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We examine the slice spectral sequence for the cohomology of singular schemes
with respect to various motivic T -spectra, especially the motivic cobordism
spectrum. When the base field k admits resolution of singularities and X is a
scheme of finite type over k, we show that Voevodsky’s slice filtration leads to
a spectral sequence for MGLX whose terms are the motivic cohomology groups
of X defined using the cdh-hypercohomology. As a consequence, we establish
an isomorphism between certain geometric parts of the motivic cobordism and
motivic cohomology of X .

A similar spectral sequence for the connective K-theory leads to a cycle class
map from the motivic cohomology to the homotopy invariant K-theory of X . We
show that this cycle class map is injective for a large class of projective schemes.
We also deduce applications to the torsion in the motivic cohomology of singular
schemes.
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1. Introduction

The motivic homotopy theory of schemes was put on a firm foundation by Voevod-
sky and his coauthors beginning with the work of Morel and Voevodsky [1999] and
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its stable counterpart [Voevodsky 1998]. It was observed by Voevodsky [2002b]
that the motivic T -spectra in the stable homotopy category SHX over a noetherian
scheme X of finite Krull dimension can be understood via their slice filtration. This
slice filtration leads to spectral sequences, which then become a very powerful tool
in computing various cohomology theories for smooth schemes over X .

The main problem in the study of the slice filtration for a given motivic T -
spectrum is twofold: the identification of its slices and the analysis of the conver-
gence properties for the corresponding slice spectral sequence. When k is a field
which admits resolution of singularities, the slices for many of these motivic T -
spectra in SHk are now known. In particular, we can compute these generalized
cohomology groups of smooth schemes over k using the slice spectral sequence.

In this paper, we study a descent property of the motivic T -spectra in SHX when
X is a possibly singular scheme of finite type over k. This descent property tells
us that the cohomology groups of a scheme Y ∈ SmX , associated to an absolute
motivic T -spectra in SHX [Déglise 2014, §1.2], can be computed using only SHk .

Even though our methods apply to any of these absolute T -spectra, we restrict
our study to the motivic cobordism spectrum MGLX . We show using the above
descent property of motivic spectra that MGLX can be computed using the mo-
tivic cohomology groups of X . Recall from [Friedlander and Voevodsky 2000,
Definitions 4.3 and 9.2] that the motivic cohomology groups of X are defined to
be the cdh-hypercohomology groups H p(X,Z(q))= H

p−2q
cdh (X,C∗zequi(A

q
k , 0)cdh).

Using these motivic cohomology groups, we show the following:

Theorem 1.1. Let k be a field which admits resolution of singularities and let X
be a separated scheme of finite type over k. Then for any integer n ∈ Z, there is a
strongly convergent spectral sequence

E p,q
2 = H p−q(X,Z(n− q))⊗Z Lq

⇒MGLp+q,n(X), (1.2)

and the differentials of this spectral sequence are given by dr : E
p,q
r → E p+r,q−r+1

r .
Furthermore, this spectral sequence degenerates with rational coefficients.

If k is a perfect field of positive characteristic p, we obtain a similar spectral
sequence after inverting p, except that we can not guarantee strong convergence
unless X is smooth over k (see Remark 4.25).

As a consequence of Theorem 1.1 and its positive characteristic version, we get
the following relation between the motivic cobordism and cohomology of singular
schemes.

Theorem 1.3. Let k be a field which admits resolution of singularities (resp. a
perfect field of positive characteristic p). Then for any separated (resp. smooth)
scheme X of finite type over k and dimension d and every i ≥ 0, the edge map in
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the spectral sequence (1.2)

νX : MGL2d+i,d+i (X)→ H 2d+i (X,Z(d + i))(
resp. νX : MGL2d+i,d+i (X)⊗Z Z

[ 1
p

]
→ H 2d+i (X,Z(d + i))⊗Z Z

[ 1
p

] )
is an isomorphism.

We apply our descent result to obtain a similar spectral sequence for the con-
nective KH-theory, KGL0 (see Section 5). We use this spectral sequence and the
canonical map CKH( – )→ KH( – ) from the connective KH-theory to obtain the
following cycle class map from the motivic cohomology of a singular scheme to
its homotopy invariant K-theory.

Theorem 1.4. Let k be a field of exponential characteristic p and let X be a
separated scheme of dimension d which is of finite type over k. Then the map
KGL0

X → s0 KGLX ∼= HZ induces, for every integer i ≥ 0, an isomorphism

CKH2d+i,d+i (X)⊗Z Z
[ 1

p

] ∼=
−→ H 2d+i (X,Z(d + i))⊗Z Z

[ 1
p

]
.

In particular, there is a natural cycle class map

cyci : H
2d+i (X,Z(d + i))⊗Z Z

[ 1
p

]
→ KHi (X)⊗Z Z

[ 1
p

]
.

We use this cycle class map and the Chern class maps from the homotopy
invariant K-theory to the Deligne cohomology of schemes over C to construct
intermediate Jacobians and Abel–Jacobi maps for the motivic cohomology of sin-
gular schemes over C. More precisely, we prove the following. This generalizes
intermediate Jacobians and Abel–Jacobi maps of Griffiths and the torsion theorem
of Roitman for smooth schemes.

Theorem 1.5. Let X be a projective scheme over C of dimension d. Assume that
either d ≤ 2 or X is regular in codimension one. Then there is a semiabelian
variety J d(X) and an Abel–Jacobi map AJd

X : H
2d(X,Z(d))deg 0→ J d(X) which

is surjective and whose restriction to the torsion subgroups is an isomorphism.

In a related work, Kohrita [2017, Theorem 6.5] has constructed an Abel–Jacobi
map for the Lichtenbaum motivic cohomology H 2d

L (X,Z(d)) of singular schemes
over C using a different technique. He has also proven a version of the Roit-
man torsion theorem for the Lichtenbaum motivic cohomology. The natural map
H 2d(X,Z(d))→ H 2d

L (X,Z(d)) is not an isomorphism in general if d ≥ 3. Note
also that the Roitman torsion theorem for H 2d(X,Z(d)) is a priori a finer statement
than that for the analogous Lichtenbaum cohomology.

Using Theorem 1.5, we prove the following property of the cycle class map of
Theorem 1.4, which is our final result. The analogous result for smooth projective
schemes was proven by Marc Levine [1987, Theorem 3.2]. More generally, Levine
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shows that a relative Chow group of 0-cycles on a normal projective scheme over
C injects inside K0(X).

Theorem 1.6. Let X be a projective scheme of dimension d over C. Assume
that either d ≤ 2 or X is regular in codimension one. Then the cycle class map
cyc0 : H

2d(X,Z(d))→ KH0(X) is injective.

We end this section with the comment that our motivation behind this work was
to exploit powerful tools of the motivic homotopy theory to study several questions
about the motivic cohomology and K-theory of singular schemes which were previ-
ously known only for smooth schemes. We hope that the methods and techniques of
our proofs can be advanced further to answer many other cohomological questions
about singular schemes. We refer to [Krishna and Pelaez 2018] for more results
based on the techniques of this text.

2. A descent theorem for motivic spectra

In this section, we set up our notation, discuss various model structures used in our
proofs and show the Quillen adjunction property of many functors among these
model structures. The main objective of this section is to prove a cdh-descent
property of the motivic T -spectra; see Theorem 2.14.

2.1. Notations and preliminary results. Let k be a perfect field of exponential
characteristic p; in some instances we require that the field k admits resolution of
singularities [Voevodsky 2010, Definition 4.1]. We write Schk for the category of
separated schemes of finite type over k and Smk for the full subcategory of Schk

consisting of smooth schemes over k. If X ∈ Schk , let SmX denote the full sub-
category of Schk consisting of smooth schemes over X . We write (Smk)Nis (resp.
(SmX )Nis, (Schk)cdh, (Schk)Nis) for Smk equipped with the Nisnevich topology
(resp. SmX equipped with the Nisnevich topology, Schk equipped with the cdh-
topology, Schk equipped with the Nisnevich topology). The product X ×Spec k Y is
denoted by X × Y .

Let M (resp. MX , Mcdh) be the category of pointed simplicial presheaves
on Smk (resp. SmX , Schk) equipped with the motivic model structure described
in [Isaksen 2005] considering the Nisnevich topology on Smk (resp. Nisnevich
topology on SmX , cdh-topology on Schk) and the affine line A1

k as an interval. A
simplicial presheaf is often called a motivic space.

We define T in M (resp. MX , Mcdh) as the pointed simplicial presheaf repre-
sented by S1

s ∧S1
t , where S1

t is A1
k \{0} (resp. A1

X \{0}, A1
k \{0}) pointed by 1, and S1

s
denotes the simplicial circle. Given an arbitrary integer r ≥ 1, let Sr

s denote the iter-
ated smash product S1

s ∧· · ·∧S1
s of S1

s with r factors, and Sr
t the iterated smash prod-

uct S1
t ∧ · · · ∧ S1

t of S1
t with r factors; S0

s = S0
t is by definition equal to the pointed

simplicial presheaf represented by the base scheme Spec k (resp. X , Spec k).



THE SLICE SPECTRAL SEQUENCE FOR SINGULAR SCHEMES 661

Since T is cofibrant in M (resp. MX , Mcdh) we can apply freely the results in
[Hovey 2001, §8]. Let Spt(M) (resp. Spt(MX ), Spt(Mcdh)) denote the category
of symmetric T -spectra on M (resp. MX , Mcdh) equipped with the motivic model
structure defined in [Hovey 2001, Definition 8.7]. We write SH (resp. SHX , SHcdh)
for the homotopy category of Spt(M) (resp. Spt(MX ), Spt(Mcdh)), which is a
tensor triangulated category. For any two integers m, n ∈ Z, let 6m,n denote the
automorphism 6m−n

s ◦6n
t : SH→ SH (this also makes sense in SHX and SHcdh).

We write 6n
T for 62n,n , and E ∧ F for the smash product of E , F ∈ SH (resp.

SHX , SHcdh).
Given a simplicial presheaf A, we write A+ for the pointed simplicial presheaf

obtained by adding a disjoint base point (isomorphic to the base scheme) to A. For
any B ∈M, let 6∞T (B) denote the object (B, T ∧ B, . . . ) ∈ Spt(M). This functor
makes sense for objects in Mcdh and MX as well.

If F :A→B is a functor with right adjoint G :B→A, we say that (F,G) :A→B
is an adjunction. We freely use the language of model and triangulated categories.
We write 61 for the suspension functor in a triangulated category, and 6n is the
suspension (or desuspension in case n < 0) functor iterated n (or −n) times.

We use the following notation in all the categories under consideration: ∗ de-
notes the terminal object, and ∼= denotes that a map is an isomorphism or that a
functor is an equivalence of categories.

2.2. Change of site. Let X ∈ Schk and let v : X → Spec k denote the structure
map. We write PreX and Prek for the categories of pointed simplicial presheaves
on SmX and Schk , respectively. If X = Spec k, where k is the base field, we write
Prek instead of PreX . These categories are equipped with the objectwise flasque
model structure [Isaksen 2005, §3]. To recall this model structure, we consider a
finite set I of monomorphisms {Vi → U }i∈I for any U ∈ SmX . The categorical
union

⋃
i∈I Vi is the coequalizer of the diagram∐

i, j∈I

Vi ×
U

V j
//
//

∐
i∈I

Vi

formed in PreX . We denote by i I the induced monomorphism
⋃

i∈I Vi →U . Note
that ∅→ U arises in this way. The pushout product of maps of i I and a map
between simplicial sets exists in PreX . In particular, we may form the sets

I sch
clo (SmX )= {i I � (∂1

n
⊂1n)+}I,n≥0,

J sch
clo (SmX )= {i I � (3

n
i ⊂1

n)+}I,n≥0,0≤i≤n,

where I is a finite set of monomorphisms {Vi → U }i∈I with U ∈ SmX , and
i I :

⋃
i∈I Vi →U is the induced monomorphism defined above.
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A map between simplicial presheaves is called a closed objectwise fibration if it
has the right lifting property with respect to J sch

clo (SmX ). A map u : E→ F between
simplicial presheaves is called a weak equivalence if E(U )→ F(U ) is a weak
equivalence of simplicial sets for each U ∈ SmX . A closed objectwise cofibration is
a map having the left lifting property with respect to every trivial closed objectwise
fibration. Note that this notion of weak equivalence, cofibrations and fibrations
makes sense for simplicial presheaves in any category with finite products (e.g.,
Smk , Schk). It follows from [Isaksen 2005, Theorem 3.7] that the above notion of
weak equivalence, cofibrations and fibrations forms a proper, simplicial and cellular
model category structure on Prek , PreX and Prek . We call this the objectwise flasque
model structure. Our reason for choosing this model structure is the following
result.

Lemma 2.3 [Isaksen 2005, Lemma 6.2]. If V → U is a monomorphism in Smk

(resp. SmX , Schk), then U+/V+ is cofibrant in the flasque model structure on Prek

(resp. PreX , Prek). In particular, T n
∧U+ is cofibrant for any n ≥ 0.

It is clear that PreX and Prek are cofibrantly generated model categories with
generating cofibrations I sch

clo (SmX ) and I sch
clo (Schk) and generating trivial cofibra-

tions J sch
clo (SmX ) and J sch

clo (Schk), respectively.
Let π : (Schk)cdh → (Smk)Nis be the continuous map of sites considered in

[Voevodsky 2010, §4]. We write (π∗, π∗) : Prek→ Prek and (v∗, v∗) : Prek→ PreX

for the adjunctions induced by π and v, respectively.
We also consider the morphism of sites πX : (Schk)cdh → (SmX )Nis and the

corresponding adjunction (π∗X , πX∗) : PreX → Prek . These adjunctions are related
by the following lemma.

