopic to 0. �
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3.8. An elementary projection formula. In this subsection, we recall an elemen-
tary projection formula which will be used in the next subsection. Let ϕ : X→ X
be an endomorphism. In this setting, we have the following elementary projective
formula.

Lemma 3.8.1. The following diagram is commutative:

K(X)∧K(d)(X, – )
Id∧ϕ∗

//

ϕ∗∧Id
��

K(X)∧K(d)(X, – )

( –⊗ – )
��

K(X)∧K(d)(X, – )
ϕ∗◦( –⊗ – )

// K(d)(X, – )

Proof. By definition of ( – ⊗ – ), we are reduced to showing the corresponding
statement for each level of the simplicial spectrum corresponding to K(d)(X, – ).
In that case, it follows directly from Thomason’s projection formula for K-theory
spectra [Thomason and Trobaugh 1990]. �

It follows that we have a commutative diagram at the level of Picard groupoids:

5(K(X))∧5(K(d)(X, – ))
Id∧ϕ∗

//

ϕ∗∧Id
��

5(K(X))∧5(K(d)(X, – ))

( –⊗ – )
��

5(K(X))∧5(K(d)(X, – ))
ϕ∗◦( –⊗ – )

// 5(K(d)(X, – ))

In particular, for G ∈5(K(d)(X, – )) and F ∈5(K(d)(X, – )) we have a natural
isomorphism

projG,F : ϕ∗(ϕ
∗(G)⊗F)→ G⊗ϕ∗F .

3.9. Formula for traces of tensor products of correspondences. We now prove a
formula for the traces of tensor products of correspondences. Let ϕ : X → X be
an endomorphism. Then one has an induced map ϕ∗ : K(d)(X, – )→ K(d)(X, – ).
Moreover, we also have the push-forward map

π (d)
∗
: K(d)(X, – )→ K(k).

Note that π (d)∗ ◦ ϕ∗ is homotopic to (π (d)∗ ◦ ϕ)∗ = π
(d)
∗ . Below, we use the same

notation to denote the corresponding induced morphisms on the associated Picard
groupoids.

Definition 3.9.1. Let F ∈ 5K(d)(X, – ). A right correspondence on F is a mor-
phism 8F : F→ ϕ∗F in 5K(d)(X, – ), and a left correspondence is a morphism
9F : ϕ

∗F→ F in 5K(d)(X, – ). If no confusion can arise, we abbreviate right or
left correspondence simply by correspondence.
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Let (F,8F ) be an object in 5K(d)(X, – ) endowed with a left correspondence.
Then we have morphisms

π (d)
∗
(8F ) : π

(d)
∗
(F)→ π (d)

∗
(ϕ∗F)∼= π (d)∗ (F)

in 5K(k). Suppose now we are given G ∈ 5K(X) and a left correspondence
9G : ϕ

∗G→ G. Then F ⊗G ∈5K(d)(X, – ) is endowed with a correspondence as
follows:

9G ⊗8F : G⊗F Id⊗8F
−−−−→ G⊗ϕ∗F

projG,F
←−−−− ϕ∗(ϕ

∗(G)⊗F)
ϕ∗(9G⊗Id)
−−−−−−→ ϕ∗(G⊗F).

In the following, we sometimes denote the trace Tr(π (d)∗ (9G ⊗8F )), which is an
element of k×, by 〈G,F〉5(d,– )(9G,8F ). When ϕ = Id, this notation is compatible
with the one in Section 3.4.

Proposition 3.9.2. Let X be projective and ϕ : X → X be an endomorphism.
Suppose G ∈ 5K(X), F ∈ 5K(d)(X, – ), and both are endowed with correspon-
dences 9G : ϕ

∗G→ G and 8F : F→ ϕ∗F . Assume given another correspondence
8′F : F→ ϕ∗F . Then one has the formula

〈G,F〉5(d,– )(9G,8F )×Tr(π (d)
∗
(8F ))

−rG=〈G,F〉5(d,– )(9G,8
′

F )×Tr(π (d)
∗
(8′F ))

−rG,

where rG is the generic rank of G, i.e., the image of G by the canonical map
π0(PicZ(X))→ Z.

Proof. We may write G = [O⊕rG
X ] + G0 ∈5(K(X)). Note that rG0 = 0. Now, OX

comes equipped with a canonical correspondence can : ϕ∗OX →OX , and therefore
OrG

X also comes equipped with a canonical correspondence (also denoted by can).
Using this, we define a correspondence 9G0 on G0 so that 9G = can+9G0 . Since
〈 – , – 〉5(d,– ) is distributive we have

Tr(π (d)
∗
(9G ⊗8F ))= Tr(π (d)

∗
(can⊗8F ))×Tr(π (d)

∗
(9G0 ⊗8F )).

Since Tr(π (d)∗ (can ⊗ 8F )) = Tr(π (d)∗ (8F ))
rG , we are reduced to showing that

〈G0,F〉5(d,– )(9G0,8F ) = 〈G0,F〉5(d,– )(9G0,8
′
F ). The result follows if we show

that the two ways of composing the following maps are homotopic:

〈G0,F〉5(d,– )
〈Id,8F 〉

//

〈Id,8′F 〉
// 〈G0, ϕ∗F〉5(d,– )

proj
// 〈ϕ∗G0,F〉5(d,– )

〈9G0 ,Id〉
// 〈G0,F〉5(d,– ).

To check this, we only need to show that the first two maps, namely 〈Id,8F 〉 and
〈Id,8′F 〉, are homotopic. Recall that for any sheaf L of generic rank r , there exists
a coherent sheaf L′ the codimension of whose support is ≥ 1 and [L] = [O⊕r

X ]+[L
′
]

in K0(X); see [Fulton 1998, Example 15.1.5]. This implies that, since G0 has rank
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zero, there exists C ∈5K(1)(X) such that C ∼= G0. Then the two maps above are
isomorphic to

〈C,F〉5(d,– )
〈Id,8F 〉

//

〈Id,8′F 〉
// 〈C, ϕ∗F〉5(d,– ).

It is enough to show that the path 8′−1
F ◦ 8F ∈ π1K(d)(X, – ) tensored with C

is homotopic to the identity. In particular, we just need to show that it maps to
the identity when viewed as an element of π1K(d)(X, – ). But this is precisely the
content of Lemma 3.7.1. �

Corollary 3.9.3. Suppose f :F→F ∈5(K(d)(X, – )) and g : G→ G ∈5(K(X)).
Then

〈G,F〉5(d,– )(g, f )= Tr
(
π (d)
∗
( f ) | π (d)

∗
(F)

)rG
×〈G,F〉5(d,– )(g, Id).

Here, π (d)∗ ( f ) and π (d)∗ (F) are the images under the natural map

5(K(d)(X, – ))
π∗
−→ PicZ(k).

Proof. Note that if ϕ = Id : X→ X , then a correspondence on F just amounts to
giving an endomorphism of F , and likewise a correspondence on G. The corollary
follows by taking 8F = f , 9G = g, and 8′F = id in the previous proposition. �

4. Localization formula for holonomic DX -modules

We now prove our main results on the global epsilon factors of tensor products of
holonomic DX -modules and flat connections. In the following, π : X→ Spec(k)
is a smooth projective variety over a field of characteristic zero.

4.1. The main theorem. Let F be a holonomic DX -module. We set

εdR(X,F) := det(R0dR(X,F)) ∈ PicZ(k).

We consider the following variant of the microlocalization map of Corollary 2.7.2:

CCK
: Khol(DX )

ε
−→ K(d)(T ∗X)→ K(d)(T ∗X, – ),

where the second map is the natural augmentation map. Recall that we have defined
a twisted pull-back map

σ+ : K(T ∗X)→ K(X).

In an analogous manner we can define the twisted pull-back

σ+ : K(d)(T ∗X, – ) σ
∗

−→ K(d)(X, – ) ⊗ωX
−−−→ K(d)(X, – ).

We set CC := σ+ ◦ CCK, and let for∇ : KX (DX )→ K(X) denote the morphism
induced by forgetting the DX module structure. Recall that this is well-defined
since any DX -module with singular support in the zero section is coherent as an
OX -module. The following is the main result of this section.
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Theorem 4.1.1. The following diagram commutes up to homotopy equivalence:

KX (DX )∧Khol(DX )
⊗

//

for∇ ∧CC
��

Khol(DX )

R0dR
��

K(X)∧K(d)(X, – )
〈 – , – 〉K(d,– )

// K(k)

Proof. We only need to show that the following two diagrams commute:

KX (DX )∧Khol(DX )
⊗
//

for∇ ∧CC
��

K(DX )

σ+◦gr
��

K(X)∧K(d)(X, – )
⊗
// K(X)

K(DX )
σ+◦gr

//

R0dR
��

K(X)

f∗yy

K(k)

The commutativity of the right-hand diagram follows from Lemma 2.7.5. There-
fore, it is enough to verify that the diagram on the left is commutative. The bottom
horizontal in this diagram is by definition the composition

K(X)∧K(d)(X, – )
⊗
−→ K(d)(X, – )→ K(0)(X, – )← K(X).

Since σ+ commutes with ⊗ and augmentation, we are reduced to showing that the
following diagram commutes:

KX (DX )∧Khol(DX )
⊗
//

for∇ ∧CCK
��

K(DX )

σ ∗◦gr
��

K(X)∧K(d)(X, – )
⊗
// K(X)

Note that for∇ is homotopic to σ ∗ ◦π∗ (see Lemma 2.8.2 for the definition of π∗).
Therefore, by Lemma 3.2.1 and Remark 3.2.2, we are reduced to showing that the
following diagram commutes:

KX (DX )∧Khol(DX )
⊗
//

π∗∧ε
��

K(DX )

gr
��

K(T ∗X)∧K(d)(T ∗X)
⊗
// K(T ∗X)

By definition, this commutative diagram factors as

KX (DX )∧Khol(DX ) //

π∗∧ε
��

KX (DX )∧K(DX )
⊗
//

π∗∧gr
��

K(DX )

gr
��

K(T ∗X)∧K(d)(T ∗X) // K(T ∗X)∧K(T ∗X)
⊗
// K(T ∗X)

The left square in this diagram commutes by Remark 2.7.3, and the right square
commutes by Lemma 2.8.2. �
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The theorem has a direct consequence for the pairing 〈 – , – 〉5(d,– ). Namely,
let F be a holonomic DX -modules, and G a vector bundle with connection. Then,
forgetting the connection, G gives rise to a natural object det(G)∈5(K(X)). On the
other hand, F gives rise to an object of the Picard groupoid associated to Khol(DX ),
and therefore, an object of 5(K(d)(X, – )) via the morphism CC. We denote the
corresponding object by CC(F) ∈5(K(d)(X, – )). Applying the pairing

〈 – , – 〉(d) :5(K(X))∧K(d)(X, – )→ PicZ(k)

to det(G) and CC(F) gives rise to an object 〈det(G),CC(F)〉 ∈ PicZ(k). An iso-
morphism of DX -modules g : G→ G′ induces an isomorphism g : det(G)→ det(G′),
and an isomorphism f : F→ F ′ induces an isomorphism f : CC(F)→ CC(F ′).
Therefore we have an isomorphism f ⊗ g : 〈det(G),CC(F)〉 → 〈det(G′),CC(F ′)〉.
Similarly, we get an isomorphism ε(g⊗ f ) : εdR(X,G⊗F)→ εdR(X,G′⊗F ′).
Corollary 4.1.2. One has a natural (in f and g as above) isomorphism in PicZ(k):

εdR(X,G⊗F)∼= 〈det(G),CC(F)〉.

Proof. The theorem gives rise to the following commutative diagram:

5(KX (DX )∧5(Khol(DX )) //

��

5(K(DX ))

��

5(K(X))∧5(K(d)(X, – )) // PicZ(k)

Recall, G gives rise to a homotopy point of KX (DX ), and therefore an object, also
denoted by G, in 5(KX (DX )). Likewise, F gives a homotopy point of Khol(DX )

and therefore an object F in 5(Khol(DX )). By construction, the composition of
the top arrow and right vertical is naturally isomorphic to εdR(X,G ⊗ F). The
image of G in 5(K(X)) is by definition det(G) and similarly the image of F in
5(K(d)(X, – )) is CC(F). Therefore, the commutativity of the diagram above gives
rise to the desired natural isomorphism. �

We now apply the previous corollary to compute traces of correspondences and
endomorphisms. Let F denote a holonomic DX -module and G a flat connection as
above, and fix an automorphism ϕ : X→ X .

Definition 4.1.3. A correspondence 8F on F is an isomorphism 8F : F→ ϕ∗F
of DX -modules. Since ϕ is assumed to be an automorphism, this is equivalent to
giving an isomorphism 9F : ϕ

∗F→ F .

We fix correspondences 8F and 9G on F and G. Note that if ϕ = id is the
identity, then a correspondence is simply an automorphism. Moreover, just as in
Section 3.9, one has an induced correspondence

8F ⊗9G : F ⊗G→ ϕ∗(F ⊗G).
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It follows that one has an induced quasi-isomorphism:

R0(8F ⊗9G) : R0dR(X,F ⊗G)→ R0dR(X,F ⊗G).

We let εdR(X,F ⊗ G;8F ⊗9G) := Tr
(
8F ⊗9G | det(R0dR(X,F ⊗ G))

)
∈ k×.

If ϕ is the identity, we have simply automorphisms f : F → F and g : G → G
(as DX -modules). In this case we denote the corresponding epsilon factor by
εdR(X,F ⊗ G; f ⊗ g) := Tr

(
f ⊗ g | det(R0dR(X,F ⊗ G))

)
∈ k×. In the fol-

lowing, we fix a lift SS(F) ∈ Z0(X) of [CC(F)] ∈ CH0(X). Moreover, we fix an
object (as in Section 3.9), also denoted by SS(F), of 5(K(d)(X)) whose image
in 5(K(d)(X, – )) is isomorphic to CC(F). Since F is equipped with a correspon-
dence, we have ϕ∗(CC(F))= CC(F) in CH0(X)∼= π0K(d)(X, – ). This enables us
to take a path α : CC(F)→ ϕ∗(CC(F)), and we normalize so that Tr(π (d)∗ (α))= 1.
By Proposition 3.9.2, this data allows us to define 〈G0,CC(F)〉(9G, α)

5
(d,– ) ∈ k×.

Theorem 4.1.4. With notation as above:

(i) One has

εdR(X,F ⊗G;8F ⊗9G)= εdR(X,F;8F )
rG ×〈G,CC(F)〉(9G, α)

5
(d,– ).

(ii) In the setting of endomorphisms (i.e., ϕ = id), we have

εdR(X,F ⊗G; f ⊗ g)= εdR(X,F; f )rG ×〈det(G),SS(F)〉(g).

Proof. The first equality follows directly from Theorem 4.1.1 and Proposition 3.9.2.
For the second statement, we note that in the setting of endomorphisms one has,
by Corollary 3.9.3,

εdR(X,F ⊗G; f ⊗ g)= εdR(X,F; f )rG ×〈det(G),SS(F)〉5(d,– )(g, Id).

On the other hand, the latter is

〈det(G),SS(F)〉5(d,– )(g, Id)= 〈det(G),SS(F)〉5(d)(g, Id)= 〈det(G),SS(F)〉(g)

by Corollary 3.5.1. �

Remark 4.1.5. We note that CC(F) ∈ CHd(X) is precisely the pull-back of the
characteristic cycle of F under the zero section σ ∗ : CHd(T ∗X)→ CHd(X).

4.2. A formula for the local pairing. Let G ∈ 5K(X), and 9G : ϕ
∗G → G be a

correspondence in 5K(X). Assume given a cycle z ∈ CHd(X) such that z = ϕ∗(z).
We take an object OZ ∈5K(d)(X, – ) which corresponds to z via the isomorphism
π0K(d)(X, – )∼= CH0(X), and take a correspondence P :OZ → ϕ∗OZ , normalized
so that the trace of the action of P on the cohomology is 1 as well. Since z = ϕ∗(z),
such a correspondence must exist (though it may not be unique).
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In this setting, we have seen in the proof of Proposition 3.9.2 that

〈G,OZ 〉
5
(d,– )(9G, P) ∈ k×

is independent of the choice of OZ and P . When z is represented by z0 ∈ Zd(X)
such that ϕ∗(z0) = z0, we may take P such that the description of the pair is
especially simple. For simplicity, we assume that z0 is an effective cycle. In the
general case, we can proceed by writing it as a difference of two effective cycles.
In this case, let W be the underlying reduced scheme of z0 in X . Note that W is
a smooth scheme of dimension 0. Since, by assumption, ϕ∗(z0)= z0, there exists
an endomorphism ϕW of W such that

W //
� _

i
��

ϕW
// W� _

i
��

X
ϕ
// X

is commutative. Since z0 is an effective cycle, we may write z0 =
∑

w∈|W | nw · [w],
where nw > 0. We set Oz0 :=

⊕
w∈|W |O

⊕nw
w . The endomorphism ϕW yields a

correspondence P :Oz0→ ϕ∗Oz0 . We can pull back the correspondence ϕ∗A→ A
by i , and get a correspondence i∗9 : ϕ∗W (i

∗A)→ i∗A. One can check that

〈A, z〉(9, P)= Tr(R0(i∗9)).

4.3. Elementary proof of localization formula for endomorphisms. In this sec-
tion, we give an elementary proof of the main theorem when the correspondence
is merely an automorphism. While the proof below is elementary, it doesn’t seem
to generalize to the setting of correspondences (unlike the K-theoretic approach of
the previous sections). We only give an outline of the proof below, and leave the
details to the reader.

We begin by recalling the statement for the reader’s convenience. Let X denote
a smooth projective variety over an algebraically closed field k of characteristic
zero. Let G denote a flat connection on X , and F a holonomic DX -module. Let f
denote a DX -module automorphism of F , and g a DX -module automorphism of G.
Given a cycle S(F) ∈ CH0(X) representing the pull-back (by the zero section) of
the characteristic cycle of F , we have defined the trace 〈det(G),S(F)〉(g) ∈ k×.
Note that S(F)= [CC(F)] using the previous notation.

Theorem 4.3.1. With notation as above:

εdR(X,F ⊗G, f ⊗ g)= εdR(X,F, f )rG ×〈det(G)(g),S(F)〉.

Proof. Suppose that 0⊂F1⊂ · · · ⊂Fk =F is a finite filtration of F and that f is an
endomorphism which preserves this filtration. Since both sides of the formula are



A LOCALIZATION FORMULA OF EPSILON FACTORS 489

compatible with exact sequences (i.e., are multiplicative), we are reduced to show-
ing the validity of the given formula for F replaced by gri (F) with the morphism
induced by f . A similar assertion holds for G. In particular, we can assume that F
is a simple holonomic DX -module. Then f is given by multiplication by a scalar. A
similar assertion holds for G and g. Suppose f = α ∈ k× and g = β ∈ k×. Then the
left-hand side of the formula is given by (αβ)χ(F⊗G). The right-hand side is given
by αχ(F)rGβrGχ(F). Therefore, we are reduced to showing that χ(F⊗G)= χ(F)rG .
This follows from a direct computation or by the Dubson–Kashiwara formula once
one notes that the associated graded (with respect to a good filtration) commutes
with the tensor product since G is OX -coherent (see Remark 2.8.1). �
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Poincaré duality and Langlands duality
for extended affine Weyl groups
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In this paper we construct an equivariant Poincaré duality between dual tori
equipped with finite group actions. We use this to demonstrate that Langlands du-
ality induces a rational isomorphism between the group C∗-algebras of extended
affine Weyl groups at the level of K-theory.
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Introduction

Let T be a compact torus and let W be a finite group acting on T with fixed point.
We construct a W-equivariant degree-0 Poincaré duality between C(T ) and C(T∨),
where T∨ denotes the dual torus equipped with the dual action of W.

Moreover we show that there is a nonequivariant Poincaré duality between the
crossed product algebras C(T )o W and C(T∨)o W. Indeed we provide a general
mechanism to descend equivariant Poincaré duality to Poincaré duality for crossed
products. As far as we are aware this does not appear elsewhere in the literature.

In the case when W is trivial, our degree-0 duality is connected to the Baum–
Connes assembly map in the following way: Let T be a compact torus (equipped
with the structure of a Lie group), and let X∗(T ), X∗(T ) be the groups of characters
and cocharacters respectively. By definition the dual torus T∨ is the torus such that
X∗(T∨) = X∗(T ) and X∗(T∨) = X∗(T ). Whence the Pontryagin dual of X∗(T )

Wright was partially supported by EPSRC grant EP/J015806/1.
MSC2010: 46L80.
Keywords: Poincaré duality, Langlands duality, extended affine Weyl groups.

491

http://msp.org
http://msp.org/akt
http://dx.doi.org/10.2140/akt.2018.3-3
http://dx.doi.org/10.2140/akt.2018.3.491


492 GRAHAM A. NIBLO, ROGER PLYMEN AND NICK WRIGHT

is the torus T∨. The Baum–Connes assembly map for X∗(T ) gives a degree-0
isomorphism

K∗(T )
∼=
−→ K∗(C∗X∗(T ))∼= K ∗(T∨).

This isomorphism agrees with our Poincaré duality, though this is not immediate
from the definition of the two maps, see Section 4D.

For an isometric action of a group W on a closed Riemannian manifold Mn,
Kasparov’s [1988] Poincaré duality, by contrast with our Poincaré duality, provides
an isomorphism from KKW (C(M),C) to KKW (C,Cτ (M)), where Cτ (M) denotes
the algebra of continuous sections of the Clifford bundle for the cotangent bundle
τ of M . See also [Echterhoff et al. 2008]. If the action is trivial and M is a spin
manifold, then the twisting by the Clifford algebra simply induces a dimension
shift so Kasparov’s Poincaré duality has degree n modulo 2. In the case where M
is a torus and W is trivial, this is connected to our Poincaré duality via the Dirac-
dual-Dirac method, which addresses the dimension shift. In the equivariant case
the group acts nontrivially on the Clifford bundle, so the appearance of this bundle
no longer simply gives a dimension shift. Indeed, for example, letting Z/2Z act by
complex conjugation on the 1-dimensional torus U (1), then KKW (C,Cτ (U (1))) is
Z3 in dimension 0 and 0 in dimension 1, which agrees with the unshifted K-theory
group KKW (C,C(U (1))).

In this paper, in order to describe the KK-cycles defining our Poincaré dualities
explicitly, we have given direct proofs of the relevant properties of these cycles and
their pairings. As remarked by the referee, it is in principle possible to obtain these
elements by combining Kasparov’s Poincaré duality elements with the Dirac and
dual-Dirac cycles. Providing full details of this reduction to the known results is in
itself somewhat complicated and we have opted to give the direct, self-contained
argument.

As an application of our Poincaré duality we consider the case where T is the
maximal torus in a compact connected semisimple Lie group and W is the Weyl
group. The dual torus is then the maximal torus in the Langlands dual Lie group.
In general there is no W-equivariant homeomorphism between the two tori, hence a
priori one would not expect them to have the same equivariant K-theory. However
our Poincaré duality gives a canonical pairing between these two equivariant K-
theory groups, and hence ignoring torsion these groups are isomorphic. Moreover
our Poincaré duality also provides a canonical pairing between the K-theory of
the extended affine Weyl groups of the original Lie group and its Langlands dual.
This again yields an isomorphism up to torsion in K-theory, although these discrete
groups are not typically isomorphic. In [Niblo et al. 2016] we explore this phenom-
enon in further detail and give detailed computations of these K-theory groups in
a number of cases.
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The connection between T-duality and Langlands duality has been studied by
Daenzer and van Erp [2014], who showed that Langlands duality for complex
reductive Lie groups can be implemented by T-dualization for groups whose simple
factors are of type A, D or E. This was generalised by Bunke and Nikolaus [2015].
The study of T-duality in these papers, involves examining the Lie group viewed
as a principal bundle of tori via the action of the maximal torus on the group.
Here by contrast we study the Weyl group action on the maximal torus, instead of
the maximal torus action on the Lie group. In both cases there is a natural duality
arising from Langlands duality of root systems and the possible unification of these
two perspectives would provide an interesting future project.

1. Statement of results

Let W be a finite group acting isometrically with a global fixed point on a flat
Riemannian torus T, and let t denote the universal cover of T. The notation reflects
the observation that T can be equipped with the structure of an abelian Lie group
with identity at the fixed point, and t is then its Lie algebra which inherits a linear
isometric action of W. Denote by 0 the lattice in t mapping to the identity in T, or
equivalently the fundamental group of T. This inherits an action of W from t.

Now let T∨ be the dual torus of T, that is, the group of characters of 0. We
similarly denote by t∗ the Lie algebra of T∨ (which is the dual space of t) and
denote by 0∨ the fundamental group of T∨. The action of W on T induces dual
actions on T∨, t∗ and 0∨.

Let P ∈ KKW (C,C(T ) ⊗̂C(T∨)) denote the class of the Poincaré line bundle.
To construct our Poincaré duality we will, in Section 3B, define an element Q ∈
KKW (C(T∨) ⊗̂C(T ),C) given by a triple (L2(t) ⊗̂S, ρ, Q0), for which P,Q is a
Poincaré duality pair. The operator is

Q0 =
∂

∂y j ⊗ ε
j
− 2π iy j

⊗ ej ,

where {ε j , ej : j = 1, . . . , n} denotes a suitable basis for t∗× t acting on a space
of spinors S. The representation ρ is defined by

ρ

(∑
γ∈0

aγ e2π i〈η,γ 〉
⊗ f

)
ξ ⊗ s =

∑
γ∈0

aγ γ · ( f̃ ξ)⊗ s,

where γ acts by translation on L2(t), f̃ denotes the lift of f to a periodic function
on t and η denotes a variable in t∗.

Theorem 1.1. Let T be a torus with flat Riemannian metric and T∨ its dual.
Suppose that W is a finite group acting isometrically on T with a global fixed
point. The elements P,Q define a W-equivariant Poincaré duality in KK-theory
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from C(T ) to C(T∨) and there is a “descended” nonequivariant Poincaré duality
from C0(t)o (0oW ) to C0(t

∗)o (0∨oW ). This is natural in the sense that there
is a commutative diagram

KK∗W (C(T ),C)
∼=
−−−→ KK∗W (C,C(T∨)).y∼= ∼=

y
KK∗(C0(t)o (0o W ),C)

∼=
−−−→ KK∗(C,C0(t

∗)o (0∨o W ))

where

• the top and bottom maps are induced by the Poincaré dualities,

• the left-hand map is the composition of the W-equivariant Morita equivalence
C(T )∼ C0(t)o0 with the dual Green–Julg isomorphism in K-homology,

• the right-hand map is its dual, i.e., the composition of the Morita equivalence
C(T∨)∼ C0(t

∗)o0∨ with the Green–Julg isomorphism in K-theory.

The vertical maps factor through KK(C(T )oW,C) and KK(C,C(T∨)oW ) on
the left and right, respectively, and these may be identified (by Fourier–Pontryagin
duality) with the groups KK∗(C∗(0∨o W ),C) and KK∗(C,C∗(0o W )) respec-
tively.

