

K

 T

 T HE HE

vol. 3 no. 42018

Localization C^{*}-algebras and K-theoretic duality

Marius Dadarlat, Rufus Willett and Jianchao Wu

A JOURNAL OF THE K-THEORY FOUNDATION

Localization \boldsymbol{C}^{*}-algebras and \boldsymbol{K}-theoretic duality

Marius Dadarlat, Rufus Willett and Jianchao Wu

Abstract

Based on the localization algebras of Yu, and their subsequent analysis by Qiao and Roe, we give a new picture of $K K$-theory in terms of time-parametrized families of (locally) compact operators that asymptotically commute with appropriate representations.

1. Introduction

Let A be a unital C^{*}-algebra, unitally represented on a Hilbert space H. Assume that there is a continuous family $\left(q_{t}\right)_{t \in[0, \infty)}$ of compact projections on H that asymptotically commutes with A, meaning that $\left[q_{t}, a\right] \rightarrow 0$ as $t \rightarrow \infty$ for all $a \in A$. Note that if p is a projection in A, then the family $t \mapsto p q_{t}$ of compact operators gets close to being a projection, and is thus close to a projection that is uniquely defined up to homotopy; in particular, there is a well-defined K-theory class $\left[p q_{t}\right] \in K_{0}(K(H))=\mathbb{Z}$. It is moreover not difficult to see that this idea can be bootstrapped up to define a homomorphism

$$
\begin{equation*}
\left[q_{t}\right]: K_{0}(A) \rightarrow \mathbb{Z}, \quad[p] \mapsto\left[p q_{t}\right] \tag{1.1}
\end{equation*}
$$

This suggests using such parametrized families $\left(q_{t}\right)_{t \in[0, \infty)}$ to define elements of K-homology.

Indeed, something like this has been done when $A=C(X)$ is commutative. In this case, the condition that $\left[q_{t}, a\right] \rightarrow 0$ is equivalent to the condition that the "propagation" of q_{t} (in the sense of [Roe 1993, Definition 4.5]) tends to zero, up to an arbitrarily good approximation. Motivated by considerations like the above, and by the heat kernel approach to the Atiyah-Singer index theorem, Yu [1997] described K-homology for simplicial complexes in terms of families with asymptotically vanishing propagation using his localization algebras. Subsequently, Qiao and Roe [2010] gave a new approach to this result of Yu that works for all compact (in fact, all proper) metric spaces.

Dadarlat was partially supported by NSF grants \#DMS-1362824 and \#DMS-1700086. Willett was partially supported by NSF grants \#DMS-1401126 and \#DMS-1564281. Wu was partially supported by SFB 878 Groups, Geometry and Actions and ERC grant no. 267079.
MSC2010: primary $19 \mathrm{~K} 35,19 \mathrm{~K} 56$; secondary 46L80.
Keywords: K-theory, duality, operator algebras.

In this paper, we present a new picture of Kasparov's $K K$ groups [Kasparov 1980b] based on asymptotically commuting families. Thanks to the relationship between asymptotically vanishing propagation and asymptotic commutation, our picture can be thought of as an extension of the results of Yu and Qiao-Roe from commutative to general (separable) C^{*}-algebras, and from K-homology to $K K$ theory. We think this gives an attractive picture of $K K$-theory. We also suspect that the ease with which the pairing in (1.1) is defined - note that unlike in the case of Paschke duality, there is no dimension shift, and unlike in the case of E theory, there is no suspension - should be useful for future applications. Having said this, we should note that the picture of the pairing in (1.1) is overly simplified, as in general to get the whole $K K$ group one needs to consider formal differences of such families of projections $\left(q_{t}\right)$ in an appropriate sense.

We now give precise statements of our main results. For a C^{*}-algebra B, we denote by $C_{u}(T, B)$ the C^{*}-algebra of bounded and uniformly continuous functions from $T=[0, \infty)$ to B. Inspired by [Yu 1997; Qiao and Roe 2010], we define the localization algebra $\mathcal{C}_{L}(\pi)$ associated to a representation π of a separable C^{*} algebra A on a separable Hilbert space to be the C^{*}-subalgebra of $C_{u}(T, L(H))$ consisting of all the functions f such that for all $a \in A$,

$$
[f, \pi(a)] \in C_{0}(T, K(H)) \quad \text { and } \quad \pi(a) f \in C_{u}(T, K(H)) .
$$

Let us recall that a representation π is ample if it is nondegenerate, faithful and $\pi(A) \cap K(H)=\{0\}$. One verifies that the isomorphism class of $\mathcal{C}_{L}(\pi)$ does not depend on the choice of an ample representation π. In this case, we write $\mathcal{C}_{L}(A)$ in place of $\mathcal{C}_{L}(\pi)$ and view A as a C^{*}-subalgebra of $L(H)$. Note that if A is unital, then

$$
\mathcal{C}_{L}(A)=\left\{f \in C_{u}(T, K(H)):[f, a] \in C_{0}(T, K(H)), \forall a \in A\right\} .
$$

In this paper we establish canonical isomorphisms $K^{i}(A) \cong K_{i}\left(\mathcal{C}_{L}(A)\right), i=0,1$, between the K-homology of A and the K-theory of the localization algebra $\mathcal{C}_{L}(A)$. More generally, we use results of [Thomsen 2001] to show that for separable C^{*} algebras A, B and any absorbing representation $\pi: A \rightarrow L\left(H_{B}\right)$ on the standard infinite dimensional countably generated right Hilbert B-module H_{B}, there are canonical isomorphisms of groups

$$
\begin{equation*}
K K_{i}(A, B) \stackrel{ }{\cong} K_{i}\left(\mathcal{C}_{L}(\pi)\right), \quad i=0,1, \tag{1.2}
\end{equation*}
$$

where the localization C^{*}-algebra $\mathcal{C}_{L}(\pi)$ consists of those functions $f \in C_{u}\left(T, L\left(H_{B}\right)\right)$ such that for all $a \in A$,

$$
[f, \pi(a)] \in C_{0}\left(T, K\left(H_{B}\right)\right) \quad \text { and } \quad \pi(a) f \in C_{u}\left(T, K\left(H_{B}\right)\right) .
$$

The isomorphism in (1.2) is defined and proved by combining Paschke duality with a generalization of the techniques used by Roe and Qiao in the commutative case.

The paper is structured as follows. In Section 2, we discuss absorbing representations and give a version of Voiculescu's theorem appropriate to localization algebras. In Section 3, we define the various dual algebras and localization algebras that we use, and show that they do not depend on the choice of absorbing representation. In Section 4, we prove the isomorphism in (1.2). Finally, in Section 5, we construct maps $K_{i}\left(\mathcal{C}_{L}(\pi)\right) \rightarrow E_{i}(A, B)$ and show that they "invert" the isomorphism in (1.2) in the sense that the composition $K K_{i}(A, B) \rightarrow K_{i}\left(\mathcal{C}_{L}(\pi)\right) \rightarrow E_{i}(A, B)$ is the canonical natural transformation from $K K$-theory to E-theory.

2. Absorbing representations

Let A and B be separable C^{*}-algebras. If E and F are countably generated right Hilbert B-modules, we denote by $L(E, F)$ the C^{*}-algebra of bounded B-linear adjointable operators from E to F. The corresponding C^{*}-algebra of "compact" operators is denoted by $K(E, F)$ [Kasparov 1980a]. Set $L(E)=L(E, E)$ and $K(E)=K(E, E)$. Recall that H_{B} is the standard infinite dimensional countably generated right Hilbert B-module.

We shall use the notion of (unitally) absorbing *-representations $\pi: A \rightarrow L\left(H_{B}\right)$; see [Thomsen 2001].

Definition 2.1. (i) Suppose that A is a unital separable C^{*}-algebra. A unital representation $\pi: A \rightarrow L\left(H_{B}\right)$ is called unitally absorbing for the pair (A, B) if for any other unital representation $\sigma: A \rightarrow L(E)$, there is an isometry $v \in C_{b}\left(\mathbb{N}, L\left(E, H_{B}\right)\right)$ such that $v \sigma(a)-\pi(a) v \in C_{0}\left(\mathbb{N}, K\left(E, H_{B}\right)\right)$ for all $a \in A$.
(ii) Suppose that A is a separable C^{*}-algebra. We denote by \tilde{A} the unitalization of A, with the convention that $\widetilde{A}=A$ if A is already unital. A representation $\pi: A \rightarrow L\left(H_{B}\right)$ is called absorbing for the pair (A, B) if its unitalization $\tilde{\pi}: \widetilde{A} \rightarrow L\left(H_{B}\right)$ is unitally absorbing for the pair (\widetilde{A}, B).