Lemma 2.4. The following diagram commutes:

Prek
π∗
//

v∗ $$

Prek

πX∗
��

PreX

Proof. We first notice that for every simplicial set K , Y ∈ Smk and Z ∈ SmX , one
has

π∗(K ⊗ Y+)= K ⊗ Y+ ∈ Prek,

v∗(K ⊗ Y+)= K ⊗ (Y × X)+ ∈ PreX ,
(2.5)

and
π∗X (K ⊗ Z+)= K ⊗ Z+ ∈ Prek .

We observe that π∗ and v∗ commute with colimits since they are left adjoint,
and that πX∗ also commutes with colimits since it is a restriction functor. Hence,
it suffices to show that for every simplicial set K and every Y ∈ Smk , we have
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πX∗(π
∗(K ⊗ Y+))= v∗(K ⊗ Y+). Finally, a direct computation shows that

πX∗(K ⊗ Y+)= K ⊗ (Y × X)+ ∈ PreX

and we conclude by (2.5). �

Lemma 2.6. The adjunctions (π∗, π∗) : Prek→ Prek , (v∗, v∗) : Prek→ PreX and
(π∗X , πX∗) : PreX → Prek are all Quillen adjunctions. Moreover, πX∗ and π∗
preserve weak equivalences.

Proof. We have seen above that all the three model categories (with the objectwise
flasque model structure) are cofibrantly generated. Moreover, it follows from (2.5)
that

π∗(I sch
clo (Smk))⊆ I sch

clo (Schk), π∗(J sch
clo (Smk))⊆ J sch

clo (Schk),

v∗(I sch
clo (Smk))⊆ I sch

clo (SmX ), v∗(J sch
clo (Smk))⊆ J sch

clo (SmX ),

π∗X (I
sch
clo (SmX ))⊆ I sch

clo (Schk), π∗X (J
sch
clo (SmX ))⊆ J sch

clo (Schk).

Hence, it follows from [Hovey 1999, Lemma 2.1.20] that (π∗, π∗), (v∗, v∗) and
(π∗X , πX∗) are Quillen adjunctions. The second part of the lemma is an immediate
consequence of the fact that πX∗ and π∗ are restriction functors and the weak
equivalences in the objectwise flasque model structure are defined schemewise. �

To show that the Quillen adjunction of Lemma 2.6 extends to the level of motivic
model structures, we consider a distinguished square α [Voevodsky 2010, §2]

Z ′ //

��

Y ′

��

Z // Y

(2.7)

in (Smk)Nis, (SmX )Nis or (Schk)cdh, and write P(α) for the pushout of Z← Z ′→Y ′

in Prek , PreX or Prek , respectively.
The motivic model category M (resp. MX , Mcdh, Mft) is the left Bousfield

localization of Prek (resp. PreX , Prek , Prek) with respect to the following two sets
of maps:

• P(α)→ Y indexed by the distinguished squares in (Smk)Nis (resp. (SmX )Nis,
(Schk)cdh, (Schk)Nis),

• pY : Y ×A1
k → Y for Y ∈ Smk (resp. Y ∈ SmX , Y ∈ Schk , Y ∈ Schk).

Notice that as we are working with the flasque model structures, by [Isaksen 2005,
Theorems 4.8–4.9] it is possible to consider maps from the ordinary pushout P(α)
instead of maps from the homotopy pushout of the diagram Z← Z ′→ Y ′ in (2.7).

Remark 2.8. We also consider the Nisnevich (resp. cdh) local model structure, i.e.,
the left Bousfield localization of Prek (resp. Prek) with respect to the set of maps
P(α)→ Y indexed by the distinguished squares in (Smk)Nis (resp. (Schk)cdh).
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We abuse notation and write (π∗, π∗) :M→Mcdh, (v∗, v∗) :M→MX and
(π∗X , πX∗) :MX →Mcdh for the adjunctions induced by π , v and πX , respectively.

Proposition 2.9. The adjunctions (π∗, π∗) :M→Mcdh, (v∗, v∗) :M→MX and
(π∗X , πX∗) :MX →Mcdh are Quillen adjunctions.

Proof. We give the argument for (π∗, π∗), since the other cases are parallel. Con-
sider the commutative diagram

Prek
π∗
//

id
��

Prek

id
��

M π∗
//Mcdh

where the solid arrows are left Quillen functors by [Hirschhorn 2003, Lemma
3.3.4(1)] and Lemma 2.6. Thus, it follows from [Hirschhorn 2003, Definition
3.1.1(1)(b), Theorem 3.3.19] that it suffices to check that π∗(P(α) → Y ) and
π∗(Y ×A1

k → Y ) are weak equivalences in Mcdh.
On the one hand, it is immediate that π∗(Y ×A1

k→ Y )= (Y ×A1
k→ Y )∈Mcdh,

and is hence a weak equivalence in Mcdh. On the other hand, π∗ commutes with
pushouts since it is a left adjoint functor. It thus follows from (2.5) that

π∗(P(α)→ Y )= (P(α)→ Y ) ∈Mcdh,

and is hence a weak equivalence in Mcdh. �

We write H (resp. HX , Hcdh) for the homotopy category of M (resp. MX , Mcdh)
and (Lπ∗, Rπ∗) :H→Hcdh, (Lv∗, Rv∗) :H→HX , (Lπ∗X , RπX∗) :HX→Hcdh for
the derived adjunctions of the Quillen adjunctions in Proposition 2.9; see [Hirschhorn
2003, Theorem 3.3.20].

2.10. A cdh-descent for motivic spectra. It follows from (2.5) that the adjunctions
between the categories of motivic spaces induce levelwise adjunctions

(π∗, π∗) : Spt(M)→ Spt(Mcdh),

(v∗, v∗) : Spt(M)→ Spt(MX ),

(π∗X , πX∗) : Spt(MX )→ Spt(Mcdh)

between the corresponding categories of symmetric T -spectra such that the follow-
ing diagram commutes (see Lemma 2.4):

Spt(M)
π∗
//

v∗ &&

Spt(Mcdh)

πX∗

��

Spt(MX )

(2.11)
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We further conclude from Proposition 2.9 and [Hovey 2001, Theorem 9.3] the
following:

Proposition 2.12. The pairs

(1) (π∗, π∗) : Spt(M)→ Spt(Mcdh),

(2) (v∗, v∗) : Spt(M)→ Spt(MX ) and

(3) (π∗X , πX∗) : Spt(MX )→ Spt(Mcdh)

are Quillen adjunctions between stable model categories.

We deduce from Proposition 2.12 that there are pairs of adjoint functors

(Lπ∗, Rπ∗) : SH→ SHcdh,

(Lv∗, Rv∗) : SH→ SHX ,

(Lπ∗X , RπX∗) : SHX → SHcdh

between the various stable homotopy categories of motivic T -spectra. We observe
that for a ≥ b ≥ 0, the suspension functor 6a,b in SH (resp. SHX , SHcdh) is the
derived functor of the left Quillen functor E 7→ Sa−b

s ∧ Sb
t ∧ E in Spt(M) (resp.

Spt(MX ), Spt(Mcdh)). Since the functors π∗, v∗, π∗X are simplicial and symmetric
monoidal, we deduce that they commute with the suspension functors 6m,n , i.e.,
for every m, n ∈ Z,

Lπ∗ ◦6m,n( – )∼=6m,n
◦ Lπ∗( – ),

Lv∗ ◦6m,n( – )∼=6m,n
◦ Lv∗( – ),

Lπ∗X ◦6
m,n( – )∼=6m,n

◦ Lπ∗X ( – ).

Recall that Mft is the motivic category for the Nisnevich topology in Schk . We
write Spt(Mft) for the category of symmetric T -spectra on Mft equipped with the
stable model structure considered in [Hovey 2001, Definition 8.7].

It is well known [Jardine 2003, p. 198] that Spt(Mft) and Spt(MX ) (for X∈Schk)
are simplicial model categories [Hirschhorn 2003, Definition 9.1.6]. For E, E ′ in
Spt(Mft) or Spt(MX ), we write Map(E, E ′) and MapX (E, E ′) for the simplicial
set of maps from E to E ′, i.e., the simplicial set with n-simplices of the form
HomSpt(Mft)(E ⊗1

n, E ′) or HomSpt(MX )(E ⊗1
n, E ′), respectively.

For f : X→ X ′, note that the Quillen adjunction ( f ∗, f∗) :Spt(MX ′)→Spt(MX )

[Ayoub 2007b, Théorème 4.5.14] is enriched on simplicial sets, i.e., we have
MapX ( f ∗E ′, E)∼=MapX ′(E

′, f∗E) for E ∈ Spt(MX ), E ′ ∈ Spt(MX ′).
The following result is a direct consequence of the proper base change theorem

in motivic homotopy theory [Ayoub 2007a, Corollaire 1.7.18; Cisinski and Déglise
2012, Proposition 2.3.11(2); Cisinski 2013, Proposition 3.7].

Proposition 2.13. Lv∗ is naturally equivalent to the composition RπX∗ ◦ Lπ∗.
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Proof. We observe that the following diagram of left Quillen functors commutes:

Spt(M)
π∗
//

π∗ft &&

Spt(Mcdh)

Spt(Mft)

id

OO

Let E be a motivic T -spectrum in Spt(M). Without any loss of generality, we can
assume that E is cofibrant in Spt(M). Let ν : π∗ft E → E ′ be a functorial fibrant
replacement of π∗ft E in Spt(Mft).

The argument in [Jardine 2003, pp. 198–199] shows that the restriction functor
πX∗ maps weak equivalences in Spt(Mft) into weak equivalences in Spt(MX ).
Combining this with (2.11), we deduce that

πX∗(ν) : πX∗(π
∗

ft E)= πX∗(π
∗E)= v∗E→ πX∗E ′

is a weak equivalence in Spt(MX ). Since E is cofibrant in Spt(M), Lv∗E ∼= v∗E .
Hence, to conclude it suffices to show that E ′ is fibrant in Spt(Mcdh).

For the rest of the proof, for Y ∈Schk we write vY :Y→Spec (k) for the structure
map. Notice that we have proved that Lv∗Y E ∼= v∗Y E ∼= πY∗E ′ in SHY . Consider
a distinguished abstract blow-up square in Schk , i.e., a distinguished square in the
lower cd-structure defined in [Voevodsky 2010, §2]:

Z ′ i ′
//

f ′

��

Y ′

f
��

Z
i
// Y

Let j = i ◦ f ′. Then

R f∗L f ∗(Lv∗Y E)∼= R f∗L(vY ◦ f )∗E ∼= R f∗πY ′∗E ′ ∼= f∗πY ′∗E ′

in SHY . In particular, the last isomorphism above follows from the fact that πY ′∗E ′

is fibrant in Spt(MY ′), since E ′ is fibrant in Spt(Mft) and the restriction functor
πY ′ : Spt(Mft)→ Spt(MY ′) is a right Quillen functor (using the same argument as
in Proposition 2.12). Similarly, we conclude that Ri∗Li∗(Lv∗Y E)∼= i∗πZ∗E ′ and
R j∗L j∗(Lv∗Y E)∼= j∗πZ ′∗E ′ in SHY .

Thus, by [Cisinski 2013, Proposition 3.7] we conclude that the commutative
diagram

πY∗E ′ //

��

f∗πY ′∗E ′

��

i∗πZ∗E ′ // j∗πZ ′∗E ′

is a homotopy cofiber square in Spt(MY ) [Hirschhorn 2003, Definition 13.5.8], and
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thus also a homotopy fiber square since Spt(MY ) is a stable model category, i.e.,
its homotopy category is triangulated. Since 6∞T Y+ is cofibrant in Spt(MY ) and
πY∗E ′, f∗πY ′∗E ′, i∗πZ∗E ′ and j∗πZ ′∗E ′ are fibrant, combining [Hirschhorn 2003,
Definition 9.1.6(M7)] and [Hirschhorn 2003, Corollary 9.7.5(1)] we conclude that
the induced commutative diagram is a homotopy fiber square of simplicial sets:

MapY (6
∞

T Y+, πY∗E ′) //

��

MapY (6
∞

T Y+, f∗πY ′∗E ′)

��

MapY (6
∞

T Y+, i∗πZ∗E ′) // MapY (6
∞

T Y+, j∗πZ ′∗E ′)

Since the adjunction ( f ∗, f∗) is enriched in simplicial sets, we conclude that

MapY (6
∞

T Y+, f∗πY ′∗E ′)∼=MapY ′( f ∗6∞T Y+, πY ′∗E ′)∼=MapY ′(6
∞

T Y ′
+
, πY ′∗E ′)

and by definition MapY ′(6
∞

T Y ′
+
, πY ′∗E ′) ∼=Map(6∞T Y ′

+
, E ′). Similarly, we con-

clude that
MapY (6

∞

T Y+, πY∗E ′)∼=Map(6∞T Y+, E ′),

MapY (6
∞

T Y+, i∗πZ∗E ′)∼=Map(6∞T Z+, E ′),

MapY (6
∞

T Y+, j∗πZ ′∗E ′)∼=Map(6∞T Z ′
+
, E ′).