Theorem 1.2. Let T be a torus with flat Riemannian metric and T∨ its dual.
Suppose that W is a finite group acting isometrically on T with a global fixed
point. The Poincaré duality from C(T ) to C(T∨) descends to give a nonequivariant
Poincaré duality as follows:

KK∗W (C(T ),C)
∼=
−−−→ KK∗W (C,C(T∨)).y∼= ∼=

y
KK∗(C∗(0∨o W ),C)

∼=
−−−→ KK∗(C,C∗(0o W ))

where

• the top and bottom maps are induced by the Poincaré dualities,

• the left-hand map is the composition of the W-equivariant Fourier–Pontryagin
duality C(T )∼=C∗(0∨) with the dual Green–Julg isomorphism in K-homology,

• the right-hand map is its dual, i.e., the composition of the W-equivariant
Fourier–Pontryagin duality C(T∨)∼= C∗(0) with the Green–Julg isomorphism
in K-theory.

In Section 4D we turn to the question of the relationship between the Baum–
Connes assembly map and our Poincaré duality. In particular, we show that the
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following diagram of isomorphisms commutes.

KK∗0oW (C0(t),C)
Baum–Connes
−−−−−−−→ KK∗(C,C∗(0o W ))ydual Green–Julg

yMorita equivalence

KK∗(C0(t)o (0o W ),C)
Poincaré duality
−−−−−−−−→ KK∗(C,C0(t

∗)o (0∨o W ))

Given the definitions of the maps this is, in some sense surprising since both the
Baum–Connes and the dual Green–Julg maps factor through the descent map,
which has target KK(C,C0(t

∗)o (0∨ o W )⊗ C∗(0 o W )). The corresponding
square with this latter group in the top left corner as illustrated in Section 4D, does
not commute.

A case of particular interest is provided by the action of a Weyl group W
on a torus, provided by a root datum (X∗, R, X∗, R∨). Let W ′a = X∗ o W be
the corresponding extended affine Weyl group. The Langlands dual root system
(X∗, R∨, X∗, R) gives rise to a dual extended affine Weyl group (W ′a)

∨
= X∗oW,

which is not usually isomorphic to W ′a . However the Poincaré duality in Theorem 1.2
provides an isomorphism between K ∗(C∗((W ′a)

∨)) and K∗(C∗(W ′a)).
The Langlands duality between W ′a and (W ′a)

∨ is further amplified by the fol-
lowing theorem.

Corollary 1.3. Let G be a compact connected semisimple Lie group and G∨ its
Langlands dual, with W ′a , (W ′a)

∨ the corresponding extended affine Weyl groups.
Then there is a rational isomorphism

K∗(C∗((W ′a)
∨))∼= K∗(C∗(W ′a)).

In particular we obtain a duality between affine and extended affine Weyl groups
of the following form:

Corollary 1.4. Let W ′a be the extended affine Weyl group of G, and let Wa,W∨a be
the affine Weyl groups of G and its Langlands dual G∨. If G is of adjoint type then
rationally

K∗(C∗(W∨a ))∼= K∗(C∗(W ′a)).

If additionally G is of type An, Dn, E6, E7, E8, F4,G2 then rationally

K∗(C∗(Wa))∼= K∗(C∗(W ′a)).

Recall that the extended affine Weyl group W ′a is an extension of Wa by the cyclic
group π1(G) so the content of Corollary 1.4 is that, surprisingly, this particular
extension does not change the K-theory.
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In a companion paper [Niblo et al. 2016] we explore this phenomenon in further
detail and give detailed computations of these K-theory groups in a number of
cases.

2. Background

2A. Real Langlands duality. Recall that a connected complex reductive Lie group
H is classified by its root datum. That is a 4-tuple (X∗, R, X∗, R∨) where X∗ is the
lattice of characters on a maximal torus in H , and X∗ is the lattice of cocharacters,
or equivalently the fundamental group of the maximal torus. The set of roots R ⊂
X∗ is in bijection with the reflections in the Weyl group W and in bijection with
the set of coroots R∨ ⊂ X∗. Root data classify connected complex reductive Lie
groups, in the sense that two such groups are isomorphic if and only if their root
data are isomorphic (in the obvious sense). The Langlands dual of H, denoted H∨

is then the unique connected complex reductive Lie group associated to the dual
root datum (X∗, R∨, X∗, R). See [Bourbaki 2002; 2005] for details.

One of the key motivations of this paper is that for extended affine Weyl groups
the Baum–Connes correspondence should be thought of as an equivariant duality
between maximal tori in a compact connected semisimple Lie group and its real
Langlands dual. As in the complex case these are classified by their root data, and
we can define the (real) Langlands dual by dualising the root datum as before. Since
the real case is not as well known we recall the relationship with the complex case.

For a Lie group G, the complexification GC is a complex Lie group together
with a morphism from G, satisfying the universal property that for any morphism
of G into a complex Lie group L there is a unique factorisation through GC.

For T a maximal torus in G, the complexification S := TC of T is a maximal
torus in H := GC, and so the dual torus S∨ is well-defined in the dual group H∨.
Then T∨ is defined to be the maximal compact subgroup of S∨, and satisfies the
condition

(T∨)C = S∨.

The groups X∗, X∗ in the root datum are again the groups of characters and
cocharacters of the torus T respectively. Dually X∗, X∗ are the groups of characters
and cocharacters on the dual torus T∨, giving the T-duality equation

X∗(T∨)= X∗(T ). (2.1)

The torus T∨ is given explicitly by T∨ = Hom(X∗(T ),U). The Langlands dual
of G, denoted G∨, is defined to be a maximal compact subgroup of H∨ containing
the torus T∨.

The process of passing to a maximal compact subgroup is inverse to complexi-
fication in the sense that complexifying G∨ recovers H∨.
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2A1. A table of Langlands dual groups. Given a compact connected semisimple
Lie group G, the product |π1(G)| · |Z(G)| is unchanged by Langlands duality,
i.e., it agrees with the product |π1(G∨)| · |Z(G∨)|. This product is equal to the
connection index, denoted f , (see [Bourbaki 2005, Chapter IX, p. 320]), which is
defined in [Bourbaki 2002, Chapter VI, p. 240]. The connection indices are listed
in [Bourbaki 2002, Chapter VI, Plates I–X, p. 265–292].

The following is a table of Langlands duals and connection indices for compact
connected semisimple groups:

G G∨ f

An = SUn+1 PSUn+1 n+ 1
Bn = SO2n+1 Sp2n 2
Cn = Sp2n SO2n+1 2
Dn = SO2n SO2n 4
E6 E6 3
E7 E7 2
E8 E8 1
F4 F4 1
G2 G2 1

In this table, the simply connected form of E6 (resp. E7) dualises to the adjoint
form of E6 (resp. E7).

The Lie group G and its dual G∨ admit a common Weyl group

W = N (T )/T = N (T∨)/T∨.

The T-duality Equation (2.1) identifies the action of the Weyl group of T on X∗(T )
with the dual action of the Weyl group of T∨ on X∗(T∨).

Remark 2.2. In general, T and T∨ are not isomorphic as W-spaces. For example,
let G = SU3 and take T = {(z1, z2, z3) : z j ∈U, z1z2z3= 1}. Then in homogeneous
coordinates we have T∨= {(z1 : z2 : z3) : z j ∈U, z1z2z3= 1}. The Weyl group W is
the symmetric group S3 which acts by permuting coordinates in both cases. Note
that the torus T admits three W-fixed points whereas the unique W-fixed point in T∨

is the identity (1 : 1 : 1) ∈ T∨, hence T and T∨ are not W-equivariantly isomorphic.

The nodal group of the torus T is defined to be 0(T ) := ker(exp : t→ T ) and
differentiating the action of the Weyl group W we obtain a linear action of W on
the Lie algebra t which restricts to an action on the nodal group 0(T ). Indeed there
is a W-equivariant isomorphism X∗(T )∼= 0(T ).

We remark that by definition T∨ is the Pontryagin dual of the nodal group 0(T ).
Moreover the natural action of W on T∨ is the dual of the action on 0(T ). Hence
we have the following:
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Lemma 2.3. Let 0̂ denote the Pontryagin dual of 0 = 0(T ). Then we have a
W-equivariant isomorphism

0̂ ∼= T∨

and hence an isomorphism of W-C∗-algebras

C∗(0)∼= C(T∨).

2B. Affine and extended affine Weyl groups. In this section we will give the def-
initions of the affine and extended affine Weyl groups of a compact connected
semisimple Lie group. As noted in the introduction these are semidirect products
of lattices in the Lie algebra t of a maximal torus T by the Weyl group W. The
affine Weyl group Wa is a Coxeter group while the extended affine Weyl group
contains Wa as a finite index normal subgroup and the quotient is the fundamental
group of the Lie group G.

Let p : G̃→ G denote the universal cover and let T̃ be the preimage of T which
is a maximal torus in G̃. We consider the following commutative diagram:

0(T̃ ) −−−→ t −−−→ T̃ −−−→ 0yι yid

yp|T̃

0 −−−→ 0(T ) −−−→ t −−−→ T

By the snake lemma the sequence

ker(id) // ker(p|T̃ ) // coker(ι) // coker(id)

0 π1(G) 0(T )/0(T̃ ) 0

is exact, hence 0(T )/0(T̃ ) is isomorphic to π1(G). We thus have a map from
0(T ) onto π1(G). The kernel of this map (more commonly denoted N (G, T )) is
the nodal lattice 0(T̃ ) for the torus T̃ and we have:

Definition 2.4. The affine Weyl group of G is

Wa(G)= 0(T̃ )o W

and the extended affine Weyl group of G is

W ′a(G)= 0(T )o W,

where W denotes the Weyl group of G.

The following is now immediate:



EXTENDED AFFINE WEYL GROUPS 499

Lemma 2.5. Let G̃ denote the universal cover of G and let T̃ denote a maximal
torus in G̃. Then we have

Wa(G)=W ′a(G̃)=Wa(G̃).

We remark that the extended affine Weyl group W ′a(G) is a split extension of
Wa(G) by π1(G).

3. Equivariant Poincaré duality between C(T ) and C(T∨)

We begin by recalling the general framework of Poincaré duality in KK-theory. For
G-C∗-algebras A, B a Poincaré duality is given by elements a ∈ KKG(B ⊗̂ A,C)

and b ∈ KKG(C, A ⊗̂ B) with the property that

b⊗A a= 1B ∈ KKG(B, B), b⊗B a= 1A ∈ KKG(A, A). (3.1)

These then yield isomorphisms between the K-homology of A and the K-theory
of B (and vice versa) given by

x 7→ b⊗A x ∈ KKG(C, B) for x ∈ KK(A,C),

y 7→ y⊗B a ∈ KKG(A,C) for y ∈ KK(C, B).

Throughout this section T will denote a torus with flat Riemannian metric, T∨

its dual torus and W a finite group acting by isometries on T (and dually on T∨).
We will construct elements

Q ∈ KKW (C(T∨) ⊗̂C(T ),C) and P ∈ KKW (C,C(T ) ⊗̂C(T∨))

satisfying (3.1).

3A. The Poincaré line bundle. Recall that the Poincaré line bundle over T × T∨

is the bundle with total space given by the quotient of t×T∨×C under the action of
0 defined by γ (x, χ, z)= (γ + x, χ, χ(γ )z). The projection onto the base T ×T∨

maps the 0 orbit of (x, χ, z) to the 0 orbit of (x, χ). Here we are identifying
elements of T∨ with characters on 0. We note that the bundle is W-equivariant
with respect to the diagonal action of W on t× T∨, hence it defines an element in
W-equivariant K-theory allowing it to play the role of the element P in our Poincaré
duality.

To place this in the language of KK-theory we consider sections of this bundle,
which are given by functions σ : t×T∨→C such that σ(γ + x, χ)= χ(γ )σ (x, χ).
They naturally form a module over C(T × T∨) and given two such sections we
define 〈σ1, σ2〉= σ1σ2. We note that this is a 0 periodic function in the first variable,
hence the inner product takes values in C(T × T∨), giving the space of sections
the structure of a Hilbert module.
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We will now give an alternative construction of this Hilbert module. Let Cc(t)

denote the space of continuous compactly supported functions on t and equip this
with a C(T )⊗C(T∨)-valued inner product defined by

〈φ1, φ2〉(x, η)=
∑
α,β∈0

φ1(x −α)φ2(x −β)e2π i〈η,β−α〉.

We remark that the support condition ensures that this is a finite sum, and that it is
easy to check that 〈φ1, φ2〉(x, η) is 0-periodic in x and 0∨-periodic in η.

The space Cc(t) has a C(T )⊗C[0]-module structure

(φ · ( f ⊗[γ ]))= φ(x + γ ) f̃ (x),

where we view the function f in C(T ) as a 0-periodic function f̃ on t.
Completing Cc(t) with respect to the inner product norm, the module structure

extends by continuity to give Cc(t) the structure of a C(T )⊗̂C∗(0)∼=C(T )⊗̂C(T∨)
Hilbert module. We denote this Hilbert module by E and give this the trivial grad-
ing.

The group W acts on t and hence on Cc(t) by (w ·φ)(x)= φ(w−1x). We have(
w · (φ · ( f ⊗[γ ]))

)
(x)= φ(w−1x + γ ) f̃ (w−1x)=

(
(w ·φ) · (w · f ⊗[wγ ])

)
(x)

so the action is compatible with the module structure. Now for the inner product
we have

〈w ·φ1, w ·φ2〉(x, η)=
∑
α,β∈0

(w ·φ1)(x −α)(w ·φ2)(x −β)e2π i〈η,β−α〉

=

∑
α,β∈0

φ1(w−1x −w−1α)φ2(w
−1x −w−1β)e2π i〈η,β−α〉

=

∑
α′,β ′∈0

φ1(w−1x −α′)φ2(w
−1x −β ′)e2π i〈η,w(β ′−α′)〉

=

∑
α′,β ′∈0

φ1(w−1x −α′)φ2(w
−1x −β ′)e2π i〈w−1η,β ′−α′〉

= (w · 〈φ1, φ2〉)(x, η).

Hence E is a W-equivariant Hilbert module.
The identification of the module E with the sections of the Poincaré line bundle

is given by the following analogue of the Fourier transform. For each element
φ ∈ Cc(t) set

σ(x, χ)=
∑
γ∈0

φ(x − γ )χ(γ ).
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It is routine to verify that σ(x + δ, χ)= χ(δ)σ (x, χ) hence σ is a section of the
Poincaré line bundle, and that the W action on Cc(t) corresponds precisely to the
W action on the bundle.

Theorem 3.2. The triple (E, 1, 0), where 1 denotes the identity representation of
C on E , is a W-equivariant Kasparov triple defining an element P in

KKW
(
C,C(T ) ⊗̂C(T∨)

)
.

We remark that there is a connection with Fourier–Mukai duality. We recall that
Fourier–Mukai duality is given by the map

x 7→ p2∗(p∗1x⊗P),

where p1, p2 are the projections of T × T∨ onto the first and second factors. From
the point of view of K-theory the subtlety is to interpret the wrong-way map p2∗.
This should give a map from the W-equivariant K-theory of T × T∨ to the W
equivariant K-theory of T∨, but to make this well defined we must twist by the
Clifford algebra C`(t). Specifically we can take

p2∗ := [D]⊗ 1C(T∨) ∈ KKW
(
C(T × T∨)⊗ C`(t),C(T∨)

)
,

where [D] is the Dirac class in KKW (C(T )⊗C`(t),C). The Fourier–Mukai map is
then given by taking the Kasparov product with the element p∗1Pi∗ p2∗ =P p∗1 i∗ p2∗

where i is the diagonal inclusion of T × T∨ into (T × T∨)2. We note that p∗1 i∗ p2∗

is the tensor product of Kasparov’s Poincaré duality element for T (given by its
Dirac element) with the identity on C(T∨).

3B. Construction of the element Q in KKW (C(T∨) ⊗̂C(T ),C). We consider the
differential operator Q0 on t with coefficients in the Clifford algebra C`(t× t∗)

defined using Einstein summation convention by

Q0 =
∂

∂y j ⊗ ε
j
− 2π iy j

⊗ ej .

Here
{

ej =
∂
∂y j

}
is an orthonormal basis for t , {ε j

} denotes the dual basis of t∗ and
we regard these as generators of the Clifford algebra C`(t× t∗).

We view Q0 as an unbounded operator on the Hilbert space L2(t) ⊗̂S, where S
denotes the space of spinors S = C`(t×t∗)P with P the projection

∏
j

1
2(1− iejε

j )

in the Clifford algebra. (The space S is naturally equipped with a representation
of C`(t× t∗) by left multiplication inducing the action of Q0.)

The subtlety in constructing an element in equivariant KK-theory is the need to
ensure that P is W-invariant with respect to the diagonal action of W on t× t∗ and
hence that the action of W on C`(t× t∗) restricts to a representation on S. The
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corner algebra PC`(t× t∗)P is CP , which we identify with C, and this gives S a
canonical inner product given by 〈a P, bP〉 = Pa∗bP .

As a simple example consider the 1-dimensional case. Here C`(t× t∗)= M2(C)

and the two generators are e1=
(

0 i
i 0

)
and ε1

=
(

0 −1
1 0

)
. The projection P is therefore(

1 0
0 0

)
so S is the space of matrices of the form

(
∗ 0
∗ 0

)
and the operator is

Q0 =

(
0 −

∂
∂y1 + 2πy1

∂
∂y1 + 2πy1 0

)
.

The off-diagonal elements are of course the 1-dimensional annihilation and creation
operators.

For the general case we must now construct a representation of C(T∨) ⊗̂C(T )
on L2(t) ⊗̂ S. It suffices to define commuting representations of C(T∨) ⊗̂ 1 and
1 ⊗̂ C(T ). The representation of C(T ) is the usual pointwise multiplication on
L2(t) viewing elements of C(T ) as 0-periodic functions on t. The representation
of C(T∨) involves the action of 0 on t.

For a an affine isometry of t , let La be the operator on L2(t) induced by the
action of a on t:

(Laξ)(y)= ξ(a−1
· y).

For the function η 7→ e2π i〈η,γ 〉 in C(T∨) we define

ρ(e2π i〈η,γ 〉)= Lγ ⊗ 1S .

Identifying C(T∨) with C∗(0) and identifying L2(t) with `2(0)⊗ L2(X), where
X is a fundamental domain for the action of 0, the representation of the algebra is
given by the left regular representation on `2(0).

Consider the commutators of Q0 with the representation ρ. For f ∈ C(T ), the
operator ρ( f ) commutes exactly with the second term 2π iy j

⊗ ej in Q0, while, for
f smooth, the commutator of ρ( f ) with ∂

∂y j ⊗ ε
j is given by the bounded operator

∂ f
∂y j ⊗ ε

j . Now for the function η 7→ e2π i〈η,γ 〉 in C(T∨) we have ρ(e2π i〈η,γ 〉) =

Lγ ⊗ 1S . This commutes exactly with the differential term of the operator, while

Lγ (2π iy j )L∗γ = 2π i(y j
− γ j )

hence the commutator [Lγ ⊗ 1S, 2π iy j
⊗ ej ] is again bounded.

We have verified that Q0 commutes with the representation ρ modulo bounded
operators, on a dense subalgebra of C(T∨) ⊗̂C(T ). Thus to show that the triple

(L2(t) ⊗̂S, ρ, Q0)

is an unbounded Kasparov triple it remains to prove the following:

Theorem 3.3. The operator Q0 has compact resolvent. It has a 1-dimensional
kernel with even grading.
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Proof. In the following argument we will not use summation convention. We
consider the following operators on L2(t) ⊗̂S:

p j =
∂

∂y j ⊗ ε
j , x j =−2π iy j

⊗ ej ,

q j =
1
2(1+ 1⊗ iejε

j ), Aj =
1

2
√
π
(p j + x j ).

Since Aj anticommutes with 1⊗ iejε
j we have q j Aj = Aj (1− q j ), hence we can

think of Aj as an off-diagonal matrix with respect to q j . We write Aj as a j + a∗j ,
where a j = q j Aj = Aj (1−q j ) and hence a∗j = Aj q j = (1−q j )Aj . We think of a∗j
and a j as creation and annihilation operators respectively and we define a number
operator N j = a∗j a j . The involution iε j intertwines q j with 1− q j . We define
A′j , N ′j to be the conjugates of Aj , N j respectively by iε j . Note that

A′j =
1

2
√
π
(p j − x j )

and hence
A2

j = (A
′

j )
2
+ 2 1

4π
[x j , p j ] = (A′j )

2
+ 1⊗ iejε

j.

We have
N ′j = A′j (1− q j )A′j = q j (A′j )

2.

Thus

a j a∗j = q j A2
j q j = q j A2

j = q j (A′j )
2
+ q j (1⊗ iejε

j )= N ′j + q j .

Hence the spectrum of a j a∗j (viewed as an operator on the range of q j ) is the
spectrum of N ′j shifted by 1. However N ′j is conjugate to N j = a∗j a j so we conclude
that

Sp(a j a∗j )= Sp(a∗j a j )+ 1.

But Sp(a j a∗j ) \ {0} = Sp(a∗j a j ) \ {0} so we conclude that the spectrum is

Sp(a∗j a j )= {0, 1, 2, . . . } while Sp(a j a∗j )= {1, 2, . . . }.

Now since the operators Aj pairwise gradedly commute we have

Q2
0 = 4π

∑
j

A2
j = 4π

∑
j

a∗j a j + a j a∗j

and noting that the summands commute we see that Q2
0 has discrete spectrum.

To show that (1 + Q2
0)
−1 is compact, it remains to verify that ker Q0 is finite

dimensional (and hence that all eigenspaces are finite dimensional). We have

ker Q0 = ker Q2
0 =

⋂
j

ker A2
j =

⋂
j

ker Aj .
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Multiplying the differential equation (p j+x j ) f = 0 by− exp(π(y j )2⊗iε j ej )ε
j

we see that the kernel of Aj is the space of solutions of the differential equation

∂

∂y j

(
exp(π(y j )2⊗ iε j ej ) f

)
= 0

whence for f in the kernel we have

f (y1, . . . , yn)= exp(−π(y j )2⊗ iε j ej ) f (y1, . . . , y j−1, 0, y j+1, . . . , yn).

Since the solutions must be square integrable the values of f must lie in the +1
eigenspace of the involution iε j ej , that is, the range of the projection 1− q j . On
this subspace the operator exp(−π(y j )2⊗ iε j ej ) reduces to e−π(y

j )2(1−q j ). Since
the kernel of Q0 is the intersection of the kernels of the operators Aj an element
of the kernel must have the form

f (y)= e−π |y|
2 ∏

j

(1− q j ) f (0)

so the kernel is 1-dimensional. Indeed the product
∏

j (1− q j ) is the projection P
used to define the space of spinors S = C`(t× t∗)P , and hence

∏
j (1− q j ) f (0)

lies in the 1-dimensional space PS = PC`(t× t∗)P which has even grading. �

We have shown that (L2(t) ⊗̂S, ρ, Q0) defines an unbounded Kasparov triple.
It remains to establish W-equivariance.

Let V be a finite dimensional vector space and equip V ⊗ V ∗ with the natu-
ral diagonal action of GL(V ). If V is equipped with a nondegenerate symmetric
bilinear form g then we can form the Clifford algebra C`(V ) and dually C`(V ∗).
The subgroup O(g) of GL(V ), consisting of those elements preserving g, acts
diagonally on C`(V ) ⊗̂ C`(V ∗), which we identify with C`(V × V ∗).

We say that an element a of C`(V × V ∗) is symmetric if there exists a g-
orthonormal1 basis {ej : j = 1, . . . , n} with dual basis {ε j

: j = 1, . . . , n} such
that a can be written as p(e1ε

1, . . . , enε
n) where p(x1, . . . , xn) is a symmetric

polynomial.

Proposition 3.4. For any basis {ej } of V with dual basis {ε j
} for V ∗, the Einstein

sum ej ⊗ ε
j in V ⊗ V ∗ is GL(V )-invariant.

Suppose moreover that V is equipped with a nondegenerate symmetric bilinear
form g and that the underlying field has characteristic zero. Then every symmetric
element of C`(V ) ⊗̂ C`(V ∗)∼= C`(V × V ∗) is O(g)-invariant.

Proof. Identifying V ⊗ V ∗ with endomorphisms of V in the natural way, the action
of GL(V ) is the action by conjugation and ej ⊗ ε

j is the identity, which is invariant
under conjugation.

1We say that {ej } is g-orthonormal if g jk =±δ jk for each j, k.
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For the second part, over a field of characteristic zero the symmetric polynomials
are generated by power sum symmetric polynomials p(x1, . . . , xn)= xk

1 +· · ·+ xk
n ,

so it suffices to consider

p(e1ε
1, . . . , enε

n)= (e1ε
1)k + · · ·+ (enε

n)k

= (−1)k(k−1)/2((e1)
k(ε1)k + · · ·+ (en)

k(εn)k
)
.

When k is even, writing (ej )
k
= (e2

j )
k/2
= (g j j )

k/2 and similarly (ε j )k = (g j j )k/2,
we see that each term (ej )

k(ε j )k is 1 since g j j = g j j
=±1 for an orthonormal basis.

Thus p(e1ε
1, . . . , enε

n)= n(−1)k(k−1)/2, which is invariant.
Similarly when k is odd we get (ej )

k(ε j )k = ejε
j so

p(e1ε
1, . . . , enε

n)= (−1)k(k−1)/2(e1ε
1
+ · · ·+ enε

n).

As the sum ej ⊗ ε
j in V ⊗ V ∗ is invariant under GL(V ), it is in particular invariant

under O(g), and hence the sum ejε
j is O(g)-invariant in the Clifford algebra. �

Returning to our construction, the projection P is a symmetric element of the
Clifford algebra and hence is W-invariant by Proposition 3.4. It follows that S
carries a representation of W. The space L2(t) also carries a representation of W
given by the action of W on t and we equip L2(t) ⊗̂ S with the diagonal action
of W.

To verify that the representation ρ is W-equivariant it suffices to consider the
representations of C(T ) and C(T∨) separately. As the exponential map t→ T
is W-equivariant it is clear that the representation of C(T ) on L2(t) by pointwise
multiplication is W-equivariant.

For e2π i〈η,γ 〉
∈ C(T∨) we have w · (e2π i〈η,γ 〉) = e2π i〈w−1

·η,γ 〉
= e2π i〈η,w·γ 〉 thus

ρ(w · (e2π i〈η,γ 〉)) = Lw·γ ⊗ 1S = LwLγ Lw−1 ⊗ 1S . Thus the representation of
C(T∨) is also W-equivariant.

It remains to check that the operator Q0 is W-equivariant. By definition

Q0 =
∂

∂y j ⊗ ε
j
− 2π iy j

⊗ ej .

Now by Proposition 3.4 ∂
∂y j ⊗ ε

j
= ej ⊗ ε

j is a GL(t)-invariant element of t⊗ t∗

and so in particular it is W-invariant. Writing y j
= 〈ε j , y〉 the W-invariance of the

second term again follows from invariance of ej ⊗ ε
j.