Note that in Definition 2.1, if we denote the components of v by v_{n}, we have $v_{n} \sigma(a)-\pi(a) v_{n} \in K\left(E, H_{B}\right)$ and $\lim _{n \rightarrow \infty}\left\|v_{n} \sigma(a)-\pi(a) v_{n}\right\|=0$ for all $a \in A$.

Theorem 2.2 [Voiculescu 1976]. Any ample representation of a separable C^{*} algebra on a separable infinite dimensional Hilbert space is absorbing.

Theorem 2.3 [Kasparov 1980a]. Let A be a unital separable C^{*}-algebra and let B be a σ-unital C^{*}-algebra. If either A or B are nuclear, then any unital ample representation $\pi: A \rightarrow L(H) \subset L\left(H_{B}\right)$ is absorbing for the pair (A, B).

Theorem 2.4 [Thomsen 2001]. For any separable C^{*}-algebras A and B there exist absorbing representations $\pi: A \rightarrow L\left(H_{B}\right)$.

Given two $*$-representations $\pi_{i}: A \rightarrow L\left(E_{i}\right)$ we write that $\pi_{1} \preccurlyeq \pi_{2}$ if there is an isometry $v \in C_{u}\left(T, L\left(E_{1}, E_{2}\right)\right)$ such that

$$
v \pi_{1}(a)-\pi_{2}(a) v \in C_{0}\left(T, K\left(E_{1}, E_{2}\right)\right) .
$$

If in addition $v \in C_{u}\left(T, L\left(E_{1}, E_{2}\right)\right)$ is a unitary with the same property, then we write $\pi_{1} \widetilde{\widetilde{v}} \pi_{2}$.

Let $w^{\infty}: E_{1}^{\infty} \rightarrow E_{1} \oplus E_{1}^{\infty}$ be the unitary defined by

$$
w^{\infty}\left(h_{0}, h_{1}, h_{2}, \ldots\right)=h_{0} \oplus\left(h_{1}, h_{2}, \ldots\right) .
$$

Lemma 2.5 [Dadarlat and Eilers 2002, Lemma 2.16]. Let $\pi_{i}: A \rightarrow L\left(E_{i}\right)$ for $i=1,2$ be two representations and let $v \in L\left(E_{1}^{\infty}, E_{2}\right)$ be an isometry such that $v \pi_{1}^{\infty}(a)-\pi_{2}(a) v \in K\left(E_{1}^{\infty}, E_{2}\right)$ for all $a \in A$. Then

$$
u=\left(1_{E_{1}} \oplus v\right) w^{\infty} v^{*}+\left(1_{E_{2}}-v v^{*}\right) \in L\left(E_{2}, E_{1} \oplus E_{2}\right)
$$

is a unitary operator such that $\pi_{1}(a) \oplus \pi_{2}(a)-u \pi_{2}(a) u^{*} \in K\left(E_{1} \oplus E_{2}\right)$ for all $a \in A$ and moreover,

$$
\left\|\pi_{1}(a) \oplus \pi_{2}(a)-u \pi_{2}(a) u^{*}\right\| \leq 6\left\|v \pi_{1}^{\infty}(a)-\pi_{2}(a) v\right\|+4\left\|v \pi_{1}^{\infty}\left(a^{*}\right)-\pi_{2}\left(a^{*}\right) v\right\| .
$$

Using this lemma, one gets the following strengthened variation of Voiculescu's theorem [1976]. This result appears in [Dadarlat and Eilers 2001] as Theorem 3.11, except that the uniform continuity of the isometry v and the unitary u were not addressed explicitly in the statement.

Theorem 2.6. Let A, B be separable C^{*}-algebras and let $\pi_{i}: A \rightarrow L\left(E_{i}\right), i=1,2$, be two representations where $E_{i} \cong H_{B}$. If π_{2} is absorbing, then $\pi_{1} \preccurlyeq \pi_{2}$ for some isometry $v \in C_{u}\left(T, L\left(E_{1}, E_{2}\right)\right)$. If both π_{1} and π_{2} are absorbing, then $\pi_{1} \widetilde{\widetilde{u}} \pi_{2}$ for some unitary $u \in C_{u}\left(T, L\left(E_{1}, E_{2}\right)\right)$.

Proof. As π_{2} absorbs π_{2}^{∞} there is an isometry $u=\left(u_{n}\right)_{n} \in C_{b}\left(\mathbb{N}, L\left(E_{2}^{\infty}, E_{2}\right)\right)$ such that $u \pi_{2}^{\infty}(a)-\pi_{2}(a) u \in C_{0}\left(\mathbb{N}, K\left(E_{2}^{\infty}, E_{2}\right)\right)$ for all $a \in A$. As π_{2} absorbs π_{1}, there is a sequence of isometries $w_{n} \in L\left(E_{1}, E_{2}^{\infty}\right)$ with mutually orthogonal ranges such that $w_{n} \pi_{1}(a)-\pi_{2}^{\infty}(a) w_{n} \in K\left(E_{1}, E_{2}^{\infty}\right)$ and $\lim _{n \rightarrow \infty}\left\|w_{n} \pi_{1}(a)-\pi_{2}^{\infty}(a) w_{n}\right\|=0$ for all $a \in A$. Then $v_{n}=u_{n} w_{n} \in L\left(E_{1}, E_{2}\right)$ is a sequence of isometries with orthogonal ranges such that the corresponding isometry $v \in C_{b}\left(\mathbb{N}, L\left(E_{1}, E_{2}\right)\right)$ satisfies $v \pi_{1}(a)-\pi_{2}(a) v \in C_{0}\left(\mathbb{N}, K\left(E_{1}, E_{2}\right)\right)$ for all $a \in A$. This follows from the identity $u_{n} w_{n} \pi_{1}(a)-\pi_{2}(a) u_{n} w_{n}=u_{n}\left(w_{n} \pi_{1}(a)-\pi_{2}^{\infty}(a) w_{n}\right)+\left(u_{n} \pi_{2}^{\infty}(a)-\pi_{2}(a) u_{n}\right) w_{n}$.

Since $v_{n}^{*} v_{m}=0$ for $n \neq m$, one observes that $\boldsymbol{v}(n+s)=(1-s)^{1 / 2} v_{n}+s^{1 / 2} v_{n+1}$, $0 \leq s \leq 1$, extends v to a uniformly continuous isometry $\boldsymbol{v} \in C_{u}\left(T, L\left(E_{1}, E_{2}\right)\right)$ that satisfies $\pi_{1} \preccurlyeq \pi_{2}$.

For the second part of the statement, we note that by the first part $\pi_{1}^{\infty} \preccurlyeq \pi_{2}$. Thus, $v \pi_{1}^{\infty}(a)-\pi_{2}(a) v \in C_{0}\left(T, K\left(E_{1}^{\infty}, E_{2}\right)\right)$ for all $a \in A$ where $v=\left(v_{t}\right)_{t \in T}$ is a uniformly continuous isometry with $v_{t} \in L\left(E_{1}^{\infty}, E_{2}\right)$. It follows by Lemma 2.5 that

$$
u_{t}=\left(1_{E_{1}} \oplus v_{t}\right) w^{\infty} v_{t}^{*}+\left(1_{E_{2}}-v_{t} v_{t}^{*}\right)
$$

is a uniformly continuous unitary such that $\pi_{1} \oplus \pi_{2} \approx \pi_{2}$. By symmetry we have that $\pi_{1} \oplus \pi_{2} \approx \pi_{1}$ and hence $\pi_{1} \approx \pi_{2}$.

