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Let 0 be a lattice in a locally compact group G. In another work, we used
KK-theory to equip with Hecke operators the K-groups of any 0-C∗-algebra on
which the commensurator of 0 acts. When 0 is arithmetic, this gives Hecke oper-
ators on the K-theory of certain C∗-algebras that are naturally associated with 0.
In this paper, we first study the topological K-theory of the arithmetic manifold
associated to 0. We prove that the Chern character commutes with Hecke oper-
ators. Afterwards, we show that the Shimura product of double cosets naturally
corresponds to the Kasparov product and thus that the KK-groups associated to
an arithmetic group 0 become true Hecke modules. We conclude by discussing
Hecke equivariant maps in KK-theory in great generality and apply this to the
Borel–Serre compactification as well as various noncommutative compactifica-
tions associated with 0. Along the way we discuss the relation between the
K-theory and the integral cohomology of low-dimensional manifolds as Hecke
modules.
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1. Introduction

Let 0 be a lattice in a locally compact group G with commensurator CG(0). Let
S ⊂ CG(0) be a group containing 0. In [Mesland and Şengün 2016], for g ∈ S and
B a S-C∗-algebra (that is, a C∗-algebra on which S acts via automorphisms), we
constructed elements [Tg] ∈ KK0(B or 0, B or 0). We introduced analytic Hecke
operators on any module over KK0(B or 0, B or 0) as the endomorphisms arising
from the classes [Tg]. In the present paper we prove several structural results about
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these Hecke operators, showing that they generalize the well-known cohomologi-
cal Hecke operators in a way that is compatible with the Chern character and the
double-coset Hecke ring of Shimura.

The double-coset Hecke ring of Shimura is well-known to number theorists. In
the widely studied case where 0 is an arithmetic group, the Hecke ring acts linearly
on various spaces of automorphic forms associated to 0, providing a rich supply of
symmetries [Shimura 1971, Chapter 3]. Those automorphic forms that are simulta-
neous eigenvectors of these symmetries are conjectured, and proven in many cases,
to have deep connections to arithmetic [Clozel 1990; Taylor 1995]. The Hecke ring
also acts on the cohomology of the arithmetic manifold M associated to 0 and
there is a Hecke equivariant isomorphism between spaces of automorphic forms
associated to 0 and cohomology of M twisted with suitable local systems [Franke
1998; Shimura 1971]. The passage to cohomology leads to many fundamental
results and new insights on the arithmetic of automorphic forms. The results of
this paper, together with those of [Mesland and Şengün 2016], offer an analytic
habitat for the Hecke ring by providing ring homomorphisms from the Hecke ring
to suitable KK-groups. The passage to KK-theory extends the scope of the action
of the Hecke ring beyond cohomology and allows for the possibility of using tools
from operator K-theory in the study of automorphic forms.

Let us describe the results of the paper more precisely. In Section 2, we consider
the situation where S acts on a locally compact Hausdorff space X . Assume that
0 acts freely and properly on X and put M = 0\X . It is well-known that the
C∗-algebras C0(X)or 0 and C0(M) are Morita equivalent, so

KK0(C0(X)or 0,C0(X)or 0)' KK0(C0(M),C0(M)),

and thus for any g ∈ S we obtain a class [Tg] ∈ KK0(C0(M),C0(M)). The element
g gives rise to a cover Mg of M and a pair of covering maps, forming the Hecke
correspondence M s

←− Mg
t
−→ M . In [Mesland and Şengün 2016] it was shown that

the class [Tg] corresponds to the class of this Hecke correspondence, that is,

[Tg] = [M← Mg→ M] ∈ KK0(C0(M),C0(M)).

This class induces a Hecke operator Tg : K ∗(M)→ K ∗(M) on topological K-
theory. In this paper we show that the Chern character

Ch : K 0(M)⊕ K 1(M)→ H ev(M,Q)⊕ H odd(M,Q)

is Hecke equivariant. Here we equip H∗(M,Q) with Hecke operators in the usual
way using the Hecke correspondence M s

←− Mg
t
−→ M ; see, for example, [Lee 2009].
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In Section 3, we specialize to noncompact arithmetic hyperbolic 3-manifolds M .
Let M be the Borel–Serre compactification of M . Consider the diagram

K 0(M)

��

× K0(M) // Z

H 2(M, ∂M,Z) × H2(M, ∂M,Z)

OO

// Z

(1.1)

Here horizontal arrows are given by the standard pairings with respect to which
the Hecke operators are adjoint. The vertical arrows are Hecke equivariant isomor-
phisms; we establish the one on the left via the results of Section 2 and the one
on the right was proven in [Mesland and Şengün 2016]. Using the relative index
theorem, we show that the diagram commutes. Using very different techniques,
we proved a similar result in [Mesland and Şengün 2016] where the K-groups of
M were replaced with those of the reduced group C∗-algebra C∗r (0) of 0.

In Section 4 we prove the main result of the paper. The double-coset Hecke ring
Z[0, S] is the free abelian group on the double cosets 0g0, with g ∈ S, equipped
with the Shimura product [Shimura 1971]. We show that the map 0g−10 7→ [Tg]

extends to a ring homomorphism

Z[0, S] → KK0(B or 0, B or 0)

for any S-C∗-algebra B. As mentioned in the second paragraph of this introduction,
this homomorphism provides the Hecke ring Z[0, S] with a new habitat. The uni-
versality property of KK-theory [Higson 1987] implies that for any additive functor
F on separable C∗-algebras that is homotopy invariant, split-exact and stable, the
abelian groups F(B or 0) are modules over Z[0, S]. For example, let 0 be an
arithmetic group in a semisimple real Lie group G. By taking F to be local cyclic
cohomology and B = C0(X) where X is the symmetric space of G, we recover the
action of the Hecke ring on the cohomology of the arithmetic manifold X/0. In
[Mesland and Şengün 2016], we took F to be K-homology and worked with three
different S-C∗-algebras B that were naturally associated to 0.

In Section 5, we show that a 0-exact and S-equivariant extension

0→ B→ E→ A→ 0

of C∗-algebras induces Hecke equivariant long exact sequences relating the KK-
groups of the crossed products B or 0, E or 0 and Aor 0. In particular, suppose
that X is a free and proper 0-space on which S acts by homeomorphisms, and X
a partial S-compactification of X with boundary ∂X := X \ X . Then the extension

0→ C0(X)→ C0(X)→ C0(∂X)→ 0
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induces a Hecke equivariant exact sequence

K1(C0(X)or 0) // K1(C0(X)or 0) // K1(C0(∂X)or 0)

��

K0(C0(∂X)or 0)

OO

K0(C0(X)or 0)oo K0(C0(X)or 0)oo

of Z[0, S]-modules. The results of Sections 4 and 5 hold for the full crossed
product algebras as well.

Let G be a reductive algebraic group and 0 ⊂ G(Q) an arithmetic group. Then
the Borel–Serre partial compactification X of the associated global symmetric
space X is a proper G(Q)-compactification. The associated Morita equivalences
provide a Hecke equivariant isomorphism of above six-term exact sequence with
the topological K-theory exact sequence of the Borel–Serre compactification of the
arithmetic manifold X/0 and its boundary.