Hence we conclude the following:

Theorem 3.5. The triple (L2(t) ⊗̂S, ρ, Q0) constructed above defines an element
Q of KKW (C(T∨) ⊗̂C(T ),C).

3C. The Kasparov product P ⊗C(T∨)Q. We will compute the Kasparov product
of the Poincaré line bundle P ∈ KKW (C,C(T ) ⊗̂ C(T∨)) with our inverse Q ∈
KKW(C(T∨)⊗̂C(T ),C), where the product is taken over C(T∨) (not C(T )⊗̂C(T∨)).
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Recall that P is given by the Kasparov triple (E, 1, 0), where E is the completion
of Cc(t) with the inner product

〈φ1, φ2〉(x, η)=
∑
α,β∈0

φ1(x −α)φ2(x −β)e2π i〈η,β−α〉

in C(T ) ⊗̂C(T∨). As above, Q is given by the triple (L2(t) ⊗̂S, ρ, Q0).
To form the Kasparov product we must take that tensor product of E with

L2(t) ⊗̂ S over C(T∨) and as the operator in the first triple is zero, the operator
required for the Kasparov product can be any connection for Q0.

We note that the representation ρ is the identity on S and hence

E ⊗̂C(T∨) (L2(t) ⊗̂S)= (E ⊗̂C(T∨) L2(t)) ⊗̂S.

Thus we can focus on identifying the tensor product E ⊗̂C(T∨) L2(t). By abuse of
notation we will also let ρ denote the representation of C(T ) ⊗̂C(T∨) on L2(t).

As we are taking the tensor product over C(T∨), not over C(T ) ⊗̂C(T∨), we
are forming the Hilbert module

(E ⊗̂C(T )) ⊗̂C(T )⊗̂C(T∨)⊗̂C(T ) (C(T ) ⊗̂ L2(t)),

however, since the algebra C(T ) is unital, it suffices to consider elementary tensors
of the form (φ⊗1)⊗(1⊗ξ). Where there is no risk of confusion we will abbreviate
these as φ⊗ ξ .

Let φ1, φ2 ∈ Cc(t) and let ξ1, ξ2 be elements of L2(t). Then

〈φ1⊗ ξ1, φ2⊗ ξ2〉 =
〈
1⊗ ξ1, (1⊗ ρ)(〈φ1, φ2〉⊗ 1)(1⊗ ξ2)

〉
.

The operator (1⊗ ρ)(〈φ1, φ2〉⊗ 1) corresponds to a field of operators

(1⊗ ρ)(〈φ1, φ2〉⊗ 1)(x)=
∑
α,β∈0

φ1(x −α)φ2(x −β)⊗ ρ(e2π i〈η,β−α〉
⊗ 1)

=

∑
α,β∈0

φ1(x −α)φ2(x −β)⊗ L∗αLβ

and so

〈φ1⊗ ξ1, φ2⊗ ξ2〉(x)=
∑
α,β∈0

φ1(x −α)φ2(x −β)〈Lαξ1, Lβξ2〉

=

〈∑
α∈0

φ1(x −α)Lαξ1,
∑
β∈0

φ2(x −β)Lβξ2

〉
.

We note that x 7→
∑

α∈0 φ1(x −α)Lαξ1 is a continuous 0-equivariant (and hence
bounded) function from t to L2(t). Let C(t, L2(t))0 denote the space of such func-
tions equipped with the C(T )-module structure of pointwise multiplication in the
first variable and give it the pointwise inner product 〈g1, g2〉(x)= 〈g1(x), g2(x)〉.
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We remark that equivariance implies this inner product is a 0-periodic function
on t.

The above calculation shows that E ⊗̂C(T∨) L2(t) is mapped isometrically into
C(t, L2(t))0 via the map

φ⊗ ξ 7→
∑
α∈0

φ(x −α)Lαξ.

Moreover this map is surjective. To see this, note that if φ is supported inside a
single fundamental domain then for x in that fundamental domain we obtain the
function φ(x)ξ . This is extended by equivariance to a function on t , and using
a partition of unity one can approximate an arbitrary element of C(t, L2(t))0 by
sums of functions of this form.

We now remark that C(t, L2(t))0 is in fact isomorphic to the Hilbert module
C(T, L2(t)) via a change of variables. Given g ∈C(t, L2(t))0, let h̃(x)= L−x g(x).
The 0-equivariance of g ensures that g(γ + x)= Lγ g(x), whence

h̃(γ + x)= L−x−γ g(γ + x)= L−x−γ Lγ g(x)= L−x g(x)= h̃(x).

As h̃ is a 0-periodic function from t to L2(t), we identify it via the exponential
map with the continuous function h from T to L2(t) such that h̃(x)= h(exp(x)).
Hence g 7→ h defines the isomorphism C(t, L2(t))0 ∼= C(T, L2(t)).

We now state the following theorem.

Theorem 3.6. There is an isomorphism from the Hilbert module E⊗̂C(T∨)(L2(t)⊗̂S)
to C(T, L2(t) ⊗̂S) given by the map

φ⊗ (ξ ⊗ s) 7→
∑
α∈0

φ(x −α)Lα−xξ ⊗ s.

The representation of C(T ) on L2(t) induces a representation, σ, of C(T ) on
C(T, L2(t) ⊗̂S) defined by

[σ( f )h](exp(x), y)= f (exp(x + y))h(exp(x), y).

Here the notation h(exp(x), y) denotes the value at the point y ∈ t of h(exp(x)) ∈
L2(t) ⊗̂S.

Proof. We recall that E ⊗̂C(T∨)(L2(t)⊗̂S) is isomorphic to (E ⊗̂C(T∨) L2(t))⊗̂S and
we have established that E ⊗̂C(T∨) L2(t)∼= C(T, L2(t)). This provides the claimed
isomorphism.

It remains to identify the representation. Given f ∈ C(T ) let f̃ (x)= f (exp(x))
denote the corresponding periodic function on t. By definition the representation
of C(T ) on E ⊗̂C(T∨) (L2(t) ⊗̂S) takes φ⊗ ξ ⊗ s to φ⊗ f̃ ξ ⊗ s. This is mapped
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under the isomorphism to the 0-periodic function on t whose value at x is∑
α∈0

φ(x −α)Lα−x( f̃ ξ)⊗ s ∈ L2(t) ⊗̂S.

Evaluating this element of L2(t) ⊗̂S at a point y ∈ t we have∑
α∈0

φ(x−α) f̃ (x−α+ y)ξ(x−α+ y)⊗s = f̃ (x+ y)
∑
α∈0

φ(x−α)[Lα−xξ ](y)⊗s

by 0-periodicity of f̃ . Thus σ( f ) pointwise multiplies the image of φ⊗ ξ ⊗ s in
C(T, L2(t) ⊗̂S) by f̃ (x + y)= f (exp(x + y)) as claimed. �

We now define an operator Q on C(T, L2(t) ⊗̂S) by

(Qh)(exp(x))= Q0(h(exp(x)))

for h ∈ C(T, L2(t) ⊗̂S).

Theorem 3.7. The unbounded operator Q is a connection for Q0 in the sense that
the bounded operator F = Q(1+ Q2)−

1
2 is a connection for F0 = Q0(1+ Q2

0)
−

1
2 ,

after making the identification of Hilbert modules as in Theorem 3.6.

Proof. Let Qx = (L x ⊗ 1S)Q0(L−x ⊗ 1S) and correspondingly define

Fx = Qx(1+ Q2
x)
−

1
2 = (L x ⊗ 1S)F0(L−x ⊗ 1S).

The commutators [L x ⊗ 1S, Q0] are bounded (the argument is the same as for
[Lγ ⊗ 1S, Q0] in Section 3B). It follows (in the spirit of Baaj and Julg [1983]) that
the commutators [L x ⊗ 1S, F0] are compact. Thus Fx − F0 is a compact operator
for all x ∈ t.

To show that F is a connection for F0 we must show that for φ ∈ E , the diagram

L2(t) ⊗̂S
F0

//

φ⊗

��

L2(t) ⊗̂S

φ⊗

��

E ⊗ L2(t) ⊗̂S

∼=

��

E ⊗ L2(t) ⊗̂S

∼=

��

C(T, L2(t) ⊗̂S)
F
// C(T, L2(t) ⊗̂S)

commutes modulo compact operators.
Following the diagram around the right-hand side we have

ξ ⊗ s 7→
∑
α∈0

φ(x −α)(Lα−x ⊗ 1S)F0(ξ ⊗ s)
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while following the left-hand side we have

F
[∑
α∈0

φ(x −α)(Lα−x ⊗ 1S)(ξ ⊗ s)
]
=

∑
α∈0

φ(x −α)F0(Lα−x ⊗ 1S)(ξ ⊗ s).

As [F0, Lα−x⊗1S] is a compact operator for each x and the sum is finite for each x ,
the difference between the two paths around the diagram is a function from T to
compact operators on L2(t) ⊗̂ S. It is thus a compact operator from the Hilbert
space L2(t) ⊗̂S to the Hilbert module C(T, L2(t) ⊗̂S) as required. �

Theorem 3.8. The Kasparov product P ⊗C(T∨)Q is the identity 1C(T ) in

KKW (C(T ),C(T )).

Proof. We define a homotopy of representations of C(T ) on C(T, L2(t) ⊗̂S) by

[σλ( f )h](exp(x), y)= f (exp(x + λy))h(exp(x), y)

and note that σ1=σ while σ0 is simply the representation of C(T ) on C(T, L2(t)⊗̂S)
by pointwise multiplication of functions on T. It is easy to see that these represen-
tations are W-equivariant.

Let f be a smooth function on T and let h ∈ C(T, L2(t) ⊗̂ S). Let f̃ (x) =
f (exp(x)) and let h̃(x, y)= h(exp(x), y). Then(
[Q, σλ( f )]h

)
(exp(x), y)

=

[
∂

∂y j (ε
j f̃ (x + λy)h̃(x, y))− 2π iy j ej f̃ (x + λy)h̃(x, y)

]
−

[
f̃ (x + λy)

∂

∂y j (ε
j h̃(x, y))− f̃ (x + λy)2π iy j ej h̃(x, y)

]
=

∂

∂y j ( f̃ (x + λy))(ε j h̃(x, y)).

For each λ the operator Q thus commutes with the representation σλ modulo
bounded operators on a dense subalgebra of C(T ). Hence for each λ(

C(T, L2(t) ⊗̂S), σλ, Q
)

defines an unbounded Kasparov triple.
This is true in particular for λ= 1 and thus (C(T, L2(t)⊗̂S), σ, Q) is a Kasparov

triple so, as the operator in the triple P is zero while Q is a connection for Q0, it
follows that P ⊗C(T∨)Q= (C(T, L2(t) ⊗̂S), σ, Q) in KKW (C(T ),C(T )).

Now applying the homotopy we have P ⊗C(T∨)Q= (C(T, L2(t) ⊗̂S), σ0, Q).
Since σ0 commutes exactly with the operator Q, the representation σ0 respects the
direct sum decomposition of C(T, L2(t)⊗̂S) as C(T, ker(Q0))⊕C(T, ker(Q0)

⊥).
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The operator Q is invertible on the second summand (and commutes with the
representation) and hence the corresponding Kasparov triple(

C(T, ker(Q0)
⊥), σ0|C(T,ker(Q0)⊥), Q|C(T,ker(Q0)⊥)

)
is zero in KK-theory.

We thus conclude that P ⊗C(T∨)Q= (C(T, ker(Q0)), σ0|C(T,ker(Q0)), 0). Since
ker Q0 is 1-dimensional (Theorem 3.3), the module C(T, ker(Q0)) is isomorphic
to C(T ) and the restriction of σ0 to this is the identity representation of C(T ) on
itself. Thus P ⊗C(T∨)Q= (C(T ), 1, 0)= 1C(T ). �

3D. The Kasparov product P ⊗C(T )Q. We begin by considering the dual picture,
which exchanges the roles of T and T∨. There exist elements

Q∨ ∈ KKW (C(T ) ⊗̂C(T∨),C) and P∨ ∈ KKW (C,C(T∨) ⊗̂C(T ))

for which the result of the previous section implies P∨ ⊗C(T ) Q∨ = 1C(T∨) in
KKW (C(T∨),C(T∨)).

We will show that there is an isomorphism

θ : C(T∨) ⊗̂C(T )→ C(T ) ⊗̂C(T∨)

such that Q= θ∗Q∨ and P = θ−1
∗

P∨. This will imply that

P ⊗C(T )Q= P∨⊗C(T )Q∨ = 1C(T∨) in KKW (C(T∨),C(T∨))

and hence will complete the proof of the Poincaré duality between C(T ) and C(T∨).
We recall that Q is represented by the (unbounded) Kasparov triple

(L2(t) ⊗̂S, ρ, Q0),

where S = C`(t× t∗)P , for P the projection P =
∏

j
1
2(1− iejε

j ) and

Q0 =
∂

∂y j ⊗ ε
j
− 2π iy j

⊗ ej .

For γ ∈ 0, χ ∈ 0∨ and correspondingly e2π i〈η,γ 〉 in C(T∨), e2π i〈χ,x〉 in C(T ), the
representation ρ of C(T∨) ⊗̂C(T ) is defined by

ρ(e2π i〈η,γ 〉)(ξ ⊗ s)= Lγ ξ ⊗ s, and ρ(e2π i〈χ,x〉)(ξ ⊗ s)= e2π i〈χ,x〉ξ ⊗ s.

By definition Q∨ is represented by the triple (L2(t∗)⊗̂S∨, ρ∨, Q∨0 ), where S∨=
C`(t∗× t)P∨, for P∨ the projection P∨ =

∏
j

1
2(1− iε j ej ) and

Q∨0 =
∂

∂η j
⊗ ej − 2π iη j ⊗ ε

j.
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For γ ∈ 0, χ ∈ 0∨ and correspondingly e2π i〈η,γ 〉 in C(T∨), e2π i〈χ,x〉 in C(T ), the
representation ρ∨ of C(T ) ⊗̂C(T∨) is now defined by

ρ∨(e2π i〈χ,x〉)(ξ∨⊗ s∨)= L∨χξ
∨
⊗ s∨,

ρ∨(e2π i〈η,γ 〉)(ξ∨⊗ s∨)= e2π i〈η,γ 〉ξ∨⊗ s∨.

Here L∨χ denotes the translation action of χ ∈ 0∨ on L2(t∗).
In our notation, ε j is again an orthonormal basis for t∗ and ej is an orthonormal

basis for t. We can canonically identify C`(t× t∗) with C`(t∗× t), and hence think
of both S and S∨ as subspaces of this algebra.

We can identify L2(t)with L2(t∗) via the Fourier transform: let F :L2(t)→L2(t∗)

denote the Fourier transform isomorphism

[Fξ ](η)=
∫
t
ξ(y)e2π i〈η,y〉 dy.

It is easy to see that this is W-equivariant.
To identify S with S∨, let u ∈ C`(t× t∗) be defined by u = ε1ε2

· · · εn when
n = dim(t) is even and u = e1e2 · · · en when n is odd.

Lemma 3.9. Conjugation by u defines a W-equivariant unitary isomorphism U :
S→ S∨. For a ∈ C`(t× t∗) (viewed as an operator on S by Clifford multiplication)
UaU∗ is Clifford multiplication by uau∗ on S∨ and in particular UejU

∗
= ej , while

Uε jU∗ =−ε j .

Proof. We first note that u respectively commutes and anticommutes with ej , ε
j

(there being respectively an even or odd number of terms in u which anticommute
with ej , ε

j ). It follows that u Pu∗ = P∨, hence conjugation by u maps S to S∨.
Denoting by π : CP → C the identification of CP with C, the inner product

on S is given by 〈s1, s2〉 = π(s∗1 s2) while the inner product on S∨ is given by
〈s∨1 , s∨2 〉 = π(u

∗(s∨1 )
∗s∨2 u). Thus

〈usu∗, s∨〉 = π(u∗(usu∗)∗s∨u)= π(s∗u∗s∨u)= 〈s, u∗s∨u〉

so U∗ is conjugation by u∗ which inverts U establishing that U is unitary.
We now check that U is W-equivariant. In the case that t is even-dimensional,

we note that identifying C`(t∗) with the exterior algebra of t∗ (as a W-vector space),
u corresponds to the volume form on t∗ so w · u = det(w)u. Similarly in the odd
dimensional case u corresponds to the volume form on t and again the action of w
on u is multiplication by the determinant. Thus

w ·U(s)= w · (usu∗)= (w · u)(w · s)(w · u∗)= det(w)2 u(w · s)u∗ = U(w · s)

since det(w)=±1.
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Finally for s∨ ∈ S∨ and a ∈ C`(t× t∗) we have

UaU∗s∨ = U(au∗s∨u)= uau∗s∨

and hence UejU
∗
= uej u

∗
= ej , Uε jU∗ = uε j u∗ =−ε j . �

Since F⊗U is a W-equivariant unitary isomorphism from L2(t)⊗̂S to L2(t∗)⊗̂S∨,
the triple (L2(t) ⊗̂S, ρ, Q0) representing Q is isomorphic to the Kasparov triple(

L2(t∗) ⊗̂S∨, (F ⊗U)ρ(F∗⊗U∗), (F ⊗ u)Q0(F∗⊗U∗)
)
.

Theorem 3.10. Let θ : C(T∨) ⊗̂C(T )→ C(T ) ⊗̂C(T∨) be defined by

θ(g⊗ f )= f ⊗ (g ◦ ζ ),

where ζ is the involution on T∨ defined by ζ(exp(η))= exp(−η). Then Q= θ∗Q∨

in KKW (C(T∨) ⊗̂C(T ),C).

Proof. We will show that ρ∨◦θ= (F⊗U)ρ(F∗⊗U∗) and (F⊗u)Q0(F∗⊗U∗)=Q∨0 .
We begin with the operator.

The operator Q0 is given by

∂

∂y j ⊗ ε
j
− 2π iy j

⊗ ej .

Conjugating the operator ∂
∂y j by the Fourier transform we obtain the multiplication

by 2π iη j , while conjugating −2π iy j by the Fourier transform we obtain the mul-
tiplication by −2π i

( i
2π

∂
∂η j

)
=

∂
∂η j

. Conjugation by U negates ε j and preserves ej
hence

(F ⊗ u)Q0(F∗⊗U∗)= 2π iη j ⊗ (−ε
j )+

∂

∂η j
⊗ ej = Q∨0 .

For the representation, ρ(e2π i〈χ,x〉) is multiplication by e2π i〈χ,x〉 on L2(t) (with
the identity on S) and conjugating by the Fourier transform we get the transla-
tion L∨χ , hence (F ⊗U)ρ(e2π i〈χ,x〉)(F∗⊗U∗)= ρ∨(e2π i〈χ,x〉). On the other hand
ρ(e2π i〈η,γ 〉) is the translation Lγ and Fourier transforming we get the multiplication
by e−2π i〈η,γ 〉. Thus (F ⊗U)ρ(e2π i〈η,γ 〉)(F∗⊗U∗)= ρ∨(e2π i〈−η,γ 〉).

We conclude that (F ⊗U)ρ(F∗⊗U∗)= ρ∨◦ θ as required. �

Theorem 3.11. The Kasparov product P ⊗C(T )Q is 1C(T∨) in the Kasparov group
KKW (C(T∨),C(T∨)).

Proof. We have P ⊗C(T∨)Q= 1C(T ) in KKW (C(T ),C(T )) by Theorem 3.8 while
P∨⊗C(T )Q∨= 1C(T∨) in KKW (C(T∨),C(T∨)) by Theorem 3.8 for the dual group.

By Theorem 3.10 we have Q∨ = (θ−1)∗Q, whence

1C(T∨) = P∨⊗C(T )Q∨ = (θ−1)∗P∨⊗C(T )Q.
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Let P ′ = (θ−1)∗P∨ in KKW (C,C(T ) ⊗̂C(T∨)). Then

P = P ⊗C(T∨) 1C(T∨) = P ⊗C(T∨) (P ′⊗C(T )Q).

By definition P ′⊗C(T )Q= (P ′⊗ 1C(T∨))⊗C(T )⊗C(T∨)
Q and hence

P = (P ⊗P ′)⊗
C(T∨)⊗̂C(T )

Q

by associativity of the Kasparov product. Here P ⊗P ′ is the “external” product
and lives in KKW (C,C(T ) ⊗̂C(T ) ⊗̂C(T∨) ⊗̂C(T∨)), with P appearing in the
first and last factors, and P ′ in the second and third. The product with Q is over
the second and last factors. Similarly

P ′ = P ′⊗C(T ) (P ⊗C(T∨)Q)= (P ′⊗P)⊗
C(T )⊗̂C(T∨)

Q,

where P ′ now appears as the first and last factors and the product with Q is over
the first and third factors. Up to reordering terms of the tensor product,

(P ⊗P ′)⊗
C(T∨)⊗̂C(T )

Q= (P ′⊗P)⊗
C(T )⊗̂C(T∨)

Q.

Thus (by commutativity of the external product) P = P ′ = (θ−1)∗P∨ and hence
P ⊗C(T )Q= 1C(T∨). �

Corollary 3.12. The elements

Q ∈ KKW (C(T∨) ⊗̂C(T ),C) and P ∈ KKW (C,C(T ) ⊗̂C(T∨))

exhibit a W-equivariant Poincaré duality between the algebras C(T ) and C(T∨).

4. Poincaré duality between C0(t)o (0o W ) and C0(t
∗)o (0∨o W )

4A. Descent of Poincaré duality. For W a group, a Poincaré duality between two
W-C∗-algebras A, B induces a natural family of isomorphisms

KKW (A ⊗̂ D1, D2)∼= KKW (D1, B ⊗̂ D2)

for W -C∗-algebras D1, D2. In other words the functor A⊗̂ is left-adjoint to B⊗̂ on
the KKW category when there is a Poincaré duality from A to B. (The symmetry
of Poincaré dualities means that B⊗̂ is also left-adjoint to A⊗̂ ). The element in
KKW (C, A⊗̂B) defining the Poincaré duality is precisely the unit of the adjunction,
while the counit is given by the element in KKW (B ⊗̂ A,C). This categorical view
of Poincaré duality appears in [Echterhoff et al. 2008; Emerson 2011; Emerson
and Meyer 2010].

Now let D1, D2 be C∗-algebras (without W -action). Let τ denote the trivial-
action functor from KK to KKW , i.e., τD1, τD2 are W-C∗-algebras with trivial



514 GRAHAM A. NIBLO, ROGER PLYMEN AND NICK WRIGHT

action of W. In the case that W is a finite group, a Poincaré duality yields isomor-
phisms

KK(AoW ⊗̂ D1, D2)∼= KKW (A ⊗̂ τD1, τD2)

∼= KKW (τD1, B ⊗̂ τD2)

∼= KK(D1, BoW ⊗̂ D2).

The first and last isomorphisms are the dual Green–Julg and Green–Julg isomor-
phisms respectively, and in categorical terms these amount to the fact that the τ
functor is (right and left) adjoint to the descent functor oW, see [Meyer 2008]. We
denote the unit and counit by α and β, for the left-adjunction from τ to oW, and
by α̂ and β̂ for the left adjunction from oW to τ .

Since this is natural AoW ⊗̂ is left-adjoint to BoW ⊗̂, hence there must exist a
unit and a counit providing this descended Poincaré duality. We will identify these
elements explicitly.

Theorem 4.1. Let a ∈ KKW (B ⊗̂ A,C) and b ∈ KKW (C, A ⊗̂ B) define a W-
equivariant Poincaré duality between W-C∗-algebras A, B, with W finite. Then

ã= Tr(aoW )βC ∈ KK(BoW ⊗̂ AoW,C),

b̃= αC(bo W )1 ∈ KK(C, AoW ⊗̂ BoW )

define a Poincaré duality such that the following diagram commutes:

KK∗W (A,C)
b⊗̂A —

//

dual Green–Julg ∼=
��

KK∗W (C, B)

Green–Julg ∼=
��

KK∗(AoW,C)
b̃⊗̂AoW —

// KK∗(C, BoW )

Here 1 ∈ KK
(
(A ⊗̂ B)oW, AoW ⊗̂ BoW

)
is given by the diagonal inclusion

of W into W ×W and Tr ∈ KK
(
BoW ⊗̂ AoW, (B ⊗̂ A)oW

)
is dual to this: We

define a positive linear map Tr : (B ⊗̂ A)o (W ×W )→ (B ⊗̂ A)o W by

Tr : (a⊗ b)[w1, w2] 7→

{
(a⊗ b)[w1] if w1 = w2,

0 otherwise.

This is a (B ⊗̂ A)oW -module map and we equip the algebra (B ⊗̂ A)o (W ×W )

with inner product in (B ⊗̂ A)o W defined by〈
(b⊗a)[w1, w2], (b′⊗a′)[w′1, w

′

2]
〉
Tr=Tr

(
[w−1

1 , w−1
2 ](b

∗
⊗a∗)(b′⊗a′)[w′1, w

′

2]
)
.

The completion of this as a Hilbert module, equipped with the left multiplication
representation of (B ⊗̂ A)o (W ×W ) provides the required element

Tr ∈ KK
(
(B ⊗̂ A)o (W ×W ), (B ⊗̂ A)o W

)
.
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To identify the unit and counit b̃ and ã one proceeds as follows. The unit b̃
is the image of the identity 1AoW under the isomorphism KK(AoW, AoW ) ∼=

KK(C, BoW ⊗̂ AoW ). This is the composition of the dual Green–Julg, equi-
variant Poincaré duality, and Green–Julg maps. The first two yield the Poincaré
dual of the unit α̂A. One must then descend this and pair with the unit αC. Hence
b̃= αC(b(̂αA⊗ 1B))oW = αC(boW )((̂αA⊗ 1B)oW ) by naturality of descent. It
is not hard to identify (̂αA⊗ 1B)oW as the element 1.

Similarly the counit ã is the image of the identity 1BoW under the isomorphism
KK(BoW, BoW ) ∼= KK(AoW ⊗̂ BoW,C). This is the composition of the
Green–Julg, equivariant Poincaré duality, and dual Green–Julg maps, hence ã is
obtained by taking the Poincaré dual of the counit βB , descending, and applying
the counit β̂C. We have ã= ((β̂B⊗1A)a)oW )β̂C = ((β̂B⊗1A)oW )(aoW )β̂C. A
change of variables identifies (β̂B ⊗ 1A)oW with Tr.

Remark 4.2. Given a Kasparov triple (E, 1, D) representing b we can describe
explicitly a triple (̃E, α̃C, D⊗ 1) for b̃.

The module Ẽ is given by descending E and inflating the action of W to W ×W.
Explicitly Ẽ is the completion of E ⊗̂C[W ×W ] with respect to the inner product〈

ξ ⊗[w1, w2], ξ
′
⊗[w′1, w

′

2]
〉
= (w−1

1 , w−1
2 ) · 〈ξ, ξ ′〉[w−1

1 w′1, w
−1
2 w′2].

The operator is simply D⊗ 1 on Ẽ .
The representation α̃C of C on Ẽ takes 1 to the projection corresponding to

the trivial representation of W, where W acts diagonally on Ẽ — the unit αC ∈

KK(C, (τC)oW ) is given by inclusion of C as the trivial representation in C[W ] =
(τC)oW.