3. Dual algebras

Let A and B be separable C^{*}-algebras and let $\pi: A \rightarrow L\left(H_{B}\right)$ be a $*$-representation.
Definition 3.1. The localization algebra $\mathcal{C}_{L}(\pi)$ associated to π is the C^{*}-subalgebra of $C_{u}\left(T, L\left(H_{B}\right)\right)$ consisting of all functions f such that $[f, \pi(a)] \in C_{0}\left(T, K\left(H_{B}\right)\right)$ and $\pi(a) f \in C_{u}\left(T, K\left(H_{B}\right)\right)$ for all $a \in A$.

While $\mathcal{C}_{L}(\pi)$ is the central object of the paper, we also need to consider a series of pairs of C^{*}-algebras and ideals which will play a supporting role:

$$
\begin{aligned}
\mathcal{D}(\pi) & =\left\{b \in L\left(H_{B}\right):[b, \pi(a)] \in K\left(H_{B}\right), \forall a \in A\right\}, \\
\mathcal{C}(\pi) & =\left\{b \in L\left(H_{B}\right): \pi(a) b \in K\left(H_{B}\right), \forall a \in A\right\},
\end{aligned}
$$

and their parametrized versions,

$$
\begin{aligned}
\mathcal{D}_{T}(\pi) & =\left\{f \in C_{u}\left(T, L\left(H_{B}\right)\right):[f, \pi(a)] \in C_{u}\left(T, K\left(H_{B}\right)\right), \forall a \in A\right\} \cong C_{u}(T, \mathcal{D}(\pi)) \\
\mathcal{C}_{T}(\pi) & =\left\{f \in C_{u}\left(T, L\left(H_{B}\right)\right): \pi(a) f \in C_{u}\left(T, K\left(H_{B}\right)\right), \forall a \in A\right\} \cong C_{u}(T, \mathcal{C}(\pi))
\end{aligned}
$$

The evaluation map at 0 leads to the pair

$$
\begin{aligned}
\mathcal{D}_{T}^{0}(\pi) & =\left\{f \in \mathcal{D}_{T}(\pi): f(0)=0\right\} \\
\mathcal{C}_{T}^{0}(\pi) & =\left\{f \in \mathcal{C}_{T}(\pi): f(0)=0\right\}
\end{aligned}
$$

Finally, we view the localization algebra $\mathcal{C}_{L}(\pi)$ as an ideal of

$$
\begin{aligned}
\mathcal{D}_{L}(\pi) & =\left\{f \in C_{u}\left(T, L\left(H_{B}\right)\right):[f, \pi(a)] \in C_{0}\left(T, K\left(H_{B}\right)\right), \forall a \in A\right\} \\
\mathcal{C}_{L}(\pi) & =\left\{f \in \mathcal{D}_{L}(\pi): \pi(a) f \in C_{u}\left(T, K\left(H_{B}\right)\right), \forall a \in A\right\}
\end{aligned}
$$

In order to simplify some of the statements, it is useful to introduce the following notation: $A_{1}(\pi)=\mathcal{D}_{T}(\pi), A_{2}(\pi)=\mathcal{C}_{T}(\pi), A_{3}(\pi)=\mathcal{D}_{T}^{0}(\pi), A_{4}(\pi)=\mathcal{C}_{T}^{0}(\pi)$, $A_{5}(\pi)=\mathcal{D}_{L}(\pi)$ and $A_{6}(\pi)=\mathcal{C}_{L}(\pi)$. We are going to see that the isomorphism classes of these C^{*}-algebras are independent of π, provided that π is an absorbing representation. We follow the presentation from [Higson and Roe 2000, Section 5.2], where analogous properties of $\mathcal{D}(\pi)$ and $\mathcal{C}(\pi)$ are established, except that we need to employ a strengthened version of Voiculescu's theorem, contained in Theorem 2.6 above.

Let $\pi_{1}, \pi_{2}: A \rightarrow L\left(H_{B}\right)$ be two representations.
Lemma 3.2. If $\pi_{1} \preccurlyeq \pi_{2}$, then the equation $\Phi_{v}(f)=v f v^{*}$ defines $a *$-homomorphism

$$
\Phi_{v}: \mathcal{D}_{T}\left(\pi_{1}\right) \rightarrow \mathcal{D}_{T}\left(\pi_{2}\right)
$$

with the property that $\Phi_{v}\left(A_{j}\left(\pi_{1}\right)\right) \subset A_{j}\left(\pi_{2}\right)$ for all $1 \leq j \leq 6$.
Proof. This follows from the identities

$$
\begin{aligned}
& {\left[v f v^{*}, \pi_{2}(a)\right]=v\left[f, \pi_{1}(a)\right] v^{*}+\left(v \pi_{1}(a)\right.}\left.-\pi_{2}(a) v\right) f v^{*} \\
&-v f\left(v \pi_{1}\left(a^{*}\right)-\pi_{2}\left(a^{*}\right) v\right)^{*}, \\
& \pi_{2}(a) v f v^{*}=v \pi_{1}(a) f v^{*}-\left(v \pi_{1}(a)-\pi_{2}(a) v\right) f v^{*} .
\end{aligned}
$$

Corollary 3.3. Let $\pi_{1}, \pi_{2}: A \rightarrow L\left(H_{B}\right)$ be two absorbing representations. Then $A_{j}\left(\pi_{1}\right) \cong A_{j}\left(\pi_{2}\right)$ for all $1 \leq j \leq 6$.
Proof. Theorem 2.6 yields a unitary $v \in C_{u}\left(T, L\left(H_{B}\right)\right)$ such that $\pi_{1} \widetilde{v} \pi_{2}$. The corresponding maps $\Phi_{v}: A_{j}\left(\pi_{1}\right) \rightarrow A_{j}\left(\pi_{2}\right)$ are isomorphisms.
Lemma 3.4. Let $\pi_{1}, \pi_{2}: A \rightarrow L\left(H_{B}\right)$ be two representations of A and suppose that v_{1}, v_{2} are two isometries such that $\pi_{1} \preccurlyeq \pi_{v_{i}}, i=1,2$. Then

$$
\left(\Phi_{v_{1}}\right)_{*}=\left(\Phi_{v_{2}}\right)_{*}: K_{*}\left(A_{j}\left(\pi_{1}\right)\right) \rightarrow K_{*}\left(A_{j}\left(\pi_{2}\right)\right)
$$

for all $1 \leq j \leq 6$.
Proof. The unitary

$$
u=\left(\begin{array}{cc}
1-v_{1} v_{1}^{*} & v_{1} v_{2}^{*} \\
v_{2} v_{1}^{*} & 1-v_{2} v_{2}^{*}
\end{array}\right) \in M_{2}\left(\mathcal{D}_{L}\left(\pi_{2}\right)\right)
$$

conjugates $\left(\begin{array}{cc}\Phi_{v_{1}} & 0 \\ 0 & 0\end{array}\right)$ over $\left(\begin{array}{ll}0 & 0 \\ 0 & \Phi_{v_{1}}\end{array}\right)$. It follows that

$$
\left(\Phi_{v_{1}}\right)_{*}=\left(\Phi_{v_{2}}\right)_{*}: K_{*}\left(\mathcal{D}_{T}\left(\pi_{1}\right)\right) \rightarrow K_{*}\left(\mathcal{D}_{T}\left(\pi_{2}\right)\right) .
$$

Similarly, one verifies that the equality $\left(\Phi_{v_{1}}\right)_{*}=\left(\Phi_{v_{2}}\right)_{*}: K_{*}\left(A_{j}\left(\pi_{1}\right)\right) \rightarrow K_{*}\left(A_{j}\left(\pi_{2}\right)\right)$ holds for all $1 \leq j \leq 6$.