The generality of our methods also allows the consideration of various noncom-
mutative compactifications. One family of examples are the Hecke equivariant
Gysin exact sequences studied in [Mesland and Şengün 2016] coming from the
geodesic compactification of hyperbolic n-space. Other examples of interest come
from the Floyd boundary of 0, such as the boundary of tree associated to SL(2,Z)

and the Bruhat–Tits building of a p-adic group and its boundary. In most of these
cases not all of the crossed products are Morita equivalent to a commutative C∗-
algebra.

Set-up and notation. The following set-up will hold for the whole paper. Let G
be a locally compact group and 0 ⊂ G a torsion-free discrete subgroup. Recall
that two subgroups H, K of G are called commensurable if H ∩ K is of finite
index in both H and K . The commensurator CG(0) of 0 (in G) is the group of
elements g ∈ G for which 0 and g0g−1 are commensurable. Moreover, S denotes
a subgroup of CG(0) containing 0.

2. Hecke equivariance of the Chern character

In this section, we assume that S acts on a locally compact Hausdorff space X
and that the action of 0 on X is free and proper. Let M denote the Hausdorff
space X/0. Given an element g ∈ S, we put Mg := X/0g and Mg

:= X/0g,
where 0g

:= 0 ∩ g−10g and 0g := 0 ∩ g0g−1
= g0gg−1. Note that s : Mg→ M

and s ′ : Mg
→ M are finite sheeted covers (of the same degree) and the map

c : Mg → Mg defined by x0g 7→ g−1x0g is a homeomorphism. We obtain a
second finite covering t := s ′ ◦ c : Mg→ M .
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We shall equip the topological K-theory of M with Hecke operators via two
different constructions, one analytical, arising from a KK-class and the other topo-
logical, arising from a correspondence. We will see that these two constructions
give rise to the same Hecke operator. Afterwards, we will show that the Chern
character between the K-theory and the ordinary cohomology of M is Hecke equi-
variant.

2.1. Analytic Hecke operators. Let g ∈ S. As mentioned in the introduction,
thanks to a Morita equivalence, the analytically constructed class

[Tg] ∈ KK0(C0(X)o0,C0(X)o0)

gives rise to a class [T M
g ] ∈ KK0(C0(M),C0(M)). This latter class has a simpler

description, which we now recall.
The conditional expectation

ρ : C0(Mg)→ C0(M), ρ(ψ)(m)=
∑

x∈t−1(m)

ψ(x),

and right module structure

ψ · f (x) := ψ(x) f (t (x))

give C0(Mg) a right C0(M)-module, which we denote by T M
g . Because the map

s : Mg→ M is proper, there is a left action of C0(M) on T M
g by compact operators

C0(M)→ K(T M
g ), f ·ψ(x)= f (s(x))ψ(x).

Then [T M
g ] ∈ KK0(C0(M),C0(M)) is the class of this bimodule.

We observe that M s
←− Mg

t
−→ M defines a correspondence in the sense of

[Connes and Skandalis 1984]. Associated to this correspondence, there exists a
class [s∗] ⊗ [t !] ∈ KK0(C0(M),C0(M)), where t ! is the wrong way cycle arising
from t . As t is simply a finite covering of manifolds, it follows from [Connes and
Skandalis 1984, Proposition 2.9] that t ! acquires a simpler description and it is then
not hard to see that [s∗]⊗ [t !] equals [T M

g ] above.

2.2. Definition. Let M = X/0 as above. For any separable C∗-algebra C , the
analytic Hecke operators

Tg : KK∗(C0(M),C)→ KK∗(C0(M),C),

Tg : KK∗(C,C0(M))→ KK∗(C,C0(M)),

are defined to be the Kasparov product with the class [T M
g ] ∈ KK0(C0(M),C0(M)).

An important case is when one takes C ' C. Then we obtain analytic Hecke
operators on the topological K-theory of M :

Tg : K ∗(M)→ K ∗(M).
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2.3. Topological Hecke operators. We now proceed to give an “elementary” de-
scription of our Hecke operators in the special case of topological K-theory. To
do this, we follow the description of Hecke operators on ordinary cohomology
from correspondences; see, for example, [Mesland and Şengün 2016]. To this end,
we introduce the “transfer map” machinery from stable homotopy theory, which
allows us to deal with generalized cohomology theories at no extra cost.

To a finite covering map p : (Y, B)→ (X, A) of pairs of spaces (that is, a finite
covering p :Y→ X with subspaces A⊂ X and B⊂Y such that B= p−1(A)), there
is a well-known construction [Adams 1978, Construction 4.1.1, Theorem 4.2.3;
Kahn and Priddy 1972] that associates to the map p a map of suspension spectra
p! : 6∞(X/A)→ 6∞(Y/B). Via precomposition with p!, for any generalized
cohomology theory h∗ with spectrum E , we obtain a homomorphism called the
transfer map

p! : hn(Y, B)= [6∞Sn
∧6∞(Y/B), E] → hn(X, A)= [6∞Sn

∧6∞(X/A), E].

This transfer map agrees with the usual one in the case of ordinary cohomology;
see [Kahn and Priddy 1972, Proposition 2.1]. In the case of topological K-theory,
the transfer map is induced by the direct image map of Atiyah [1961]; see [Kahn
and Priddy 1972, Proposition 2.4]. Recall that if f : Y → X is a finite covering
map and E → X is a vector bundle, then the direct image bundle f !E → Y has
fiber ( f !E)y at y ∈ Y given by the direct sum

⊕
f (x)=y Ex .

2.4. Definition. Given any generalized cohomology theory h∗ with spectrum E
and g ∈ S, the topological Hecke operator Tg on hn(M) is defined as the composi-
tion

hn(M) s∗
−→ hn(Mg)

t !
−→ hn(M).

In the case of topological K-theory, these topological Hecke operators agree
with the analytic ones that we defined earlier.

2.5. Proposition. Let g ∈ S. The analytic Hecke operator Tg on K ∗(M) agrees
with the topological Hecke operator Tg on K ∗(M).

Proof. Let us prove the statement for K 0 first. It suffices to show that, after we
identify K 0(M)' K0(C0(M)), the direct image map of Atiyah is induced by tensor
product (from the right) with the C0(M)-module T M

g defined above in Section 2.1.
To that end, we need to show that for any vector bundle E→ Mg, there is a unitary
isomorphism between the C0(M)-modules of sections

α : 0(E)⊗C0(Mg) C0(Mg)C0(M)
∼
−→ 0(t !E).

This is achieved by choosing an open cover Ui of Mg for which the covering map
t is homeomorphic. Let χ2

i be a partition of unity subordinate to the Ui . Define
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α(ψ ⊗ f )(m) :=
(∑

i

χi (x)ψ(x) f (x)
)

x∈t−1(m)
∈ t !E .

It is straightforward to check that this induces the desired unitary isomorphism.
Note that the above is also observed in [Ramras et al. 2013, Lemma 3.12].

To prove the claim for K 1, we descend to K 0 and exploit, as we did above, the
fact that transfer is implemented by the direct image map. Consider the diagram
below:

K 1(Mg)

t !
��

'
// K 0(Mg ×R)

(t×Id)!
��

K 1(M) '
// K 0(M ×R)

(2.6)

The vertical arrows t ! and (t × Id)! are the transfer maps arising from the finite
coverings t : Mg→ M and t× Id : Mg×R→ M×R. The horizontal isomorphisms
follow from long exact sequences in topological K-theory associated to suitable
pairs of spaces. As the transfer map is natural and commutes with connecting
morphisms [Adams 1978, p. 123–124], it follows that the diagram is commutative.