4B. Proof of Theorem 1.1. The theorem follows from Theorem 4.1 by consider-
ation of the following diagram:

KK∗W (C(T ),C)
P⊗̂C(T ) —

//

∼= Morita
��

KK∗W (C,C(T∨))

∼= Morita
��

KK∗W (C0(t)o0,C)
b⊗̂C0(t)o0 —

//

∼= dual Green–Julg
��

KK∗W (C,C0(t
∗)o0∨)

∼= Green–Julg
��

KK∗(C0(t)o (0o W ),C)
b̃⊗̂C0(t)o(0oW ) —

// KK∗(C,C0(t
∗)o (0∨o W ))

Composition of P with the Morita equivalences and of Q with the inverse
Morita equivalences, yields a W-equivariant Poincaré duality between C0(t)o0
and C0(t

∗)o0∨ inducing the middle arrow.
To determine the element b explicitly, recall that P is given by the Hilbert mod-

ule of functions σ : t× t∗→ C which are 0∨ periodic in the second variable and
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satisfy
σ(γ + x, η)= e2π i〈η,γ 〉σ(x, η).

This module is equipped with the inner product

〈σ1, σ2〉(x, η)= σ1(x, η)σ2(x, η).

The Morita equivalence from C(T ) to C0(t)o0 is given by the completion of
Cc(t) with respect to the inner product

〈φ1, φ2〉 =
∑
γ∈0

φ1 (γ ·φ2)[γ ],

and similarly for C(T∨).
It follows that b is given by the Hilbert module completion of Cc(t× t∗) with

respect to the inner product

〈θ1, θ2〉 =
∑

(γ,χ)∈0×0∨

θ1((γ, χ) · θ2)e2π i〈η,γ 〉
[(γ, χ)].

Applying Theorem 4.1 yields the bottom arrow. Here we identify

(C0(t)o0)o W with C0(t)o (0o W )

and
(C0(t

∗)o0∨)o W ) with C0(t
∗)o (0∨o W ).

As noted in Remark 4.2 the element b̃ has Hilbert module obtained by descending
the module and inflating the W action to W ×W.

In conclusion we obtain the module by completing Cc(t× t∗)o (W ×W ) with
respect to the inner product

〈θ [w1, w2], θ
′
[w′1, w

′

2]〉 = (w1, w2)
−1
· 〈θ, θ ′〉[w−1

1 w′1, w
−1
2 w′2],

where 〈θ, θ ′〉 is the inner product on Cc(t× t∗) defined above which is equipped
with the representation of C given by the trivial projection in C[W ], where W acts
diagonally on all factors.

4C. Proof of Theorem 1.2. The result follows from Theorem 4.1 by the consider-
ation of the following diagram:

KK∗W (C(T ),C)
P⊗̂C(T ) —

//

∼=Fourier–Pontryagin
��

KK∗W (C,C(T∨))

∼= Fourier–Pontryagin
��

KK∗W (C
∗(0∨),C)

b⊗̂C∗(0∨) —
//

∼=dual Green–Julg
��

KK∗W (C,C∗(0))

∼= Green–Julg
��

KK∗(C∗(0∨o W ),C)
b̃⊗̂C∗(0∨oW ) —

// KK∗(C,C∗(0o W ))
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Composition of P and of Q with the Fourier–Pontryagin isomorphisms yields a W-
equivariant Poincaré duality between C∗(0∨) and C∗(0) inducing the middle ar-
row. Applying Theorem 4.1 yields the bottom arrow. Here we identify C∗(0∨)oW
with C∗(0∨o W ) and C∗(0)o W with C∗(0o W ).

4D. The connection with the Baum–Connes assembly map. The Poincaré dual-
ity isomorphism appearing in Theorem 1.1

KK∗
(
C0(t)o (0o W ),C

)
→ KK∗

(
C,C0(t

∗)o (0∨o W )
)

can be identified with the Baum–Connes assembly map for the group 0o W in a
sense made explicit by the following diagram. Note that while we have suppressed
the indices, these are degree-0 maps of Z2-graded groups.

KK0oW (C0(t),C) KK(C,C∗(0oW ))

KK(C0(t)o(0oW ),C) KK(C,C0(t
∗)o(0∨oW ))

KK(C0(t)o(0oW ),C∗(0oW )) KK(C,C0(t
∗)o(0∨oW )⊗C∗(0oW ))

Baum–Connes

dual Green–Julg Morita equivalence

Poincaré duality

×β̂C

P. d.

×β̂C

The curved arrow is the descent map. Note that since 0o W is amenable, the
full and reduced C∗-algebras agree. The counit β̂C ∈ KK((τC)o0oW ),C) =

KK(C∗(0oW ),C) is given by the trivial representation of the group 0o W. This
element has the effect of collapsing the coefficients C∗(0o W ).

The upper and lower Poincaré dualities in the diagram are both provided by
Theorem 1.1, in the lower case with the coefficients C∗(0oW ), and the element in-
ducing the map from K-homology to K-theory is described in detail in Section 4B.

Clearly the lower square commutes by associativity of the Kasparov product,
while the left-hand triangle commutes by definition. Therefore, to show that the
Baum–Connes assembly map corresponds to the upper Poincaré duality it suffices
to show that the outer pentagon is commutative.

By definition the assembly map is the composition of descent with a Kasparov
product. We denote by AC0(t) the relevant element of KK(C,C0(t)o0oW ), which
is given by the Hilbert module obtained by completing Cc(t) with respect to the
inner product

〈 f, f ′〉 =
∑
γ,w

f̄ ((γw) · f )[γw].
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We thus have the following diagram, where the bottom arrow is our Poincaré
duality:

KK0oW (C0(t),C) KK(C,C∗(0o W ))

KK(C,C0(t
∗)o (0∨o W ))

KK(C0(t)o (0o W ),C∗(0o W )) KK(C,C0(t
∗)o (0∨o W )⊗C∗(0o W ))

Baum–Connes

descent

Morita equivalence	
AC0(t)×

/	 ×β̂C

The upper triangle commutes by definition of the assembly map, however, it should
be noted that the lower quadrilateral does not commute: the two directions around
the quadrilateral collapse different algebras. It is thus not entirely obvious that the
outer pentagon itself commutes. However we will show that the quadrilateral does
commute on the image of the descent map so that the outer pentagon commutes as
required.

We start with a Kasparov cycle (H, ρ, T ) ∈ KK0oW (C0(t),C). Note that since
the action of 0o W on t is proper we may, without loss of generality, take T to be
exactly invariant and of finite propagation. Now we descend to get (E, ρ̂, T ⊗ 1),
where E = H ⊗̂C∗0o W and ρ̂ is a representation defined by

ρ̂( f [g])= ρ( f )π(g)⊗[g],

(π denotes the representation of 0o W on H ).
Applying our Poincaré duality, given by the completion of Cc(t× t∗)o (0×0∨)

described in Section 4B, along with the representation of C given by the trivial
representation of W, we obtain a Kasparov triple as follows:

Let Hc = ρ(Cc(t))H . The module in our triple is the completion of

Hc ⊗̂Cc(t
∗) ⊗̂C[(0o W )×W ]

with respect to the inner product〈
ξ ⊗ f [(g, w)], ξ ′⊗ f ′[(g′, w′)]

〉
=

∑
δ∈0

∑
χ∈0∨

〈ξ, δ · ξ ′〉[g−1δg′]
〈
f [w], [χ ]e2π i〈η,δ〉 f ′[w′]

〉
,

where the last inner product in the formula is taken in the algebra C0(t
∗)o(0∨oW )

viewed as a module over itself. The representation of C is once again given by the
trivial projection in C[W ], where W acts diagonally on Hc, Cc(t

∗), 0o W and W
itself. The operator is given by T on Hc and by the identity on the other factors.
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This is a well-defined adjointable operator as we took T to be exactly invariant
under the action of 0o W and of finite propagation.

Applying the element β̂C reduces this to a module over C0(t
∗)o (0∨ o W ),

where the inner product is〈
ξ ⊗ f [(g, w)], ξ ′⊗ f ′[(g′, w′)]

〉
=

∑
δ∈0

∑
χ∈0∨

〈ξ, δ · ξ ′〉
〈
f [w], [χ ]e2π i〈η,δ〉 f ′[w′]

〉
.

Note that as this no longer depends on g and g′, vectors of the form ξ ⊗ f [(g1, w)]

and ξ ⊗ f [(g2, w)] are identified. Thus the module, which we will denote E1,
is really a completion of Hc ⊗̂ Cc(t

∗) ⊗̂ C[W ]. Once again the representation
is provided by the trivial representation of W, and we denote the corresponding
projection on E1 by pW . The operator on E1 is given by T ⊗ 1⊗ 1.

We now trace the other route around the diagram. As before, starting with a
Kasparov triple (H, ρ, T ) we obtain the descended triple (E, ρ̂, T ⊗ 1). We next
apply the element AC0(t) which is given by the completion of Cc(t) described earlier
in this section. We obtain the completion of Hc ⊗̂C[0o W ] with respect to the
inner product

〈ξ [g], ξ ′[g′]〉 =
∑

h∈0oW

〈ξ, h · ξ ′〉[g−1hg′].

The representation of C is given by the identity while the operator, once again, is
given by T on Hc and the identity on the other factor.

The Hilbert module realising the descended Morita equivalence is given by com-
pleting the module Cc(t

∗)o W with respect to the inner product

〈 f [w], f ′[w′]〉 =
∑
χ∈0∨

[w−1
] f (χ · f ′)[χw′]

in C0(t
∗)o W.

The representation of C∗(0o W ) on this module is given by the representation
of 0oW , where ((γw′)· f [w])(η)= e2π i〈η,γ 〉(w′ · f )(η)[w′w]. Hence, applying the
Morita equivalence we obtain a Kasparov triple where the module is the completion,
which we denote by E2, of Hc ⊗̂C0(t

∗) ⊗̂C[W ] with respect to the inner product〈
ξ ⊗ f [w], ξ ′⊗ f ′[w′]

〉
=

∑
δ∈0

∑
u∈W

∑
χ∈0∨

〈ξ, (δu) · ξ ′〉
〈
f [w], e2π i〈η,δ〉

[χu] f ′[w′]
〉
,

the representation of C is given by the identity and the operator is given by T on
Hc and the identity elsewhere.

To identify this triple with the Kasparov element obtained via the first route,
we note that the module E2 is isomorphic to the range of the projection pW on E1.
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Indeed,〈
pw(ξ ⊗ f [w]), pw(ξ ′⊗ f ′[w′])

〉
E1
=

1
|W |

〈
ξ ⊗ f [w], ξ ′⊗ f ′[w′]

〉
E2
.

This completes the proof.

5. Langlands duality and K-theory

In this section we will consider the K-theory of the affine and extended affine Weyl
groups of a compact connected semisimple Lie group.

As remarked in the introduction an extended affine Weyl group and its Langlands
dual (W ′a)

∨ need not be isomorphic. For example the extended affine Weyl groups
of PSU3 and its Langlands dual SU3 are nonisomorphic. However their group
C∗-algebras have the same K-theory, see [Niblo et al. 2016].

In this section we will show that this is not a coincidence, indeed passing to the
Langlands dual always rationally preserves the K-theory for the extended affine
Weyl groups. In particular, where the extended affine Weyl group of the dual of G
agrees with the affine Weyl group of G (as for PSU3) the K-theory for the affine
and extended affine Weyl groups of G agrees up to rational isomorphism.

Corollary 1.3. Let G be a compact connected semisimple Lie group and G∨ its
Langlands dual, with W ′a , (W ′a)

∨ the corresponding extended affine Weyl groups.
Then there is a rational isomorphism

K∗(C∗((W ′a)
∨))∼= K∗(C∗(W ′a)).

Proof. The proof combines the universal coefficient theorem with our Poincaré
duality as follows.

We start by writing W ′a = 0 o W and (W ′a)
∨
= 0∨ o W. By the Green–Julg

theorem and Fourier–Pontryagin duality,

K∗(C∗(W ′a)
∨)∼= K W

∗
(C∗(0∨)∼= K W

∗
(C(T ))= K ∗W (T ). (5.1)

Applying the universal coefficient theorem, we have the exact sequence

0→ Ext1Z(K
∗−1
W (T ),Z)→ K W

∗
(T )→ Hom(K ∗W (T ),Z)→ 0.

In particular the torsion-free part of K W
∗
(T ) agrees with the torsion-free part of

K ∗W (T ) therefore rationally we have

K ∗W (T )∼= K W
∗
(T ). (5.2)

As in Theorem 1.2, we can identify K W
∗
(T )= K ∗W (C(T )) with K ∗(C∗(W ′a)

∨).
The theorem now follows by applying our Poincaré duality from Theorem 1.2 to
obtain

K ∗(C∗(W ′a)
∨)∼= K∗(C∗(W ′a)). �
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In a subsequent paper, [Niblo et al. 2016] we construct the admissible duals
for the extended affine Weyl groups of all Lie groups of type An , exhibiting these
spaces as varieties which decompose as a union of spaces indexed by the partitions
of n+1. Furthermore we show that the rational isomorphism given above is induced
by a homotopy equivalence between the varieties which respects the decomposition.
The special case of SU(n) itself was considered by Solleveld [2007].

For the affine Weyl groups we have the following:

Corollary 1.4. Let W ′a be the extended affine Weyl group of G, and let Wa,W∨a be
the affine Weyl groups of G and its Langlands dual G∨. If G is of adjoint type then
rationally

K∗(C∗(W∨a ))∼= K∗(C∗(W ′a)).

If additionally G is of type An, Dn, E6, E7, E8, F4,G2 then rationally

K∗(C∗(Wa))∼= K∗(C∗(W ′a)).

Proof. If G is a compact connected semisimple Lie group of adjoint type then its
Langlands dual G∨ is simply connected, so (W ′a)

∨
=W∨a .

In the case that G is additionally of type An, Dn, E6, E7, E8, F4,G2, the group
G∨ is the universal cover of G and hence Wa =W∨a . �
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Geometric obstructions
for Fredholm boundary conditions

for manifolds with corners

Paulo Carrillo Rouse and Jean-Marie Lescure

For every connected manifold with corners there is a homology theory called
conormal homology, defined in terms of faces and orientation of their conormal
bundle and whose cycles correspond geometrically to corner cycles. Its Euler
characteristic (over the rationals, dimension of the total even space minus the
dimension of the total odd space), χcn := χ0−χ1, is given by the alternating sum
of the number of (open) faces of a given codimension.

The main result of the present paper is that for a compact connected manifold
with corners X , given as a finite product of manifolds with corners of codimen-
sion less or equal to three, we have that:

1) If X satisfies the Fredholm perturbation property (every elliptic pseudodif-
ferential b-operator on X can be perturbed by a b-regularizing operator so it
becomes Fredholm) then the even Euler corner character of X vanishes, i.e.,
χ0(X)= 0.

2) If the even periodic conormal homology group vanishes, i.e., H pcn
0 (X) = 0,

then X satisfies the stably homotopic Fredholm perturbation property (i.e., every
elliptic pseudodifferential b-operator on X satisfies the same named property up
to stable homotopy among elliptic operators).

3) If H pcn
0 (X) is torsion free and if the even Euler corner character of X vanishes,

i.e., χ0(X) = 0, then X satisfies the stably homotopic Fredholm perturbation
property. For example, for every finite product of manifolds with corners of
codimension at most two the conormal homology groups are torsion free.

The main theorem behind the above result is the explicit computation in
terms of conormal homology of the K-theory groups of the algebra Kb(X) of
b-compact operators for X as above. Our computation unifies the known cases
of codimension zero (smooth manifolds) and of codimension one (smooth man-
ifolds with boundary).

Both authors were partially supported by ANR-14-CE25-0012-01. An important part of this work
started during a stay of the first author at the Max Planck Institut for Mathematics at Bonn. This
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1. Introduction

On a smooth compact manifold, ellipticity of (classical) pseudodifferential opera-
tors is equivalent to Fredholmness, and the vanishing of the Fredholm index of an
elliptic pseudodifferential operator is equivalent to its invertibility after perturba-
tion by a regularizing operator. In the case of a smooth manifold with boundary,
not every elliptic operator is Fredholm and it has been known since Atiyah and
Bott that there exist obstructions to the existence of local boundary conditions
in order to upgrade an elliptic operator into a Fredholm boundary value problem.
Nonetheless, if one moves to nonlocal boundary conditions, obstructions disappear:
for instance, not every elliptic pseudodifferential b-operator is Fredholm but it can
be perturbed with a regularizing operator to become Fredholm. This nontrivial
fact, which goes back to Atiyah, Patodi and Singer [Atiyah et al. 1975], can also
be obtained from the vanishing of a boundary analytic index (see [Melrose and
Piazza 1997a; 1997b; Monthubert and Nistor 2012], and below). In fact, in this
case the boundary analytic index takes values in the K0-theory group of the algebra
of regularizing operators and this K-theory group is easily seen to vanish. It is
known that obstructions to the existence of perturbations of elliptic operators into
Fredholm ones reappear in the case of manifolds with corners of arbitrary codimen-
sion [Bunke 2009; Nazaikinskii et al. 2009] (this includes for instance many useful
domains in Euclidean spaces). In this paper we will show that the global topology
and geometry of the corners and the way the corners form cycles contribute in a
fundamental way to a primary obstruction to Fredholm boundary conditions. As
we will see, the answer passes by the computation of some K-theory groups. We
explain now with more detail the problem and the content of this paper.

Using K-theoretical tools for solving index problems was the main asset in the
series of papers by Atiyah and Singer [1968a; 1968b] in which they introduce
and prove several index formulas for smooth compact manifolds. In the case of
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manifolds with boundary, K-theory is still useful to understand the vanishing of
the obstruction to the existence of perturbations of elliptic operators into Fredholm
ones (even if K-theory is not essential in the computation of analytical indices
[Atiyah et al. 1975]), and a fortiori to understand this obstruction in the case of
families of manifolds with boundary [Melrose and Piazza 1997a; 1997b; Melrose
and Rochon 2006]. For manifolds with corners, Bunke [2009] has delivered for
Dirac type operators a complete study of the obstruction, which lives in the ho-
mology of a complex associated with the faces of the manifold. As we shall
see later in the present work, this homology also appears as the E2-term of the
spectral sequence computing the K-group that contains the obstruction we define
for general elliptic b-pseudodifferential operators. Nazaikinskii, Savin and Sternin
[Nazaikinskii et al. 2008b; 2009] also use K-theory to express the obstruction for
their pseudodifferential calculus on manifolds with corners and stratified spaces.

Let us briefly recall the framework in which we are going to work. The algebra
of pseudodifferential operators 9∗b (X) associated to any manifold with corners X
is defined in [Melrose and Piazza 1992]: it generalizes the case of manifolds with
boundary treated in [Melrose 1993] (see also [Hörmander 1985, Section 18.3]).
The elements in this algebra are called b-pseudodifferential operators,1 the sub-
script b identifies these operators as obtained by “microlocalization” of the Lie al-
gebra of C∞ vector fields on X tangent to the boundary. This Lie algebra of vector
fields can be explicitly obtained as sections of the so called b-tangent bundle bT X
(compressed tangent bundle that we will recall below). The b-pseudodifferential
calculus has the classic and expected properties. In particular there is a principal
symbol map

σb :9
m
b (X)→ S[m](bT ∗X).

Ellipticity has the usual meaning, namely invertibility of the principal symbol.
Moreover (see the discussion below and Theorem 2.15 in [Melrose and Piazza
1992]), an operator is elliptic if and only2 if it has a quasiinverse modulo 9−∞b (X).
Now, 9−∞b (X) contains compact operators, but also noncompact ones (as soon as
∂X 6= ∅), and compactness is characterized there by the vanishing of a suitable
indicial map [loc. cit., p. 8]. Elliptic b-pseudodifferential operators, being invert-
ible modulo compact operators (and hence Fredholm),3 are usually said to be fully
elliptic.

1To simplify we discuss only the case of scalar operators, the passage to operators acting on
sections of vector bundles is done in the classic way.

2Notice that this remark implies that to an elliptic b-pseudodifferential operator one can associate
an “index” in the algebraic K-theory group K0(9

−∞

b (X)) (the classic construction of quasiinverses).
3See page 8 in [Melrose and Piazza 1992] for a characterization of Fredholm operators in terms

of an indicial map or [Loya 2005, Theorem 2.3] for the proof that Fredholm⇐⇒ fully elliptic.
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Now, by the properties of the b-calculus, 90
b (X) is included in the algebra of

bounded operators on L2(X), where the L2 structure is provided by some b-metric
in the interior of X . We denote by Kb(X) the norm completion of the subalge-
bra 9−∞b (X). This C∗-algebra fits in a short exact sequence of C∗-algebras of the
form

0 // K(X)
i0
// Kb(X)

r
// Kb(∂X) // 0, (1.1)

where K(X) is the algebra of compact operators in L2(X). In order to study Fred-
holm problems and analytic index problems one has to understand the K-theory of
the above short exact sequence.

To better explain how these K-theory groups enter into the study of Fredholm
perturbation properties and in order to enounce our first main results we need to
settle some definitions.

Analytic and Boundary analytic Index morphism. Given an elliptic b-pseudo-
differential D, the classic construction of parametrices adapts to give a K-theory-
valued index in K0(Kb(X)) that only depends on its principal symbol class [σb(D)]∈
K 0

top(
bT ∗X). In more precise terms, the short exact sequence

0 // Kb(X) // 90
b (X)

σb
// C(bS∗X) // 0 (1.2)

gives rise to a K-theory index morphism K1(C(bS∗X))→ K0(Kb(X)) that factors
in a canonical way by an index morphism

K 0
top(

bT ∗X)
Inda

X
// K0(Kb(X)) (1.3)

called the Analytic Index morphism of X . By composing the Analytic index with
the morphism induced by the restriction to the boundary we have a morphism

K 0
top(

bT ∗X)
Ind∂X
// K0(Kb(∂X)) (1.4)

called the Boundary analytic index morphism of X. In fact

r : K0(Kb(X))→ K0(Kb(∂X))

is an isomorphism if ∂X 6= ∅, Proposition 5.40, and so the two indices above
are essentially the same. In other words we completely understand the six term
short exact sequence in K-theory associated to the sequence (1.1). Notice that in
particular there is no contribution of the Fredholm index in the K0-analytic index.

To state the next theorem we need to define the Fredholm perturbation property
and its stably homotopic version.

Definition 1.5. Let D ∈9m
b (X) be elliptic. We say that D satisfies
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• the Fredholm perturbation property (FP) if there is R ∈9−∞b (X) such that
D+ R is fully elliptic,

• the stably homotopic Fredholm perturbation property (HFP) if there is a fully
elliptic operator D′ with [σb(D′)] = [σb(D)] ∈ K 0

top(
bT ∗X).

We also say that X satisfies the Fredholm perturbation property or the stably
homotopic Fredholm perturbation property if any elliptic b-operator on X satisfies
(FP) or (HFP) respectively.

Property (FP) is of course stronger than property (HFP). Nistor [2003] char-
acterized (FP) in terms of the vanishing of an index in some particular cases.
Nazaikinskii, Savin and Sternin [2008b] characterized (HFP) for arbitrary man-
ifolds with corners using an index map associated with their dual manifold con-
struction. We now rephrase the result of [Nazaikinskii et al. 2008b] and we give a
new proof in terms of deformation groupoids.

Theorem 1.6. Let D be an elliptic b-pseudodifferential operator on a compact
manifold with corners X. Then D satisfies (HFP) if and only if Ind∂X ([σb(D)])= 0.
In particular if D satisfies (FP) then its boundary analytic index vanishes.

The above results fit exactly with the K-theory vs index theory program of
Atiyah and Singer, and in that sense it is not completely unexpected. Now, in order
to give a full characterization of the Fredholm perturbation property one is first led
to compute or understand the K-theory groups for the algebras (1.1) preferably in
terms of the geometry and topology of the manifold with corners. As it happens,
the only previously known cases are

• the K-theory of the compact operators K(X), giving K0(K(X)) = Z and
K1(K(X))= 0, which is of course essential for classic index theory purposes;

• the K-theory of Kb(X) for a smooth manifold with boundary, giving

K0(Kb(X))= 0 and K1(Kb(X))= Z1−p

with p the number of boundary components, which has the nontrivial con-
sequence that any elliptic b-operator on a manifold with boundary can be
endowed with Fredholm boundary conditions.

Computation of the K-theory groups in terms of corner cycles. In this paper we
explicitly compute the above K-theory groups for any finite product of manifolds
with corners of codimension ≤ 3 in terms of corner cycles (explanation below). Our
computations and results are based on a geometric interpretation of the algebras
of b-pseudodifferential operators in terms of Lie groupoids. We explain and recall
the basic facts on groupoids and the b-pseudodifferential calculus in the first two
sections. Besides being extremely useful to compute K-theory groups, the groupoid
approach we propose turns out to be very powerful for computing index morphisms
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and relating several indices. Indeed, the relation between the different indices for
manifolds with corners was only partially understood for some examples. Let us
explain this in detail. Let X be a manifold with corners. Let Fp = Fp(X) be the
set of faces (connected, without boundary) of X of codimension p. To compute
K∗(Kb(X)), we use an increasing filtration of X given by the open subspaces:

X p =
⋃

k≤p, f ∈Fk

f. (1.7)

We have X0 = X
◦

and Xd = X . We extend if necessary the filtration over Z by
setting Xk = ∅ if k < 0 and Xk = X if k > d. The C∗-algebra of Kb(X) inherits
an increasing filtration by C∗-ideals (for full details see Section 5):

K(L2(X
◦

))= A0 ⊂ A1 ⊂ · · · Ad = A = Kb(X). (1.8)

The spectral sequence (E∗
∗,∗(Kb(X)), d∗

∗,∗) associated with this filtration can be
used, in principle, to have a better understanding of these K-theory groups. This
filtration was already considered by Melrose and Nistor [1998] and their main
theorem is the expression of the first differential [loc. cit., Theorem 9]. In trying to
figure out an expression for the differentials of this spectral sequence in all degrees,
we found a differential Z-module (C(X), δpcn) constructed in a very simple way
out of the set of open connected faces of the given manifold with (embedded)
corners X . Roughly speaking, the Z-module C(X) is generated by open connected
faces provided with a coorientation (that is, an orientation of their conormal bun-
dles in X ), while the differential map δpcn associates to a given cooriented face
of codimension p, the sum of cooriented faces of codimension p− 2k− 1, k ≥ 0,
containing it in their closures. This gives a well defined differential module for two
reasons. The first one is that once a labeling of the boundary hyperfaces is chosen,
the coorientation of a given face induces coorientations of the faces containing it
in their closures, proving that the module map δpcn is well defined. The second
one is that the jumps by 2k+ 1, k ≥ 0, in the codimension guarantee the relation
δpcn
◦ δpcn

= 0. We call the homology of (C(X), δpcn) periodic conormal homology,
and denote it by H pcn(X). Note that it is Z2-graded by sorting faces by even and
odd codimension.