Denote by π^{∞} the direct sum $\pi^{\infty}=\bigoplus_{n=1}^{\infty} \pi: A \rightarrow L\left(H_{B}^{\infty}\right)=L\left(\bigoplus_{n=1}^{\infty} H_{B}\right)$.
Corollary 3.5. If $\pi: A \rightarrow L\left(H_{B}\right)$ is an absorbing representation, then the inclusion $\mathcal{D}_{T}(\pi) \rightarrow \mathcal{D}_{T}\left(\pi^{\infty}\right), f \mapsto(f, 0,0, \ldots)$ induces isomorphisms on K-theory: $K_{*}\left(A_{j}(\pi)\right) \rightarrow K_{*}\left(A_{j}\left(\pi^{\infty}\right)\right)$, for all $1 \leq j \leq 6$.
Proof. We have $\pi \underset{v}{\preccurlyeq} \pi^{\infty}$, where $v \in C_{u}\left(T, L\left(H_{B}, H_{B}^{\infty}\right)\right)$ is the constant isometry defined by $v(t)(h)=(h, 0,0, \ldots)$ for any $t \in T$ and $h \in H_{B}$. The inclusion map from the statement coincides with Φ_{v}. On the other hand, $\pi \widetilde{\widetilde{u}} \pi^{\infty}$ since π is absorbing, and hence Φ_{u} is an isomorphism. We conclude the proof by noting that $\left(\Phi_{v}\right)_{*}=\left(\Phi_{u}\right)_{*}$ by Lemma 3.4.

4. A duality isomorphism

Let A and B be separable C^{*}-algebras. We are going to show that when we fix an absorbing representation $\pi: A \rightarrow L\left(H_{B}\right)$ - the existence of such an absorbing representation is guaranteed by Theorem 2.4 - the K-theory of $\mathcal{C}_{L}(\pi)$ is canonically isomorphic to the $K K$-theory of the pair (A, B).

We start with a technical lemma that will be used several times later.
Lemma 4.1. For any separable C^{*}-algebra $D \subset C_{u}\left(T, L\left(H_{B}\right)\right)$, there is a positive contraction $x \in C_{u}\left(T, K\left(H_{B}\right)\right)$ such that
(a) $[x, d] \in C_{0}\left(T, K\left(H_{B}\right)\right)$ for all $d \in D$, and
(b) $(1-x) d \in C_{0}\left(T, K\left(H_{B}\right)\right)$ for all $d \in D \cap C_{u}\left(T, K\left(H_{B}\right)\right)$.

Proof. Our arguments will in fact show that the statement holds true in the more general situation where $L\left(H_{B}\right)$ is replaced by a C^{*}-algebra L and $K\left(H_{B}\right)$ is replaced by a two-sided closed ideal I of L. Let \dot{D} denote the C^{*}-subalgebra of L generated by all images $d(t)$ as d ranges over D and t over T. This is separable, and contains $\dot{C}=\dot{D} \cap I$ as an ideal. Let $\left(x_{n}\right)_{n}$ be a positive contractive approximate unit for \dot{C} which is quasicentral in \dot{D}. Choose countable dense subsets $\left(d_{k}\right)_{k=1}^{\infty}$ and $\left(c_{k}\right)_{k=1}^{\infty}$ of D and $D \cap C_{u}(T, I)$, respectively. As for each n, the subsets $\bigcup_{k=1}^{n}\left\{d_{k}(t): t \in[0, n+1]\right\} \subseteq \dot{D}$ and $\bigcup_{k=1}^{n}\left\{c_{k}(t): t \in[0, n+1]\right\} \subseteq \dot{C}$ are compact, so we may assume on passing to a subsequence of $\left(x_{n}\right)$ that
(i) $\left\|\left[d_{k}(t), x_{n}\right]\right\|<1 /(n+1)$ for all $1 \leq k \leq n$ and all $t \in[0, n+1]$, and
(ii) $\left\|\left(1-x_{n}\right) c_{k}(t)\right\|<1 /(n+1)$ for all $1 \leq k \leq n$ and all $t \in[0, n+1]$.

For $t \in[n, n+1)$, write $s=t-n$ and set $x(t)=(1-s) x_{n}+s x_{n+1}$; note that the function $x: t \mapsto x(t)$ is uniformly continuous. Then from (i) and (ii) above we have
(i) $\left\|\left[d_{k}(t), x(t)\right]\right\|<1 /(n+1)$ for all $1 \leq k \leq n$ and all $t \in[n, n+1)$, and
(ii) $\left\|(1-x(t)) c_{k}(t)\right\|<1 /(n+1)$ for all $1 \leq k \leq n$ and all $t \in[n, n+1)$.

This implies that x has the right properties.
We have obvious inclusions $\mathcal{D}_{L}(\pi) \subset \mathcal{D}_{T}(\pi)$ and $\mathcal{C}_{L}(\pi) \subset \mathcal{C}_{T}(\pi)$, which induce a $*$-homomorphism

$$
\eta: \mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi) \rightarrow \mathcal{D}_{T}(\pi) / \mathcal{C}_{T}(\pi)
$$

Proposition 4.2. For any separable C^{*}-algebras A and B and any representation $\pi: A \rightarrow L\left(H_{B}\right)$, the map η is $a *$-isomorphism.
Proof. It is clear from the definitions that $\mathcal{C}_{L}(\pi)=\mathcal{D}_{L}(\pi) \cap \mathcal{C}_{T}(\pi)$ and hence η is injective. It remains to prove that η is surjective. It suffices to show that for any $f \in \mathcal{D}_{T}(\pi)$ there is $\tilde{f} \in \mathcal{D}_{L}(\pi)$ such that $\tilde{f}-f \in \mathcal{C}_{T}(\pi)$. Let $f \in \mathcal{D}_{T}(\pi)$ be given.

Let D be the C^{*}-subalgebra of $C_{u}\left(T, L\left(H_{B}\right)\right)$ generated by $\pi(A)$ (embedded as constant functions) and f, and let x be as in Lemma 4.1. With this choice of x (that depends on f) we define $\tilde{f}=(1-x) f$. Note that $\tilde{f}=f-x f \in \mathcal{D}_{T}(\pi)$ since $f, x \in \mathcal{D}_{T}(\pi)$, and $\tilde{f}-f=-x f \in C_{u}\left(T, K\left(H_{B}\right)\right)$ since $x \in C_{u}\left(T, K\left(H_{B}\right)\right)$. In particular, it follows that $\tilde{f}-f \in \mathcal{C}_{T}(\pi)$.

It remains to verify that $\tilde{f} \in \mathcal{D}_{L}(\pi)$. This follows as for any $a \in A$,

$$
[\tilde{f}, \pi(a)]=[(1-x) f, \pi(a)]=[\pi(a), x] f+(1-x)[f, \pi(a)] .
$$

An adaptation of the arguments from [Qiao and Roe 2010] gives the following: Proposition 4.3. Let A, B be separable C^{*}-algebras and let $\pi: A \rightarrow L\left(H_{B}\right)$ be an absorbing representation. Then
(a) $K_{*}\left(\mathcal{D}_{L}(\pi)\right)=0$ and hence the boundary map

$$
\partial: K_{*}\left(\mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi)\right) \rightarrow K_{*+1}\left(\mathcal{C}_{L}(\pi)\right)
$$

is an isomorphism;
(b) the evaluation map at $t=0$ induces an isomorphism

$$
e_{*}: K_{*}\left(\mathcal{D}_{T}(\pi) / \mathcal{C}_{T}(\pi)\right) \rightarrow K_{*}(\mathcal{D}(\pi) / \mathcal{C}(\pi)) .
$$

Proof. Fix an ample representation π of A. One verifies that if $f \in \mathcal{D}_{L}(\pi)$, then the formula

$$
F(t):=(f(t), f(t+1), \ldots, f(t+n), \ldots)
$$

defines an element $F \in \mathcal{D}_{L}\left(\pi^{\infty}\right)$. Indeed,

$$
[F(t), \pi(a)]=([f(t), \pi(a)],[f(t+1), \pi(a)], \ldots,[f(t+n), \pi(a)], \ldots)
$$

and each entry belongs to $C_{0}\left(T, K\left(H_{B}\right)\right)$ and is bounded by $\|[f, \pi(a)]\|$. This shows that $[F, \pi(a)] \in C_{u}\left(T, K\left(H_{B}^{\infty}\right)\right)$. Since $[f, \pi(a)] \in C_{0}\left(T, K\left(H_{B}\right)\right)$, it follows immediately that in fact $[F, \pi(a)] \in C_{0}\left(T, K\left(H_{B}^{\infty}\right)\right)$.