Note that K 0(M ×R)' K0(C0(M)⊗C0(R)). Under the isomorphism

KK0(C0(M),C0(M))
'
−→ KK0(C0(M)⊗C0(R),C0(M)⊗C0(R)),

our distinguished class [T M
g ] gets sent to [T M

g ⊗C0(R)]. Now the same argument
as in the first paragraph of this proof shows that the direct image map of Atiyah,
for the finite covering Mg×R

t×Id
−−→ M ×R, is induced by tensor product with the

C0(M)⊗C0(R)-module T M
g ⊗C0(R). �

2.7. Given a pair of compact Hausdorff spaces (X, A), we have the Chern character
(see [Karoubi 1978, V.3.26])

Ch : K i (X, A)→ PHi (X, A,Q), i = 0, 1,

where PH0 and PH1 are the periodic cohomology groups given by the direct sums of
the even and the odd degree ordinary cohomology groups, respectively. The Chern
character commutes with suspension and thus is a stable cohomology operation (of
degree 0).

Now let M be a noncompact arithmetic manifold. For g ∈ CG(M), let M,Mg

denote the Borel–Serre compactifications of M,Mg, respectively; see [Borel and
Serre 1973; Mesland and Şengün 2016, Section 2.1.2]. It is well-known that the
finite covering maps s, t : Mg → M extend to finite coverings of pairs of spaces
s̄, t̄ : (Mg, ∂Mg)→ (M, ∂M). From these, we obtain Hecke operators Tg on the
relative groups K ∗(M, ∂M) and H∗(M, ∂M,Z). Notice that

K ∗(M, ∂M)' K̃ ∗(M+)= K ∗(M)' K∗(C0(M)),
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where M+ is the one-point compactification of M . Furthermore, we have that
H∗(M, ∂M,Z)' H∗c (M,Z), where H∗c denotes compactly supported cohomology.

It follows that for a given arithmetic manifold M , by choosing (X, A)= (M,∅)
if M is compact and (X, A)= (M, ∂M) if M is noncompact, we have the Chern
character

Ch : K i (M)→ PHi
c(M,Q), i = 0, 1,

and both sides are Hecke modules. A most natural question is whether the Chern
character commutes with the Hecke actions.

2.8. Proposition. Let M be an arithmetic manifold and g ∈ CG(M). The Chern
character

Ch : K i (M)→ PHi
c(M,Q), i = 0, 1

commutes with the action of the Hecke operator Tg on both sides.

Proof. Consider a cohomology operation 9 : E∗( · )→ F∗( · ) of degree 0 between
two cohomology theories with spectra E, F . If 9 is stable, there is in fact a map
of spectra 9 : E→ F and the cohomology operation is simply the composition

En(X, A)= [6∞Sn
∧6∞(A/X), E] → Fn(X, A)= [6∞Sn

∧6∞(X/A), F],

f 7→9 ◦ f.

It immediately follows that the transfer operator associated to a finite cover of pairs
of spaces p : (Y, B)→ (X, A) commutes with 9, that is, the following diagram
commutes:

En(Y, B) 9
//

p!

��

Fn(Y, B)

p!

��

En(X, A) 9
// Fn(X, A)

Now let us go back to our setting. Let us first assume that M is compact. Note
that H∗c (M,Z)= H∗(M,Z) in this case. As it is a stable cohomology operation,
the Chern character commutes with the natural map s∗ and also with the transfer
map t !, giving rise to the commutative diagram

K ∗(M)

Ch
��

s∗
// K ∗(Mg)

Ch
��

t !
// K ∗(M)

Ch
��

PH∗(M,Q)
s∗
// PH∗(Mg,Q)

t !
// PH∗(M,Q)

showing that the Chern character map commutes with Hecke operators.
For the case where M is noncompact, the proof follows in the same way consid-

ering the diagram
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K ∗(M, ∂M)

Ch
��

s̄∗
// K ∗(Mg, ∂Mg)

Ch
��

t̄ !
// K ∗(M, ∂M)

Ch
��

PH∗(M, ∂M,Q)
s̄∗
// PH∗(Mg, ∂Mg,Q)

t̄ !
// PH∗(M, ∂M,Q)

where s̄, t̄ : (Mg, ∂Mg)→ (M, ∂M) are the extensions of s, t : Mg→ M mentioned
earlier. �

2.9. Remark. The transfer map used above is an example of what is known as a
wrong way map. Connes and Skandalis [1984, Remark 2.10(a)] remark that given
a K-oriented map f : X → Y between smooth manifolds, the wrong way maps
f ! : K (X)→ K (Y ), induced by the Kasparov product with the class of the wrong

way cycle [ f !] ∈ KK∗(C0(X),C0(Y )), and f ! : Hc(X,Q)→ Hc(Y,Q) commute
under the Chern character modulo an error term Td( f ) defined via the Todd genus
of certain bundles that naturally arise. In our case, this error term vanishes and we
get that the transfer map commutes with the Chern character as we proved above.

2.10. Remark. Using the universal property of KK-theory, the Chern character
can be obtained as the unique natural transformation

Ch : KK∗(A, B)→ HL∗(A, B),

where HL∗ denotes bivariant local cyclic homology; see [Meyer 2007; Puschnigg
1996]. For a locally compact space X , the local cyclic homology of C0(X) recovers
the compactly supported sheaf cohomology of X [Puschnigg 1996, Theorem 11.7].
Thus ordinary cohomology admits an action of analytic Hecke operators via its
structure as a module over KK-theory. It follows from the results of this section that
the topological Hecke operators on ordinary cohomology arise from the analytic
Hecke module structure.

3. Bianchi manifolds

In this section, we present a result about arithmetic noncompact hyperbolic 3-
manifolds that complements the results obtained in our previous paper [Mesland
and Şengün 2016, Section 5]. In that paper, for a Bianchi manifold M , we provided
a Hecke equivariant isomorphism between K0(M) and H2(M, ∂M,Z), where M
is the Borel–Serre compactification of M ; see [Borel and Serre 1973]. We show be-
low that H 2(M, ∂M,Z) and K 0(M) are isomorphic as Hecke modules and further
argue that the cohomological pairing between H 2 and H2 and the index pairing
between K 0 and K0 commute under these isomorphisms.

Let O be the ring of integers of an imaginary quadratic field and 0 be a torsion-
free finite index subgroup of the Bianchi group PSL2(O). Then 0 acts freely and



640 BRAM MESLAND AND MEHMET HALUK ŞENGÜN

properly on the hyperbolic 3-space H3. The associated hyperbolic 3-manifold
M = H3/0 is known as a Bianchi manifold. It is well-known that any noncompact
arithmetic hyperbolic 3-manifold is commensurable with a Bianchi manifold.