Therefore, the following is a homotopy fiber square of simplicial sets:

Map(6∞T Y+, E ′) //

��

Map(6∞T Y ′
+
, E ′)

��

Map(6∞T Z+, E ′) // Map(6∞T Z ′
+
, E ′)

Since 6∞T Z ′
+
→6∞T Y ′

+
is a cofibration in Spt(Mft) and E ′ is fibrant in Spt(Mft),

we deduce that Map(6∞T Y ′
+
, E ′)→Map(6∞T Z ′

+
, E ′) is a fibration of simplicial

sets; see [Hirschhorn 2003, Definition 9.1.6(M7)]. We observe that the functor
Map( – , E ′) maps pushout squares in Spt(Mft) into pullback squares of simpli-
cial sets [Hirschhorn 2003, Proposition 9.1.8]; thus, by [Hirschhorn 2003, Corol-
lary 13.3.8] we conclude that the map

Map(6∞T Y+, E ′)→Map(6∞T P(α), E ′)

induced by P(α)→ Y is a weak equivalence of simplicial sets, where P(α) is the
pushout of Z← Z ′→ Y ′ in Prek . Finally, by [Hirschhorn 2003, Theorem 4.1.1(2)]
we conclude that E ′ is fibrant in Spt(Mcdh), since by construction Spt(Mcdh) is
the left Bousfield localization of Spt(Mft) with respect to the maps of the form
6∞T (P(α)→ Y+) indexed by the abstract blow-up squares in Schk . �

The following result should be compared with [Cisinski 2013, Proposition 3.7].
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Theorem 2.14. Let v : X → Spec (k) be in Schk . Given a motivic T -spectrum
E ∈ SH, Y ∈ SmX and integers m, n ∈ Z, there is a natural isomorphism

HomSHX (6
∞

T Y+, 6m,n Lv∗E)∼= HomSHcdh(6
∞

T Y+, 6m,n Lπ∗E).

Proof. By Proposition 2.13, Lv∗( – ) ∼= (RπX∗ ◦ Lπ∗)( – ) in SHX . Thus, by
adjointness,

HomSHX (6
∞

T Y+, 6m,n Lv∗E)∼= HomSHX (6
∞

T Y+, Lv∗(6m,n E))
∼= HomSHcdh(Lπ

∗

X6
∞

T Y+, Lπ∗(6m,n E))
∼= HomSHcdh(Lπ

∗

X6
∞

T Y+, 6m,n Lπ∗E).

Finally, it follows from Lemma 2.3 that 6∞T Y+ is cofibrant in the levelwise
flasque model structure and hence in any of its localizations. In particular, it is
cofibrant in the stable model structure of motivic T -spectra. We conclude that

Lπ∗X6
∞

T Y+ ∼= π∗X6
∞

T Y+ ∼=6∞T Y+.

The corollary now follows. �

Remark 2.15. The above result could be called a cdh-descent theorem because it
implies cdh-descent for many motivic spectra; see [Cisinski 2013, Proposition 3.7].
In particular, it implies cdh-descent for absolute motivic spectra (for example, KGL
and MGL). Recall from [Déglise 2014, §1.2] that an absolute motivic spectrum E
is a section of a 2-functor from Schk to triangulated categories such that for any
f : X ′→ X in Schk , the canonical map f ∗EX → EX ′ is an isomorphism.

Lemma 2.16. Let f : Y→ X be a smooth morphism in Schk . Let v : X→ Spec (k)
be the structure map and u = v ◦ f . Given any E ∈ SH, the map

HomSHX (6
∞

T Y+, Lv∗E)→ HomSHY (6
∞

T Y+, Lu∗E)

is an isomorphism.

Proof. The functor L f ∗ : SHX→ SHY admits a left adjoint L f] : SHY → SHX by
[Ayoub 2007b, Proposition 4.5.19]; see also [Ayoub 2007a, Scholium 1.4.2]. Since
f : Y → X is smooth, we have L f](6∞T Y+)=6∞T Y+ by [Morel and Voevodsky

1999, Proposition 3.1.23(1)] and we get

HomSHX (6
∞

T Y+, Lv∗E)∼= HomSHX (L f](6∞T Y+), Lv∗E)
∼= HomSHY (6

∞

T Y+, L f ∗ ◦ Lv∗E)
∼= HomSHY (6

∞

T Y+, Lu∗E),
and the lemma follows. �

A combination of Lemma 2.16 and Theorem 2.14 yields the following corollary:
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Corollary 2.17. Under the same hypotheses and notation of Theorem 2.14, assume
in addition that X ∈ Smk . Then there are natural isomorphisms

HomSH(6
∞

T Y+, 6m,n E)∼= HomSHX (6
∞

T Y+, 6m,n Lv∗E)
∼= HomSHcdh(6

∞

T Y+, 6m,n Lπ∗E).

3. Motivic cohomology of singular schemes

We continue to assume that k is a perfect field of exponential characteristic p. In
this section, we show that the motivic cohomology of a scheme X ∈ Schk , defined
in terms of a cdh-hypercohomology (see Definition 3.1), is representable in the
stable homotopy category SHcdh.

Recall from [Mazza et al. 2006, Lecture 16] that given T ∈ Schk and an integer
r ≥ 0, the presheaf zequi(T, r) on Smk is defined by letting zequi(T, r)(U ) be the
free abelian group generated by the closed and irreducible subschemes Z ( U × T
which are dominant and equidimensional of relative dimension r (any fiber is either
empty or all its components have dimension r ) over a component of U . It is known
that zequi(T, r) is a sheaf on the big étale site of Smk .

Let C∗zequi(T, r) denote the chain complex of presheaves of abelian groups
associated via the Dold–Kan correspondence to the simplicial presheaf on Smk

given by Cnzequi(T, r)(U ) = zequi(T, r)(U × 1n
k ). The simplicial structure on

C∗zequi(T, r) is induced by the cosimplicial scheme 1•k . Recall the following
definition of motivic cohomology of singular schemes from [Friedlander and Vo-
evodsky 2000, Definition 9.2].

Definition 3.1. The motivic cohomology groups of X ∈ Schk are defined as the
hypercohomology

H m(X,Z(n))= Hm−2n
cdh (X,C∗zequi(A

n
k , 0)cdh)= A0,2n−m(X,An).

We also need to consider Z[1/p]-coefficients. In this case, we write

H m(X,Z
[ 1

p

]
(n)
)
= Hm−2n

cdh

(
X,C∗zequi(A

n
k , 0)

[ 1
p

])
.

For n < 0, we set H m(X,Z(n))= H m(X,Z[1/p](n))= 0.

3.2. The motivic cohomology spectrum. In order to represent the motivic coho-
mology of a singular scheme X in SHX , let us recall the Eilenberg–MacLane
spectrum

HZ= (K (0, 0), K (1, 2), . . . , K (n, 2n), . . . )

in Spt(M), where K (n, 2n) is the presheaf of simplicial abelian groups on Smk

associated to the presheaf of chain complexes C∗zequi(A
n
k , 0) via the Dold–Kan
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correspondence. The external product of cycles induces product maps

K (m, 2m)∧ K (n, 2n)→ K (m+ n, 2(m+ n)).

Notice K (1, 2)∼= C∗(zequi(P
1
k, 0)/zequi(P

0
k, 0)) [Mazza et al. 2006, Theorem 16.8],

so composing the product maps with the canonical map

g : T ∼= P1
k/P

0
k→ C∗(zequi(P

1
k, 0)/zequi(P

0
k, 0))∼= K (1, 2)

(where the first map assigns to any morphism U → P1
k its graph in U ×P1

k), we
obtain the bonding maps. HZ is a symmetric spectrum whose symmetric structure
is obtained by permuting the coordinates in An

k . We shall not distinguish between a
simplicial abelian group and the associated chain complex of abelian groups from
now on in this text and will use them interchangeably.

3.3. Motivic cohomology via SHcdh. Let 1=6∞T (S
0
s ) be the sphere spectrum in

SH, and let 1[1/p] ∈ SH be the homotopy colimit [Neeman 2001, Definition 1.6.4]
of the filtering diagram in SH:

1
p
// 1

p
// 1

p
// · · ·

where 1 r
−→1 is the composition of the sum map with the diagonal 1 1

−→
⊕r

i=1 1 6
−→1.

For E ∈ SH, we define E[1/p] ∈ SH to be E ∧ 1[1/p]. This also makes sense in
SHX and SHcdh.

The following is a reformulation of the main result in [Friedlander and Voevod-
sky 2000] when k admits resolution of singularities, and the main result in [Kelly
2012] when k has positive characteristic.

Theorem 3.4 [Cisinski and Déglise 2015]. Let k be a perfect field of exponential
characteristic p, and let v : X → Spec (k) be a separated scheme of finite type.
Then for any m, n ∈ Z, there is a natural isomorphism

θX : H m(X,Z
[ 1

p

]
(n)
) ∼=
−→ HomSHX

(
6∞T X+, 6m,n Lv∗HZ

[ 1
p

])
. (3.5)

Proof. Recall that H m(X,Z[1/p](n)) = A0,2n−m(X,An) (Definition 3.1). We
observe that C∗zequi(A

n
k , 0) is the motive with compact supports Mc(An

k ) of An
k [Vo-

evodsky 2000, §4.1; Mazza et al. 2006, Definition 16.13]. Combining [Voevodsky
2000, Corollary 4.1.8] (or [Mazza et al. 2006, Theorem 16.7, Example 16.14]) with
[Cisinski and Déglise 2015, 4.2, Proposition 4.3, Theorem 5.1 and Corollary 8.6],
we conclude that

H m(X,Z
[ 1

p

]
(n)
)
∼= HomSHX

(
62n−m,0(6∞T X+),62n,n Lv∗HZ

[ 1
p

])
,

which finishes the proof. �

As a combination of Theorem 2.14 and Theorem 3.4, we get a corollary:
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Corollary 3.6. Under the hypothesis and with the notation of Theorem 3.4, there
are natural isomorphisms

H m(X,Z
[ 1

p

]
(n)
)
∼= HomSHcdh

(
6∞T X+, 6m,n Lπ∗HZ

[ 1
p

])
∼= HomSHX

(
6∞T X+, 6m,n Lv∗HZ

[ 1
p

])
.

4. Slice spectral sequence for singular schemes

Let k be a perfect field of exponential characteristic p. Given X ∈ Schk , recall that
Voevodsky’s slice filtration of SHX is given as follows. For an integer q ∈ Z, let
6

q
TSH

eff
X denote the smallest full triangulated subcategory of SHX which contains

Cq
eff and is closed under arbitrary coproducts, where

Cq
eff = {6

m,n6∞T Y+ : m, n ∈ Z, n ≥ q, Y ∈ SmX }. (4.1)

In particular, SHeff
X is the smallest full triangulated subcategory of SHX which

is closed under infinite direct sums and contains all spectra of the type 6∞T Y+
with Y ∈ SmX . The slice filtration of SHX [Voevodsky 2002b] is the sequence of
full triangulated subcategories

· · · ⊆6
q+1
T SHeff

X ⊆6
q
TSH

eff
X ⊆6

q−1
T SHeff

X ⊆ · · · .

It follows from [Neeman 1996; 2001] that the inclusion iq :6
q
TSH

eff
X → SHX ad-

mits a right adjoint rq :SHX→6
q
TSH

eff
X and the functors fq , s<q , sq :SHX→SHX

are triangulated, where rq◦iq is the identity, fq = iq◦rq and s<q , sq are characterized
by the existence of the distinguished triangles

fq E // E // s<q E,

fq+1 E // fq E // sq E
(4.2)

in SHX for every E ∈ SHX .

Definition 4.3. Let a, b, n ∈ Z and Y ∈ SmX . Let Fn Ea,b(Y ) be the image of the
map induced by fn E→ E in (4.2):

HomSHX (6
∞

T Y+, 6a,b fn E)→ HomSHX (6
∞

T Y+, 6a,b E).

This determines a decreasing filtration F • on Ea,b(Y )=HomSHX (6
∞

T Y+, 6a,b E),
and we write grn F • for the associated graded Fn Ea,b(Y )/Fn+1 Ea,b(Y ).

The following result is well known; see [Voevodsky 2002b, §2].

Proposition 4.4. The filtration F • on Ea,b(Y ) is exhaustive (in the sense of [Board-
man 1999, Definition 2.1]).
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Proof. Recall that SHX is a compactly generated triangulated category in the sense
of [Neeman 1996, Definition 1.7], with set of compact generators [Ayoub 2007b,
Théorème 4.5.67]

⋃
q∈Z Cq

eff (see (4.1)). Therefore a map f : E1→ E2 in SHX

is an isomorphism if and only if for every Y ∈ SmX and every m, n ∈ Z the
induced map of abelian groups HomSHX (6

m,nY+, E1)→ HomSHX (6
m,nY+, E2)

is an isomorphism. Thus, we conclude that E ∼= hocolim fq E in SHX .
Therefore, we deduce that for every a, b ∈ Z and every Y ∈ SmX , there exist the

isomorphisms

colim
n→−∞

Fn Ea,b(Y )∼= colim
n→−∞

HomSHX (6
∞

T Y+, 6a,b fn E)

∼= HomSHX (6
∞

T Y+, 6a,b hocolim fq E)∼= Ea,b(Y )

[Neeman 1996, Lemma 2.8; Isaksen 2005, Theorem 6.8], so the filtration F • is
exhaustive. �

4.5. The slice spectral sequence. Consider Y ∈ SmX a smooth X -scheme and
G ∈ SHX . Since SHX is a triangulated category, the collection of distinguished
triangles { fq+1G→ fq G→ sq G}q∈Z determines a (slice) spectral sequence

E p,q
1 = HomSHX (6

∞

T Y+, 6 p+q
s spG)

with G∗,∗(Y ) as its abutment and differentials dr : E
p,q
r → E p+r,q−r+1

r .
In order to study the convergence of this spectral sequence, recall from [Voevod-

sky 2002b, p. 22] that G ∈ SHX is called bounded with respect to the slice filtration
if for every m, n ∈ Z and every Y ∈ SmX , there exists q ∈ Z such that

HomSHX (6
m,n6∞T Y+, fq+i G)= 0 (4.6)

for every i > 0. Clearly the slice spectral sequence is strongly convergent when G
is bounded.