With these remarks, the proof of (a) goes just like that of [Qiao and Roe 2010, Proposition 3.5]. Indeed, define $*$-homomorphisms $\alpha_{i}: \mathcal{D}_{L}(\pi) \rightarrow \mathcal{D}_{L}\left(\pi^{\infty}\right)$ for $i=1,2,3,4$ by

$$
\begin{aligned}
& \alpha_{1}(f)=(f(t), 0,0, \ldots), \\
& \alpha_{2}(f)=(0, f(t+1), f(t+2), \ldots), \\
& \alpha_{3}(f)=(0, f(t), f(t+1), \ldots), \\
& \alpha_{4}(f)=(f(t), f(t+1), f(t+2), \ldots) .
\end{aligned}
$$

It is clear that $\alpha_{1}+\alpha_{2}=\alpha_{4}$. The isometry $v \in L\left(H_{B}^{\infty}\right)$ defined by $v\left(h_{0}, h_{1}, h_{2}, \ldots\right)=$ $\left(0, h_{0}, h_{1}, h_{2}, \ldots\right)$ commutes with $\pi^{\infty}(A)$ and hence $v \in \mathcal{D}_{L}\left(\pi^{\infty}\right)$. Moreover, $\alpha_{4}(a)=v \alpha_{3}(a) v^{*}$ and hence $\left(\alpha_{4}\right)_{*}=\left(\alpha_{3}\right)_{*}$ by [Higson and Roe 2000, Lemma 4.6.2].

Using uniform continuity, one shows that α_{3} is homotopic to α_{2} via the homotopy $f(t) \mapsto(0, f(t+s), f(t+s+1), \ldots), 0 \leq s \leq 1$. We deduce that

$$
\left(\alpha_{1}\right)_{*}+\left(\alpha_{2}\right)_{*}=\left(\alpha_{1}+\alpha_{2}\right)_{*}=\left(\alpha_{4}\right)_{*}=\left(\alpha_{3}\right)_{*}=\left(\alpha_{2}\right)_{*}
$$

and hence $\left(\alpha_{1}\right)_{*}=0$. This concludes the proof of (a), since $\left(\alpha_{1}\right)_{*}$ is an isomorphism by Corollary 3.5.

To prove (b), one follows the proof of [Qiao and Roe 2010, Proposition 3.6] to show that both $K_{*}\left(\mathcal{D}_{T}^{0}(\pi)\right)=0$ and $K_{*}\left(\mathcal{C}_{T}^{0}(\pi)\right)=0$. The desired conclusion then follows in view of the split exact sequence

$$
0 \rightarrow \mathcal{D}_{T}^{0}(\pi) / \mathcal{C}_{T}^{0}(\pi) \rightarrow \mathcal{D}_{T}(\pi) / \mathcal{C}_{T}(\pi) \rightarrow \mathcal{D}(\pi) / \mathcal{C}(\pi) \rightarrow 0
$$

Any $f \in \mathcal{D}_{T}^{0}(\pi)$ can be extended by 0 to an element of $C_{u}\left(\mathbb{R}, L\left(H_{B}\right)\right)$. With this convention, define four maps $\beta_{i}: \mathcal{D}_{T}^{0}(\pi) \rightarrow \mathcal{D}_{T}^{0}\left(\pi^{\infty}\right), i=1,2,3,4$, by

$$
\begin{aligned}
& \beta_{1}(f)=(f(t), 0,0, \ldots) \\
& \beta_{2}(f)=(0, f(t-1), f(t-2), \ldots) \\
& \beta_{3}(f)=(0, f(t), f(t-1), \ldots) \\
& \beta_{4}(f)=(f(t), f(t-1), f(t-2), \ldots)
\end{aligned}
$$

This definition requires that one verifies that if $f \in \mathcal{D}_{T}^{0}(\pi)$, then

$$
F^{\prime}(t):=(f(t), f(t-1), \ldots, f(t-n), \ldots)
$$

defines an element of $\mathcal{D}_{T}^{0}\left(\pi^{\infty}\right)$. This is clearly the case, since if f is uniformly continuous, then so is F^{\prime} and moreover, just as argued in [Qiao and Roe 2010], for each t in a fixed bounded interval only finitely many components of $F^{\prime}(t)$ are nonzero, and hence $\left[F^{\prime}(t), \pi^{\infty}(a)\right] \in K\left(H_{B}^{\infty}\right)$ if $[f(t), \pi(a)] \in K\left(H_{B}\right)$ for all $t \in T$. Note that $\left(\beta_{4}\right)_{*}=\left(\beta_{3}\right)_{*}$ since $\beta_{4}(a)=v \beta_{3}(a) v^{*}$, where $v \in \mathcal{D}_{T}\left(\pi^{\infty}\right)$ is the same isometry as in part (a). Using uniform continuity, one observes that β_{3} is homotopic to β_{2} via the homotopy $f(t) \mapsto(0, f(t-s), f(t-s-1), \ldots), 0 \leq s \leq 1$. We deduce that

$$
\left(\beta_{1}\right)_{*}+\left(\beta_{2}\right)_{*}=\left(\beta_{1}+\beta_{2}\right)_{*}=\left(\beta_{4}\right)_{*}=\left(\beta_{3}\right)_{*}=\left(\beta_{2}\right)_{*}
$$

and hence $\left(\beta_{1}\right)_{*}=0$. This shows that $K_{*}\left(\mathcal{D}_{T}^{0}(\pi)\right)=0$, since $\left(\beta_{1}\right)_{*}$ is an isomorphism by Corollary 3.5. The proof for the vanishing of $K_{*}\left(\mathcal{C}_{T}^{0}(\pi)\right)$ is entirely similar. Indeed, with the same notation as above, one observes that if $f \in \mathcal{C}_{T}^{0}(\pi)$ then $F^{\prime} \in \mathcal{C}_{T}^{0}\left(\pi^{\infty}\right)$. Moreover, the four maps $\beta_{i}: \mathcal{D}_{T}^{0}(\pi) \rightarrow \mathcal{D}_{T}^{0}\left(\pi^{\infty}\right)$ restrict to maps $\beta_{i}^{\prime}: \mathcal{C}_{T}^{0}(\pi) \rightarrow \mathcal{C}_{T}^{0}\left(\pi^{\infty}\right)$ with β_{3}^{\prime} homotopic to β_{2}^{\prime}, and $\left(\beta_{1}^{\prime}\right)_{*}$ is an isomorphism by Corollary 3.5.

Theorem 4.4. Let A, B be separable C^{*}-algebras and let $\pi: A \rightarrow L\left(H_{B}\right)$ be an absorbing representation. There are canonical isomorphisms of groups

$$
\alpha: K K_{i}(A, B) \xrightarrow{\cong} K_{i}\left(\mathcal{C}_{L}(\pi)\right), \quad i=0,1 .
$$

Proof. Consider the diagram

$$
\begin{array}{r}
K K_{i}(A, B) \stackrel{P}{\longrightarrow} K_{i+1}(\mathcal{D}(\pi) / \mathcal{C}(\pi)) \stackrel{\iota_{*}}{\longrightarrow} K_{i+1}\left(\mathcal{D}_{T}(\pi) / \mathcal{C}_{T}(\pi)\right) \\
K_{i}\left(\mathcal{C}_{L}(\pi)\right) \stackrel{\partial}{\longleftarrow} K_{i+1}\left(\mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi)\right)
\end{array}
$$

where P is the Paschke duality isomorphism - see [Paschke 1981; Skandalis 1988, Remarque 2.8; Thomsen 2001, Theorem 3.2] - and ι is the canonical inclusion. The maps ∂ and $\iota_{*}=e_{*}^{-1}$ are isomorphisms by Proposition 4.3 and η_{*} is an isomorphism by Proposition 4.2.

As a corollary we obtain the following duality theorem, mentioned in the introduction. Recall from the introduction that $\mathcal{C}_{L}(A)$ stands for $\mathcal{C}_{L}(\pi)$, where π is ample (and thus absorbing, by Theorem 2.2), and A is identified with $\pi(A)$.
Theorem 4.5. For any separable C^{*}-algebra A there are canonical isomorphisms of groups $K^{i}(A) \cong K_{i}\left(\mathcal{C}_{L}(A)\right)$ for $i=0,1$.