3.1. For compact connected spaces X , denote by K̃ 0(X) the reduced K-theory
of X , that is, the kernel of the map K 0(X) → Z induced by [E] 7→ dimC(E).
Write [n] ∈ K 0(X) for the class of the trivial bundle T n of rank n over X . For
a vector bundle E , the top exterior power

∧dim E E is called the determinant line
bundle and denoted det E . Let Pic(X) denote the Picard group of X , that is, the
set of isomorphism classes of line bundles on X together with the tensor product
operation.

Let M+ denote the one-point compactification of the Bianchi manifold M . Since
M+ is a CW-complex of dimension 3, every complex vector bundle E→M+ splits
as E ' det E ⊕ T dimC(E)−1; see [Weibel 2013, Corollary 4.4.1]. It follows from
[Weibel 2013, Corollary 2.6.2] that the map

dim⊕ det : K 0(M+)→ Z⊕Pic(M+), E 7→ (dimC(E), [det E])

is an isomorphism. Noting H 0(M+,Z)'Z and identifying Pic(M+)' H 2(M+,Z)

via the first Chern class c1, we obtain the isomorphism

K 0(M+)→ H 0(M+,Z)⊕ H 2(M+,Z)

induced by [E] 7→ dimC(E)+ c1(det E). Note that this map agrees with the Chern
character since E ' T dimC(E)−1

⊕ det E as mentioned above. By Proposition 2.8,
this isomorphism is Hecke equivariant.

Composing the Chern character with the projection map, we obtain a surjec-
tion K 0(M+)→ H 2(M+,Z) whose kernel is K̃ 0(M+) = K 0(M). Noting that
H 2(M+,Z) is isomorphic to the compactly supported cohomology H 2

c (M,Z),
which in turn is isomorphic to H 2(M, ∂M,Z), we obtain an isomorphism

K 0(M) ∼−→ H 2(M, ∂M,Z) (3.2)

that is Hecke equivariant.

3.3. Given a line bundle L→ M and any connection ∇ on L , let

F∇ = Tr
(
−1
2πi
∇

2
)

be the curvature 2-form of ∇. Then it is well-known that F∇ is closed and its image
in H 2(M,R) is in fact integral and equals the first Chern class c1(L) of L .

3.4. Proposition. Let (N , ∂N )⊂ (M, ∂M) be an embedded surface, L→M a line
bundle that is trivial on ∂M and N the closed subspace of N obtained by removing
an open neighborhood of ∂N over which L is trivial. View the interior N̊ of N as a
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spinc surface with associated Dirac operator /D N̊ (see [Mesland and Şengün 2016,
Section 5]). We have

〈[ /D N̊ ], [L] − [1]〉 =
∫

N
F∇

for any connection ∇ on L. Here 〈 · , · 〉 is the index pairing.

Proof. It follows from the relative index theorem of [Roe 1991, Theorem 4.6] that

〈[ /D N̊ ], [L] − [1]〉 =
∫

N
Â(N̊ )Ch(L|N̊ )−

∫
N

Â(N̊ ).

Here L|N̊ is the restriction of L to the interior of N . Observe that

Ch(L|N̊ )= 1+ c1(L|N̊ )= 1+ [F∇ |N̊ ],

where ∇ is any chosen connection on L and F∇ |N̊ is the restriction of its curvature
to N̊ . The Â-genus Â(N̊ ) of N̊ equals 1 as it only has nonzero components in
forms of degree 0 mod 4. The claim follows. �

The following is not necessary for the main result of this section, however we
note it as it quickly follows from the above and [Ballmann and Brüning 2001,
Lemma 2.22].

3.5. Corollary. If N has finite volume, we have

〈[ /D N̊ ], [L] − [1]〉 =
∫

N̊
F∇,

for any connection ∇ on L.

3.6. Proposition. We have the equality

〈[ /D N̊ ], [L] − [1]〉 = 〈[(N , ∂N )], c1(L)〉.

In particular, the isomorphisms

K 0(M) '−→ H 2(M, ∂M,Z), K0(M)
'
←− H2(M, ∂M,Z)

(see (3.2) and [Mesland and Şengün 2016, Proposition 5.6.]) are compatible with
the index pairing

〈 · , · 〉 : K0(M)× K 0(M)→ Z

and the integration pairing

〈 · , · 〉 : H2(M, ∂M,Z)× H 2(M, ∂M,Z)→ Z.

In other words, diagram (1.1) of the introduction is commutative.

Proof. It follows from our discussion in Section 3.1 that every element of K 0(M) is
of the form [L]− [1], where 1 is the trivial line bundle and L→ M is a line bundle
that is trivial at infinity. Under the isomorphism (3.2), the image of [L] − [1]
is c1(L). Every class in H2(M, ∂M,Z) is represented by a properly embedded
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surface (N , ∂N ) ⊂ (M, ∂M); see [Mesland and Şengün 2016, Section 5]. Then
the pairing

〈
[(N, ∂N )], c1(L)

〉
is given by the integral

∫
N F∇ , where ∇ is any con-

nection on L and F∇ is the associated curvature 2-form as above. As L is trivial
at infinity, we can choose closed N ⊂ N̊ so that L is trivial outside N and it then
follows that

∫
N F∇ =

∫
N F∇ . Observe that the image of [(N , ∂N )] in K0(M) under

the isomorphism given in [Mesland and Şengün 2016, Proposition 5.6.] is [ /D N̊ ].
Now by Proposition 3.4, we have the claim. �

4. The double-coset Hecke ring and KK-theory

We recall the construction of the Hecke operators via KK-theory as put forward in
[Mesland and Şengün 2016]. We then show that the multiplication of double-cosets
corresponds to the Kasparov product of the associated KK-classes.

4.1. Bimodules over the reduced crossed product. For a 0-C∗-algebra B, the re-
duced crossed product B or 0 is obtained as a completion of the convolution alge-
bra Cc(0, B); see, for example, [Kasparov 1995]. Let g ∈CG(0) and d := [0 : 0g

].
The double coset 0g−10 admits a decomposition as a disjoint union

0g−10 =

d⊔
i=1

gi0, gi = δi g−1, 0 =

d⊔
i=1

δi0
g, (4.2)

where the δi ∈ 0 form a complete set of coset representatives for 0g. We choose to
work with g−1 in order for our formulae to be in line with those in [Mesland and
Şengün 2016]. Consider the elements

ti (γ )= tg
i (γ ) := g−1

γ (i)γ gi ∈ g0g−1,

where i 7→ γ (i) is induced by the permutation of the cosets in (4.2). From [Mesland
and Şengün 2016, Lemma 2.3] we recall the relations

ti (γ1γ2)= tγ2(i)(γ1)ti (γ2), ti (γ−1)= tγ−1(i)(γ )
−1,

which will be used in the sequel without further ado.
Let S ⊂ CG(0) be a subgroup containing 0 and B an S-C∗-algebra. The free

right B or 0-module T 0
g ' (B or 0)

d carries a left B or 0-module structure given
by

(tg( f )9)i (δ)=
∑
γ

g−1
i f (γ )ti (γ−1)−19γ−1(i)(ti (γ

−1)δ). (4.3)

Equivalently, we have the covariant representation

(tg(b) ·9)i (δ) := g−1
i (b)9i (δ),

(tg(uγ )9)i (δ) := ti (γ−1)−1(9γ−1(i)(ti (γ
−1)δ)).

(4.4)
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Details of the construction, as well as the following definition, can be found in
[Mesland and Şengün 2016, Section 2].