Proposition 4.7. Let k be a field with resolution of singularities. Let F ∈ SH
be bounded with respect to the slice filtration and let G = Lv∗F ∈ SHX with
v : X→ Spec k. Then G is bounded with respect to the slice filtration.

Proof. Since the base field k admits resolution of singularities, we deduce by
[Pelaez 2013, Theorem 3.7] that fq G ∼= Lv∗ fq F in SHX for every q ∈ Z. It
follows from Theorem 2.14 that for every m, n ∈ Z and every Y ∈ SmX , we have

HomSHX (6
m,n6∞T Y+, fq+i G)∼= HomSHcdh(6

m,n6∞T Y+, Lπ∗( fq+i F))

for every i > 0. If X ∈ Smk , then Y ∈ Smk and we have

HomSHcdh(6
m,n6∞T Y+, Lπ∗( fq+i F))∼= HomSH(6

m,n6∞T Y+, fq+i F)
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for every i > 0 by Corollary 2.17. Since F is bounded with respect to the slice
filtration, we deduce from (4.6) that G is also bounded in SHX in this case.

Finally, we proceed by induction on the dimension of Y , and assume that for
every m, n ∈ Z and every Y ′ ∈ Schk with dim(Y ′) < dim(Y ), there exists q ∈ Z

such that
HomSHcdh(6

m,n6∞T Y ′
+
, Lπ∗( fq+i F))= 0

for every i > 0. Since the base field k admits resolution of singularities, there
exists a cdh-cover {X ′q Z→ Y } of Y such that X ′ ∈ Smk , dim(Z) < dim(Y ) and
dim(W ) < dim(Y ), where we set W = X ′×Y Z .

Let q1, q2 and q3 be the integers such that the vanishing condition (4.6) holds
for (X ′,m, n), (Z ,m, n) and (W,m+ 1, n), respectively. Let q be the maximum
of q1, q2 and q3. Then by cdh-excision, for every i > 0, the following diagram is
exact:

HomSHcdh(6
m+1,n6∞T W, Lπ∗( fq+i F))

→ HomSHcdh(6
m,n6∞T Y+, Lπ∗( fq+i F))

→ HomSHcdh(6
m,n6∞T X ′

+
, Lπ∗( fq+i F))

⊕HomSHcdh(6
m,n6∞T Z+, Lπ∗( fq+i F)).

By choice of q , both ends in the diagram vanish. Hence the group in the middle
also vanishes as we wanted. �

In order to get convergence results in positive characteristic, we need to restrict
to spectra E ∈ SH which admit a structure of traces [Kelly 2012, Definitions 4.2.27
and 4.3.1].

Lemma 4.8. With the notation of (2.11), let X ∈ Schk .

(1) For every E ∈SH, Lπ∗
(
E
[ 1

p

])
∼= (Lπ∗E)

[ 1
p

]
and Lv∗

(
E
[ 1

p

])
∼= (Lv∗E)

[ 1
p

]
.

(2) For every E ∈ SHcdh and every a, b ∈ Z,

HomSHcdh

(
6a,b6∞T (X+), E

[ 1
p

])
∼= HomSHcdh(6

a,b6∞T (X+), E)⊗Z
[ 1

p

]
.

Proof. (1): It follows from the definition of homotopy colimit [Neeman 2001,
Definition 1.6.4] that Lπ∗ and Lv∗ commute with homotopy colimits since they
are left adjoint. This implies the result since E[1/p] is given in terms of homotopy
colimits.

(2): Since 6a,b6∞T (X+) is compact in SHcdh [Ayoub 2007b, Théorème 4.5.67],
the result follows from [Neeman 1996, Lemma 2.8]. �

Lemma 4.9. Let X ∈ Schk and E ∈ SHX . Then for every r ∈ Z,

fr
(
E
[ 1

p

])
∼= ( fr E)

[ 1
p

]
and sr

(
E
[ 1

p

])
∼= (sr E)

[ 1
p

]
.
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Proof. Since the effective categories 6q
TSH

eff
X are closed under infinite direct sums,

we conclude that the functors fr , sr commute with homotopy colimits. �

Proposition 4.10. Let F ∈SH and G= Lv∗F ∈SHX with v : X→Spec k. Assume
that for every r ∈ Z, sr (F[1/p]) has a weak structure of smooth traces (in the sense
of [Kelly 2012, Definition 4.2.27]), and that F[1/p] has a structure of traces (in
the sense of [Kelly 2012, Definition 4.3.1]). If F[1/p] is bounded with respect to
the slice filtration, then G[1/p] is bounded as well.

Proof. Since the base field k is perfect and F[1/p] is clearly Z[1/p]-local, combin-
ing [Kelly 2012, Theorem 4.2.29] and Lemma 4.9, we conclude that fq G[1/p] ∼=
Lv∗ fq F[1/p] in SHX for every q ∈ Z.

It follows from Theorem 2.14 that for every m, n ∈ Z and every Y ∈ SmX , we
have

HomSHX

(
6m,n6∞T (Y+), fq+i G

[ 1
p

])
∼=HomSHcdh

(
6m,n6∞T (Y+), Lπ∗

(
fq+i F

[ 1
p

]))
for every i > 0. If X ∈ Smk , then Y ∈ Smk and we have

HomSHcdh

(
6m,n6∞T (Y+), Lπ∗

(
fq+i F

[ 1
p

]))
∼=HomSH

(
6m,n6∞T (Y+), fq+i F

[ 1
p

])
for every i > 0 by Corollary 2.17. Since F[1/p] is bounded with respect to the
slice filtration, we deduce from (4.6) that G[1/p] is also bounded with respect to
the slice filtration in SHX in this case.

Finally, we proceed by induction on the dimension of Y , and assume that for
every m, n ∈ Z and every Z ∈ Schk with dimk(Z) < dimk(Y ), there exists q ∈ Z

such that
HomSHcdh

(
6m,n6∞T (Z+), Lπ∗

(
fq+i F

[ 1
p

]))
= 0

for every i > 0.
Since k is perfect, by a theorem of Gabber [Illusie et al. 2014, Théorème 3(1)]

and Temkin’s strengthening [2017, Theorem 1.2.9] of Gabber’s result, there exists
W ∈ Smk and a surjective proper map h : W → Y , which is generically étale of
degree pr , r ≥ 1. In particular, h is generically flat, and thus by a theorem of
Raynaud and Gruson [1971, Théorème 5.2.2], there exists a blow-up g : Y ′→ Y
with center Z such that the following diagram commutes, where h′ is finite flat
surjective of degree pr and g′ :W ′→W is the blow-up of W with center h−1(Z):

W ′

g′
��

h′
// Y ′

g
��

W
h
// Y

(4.11)

Thus we have a cdh-cover {Y ′q Z→ Y } of Y such that dimk(Z) < dimk(Y ) and
dimk(E) < dimk(Y ), where we set E = Y ′×Y Z .
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Let q1 (resp. q2, q3) be the integers such that the vanishing condition (4.6) holds
for (W,m, n) (resp. (Z ,m, n), (E,m + 1, n)). Let q be the maximum of q1, q2

and q3. Then by cdh-excision, for every i > 0, the following diagram is exact:

HomSHcdh

(
6m+1,n6∞T (E+), Lπ∗

(
fq+i F

[ 1
p

]))
→ HomSHcdh

(
6m,n6∞T (Y+), Lπ∗

(
fq+i F

[ 1
p

]))
→ HomSHcdh

(
6m,n6∞T (Y

′

+
), Lπ∗

(
fq+i F

[ 1
p

]))
⊕HomSHcdh

(
6m,n6∞T (Z+), Lπ∗

(
fq+i F

[ 1
p

]))
.

By the choice of q , this reduces to the exact diagram

0→ HomSHcdh

(
6m,n6∞T (Y+), Lπ∗

(
fq+i F

[ 1
p

]))
g∗
−→ HomSHcdh

(
6m,n6∞T (Y

′

+
), Lπ∗

(
fq+i F

[ 1
p

]))
.

So it suffices to show that g∗ = 0. In order to prove this, we observe that the
diagram (4.11) commutes. Therefore, by the choice of q ,

HomSHcdh

(
6m,n6∞T (W+), Lπ∗

(
fq+i F

[ 1
p

]))
= 0,

and we conclude that h′∗ ◦ g∗ = g′∗ ◦ h∗ = 0. Thus, it is enough to see that

h′∗ : HomSHcdh

(
6m,n6∞T (Y

′

+
), Lπ∗

(
fq+i F

[ 1
p

]))
→ HomSHcdh

(
6m,n6∞T (W

′

+
), Lπ∗

(
fq+i F

[ 1
p

]))
is injective. Let v′ : Y ′→ Spec k, and let

ε : Lv′∗
(

fq+i F
[ 1

p

])
→ Rh′

∗
Lh′∗Lv′∗

(
fq+i F

[ 1
p

])
be the map given by the unit of the adjunction (Lh′∗, Rh′

∗
). By the naturality of

the isomorphism in Proposition 2.13 we deduce that h′∗ gets identified with the
map induced by ε:

ε∗ : HomSHY ′

(
6m,n6∞T Y ′

+
, Lv′∗ fq+i F

[ 1
p

])
→ HomSHY ′

(
6m,n6∞T Y ′

+
, Rh′

∗
Lh′∗Lv′∗ fq+i F

[ 1
p

])
.

Since F[1/p] has a structure of traces and sr (F[1/p]) has a weak structure of
smooth traces for every r ∈ Z, it follows from [Kelly 2012, Proposition 4.3.7] that
fq+i (F[1/p]) has a structure of traces in the sense of [Kelly 2012, Definition 4.3.1].
Thus, we deduce from [Kelly 2012, Definition 4.3.1(Deg), p. 101] that ε∗ is injec-
tive, since h′ is finite flat surjective of degree pr. This finishes the proof. �

If we only assume that the slices sr E have a structure of traces, then we get the
weaker conditions of Proposition 4.15.
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Corollary 4.12. Let F ∈ SH and G = Lv∗F ∈ SHX , where v : X→ Spec k is the
structure map. Assume that the following hold.

(1) For every r ∈ Z, sr (F[1/p]) has a structure of traces (in the sense of [Kelly
2012, Definition 4.3.1]).

(2) F[1/p] is bounded with respect to the slice filtration.

Then for every m, n in Z, there exists q ∈ Z such that

HomSHX

(
6m,n6∞T X+, sq+i G

[ 1
p

])
= 0

for every i > 0 (see (4.6)).

Proof. Since sr (F[1/p]) has a structure of traces, we observe that in particular
sr (F[1/p]) has a weak structure of smooth traces [Kelly 2012, Definition 4.2.27].
Thus, combining Lemma 4.8, Lemma 4.9 and [Kelly 2012, Theorem 4.2.29] we
conclude that for every r ∈ Z,

sr G
[ 1

p

]
∼= Lv∗sr F

[ 1
p

]
and fr G

[ 1
p

]
∼= Lv∗ fr F

[ 1
p

]
.

If X ∈ Smk , we have

HomSHX

(
6m,n6∞T X+, Lv∗

(
sq+i F

[ 1
p

]))
∼= HomSH

(
6m,n6∞T X+, sq+i F

[ 1
p

])
for every i > 0 by Corollary 2.17. Since F[1/p] is bounded with respect to the slice
filtration, there exist q1 and q2 ∈ Z such that the vanishing condition (4.6) holds for
(X,m, n) and (X,m−1, n), respectively. Let q be the maximum of q1 and q2. Then
using the distinguished triangle fq+i F[1/p] → sq+i F[1/p] →61

s fq+i+1 F[1/p]
in SH we conclude that HomSH(6

m,n6∞T (X+), sq+i F[1/p])= 0 for every i > 0,
as we wanted.

When X ∈ Schk , the argument in the proof of Proposition 4.10 works mutatis
mutandis replacing fq+i F[1/p] with sq+i F[1/p], since for every j ∈ Z, s j F[1/p]
has a structure of traces. �

Corollary 4.13. Assume the conditions (1) and (2) of Corollary 4.12 hold. Then
for every m, n∈Z, there exists q ∈Z such that the map fq+i+1G[1/p]→ fq+i G[1/p]
induces an isomorphism

HomSHX

(
6m,n6∞T X+, fq+i+1G

[ 1
p

])
∼= HomSHX

(
6m,n6∞T X+, fq+i G

[ 1
p

])
for every i > 0.

Proof. Let q1, q2 ∈ Z be the integers corresponding to (m, n), (m + 1, n) in
Corollary 4.12, respectively. Let q be the maximum of q1 and q2. Then the re-
sult follows by combining the vanishing in Corollary 4.12 with the distinguished
triangle

6−1
s sq+i

[ 1
p

]
→ fq+i+1G

[ 1
p

]
→ fq+i G

[ 1
p

]
→ sq+i G

[ 1
p

]
in SHX . �
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Remark 4.14. Combining Definition 4.3 and Corollary 4.13, we deduce that for
every a, b ∈ Z, there exists m ∈ Z such that

FnG
[ 1

p

]a,b
(X)= FmG

[ 1
p

]a,b
(X)

for every n ≥ m.