Actually, the differential δpcn retracts onto the simpler differential map δ where
one stops at −1 in the codimension, that is, δ maps a given cooriented face of
codimension p to the sum of cooriented faces of codimension p− 1 containing
it in their closures. We call conormal homology and denote it by H cn(X) the ho-
mology of (C(X), δ): this is a Z-graded homology and the resulting Z2-graduation
coincides with the periodic conormal groups. For full details about conormal ho-
mology see Section 4 and the Appendix. It is worthwhile to note that the conormal
complex (C(X), δ) already appears as the complex of (connected) faces in [Bunke
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2009]. The complex considered by Bunke is made of mutually compatible ori-
ented faces and the consistency of these orientations induces orientations of the
conormal spaces of the faces. There is then an obvious isomorphism between both
complexes. Recall that Bunke proved that the obstruction for the existence of a
boundary taming of a Dirac type operator on X is given by an explicit class in this
homology, which also implicitly appears in the work of Melrose and Nistor [1998],
through the quasiisomorphism that we prove here (Corollary 5.35). It is thus all but
a surprise that conormal homology emerges from the computation of K∗(Kb(X))
and we conclude this paragraph by recording that there is a natural isomorphism

H cn
p (X)' E2

p,0(Kb(X)). (1.9)

Our main K-theory computation can now be stated:

Theorem 5.43. Let X = 5i X i be a finite product of manifolds with corners of
codimension less or equal to three. There are natural isomorphisms

H pcn
0 (X)⊗Z Q

φX−→∼=
K0(Kb(X)))⊗Z Q,

H pcn
1 (X)⊗Z Q

φX−→∼=
K1(Kb(X))⊗Z Q.

(1.10)

In the case where X contains a factor of codimension at most two or X is of codi-
mension three, the result holds even without tensoring by Q.

We insist on the fact that (periodic) conormal homology groups are easily com-
putable, because the underlying chain complexes as well as the differential maps
are obtained from elementary and explicit ingredients. To continue let us introduce
the Corner characters.

Definition 1.11 (corner characters). Let X be a manifold with corners. We define
the even conormal character of X as the finite sum

χ0(X)= dimQ H pcn
0 (X)⊗Z Q. (1.12)

Similarly, we define the odd conormal character of X as the finite sum

χ1(X)= dimQ H pcn
1 (X)⊗Z Q. (1.13)

We can consider as well

χ(X)= χ0(X)−χ1(X), (1.14)

then by definition

χ(X)= 1− #F1+ #F2− · · ·+ (−1)d#Fd . (1.15)

We refer to the integer χ(X) as the Euler corner character of X .
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In particular one can rewrite Theorem 5.43 to have, for X as stated,

K0(Kb(X))⊗Z Q∼=Qχ0(X), K1(Kb(X))⊗Z Q∼=Qχ1(X), (1.16)

and in terms of the corner character,

χ(X)= rank(K0(Kb(X))⊗Z Q)− rank(K1(Kb(X))⊗Z Q). (1.17)

Or, in the case where X is a finite product of manifolds with corners of codimension
at most 2, we even have

K0(Kb(X))' Zχ0(X), and K1(Kb(X))' Zχ1(X) (1.18)

and also χcn(X)= rank
(
K0(Kb(X))

)
− rank

(
K1(Kb(X))

)
.

We can finally state the following primary obstruction to the Fredholm pertur-
bation theorem in terms of corner characters and corner cycles:

Theorem 6.9. Let X be a compact manifold with corners of codimension greater
than or equal to one. If X is a finite product of manifolds with corners of codimen-
sion less than or equal to three we have that:

(1) If X satisfies the Fredholm perturbation property then the even Euler corner
character of X vanishes, i.e., χ0(X)= 0.

(2) If the even periodic conormal homology group vanishes, i.e., H pcn
0 (X) = 0,

then X satisfies the stably homotopic Fredholm perturbation property.

(3) If H pcn
0 (X) is torsion free and if the even Euler corner character of X vanishes,

i.e., χ0(X)= 0, then X satisfies the stably homotopic Fredholm perturbation
property.

We believe that the results above hold beyond the case of finite products of
manifolds with corners of codimension ≤ 3. On one side conormal homology can
be defined and computed in all generality and, in all examples we have, the isomor-
phisms above still hold. The problem in general is to compute beyond the third
differential of the naturally associated spectral sequence for the K-theory groups for
manifolds with corners of codimension greater or equal to four. This is technically a
very hard task and explicit interesting examples (not products) become rare. In fact,
for any codimension, the corresponding spectral sequence in periodic conormal ho-
mology collapses at the second page as shown in the Appendix. We believe it does
collapse as well for K-theory because of the results above. Another problem is re-
lated with the possible torsion of the conormal homology groups. Indeed, we prove
in Theorem 4.22 that for a finite product of manifolds with corners of codimension
at most two these groups are torsion free and that the odd group for a three codi-
mensional manifold with corners is torsion free as well. We think that in general
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these groups are torsion free but the combinatorics become very hard and one needs
a good way to deal with all these data. We will discuss all these topics elsewhere.

Partial results in the direction of this paper were obtained by several authors;
we have already mentioned the seminal works of Melrose and Nistor [1998] and
of Nazaikinskii et al. [2008a; 2008b]. In particular Melrose and Nistor start the
computation of the K-groups of the algebra of zero order b-operators and some
particular cases of boundary analytic index morphisms as defined here (together
with some topological formulas for them). Also, Nistor [2003] solves the Fredholm
perturbation problem for manifolds with corners of the form a canonical simplex
times a smooth manifold. Let us mention also the work of Monthubert and Nistor
[2012] in which they construct a classifying space associated to a manifold with
corners whose K-theory can be in principle used to compute the analytic index
above. We were very much inspired by all these works. Bunke [2009] focuses on
the obstruction of Fredholm perturbations for Dirac operators on manifolds with
corners, for which he gives a precise answer in terms of conormal homology, while
we focus on the receptacle for these obstructions: our results are then less precise
for a given operator, but address generic b-pseudodifferential operators.

The theorems above show the importance and interest in computing the bound-
ary analytic and the Fredholm indices associated to a manifold with corners and if
possible, in a unified and in a topological and geometrical way. Using K-theory as
above, for the case of a smooth compact connected manifold, the computation we
are mentioning is none other than the Atiyah and Singer [1968a] index theorem.
As we mentioned already, for manifolds with boundary, Atiyah, Patodi and Singer
gave a formula for the Fredholm index of a Dirac type operator. In fact, with the
groupoid approach to index theory, several authors have contributed to the now
realizable idea that one can actually use these tools to have a nice K-theoretical
framework and to actually compute more general index theorems as in the classic
smooth case. For example, in our common work with Monthubert, [Carrillo Rouse
et al. 2014], we give a topological formula for the Fredholm index morphism for
manifolds with boundary that will allow us in a sequel paper to compare with the
APS formula and obtain geometric information on the eta invariant. In the second
paper of this series we will generalize our results of [Carrillo Rouse et al. 2014] for
general manifolds with corners by giving explicit topological index computations
for the indices appearing above.

2. Melrose b-calculus for manifolds with corners via groupoids

2A. Preliminaries on groupoids, K-theory C∗-algebras and pseudodifferential
calculus. All the material in this section is well known and by now classic for the
people working in groupoid C∗-algebras, K-theory and index theory. For more de-
tails and references see [Debord and Lescure 2010; Nistor et al. 1999; Monthubert
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and Pierrot 1997; Lescure et al. 2017; Hilsum and Skandalis 1983; Renault 1980;
Anantharaman-Delaroche and Renault 2000].

Groupoids. Let us start with the definition.

Definition 2.1. A groupoid consists of the following data: two sets G and G(0), and
maps

(1) s, r : G→ G(0) called the source and range (or target) maps,

(2) m : G(2)→ G called the product map, where

G(2) = {(γ, η) ∈ G×G : s(γ )= r(η)},

such that there exist two maps, u : G(0)→ G (the unit map) and i : G→ G (the
inverse map), which, if we denote m(γ, η) = γ · η, u(x) = x and i(γ ) = γ−1,
satisfy the following properties:

(i) r(γ · η)= r(γ ) and s(γ · η)= s(η).

(ii) γ · (η · δ)= (γ · η) · δ for all γ, η, δ ∈ G when this is possible.

(iii) γ · x = γ and x · η = η for all γ, η ∈ G with s(γ )= x and r(η)= x .

(iv) γ · γ−1
= u(r(γ )) and γ−1

· γ = u(s(γ )) for all γ ∈ G.

Generally, we denote a groupoid by G⇒ G(0). A morphism f from a groupoid
H⇒H(0) to a groupoid G⇒G(0) is given by a map f from G to H which preserves
the groupoid structure, i.e., f commutes with the source, target, unit, and inverse
maps, and respects the groupoid product in the sense that f (h1 ·h2)= f (h1) · f (h2)

for any (h1, h2) ∈H(2).

For A, B subsets of G(0) we use the notation GB
A for the subset

{γ ∈ G : s(γ ) ∈ A, r(γ ) ∈ B}.

We will also need the following definition:

Definition 2.2 (saturated subgroupoids). Let G⇒ M be a groupoid.

(1) A subset A ⊂ M of the units is said to be saturated by G (or only saturated if
the context is clear enough) if it is a union of orbits of G.

(2) A subgroupoid

G1

r
��

s
��

� � ⊂ // G

r
��

s
��

M1
� � ⊂ // M

(2.3)

is a saturated subgroupoid if its set of units M1 ⊂ M is saturated by G.
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A groupoid can be endowed with a structure of topological space, or manifold,
for instance. In the case when G and G(0) are smooth manifolds, and s, r,m, u are
smooth maps (with s and r submersions), then G is called a Lie groupoid. In the
case of manifolds with boundary, or with corners, this notion can be generalized
to that of continuous families groupoids (see [Paterson 1999]) or as Lie groupoids
if one considers the category of smooth manifolds with corners.

C∗-algebras. To any Lie groupoid G⇒ G(0) one has several C∗-algebra comple-
tions for the ∗-convolution algebra C∞c (G). Since in this paper all the groupoids
considered are amenable, we will be denoting by C∗(G) the maximal and hence
reduced C∗-algebra of G. From now on, all groupoids will be assumed amenable.

In the sequel we will use the following two results which hold in the generality
of locally compact groupoids equipped with Haar systems.

(1) Let G1 and G2 be two locally compact groupoids equipped with Haar systems.
Then for the locally compact groupoid G1×G2 we have

C∗(G1×G2)∼= C∗(G1)⊗C∗(G2). (2.4)

(2) Let G⇒G(0) a locally compact groupoid with Haar system µ. Let U ⊂G(0) be
a saturated open subset. Then F := G(0) \U is a closed saturated subset. The
Haar system µ can be restricted to the restriction groupoids GU := GU

U ⇒U
and GF := GF

F ⇒ F , and we have the following short exact sequence of C∗-
algebras:

0 // C∗(GU )
i
// C∗(G) r

// C∗(GF ) // 0, (2.5)

where i : Cc(GU ) → Cc(G) is the extension of functions by zero and r :
Cc(G)→ Cc(GF ) is the restriction of functions.

K-theory. We will be considering the K-theory groups of theC∗-algebra of a groupoid.
For space purposes we will be denoting these groups by

K ∗(G) := K∗(C∗(G)). (2.6)

We will use the classic properties of the K-theory functor, mainly its homotopy
invariance and the six term exact sequence associated to a short exact sequence.
Whenever the groupoid in question is a space X we will use the notation

K ∗top(X) := K∗(C0(X)). (2.7)

to indicate that in this case this group is indeed isomorphic to the topological K-
theory group.
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9DO calculus for groupoids. A pseudodifferential operator on a Lie groupoid (or
more generally a continuous family groupoid) G is a family of pseudodifferential
operators on the fibers of G (which are smooth manifolds without boundary), the
family being equivariant under the natural action of G.

Compactly supported pseudodifferential operators form an algebra, denoted by
9∞(G). The algebra of order-0 pseudodifferential operators can be completed into
a C∗-algebra, 90(G). There exists a symbol map, σ , whose kernel is C∗(G). This
gives rise to the following exact sequence:

0→ C∗(G)→90(G)→ C0(S∗(G))→ 0,

where S∗(G) is the cosphere bundle of the Lie algebroid of G.
In the general context of index theory on groupoids, there is an analytic index

which can be defined in two ways. The first way, which is classical, is to consider
the boundary map of the 6-terms exact sequence in K-theory induced by the short
exact sequence above:

inda : K1(C0(S∗(G)))→ K0(C∗(G)).

Actually, an alternative is to define it through the tangent groupoid of Connes,
which was originally defined for the groupoid of a smooth manifold and later ex-
tended to the case of continuous family groupoids [Monthubert and Pierrot 1997;
Lauter et al. 2000]. The tangent groupoid of a Lie groupoid G⇒G(0) is the groupoid

Gtan
= A(G)

⊔
G× (0, 1]⇒ G(0)×[0, 1],

where A(G) = TG(0)G/T G(0) is the Lie algebroid of G. The groupoid Gtan has a
smooth structure given by the deformation to the normal cone construction, see for
example [Carrillo Rouse 2008] for a survey.

Using the evaluation maps, one has two K-theory morphisms,

e0 : K0(C∗(Gtan))→ K 0(A∗G),

which is an isomorphism (since K∗(C∗(G× (0, 1]))= 0), and

e1 : K∗(C0(Gtan))→ K0(C∗(G)).

The analytic index can be defined as

inda = e1 ◦ e−1
0 : K

0(A∗G)→ K0(C∗(G)),

modulo the surjection K1(C0(S∗(G))→ K 0(A∗G).
See [Monthubert and Pierrot 1997; Nistor et al. 1999; Monthubert 2003; Lauter

et al. 2000; Vassout 2006] for a detailed presentation of pseudodifferential calculus
on groupoids.
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2B. Melrose b-calculus for manifolds with corners via the b-groupoid. We start
by defining the manifolds with corners we will be using in the entire paper.

A manifold with corners is a Hausdorff space covered by compatible coordinate
charts with coordinate functions modeled in the spaces

Rn
k := [0,+∞)

k
×Rn−k

for fixed n and possibly variable k.

Definition 2.8. A manifold with embedded corners X is a Hausdorff topological
space endowed with a subalgebra C∞(X) ∈ C0(X) satisfying the following condi-
tions:

(1) There is a smooth manifold X̃ and a map ι : X→ X̃ such that

ι∗(C∞(X̃))= C∞(X).

(2) There is a finite family of functions ρi ∈ C∞(X̃), called the defining functions
of the hyperfaces, such that

ι(X)=
⋂
i∈I

{ρi ≥ 0}.

(3) For any J ⊂ I ,

dxρi (x) are linearly independent in T ∗x X̃ for all x ∈ FJ :=
⋂

i∈J {ρi = 0}.

Terminology. In this paper we will only be considering manifolds with embedded
corners. We will refer to them simply as manifolds with corners. We will also as-
sume our manifolds to be connected. More general manifold with corners deserve
attention but as we will see in further papers it will be more simple to consider them
as stratified pseudomanifolds and desingularize them as manifolds with embedded
corners with an iterated fibration structure.

Given a compact manifold with corners X , Melrose4 [1993] constructed the
algebra 9∗b (X) of b-pseudodifferential operators. The elements in this algebra
are called b-pseudodifferential operators; the subscript b identifies these operators
as obtained by “microlocalization” of the Lie algebra of C∞ vector fields on X
tangent to the boundary. This Lie algebra of vector fields can be explicitly ob-
tained as sections of the so called b-tangent bundle bT X (the compressed tangent
bundle that will appear below as the Lie algebroid of an explicit Lie groupoid). The
b-pseudodifferential calculus developed by Melrose has the classic and expected
properties. In particular there is a principal symbol map

σb :9
m
b (X)→ S[m](bT ∗X).

4For full details in the case with corners see the paper of Melrose and Piazza [1992].
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Ellipticity has the usual meaning, namely invertibility of the principal symbol.
Moreover (see the discussion below Theorem 2.15 in [Melrose and Piazza 1992]),
an operator is elliptic if and only5 if it has a quasiinverse modulo 9−∞b (X). Now,
the operators in 9−∞b (X) are not all compact (unless the topological boundary
∂X = ∅) but they contain a subalgebra consisting of compact operators (those
for which certain indicial map is zero [loc. cit., p. 8]). Hence, among elliptic b-
pseudodifferential operators one has those for which the quasiinverse is actually
modulo compact operators and hence Fredholm (again, see [loc. cit., p. 8] for
a characterization of Fredholm operators in terms of an indicial map). These b-
elliptic operators are called fully elliptic operators.

Now, as for every 0-order b-pseudodifferential operator [loc. cit., (2.16)], the
operators in 9−∞b (X) extend to bounded operators on L2(X) and hence if we
consider its completion as bounded operators one obtains an algebra denoted in
this paper by Kb(X) that fits in a short exact sequence of C∗-algebras of the form

0 // K(X)
i0
// Kb(X)

r
// Kb(∂X) // 0, (2.9)

where K(X) is the algebra of compact operators in L2(X).
Let X be a compact manifold with embedded corners, so by definition we are

assuming there is a smooth compact manifold (of the same dimension) X̃ with X ⊂
X̃ and ρ1, . . . , ρn defining functions of the faces. Monthubert [2003] constructed
a Lie groupoid (called the puff groupoid) associated to any decoupage (X̃ , (ρi ));
it has the following expression as a Lie subgroupoid of X̃ × X̃ ×Rk :

G(X̃ , (ρi ))=
{
(x, y, λ1, . . . , λn) ∈ X̃ × X̃ ×Rn

: ρi (x)= eλiρi (y)
}
. (2.10)

The puff groupoid is not s-connected; we denote by Gc(X̃ , (ρi )) its s-connected
component.

Definition 2.11 (the b-groupoid). The b-groupoid 0b(X) of X is by definition the
restriction to X of the s-connected puff groupoid (2.10) considered above, that is

0b(X) := Gc(X̃ , (ρi ))|X ⇒ X. (2.12)

The b-groupoid was introduced by B. Monthubert in order to give a groupoid
description for the Melrose’s algebra of b-pseudodifferential operators. We sum-
marize below the main properties we will be using of this groupoid:

Theorem 2.13 [Monthubert 2003]. Let X be a manifold with corners, as above.
We have that:

(1) 0b(X) is a C0,∞-amenable groupoid.

5Notice that this remark implies that to a b-pseudodifferential operator one can associate an “in-
dex” in the algebraic K-theory group K0(9

−∞

b (X)) (the classic construction of quasiinverses).
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(2) X has Lie algebroid A(0b(X))= bT X , the b-tangent bundle of Melrose.

(3) The C∗-algebra of X (reduced or maximal is the same since we have amenabil-
ity) coincides with the algebra of b-compact operators. The canonical isomor-
phism

C∗(0b(X))∼= Kb(X) (2.14)

is given as usual by the Schwartz kernel theorem.

(4) The pseudodifferential calculus of 0b(X) coincides with compactly supported
b-calculus of Melrose.

Remark 2.15. To simplify the exposition, in the present paper we only discuss the
case of scalar operators. The case of operators acting on sections of vector bundles
is treated classically by considering bundles of homomorphisms.

3. Boundary analytic and Fredholm indices for manifolds with corners:
relations and Fredholm perturbation characterization

We will now introduce the several index morphisms we will be using, mainly the
analytic and the Fredholm index. In all this section, X denotes a compact and
connected manifold with embedded corners.

3A. Analytic and boundary analytic index morphisms. Any elliptic b-pseudo-
differential D has an analytical index Indan(D) given by

Indan(D)= I ([σb(D)]1) ∈ K0(Kb(X)),

where I is the connecting homomorphism in K-theory of the exact sequence

0 // Kb(X) // 90
b (X)

σb
// C(bS∗X) // 0, (3.1)

and [σb(D)]1 is the class in K1(C(bS∗X)) of the principal symbol σb(D) of D.
Alternatively, we can express Ind(D) using the adiabatic deformation groupoid

of 0b(X) and the class in K0 of the same symbol, namely

[σb(D)] = δ([σb(D)]1) ∈ K0(C0(
bT ∗X)), (3.2)

where δ is the connecting homomorphism of the exact sequence relating the vector
and sphere bundles:

0 // C0(
bT ∗X) // C0(

bB∗X) // C(bS∗X) // 0. (3.3)

Indeed, consider the exact sequence

0 // C∗(0b(X)× (0, 1]) // C∗(0tan
b (X))

r0
// C∗(bT X)∼= C0(

bT ∗X) // 0, (3.4)
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in which the ideal is K-contractible and set

Inda
X = r1 ◦ r−1

0 : K
0
top(

bT ∗X)→ K0(Kb(X)), (3.5)

where r1 : K0
(
C∗(0tan

b (X))
)
→ K0

(
C∗(0b(X))

)
is induced by the restriction mor-

phism to t = 1. Applying a mapping cone argument to the exact sequence (3.1)
gives a commutative diagram

K1(C(bS∗X))

δ
''

I
// K0(Kb(X))

K 0
top(

bT ∗X)

Inda
X

77

(3.6)

Therefore we get, as announced:

Indan(D)= Inda
X ([σb(D)]). (3.7)

The map Inda
X will be called the analytic index morphism of X . A closely related

homomorphism is the boundary analytic index morphism, in which the restriction
to X ×{1} is replaced by the one to ∂X ×{1}, that is, we set

Ind∂X = r∂ ◦ r−1
0 : K0(C0(

bT ∗X))→ K0(C∗(0b(X)|∂X )), (3.8)

where r∂ is induced by the homomorphism C∗(0tan
b (X))→ C∗(0b(X))|∂X . We

have of course
Ind∂X = r1,∂ ◦ Inda

X (3.9)

if r1,∂ denotes the map induced by the homomorphism C∗(0b(X))→C∗(0b(X)|∂X ).

3B. Fredholm index morphism. In general, elliptic b-operators on X are not Fred-
holm. Indeed, to construct an inverse of a b-operator modulo compact terms, we
have to invert not only the principal symbol, but also all the family of boundary
symbols. One way to summarize this situation is to introduce the algebra of full,
or joint, symbols. Let H be the set of closed boundary hyperfaces of X , and set

AF =

{(
a, (qH )H∈H

)
∈ C∞(bS∗X)×

∏
H∈H

90(0b(X)|H ) :

∀H ∈H, a|H = σb(qH )

}
. (3.10)

The full symbol map:

σF :9
0(0b(X)) 3 P 7→

(
σb(P), (P|H )H∈H

)
∈AF (3.11)

extends to the C∗-closures of the algebras and the assertion about the invertibility
modulo compact operators amounts to the exactness of the sequence [Lauter et al.
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2000]:

0 // K(X) // 90(0b(X))
σF
// AF // 0 (3.12)

Definition 3.13 (full ellipticity). An operator D ∈ 90(0b(X)) is said to be fully
elliptic if σF (D) is invertible.

We then recall the following result of Loya [2005] (the statement also appears in
[Melrose and Piazza 1992]). Remember that b-Sobolev spaces H s

b (X) are defined
using b-metrics and b-operators map H m

b (X) to H s−m
b (X) continuously for every s.

Theorem 3.14 [Loya 2005, Theorem 2.3]. An operator D ∈90
b (X) is fully elliptic

if and only if it is Fredholm on H s
b (X) for some s (and then for any s, with Fredholm

index independent of s).

For a given fully elliptic operator D, we denote by IndFred(D) its Fredholm
index. We are going to express this number in terms of K-theory and clarify the re-
lationship between the analytical index and full ellipticity on X using deformation
groupoids. Let us start with the tangent groupoid

0b(X)tan
:= (Gc(X̃ , (ρi ))

tan)|X×[0,1]=Tb Xt(0b(X)×(0, 1])⇒ X×[0, 1]. (3.15)

Now we introduce the two following saturated subspaces of X ×[0, 1]:

XF := X×[0, 1]\∂X×{1} and X∂ := XF \X
◦

×(0, 1]= X∪∂X×[0, 1). (3.16)

The Fredholm b-groupoid and the noncommutative tangent space of X are defined
by

0b(X)Fred
:= 0b(X)tan

|XF and Tnc X := 0b(X)Fred
|X∂ (3.17)

respectively. They are obviously KK-equivalent, as one sees using the exact se-
quence

0 // C∗(X
◦

× X
◦

× (0, 1]) // C∗(0b(X)Fred)
rF
// C∗(Tnc X) // 0 (3.18)

whose ideal is K-contractible. We then define the Fredholm index morphism by

IndX
F = (r1)∗ ◦ (rF )

−1
∗
: K 0(Tnc X)→ K 0(X

◦

× X
◦

)' Z. (3.19)

Following [Debord et al. 2015, Definition 10.4], we denote by FE(X) the group
of order-0 fully elliptic operators modulo stable homotopy. Then the vocabulary
above is justified by:

Proposition 3.20. There exists a group isomorphism

σnc : FE(X)→ K0(C∗(Tnc X)) (3.21)
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such that
r0([σnc(D)])= [σb(D)] ∈ K0(C0(

bT ∗X)),

IndX
F ([σnc(D)])= IndFred(D),

(3.22)

where r0 comes from the natural restriction map C∗(Tnc X)→ C0(
bT ∗X).

This is proved by the method leading to [Savin 2005, Theorem 4; Debord et al.
2015, Theorem 10.6] in exactly the same way. Also, this homotopy classification
appears in [Nazaikinskii et al. 2008b], in which the K-homology of a suitable dual
manifold is used instead of the K-theory of the noncommutative tangent space.
Previous related results appeared in [Lauter et al. 2000] for differential operators
and using different algebras to classify their symbols.

The construction of the various index maps above is summarized into the com-
mutative diagram:

K 0(0F
b )

iF
//

e1
zz

K 0(0tan
b )

r∂
//

e1

||

K 0(0b|∂)

id
zz

��

K 0(X
◦

× X
◦

)
i0

// K 0(0b)
rb

// K 0(0b|∂)

��

K 1(0b|∂)

OO

K 1(0tan
b )

e1

||

r∂
oo K 1(0F

b )
oo

e1
zz

K 1(0b|∂)

∂1

OO

zz

id

K 1(0b)rb
oo K 1(X

◦

× X
◦

)
i0

oo

3C. Fredholm perturbation property. We are ready to define the Fredholm per-
turbation property [Nistor 2003] and its stably homotopic version.

Definition 3.23. Let D ∈9m
b (X) be elliptic. We say that D satisfies:

• the Fredholm perturbation property (FP) if there is R ∈9−∞b (X) such that
D+ R is fully elliptic.

• the stably homotopic Fredholm perturbation property (HFP) if there is a fully
elliptic operator D′ with [σb(D′)] = [σb(D)] ∈ K0(C∗(bT X)).

We also say that X satisfies the (stably homotopic) Fredholm perturbation prop-
erty if any elliptic b-operator on X satisfies ((H)FP).