5. An inverse map

Let $\alpha: K K_{i}(A, B) \xrightarrow{\cong} K_{i}\left(\mathcal{C}_{L}(\pi)\right)$ be the isomorphism of Theorem 4.4. Recall that $K\left(H_{B}\right) \cong B \otimes K(H)$. Consider the $*$-homomorphism

$$
\boldsymbol{\Phi}: \mathcal{D}_{L}(\pi) \otimes_{\max } A \rightarrow \frac{C_{u}\left(T, L\left(H_{B}\right)\right)}{C_{0}\left(T, K\left(H_{B}\right)\right)}
$$

defined by $\boldsymbol{\Phi}(f \otimes a)=f \pi(a)$, and its restriction to $\mathcal{C}_{L}(\pi) \otimes_{\max } A$

$$
\varphi: \mathcal{C}_{L}(\pi) \otimes_{\max } A \rightarrow \frac{C_{u}\left(T, K\left(H_{B}\right)\right)}{C_{0}\left(T, K\left(H_{B}\right)\right)} .
$$

We want φ to define a class in E-theory that we can take products with, but have to be a little careful due to the nonseparability of the C^{*}-algebra $\mathcal{C}_{L}(\pi) \otimes_{\max } A$. Just as in the case of the $K K$-groups [Skandalis 1988], if C is any C^{*}-algebra and B is a nonseparable C^{*}-algebra one defines $E_{\text {sep }}(B, C)=\varliminf_{B_{1}} E\left(B_{1}, C\right)$, with $B_{1} \subset B$ and B_{1} separable. Moreover, if D is separable, then $E(D, B)=\varliminf_{B_{1}} E\left(D, B_{1}\right)$, with $B_{1} \subset B$ and B_{1} separable. With these adjustments, one has a well-defined product

$$
E(D, B) \times E_{\mathrm{sep}}(B, C) \rightarrow E(D, C)
$$

Moreover, it is clear that $\llbracket \varphi \rrbracket$ defines an element of the group $E_{\text {sep }}\left(\mathcal{C}_{L}(\pi) \otimes_{\max } A, B\right)$.

Recall the isomorphism $K_{i}\left(\mathcal{C}_{L}(\pi)\right) \cong E_{i}\left(\mathbb{C}, \mathcal{C}_{L}(\pi)\right)$. We use the product

$$
E_{i}\left(\mathbb{C}, \mathcal{C}_{L}(\pi)\right) \times E_{\mathrm{sep}}\left(\mathcal{C}_{L}(\pi) \otimes_{\max } A, B\right) \rightarrow E_{i}(A, B)
$$

to define a map $\beta: K_{i}\left(\mathcal{C}_{L}(\pi)\right) \rightarrow E_{i}(A, B)$ by $\beta(z)=\llbracket \varphi \rrbracket \circ\left(z \otimes \mathrm{id}_{A}\right)$. The map β is an inverse of α in the following sense.

Theorem 5.1. The composition $\beta \circ \alpha$ coincides with the natural map $K K_{i}(A, B) \rightarrow$ $E_{i}(A, B)$ for $i=0,1$.

Proof. We prove the odd case $i=1$ and leave the even case for the reader. Recall that the E-theory group $E_{1}(A, B)$ of Connes and Higson [1990] is isomorphic to $\llbracket S A, K\left(H_{B}\right) \rrbracket$ by a desuspension result from [Dadarlat and Loring 1994].

For two continuous functions $f, g: T \rightarrow L\left(H_{B}\right)$ we write $f(s) \sim g(s)$ (or $f(t) \sim g(t))$ if $f-g \in C_{0}\left(T, K\left(H_{B}\right)\right)$. Let $\left.\left\{\varphi_{s}: \mathcal{C}_{L}(\pi) \otimes_{\max } A \rightarrow K\left(H_{B}\right)\right)\right\}_{s \in T}$ be an asymptotic homomorphism representing φ. More precisely, take φ to be a set-theoretic lifting of $\boldsymbol{\varphi}$. This means that $\varphi_{s}(f \otimes a) \sim f(s) \pi(a)$.

The composition $\beta \circ \alpha: K K_{1}(A, B) \rightarrow E_{1}(A, B)$ is computed as follows. Let $y \in$ $K K_{1}(A, B)$ and let $z=P y \in K_{0}(\mathcal{D}(\pi) / \mathcal{C}(\pi))$ be its image under the Paschke duality isomorphism $P: K K_{1}(A, B) \rightarrow K_{0}(\mathcal{D}(\pi) / \mathcal{C}(\pi))$. Let z be represented by a selfadjoint element $e \in \mathcal{D}(\pi) \subset \mathcal{D}_{T}(\pi)$ whose image in $\mathcal{D}(\pi) / \mathcal{C}(\pi)$ is an idempotent \dot{e}. We identify $\mathcal{D}(\pi)$ with the C^{*}-subalgebra of constant functions in $\mathcal{D}_{T}(\pi)$. Choose an element $x \in C_{u}\left(T, K\left(H_{B}\right)\right)$ as in Lemma 4.1 with respect to the (separable) C^{*}-subalgebra D of $C_{u}\left(T, L\left(H_{B}\right)\right)$ generated by $\pi(A), e$, and $K\left(H_{B}\right)$. Therefore, both $[x, \pi(a)]$ and $(1-x)[e, \pi(a)]$ belong to $C_{0}\left(T, K\left(H_{B}\right)\right)$ for all $a \in A$, and moreover $(1-x) e \in \mathcal{D}_{L}(\pi)$ as

$$
[(1-x) e, \pi(a)]=[1-x, \pi(a)] e+(1-x)[e, \pi(a)] \in C_{0}\left(T, K\left(H_{B}\right)\right)
$$

for all $a \in A$. Let $e_{L}=(1-x) e$ and let \dot{e}_{L} be its image in $\mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi)$. Under the isomorphism $\mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi) \cong \mathcal{D}_{T}(\pi) / \mathcal{C}_{T}(\pi)$ of Proposition 4.2 we see that \dot{e}_{L} is just the image of $e \in \mathcal{D}_{T}(\pi)$ in the quotient, which is an idempotent since \dot{e} is so. It is then clear that $\eta_{*}^{-1} \iota_{*}(z)=\left[\dot{e}_{L}\right]$.

We define a $*$-homomorphism $\ell: \mathbb{C} \rightarrow \mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi)$ by $\ell(1)=\dot{e}_{L}$ and set $S=C_{0}(0,1)$. Then $(\beta \circ \alpha)(y)$ is represented by the composition of the asymptotic homomorphisms from the diagram

$$
\begin{equation*}
S \otimes \mathbb{C} \otimes A \xrightarrow{1 \otimes \ell \otimes 1} S \otimes \mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi) \otimes A \xrightarrow{\delta_{i} \otimes 1} \mathcal{C}_{L}(\pi) \otimes A \xrightarrow{\varphi_{s}} K\left(H_{B}\right), \tag{5.2}
\end{equation*}
$$

where here and throughout the rest of the proof the tensor products are maximal ones, and the map labeled δ_{t} is defined by taking the product with a canonical element δ of $E_{1, \text { sep }}\left(\mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi), \mathcal{C}_{L}(\pi)\right)$ associated to the extension

$$
0 \rightarrow \mathcal{C}_{L}(\pi) \rightarrow \mathcal{D}_{L}(\pi) \rightarrow \mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi) \rightarrow 0,
$$

which we now discuss. Fixing a separable C^{*}-subalgebra \dot{M} of $\mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi)$, the image of δ in $E_{1}\left(\dot{M}, \mathcal{C}_{L}(\pi)\right)$ is defined as follows. Choose a separable C^{*} subalgebra M of $\mathcal{D}_{L}(\pi)$ that surjects onto \dot{M}, and for each $\dot{m} \in \dot{M}$ choose a lift $m \in M$. Let $\left(v_{t}\right)_{t \in T}$ be a positive, contractive, and continuous approximate unit for $M \cap \mathcal{C}_{L}(\pi)$ which is quasicentral in M. Then for $g \in S=C_{0}(0,1), \delta$ is characterized by stipulating that $\delta_{t}(g \otimes \dot{m})$ satisfies

$$
\delta_{t}(g \otimes \dot{m}) \sim g\left(v_{t}\right) m
$$

(the choices of $\left(v_{t}\right)$ and the various lifts do not matter up to homotopy). In our case, to compute the composition we need, let M be a separable C^{*}-subalgebra of $\mathcal{D}_{L}(\pi)$ containing e and x, and let $\left(v_{t}\right)$ be an approximate unit for $M \cap C_{L}(\pi)$ that is quasicentral in M.