Proposition 4.15. Assume the conditions (1) and (2) of Corollary 4.12 hold. Then
for every n ∈ Z, the slice spectral sequence

Ea,b
1 (X, n)= HomSHX

(
6∞T X+, 6a+b+n,nsaG

[ 1
p

])
⇒ G

[ 1
p

]a+b+n,n
(X)

(see Section 4.5) satisfies the following.

(1) For every a, b ∈ Z, there exists N > 0 such that Ea,b
r = Ea,b

∞
for r ≥ N , where

Ea,b
∞

is the associated graded gra F • with respect to the descending filtration
F • on G[1/p]a+b+n,n(X) (see Definition 4.3).

(2) For every m, n ∈ Z, the descending filtration F • on G[1/p]m,n(X) is exhaus-
tive and complete (see [Boardman 1999, Definition 2.1]).

Proof. (1): It suffices to show that for every a, b ∈Z only finitely many of the differ-
entials dr : Ea,b

r → Ea+r,b−r+1
r are nonzero. But this follows from Corollary 4.12.

(2): By Proposition 4.4, the filtration F • on G[1/p]m,n(X) is exhaustive. Finally,
the completeness of F • follows by combining Remark 4.14 with [Boardman 1999,
Propositions 1.8 and 2.2(c)]. �

4.16. The slice spectral sequence for MGL(X). Our aim here is to apply the re-
sults of the previous sections to obtain a Hopkins–Morel type spectral sequence
for MGL∗,∗(X) when X is a singular scheme. For smooth schemes, the Hopkins–
Morel spectral sequence has been studied in [Levine 2009; Hoyois 2015], and over
Dedekind domains in [Spitzweck 2014].

Recall from [Voevodsky 1998, §6.3] that for any noetherian scheme S of finite
Krull dimension, the scheme GrS(N , n) parametrizes n-dimensional linear sub-
spaces of AN

S , and one writes BGLS,n = colimN GrS(N , n). There is a universal
rank n bundle US,n→ BGLS,n , and one denotes the Thom space Th(US,n) of this
bundle by MGLS,n . Using the fact that the Thom space of a direct sum is the smash
product of the corresponding Thom spaces and T =Th(OS), one gets a T -spectrum
MGLS = (MGLS,0,MGLS,1, . . . ) ∈ Spt(MS). There is a structure of symmetric
spectrum on MGLS , for which we refer to [Panin et al. 2008, §2.1].

We now let k be a field of characteristic zero and let X ∈ Schk . We use MGL as
a short hand for MGLk throughout this text. It follows from the above definition
of MGLX (which shows that MGLX is constructed from presheaves represented by
smooth schemes) and Proposition 2.12 that the canonical map Lv∗(MGL)→MGLX

is an isomorphism.
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Definition 4.17. We define MGL∗,∗(X) to be the generalized cohomology groups

MGLp,q(X) := HomSHX (6
∞

T X+, 6 p,q MGLX )

∼= HomSHX (6
∞

T X+, 6 p,q Lv∗MGL).

It follows from Theorem 2.14 that

MGLp,q(X)∼= HomSHcdh(6
∞

T X+, 6 p,q Lπ∗MGL). (4.18)

We now construct the spectral sequence for MGL∗,∗(X) using the exact couple
technique as follows. For p, q, n ∈ Z, define

Ap,q(X, n) := [6∞T X+, 6 p+q−n
s 6n

t ( f p MGLX )],

E p,q(X, n) := [6∞T X+, 6 p+q−n
s 6n

t sp MGLX ].

Here, [ – , – ] denotes the morphisms in SHX . It follows from (4.2) that there is an
exact sequence

Ap+1,q−1(X, n)
a p,q

n
−−→ Ap,q(X, n)

bp,q
n
−−→ E p,q(X, n)

cp,q
n
−−→ Ap+1,q(X, n). (4.19)

Set D1(X, n) :=
⊕

p,q Ap,q(X, n) and E1(X, n) :=
⊕

p,q E p,q(X, n). Write
a1

n :=
⊕

a p,q
n , b1

n :=
⊕

bp,q
n and c1

n :=
⊕

cp,q
n . This gives an exact couple

{D1
n, E1

n, a1
n, b1

n, c1
n} and the map d1

n = b1
n ◦ c1

n : E
1
n→ E1

n shows that (E1, d1) is a
complex. Thus, by repeatedly taking the homology functors, we obtain a spectral
sequence.

For the target of the spectral sequence, let Am(X, n) := colimq→∞ Am−q,q(X, n).
Since X is a compact object of SHX (see [Voevodsky 1998, Proposition 5.5; Ayoub
2007b, Théorème 4.5.67]), the colimit enters into [ – , – ] so that

Am(X, n)= [6∞T X+, 6m−n
s 6n

t MGLX ] =MGLm,n
X (X).

The formalism of exact couples then yields a spectral sequence

E p,q
1 (X, n)= E p,q

1 ⇒MGLm,n
X (X). (4.20)

We now have

E p,q
1 (X, n)= [6∞T X+, 6 p+q−n

s 6n
t sp MGLX ]

∼=
1
[6∞T X+, 6 p+q−n

s 6n
t sp Lv∗MGL]

∼=
2
[6∞T X+, 6 p+q−n

s 6n
t Lv∗(sp MGL)]

∼=
3
[6∞T X+, 6 p+q−n

s 6n
t Lv∗(6 p

T H(L−p))]

∼= [6
∞

T X+, 6 p+q−n
s 6n

t 6
p
T Lv∗(H(L−p))]. (4.21)

In this sequence of isomorphisms, ∼=1 is shown above, ∼=2 follows from [Pelaez
2013, Theorem 3.7] and ∼=3 follows from the isomorphism sp MGL

∼=
−→6

p
T H(L−p),
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as shown, for example, in [Hoyois 2015, (8.6)], where L=
⊕

i≤0 Li ∼=
⊕

i≥0 MU2i

is the Lazard ring.
Since L is a torsion-free abelian group, it follows from Corollary 3.6 that the

last term of (4.21) is the same as H 3p+q(X,Z(n+ p))⊗Z L−p.
The spectral sequence (4.20) is actually identical to an E2-spectral sequence

after reindexing. Indeed, letting

Ẽ p′,q ′

2 = H p′−q ′(X,Z(n− q ′))⊗Z Lq ′

and using (4.21), an elementary calculation shows that the invertible transformation
(3p+ q, n+ p) 7→ (p′− q ′, n− q ′) yields

E p+1,q
1

∼= [6
∞

T X+, 6 p+q+1−n
s 6n

t sp+1 MGLX ]

∼= H (p′+2)−(q ′−1)(X,Z(n− (q ′− 1))⊗Z Lq ′−1
= Ẽ p′+2,q ′−1

2 . (4.22)

It is clear from (4.19) that the E1-differential of the above spectral sequence is
d p.q

1 : E p,q
1 → E p+1,q

1 and (4.22) shows that this differential is identified with the
differential

d p′,q ′

2 = d p,q
1 : Ẽ p′,q ′

2 → Ẽ p′+2,q ′−1
2 .

Inductively, it follows that the chain complex {E p,q
r

dr
−→ E p+r,q−r+1

r } is transformed
to the chain complex {Ẽ p′,q ′

r+1
dr
−→ Ẽ p′+r+1,q ′−r

r+1 }. Combining this with (4.18), we
conclude the following.

Theorem 4.23. Let k be a field which has characteristic zero and let X ∈ Schk .
Then for any integer n ∈ Z, there is a strongly convergent spectral sequence

E p,q
2 = H p−q(X,Z(n− q))⊗Z Lq

⇒MGLp+q,n(X). (4.24)

The differentials of this spectral sequence are given by dr : E p,q
r → E p+r,q−r+1

r ,
and for every p, q ∈ Z, there exists N > 0 such that E p,q

r = E p,q
∞ for r ≥ N ,

where E p,q
∞ is the associated graded gr−q F • with respect to the descending filtra-

tion on MGLp+q,n(X) (see Definition 4.3). Furthermore, this spectral sequence
degenerates with rational coefficients.

Proof. The construction of the spectral sequence is shown above. Since MGL is
bounded by [Hoyois 2015, Theorem 8.12], it follows from Proposition 4.7 that the
spectral sequence (4.24) is strongly convergent. Thus, we deduce the existence of
N > 0 such that E p,q

r = E p,q
∞ for r ≥ N .

As for the degeneration with rational coefficients, we observe that the maps
f p MGL → sp MGL ∼= 6 p

T H(L−p) rationally split to yield an isomorphism of
spectra MGLQ

∼=
−→⊕p≥06

p
T H(L−p

Q
) in SH [Naumann et al. 2009, Theorem 10.5

and Corollary 10.6(i)]. The desired degeneration of the spectral sequence now
follows immediately from its construction above. �
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Remark 4.25. If k is a perfect field of positive characteristic p, we observe that
sr (MGL[1/p]) ∼= 6r

T H(L−r )[1/p] for every r ∈ Z [Hoyois 2015, (8.6)], and so
sr (MGL[1/p]) has a weak structure of smooth traces [Kelly 2012, Corollary 5.2.4].
Thus, we can apply [Kelly 2012, Theorem 4.2.29] to conclude Lv∗sr (MGL[1/p])∼=
sr (Lv∗MGL[1/p]). Except for this identification, the proof of Theorem 4.23 does
not depend on the characteristic of k. We thus obtain a spectral sequence as in
(4.24):

Ea,b
2 = Ha−b(X,Z(n− b))⊗Z Lb[ 1

p

]
⇒MGLa+b,n(X)

[ 1
p

]
.

But we can only guarantee strong convergence when X ∈ Smk [Hoyois 2015, The-
orem 8.12]. In general, for X ∈ Schk , the spectral sequence satisfies the weaker
convergence of Proposition 4.15(1)–(2). In this case, the strong convergence would
follow if one knew that MGL has a structure of traces.

4.26. The slice spectral sequence for KGL. For any noetherian scheme X of fi-
nite Krull dimension, the motivic T -spectrum KGLX ∈ Spt(MX ) was defined by
Voevodsky [1998, §6.2]. It has the property that it represents algebraic K-theory
of objects in SmX if X is regular. It was later shown by Cisinski [2013] that for X
not necessarily regular, KGLX represents Weibel’s homotopy invariant K-theory
KH∗(Y ) for Y ∈ SmX . Like MGLX , there is a structure of symmetric spectrum on
KGLX , for which we refer to [Jardine 2009, pp. 157 and 176].

Let k be a field of exponential characteristic p. The map Lv∗(KGLk)→ KGLX

is an isomorphism by [Cisinski 2013, Proposition 3.8]. It is also known that
sr KGLk ∼= 6

r
T HZ for r ∈ Z; see [Levine 2008, Theorem 6.4.2] if k is perfect

and [Röndigs and Østvær 2016, §1, p. 1158] in general. It follows from [Pelaez
2013, Theorem 3.7] (in positive characteristic we use [Kelly 2012, Theorem 4.2.29]
instead) that Lv∗(sr KGL[1/p]k) ∼= sr (Lv∗KGL[1/p]k) ∼= sr KGL[1/p]X . One
also knows that (KGLk)Q ∼=

⊕
p∈Z6

p
T HQ in SH [Riou 2010, Definition 5.3.17

and Theorem 5.3.10]. We can thus use the Bott periodicity of KGLX and repeat
the construction of Section 4.16 mutatis mutandis (with n = 0) to conclude the
following.

Theorem 4.27. Let k be a field that admits resolution of singularities (resp. a field
of exponential characteristic p > 1), and let X ∈ Schk . Then there is a strongly
convergent spectral sequence

Ea,b
2 = Ha−b(X,Z(−b))⇒ KH−a−b(X) (4.28)(

resp. Ea,b
2 = Ha−b(X,Z(−b))⊗Z Z

[ 1
p

]
⇒ KH−a−b(X)⊗Z Z

[ 1
p

])
. (4.29)

The differentials of this spectral sequence are given by dr : Ea,b
r → Ea+r,b−r+1

r ,
and for every a, b ∈ Z, there exists N > 0 such that Ea,b

r = Ea,b
∞

for r ≥ N , where
Ea,b
∞

is the associated graded gr−b F • with respect to the descending filtration on
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KH−a−b(X) (resp. KH[1/p]−a−b(X)) (see Definition 4.3). Furthermore, this spec-
tral sequence degenerates with rational coefficients.

Proof. If k admits resolution of singularities, we just need to show that the spectral
sequence is convergent. For this, we observe that KGLk is the spectrum associated
to the Landweber exact L-algebra Z[β, β−1

] that classifies the multiplicative formal
group law [Spitzweck and Østvær 2009, Theorem 1.2]. Thus [Hoyois 2015, The-
orem 8.12] implies that KGLk is bounded with respect to the slice filtration (this
argument also applies in positive characteristic). Hence, the convergence follows
from Proposition 4.7.

In the case of positive characteristic, the existence of the spectral sequence fol-
lows by combining the argument of Section 4.16 with Lemmas 4.8 and 4.9. To
establish the convergence, it suffices to check that KGL[1/p]k satisfies the condi-
tions in Proposition 4.10.