4.5. Definition. Let B be a separable S-C∗-algebra and C a separable C∗-algebra.
The Hecke operators

Tg : KK∗(B or 0,C)→ KK∗(B or 0,C),

Tg : KK∗(C, B or 0)→ KK∗(C, B or 0)

are defined to be the Kasparov product with the class [T 0
g ] ∈ KK0(B or 0, B or 0).

We now give an equivalent description of the bimodules T 0
g . Consider the func-

tion space
Cc(0g−10, B)= C[0g−10]⊗

alg
C

B.

The convolution product makes Cc(0g−10, B) into a Cc(0, B)-bimodule:

f ∗9(ξ) :=
∑
γ∈0

f (γ )γ (9(γ−1ξ)), 9∗ f (ξ) :=
∑
γ∈0

9(ξγ )ξ f (γ−1), ξ ∈0g−10.

Moreover, we define the inner product

〈8,9〉(δ) :=
∑

ξ∈0g−10

ξ−1(8(ξ)∗9(ξδ)), (4.6)

which makes Cc(0g−10, B) into a pre-Hilbert-C∗-bimodule over Cc(0, B).

4.7. Lemma. For g ∈ S ⊂ CG(0) the map

α : Cc(0g−10, B)→ Cc(0, B)d ⊂ T 0
g , α(9)i (δ) := g−1

i 9(giδ),

induces a unitary isomorphism of B or 0-bimodules.

Proof. The decomposition (4.2) shows that the map α has dense range. Moreover,
α preserves the inner product

〈α(9), α(8)〉(δ)=
∑

i

α(9)∗i α(8)i (δ)=
∑

i

∑
γ

α(9)∗i (γ )γ α(8)i (γ
−1δ)

=

∑
i

∑
γ

γ (α(9)i (γ
−1)∗α(8)i (γ

−1δ))

=

∑
i

∑
γ

γ g−1
i (9(giγ

−1)∗8(giγ
−1δ))

=

∑
ξ∈0g−10

ξ−1(8(ξ)∗9(ξδ))= 〈9,8〉(δ),

from which it follows that α induces a unitary isomorphism on the C∗-module
completions, which is in particular a right module map.
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For the left module structure we compute

α( f ∗9)i (δ)= g−1
i

(∑
γ∈0

f (γ )γ9(γ−1giδ)

)
=

∑
γ∈0

g−1
i f (γ )g−1

i γ9(gγ−1(i)ti (γ
−1)δ)

=

∑
γ∈0

g−1
i f (γ )ti (γ−1)−1g−1

γ−1(i)9(gγ−1(i)ti (γ
−1)δ)

=

∑
γ∈0

g−1
i f (γ )ti (γ−1)−1α(9)γ−1(i)(ti (γ

−1)δ)

= (tg( f ))(α9)i (δ), (4.8)

and we are done. �

Thus, the bimodules implementing the Hecke operators are completions of the
B-valued functions on the associated double coset.

4.9. The double-coset Hecke ring. Let S be a subgroup of CG(0) that contains 0.
Following Shimura, we define the Hecke ring Z[0, S] as the free abelian group on
the double cosets 0g0 with g ∈ S, equipped with the product

[0g−10] · [0h−10] :=

K∑
k=1

mk[0gi(k)h j (k)0], (4.10)

where we have fixed finite sets I and J and coset representatives {gi : i ∈ I } and
{h j : j ∈ J } for 0g and 0h in 0, respectively. Moreover, mk , i(k) and j (k) are
such that mk := #{(i, j) : gi h j0 = gi(k)h j (k)0}, and

0g−10h−10=

K⊔
k=1

0gi(k)h j (k)0 (4.11)

is a disjoint union. For well-definedness and other details of the construction we
refer to [Shimura 1971, Chapter 3]. We wish to show that, for an arbitrary S-C∗-
algebra B, the map

T : Z[0, S] → KK0(B or 0, B or 0), [0g−10] 7→ T 0
g (4.12)

is a ring homomorphism. To this end, we introduce the following notions. By a bi-
0-set we mean a set V that carries both a left and a right 0-action, and the actions
commute in the sense that for all γ, δ ∈ 0 and v ∈ V we have γ (vδ)= (γv)δ.

The 0-product of a pair (V,W ) of bi-0-sets is the quotient of the Cartesian
product V ×W by the equivalence relation
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(v,w)∼ (v′, w′)⇔∃γ ∈ 0 v′ = vγ, w′ = γ−1w,

and is denoted by V×0W . The equivalence class of the pair (v,w) is denoted [v,w].
The 0-product is a bi-0-set via the induced left and right 0-actions

[v,w]γ := [v,wγ ], γ [v,w] := [γv,w].

Let 0 ⊂ S ⊂ CG(0) be a subgroup and V a bi-0-set. We say that V is anchored
in S if there is given a map m : V → S such that m(γvδ)= γm(v)δ for all v ∈ V
and γ, δ ∈ 0. We refer to m as the anchor. Of course any double coset 0g0 with
g ∈ S is anchored in S via the inclusion map.

4.13. Lemma. Let V and W be bi-0-sets with anchor maps mV : V → S and
mW : W → S. Then their 0-product V ×0 W is anchored in S via the product
anchor [v,w] 7→ mV (v)mW (w).

The proof of this is straightforward. Note that if V and W are double 0-cosets
in S, anchored via their embeddings into S, then the product anchor of V ×0 W
need not be injective.

We wish to relate the anchored bi-0-sets0g−10×00h−10 and
⊔K

k=1
⊔mk
`=1 0zk0.

By virtue of (4.11) we fix, once and for all, for each zk and 16 `6 mk a choice
of distinct indices i(k, `), j (k, `) such that zk0 = gi(k,`)h j (k,`)0. We thus write
z(k,`) = gi(k,`)h j (k,`). Consider the left action of 0 on the finite set I × J given by

γ (i, j) := (γ (i), tg
i (γ )( j)). (4.14)

4.15. Lemma. With the above choices, the map

ω :

K⊔
k=1

mk⊔
`=1

0z(k,`)0→ 0g−10×0 0h−10, γ z(k,`)δ 7→ [γ gi(k,`), h j (k,`)δ],

where i = i(k, `) and j = j (k, `), is a 0-bi-equivariant bijection of S-anchored
bi-0-sets.

Proof. By construction, ω is 0-bi-equivariant and respects the anchors. We need
only show that it is bijective. This is achieved as follows: For each k choose

γ k
1 = 1, γ k

2 , . . . , γ
k
dk
∈ 0, with 0zk0 =

dk⊔
n=1

γ k
n zk0.

We thus have
K⊔

k=1

mk⊔
`=1

0z(k,`)0 =
K⊔

k=1

mk⊔
`=1

dk⊔
n=1

γ k
n gi(k,`)h j (k,`)0. (4.16)

The identities

[giγ, h jδ] = [gi , γ h jδ] = [gi , hγ ( j)th
j (γ )δ]
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show that every element in the 0-product 0g−10×0 0h−10 has a representative
of the form [gi , h jγ ] and such representatives are unique because gi and h j form
a complete set of coset representatives. We so obtain a set bijection

0g−10×0 0h−10→
⊔

(i, j)∈I×J

{gi }× h j0, [giγ, h jδ] 7→ [gi , hγ ( j)t
j

h (γ )δ].