On the level of elements, we can now concretely describe the composition in (5.2) as follows. If $g \in S=C_{0}(0,1)$ and $a \in A$, then under the asymptotic morphism $\left\{\mu_{t}: S A \rightarrow K\left(H_{B}\right)\right\}_{t}$ defined by diagram (5.2), elementary tensors $g \otimes a$ are mapped as follows:

$$
\begin{equation*}
g \otimes a \mapsto g \otimes \dot{e}_{L} \otimes a \stackrel{\delta_{t}}{\longrightarrow} g\left(v_{t}\right)(1-x) e \otimes a{ }^{\varphi_{s(t)}} g\left(v_{t}(s(t))\right)(1-x(s(t))) e \pi(a) \tag{5.3}
\end{equation*}
$$

for any positive map $t \mapsto s(t)$ which increases to ∞ sufficiently fast. Since the map $t \mapsto x(t)$ is an approximate unit of $K\left(H_{B}\right),(1-x) y \in C_{0}\left(T, K\left(H_{B}\right)\right)$ for all $y \in K\left(H_{B}\right)$. In particular it follows that $(1-x(s(t))) e[e, \pi(a)] \sim 0$ since $[e, \pi(a)] \in K\left(H_{B}\right)$. Since $e \pi(a)=e \pi(a) e+e[e, \pi(a)]$, it follows from (5.3) that

$$
\begin{equation*}
\mu_{t}(g \otimes a) \sim g\left(v_{t}(s(t))\right)(1-x(s(t))) e \pi(a) e . \tag{5.4}
\end{equation*}
$$

On the other hand, the natural map $K K_{1}(A, B) \rightarrow E_{1}(A, B)$ maps y to $\llbracket \gamma_{t} \rrbracket$, where $\left\{\gamma_{t}: S \otimes A \rightarrow K\left(H_{B}\right)\right\}_{t}$ is described in [Connes and Higson 1990] as follows. Consider the extension

$$
0 \rightarrow K\left(H_{B}\right) \rightarrow e \pi(A) e+K\left(H_{B}\right) \rightarrow A \rightarrow 0 .
$$

Let $\left(u_{t}\right)_{t \in T}$ be a contractive, positive, and continuous approximate unit of $K\left(H_{B}\right)$ which is quasicentral in $e \pi(A) e+K\left(H_{B}\right)$. Then

$$
\gamma_{t}(g \otimes a) \sim g\left(u_{t}\right) e \pi(a) e .
$$

Applying Lemma 4.1 (this time with D the C^{*}-subalgebra of $C_{u}\left(T, L\left(H_{B}\right)\right.$) generated by $e, \pi(A), K\left(H_{B}\right)$, and $t \mapsto x(s(t))$), we can choose $\left(u_{t}\right)_{t}$ such that $\lim _{t \rightarrow \infty}\left(1-u_{t}\right) x(s(t))=0$. Since the C^{*}-algebra $C_{0}[0,1)$ is generated by the function $f(\theta)=1-\theta$, it follows that $\lim _{t \rightarrow \infty} g\left(u_{t}\right) x(s(t))=0$ for all $g \in C_{0}[0,1)$, and in particular for all $g \in C_{0}(0,1)$.

Our goal now is to verify that $\left(\mu_{t}\right)_{t}$ is homotopic to $\left(\gamma_{t}\right)_{t}$. Due to the choice of $\left(u_{t}\right)_{t}$ and the comments above, we have that

$$
\begin{equation*}
\gamma_{t}(g \otimes a) \sim g\left(u_{t}\right) e \pi(a) e \sim g\left(u_{t}\right)(1-x(s(t))) e \pi(a) e \tag{5.5}
\end{equation*}
$$

for all $a \in A$ and $g \in C_{0}(0,1)$. Finally, define $w_{t}^{(r)}=(1-r) v_{t}(s(t))+r u_{t}, 0 \leq r \leq 1$. As

$$
\left[g\left(w_{t}^{(r)}\right),(1-x(s(t))) e \pi(a) e\right] \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

for all $r \in[0,1]$ and $a \in A$, the condition

$$
H_{t}^{(r)}(g \otimes a) \sim g\left(w_{t}^{(r)}\right)(1-x(s(t))) e \pi(a) e
$$

defines an asymptotic morphism $H_{t}: S A \rightarrow C[0,1] \otimes K\left(H_{B}\right)$. This gives the desired homotopy joining $\left(\mu_{t}\right)_{t}$ with $\left(\gamma_{t}\right)_{t}$.

As suggested by the referee, we finish this section by sketching another proof which is maybe a little less self-contained, but more conceptual. The proof below is analogous to the approach used for [Qiao and Roe 2010, Proposition 4.3]. The basic idea in their approach is to apply naturality of the connecting map in E-theory for the diagram of strictly commutative asymptotic morphisms

where ϕ_{t} and φ_{t} represent the asymptotic morphisms induced by the $*$-homomorphisms $\boldsymbol{\Phi}$ and $\boldsymbol{\varphi}$ from the beginning of this section. The family $\bar{\phi}_{t}$ is the quotient family induced by ϕ_{t}, and consists of $*$-homomorphisms. Naturality of the boundary map in E-theory in this case amounts to the equality

$$
\begin{equation*}
\llbracket \varphi_{t} \rrbracket \circ \llbracket \delta_{t} \otimes \operatorname{id}_{A} \rrbracket=\llbracket \gamma_{t} \rrbracket \circ \llbracket \bar{\phi}_{t} \rrbracket, \tag{5.6}
\end{equation*}
$$

where δ_{t} is the boundary map for the top sequence of the diagram before tensoring with A, and γ_{t} is the boundary map for the bottom sequence. See [Connes and Higson 1990, Lemme 10] for the definition of the boundary maps associated to extensions (here and elsewhere one should use limits to deal with the nonseparable algebras involved in the way discussed earlier in this section). The naturality property of the boundary map with respect to general asymptotic morphisms that was discussed in [Guentner 1999, Theorem 5.3] seems to be the closest statement in the literature to the equality in (5.6), but it is nonetheless not sufficiently general to justify the equality. However, one can combine the arguments from the second part of the proof of Theorem 5.1 with those from [Guentner 1999] to verify naturality in full generality and in particular to justify (5.6).

Now (5.6) allows us to conceptualize the proof of Theorem 5.1. Let $y \in K K_{i}(A, B)$ and let $z=P y \in K_{i+1}(\mathcal{D}(\pi) / \mathcal{C}(\pi))$ be its image under the Paschke duality isomorphism $P: K K_{i}(A, B) \rightarrow K_{i+1}(\mathcal{D}(\pi) / \mathcal{C}(\pi))$. Consider

$$
\eta_{*}^{-1} \iota_{*}(z) \in K_{i+1}\left(\mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi)\right) \cong E_{i+1}\left(\mathbb{C}, \mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi)\right),
$$

where the maps ι_{*} and η_{*} are isomorphisms as in the proof of Theorem 4.4. We may view $\eta_{*}^{-1} \iota_{*}(z) \otimes \llbracket \mathrm{id}_{A} \rrbracket$ as an element of $E_{i+1}\left(A, \mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi) \otimes_{\max } A\right)$. From (5.6) we obtain that

$$
\llbracket \varphi_{t} \rrbracket \circ \llbracket \delta_{t} \otimes \operatorname{id}_{A} \rrbracket \circ\left(\eta_{*}^{-1} \iota_{*}(z) \otimes \llbracket \mathrm{id}_{A} \rrbracket\right)=\llbracket \gamma_{t} \rrbracket \circ \llbracket \bar{\phi}_{t} \rrbracket \circ\left(\eta_{*}^{-1} \iota_{*}(z) \otimes \llbracket \operatorname{id}_{A} \rrbracket\right) .
$$

The left-hand side of (5.7) represents the element $(\beta \circ \alpha)(y)$ of $E_{i}(A, B)$ by the very definition of α and β.