We have already seen that KGLk is bounded with respect to the slice filtration.
Thus, by Lemma 4.8(2) we conclude that KGL[1/p]k is bounded with respect
to the slice filtration as well. On the other hand, it follows from [Kelly 2012,
Proposition 5.2.3] that KGL[1/p]k has a structure of traces in the sense of [Kelly
2012, Definition 4.3.1]. Finally, since sr KGLk ∼= 6

r
T HZ for r ∈ Z, combining

[Kelly 2012, Corollary 5.2.4] and Lemma 4.9, we deduce that sr (KGL[1/p])k has
a weak structure of smooth traces in the sense of [Kelly 2012, Definition 4.2.27].
This finishes the proof. �

Remark 4.30. For char k = 0, the spectral sequence of Theorem 4.27 is not new
and was constructed by Haesemeyer [2004, Theorem 7.3] using a different ap-
proach. However, the expected degeneration (rationally) of this spectral sequence
and its positive characteristic analogue are new.

As a combination of Theorem 4.27 and [Thomason and Trobaugh 1990, The-
orems 9.5 and 9.6], we obtain the following spectral sequence for the algebraic
K-theory K B( – ) of singular schemes [Thomason and Trobaugh 1990].

Corollary 4.31. Let k be a field of exponential characteristic p> 1. Let ` 6= p be a
prime and m ≥ 0 any integer. Given any X ∈ Schk , there exist strongly convergent
spectral sequences

Ea,b
2 = Ha−b(X,Z(−b))⊗Z Z

[ 1
p

]
⇒ K B

−a−b(X)⊗Z Z
[ 1

p

]
, (4.32)

Ea,b
2 = Ha−b(X,Z/`m(−b))⇒ K B/`m

−a−b(X). (4.33)

5. Applications I: Comparing cobordism, K-theory and cohomology

In this section, we deduce some geometric applications of the slice spectral se-
quences for singular schemes. More applications will appear in the subsequent
sections.
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Consider the edge map MGL = f0 MGL→ s0 MGL ∼= HZ in the spectral se-
quence (4.24). This induces a natural map νX : MGLi, j (X)→ H i (X,Z( j)) for
every X ∈ Schk and i, j ∈ Z.

The following result shows that there is no distinction between algebraic cycles
and cobordism cycles at the level of 0-cycles.

Theorem 5.1. Let k be a field which admits resolution of singularities (resp. a
perfect field of positive characteristic p). Then for any X ∈ Schk of dimension d,
we have H 2a−b(X,Z(a)) = 0 (resp. H 2a−b(X,Z(a))⊗Z Z[1/p] = 0) whenever
a > d + b. In particular, for every X ∈ Schk (resp. X ∈ Smk), the map

νX :MGL2d+i,d+i (X)→ H 2d+i (X,Z(d + i)) (5.2)(
resp. νX :MGL2d+i,d+i (X)⊗Z Z

[ 1
p

]
→ H 2d+i (X,Z(d + i))⊗Z Z

[ 1
p

])
(5.3)

is an isomorphism for all i ≥ 0.

Proof. Using the spectral sequence (4.24) (resp. Remark 4.25) and the fact that
L>0
= 0, the isomorphism of (5.2) (resp. (5.3)) follows immediately from the

vanishing assertion for the motivic cohomology.
To prove the vanishing result, we note that for X ∈ Smk , there is an isomorphism

H 2a−b(X,Z(a))∼=CHa(X, b) by [Voevodsky 2002a], and the latter group is clearly
zero if a > d + b by definition of Bloch’s higher Chow groups.

If X is not smooth and k admits resolution of singularities, our assumption on
k implies that there exists a cdh-cover {X ′ q Z → X} of X such that X ′ ∈ Smk ,
dim(Z) < dim(X) and dim(W ) < dim(X), where we set W = X ′ ×X Z . The
cdh-descent for the motivic cohomology yields an exact sequence

H 2a−b−1(W,Z(a))
∂
−→ H 2a−b(X,Z(a))→ H 2a−b(X ′,Z(a))⊕ H 2a−b(Z ,Z(a)).

The smooth case of our vanishing result shown above and an induction on the
dimension together imply that the two end terms of this exact sequence vanish.
Hence, the middle term vanishes too.

If X is not smooth and k is perfect of positive characteristic, we argue as in
Proposition 4.10. Namely, by a theorem of Gabber [Illusie et al. 2014, Théorème
3(1)] and Temkin’s strengthening [2017, Theorem 1.2.9] of Gabber’s result, there
exists W ∈ Smk and a surjective proper map h : W → X , which is generically
étale of degree pr , r ≥ 1. Then by a theorem of Raynaud and Gruson [1971,
Theorem 5.2.2], there exists a blow-up g : X ′→ X with center Z such that the
diagram

W ′

g′
��

h′
// X ′

g
��

W
h
// X

(5.4)
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commutes, where h′ is finite flat surjective of degree pr and g′ : W ′→ W is the
blow-up of W with center h−1(Z).

Thus we have a cdh-cover {X ′q Z→ X} of X , such that dimk(Z) < dimk(X)
and dimk(E) < dimk(X), where we set E = X ′×X Z . Then by cdh-excision, the
following diagram is exact:

H 2a−b−1(E,Z(a))⊗Z Z
[ 1

p

]
→ H 2a−b(X,Z(a))⊗Z Z

[ 1
p

]
→ H 2a−b(X ′,Z(a))⊗Z Z

[ 1
p

]
⊕ H 2a−b(Z ,Z(a))⊗Z Z

[ 1
p

]
.

By induction on the dimension, this reduces to the exact sequence

0→ H 2a−b(X,Z(a))⊗Z Z
[ 1

p

] g∗
−→ H 2a−b(X ′,Z(a))⊗Z Z

[ 1
p

]
.

So it suffices to show that g∗ = 0. In order to prove this, we observe that (5.4)
commutes. Therefore, since W ∈ Smk , H 2a−b(W,Z(a)) ⊗Z Z[1/p] = 0. We
conclude that h′∗ ◦ g∗ = g′∗ ◦ h∗ = 0. Thus, it is enough to see that

h′∗ : H 2a−b(X ′,Z(a))⊗Z Z
[ 1

p

]
→ H 2a−b(W ′,Z(a))⊗Z Z

[ 1
p

]
is injective. Let v′ : X ′→ Spec k, and ε : Lv′∗HZ[1/p]→ Rh′

∗
Lh′∗Lv′∗HZ[1/p]

be the map given by the unit of the adjunction (Lh′∗, Rh′
∗
). By the naturality of

the isomorphism in Proposition 2.13, we deduce that h′∗ gets identified with the
map induced by ε (see Corollary 3.6):

ε∗ : HomSHX ′

(
6m,n6∞T (X

′

+
), Lv′∗HZ

[ 1
p

])
→ HomSHX ′

(
6m,n6∞T (X

′

+
), Rh′

∗
Lh′∗Lv′∗HZ

[ 1
p

])
.

By [Kelly 2012, Corollary 5.2.4], HZ[1/p] has a structure of traces in the sense
of [Kelly 2012, Definition 4.3.1]. Thus, we deduce from [Kelly 2012, Definition
4.3.1(Deg), p. 101] that ε∗ is injective since h′ is finite flat surjective of degree pr.
This finishes the proof. �

Remark 5.5. For X ∈ Smk and i = 0, the isomorphism of (5.2) was proved by
Déglise [2013, Corollary 4.3.4].

When A is a field, the following result was proven by Morel [2012, Corol-
lary 1.25] using methods of unstable motivic homotopy theory. Taking for granted
the result for fields, Déglise [2013] proved Theorem 5.6 using homotopy mod-
ules. Spitzweck [2014, Corollary 7.3] proved Theorem 5.6 for localizations of a
Dedekind domain.

Theorem 5.6. Let k be a perfect field of exponential characteristic p. Then for
any regular semilocal ring A which is essentially of finite type over k, and for any
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integer n ≥ 0, the map

MGLn,n(A)⊗Z Z
[ 1

p

]
→ H n(A,Z(n))⊗Z Z

[ 1
p

]
(5.7)

is an isomorphism. In particular, there is a natural isomorphism

MGLn,n(A)⊗Z Z
[ 1

p

]
∼= K M

n (A)⊗Z Z
[ 1

p

]
if k is also infinite.

Proof. Using the spectral sequence (4.24) and the fact that L>0
= 0, it suffices

to prove that En+i+ j,−i
2 (A)= 0 for every j ≥ 0 and i ≥ 1. In positive charac-

teristic, we can use Remark 4.25 since A is regular. Notice that (4.24) and the
spectral sequence in Remark 4.25 are strongly convergent for A by [Hoyois 2015,
Lemmas 8.9 and 8.10].

On the one hand, we have isomorphisms

En+i+ j,−i
2 (A)= H n+2i+ j (A,Z(n+ i))⊗Z Z

[ 1
p

]
∼= CHn+i (A, 2n+ 2i − n− 2i − j)⊗Z Z

[ 1
p

]
= CHn+i (A, n− j)⊗Z Z

[ 1
p

]
.

On the other hand, letting F denote the fraction field of A, the Gersten resolu-
tion for the higher Chow groups (see [Bloch 1986, Theorem 10.1]) shows that
the restriction map CHn+i (A, n − j) → CHn+i (F, n − j) is injective. But the
term CHn+i (F, n− j) is zero whenever j ≥ 0, i ≥ 1 for dimensional reasons. We
conclude that En+i+ j,−i

2 (A)= 0. The last assertion of the theorem now follows
from the isomorphism CHn(A, n)∼= K M

n (A) by [Kerz 2009, Theorem 1.1]. �

5.8. Connective K-theory. Let k be a field of exponential characteristic p and let
X ∈ Schk . Recall that the connective K-theory spectrum KGL0

X is defined to be
the motivic T -spectrum f0 KGLX in SHX (see (4.2)). Strictly speaking, KGL0

X
should be called effective K-theory. Nevertheless, we follow the terminology of
[Dai and Levine 2014].

In particular, there is a canonical map u X : KGL0
X → KGLX which is univer-

sal for morphisms from objects of SHeff
X to KGLX . For any Y ∈ SmX , we let

CKH p,q(Y )=HomSHX (6
∞

T Y+, 6 p,q KGL0
X ). Using an analogue of Theorem 4.23

for KGL0
X , one can prove the existence of the cycle class map for the higher Chow

groups as follows.

Theorem 5.9. Let k be a field of exponential characteristic p and let X ∈Schk have
dimension d. Then the map KGL0

X [1/p] → s0 KGLX [1/p] ∼= HZ[1/p] induces
for every integer i ≥ 0, an isomorphism

CKH2d+i,d+i (X)⊗Z Z
[ 1

p

] ∼=
−→ H 2d+i (X,Z(d + i))⊗Z Z

[ 1
p

]
. (5.10)
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In particular, the canonical map KGL0
X → KGLX induces a natural cycle class

map
cyci : H

2d+i (X,Z(d + i))⊗Z Z
[ 1

p

]
→ KHi (X)⊗Z Z

[ 1
p

]
. (5.11)

Proof. First we assume that k admits resolution of singularities. It follows from
the definition that KGL0

X is a connective T -spectrum, and Lv∗(KGL0
k)
∼=
−→ KGL0

X
by [Pelaez 2013, Theorem 3.7]. One also knows that sr KGL0

k
∼=6r

T HZ for r ≥ 0
[Levine 2008, Theorem 6.4.2] and is zero otherwise. The proof of Theorem 4.23
can now be repeated verbatim to conclude that for each n ∈ Z, there is a strongly
convergent spectral sequence

Ea,b
2 = Ha−b(X,Z(n− b))⊗Z Zb≤0⇒ CKHa+b,n(X), (5.12)

where Zb≤0 = Z if b≤ 0 and is zero otherwise. Furthermore, this spectral sequence
degenerates with rational coefficients.

One now repeats the proof of Theorem 5.1 to conclude that the edge map
CKH2d+i,d+i (X)→ H 2d+i (X,Z(d+ i)) is an isomorphism for every i ≥ 0. Finally,
to get the desired cycle class map, we compose the inverse of this isomorphism with
the canonical map CKH2d+i,d+i (X)→ KHi (X).

If the characteristic of k is positive, then sr (KGL0
k)
∼=6r

T HZ for every r ≥ 0 and
is zero otherwise [Levine 2008, Theorem 6.4.2]. So sr (KGL0

k[1/p]) has a weak
structure of traces [Kelly 2012, Corollary 5.2.4]. By Lemma 4.9, we deduce that
sr (KGL0

k[1/p])∼=6r
T HZ[1/p] for every r ≥ 0 and is zero otherwise. Thus, we can

apply [Kelly 2012, Theorem 4.2.29] to conclude Lv∗(KGL0
k[1/p])∼= KGL0

X [1/p].
Then the argument of Theorem 4.27 applies, and we conclude that for each n ∈ Z,
there is a strongly convergent spectral sequence

Ea,b
2 = Ha−b(X,Z(n− b))⊗Z Z

[ 1
p

]
b≤0⇒ CKHa+b,n(X)⊗Z Z

[ 1
p

]
. (5.13)

By Theorem 5.1, H 2a−b(X,Z(a)) ⊗Z Z[1/p] = 0 whenever a > d + b. Thus,
combining the spectral sequence (5.13) and the fact that L>0

= 0, we deduce the
isomorphism of (5.10) with Z[1/p]-coefficients:

CKH2d+i,d+i (X)⊗Z Z
[ 1

p

] ∼=
−→ H 2d+i (X,Z(d + i))⊗Z Z

[ 1
p

]
. �

An argument identical to the proof of Theorem 5.6 shows that for any regular
semilocal ring A which is essentially of finite type over an infinite field k and any
integer n ≥ 0, there is a natural isomorphism

CKHn,n(A)
∼=
−→ K M

n (A) (5.14)

(notice that in positive characteristic, the spectral sequence is also strongly conver-
gent integrally since A is regular).
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Moreover, the canonical map CKHn,n(A)→ Kn(A) respects products [Pelaez
2011, Theorem 3.6.9], and hence coincides with the known map K M

n (A)→ Kn(A).
This shows that the Milnor K-theory is represented by the connective K-theory,
and one gets a lifting of the relation between the Milnor and Quillen K-theory
of smooth semilocal schemes to the level of SH. In particular, it is possible to
recover Milnor K-theory and its map into Quillen K-theory from the T -spectrum
KGL (which represents Quillen K-theory in SH for smooth k-schemes) by passing
to its (−1)-effective cover f0 KGLk→ KGLk .