It follows that ω restricts to bijections

ω : γ k
n gi(k,`)h j (k,`)0→ {gγ k

n (i(k,`))}× htg
i (γ

k
n )( j (k,`))0.

Therefore it suffices to show that the map

N × K × L→ I × J, (n, k, `) 7→ γ k
n (i(k, `), j (k, `))

is bijective. By [Shimura 1971, Proposition 3.2] it holds that

K∑
k=1

mkdk = |I ||J | = |I × J |,

and thus we need only show that this map is injective, and then use a counting
argument to obtain surjectivity. To this end we prove that the equality

γ k
n (i(k, `), j (k, `))= γ k′

n′ (i(k
′, `′), j (k ′, `′)) (4.17)

implies that (n, k, `)= (n′, k ′, `′). By (4.14), (4.17) implies that

γ k
n gi(k,`)h j (k,`)0 = γ

k′
n′ gi(k′,`′)h j (k′,`′)0,

and thus
0gi(k,`)h j (k,`)0 = 0gi(k′,`′)h j (k′,`′)0.

This in turn implies that k = k ′ and thus γ k
n zk0 = γ

k
n′zk0, so it follows that n = n′.

Lastly, we are left with γ k
n (i(k, `)) = γ

k
n (i(k, `

′)), so i(k, `) = i(k, `′), which by
construction implies `= `′. This shows that the map (n, k, `) 7→γ k

n (i(k, `), j (k, `))
is injective. �

Now let V be a 0-set with anchor m : V → S and X a S-(A, B)-bimodule. We
always consider V as a discrete set. We equip Cc(V, X) with a Cc(0, B)-valued
inner product via

〈8,9〉(δ) :=
∑
v∈V

m(v)−1
〈8(v),9(vδ)〉

and left and right module structures via the 0-action

f ∗9(v) :=
∑
γ

f (γ )γ9(γ−1v), 9 ∗ f (v) :=
∑
γ

9(vγ )m(vγ ) f (γ−1).
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Thus the completion gives a C∗-(Aor 0, Bor 0)-bimodule. Note that if u : X→ Y
is an S-equivariant unitary bimodule isomorphism and ω :W → V an isomorphism
of S-anchored bi-0-sets, then

Cc(V, X)→ Cc(W, Y ), 9 7→ u ◦9 ◦ω

is a unitary bimodule isomorphism.
By Lemma 4.7, the bimodule T 0

g for g ∈ S is isomorphic to the completion of
Cc(0g−10, B) with anchor m : 0g−10→ S the set inclusion, and is thus a special
case of the above construction. The formalism of anchored bi-0-sets allows for an
elegant description of tensor products of their associated modules.

4.18. Proposition. Let S ⊂ CG(0) be a subgroup and A, B and C be S-C∗-
algebras. Let V,W be S-anchored bi-0-sets, X an (A, B)-S-bimodule and Y a
(B,C)-S-bimodule. Then the map

α : Cc(V, X)⊗alg
Cc(0,B) Cc(W, Y )→ Cc(V ×0 W, X ⊗B Y ),

given by
α(8⊗9)[v,w] :=

∑
γ

8(vγ )⊗m(v)γ9(γ−1w),

is an inner product preserving map of (Cc(0, A),Cc(0,C))-bimodules with dense
range. Consequently their respective C∗-module completions are unitarily isomor-
phic (A×r 0,C or 0)-bimodules.

Proof. The following calculation shows that α is unitary:

〈α(8⊗9), α(8⊗9)〉(δ)

=

∑
[v,w]

m(w)−1m(v)−1
〈α(8⊗9)(v,w), α(8⊗9)(v,wδ)〉

=

∑
[v,w]

∑
γ,ε

m(w)−1m(v)−1〈m(v)γ9(γ−1w), 〈8(vγ),8(vε)〉m(v)ε9(ε−1wδ)
〉

=

∑
[v,w]

∑
γ,ε

m(w)−1〈γ9(γ−1w),m(v)−1(
〈8(vγ),8(vε)〉

)
ε9(ε−1wδ)

〉
=

∑
[v,w]

∑
γ,ε

m(γ−1w)−1〈9(γ−1w),m(vγ)−1(
〈8(vγ),8(vε)〉

)
γ−1ε9(ε−1wδ)

〉
=

∑
[v,w]

∑
γ,ε

m(γ−1w)−1〈9(γ−1w),m(vγ)−1(
〈8(vγ),8(vγε)〉

)
ε9(ε−1γ−1wδ)

〉
.

By virtue of the equivalence relation on V ×W we can replace the sum over equiv-
alence classes [v,w] ∈ V ×0 W and elements γ ∈0 by a sum over (v,w)∈ V ×W ,
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and continue the calculation:

=

∑
v∈V

∑
w∈W

∑
ε

m(w)−1〈9(w),m(v)−1(
〈8(v),8(vε)〉

)
ε9(ε−1wδ)

〉
=

∑
w

∑
ε

m(w)−1〈9(w), 〈8,8〉(ε)ε9(ε−1wδ)
〉

=

∑
w

m(w)−1〈9(w), 〈8,8〉 ∗9(wδ)〉
=
〈
9, 〈8,8〉9

〉
(δ).

It is straightforward to establish that α is a bimodule map:

α( f ∗8⊗9)[v,w] =
∑
γ

( f ∗8)(vγ )⊗m(v)γ9(γ−1w)

=

∑
γ,ε

f (ε)ε8(ε−1vγ )⊗m(v)γ9(γ−1w)

=

∑
ε

f (ε)εα(8⊗9)[ε−1v,w] = f ∗α(8⊗9)[v,w],

α(8⊗9 ∗ f )[v,w] =
∑
γ

8(vγ )⊗m(v)γ (9 ∗ f )(γ−1w)

=

∑
γ,ε

8(vγ )⊗m(v)γ (9(γ−1wε)m(γ−1wε) f (ε−1))

=

∑
γ,ε

8(vγ )⊗m(v)γ9(γ−1wε)m(wε) f (ε−1)

=

∑
ε

α(8⊗9)[v,wε]m(wε) f (ε−1)

= α(8⊗9) ∗ f [v,w].

Lastly, to see that α has dense range, denote by δv : V → C the indicator function
at the element v ∈ V . The functions

χ
[v,w]
x⊗y (v

′, w′) := δv(v
′)δw(w

′)x ⊗ y,

with v ∈ V , w ∈ W , x ∈ X and y ∈ Y , span a dense right Cc(0,C)-submodule.
Now set

evx(v
′) := δv(v

′)x,

f (v,w)y (w′) := δw(w
′)m(v)−1(y).

Then it is easily verified that α(evi ⊗ f (v,w)y )= χ
[v,w]
x⊗y , so α has dense range. This

proves the proposition. �
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4.19. Theorem. For any g, h ∈CG(0) there is a unitary isomorphism of bimodules

T 0
g ⊗Bor0 T 0

h
∼
−→

K⊕
k=1

(
T 0
(gi(k)h j (k))−1

)⊕mk
.

Consequently, for any S-C∗-algebra B, the map T : [0g−10] 7→ [T 0
g ] extends to a

ring homomorphism

T : Z[0, S] → KK0(B or 0, B or 0).