Property (FP) is of course stronger than property (HFP). Nistor [2003] char-
acterized (FP) in terms of the vanishing of an index in some particular cases.
Nazaikinskii et al. [2008b] characterized (HFP) for arbitrary manifolds with cor-
ners using an index map associated with their dual manifold construction. We now
rephrase the result of [Nazaikinskii et al. 2008b] in terms of deformation groupoids.
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Theorem 3.24. Let D be an elliptic b-pseudodifferential operator on a compact
manifold with corners X. Then D satisfies (HFP) if and only if Ind∂([σb(D)])= 0.
In particular if D satisfies (FP) then its analytic indicial index vanishes.

Proof. Note that the Fredholm and the tangent groupoids are related by the exact
sequence

0 // C∗(0Fred
b (X))

iF
// C∗(0tan

b (X))
r∂
// C∗(0b(X)∂X ) // 0. (3.25)

Then Proposition 3.20, together with this exact sequence and the commutative
diagram:

K0(C∗(0F
b ))

iF
��

'

rF

// K0(C∗(Tnc X))

r0

��

K0(C∗(0tan
b ))

'

r0
// K0(C∗(bT X))

(3.26)

yields the result. �

Loosely speaking, this theorem tells us that the K-theory of 0b(X)∂X , or equiv-
alently the one of 0b(X) as we shall see later, is the receptacle for the obstruction
to Fredholmness of elliptic symbols in the b-calculus. This is why we now focus
on the understanding of these K-theory groups. If the result is well known in
codimension less or equal to 1, the general case is far from understood. Meanwhile,
we will also clarify the equivalent role played by 0b(X) and 0b(X)∂X .

4. The conormal homology of a manifold with corners

In all this section, X is a manifold with embedded corners of codimension d , whose
connected hyperfaces H1, . . . , HN are provided with defining functions r1, . . . , rN .

4A. Definition of the homology. The one form e j = dr j trivializes the conor-
mal bundle of H j for any 1 ≤ j ≤ N . By convention, p-tuples of integers I =
(i1, . . . , i p) ∈ Np are always labeled so that 1 ≤ i1 < · · · < i p ≤ N . Let I be a
p-tuple, set

HI = r−1
I ({0})= Hi1 ∩ · · · ∩ Hi p , (4.1)

and denote by c(I ) the set of open connected faces of codimension p included
in HI . Also, we denote by eI the exterior product

eI = ei1 · ei2 · · · · · ei p . (4.2)

Let f be a face of codimension p and I the p-tuple such that f ∈ c(I ). The
conormal bundle N( f ) of f has a global basis given by the sections e j , j ∈ I , and
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its orientations are identified with ±eI . For any integer 0≤ p ≤ d, we denote by
C p(X) the free Z-module generated by

{ f ⊗ ε : f ∈ Fp, ε is an orientation of N( f )}. (4.3)

Let f ∈ Fp, ε f an orientation of N( f ) and g ∈ Fp−1 such that f ⊂ ḡ. The face
f is characterized in ḡ by the vanishing of a defining function ri(g, f ) . Then the
contraction ei(g, f ) y ε f is an orientation of N(g). Recall that the contraction y is
defined by

ei y eI =

{
0 if i 6∈ I,
(−1) j−1eI\{i} if i is the j-th coordinate of I.

(4.4)

We then define δp : C p(X)→ C p−1(X) by

δp( f ⊗ ε f )=
∑

g∈Fp−1,
f⊂ḡ

g⊗ ei(g, f ) y ε f . (4.5)

It is not hard to check directly that (C∗(X), δ∗) is a differential complex. Actu-
ally, δ∗ is the component of degree −1 of another natural differential map δpcn

=∑
k≥0 δ

2k+1, which eventually produces a quasiisomorphic differential complex.
Details are provided in the Appendix.

We define the conormal homology of X as the homology of (C∗(X), δ∗), and
we write

H cn
p (X) := Hp(C∗(X), δ∗). (4.6)

This homology was first considered in [Bunke 2009], in a slightly different but
equivalent way. Also, the graduation of the conormal homology into even and odd
degree, called here periodic conormal homology, will be used and we denote

H pcn
0 (X)=⊕p≥0 H cn

2p(X) and H pcn
1 (X)=⊕p≥0 H cn

2p+1(X). (4.7)

4B. Examples. The determination of the groups H cn
∗
(X) is completely elementary

in all concrete cases. In the following examples, it is understood that faces f arise
with the orientation given by eI if f ∈ c(I ).

Example 4.8. • Assume that X has no boundary. Then H pcn
0 (X)= H cn

0 (X)'Z,
H pcn

1 (X)= 0.

• Assume that X has a boundary with n connected components. Then H pcn
0 (X)=

0 and H pcn
1 (X)= H cn

1 (X)'Zn−1. More precisely, if we set F1={ f1, . . . , fn}

then { f1− f2, f2− f3, . . . , fn−1− fn} provides a basis of ker δ1.

• Assume that X has codimension 2 and that ∂X is connected. Then H pcn
0 (X)=

H cn
2 (X)= ker δ2'Zk , where all nonnegative integers k can arise. For instance,

consider the unit closed ball B in R3, cut k+ 1 small disjoint disks out of its
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boundary and glue two copies of such spaces along the pairs of cut out disks.
We get a space X satisfying the statement: the boundaries s0, . . . , sk of the
original disks provide a basis of F2 and the family s0− s j , 1≤ j ≤ k a basis
of ker δ2. Finally, [0,+∞)2 provides an example with k = 0.

• Consider the cube X = [0, 1]3.

(1) We have H pcn
0 (X)= 0 and H pcn

1 (X)= H cn
3 (X)' Z.

(2) Remove a small open cube into the interior of X and call the new space Y .
Then

H pcn
0 (Y )= 0 and H pcn

1 (Y )= H cn
3 (Y )⊕ H cn

1 (Y )' Z2
⊕Z.

(3) Remove a small open ball from the interior of X and call the new space
Z . Then

H pcn
0 (Z)= 0 and H pcn

1 (Y )= H cn
3 (Y )⊕ H cn

1 (Y )' Z⊕Z.

4C. Long exact sequence in conormal homology. We define a filtration of X by
open submanifolds with corners by setting:

Xm =
⋃

f ∈Fk , k≤m

f, 0≤ m ≤ d. (4.9)

This leads to differential complexes (C∗(Xm), δ) for 0≤ m ≤ d . We can also filter
the differential complex (C∗(X), δ) by the codimension of faces:

Fm(C∗(X))=
m⊕

k=0

Ck(X). (4.10)

There is an obvious identification C∗(Xm) ' Fm(C∗(X)) and we thus consider
(C∗(Xm), δ) as a subcomplex of (C∗(X), δ), with quotient complex denoted by
(C∗(X, Xm), δ). The quotient module is also naturally embedded in C∗(X):

C∗(X, Xm)= C∗(X)/C∗(Xm)'

d⊕
k=m+1

Ck(X)⊂ C∗(X). (4.11)

The embedding, denoted by ρ, is a section of the quotient map. The short exact
sequence:

0 // C∗(Xm) // C∗(X) // C∗(X, Xm) // 0 (4.12)

induces a long exact sequence in conormal homology:

· · ·
∂p+1
// H cn

p (Xm) // H cn
p (X) // H cn

p (X, Xm)
∂p
// H cn

p−1(Xm) // · · · (4.13)

and we need to make precise the connecting homomorphism.
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Proposition 4.14. Let [c] ∈ H cn
p (X, Xm). Then

∂p[c] = [δ(ρ(c))]. (4.15)

Proof. Since c is by assumption a cycle in (C∗(X, Xm), δ), the chain ρ(c) has a
boundary made of faces contained in Xm . The result follows. �

Remarks 4.16. • We can replace X by Xl and quotient the exact sequence (4.12)
by C∗(Xq) for any integers l,m, q such that 0≤ q ≤m ≤ l ≤ d . This leads to long
exact sequences:

···
∂
// H cn

p (Xm,Xq) // H cn
p (Xl ,Xq) // H pcn

p (Xl ,Xm)
∂
// H pcn

p−1(Xm,Xq) // ··· (4.17)

whose connecting homomorphisms are again given by (4.15).

• If we split the conormal homology into even and odd periodic groups, then the
long exact sequence (4.13) becomes a six-term exact sequence:

H pcn
0 (Xm) // H pcn

0 (X) // H pcn
0 (X, Xm)

∂0

��

H pcn
1 (X, Xm)

∂1

OO

H pcn
1 (X)oo H pcn

1 (Xm)oo

(4.18)

where ∂0, ∂1 are given by the direct sum in even/odd degrees of the maps ∂∗ of
Proposition 4.14.

• We can replace Xm in the exact sequence (4.12) by an open saturated submanifold
U ⊂ Xm , that is, an open subset of X consisting of a union of faces. This gives in the
same way a subcomplex (C∗(U ), δ) of (C∗(X), δ) and a section ρ : C∗(X,U )→
C∗(X) allowing us to state Proposition 4.14 verbatim. More generally, if U is any
open submanifold of X and Ũ denotes the smallest open saturated submanifold
containing U , then any face f of U is contained in a unique face f̃ of X and
an orientation of N( f ) determines an orientation of N( f̃ ). This gives rise to a
quasiisomorphism C∗(U )→ C∗(Ũ ).

Finally, assume that d ≥ 1. Since X is connected, the map δ1 : C1(X)→ C0(X)
is surjective, which implies by Proposition 4.14 the surjectivity of the connecting
homomorphism ∂1

: H pcn
1 (X, X0)→ H pcn

0 (X0). This fact and H pcn
1 (X0)= 0 gives,

using (4.18), the useful corollary:

Corollary 4.19. For any connected manifold with corners X of codimension d ≥ 1
the canonical morphism H pcn

0 (X)→ H pcn
0 (X, X0) is an isomorphism.

4D. Torsion free in low codimensions. Here we will show that up to codimension
2 the conormal homology groups (and later on the K-theory groups) are free abelian
groups.
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Lemma 4.20. Let X be of arbitrary codimension and assume that ∂X has l con-
nected components. Then H cn

1 (X)' Zl−1.

Proof. For any face f , denote by cc( f ) the connected component of ∂X contain-
ing f . It is obvious that ker δ1 is generated by the differences f −g, where f, g run
through F1. Let f, g ∈ F1 such that cc( f )= cc(g). Then there exist f0, . . . , fl ∈ F1

such that f = f0, g = fl and fi ∩ fi+1 6=∅ for any i . Therefore for any i , there
exists fi,i+1 ∈ F2 such that δ2( fi,i+1)= fi − fi+1, hence f − g = δ2

(∑
fi,i+1

)
is

a boundary in conormal homology.
Now assume that cc( f ) 6= cc(g). By the previous discussion, we also have
[ f −g]= [ f ′−g′] ∈ H cn

1 (X) for any f ′, g′ ∈ F1 such that f ′⊂ cc( f ) and g′⊂ cc(g).
Therefore, pick up one hyperface in each connected component of ∂X , call them
f1, . . . , fl , and set αi = [ f1 − fi ] ∈ H cn

1 (X) for i ∈ {2, . . . , l}. It is obvious that
(αi )2≤i≤l generates H cn

1 (X). So, consider integers x2, . . . , xl such that

l∑
i=2

xiαi = 0.

In other words, there exists x ∈ C2(X) such that( l∑
i=2

xi

)
f1−

l∑
i=2

xi fi = δ2(x). (4.21)

For any p ≥ 1 and 2≤ j ≤ l denote by π j : C p(X)→ C p(X) the map defined by
π j (h) = h if h ⊂ cc( f j ) and π j (h) = 0 otherwise. All the πi commute with δ∗,
hence (4.21) gives

for all 2≤ j ≤ l, x j f j = δ2(π j (x)).

Since δ1( f j )= X
◦

6= 0, we conclude x j = 0 for all j . �

Theorem 4.22. Assume that X is connected and has codimension d ≤ 2. Then
H pcn
∗ (X) is a free abelian group.

Proof. This is essentially a compilation of previous examples and computations.
The first two cases in Section 4B give the result for d = 0 and d = 1. If X is of
codimension 2, then the third case in Section 4B says that H pcn

0 (X) is free. In codi-
mension 2 again, we have H pcn

1 (X)= H cn
1 (X), hence we are done by Lemma 4.20.

�

Remark 4.23. If codim(X) = 3, then H pcn
1 (X) = H cn

1 (X) ⊕ H cn
3 (X). Since

H cn
3 (X)= ker δ3, Lemma 4.20 also gives that H pcn

1 (X) is free. The combinatorics
needed to prove that H cn

2 (X)— and therefore H pcn
0 (X)— is free are much more in-

volved. The torsion of conormal homology for manifolds of arbitrary codimension
will be studied somewhere else.
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4E. Künneth formula for conormal homology. Taking advantage of the previous
paragraph, we consider a product X = X1× X2 of two manifolds with corners, one
of them being of codimension ≤ 2. It is understood that the defining functions
used for X are obtained by pulling back the ones used for X1 and X2. The tensor
product (Ĉ∗, δ̂) of the conormal complexes of X1 and X2 is given by

Ĉ p=
⊕

s+t=p

Cs(X1)⊗Ct(X2) and δ̂(x⊗y)= δ(x)⊗y+(−1)t x⊗δ(y), (4.24)

where x ∈ Ct(X1) in the second formula. We have an isomorphism of differential
complexes:

(Ĉ∗, δ̂)' (C∗(X), δ). (4.25)
It is given by the map

9p : Ĉ p =
⊕

s+t=p

Cs(X1)⊗Ct(X2)→ C p(X) (4.26)

defined by
( f ⊗ ε f )⊗ (g⊗ εg) 7→ ( f × g)⊗ ε f · εg, (4.27)

where we did not distinguish differential forms on X j and their pull-back to X via
the canonical projections and · denotes again the exterior product. Since H cn

∗
(X j )

is torsion free for j = 1 or 2 by assumption, we get by Künneth Theorem:

Hp(Ĉ∗, δ̂)=
⊕

s+t=p

H cn
s (X1)⊗ H cn

t (X2). (4.28)

Therefore:

Proposition 4.29 (Künneth formula). Assume that X = X1× X2 with one factor
at least of codimension ≤ 2. Then we have:

H pcn
0 (X)' H pcn

0 (X1)⊗ H pcn
0 (X2)⊕ H pcn

1 (X1)⊗ H pcn
1 (X2), (4.30)

H pcn
1 (X)' H pcn

0 (X1)⊗ H pcn
1 (X2)⊕ H pcn

1 (X1)⊗ H pcn
0 (X2). (4.31)

The following straightforward corollary will be useful later on:

Corollary 4.32. If X =5i X i is a finite product of manifolds with corners X i with
codim(X i )≤ 2, then the groups H pcn

∗ (X) are torsion free.

The exact same arguments as above work to show that the Künneth formula
holds in full generality for conormal homology with rational coefficients, i.e., for
H pcn
∗ (X)⊗Z Q. We state the proposition as we will use it later:

Proposition 4.33 (Künneth formula with rational coefficients). For X = X1× X2

we have:

H pcn
0 (X)⊗Z Q'

(
H pcn

0 (X1)⊗Z Q
)
⊗
(
H pcn

0 (X2)⊗Z Q
)

⊕
(
H pcn

1 (X1)⊗Z Q
)
⊗
(
H pcn

1 (X2)⊗Z Q
)
, (4.34)
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H pcn
1 (X)⊗Z Q'

(
H pcn

0 (X1)⊗Z Q
)
⊗
(
H pcn

1 (X2)⊗Z Q
)

⊕
(
H pcn

1 (X1)⊗Z Q
)
⊗
(
H pcn

0 (X2)⊗Z Q
)
. (4.35)

5. The computation of K∗(Kb(X))

We keep all the notation and conventions of Section 4. In particular, the defining
functions induce a trivialization of the conormal bundle of any face f ,

N( f )' f × E f , (5.1)

in which the p-dimensional real vector space E f inherits a basis b f = (ei )i∈I ,
where I is characterized by f ∈ c(I ). These data induce an isomorphism

0b(X)| f ' C∗(C( f )× E f ), (5.2)

where C( f ) denotes the pair groupoid over f , as well as a linear isomorphism
ϕ f : R

p
→ E f .

Also, the filtration (4.9) gives rise to the following filtration of the C∗-algebra
Kb(X)= C∗(0b(X)) by ideals:

K(L2(X
◦

))= A0 ⊂ A1 ⊂ · · · ⊂ Ad = A = Kb(X), (5.3)

with Am = C∗(0b(X)|Xm ) for any 0≤ m ≤ d. The isomorphisms (5.2) induce

Am/Am−1 ' C∗(0b(X)|Xm\Xm−1)'
⊕
f ∈Fm

C∗(C( f )× E f ). (5.4)

5A. The first differential of the spectral sequence for K∗(A). The K-theory spec-
tral sequence (Er

∗,∗, dr
∗,∗)r≥1 associated with (5.3) [Schochet 1981; Kono and Tamaki

2006] converges to

E∞p,q = K p+q(Ap)/K p+q(Ap−1). (5.5)

Here we have set Kn(A)= K0(A⊗C0(R
n)) for any C∗-algebra A. By construction,

all the terms Er
p,2q+1 vanish, and by Bott periodicity, Er

p,2q ' Er
p,0. Also, all the

differentials d2r
p,q vanish. By definition

d1
p,q : E

1
p,q = K p+q(Ap/Ap−1)→ E1

p−1,q = K p+q−1(Ap−1/Ap−2) (5.6)

is the connecting homomorphism of the short exact sequence

0→ Ap−1/Ap−2→ Ap/Ap−2→ Ap/Ap−1→ 0. (5.7)

By (5.4), we get isomorphisms:

E1
p,q '

⊕
f ∈Fp

K p+q
(
C∗(C( f )× E f )

)
. (5.8)
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Since the real vector space E f has dimension p, the groups E1
p,q vanish for odd q

and for even q, we have after applying Bott periodicity, E1
p,q ' Z#Fp .

Melrose and Nistor [1998, Theorem 9] already achieved the computation of d1
∗,∗.

In order to relate the terms E2
∗,∗ with the elementary defined conormal homology,

we reproduce their computation in a slightly different way. Our approach is based
on the next two lemmas.

Lemma 5.9. Let R+oR be the groupoid of the action of R onto R+ given by

t.λ= teλ, t ∈ R+, λ ∈ R. (5.10)

The element α ∈ KK1(C∗(R),C∗(R∗
+
)) associated with the exact sequence

0→ C∗(C(R∗
+
))→ C∗(R+oR)→ C∗(R)→ 0 (5.11)

is a KK-equivalence.

Proof. By the Thom–Connes isomorphism, the C∗-algebras C∗(R+ o R) and
C∗(R+×R) are KK-equivalent. The latter being K-contractible, the result follows.

�

Lemma 5.12. Let R+oi Rp be the groupoid given by the action of the i-th coordi-
nate of Rp on R+ by (5.10). Let αi,p ∈KK1(C∗(Rp),C∗(Rp−1)) be the KK-element
induced by the exact sequence

0→ C∗(C(R∗
+
)×Rp−1)→ C∗(R+oi Rp)→ C∗(Rp)→ 0. (5.13)

Then for all 1≤ i ≤ p we have

αi,p = (−1)i−1α1,p and α1,p = σC∗(Rp−1)(α), (5.14)

where σD : K∗(A, B)→ K∗(A⊗D, B⊗D) denotes the Kasparov suspension map.

Proof. Let τ be a permutation of {1, 2, . . . , p} and i ∈ {1, . . . , p}. We denote in
the same way the corresponding automorphisms of Rp and C∗(Rp). We have a
groupoid isomorphism

τ̃ : R+oi Rp '
−→ R+oτ(i) Rp

and if we denote by τi the automorphism of Rp−1 obtained by removing the i-th
factor in the domain of τ and the τ(i)-th factor in the range of τ , we get a commu-
tative diagram of exact sequences:

0 // C∗(C(R∗
+
)×Rp−1))

τi

��

// C∗(R+oi Rp)

τ̃

��

// C∗(Rp) //

τ

��

0

0 // C∗(C(R∗
+
)×Rp−1)) // C∗(R+oτ(i) Rp) // C∗(Rp) // 0

(5.15)
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It follows that

ατ(i),p = [τ
−1
]⊗αi,p⊗[τi ] ∈ KK1

(
C∗(Rp),K⊗C∗(Rp−1)

)
. (5.16)

Taking τ = (1, i), we get τ = τ−1 and τi = id, so that αi,p = [τ ]⊗α1,p. Moreover,
observe that for any j ,

[( j − 1, j)] = 1 j−2⊗[ f ]⊗ 1p− j ∈ KK(C∗(Rp),C∗(Rp)), (5.17)

where [ f ] = −1 ∈ KK(C∗(R2),C∗(R2)) is the class of the flip automorphism and
we have used the identification

C∗(Rp)= C∗(R j−2)⊗C∗(R2)⊗C∗(Rp− j ).

Using
(1, i)= (1, 2).(2, 3). . . . .(i − 1, i)

now gives [τ ] = (−1)i−1. Factorizing C∗(Rp−1) on the right in the sequence (5.13)
for i = 1 gives the assertion α1,p = σC∗(Rp−1)(α). �

Using the canonical isomorphism KK1(C∗(R),C∗(R∗
+
))' KK1(C0(R),C), we

can define a generator β of K1(C0(R)) by

β⊗α =+1. (5.18)

For any f ∈ Fp we then obtain a generator β f of K p(C0(E f )) by

β f = (ϕ f )∗(β
p) ∈ K p(C0(E f )), (5.19)

where β p is the external product:

β p
= β⊗C · · · ⊗C β ∈ K p(C0(R

p)). (5.20)

Picking up rank one projectors p f in C∗(C( f )), we get a basis of the free Z-module
E1

p,0:
(p f ⊗β f ) f ∈Fp . (5.21)

Bases of E1
p,q for all even q are deduced from the previous one by applying Bott

periodicity.
Now consider faces f ∈ Fp and g ∈ Fp−1 such that f ⊂ ∂ ḡ. The p and p− 1

tuples I , J such that f ∈ c(I ) and g ∈ c(J ) differ by exactly one index, say the
j-th, and we define

σ( f, g)= (−1) j−1. (5.22)

Introduce the exact sequence

0→ C∗(C( f ×R∗
+
)× Eg)→ C∗(C( f )× (R+o j E f ))→ C∗(C( f )× E f )→ 0,

(5.23)
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where R+o j E f denotes the transformation groupoid where the j-th coordinate
(only) of E f acts on R+ by (5.10) again. We denote by

∂ f,g : K p(C∗(C( f )× E f ))→ K p−1(C∗(C(g)× Eg))

the connecting homomorphism associated with (5.23), followed by the unique KK-
equivalence

C∗(C( f ×R∗
+
))→ C∗(C(g)) (5.24)

provided by any tubular neighborhood of f into g.

Proposition 5.25. With the notation above, we get

∂ f,g(p f ⊗β f )= σ( f, g).pg ⊗βg. (5.26)

Proof. Identify E f ' Rp and Eg ' Rp−1 using b f , bg and apply Lemmas 5.12
and 5.9. �

We can now achieve the determination of d1
∗,∗.

Theorem 5.27. We have

for all f ∈ Fp, d1
p,0(p f ⊗β f )=

∑
g∈Fp−1
f⊂∂ ḡ

σ( f, g)pg ⊗βg. (5.28)

Proof. For p = 0, we have Fp−1 =∅ and d1
p,0 = 0; the result follows. For p ≥ 1,

we recall that

d1
p,0 :

⊕
f ∈Fp

K p(C∗(C( f )× E f ))→
⊕

g∈Fp−1

K p−1(C∗(C(g)× Eg)). (5.29)

is the connecting homomorphism in K-theory of the exact sequence (5.7). We
obviously have

d1
p,0(p f ⊗β f )=

∑
g∈Fp−1

∂g(p f ⊗β f ), (5.30)

where ∂g is the connecting homomorphism in K-theory of the exact sequence

0→ C∗(0b(X)|g)→ C∗(0b(X)|g∪ f )→ C∗(0b(X)| f )→ 0. (5.31)

If f 6⊂ ∂ ḡ then the sequence splits and ∂g(p f ⊗ β f ) = 0. Let g ∈ Fp−1 be such
that f ⊂ ∂ ḡ. Let U be an open neighborhood of f in X such that there exists a
diffeomorphism

Ug := U ∩ g→ f × (0,+∞), x 7→ (φ(x), rig (x)), (5.32)



GEOMETRIC OBSTRUCTIONS FOR FREDHOLM BOUNDARY CONDITIONS 551

where rig is the defining function of f in ḡ. This yields a commutative diagram

0 // C∗(0b(X)|Ug )� _

ι

��

// C∗(0b(X)|Ug∪ f )� _

��

// C∗(0b(X)| f ) // 0

0 // C∗(0b(X)|g) // C∗(0b(X)|g∪ f ) // C∗(0b(X)| f ) // 0

(5.33)

whose upper sequence coincides with (5.23) using (5.32). This implies

∂g = ∂ f,g. (5.34)

The result follows by Proposition 5.25. �

The map d1
p,q , q even, is deduced from d1

p,0 by Bott periodicity. We are ready
to relate the E2 terms with conormal homology.

Corollary 5.35. For every p ∈ {1, . . . , d} there are isomorphisms

φi
p,1 : H

pcn
i (X p, X p−1)→ Ki (Ap/Ap−1), {0, 1} 3 i ≡ p mod 2, (5.36)

such that the following diagram commutes

H pcn
i (X p, X p−1)

φi
p,1

//

∂

��

K p(Ap/Ap−1)

d1
p,0

��

H pcn
1−i(X p−1, X p−2)

φ1−i
p−1,1
// K p−1(Ap−1/Ap−2)

(5.37)

where ∂ stands for the connecting morphism in conormal homology.

Proof. If i ≡ p mod 2 then

H pcn
i (X p, X p−1)= C p(X) and ∂ = δp : C p(X)→ C p−1(X).

We define (5.36) by φi
p,1( f ⊗ ε f )= p f ⊗β f and Theorem 5.27 gives the commu-

tativity of (5.37). �

In other words, the map f ⊗ ε f 7→ p f ⊗β f induces a isomorphism

H cn
p (X)' E2

p,0. (5.38)

It would be very interesting to compute the higher differentials d2r+1
p,0 .

5B. The final computation for K∗(Kb(X)) in terms of conormal homology. Be-
fore getting to the explicit computations and to the analytic corollaries in term of
these, let us give a simple but interesting result. It is about the full understanding
of the six term exact sequence in K-theory of the fundamental sequence

0 // K(X)
i0
// Kb(X)

r
// Kb(∂X) // 0. (5.39)
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Proposition 5.40. For a connected manifold with corners X of codimension greater
or equal to one the induced morphism by r in K0, r : K0(Kb(X))→ K0(Kb(∂X)),
is an isomorphism. Equivalently:

(1) The morphism iF : K0(K)∼= Z→ K0(Kb(X)) is the zero morphism.

(2) The connecting morphism K1(Kb(∂X))→ K0(K)∼= Z is surjective.

Proof. Let X be a connected manifold with corners of codimension d. With the
notations of the last section, the sequence (5.39) correspond to the canonical se-
quence

0 // A0 // Ad // Ad/A0 // 0.