As another consequence of the slice spectral sequence, one gets the following
comparison result between the connective and nonconnective versions of the ho-
motopy K-theory. The homological analogue of this result was shown in [Dai and
Levine 2014, Corollary 5.5].

Theorem 5.15. Let k be a field of exponential characteristic p and let X ∈ Schk

have dimension d. Then the canonical map

CKH2n,n(X)⊗Z Z
[ 1

p

]
→ KH0(X)⊗Z Z

[ 1
p

]
is an isomorphism for every integer n ≤ 0.

Proof. If k admits resolution of singularities, we observe that the slice spectral se-
quence is functorial for morphisms of motivic T -spectra. Since H 2q(X,Z(q))= 0
for q < 0, a comparison of the spectral sequences (4.28) and (5.12) shows that it
is enough to prove that for every r ≥ 2 and q ≤ 0, either q + r − 1≤ 0 or

H−q−r−(q+r−1)(X,Z(1− r − q))= H 1−2r−2q(X,Z(1− r − q))= 0.

But this is true because H 1−2r−2q(X,Z(s))= 0 if s < 0.
In positive characteristic, we use the same argument as above for the spectral

sequences (4.29) and (5.13). �

Yet another consequence of the above spectral sequences is the following direct
verification of Weibel’s vanishing conjecture for negative KH-theory and negative
CKH-theory of singular schemes. For KH-theory, there are other proofs of this
conjecture by Haesemeyer [2004, Theorem 7.1] in characteristic zero and Kelly
[2014, Theorem 3.5] and Kerz and Strunk [2017] in positive characteristic using
different methods. We refer the reader to [Cisinski 2013; Cortiñas et al. 2008a;
Geisser and Hesselholt 2010; Kerz et al. 2018; Krishna 2009; Weibel 2001] for
more results associated to Weibel’s conjecture. The vanishing result below for
CKH-theory is new in any characteristic.

Theorem 5.16. Let k be a field of exponential characteristic p and let X ∈ Schk

have dimension d. Then CKHm,n(X)⊗Z Z[1/p] = KH2n−m(X)⊗Z Z[1/p] = 0
whenever 2n−m <−d and KH−d(X)⊗Z Z[1/p] ∼= H d

cdh(X,Z)⊗Z Z[1/p].
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Proof. When k admits resolution of singularities, using the spectral sequences (4.28)
and (5.10), it suffices to show H p−q(X,Z(n−q))= 0 whenever 2n− p−q+d < 0.

If n− q < 0, then we already know that this motivic cohomology group is zero.
So we can assume n − q ≥ 0. We set a = n − q and b = 2n − p − q so that
2a− b = 2n− 2q − 2n+ p+ q = p− q . Since 2n− p− q + d < 0 and n− q ≥ 0
by our assumption, we get

b+d−a = 2n− p−q+d−n+q = n− p+d = (2n− p−q+d)− (n−q) < 0.

The theorem now follows because we have shown in the proof of Theorem 5.1
that H p−q(X,Z(n− q))= H 2a−b(X,Z(a))= 0 as a > b+ d . This argument also
shows that KH−d(X)∼= H d(X,Z(0))∼= H d

cdh(X,Z).
In positive characteristic, the same argument with the spectral sequences (4.29)

and (5.13) gives that CKHm,n(X)⊗Z Z[1/p] = KH2n−m(X)⊗Z Z[1/p] = 0 when-
ever 2n−m <−d and KH−d(X)⊗Z Z[1/p] ∼= H d

cdh(X,Z)⊗Z Z[1/p]. �

Weibel’s conjecture on the vanishing of certain negative K-theory was proven
(after inverting the characteristic) by Kelly [2014]. Using our spectral sequence
(which uses the methods of [Kelly 2012]), we can obtain the following result
(which follows as well from [Kelly 2014] via the cdh-descent spectral sequence).
The characteristic zero version of this computation was proven in [Cortiñas et al.
2008b, Theorem 0.2], and for arbitrary noetherian schemes, we refer the reader to
[Kerz et al. 2018, Corollary D].

Corollary 5.17. Let k be a field of exponential characteristic p and let X ∈ Schk

have dimension d. Then

K B
−d(X)⊗Z Z

[ 1
p

]
∼= H d

cdh(X,Z)⊗Z Z
[ 1

p

]
.

6. The Chern classes on KH-theory

In order to obtain more applications of the slice spectral sequence for KH-theory
and the cycle class map (see Theorem 5.9), we need to have a theory of Chern
classes on the KH-theory of singular schemes.

Gillet [1981] showed that any cohomology theory satisfying the projective bun-
dle formula and some other standard admissibility axioms admits a theory of Chern
classes from algebraic K-theory of schemes over a field. These Chern classes
are very powerful tools for understanding algebraic K-theory groups in terms of
various cohomology theories such as motivic cohomology and Hodge theory. The
Chern classes in Deligne cohomology are used to define various regulator maps on
K-theory and they also give rise to the construction of intermediate Jacobians of
smooth projective varieties over C.
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For a perfect field k of exponential characteristic p ≥ 1, Kelly [2012, Corollary
5.5.10] showed that the motivic cohomology functor X 7→ {H i (X,Z( j))[1/p]}i, j∈Z

satisfies the projective bundle formula in Schk . This implies in particular by Gillet’s
theory that there are functorial Chern class maps

ci, j : K j (X)→ H 2i− j (X,Z(i))
[ 1

p

]
. (6.1)

In this section, we show that in characteristic zero, Gillet’s technique can be
used to construct the above Chern classes on the homotopy invariant K-theory of
singular schemes. Applications of these Chern classes to the understanding of
the motivic cohomology and KH-theory of singular schemes will be given in the
following two sections.

Let k be a field of characteristic zero and let SchZar/k denote the category of
separated schemes of finite type over k equipped with the Zariski topology. Let
SmZar/k denote the full subcategory of smooth schemes over k equipped with the
Zariski topology. For any X ∈ Schk , let XZar denote the small Zariski site of X . A
presheaf of spectra on Schk or Smk means a presheaf of S1-spectra.

Let Pre(SchZar/k) be the category of presheaves of simplicial sets on SchZar/k

equipped with the injective Zariski local model structure, i.e., the weak equiva-
lences are the maps that induce a weak equivalence of simplicial sets at every
Zariski stalk and the cofibrations are given by monomorphisms. This model struc-
ture restricts to a similar model structure on the category Pre(XZar) of presheaves
of simplicial sets on XZar for every X ∈ Schk . We write Hbig

Zar(k) and Hsml
Zar(X) for

the homotopy categories of Pre(SchZar/k) and Pre(XZar), respectively.

6.2. Chern classes from KH-theory to motivic cohomology. For any X ∈Schk , let
�BQP(X) denote the simplicial set obtained by taking the loop space of the nerve
of the category QP(X) obtained by applying Quillen’s Q-construction to the exact
category of locally free sheaves on XZar. Let K denote the presheaf of simplicial
sets on SchZar/k given by X 7→ �BQP(X). One knows that K is a presheaf of
infinite loop spaces so that there is a presheaf of spectra K̃ on Schk such that
K = (K̃)0. Let K̃B denote the Thomason–Trobaugh presheaf of spectra on Schk

such that K̃B(X)= K B(X) for every X ∈Schk . There is a natural map of presheaves
of spectra K̃→ K̃B which induces isomorphism between the nonnegative homotopy
group presheaves.

Recall from [Jardine 1997, Theorem 2.34] that the category of presheaves of
spectra on SchZar/k has a closed model structure, where the weak equivalences
are given by the stalkwise stable equivalence of spectra, and a map f : E → F
is a cofibration if f0 is a monomorphism and En+1 qS1∧En S1

∧ Fn → Fn+1 is
a monomorphism for each n ≥ 0. Let Hs

Zar(k) denote the associated homotopy
category. There is a functor 6∞s :H

big
Zar(k)→Hs

Zar(k) which has a right adjoint. We
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can consider the above model structure and the corresponding homotopy categories
with respect to the Nisnevich and cdh-sites as well.

Let K̃cdh→ K̃B
cdh denote the map between the functorial fibrant replacements

in the above model structure on presheaves of spectra on Schk with respect to the
cdh-topology. Let KH denote the presheaf of spectra on Schk such that KH(X) is
Weibel’s homotopy invariant K-theory of X [Weibel 1989].

The following is a direct consequence of the main result of [Haesemeyer 2004].

Lemma 6.3. Let k be a field of characteristic zero. For every X ∈ Schk and integer
p ∈ Z, there is a natural isomorphism KH p(X)

∼=
−→ H

−p
cdh(X,Kcdh).

Proof. We have a natural isomorphism

πp(K̃cdh(X))= HomHs
cdh(k)(6

∞

s (S
p
s ∧ X), K̃)

∼= HomHcdh(k)(S
p
s ∧ X,K)

∼= H
−p
cdh(X,Kcdh). (6.4)

It is well known that the natural maps K p(X)→ πp(K̃cdh(X))→ πp(K̃B
cdh(X))

are isomorphisms for all p ∈ Z when X is smooth over k. In general, let X ∈ Schk .
We can find a Cartesian square

Z ′ //

��

X ′

f
��

Z // X

(6.5)

where X ′ ∈ Smk and f is a proper birational morphism which is an isomorphism
outside the closed immersion Z ↪→ X . Induction on dimension of X and cdh-
descent for K̃cdh as well as K̃B

cdh now show that the map πp(K̃cdh(X))→πp(K̃B
cdh(X))

is an isomorphism for all p ∈ Z. Composing the inverse of this isomorphism with
the map in (6.4), we get a natural isomorphism πp(K̃B

cdh(X))
∼=
−→ H

−p
cdh(X,Kcdh).

On the other hand, it follows from [Haesemeyer 2004, Theorem 6.4] that the
natural map KH(X)→ K̃B

cdh(X) is a homotopy equivalence. We conclude that
there is a natural isomorphism νX : KH p(X)

∼=
−→ H

−p
cdh(X,Kcdh) for every X ∈ Schk

and p ∈ Z. �

Let BGL be the simplicial presheaf on Schk with BGL(X)=colimn BGLn(O(X)).
It is known (see [Gillet 1981, Proposition 2.15]) that there is a natural sectionwise
weak equivalence K|X

∼=
−→ Z×Z∞BGL|X in Pre(SchZar/k) (see Section 6.2), where

Z∞( – ) is the Z-completion functor of Bousfield–Kan.
To simplify the notation, for any integer q ∈ Z, we write 0(q) for the presheaf

on SchZar/k given by

0(q)(U )=
{

C∗zequi(A
q
k , 0)(U )[−2q] if q ≥ 0,

0 if q < 0.
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(see Section 3). It is known that the restriction of 0(q) on SmZar/k is a sheaf (see,
for instance, [Mazza et al. 2006, Definition 16.1]). We let 0(q)[2q]→K(0(q), 2q)
denote a functorial fibrant replacement of 0(q)[2q] with respect to the injective
Zariski local model structure.

It follows from [Asakura and Sato 2015, Section 3.1] that K(0(q), 2q) is a
cohomology theory on SmZar/k which satisfies all of the conditions of [Gillet
1981, Definitions 1.1 and 1.2]. We conclude from Gillet’s construction [1981,
§2, p. 225] that for any X ∈ SmZar/k , there is a morphism of simplicial presheaves
Cq : BGL|X → K(0(q), 2q)|X in Hsml

Zar(X) which is natural in X . Composing with
K|X

∼=
−→ Z×Z∞BGL|X and using the isomorphism Z∞K(0(q), 2q)∼=K(0(q), 2q),

we obtain a map

Cq : K|X
∼=
−→ Z×Z∞BGL|X → Z×K(0(q), 2q)|X → K(0(q), 2q)|X

in Hsml
Zar(X), where the last arrow is the projection.