Proof. By Lemma 4.7, the modules T 0
g and T 0

h are unitarily isomorphic to those
associated to the anchored bi-0-sets 0g−10 and 0h−10. By Proposition 4.18, their
tensor product is given by

Cc(0g−10, B)⊗alg
Cc(0,B) Cc(0h−10, B) ∼−→ Cc(0g−10×0 0h−10, B⊗B B).

Since B⊗B B ' B as S-modules and by Lemma 4.15, there is an isomorphism of
anchored bi-0-sets

0g−10×0 0h−10 '

K⊔
k=1

mk⊔
`=1

0z(k,`)0.

Taking completions, we obtain the unitary bimodule isomorphism

T 0
g ⊗Bor0 T 0

h
∼
−→

K⊕
k=1

mk⊕
`=1

(
T 0

z−1
(k,`)

)
.

The definition of addition in KK-theory then yields

T [0g−10]⊗ T [0h−10]

= [T 0
g ]⊗ [T

0
h ] =

K∑
k=1

mk∑
`=1

[T 0

z−1
(k,`)
] =

K∑
k=1

mk∑
`=1

T [0z(k,`)0]

=

K∑
k=1

mk T [0zk0] = T
( K∑

k=1

mk[0zk0]

)
= T ([0g−10] · [0h−10]),

showing that [0g−10] 7→ [T 0
g ] is a ring homomorphism. �

We define HB(0, S) to be the subring of KK0(B or 0, B or 0) generated by
T 0

g for g ∈ CG(0). The following corollary is now obvious.

4.20. Corollary. If Z[0, S] is commutative, then HB(0, S) is commutative.

Similarly write HM(S) for the subring of KK0(C0(M),C0(M)) generated by
the classes of the correspondences M s

←− Mg
t
−→ M with g ∈ S.
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4.21. Corollary. Let X be an S-space on which 0 acts freely and properly with
quotient M := X/0. The map [0g−10] 7→ [M t

←− Mg
s
−→ M] defines a ring homo-

morphism
Z[0, S] → KK0(C0(M),C0(M)).

In particular, the double-coset product [0g−10] · [0h−10] corresponds to the class
of the composition of correspondences [M sg

←− Mg tg×sh Mh
th
−→ M] and there is an

isomorphism HM(S)'HC0(X)(0, S).

Proof. By [Mesland and Şengün 2016, Proposition 3.8] the Morita equivalence
isomorphism

KK0(C0(X)o0,C0(X)o0)→ KK0(C0(M),C0(M))

maps T 0
g to T M

g = [M
sg
←− Mg

tg
−→ M]. Thus the above map is the composition

Z[0, S] → KK0(C0(X)o0,C0(X)o0)→ KK0(C0(M),C0(M)),

whence a homomorphism. The last statement follows from [Connes and Skandalis
1984, Theorem 3.2]. Clearly HM(S)'HC0(X)(0, S) under this isomorphism. �

4.22. Remark. Corollary 4.21 is the KK-theoretic analogue of the well-known
fact that the double-coset Hecke ring can be interpreted in terms of (topological)
correspondences, where the double-coset multiplication simply becomes composi-
tion of correspondences [Shimura 1971, Chapter 7].

5. Hecke equivariant exact sequences

As before, let S be a group such that 0 ⊂ S ⊂ CG(0). In this section we prove
the following general result. For S-algebras A and B, and any element [x] of
KK S

i (A, B) we have that

[T Aor0
g ]⊗ j0([x])= j0([x])⊗[T Bor0

g ] ∈ KKi (Aor 0, B or 0).

Here j0 denotes the Kasparov descent map [1988; 1995]

j0 : KK S
∗
(A, B)→ KK0

∗
(A, B)→ KK∗(Aor 0, B or 0),

and we have written T Aor0
g for T 0

g to emphasize the change of coefficient algebra.
This result implies that for any S-equivariant semisplit extension

0→ I → A→ B→ 0

of C∗-algebras that is 0-exact in the sense that

0→ I or 0→ Aor 0→ B or 0→ 0

is exact, the long exact sequences in both variables of the KK-bifunctor are Hecke
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equivariant. In particular, we obtain Hecke equivariant exact sequences in K-theory
and K-homology for various compactifications associated with locally symmetric
spaces.

5.1. The descent theorem. Kasparov’s descent construction associates to a 0-equi-
variant C∗-B-module X a C∗-module X or 0 over B or 0 [Kasparov 1980; 1988;
1995]. To an S-equivariant C∗-module X and a double coset 0g−10, with g ∈ S,
we associate the (Cc(0, A),Cc(0, B))-bimodule

Cc(0g−10, X)= C[0g−10]⊗
alg
C

X;

see Section 4.1. We denote the C∗-module completion so obtained by T Xor0
g . The

following lemma is an application of Proposition 4.18.

5.2. Lemma. Let A and B be S-C∗-algebras. Suppose that X is an S-equivariant
right C∗-module over B and π : A → End∗B(X) an S-equivariant essential ∗-
homomorphism. For every g ∈ S, there are inner product preserving bimodule
homomorphisms

Cc(0g−10, A)⊗alg
Cc(0,A) Cc(0, X)
∼
−→ Cc(0g−10, X) ∼←− Cc(0, X)⊗alg

Cc(0,B) Cc(0g−10, B) (5.3)

of (Cc(0, A),Cc(0, B))-bimodules with dense range. Consequently the respective
C∗-module completions are unitarily isomorphic (Aor 0, B or 0)-bimodules.

From the identifications

0g−10×0 0 ' 0g−10 ' 0×0 0g−10

given by the multiplication maps and the S-equivariant isomorphisms

X ' A⊗A X ' X ⊗B B,

coming from the bimodule structure we obtain the explicit from of the isomor-
phisms in (5.3):

α : Cc(0g−10, A)⊗alg
Cc(0,A) Cc(0, X)→ Cc(0g−10, X),

α(9⊗8)(ξ) :=
∑
γ∈0

9(ξγ ) · ξγ8(γ−1),

β : Cc(0, X)⊗alg
Cc(0,B) Cc(0g−10, B)→ Cc(0g−10, X),

β(8⊗9)(ξ) :=
∑
γ∈0

8(γ ) · γ9(γ−1ξ).

As before, the elements gi are such that 0g−10 =
⊔d

i=1 gi0. We construct from
them the following operators.
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5.4. Lemma. The operator

vi : Cc(0, X)→ Cc(gi0, X)⊂ Cc(0g−10, X), (vi8)(giξ) := gi8(ξ),

extends to an adjointable isometry X or 0→ T Xo0
g with adjoint given by

(vi )
∗9(ξ) := g−1

i 9(giξ).

Proof. The formula for the adjoint is easily verified. It follows that (vi )
∗vi = 1

on Cc(0, X), so vi is isometric. The composition viv
∗

i = pi , the projection onto
Cc(gi0, X), which is bounded as well. �

5.5. Theorem. Let (X, D) be an S-equivariant left-essential unbounded Kasparov
module of parity j and let g ∈ S. Then we have an equality

j0([(X, D)])⊗[Tg] = [Tg]⊗ j0([(X, D)]) ∈ KK j (Aor 0, B or 0).