We will prove that the connecting morphism K1(Ad/A0)→ K0(A0)∼= Z is surjec-
tive. The proof will proceed by induction, the case d = 1 immediately satisfies this
property. So let us assume that the connecting morphism K1(Ad−1/A0)→ K0(A0)

associated to the short exact sequence

0 // A0 // Ad−1 // Ad−1/A0 // 0.

is surjective. Consider now the following commutative diagram of short exact
sequences

0 // 0 // Ad/Ad−1 // Ad/Ad−1 // 0

0 // A0

OO

// Ad

OO

// Ad/A0

OO

// 0

0 // A0

OO

// Ad−1

OO

// Ad−1/A0

OO

// 0

(5.41)

By applying the six-term short exact sequence in K-theory to it we obtain that
the following diagram is commutative, where ∂d and ∂d−1 are the connecting mor-
phisms associated to the middle and to the bottom rows respectively:

K(Ad/A0)

∂d

''

K1(Ad−1/A0)

OO

∂d−1

// K0(A0)

Hence, by the inductive hypothesis, we obtain that ∂d is surjective. �

Remark 5.42. Roughly speaking, the previous proposition tells us that the analyti-
cal index of a fully elliptic element carries no information about its Fredholm index,
this information being completely contained in some element of K1(Kb(∂X)).

We have next our main K-theoretical computation:
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Theorem 5.43. Let X = 5i X i be a finite product of manifolds with corners of
codimension less or equal to three. There are natural isomorphisms

H pcn
0 (X)⊗Z Q

φX−→∼=
K0(Kb(X)))⊗Z Q,

H pcn
1 (X)⊗Z Q

φX−→∼=
K1(Kb(X))⊗Z Q.

(5.44)

In the case where X contains a factor of codimension at most two or X is of codi-
mension three, the result holds even without tensoring by Q.

Proof. 1A. codim(X) = 0: The only face of codimension 0 is X
◦

(we are always
assuming X to be connected). The isomorphism

H cn
0 (X0)

φ0
−→ K0(A0)

is simply given by sending X
◦

to the rank one projector pX
◦ chosen in Section 5A.

1B. codim(X)= 1: Consider the canonical short exact sequence

0 // A0 // A1 // A1/A0 // 0.

That gives, since d1
1,0 is surjective, the following exact sequence in K-theory:

0 // K1(A1) // K1(A1/A0)
d1

1,0
// K0(A0) // 0,

from which K1(A1) ∼= ker d1
1,0 and K0(A1) = 0 (since K0(A1/A0) = 0 by a di-

rect computation for K-theory or for conormal homology). By Theorem 5.27 and
Corollary 5.35, we have the following commutative diagram:

K1(A1/A0)
d1

1,0
// K0(A0)

H pcn
1 (X1 \ X0)

φ1,0 ∼=

OO

δ1

// H pcn
0 (X0)

φ0 ∼=

OO

Then there is a unique natural isomorphism

H pcn
1 (X1)

φ1
−→ K1(A1),

fitting the following commutative diagram:

0 // K1(A1) // K1(A1/A0)
d1

1,0
// K0(A0) // 0

0 // H pcn
1 (X1)

φ1 ∼=

OO

// H pcn
1 (X1 \ X0)

φ1,0 ∼=

OO

∂1,0
// H pcn

0 (X0)

φ0 ∼=

OO

// 0
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1C. codim(X)= 2: We first prove that we have natural isomorphisms

H cn
∗
(Xl, Xm)

φl,m

∼=

// K∗(Al/Am) (5.45)

for every 0 ≤ m ≤ l with l −m = 2 and for every manifold with corners (of any
codimension). Indeed, this case can be treated very similarly to the above one.
Suppose l is even, the odd case is treated in the same way by exchanging K0 by
K1 and H0 by H1. By comparing the long exact sequences in conormal homology
we have that there exist unique natural isomorphisms φ0

l,l−2 and φ1
l,l−2 making the

following diagram commutative:

0 // K0(Al/Al−2) // K0(Al/Al−1)
d1

l,0
// K1(Al−1/Al−2) // K1(Al/Al−2) // 0

0 // H pcn
0 (Xl\Xl−2)

φ0
l,l−2

∼=

OO

// H pcn
0 (Xl\Xl−1)

φl,l−1 ∼=

OO

∂l,0
// H pcn

1 (Xl−1\Xl−2)

φl−1,l−2 ∼=

OO

// H pcn
1 (Xl\Xl−2)

φ1
l,l−2

∼=

OO

// 0

since the diagram in the middle is commutative again by Corollary 5.35.
Let us now pass to the case when codim(X) = 2. Consider the short exact

sequence:

0 // A0 // A2 // A2/A0 // 0. (5.46)

We compare its associated six term short exact sequence in K-theory with the
one in conormal homology to get

Z // K 0(A2) // K0(A2/A0)

��

H0(X0) //

φ0

∼=

>>

H pcn
0 (X2) //

?2

BB

H pcn
0 (X2, X0)

��

>>

φ2,0

∼=

>>

K1(A2/A0)

OO

K1(A2)oo 0oo

H pcn
1 (X2, X0)

OO

φ2,0

∼=

==

H pcn
1 (X2)

?1

BB

oo 0

==

oo

(5.47)

where we need now to define isomorphisms ?1 and ?2. In fact if we can define
morphisms such that the diagrams are commutative then by a simple five lemma
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argument they would be isomorphisms. The first thing to check is that

K1(A2/A0)
d2,0

// K0(A0)∼= Z

H pcn
1 (X2, X0)

φ2,0 ∼=

OO

∂2,0

// H pcn
0 (X0)

φ0∼=

OO

(5.48)

is commutative. Indeed, this can be seen by considering the following commutative
diagram of short exact sequences:

0 // 0 // A2/A1 // A2/A1 // 0

0 // A0

OO

// A2

OO

// A2/A0

OO

// 0

0 // A0

OO

// A1

OO

// A1/A0

OO

// 0

(5.49)

Applying the associated diagram between the short exact sequences that gives that
the connecting morphism for the middle row, K1(A2/A0)

d2,0−→ K0(A0), is given by
a (any) splitting of K1(A1/A0)→ K1(A2/A0) (both modules are free Z-modules
by Theorem 4.22) followed by the connecting morphism associated to the exact
sequence on the bottom of the above diagram. By definition of φ2,0 in (5.45) above
and by Corollary 5.35 we have that these two last morphisms are compatible with
the analogs in the respective conormal homologies. Since the connecting morphism
∂2,0 in conormal homology is obtained in this way as well, we conclude that (5.48)
is commutative. We are ready to define ?1 and ?2. For the first one, ?1, there is a
unique isomorphism φ1

2 fitting the following commutative diagram

0 // K1(A2) // K1(A2/A0)

0 // H pcn
1 (X2)

φ1
2
∼=

OO

// H pcn
1 (X2, X0)

φ1
2,0
∼=

OO

and given by restriction of φ1
2,0 to the image of H pcn

1 (X2)→ H pcn
1 (X2, X0). Now,

for defining ?2 we have by Proposition 5.40 a unique isomorphism φ0
2 fitting the

following diagram

K0(A2)
∼=
// K0(A2/A0)

H pcn
0 (X2)

φ0
2
∼=

OO

∼=

// H pcn
0 (X2, X0)

φ0
2,0
∼=

OO
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1D. codim(X)= 3: Consider the short exact sequence

0 // A2 // A3 // A3/A2 // 0.

We compare its associated six term short exact sequence in K-theory with the one
in conormal homology to get

K0(A2) // K0(A3) // 0

��

H pcn
0 (X2) //

φ2

∼=

99

H pcn
0 (X3) //

?2

<<

0

��

<<<<

K1(A3/A2)

OO

K1(A3)oo K1(A2)oo

H pcn
1 (X3, X2)

OO

φ3,2

∼=

99

H pcn
1 (X3)

?1

==

oo H pcn
1 (X2)

φ2

∼=

==

oo

(5.50)

where we need now to define isomorphisms ?1 and ?2. Again, if we can define
morphisms such that the diagrams are commutative then by a simple five lemma
argument they would be isomorphisms. Let us first check that the diagram

K1(A3/A2)
∂
// K0(A2)

H pcn
1 (X3, X2)

φ3,2 ∼=

OO

∂
// H pcn

0 (X2)

φ2∼=

OO

(5.51)

is commutative. For this consider the following commutative diagram of short
exact sequences:

0 // A1 //

��

A1 //

��

0

��

// 0

0 // A2

��

// A3

��

// A3/A2

��

// 0

0 // A2/A1 // A3/A1 // A3/A2 // 0

(5.52)

It implies that the connecting morphism K1(A3/A2)
∂
−→ K0(A2) followed by

the morphism K0(A2)→ K0(A2/A1) coincides with the connecting morphism
K1(A3/A2)

∂
−→ K0(A2/A1). Now, the two latter morphisms are compatible with

the analogs in conormal homology via the isomorphisms described above, and
the morphism K0(A2)→ K0(A2/A1) is injective (since K0(A1) = 0); hence the
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commutativity of diagram (5.51) above follows. From diagram (5.50), by passage
to the quotient, there is unique isomorphism φ0

3 (the one filling ?2 in the above
diagram) such that

K0(A2) // K0(A3) // 0

H pcn
0 (X2)

φ0
2
∼=

OO

// H pcn
0 (X3)

φ0
3
∼=

OO

// 0

is commutative. Finally, for defining ?1, it is now enough to choose splittings for
the map

0→ H pcn
1 (X2)→ H pcn

1 (X3),

which is possible since H pcn
1 (X3) is free (see Theorem 4.22 and the remark below

it) and for the map
K1(A3)→ im j→ 0,

where j is the canonical morphism j : K1(A3)→ K1(A3/A2) (remember all the
groups K∗(Ap/Ap−1) are torsion free).

1E. If X = 5i X i is a finite product with codim(X i ) ≤ 3 and with at least one
factor of codimension at most 2: In this case the result would follow, by all the
points above, if both periodic conormal homology and K-theory satisfy the Kün-
neth formula. Since the algebras Kb(X) are nuclear because the groupoids 0b(X)
are amenable, we have the Künneth formula in K-theory for these kind of algebras.
Now, for conormal homology we verified the Künneth formula in Proposition 4.29.

1F. If X =5i X i is a finite product with codim(X i )≤ 3, for all i : In this case the
result holds rationally by the same arguments as above by using Proposition 4.33.

�

6. Fredholm perturbation properties and Euler conormal characters

The previous results yield a criterion for property (HFP) in terms of the Euler
characteristic for conormal homology. To fit with the assumptions of Theorem 5.43,
we consider a manifold with corners X of codimension d, which is given by the
cartesian product of manifolds with corners of codimension at most 3.

Definition 6.1 (corner characters). Let X be a manifold with corners. We define
the even conormal character of X as

χ0(X)= dimQ H pcn
0 (X)⊗Z Q. (6.2)

Similarly, we define the odd conormal character of X as

χ1(X)= dimQ H pcn
1 (X)⊗Z Q. (6.3)
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We can consider as well

χ(X)= χ0(X)−χ1(X), (6.4)

then we have (by the rank nullity theorem)

χ(X)= 1− #F1+ #F2− · · ·+ (−1)d#Fd . (6.5)

We refer to the integer χ(X) as the Euler corner character of X . These numbers
are clearly invariant under the natural notion of isomorphism of manifolds with
corners. Their computation is elementary in any concrete situation.

In particular one can rewrite Theorem 5.43 to have, for X as in the theorem
statement,

K0(Kb(X))⊗Z Q∼=Qχ0(X), K1(Kb(X))⊗Z Q∼=Qχ1(X) (6.6)

and, in terms of the corner character,

χ(X)= rank(K0(Kb(X))⊗Z Q)− rank(K1(Kb(X))⊗Z Q). (6.7)

In the case where X is a finite product of manifolds with corners of codimension
at most 2 we even have

K0(Kb(X))' Zχ0(X) and K1(Kb(X))' Zχ1(X) (6.8)

and also χcn(X)= rank(K0(Kb(X)))− rank(K1(Kb(X))).

We end with the characterization of property (HFP) in terms of conormal char-
acteristics.

Theorem 6.9. Let X be a compact connected manifold with corners of codimen-
sion greater than or equal to one. If X is a finite product of manifolds with corners
of codimension less than or equal to three we have that:

(1) If X satisfies the Fredholm perturbation property then the even Euler corner
character of X vanishes, i.e., χ0(X)= 0.

(2) If the even periodic conormal homology group vanishes, i.e., H pcn
0 (X) = 0,

then X satisfies the stably homotopic Fredholm perturbation property.

(3) If H pcn
0 (X) is torsion free and if the even Euler corner character of X vanishes,

i.e., χ0(X)= 0 then X satisfies the stably homotopic Fredholm perturbation
property.

Proof. (1) Suppose χ0(X) 6= 0 then K0(Kb(X))⊗Z Q∼=Qχ0(X) is not the zero group.
By Theorem 3.24 it is enough to prove that the rationalized analytic indicial index
morphism

Inda : K 0
top(

bT ∗X)⊗Z Q→ K0(Kb(X))⊗Z Q
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is not the zero morphism. Monthubert and Nistor [2012, Theorems 12 and 13
and Proposition 7] construct a manifold with corners Y and a closed embedding of
manifolds with embedded corners X i

→ Y to obtain a commutative diagram

K 0
top(

bT ∗X)⊗Z Q

i !
��

Inda
// K0(Kb(X))⊗Z Q

∼= i∗
��

K 0
top(

bT ∗Y )⊗Z Q
Inda

∼=
// K0(Kb(Y ))⊗Z Q

(6.10)

They call such a Y a classifying space of X . For our purposes it would be then
enough to show that the morphism

i ! : K 0
top(

bT ∗X)⊗Z Q→ K 0
top(

bT ∗Y )⊗Z Q

is not the zero morphism. But now we are at the topological K-theory level (with
compact supports) where classic topological arguments apply to get that the mor-
phism above is not the zero morphism. Indeed, to construct i ! one uses a tubular
neighborhood (which exist in this setting, see for example Douady [1961/1962]);
the first step is then a Thom isomorphism followed by a morphism induced by a
classic extension by zero. This is summarized in [Monthubert and Nistor 2012,
Proposition 5]. The conclusion follows.

(2) If H pcn
0 (X)= 0 then H pcn

0 (X)⊗Z Q= 0 and the result follows from Theorems
5.43 and 3.24.

(3) In this case K0(Kb(X))∼= Zχ0(X) by Theorem 5.43 and the arguments applied
in the last two points identically apply to get the result (the results of Monthubert
and Nistor cited above hold over Z). �

Appendix: more on conormal homology

We reproduce the discussion leading to the definition of the conormal differential
in a slightly more general way. We keep the same notations. Let f ∈ Fp, ε f an
orientation of N( f ) and g ∈ Fp−k such that f ⊂ ḡ. The face f is characterized in ḡ
by the vanishing of k defining functions and we denote by (g, f ) the corresponding
k-tuple of their indices. Then the contraction εg := e(g, f ) y ε f is an orientation
of N(g). Recall that

eJ y · = e j1 y (· · · y (e jk y ·) · · · ). (A.1)

For any integers 0≤ k ≤ p, we define δk
p : C p(X)→ C p−k(X) by

δk
p( f ⊗ ε f )=

∑
g∈Fp−k ,

f⊂ḡ

g⊗ e(g, f ) y ε f . (A.2)
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We get a homomorphism δpcn
: C(X) → C(X) of degree 1 with respect to the

Z2-grading by setting

δ
pcn
i =

∑
k≥0,

p≡i mod 2

δ2k+1
p , i = 0, 1. (A.3)

Proposition A.4. The map δpcn is a differential, that is δpcn
◦ δpcn

= 0.

Proof. Let f ∈ Fp(X) and ε be an orientation of N( f ). We have

δpcn(δpcn( f ⊗ ε))=
∑

g,h s.t. h̄⊃ḡ⊃ f
(g, f ),(h,g) are odd

(
h⊗ e(h,g) y (e(g, f ) y ε)

)
. (A.5)

Let g, h be such that they contribute a term in the sum above and denote by I, J, K
the tuples labeling the defining functions of f, g, h respectively. Then set

J ′ = I \ (h, g). (A.6)

By definition of manifolds with (embedded) corners, HJ ′ is not empty and there
exists a unique face g′ ∈ c(J ′) with f ⊂ g′. This face g′ = ι(g, h, f ) satisfies the
following properties:

• f ⊂ g′ ⊂ h̄,

• (g′, f )= (h, g) and (h, g′)= (g, f ) are odd,

• ι(g′, h, f )= g.

Finally, note that #(g, f ) 6=#(h, g), otherwise we would have (h, f )= (h,g)+(g, f )
even. This implies in particular that g 6= g′. These observations allow us to reorga-
nize the sum (A.5) as follows:

δpcn(δpcn( f ⊗ ε))=
∑

g,h s.t. h̄⊃ḡ⊃ f
#(g, f )<#(h,g) odd

(
h⊗ (e(h,g) y (e(g, f ) y ε+ e(h,g′) y (e(g′, f ) y ε)))

)
.

Now

e(h,g)y(e(g, f )yε)+e(h,g′)y(e(g′, f )yε)= e(h,g)y(e(g, f )yε)+e(g, f )y(e(h,g)yε)= 0

since #(g, f ) and #(h, g) are odd. �

Proposition A.4 implies δ1
p−1 ◦ δ

1
p = 0 for any p. Since δ1

∗
= δ∗, this proves the

claim of Section 4A. Moreover:

Proposition A.7. The identity map (C∗(X), δ1)→ (C∗(X), δ) induces an isomor-
phism between the Z2-graded homology groups.

Lemma A.8. The following equality hold for any k ≥ 0:

δ2k+1
= δ2k

◦ δ1
= δ1
◦ δ2k . (A.9)
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Proof of Lemma A.8. Let f be a codimension-p face and ε an orientation of N( f ).
Let I be the p-tuple defining f . Then g is a face such that f ⊂ ḡ if and only if
g is a connected component of HJ for some J ⊂ I . Since the definition of δ( f )
only involves faces g with f ⊂ ḡ, it is no restriction to remove the connected
component of HJ disjoint from f for any J ⊂ I , or equivalently to assume that
such HJ are connected. It follows that the faces appearing in the definition of δ( f )
are in one-to-one correspondence with the tuples J ⊂ I so they can be indexed by
them and eventually omitted in the sum defining δ∗( f ). It follows that, εI denoting
an orientation of N( f ),

δ2k
◦ δ1(εI )=

∑
|J |=2k

∑
1≤i≤N

eJ y ei y εI

=

∑
|J |=2k+1

2k+1∑
l=1

e j1 y · · · ê jl y · · · y e j2k+1 y e jl y εI

=

∑
|J |=2k+1

2k+1∑
l=1

(−1)l−1eJ y εI =
∑

|J |=2k+1

eJ y εI = δ
2k+1(εI ).

The equality δ2k+1
= δ1
◦ δ2k is obtained in the same way. �

Proof of Proposition A.7. Let us set N =
∑

k≥0 δ
2k and h = id+ N . Using the

lemma, we get:
δpcn
= δ1
◦ h = h ◦ δ1. (A.10)

Since N is nilpotent, the map h is invertible with inverse given by the finite sum

h−1
=

∑
j≥0

(−1) j N j.

This proves that δ1(x)= 0 if and only if δpcn(x)= 0 and that x = δ1(y) if and only
if x = δpcn(y′) for some y, y′ as well. The proposition follows. �

The differential δ1 is of course much simpler to handle than δpcn.
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Positive scalar curvature and low-degree group homology

Noé Bárcenas and Rudolf Zeidler

Let 0 be a discrete group. Assuming rational injectivity of the Baum–Connes
assembly map, we provide new lower bounds on the rank of the positive scalar
curvature bordism group and the relative group in Stolz’ positive scalar curvature
sequence for B0. The lower bounds are formulated in terms of the part of degree
up to 2 in the group homology of 0 with coefficients in the C0-module generated
by finite order elements. Our results use and extend work of Botvinnik and
Gilkey which treated the case of finite groups. Further crucial ingredients are
a real counterpart to the delocalized equivariant Chern character and Matthey’s
work on explicitly inverting this Chern character in low homological degrees.

1. Introduction

There exists a natural comparison mapping between the positive scalar curvature
(psc) sequence of Stolz (top row) to the analytic surgery sequence of Higson and
Roe (bottom row):

�
spin
n (B0) Rspin

n (B0) Pspin
n−1(B0) �

spin
n−1(B0) Rspin

n−1(B0)

KOn(B0) KOn(C∗r0) SR
n−1(0) KOn−1(B0) KOn−1(C∗r0)

β

∂

α ρ β α

ν ∂ ν

(1.1)

This diagram was first established by Piazza and Schick [2014, Theorem 1.28]
for complex K-theory and n even. It was extended by Xie and Yu [2014, The-
orem B] and by the second-named author [2016b, Theorem 3.1.13] to cover all
dimensions and the real case. See also Zenobi [2017, Remark 6.2].

We briefly explain the constituents in the diagram above. Start with Stolz’ psc
sequence. The group �spin

n (B0) is the singular spin bordism group of the clas-
sifying space B0. That is, it consists of bordism classes of pairs (M, φ), where
M is a closed spin manifold of dimension n and φ : M→ B0 a continuous map.
The psc spin bordism group Pspin

n (B0) consists of bordism classes of (M, φ, g),

MSC2010: primary 58D27, 58J22; secondary 19K33, 19L10, 19L47, 55N91.
Keywords: positive scalar curvature, secondary index theory, ρ-invariant, equivariant Chern

character, group homology.
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where (M, φ) is as before and g ∈ R+(M) is a metric of psc. Here we require
bordisms to have metrics of positive scalar curvature with product structure near
the boundary. Stolz’ relative group Rspin

n+1(B0) consists of bordism classes of triples
(W, φ, g), where W is a compact spin manifold of dimension (n+1), φ :W→B0 a
continuous map, and g ∈R+(∂W ) a metric of psc on the boundary. The horizontal
arrows in Stolz’ sequence are the evident forgetful maps.

The (real version of the) analytic surgery sequence of Higson and Roe consists
of the real K-homology of B0, the topological K-theory of the reduced group C∗-
algebra of 0, and the analytic structure group of 0. We denote the latter by SR

∗
(0).

It is defined in such a way that it fits into a long exact sequence together with the
real Novikov assembly map ν :KO∗(B0)→KO∗(C∗r0). We also use their complex
counterparts, which we denote by K∗(B0), K∗(C∗r0), and SC

∗
(0).

The groups Pspin
n−1(B0) and Rspin

n (B0) classify psc metrics up to bordism and
concordance, respectively, on spin manifolds with fundamental group 0. For the
latter see [Rosenberg and Stolz 2001, Theorem 5.1]. Alas, at present there are no
tools known that allow a computation of these groups (not even in simple special
cases). However, the comparison (1.1) allows us to obtain lower bounds on these
groups using the index-theoretic information contained in the sequence of Higson
and Roe. To that end, it is important to know something about the size of the image
of the relative index map α : Rspin

n (B0)→ KOn(C∗r0) and the higher ρ-invariant
ρ : Pspin

n−1(B0)→ SR
n−1(0).

The first case where something can be said is the class of finite groups. Indeed,
let H be a finite group. Let R(H) denote its complex representation ring. Let
Rq

0(H) be the subgroup generated by those representations ρ of virtual dimension
0 such that its character χρ satisfies χρ(γ−1)= (−1)qχρ(γ ) for all γ ∈ H . Botvin-
nik and Gilkey [1995, Theorem 2.1] showed that the rank of the positive scalar
curvature bordism group Pspin

2q+4k−1(BH) is bounded below by the rank of Rq
0(H),

where k ≥ 1, q ∈ {0, 1} with 4k+ 2q ≥ 6. They used relative η-invariants. These
are numerical invariants that are related to the higher ρ-invariant via certain trace
maps; see for instance [Higson and Roe 2010]. In fact, Botvinnik and Gilkey’s
result [1995] implies that both

ρ : Pspin
n−1(BH)→ SR

n−1(H) and α : Rspin
n (BH)→ KOn(C∗r H)

are rationally surjective for n ≥ 6 (we explain this in Section 4). Moreover, recently
Weinberger and Yu [2015] and Xie and Yu [2017] gave lower bounds for a large
class of infinite groups based on the number of torsion elements with pairwise
different orders. We also refer to [Piazza and Schick 2007] for lower bounds on
the positive scalar bordism group based on the L2-ρ-invariant.

The results mentioned above only yield information for n even. Using product
formulas one can obtain further ad hoc examples of nontrivial relative indices and
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ρ-invariants by taking certain products; see [Zeidler 2016a, Corollary 6.10; Zenobi
2017, Corollary 5.24]. For instance, taking products with the circle allows one to
also produce examples for n odd.

In the main results of this paper, we give new systematic lower bounds for all
n ≥ 7 on the image of the relative index and the ρ-invariant based on the part of
degree up to 2 of a certain group homology. The result of Botvinnik and Gilkey
[1995] yields the 0-dimensional part. Then the idea is that degrees 1 and 2 can be
obtained from this by taking products with circles and oriented surfaces. We use
the Baum–Connes assembly map µ : K0

∗
(E0)→ K∗(C∗r0), the delocalized Chern

character of Baum and Connes [1988], and — most centrally — its explicit partial
inverse in degrees up to 2 due to Matthey [2004].

To state our results, we start with some preparations. Let 0 be a discrete group
and denote by 0fin the set of elements of finite order of 0. Let F0 be the set of
all finitely supported functions 0fin → C. Letting 0 act by conjugation on 0fin

turns F0 into a C0-module. The delocalized equivariant Chern character yields an
isomorphism

ch0 : K
0
p(E0)⊗C

∼=
−→

⊕
k∈Z

Hp+2k(0;F0). (1.2)

It was first introduced by Baum and Connes [1988] but we will instead work with
the “handicrafted Chern character” of Matthey [2004]. Matthey [2004] also con-
structed maps

β(t)p : Hp(0;F0)→ K0
p(E0)⊗C

for p ∈ {0, 1, 2} which are right-inverse to the delocalized Chern character. More-
over, he defined explicit maps

β(a)p : Hp(0;F0)→ Kp(C∗r0)

which satisfy β(a)p = (µ⊗ C) ◦ β
(t)
p for p ∈ {0, 1, 2}. They thereby describe the

Baum–Connes assembly map explicitly in low homological degrees.
To use these maps for our purposes, we need to adapt the above to real K-

homology. To that end, for q ∈ {0, 1}, let

Fq0 = { f ∈ F0 | f (γ )= (−1)q f (γ−1) ∀γ ∈ 0fin}.

Then F0 = F00⊕F10 as C0-modules. We can now state our main result and its
corollaries.

Theorem 1.3. For each p ∈ {0, 1, 2}, q ∈ {0, 1} and k ≥ 1 with 4k+ 2q ≥ 6, there
exists a linear map

β
(psc)
p,q,k : Hp(0;Fq0)→ Rspin

p+2q+4k(B0)⊗C
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such that the following diagram commutes:

Hp(0;Fq0) Hp(0;F0)

Rspin
p+2q+4k(B0)⊗C

KOp+2q(C∗r0)⊗C Kp(C∗r0)⊗C

β
(psc)
p,q,k

β
(a)
p

α⊗C

c⊗C

Here c : KO∗(C∗r0)→ K∗(C∗r0) is the complexification map from real to com-
plex K-theory. We implicitly use that complex K-theory is 2-periodic and real
K-theory is rationally 4-periodic.