In order to identify the right-hand side of (5.7), it is useful to note that each individual map $\bar{\phi}_{t}$ is a $*$-homomorphism given by $\kappa \circ\left(\mathrm{ev}_{t} \otimes \mathrm{id}_{A}\right)$, where

$$
\mathrm{ev}_{t}: \mathcal{D}_{L}(\pi) / \mathcal{C}_{L}(\pi) \rightarrow \mathcal{D}(\pi) / \mathcal{C}(\pi)
$$

is the evaluation map at t and

$$
\kappa:(\mathcal{D}(\pi) / \mathcal{C}(\pi)) \otimes_{\max } A \rightarrow L\left(H_{B}\right) / K\left(H_{B}\right), \quad[b] \otimes a \mapsto[b \cdot \pi(a)]
$$

is the "multiplication" $*$-homomorphism. Thus the asymptotic morphism $\left\{\bar{\phi}_{t}\right\}$ is homotopic to the constant asymptotic morphism given by $\bar{\phi}_{0}$, which is equal to $\kappa \circ\left(\mathrm{ev}_{0} \otimes \mathrm{id}_{A}\right)$. Hence the right-hand side of (5.7) is equal to

$$
\llbracket \gamma_{t} \rrbracket \circ \llbracket \kappa \rrbracket \circ\left(\left(\mathrm{ev}_{0}\right)_{*} \eta_{*}^{-1} \iota_{*}(z) \otimes \llbracket \mathrm{id}_{A} \rrbracket\right) .
$$

It follows from the following commutative diagram of $*$-homomorphisms

that $\left(\mathrm{ev}_{0}\right)_{*} \eta_{*}^{-1} l_{*}(z)=z$. This allows us to simplify the right-hand side of (5.7) further to

$$
\llbracket \gamma_{t} \rrbracket \circ \llbracket \kappa \rrbracket \circ\left(z \otimes \llbracket \operatorname{id}_{A} \rrbracket\right),
$$

where z is viewed as an element in $E_{i+1}(\mathbb{C}, \mathcal{D}(\pi) / \mathcal{C}(\pi))$. This can be seen to be equal to the image of y under the natural map $K K_{i}(A, B) \rightarrow E_{i}(A, B)$.

Indeed, focusing on the odd case, where we have $y \in K K_{1}(A, B)$ and $z=$ $P y \in K_{0}(\mathcal{D}(\pi) / \mathcal{C}(\pi))$, we may choose $e \in \mathcal{D}(\pi)$, as in the first part of the proof of Theorem 5.1, such that $z=[\dot{e}] \in K_{0}(\mathcal{D}(\pi) / \mathcal{C}(\pi))$. Then the $*$-homomorphism $a \in A \mapsto[e \cdot \pi(-)] \in L\left(H_{B}\right) / K\left(H_{B}\right)$, which represents $\llbracket \kappa \rrbracket \circ\left(z \otimes \llbracket \mathrm{id}_{A} \rrbracket\right)$, is the

Busby invariant of the extension corresponding to $e \in \mathcal{D}(\pi)$. Hence its composition with the asymptotic morphism $\left\{\gamma_{t}\right\}: L\left(H_{B}\right) / K\left(H_{B}\right) \rightarrow K\left(H_{B}\right)$ represents the image of y under the natural map $K K_{1}(A, B) \rightarrow E_{1}(A, B)$.

Acknowledgements

Part of this research was conducted during the authors' visits to the University of Münster, the University of Hawai 'i at Mānoa, and the Institut Mittag-Leffler. We are grateful for the hospitality of the host institutes. We would also like to thank the referee for a close reading of the paper, and several useful suggestions.

References

[Connes and Higson 1990] A. Connes and N. Higson, "Déformations, morphismes asymptotiques et K-théorie bivariante", C. R. Acad. Sci. Paris Sér. I Math. 311:2 (1990), 101-106. MR Zbl
[Dadarlat and Loring 1994] M. Dădărlat and T. A. Loring, " K-homology, asymptotic representations, and unsuspended E-theory", J. Funct. Anal. 126:2 (1994), 367-383. MR Zbl
[Dadarlat and Eilers 2001] M. Dadarlat and S. Eilers, "Asymptotic unitary equivalence in $K K$ theory", K-Theory 23:4 (2001), 305-322. MR Zbl
[Dadarlat and Eilers 2002] M. Dadarlat and S. Eilers, "On the classification of nuclear C^{*}-algebras", Proc. London Math. Soc. (3) 85:1 (2002), 168-210. MR Zbl
[Guentner 1999] E. Guentner, "Relative E-theory", K-Theory 17:1 (1999), 55-93. MR Zbl
[Higson and Roe 2000] N. Higson and J. Roe, Analytic K-homology, Oxford University Press, 2000. MR Zbl
[Kasparov 1980a] G. G. Kasparov, "Hilbert C^{*}-modules: Theorems of Stinespring and Voiculescu", J. Operator Theory 4:1 (1980), 133-150. MR Zbl
[Kasparov 1980b] G. G. Kasparov, "The operator K-functor and extensions of C^{*}-algebras", Izv. Akad. Nauk SSSR Ser. Mat. 44:3 (1980), 571-636. In Russian; translated in Math. USSR Izv. 16:3 (1981), 513-572. MR Zbl
[Paschke 1981] W. L. Paschke, "K-theory for commutants in the Calkin algebra", Pacific J. Math. 95:2 (1981), 427-434. MR Zbl
[Qiao and Roe 2010] Y. Qiao and J. Roe, "On the localization algebra of Guoliang Yu", Forum Math. 22:4 (2010), 657-665. MR Zbl
[Roe 1993] J. Roe, Coarse cohomology and index theory on complete Riemannian manifolds, Memoirs of the American Mathematical Society 497, American Mathematical Society, Providence, RI, 1993. MR Zbl
[Skandalis 1988] G. Skandalis, "Une notion de nucléarité en K-théorie", K-Theory 1:6 (1988), 549573. MR Zbl
[Thomsen 2001] K. Thomsen, "On absorbing extensions", Proc. Amer. Math. Soc. 129:5 (2001), 1409-1417. MR Zbl
[Voiculescu 1976] D. Voiculescu, "A non-commutative Weyl-von Neumann theorem", Rev. Roumaine Math. Pures Appl. 21:1 (1976), 97-113. MR Zbl
[Yu 1997] G. Yu, "Localization algebras and the coarse Baum-Connes conjecture", K-Theory 11:4 (1997), 307-318. MR Zbl

Received 21 Sep 2016. Revised 27 Feb 2018. Accepted 26 Mar 2018.
MARIUS DADARLAT: mdd@math.purdue.edu
Department of Mathematics, Purdue University, West Lafayette, IN, United States
RUFUS WILLETT: rufus@math.hawaii.edu
Department of Mathematics, University of Hawai'i at Mānoa, Honolulu, HI, United States
Jianchao Wu: jianchao.wu@psu.edu
Department of Mathematics, Pennsylvania State University, University Park, PA, United States

ANNALS OF K-THEORY

msp.org/akt

Annals of K-Theory is a journal of the K-Theory Foundation (ktheoryfoundation.org). The K-Theory Foundation acknowledges the precious support of Foundation Compositio Mathematica, whose help has been instrumental in the launch of the Annals of K-Theory.

See inside back cover or msp.org/akt for submission instructions.
The subscription price for 2018 is US $\$ 475 /$ year for the electronic version, and $\$ 535 /$ year $(+\$ 25$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Annals of K-Theory (ISSN 2379-1681 electronic, 2379-1683 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

AKT peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers
ANNALS OF K-THEORY2018vol. 3no. 4
The A_{∞}-structure of the index map 581
Oliver Braunling, Michael Groechenig and Jesse WOLFSON
Localization C^{*}-algebras and K-theoretic duality 615
Marius Dadarlat, Rufus Willett and Jianchao Wu
Hecke modules for arithmetic groups via bivariant K-theory 631 Bram Mesland and Mehmet Haluk Şengün
The slice spectral sequence for singular schemes and applications 657
Amalendu Krishna and Pablo Pelaez
K-theory, local cohomology and tangent spaces to Hilbert schemes 709
SEN Yang
Droites sur les hypersurfaces cubiques 723
Jean-Louis Colliot-Thélène