Proof. By Lemma 5.2 we have bimodule isomorphisms

(X or 0)⊗Bor0 T Bor0
g

β
−→ T Xor0

g
α
←− T Aor0

g ⊗Aor0 (X or 0).

Define an operator D̂ on the dense submodule

Cc(0g−10,Dom D)⊂ T Xor0
g

via
(D̂ϒ)(ξ) := D(ϒ(ξ)).

Then D̂β = β(D ⊗ 1) and hence D̂ is essentially self-adjoint and regular, and
has locally compact resolvent. We wish to show that D̂ represents the Kasparov
product of T Aor0

g and (X, D), under the isomorphism α. To this end we need to
verify conditions 1–3 of [Kucerovsky 1997, Theorem 13]. Because the module
T Aor0

g carries the zero operator, only the connection condition 1 needs argument.
Let A denote the dense subalgebra of A such that [D, a] is bounded for a ∈ A .

Then, for 9 ∈ Cc(0g−10,A ), ξ ∈ 0 and a fixed element gi we have

D̂α(9⊗8)(giξ)−α(9⊗ D8)(giξ)

=

∑
γ∈0

D9(giγ ) · giγ8(γ
−1ξ)−9(giγ )giγ D8(γ−1ξ)

=

∑
γ∈0

(
[D, 9(giγ )] −9(giγ )(D− giγ Dγ−1g−1

i )
)
giγ8(γ

−1ξ)

= gi

(∑
γ∈0

g−1
i

(
[D, 9(giγ )] −9(giγ )(D− giγ Dγ−1g−1

i )
)
γ8(γ−1ξ)

)
= vi (C i

9 ∗8)(giξ).
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Here C i
9 denotes the map

C i
9 : 0→ End∗B(X), γ 7→ g−1

i

(
[D, 9(giγ )] −9(giγ )(D− giγ Dγ−1g−1

i )
)
,

which is of finite support since 9 is. Such maps define adjointable operators on
Cc(0, X) via the convolution action. Writing |9〉 :8→9⊗8 we have

D̂α|9〉−α|9〉D =
d∑

i=1

vi
◦C i

9 : X or 0→ T Xor0
g ,

which defines a bounded adjointable operator. Thus D̂ satisfies Kucerovsky’s con-
nection condition as desired. �

5.6. Corollary. For any α ∈ KK S
j (A, B) and any separable C∗-algebra C , the

induced maps

α∗ : KKi (C, Aor 0)→ KKi+ j (C, B or 0),

α∗ : KKi (B or 0,C)→ KKi+ j (Aor 0,C)

are Hecke equivariant. In fact we can replace KK (C, · ) and KK ( · ,C) by any co-
or contravariant functor which is homotopy invariant, split exact and stable.

5.7. Extensions and Hecke equivariant exact sequences. The paper [Thomsen
2000] establishes, for any locally compact group G, an isomorphism

KK G
1 (A, B) ∼−→ ExtG(A⊗KG, B⊗KG),

where KG ' K(L2(G×N)). A G-equivariant semisplit extension

0→ B→ E→ A→ 0

induces a G-equivariant semisplit extension

0→ B⊗KG→ E ⊗KG→ A⊗KG→ 0,

and thus an element in KK G
1 (A, B).

5.8. Theorem. Let G be a locally compact group, 0 ⊂ G a discrete subgroup,
CG(0) ⊂ G its commensurator and S a group with 0 ⊂ S ⊂ CG(0). For any
0-exact and S-equivariant semisplit extension

0→ B→ E→ A→ 0

of separable S-algebras and any separable C∗-algebra C , the exact sequences

· · · → KKi (C, B or 0)→ KKi (C, E or 0)→ KKi (C, Aor 0)→ · · · , (5.9)

· · · → KKi (Aor 0,C)→ KKi (E or 0,C)→ KKi (B or 0,C)→ · · · (5.10)

are Z[0, S]-equivariant.
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Proof. Exactness of 0 implies that we obtain a semisplit extension

0→ B or 0→ E or 0→ Aor 0→ 0, (5.11)

yielding the exact sequences (5.9) and (5.10). By Theorem 4.19 all groups in these
exact sequences are Hecke modules. In sequence (5.9), the maps

KKi (C, B or 0)→ KKi (C, E or 0), KKi (C, E or 0)→ KKi (C, Aor 0)

are induced by elements in KK0(B or 0, E or 0) and KK0(A or 0, E or 0),
respectively. These elements are in the image of the descent maps

KK S
0 (B, E)→ KK0

0 (B, E)→ KK0(B or 0, E or 0),

KK S
0 (E, A)→ KK0

0 (E, A)→ KK0(E or 0, Aor 0),

and thus are Hecke equivariant by Theorem 5.5. Since the extension (5.11) is
semisplit it defines a class [Ext] ∈ KK S

1 (A, B). The boundary maps in the exact
sequence (5.9) are implemented by an element ∂ ∈ KK1(Aor 0, B or 0), and this
element is the image of [Ext] under the composition

KK S
1 (A, B)→ KK0

1 (A, B)→ KK1(Aor 0, B or 0).

Thus by Theorem 5.5 the boundary maps in the sequence (5.9) are Hecke equivari-
ant. The argument for sequence (5.10) is similar. �

Interesting examples of S-equivariant extensions come from partial compactifi-
cations of G-spaces. Let X be a locally compact space with a G-action. A partial
S-compactification is an S-space X which contains X as an open dense subset. We
write ∂X := X \ X and we obtain the S-equivariant exact sequence

0→ C0(X)→ C0(X)→ C0(∂X)→ 0.

5.12. Example. Let G = Isom(H), where H is the real hyperbolic n-space. The
geodesic compactification H of H is a G-compactification and thus, it is an S-
compactification for any lattice 0 ⊂ G and subgroup 0 ⊂ S ⊂ CG(0). The associ-
ated Hecke equivariant exact sequence in K-homology has been studied extensively
in [Mesland and Şengün 2016]. For torsion-free 0 and M := X/0, there is a Morita
equivalence C0(M) ∼ C0(X)or 0, and a KK-equivalence C(H)or 0 ∼ C∗r (0).
The exact sequence takes the form

· · · → K∗(C0(M))→ K∗(C∗r (0))→ K∗(C(∂H)or 0)→ · · · ,

as in [Emerson and Meyer 2006; Emerson and Nica 2016].

5.13. Example. Let G be the group of real points of a reductive algebraic group G
over Q and let X be its associated global symmetric space. The Borel–Serre partial
compactification X of X is a G(Q)-compactification but not a G-compactification;
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see [Borel and Serre 1973]. However if 0 ⊂ G(Q) is an arithmetic subgroup,
then CG(0) = G(Q). So X is a CG(0)-compactification. The action of 0 on X
is cocompact and continues to be proper. Writing M := X/0 for torsion-free 0,
we obtain the Borel–Serre compactification M := X/0 of M and its boundary
∂M := ∂X/0. There are Morita equivalences

C0(X)or 0 ∼ C0(M), C0(X)or 0 ∼ C0(M), C0(∂X)or 0 ∼ C0(∂M).

The exact sequence thus reduces to the topological K-theory sequence

· · · → K ∗(M)→ K ∗(M)→ K ∗(∂M)→ · · ·

of the pair (M, ∂M).
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