Remark 1.4. We do not claim that our maps β(psc)
p,q,k are canonical (unlike the orig-

inal maps of Matthey). Indeed, their construction depends on choosing preimages
under the surjective map α⊗Q : Rspin

∗ (BH)⊗Q→KO∗(C∗r H)⊗Q for each finite
cyclic group H . However, after fixing these choices it is in principle possible to
trace through the construction to obtain explicit formulas for β(psc)

p,q,k similarly as in
Matthey’s work.

In any case, the existence of β(psc)
p,q,k implies lower bounds and surjectivity results:

Corollary 1.5. Let n ≥ 7. If the rational Baum–Connes assembly map µ⊗Q is
injective, then the rank of Rspin

n (B0) is at least the dimension of
H0(0;F00)⊕H2(0;F10), n ≡ 0 mod 4,
H1(0;F00), n ≡ 1 mod 4,
H0(0;F10)⊕H2(0;F00), n ≡ 2 mod 4,
H1(0;F10), n ≡ 3 mod 4.

Corollary 1.6. Let n ≥ 7. If the rational Baum–Connes assembly map µ⊗Q is
injective, then the rank of Pspin

n−1(B0) is at least the dimension of
H0(0;F0

00)⊕H2(0;F10), n ≡ 0 mod 4,
H1(0;F0

00), n ≡ 1 mod 4,
H0(0;F10)⊕H2(0;F0

00), n ≡ 2 mod 4,
H1(0;F10), n ≡ 3 mod 4,

where F0
0 = { f ∈ F0

| f (1)= 0}.

In comparison, Botvinnik and Gilkey [1995, Theorem 0.1] imply that for a finite
group H and n ≥ 6 even, the rank of Pspin

n−1(BH) is bounded below by the dimension
of H0(H ;F0

0 H) if n ≡ 0 mod 4 or H0(H ;F1 H) if n ≡ 2 mod 4.
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Example 1.7. We describe an explicit example illustrating the nontrivial content of
Corollaries 1.5 and 1.6. Let 6g denote the oriented surface of genus g≥ 1. Let n be
a positive integer. Consider the group 0=π1(6g)×Z/nZ. Then the Baum–Connes
assembly map for 0 is an isomorphism.1 So our results are applicable. Next
we explicitly compute the homology groups that appear in the corollaries for this
example. Start with the group homology of 0 with trivial coefficients C. The group
homology of Z/nZ is torsion in all positive degrees. Hence the Künneth theorem
implies that H∗(0;C) ∼= H∗(6g;C). Thus the homology of 0 is Hp(0;C) ∼= C

for p ∈ {0, 2}, H1(0;C) ∼= C2g, and zero in degrees greater than 2. To proceed,
observe that any finite order element of 0 is of the form (1, tk), where 1 denotes the
neutral element of π1(6g) and t the generator of Z/nZ. The action by conjugation
is trivial on these elements. We deduce that F0 is isomorphic to the trivial C0-
module Cn . By counting dimensions, we see that F00 ∼= Cbn/2c+1, F0

00
∼= Cbn/2c,

F10∼=Cdn/2e−1 as trivial C0-modules. Together with the computation of H∗(0;C),
we deduce

H0(0;F00)∼= Cbn/2c+1, H0(0;F0
00)
∼= Cbn/2c, H0(0;F10)∼= Cdn/2e−1,

H1(0;F00)∼= C2g(bn/2c+1), H1(0;F0
00)
∼= C2gbn/2c, H1(0;F10)∼= C2g(dn/2e−1),

H2(0;F00)∼= Cbn/2c+1, H2(0;F0
00)
∼= Cbn/2c, H2(0;F10)∼= Cdn/2e−1.

This shows that for n ≥ 3 all homology groups which appear in the conclusion of
Corollaries 1.5 and 1.6 are nontrivial.

Corollary 1.8. Let n ≥ 7. Let the rational homological dimension of 0 be at
most 2. Then, if the rational Baum–Connes assembly map µ⊗Q is surjective, the
rational relative index map

α⊗Q : Rspin
n (B0)⊗Q � KOn(C∗r0)⊗Q

is surjective.
If µ⊗Q is an isomorphism, then the rational higher ρ-invariant

ρ⊗Q : Pspin
n−1(B0)⊗Q � SR

n−1(0)⊗Q

is also surjective.

2. The delocalized equivariant Pontryagin character

In this section, we exhibit the delocalized equivariant Pontryagin character, which
is the real counterpart to the delocalized equivariant Chern character. It is obtained
from the delocalized Chern character by precomposing it with complexification.

1This follows readily from [Higson and Kasparov 2001] because π1(6g)×Z/nZ is a-T-menable.
However, we should note that the case of surface groups goes back to the original article of Baum
and Connes [2000].
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Start with some preparations. The rationalized equivariant real K-homology
KO•
∗
⊗Q is 4-periodic. Indeed, it is a module over

KO∗(pt)⊗Q∼=Q[α, β, β−1
]/〈α2

− 4β〉

with α ∈ KO4(pt), β ∈ KO8(pt), and module multiplication with α/2 implements
the 4-periodicity. We will implicitly use this 4-periodicity whenever convenient.

The complexification c : KO∗(pt)→ K∗(pt) ∼= Z[ξ, ξ−1
] satisfies c(α) = 2ξ 2

and c(β)= ξ 4, where ξ ∈ K2(pt).
Complex K-homology rationally decomposes into two copies of real K-homology:

Proposition 2.1. Complexification yields an isomorphism of proper equivariant
homology theories:

c := c+ξ−1 c : (KO•
∗
⊕KO•

∗+2)⊗Q
∼=
−→ K•

∗
⊗Q. (2.2)

The decomposition (2.2) can be used to decompose the equivariant delocalized
Chern character and thereby obtain the delocalized Pontryagin character:

Proposition 2.3. The equivariant delocalized Chern character composed with com-
plexification yields an isomorphism

ph0 := ch0 ◦ c : KO0
p(E0)⊗C

∼=
−→

⊕
k∈Z

Hp+4k(0;F00)⊕Hp+2+4k(0;F10).

Because Matthey’s maps are right-inverse to the delocalized Chern character,
Proposition 2.3 immediately implies that they decompose as follows:

Corollary 2.4. Using the identification (2.2), Matthey’s inverse maps [2004]

β(t)p : Hp(0;F0)→ K0
p(E0)⊗C, p ∈ {0, 1, 2},

restrict to maps

β(t)p,q : Hp(0;Fq0)→ KO0
p+2q(E0)⊗C, p ∈ {0, 1, 2}, q ∈ {0, 1}.

Analogously to the complex case we write β(a)p,q := µ⊗C ◦ β
(t)
p,q . By abuse of

notation µ : KO0
p+2q(E0)→ KOp+2q(C∗r0) denotes the real version of the Baum–

Connes assembly map here.
The proofs of Propositions 2.1 and 2.3 can essentially be reduced to the case of

finite groups. Thus we need some facts about equivariant K-homology of a finite
group and to fix some notation. For more details on the following we refer for
example to [Bruner and Greenlees 2010, Chapter 2].

Let R(H) denote the complex representation ring and RO(H) its real counter-
part. Let c : RO(H)→ R(H) be complexification and r : R(H)→ RO(H) be
realification. Let τ : R(H)→ R(H) be the map induced by complex conjugation.
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Then c ◦ r= 1+ τ and r ◦ c= 2. Let R(H)/(1+ τ) be a shorthand for the quotient
group R(H)/(1+ τ)(R(H)). Then the equivariant K-homology of a point satisfies

KOH
i (pt)⊗Q∼=


RO(H)⊗Q, i ≡ 0 mod 4,
R(H)/(1+ τ)⊗Q, i ≡ 2 mod 4,
0, otherwise,

(2.5)

KH
i (pt)⊗Q∼=

{
R(H)⊗Q, i ≡ 0 mod 2,
0, otherwise.

(2.6)

Complexification c : KOH
i (pt)→ KH

i (pt) is given by complexification of represen-
tations for i ≡ 0 mod 4, and by the map 1− τ : R(H)/(1+ τ)→ R(H) for i ≡ 2
mod 4.

We are now ready to prove the propositions of this section.

Proof of Proposition 2.1. To show that c is an isomorphism of proper equivariant
homology theories, it suffices to show that

c= c+ξ−1 c : (KOH
i (pt)⊕KOH

i+2(pt))⊗Q→ KH
i (pt)⊗Q (2.7)

is an isomorphism for every finite group H and every i ∈ Z. The map

(KO•i ⊕KO•i+2)⊗Q→ (KO•i+2⊕KO•i+4)⊗Q, x ⊕ y 7→ y⊕ (α/2) · x

defines a 2-periodicity on the left-hand side which corresponds to Bott periodicity
after applying c = c+ξ−1 c. Hence it suffices to check (2.7) for i ∈ {0, 1}. For
i = 1, both sides of (2.7) are zero by (2.5) and (2.6). It remains to check i = 0. In
this case c corresponds to the map

(RO(H)⊕R(H)/(1+ τ))⊗Q→ R(H)⊗Q, x ⊕[y] 7→ c(x)+ y− τ(y).

This is an isomorphism because the map

R(H)⊗Q→ (RO(H)⊕R(H)/(1+ τ))⊗Q, z 7→ 1
2(r(z)⊕[z])

is an explicit inverse. �

Proof of Proposition 2.3. Start with the (nonequivariant) Pontryagin character iso-
morphism

ph= ch ◦ c : KOp(X)⊗Q
∼=
−→

⊕
k∈Z

Hp+4k(X;Q). (2.8)

It is, by definition, the Chern character applied after complexification. In particular,
the proposition holds if 0 is torsion-free.

Next we deal with the case where 0 = H = Z/nZ is a finite cyclic group. Then
the Chern character yields an isomorphism chH : R(H)= KH

0 (pt)→ H0(H ;FH)
as all the other homology groups vanish. We have H0(H ;FH) = FH = CH and
chH associates to a representation [ρ] ∈ R(H) its character χρ . As the character of
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any real representation is symmetric and the character of an element in the image
of (1− τ) : R(H)→ R(H) is antisymmetric, we conclude that

ch0
(
c(KOH

2q(pt))
)
= H0(H ;Fq H). (2.9)

Next, let G be some group and consider 0 :=G×Z/nZ and y×z ∈KO0
p+2q(E0)

with y ∈ KOp(BG)∼= KOG
p (EG) and z ∈ KOZ/nZ

2q (pt). There is a natural isomor-
phism

KG×Z/nZ
p (EG)∼= KG

p (EG)⊗R(Z/nZ)∼= KG
p (EG)⊗KZ/nZ

0 (pt)

and a commutative diagram

Kp(BG)⊗KZ/nZ

0 (pt)⊗C KG×Z/nZ
p (EG)⊗C

⊕
k∈Z Hp+2k(G;C)⊗H0(Z/nZ;FZ/nZ)

⊕
k∈Z Hp+2k(0;F0)

×

ch⊗chZ/nZ ch0

×

In view of (2.2), (2.8), and (2.9) this diagram restricts to

KOp(BG)⊗KOZ/nZ

2q (pt)⊗C KOG×Z/nZ

p+2q (EG)⊗C

⊕
k∈Z Hp+4k(G;C)⊗H0(Z/nZ;FqZ/nZ)

⊕
k∈Z Hp+4k(0;Fq0)

×

ph⊗chZ/nZ◦c ch0◦c

×

We conclude
ch0(c(y× z)) ∈

⊕
k∈Z

Hp+4k(0;Fq0). (2.10)

Now let 0 be general. The equivariant K-homology K0
p(E0) is generated by ele-

ments of the form ϕ∗(y×z)with G⊆0 some subgroup, y ∈Kp(BG), z ∈ KZ/nZ

0 (pt)
and ϕ : G×Z/nZ→ 0 some group homomorphism. This follows from [Matthey
2004, Theorem 1.3 and Section 7]. Using (2.2), this implies that KO0

i (E0) is
generated by elements of the form ϕ∗(y× z) with y ∈ KOp(BG), z ∈ KOZ/nZ

2q (pt)
such that i = p+ 2q . Thus (2.10) implies

(ch0 ◦ c)(KO0
p(E0))⊆

⊕
k∈Z

Hp+4k(0;F00)⊕Hp+2+4k(0;F10). (2.11)

Now the proposition follows by combining (2.2) and (2.11) and using the fact that
ch0 is an isomorphism. �

3. Matthey’s maps

In this section, we exhibit the real versions of Matthey’s maps from Corollary 2.4
more explicitly. We start with a brief summary of the material in [Matthey 2004]
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that leads to his definition of

β(t)p : Hp(0;F(0))→ K0
p(E0)⊗C, p ∈ {0, 1, 2}.

Let G(0)
:= 1, G(1)

:= Z and G(2),g
:= 0g := π1(6g), where 6g is the oriented

surface of genus g ≥ 1. To simplify the notation, we let G(2) stand for G(2),g for
some g. Moreover, let G(p)

n := G(p)
×Z/nZ.

There is an isomorphism Hp(0;F0)∼=
⊕

C Hp(BZC ;C). Here the direct sum
runs over all conjugacy classes of finite order elements and ZC denotes the central-
izer of some element in the conjugacy class C . An element x ∈Hp(0; F0) is called
homogeneous if it is contained in one of the direct summands. For each p ∈ {0, 1, 2}
and n ≥ 0, there is a certain fundamental class [G(p)

n ] ∈ Hp(G
(p)
n ;FG(p)

n ). These
have the property that for p ∈ {0, 1, 2} any homogeneous element x ∈ Hp(0;F0)
can be written as x = φ∗[G

(p)
n ] for some G(p)

n and some group homomorphism
φ : G(p)

n → 0.
Moreover, there is a certain K-homological fundamental class

[G(p)
n ]K ∈ KG(p)

n
p (EG(p)

n )⊗C.

Setting φ∗[G
(p)
n ] 7→ φ∗[G

(p)
n ]K defines a map Hp(0; F(0))→ K0

p(E0)⊗C that is
right-inverse to the equivariant Chern character. This is Matthey’s definition of β(t)p .

To describe how this map decomposes in the real case, we need to recall the
definition of the K-homological fundamental class [G(p)

n ]K. We start with the fun-
damental classes [G(p)

]K ∈ Kp(EG(p)), which are defined as

[G(0)
]K := 1 ∈ K0(EG(0))= K0(pt),

[G(1)
]K := [S1

]K ∈ K1(S1)∼= KZ
1 (EZ),

[G(2)
]K := [6g]K ∈ K2(6g)∼= K0g

2 (E0g).

That is, [G(p)
]K is the K-homological fundamental class of the point, the circle or

an oriented surface of positive genus. Observe that we may take EG(p)
n = EG(p)

by letting Z/nZ act trivially. Then we set

[G(p)
n ]K :=

n−1∑
l=0

(
[G(p)

]K×[ω
l
n]
)
⊗ω−l

n ∈ KG(p)
n

p (EG(p)
n )⊗C,

whereωn :=e2π i/n is the primitive n-th root of unity and [ωl
n]∈R(Z/nZ)=KZ/nZ

0 (pt)
the corresponding representation.

To obtain the real counterparts to this, we first observe how [ωl
n] ∈ KZ/nZ

0 (pt)
decomposes under the isomorphism from Proposition 2.1, (2.5) and (2.6). Indeed,
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KZ/nZ

0 (pt)⊗Q∼=
(
KOZ/nZ

0 (pt)⊕KOZ/nZ

2 (pt)
)
⊗Q

∼= (RO(Z/nZ)⊕R(Z/nZ)/(1+ τ))⊗Q.

Given an element x ∈ R(Z/nZ)⊗Q, we write <x := r(x)/2 ∈RO(Z/nZ)⊗Q and
=x ∈ R(Z/nZ)/(1+ τ)= KOZ/nZ

2 (pt) for the class represented by x/2. Then we
have x = c(<x +=x). We define

[G(p)
n ]

0
KO :=

n−1∑
l=0

([G(p)
]KO×<[ω

l
n])⊗ω

−l
n ∈ KOG(p)

n
p (EG(p)

n )⊗C,

[G(p)
n ]

1
KO :=

n−1∑
l=0

([G(p)
]KO×=[ω

l
n])⊗ω

−l
n ∈ KOG(p)

n
p+2(EG(p)

n )⊗C.

(3.1)

Here [G(p)
]KO denotes the KO-fundamental class of the point, the circle or a sur-

face, respectively. We find that [G(p)
n ]K = [G

(p)
n ]

0
KO⊕[G

(p)
n ]

1
KO under the isomor-

phism from Proposition 2.1. The homological fundamental class also decomposes
as [G(p)

n ] = [G
(p)
n ]

0
⊕[G(p)

n ]
1 according to

Hp(G(p)
n ;FG(p)

n )= Hp(G(p)
n ;F

0G(p)
n )⊕Hp(G(p)

n ;F
1G(p)

n ).

From this discussion we deduce:

Proposition 3.2. The real versions of Matthey’s maps from Corollary 2.4 are given
by

β(t)p,q : Hp(0;Fq(0))→ KO0
p+2q(E0)⊗C, φ∗[G(p)

n ]
q
7→ φ∗[G(p)

n ]
q
KO.

Remark 3.3. The element [G(p)
n ]

0
KO can be rewritten as

[G(p)
n ]

0
KO =

bn/2c∑
l=0

([G(p)
]KO×<[ω

l
n])⊗ 2 cos(2πl/n).

A similar equation involving the sine function holds for [G(p)
n ]

1
KO. Thus it would be

possible to restrict to real coefficients. However, we shall not use this any further,
and continue to keep complex coefficients everywhere.

4. Secondary index classes of psc metrics for finite groups

The proposition below is essentially due to Botvinnik and Gilkey [1995], albeit
formulated in a slightly different way. In the proof, we briefly explain for the
convenience of the reader how its statement can be deduced from the result in the
literature:

Proposition 4.1. Suppose that H is a finite group and n ≥ 6. Then the ρ-invariant
ρ : Pspin

n−1(BH)→ SR
n−1(H) is rationally surjective.
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Proof. We only need to consider n to be even because the analytic structure group
of a finite group rationally vanishes in odd degrees. Let n = 4k + 2q with k ≥ 1
and q ∈ {0, 1}. Each (virtual) unitary representation π of H induces a trace func-
tional trπ : K0(CH) → Z. If π is of virtual dimension 0, then trπ extends to
a functional ηπ : SC

1 (H)→ R on the complex version of the analytic structure
group; see [Higson and Roe 2010]. By the construction of ηπ , the composition
ηπ ◦ ρ : P

spin
4k+2q−1(BH)→ R recovers the relative η-invariant used in [Botvinnik

and Gilkey 1995].
Since finite groups satisfy the Baum–Connes conjecture, the Higson–Roe se-

quence rationally becomes a short exact sequence:

0→Q→ K0(CH)⊗Q→ SC
1 (H)⊗Q→ 0. (4.2)

Let R0(H) denote the space of virtual unitary representations of dimension 0. The
pairing R(H)⊗Q×K0(CH)⊗Q→ Q, (π, x) 7→ trπ (x) is nondegenerate. We
conclude from this and (4.2) that the pairing

R0(H)⊗R×SC
1 (H)⊗R→ R, (π, x) 7→ ηπ (x) (4.3)

is also nondegenerate. The complex analytic structure group admits a decomposi-
tion SC

1 (H)⊗Q∼= (SR
1 (H)⊕ SR

3 (H))⊗Q analogous to Proposition 2.1. Applying
this to (4.3) yields a nondegenerate pairing

Rq
0(H)⊗R×SR

2q−1(H)⊗R→ R, (π, x) 7→ ηπ (x) (4.4)

for each q ∈ {0, 1}.
Finally, let 4k+2q ≥ 6. Then [Botvinnik and Gilkey 1995, Theorem 2.1] implies

that the composition

Pspin
4k+2q−1(BH)⊗R

ρ⊗R
−−−→ SR

2q−1(H)⊗R

⊕
i ηπi
−−−−→ Rdim Rq

0 (H)

is surjective, where (πi )i is a basis of Rq
0(H)⊗R. Since the pairing (4.4) is nonde-

generate, the latter map in this composition is an isomorphism. Thus ρ⊗R must
be surjective as well. �

Corollary 4.5. Suppose that H is a finite group and n ≥ 6. Then the relative index
map α : Rspin

n (BH)→ KOn(C∗r H) is rationally surjective.

Proof. Again we only need to consider n to be even and let n = 4k + 2q ≥ 6.
For a finite group H , the groups �spin

l (BH) and KOl(BH) are torsion for l 6≡ 0
mod 4. Moreover, β⊗Q :�

spin
4k (BH)⊗Q→ KO0(BH)⊗Q is surjective because

KO0(BH)⊗Q∼=KO0(pt)⊗Q is generated by the class represented by any product
of Kummer surfaces. By Proposition 4.1, the ρ-invariant

ρ⊗Q : Pspin
4k+2q−1(BH)⊗Q→ SR

2q−1(H)⊗Q
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is also surjective. Thus we have a diagram of exact sequences

�
spin
4k+2q(BH)⊗Q Rspin

4k+2q(BH)⊗Q Pspin
4k+2q−1(BH)⊗Q 0

KO2q(BH)⊗Q KO2q(RH)⊗Q SR
2q−1(H)⊗Q 0

β⊗Q α⊗Q ρ⊗Q

The four lemma implies that α⊗Q must be surjective as well. �

5. Proof of main results

Our main result, Theorem 1.3, follows immediately from Proposition 3.2 and the
following lemma.

Lemma 5.1. For each n ∈ N, p ∈ {0, 1, 2}, q ∈ {0, 1} and k ≥ 1 with 4k+ 2q ≥ 6,
there exists [G(p)

n ]
q
psc ∈ Rspin

p+2q+4k(BG(p)
n )⊗C with

α([G(p)
n ]

q
psc)= µ([G

(p)
n ]

q
KO) ∈ KO2q(C∗r G(p)

n )⊗C.

Proof. Let

xq
n,l :=

{
<[ωl

n], q = 0
=[ωl

n], q = 1
∈ KOZ/nZ

2q (pt).

By Corollary 4.5, we can choose an element yq,k
n,l ∈ Rspin

2q+4k(BZ/nZ)⊗Q such that
α(yq,k

n,l )= µ(x
q
n,l) ∈ KO2q(C∗r (Z/nZ))⊗Q. Now let [G(0)

]� := [pt] ∈�spin
0 (pt),

[G(1)]� := [S1] ∈ �
spin
1 (BZ) and [G(2),g

]� := [6g] ∈ �
spin
2 (B0g) ⊗ Q. Note

that for the latter we need to choose one from the 22g different spin structures on
the oriented surface. However, rationally the element [6g] is independent of this
choice. Taking direct products yields a map �spin

l (X)⊗Rspin
m (Y )

×
−→ Rspin

l+m(X × Y ).
Using this, we let

[G(p)
n ]

q
psc :=

n−1∑
l=0

([G(p)
]�× yq,k

n,l )⊗ω
−l
n ∈ Rspin

p+2q+4k(BG(p)
n )⊗C. �

Proof of Theorem 1.3. We have the diagram

Hp(0;Fq0) Hp(0;F0)

Rspin
p+2q+4k(B0)⊗C

KO0
p+2q(E0)⊗C KOp+2q(C∗r0)⊗C Kp(C∗r0)⊗C

β
(psc)
p,q,k

β
(t)
p,q

β
(a)
p

α⊗C

µ⊗C c⊗C
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where by construction of β(t)p,q the outer paths commute. To prove the existence of
β
(psc)
p,q,k , it suffices to show that the image of µ⊗C ◦β

(t)
p,q is contained in the image

of α⊗C. Proposition 3.2 implies that the image of β(t)p,q is generated by elements
of the form φ∗[G

(p)
n ]

q
KO, where [G(p)

n ]
q
KO is defined in (3.1) and φ : G(p)

n → 0 is a
group homomorphism. Thus it suffices to show that the elements µ(φ∗[G

(p)
n ]

q
KO)

are contained in the image of α⊗C. Indeed, Lemma 5.1 states that µ([G(p)
n ]

q
KO)

admits a lift to Rspin
p+2q+4k(BG(p)

n ). Therefore, by functoriality, we conclude that
µ(φ∗[G

(p)
n ]

q
KO) admits a lift to Rspin

p+2q+4k(B0). �

Proof of Corollary 1.5. Ifµ⊗Q is injective, then β(a)p =µ⊗C◦β
(t)
p maps Hp(0; F0)

injectively into Kp(C∗r0)⊗C. Thus the diagram in Theorem 1.3 implies that for
fixed n the following map must be injective:∑

p+2q+4k=n

β
(psc)
p,q,k :

⊕
p+2q∈n+4Z

Hp(0;Fq0)→ Rspin
n (B0)⊗C. (5.2)

Here p, q , k range over {0, 1, 2}, {0, 1}, Z, respectively. Unpacking this yields the
table in the statement of Corollary 1.5. �

Proof of Corollary 1.6. The image in K0
p(E0)⊗C of the restriction of β(t)p to

Hp(0; F0
00⊕F10) intersects trivially with the image of Kp(B0)⊗C ↪→K0

p(E0)⊗C.
This follows from the decomposition of the handicrafted Chern character based on
the Shapiro isomorphism; see [Matthey 2004, Theorem 1.4]. Thus the injectivity
of (5.2) together with a diagram chase involving (1.1) implies that the following
map must be injective as well:∑

p+2q+4k=n

∂ ◦β
(psc)
p,q,k :

⊕
p+2q∈n+4Z

Hp(0;F
q
00)→ Pspin

n−1(B0)⊗C.

Here we use the convention F1
00 := F10. �

Proof of Corollary 1.8. If the rational homological dimension of 0 is at most 2,
then the map ∑

p+2q∈n+4Z

β(t)p,q :
⊕

p+2q∈n+4Z

Hp(0;F0q)→ KO0
n (E0)⊗C

is the inverse to the Chern character. In particular, it is surjective. If the rational
Baum–Connes assembly map µ⊗Q is also surjective, then this implies that the
following is surjective too:∑
p+2q∈n+4Z

β(a)p,q =µ⊗C ◦
∑

p+2q∈n+4Z

β(t)p,q :
⊕

p+2q∈n+4Z

Hp(0;F0q)→KOn(C∗r0)⊗C.

Theorem 1.3 implies that for n ≥ 7, the image of β(a)p,q is contained in the image
of α⊗C, which proves surjectivity of α⊗C and thus of α⊗Q.
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If µ⊗Q is injective, then ν ⊗Q is injective and by exactness the boundary
map ∂ ⊗Q : KOn(C∗r0)⊗Q→ SR

n−1(0)⊗Q is surjective. Hence the surjectivity
statement for ρ⊗Q if µ⊗Q is an isomorphism follows from surjectivity of α⊗Q

and commutativity of the diagram (1.1). �
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