Since K(0(q), 2q) is fibrant in Pre(SchZar/k), it follows from [Jardine 2015,
Corollary 5.26] that the restriction K(0(q), 2q)|X is fibrant in Pre(XZar). Since
K|X is cofibrant (in our local injective model structure), Gillet’s construction [1981,
p. 225] yields a map of simplicial presheaves Cq : K|X → K(0(q), 2q)|X in
Pre(XZar). In particular, a map K(X)→ K(0(q), 2q)(X). Furthermore, the natu-
rality of the construction gives, for any morphism f : Y → X in Smk , a diagram
that commutes up to homotopy

K(X)
Cq
//

f ∗
��

K(0(q), 2q)(X)
f ∗
��

K(Y )
Cq
// K(0(q), 2q)(Y )

(6.6)

(see, for instance, [Asakura and Sato 2015, (5.6.1)]). Equivalently, there is a mor-
phism of simplicial presheaves Cq : K → K(0(q), 2q) in Hbig

Zar(k) and hence a
morphism in (Smk)Nis (see Section 2.1). Pulling back Cq via the morphism of
sites π : (Schk)cdh → (Smk)Nis [Jardine 2015, p. 111], and considering the co-
homologies of the associated cdh-sheaves, we obtain for any X ∈ Schk , closed
subscheme Z ⊆ X and p, q ≥ 0, the Chern class maps

cZ
X,p,q : H

−p
Z ,cdh(X,Kcdh) := H

−p
Z ,cdh(X, Lπ∗(K))

→ H
−p
Z ,cdh(X, Lπ∗(K(0(q), 2q)))

= H
−p
Z ,cdh(X,C∗zequi(A

q
k , 0)cdh) := H 2q−p

Z (X,Z(q)). (6.7)

It follows from Lemma 6.3 that H
−p
Z ,cdh(X,Kcdh)=KHZ

p (X), where the KHZ (X)
is the homotopy fiber of the map KH(X)→ KH(X \ Z). Let (X, Z) denote the
pair consisting of a scheme X ∈ Schk and a closed subscheme Z ⊆ X . A map of
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pairs f : (Y,W )→ (X, Z) is a morphism f : Y → X such that f −1(Z)⊆W . We
have then shown the following.

Theorem 6.8. Let k be a field of characteristic zero. Then for any pair (X, Z) in
Schk and for any p ≥ 0, q ∈ Z, there are Chern class homomorphisms

cZ
X,p,q : KHZ

p (X)→ H 2q−p
Z (X,Z(q))

such that the composition of cX
X,0,0 with K0(X)→ KH0(X) is the rank map. For

any map of pairs f : (Y,W )→ (X, Z), there is a commutative diagram

KHZ
p (X)

cZ
X,p,q
//

f ∗
��

H 2q−p
Z (X,Z(q))

f ∗
��

KHW
p (Y )

cW
Y,p,q
// H 2q−p

W (Y,Z(q))

(6.9)

6.10. Chern classes from KH-theory to Deligne cohomology. Let CZar denote the
category of schemes which are separated and of finite type over C with the Zariski
topology. We denote by CNis the same category but with the Nisnevich topology.
Let Can denote the category of complex analytic spaces with the analytic topology.
There is a morphism of sites ε : Can→ CZar. For any q ∈ Z, let 0(q) denote the
complex of sheaves on CZar defined as

0(q)=
{
0D(q) if q ≥ 0,
Rε∗((2π

√
−1)Z) if q < 0,

(6.11)

where 0D(q) is the Deligne–Beilinson complex on CZar in the sense of [Esnault
and Viehweg 1988]. Then 0(q) is a cohomology theory on SmC satisfying Gillet’s
conditions for a theory of Chern classes; see, for instance, [Asakura and Sato 2015,
Section 3.4]. Applying the argument of Theorem 6.8 in verbatim, we obtain the
Chern class homomorphisms

cZ
X,p,q : KHZ

p (X)→ H
2q−p
Z ,cdh(X, (0D(q))cdh) (6.12)

for a pair of schemes (X, Z) in SchC which is natural in (X, Z).
Let us now fix a scheme X ∈ SchC. Recall from [Deligne 1974, §6.2.5–6.2.8]

that a smooth proper hypercovering of X is a smooth simplicial scheme X• with a
map of simplicial schemes pX : X•→ X such each map X i → X is proper and pX

satisfies the universal cohomological descent in the sense of [Deligne 1974]. The
resolution of singularities implies that such a hypercovering exists. The Deligne
cohomology of X is defined in [Deligne 1974, §5.1.11] to be

H p
D(X,Z(q)) := H

p
Zar(X, R pX∗0D(q))= H

p
Zar(X•, 0D(q)). (6.13)



692 AMALENDU KRISHNA AND PABLO PELAEZ

Gillet’s theory of Chern classes gives rise to the Chern class homomorphisms

cQ
X,p,q : K p(X)→ H 2q−p

D (X,Z(q)) (6.14)

for any X ∈ SchC which is contravariant functorial, where Ki (X)= πi (�BQP(X))
is the Quillen K-theory (see, for instance, [Barbieri-Viale et al. 1996, §2.4]). Our
objective is to show that these Chern classes actually factor through the natural
map K∗(X)→ KH∗(X).

The construction of the Chern classes from KH-theory to the Deligne cohomol-
ogy (see Theorem 6.20 below) will be achieved by the cdh-sheafification of Gillet’s
Chern classes at the level of presheaves of simplicial sets, followed by considering
the induced maps on the hypercohomologies. Therefore, in order to factor the
classical Chern classes cQ

X,p,q on Quillen K-theory through KH-theory, we only
need to identify the target of the Chern class maps in (6.12) with the Deligne
cohomology.

To do this, for any X ∈ SchC we let H∗an(X,F) denote the cohomology of the
analytic space Xan with coefficients in the sheaf F on Can. Let Z→ Sing∗ denote
a fibrant replacement of the sheaf Z on Can so that Rε∗(Z)

∼=
−→ ε∗(Sing∗). Set

Z(q)= (2π
√
−1)qε∗(Sing∗)∼= Rε∗(Z).

Lemma 6.15. For any X ∈ SmC, the map H p
an(X,Z)→ H

p
cdh(X,Z(q)cdh) is an

isomorphism.

Proof. Since H p
an(X,Z) ∼= H

p
Zar(X,Z(q)), it is sufficient to show that the map

H
p
Zar(X,Z(q))→ H

p
cdh(X,Z(q)cdh) is an isomorphism.

Let Cloc denote the category of schemes which are separated and of finite type
over C. We consider Cloc as a Grothendieck site with coverings given by maps
Y ′→ Y where the associated map of the analytic spaces is a local isomorphism
of the corresponding topological spaces [SGA 43 1973, Exposé XI, p. 9]. Since
a Nisnevich cover of schemes is a local isomorphism of the associated analytic
spaces, there is a commutative diagram of morphisms of sites:

Cloc
δ
//

ν
��

Can

ε
��

CNis
τ
// CZar

(6.16)

Since every local isomorphism of analytic spaces is refined by open coverings,
it is well known that the map H

p
an(X,F∗)→ H p

loc(X,F
∗) is an isomorphism for

any complex of sheaves on Can; see, for instance, [Milne 1980, Proposition 3.3,
Theorem 3.12].

We set (Z(q))Nis=τ
∗(Z(q))=ν∗◦δ∗(Sing∗). We observe that for every i ∈Z, the

cohomology sheaf Hi associated to the complex Z(q) is isomorphic to the Zariski
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(or Nisnevich) sheaf on SchC associated to the presheaf U 7→ H i
an(U,Z). But this

latter presheaf on SmC is homotopy invariant with transfers. It follows from [Suslin
and Voevodsky 2000, Corollary 1.1.1] that H

p
Zar(X,Z(q))→ H

p
Nis(X, (Z(q))Nis) is

an isomorphism. We are thus reduced to showing that for X ∈ SmC, the map
H

p
Nis(X, (Z(q))Nis)→ H

p
cdh(X, (Z(q))cdh) is an isomorphism.

But this follows again from [Suslin and Voevodsky 2000, Corollary 1.1.1, 5.12.3,
Theorem 5.13] because each Hi ∼= Riν∗(Z) is a Nisnevich sheaf on SmC associated
to the homotopy invariant presheaf with transfers U 7→ H i

an(U,Z). The proof is
therefore complete. �

For any X ∈ SchC, there are natural maps

H p
D(X,Z(q))∼= H

p
Zar(X•, 0D(q))→ H

p
Nis(X•, (0D(q))Nis)

→ H
p
cdh(X•, (0D(q))cdh). (6.17)

Lemma 6.18. For a projective scheme X over C, the map

H p
D(X,Z(q))→ H

p
cdh(X•, (0D(q))cdh)

is an isomorphism.

Proof. Our assumption implies that each component X p of the simplicial scheme
X• is smooth and projective. Given a complex of sheaves F∗

•
(in the Zariski or

cdh-topology), there is a spectral sequence

E p,q
1 = H

q
Zar/cdh(X p, (F∗• )Zar/cdh)⇒ H

p+q
Zar/cdh(X•, (F

∗

•
)Zar/cdh);

see, for instance, [Asakura and Sato 2015, Appendix]. Using this spectral sequence
and (6.17), it suffices to show that the map H p

Zar(X, 0D(q))→H
p
cdh(X, (0D(q))cdh)

is an isomorphism for any smooth projective scheme X over C. For q ≤ 0, this
follows from Lemma 6.15. So we assume q > 0.

Since X is smooth and projective, the analytic Deligne complex Z(q)D is the
complex of analytic sheaves Z(q)→OXan→�1

Xan
→ · · · →�

q−1
Xan

. In particular,
there is a distinguished triangle

Rε∗(�
<q
Xan
[−1])→ 0D(q)→ Z(q)→ Rε∗(�

<q
Xan
)

in the derived category of sheaves on XZar.
As X is projective, it follows from GAGA that the natural map�<q

X/C→Rε∗(�
<q
Xan
)

is an isomorphism in the derived category of sheaves on XZar. In particular, we get
a distinguished triangle in the derived category of sheaves on XZar:

�
<q
X/C[−1] → 0D(q)→ Z(q)→�

<q
X/C. (6.19)
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We thus have a commutative diagram of exact sequences

H
p−1
Zar (X,Z(q)) //

��

H
p−1
Zar (X, �

<q
X/C)

//

��

H p
Zar(X, 0D(q))

��

H
p−1
cdh (X, (Z(q))cdh) // H

p−1
cdh (X, (�

<q
X/C)cdh) // H p

cdh(X, (0D(q))cdh)

// H
p
Zar(X,Z(q)) //

��

H
p
Zar(X, �

<q
X/C)

��

// H
p
cdh(X, (Z(q))cdh) // H

p
cdh(X, (�

<q
X/C)cdh)

It follows from Lemma 6.15 that the first and the fourth vertical arrows from the
left are isomorphisms. The second and the fifth vertical arrows are isomorphisms
by [Cortiñas et al. 2008b, Corollary 2.5]. We conclude that the middle vertical
arrow is also an isomorphism and this completes the proof. �

As a combination of Lemma 6.3, (6.14) and Lemma 6.18, we obtain a theory of
Chern classes from KH-theory to Deligne cohomology as follows.

Theorem 6.20. For every projective scheme X over C, there are Chern class ho-
momorphisms

cX,p,q : KH p(X)→ H 2q−p
D (X,Z(q))

such that for any morphism of projective C-schemes f : Y → X , one has

f ∗ ◦ cX,p,q = cY,p,q ◦ f ∗.

Proof. We only need to show that there is a natural isomorphism

αX : H
p
cdh(X, (0D(q))cdh)

∼=
−→ H p

D(X,Z(q)).

Given a morphism of projective C-schemes f : Y → X , there exists a commu-
tative diagram

Y•
f•
//

pY
��

X•
pX
��

Y
f
// X

where the vertical arrows are the simplicial hypercovering maps. In particular,
there is a commutative diagram
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H
p
Zar(X, 0D(q)) //

��

((

H
p
Zar(Y, 0D(q))

��

((

H
p
cdh(X, (0D(q))cdh) //

��

H
p
cdh(Y, (0D(q))cdh)

��

H p
D(X,Z(q)) //

((

H p
D(Y,Z(q))

((

H
p
cdh(X•, (0D(q))cdh) // H

p
cdh(Y•, (0D(q))cdh)

Using Lemma 6.18, we get a map αX : H
p
cdh(X, (0D(q))cdh)→ H p

D(X,Z(q))
such that f ∗ ◦αX = αY ◦ f ∗ for any f : Y→ X as above. Moreover, we have shown
in the proof of Lemma 6.18 that this map is an isomorphism if X ∈ SmC. Since the
source as well as the target of αX satisfy cdh-descent by Lemma 6.18 (see [Suslin
and Voevodsky 2000, Lemma 12.1]), we conclude as in the proof of Lemma 6.3
that αX is an isomorphism for every projective C-scheme X . �

7. Applications II:
Intermediate Jacobian and Abel–Jacobi map for singular schemes

Recall that a very important object in the study of the geometric part of motivic
cohomology of smooth projective varieties is an intermediate Jacobian. The in-
termediate Jacobians were defined by Griffiths and they receive the Abel–Jacobi
maps from certain subgroups of the geometric part H 2∗(X,Z(∗)) of the motivic
cohomology groups.

A special case of these intermediate Jacobians is the Albanese variety of a
smooth projective variety. The most celebrated result about the Albanese variety
in the context of algebraic cycles is that the Abel–Jacobi map from the group of
0-cycles of degree zero to the Albanese variety is an isomorphism on the torsion
subgroups. This theorem of Roitman tells us that the torsion part of the Chow
group of 0-cycles on a smooth projective variety over C can be identified with the
torsion subgroup of an abelian variety.

Roitman’s torsion theorem has had enormous applications in the theory of alge-
braic cycles and algebraic K-theory. For example, it was predicted as part of the
conjectures of Bloch and Beilinson that the Chow group of 0-cycles on smooth
affine varieties of dimension at least two should be torsion-free. This is now a
consequence of Roitman’s torsion theorem. We hope to use the Roitman’s torsion
theorem of this paper to answer the analogous question about the motivic cohomol-
ogy H 2d(X,Z(d)) of a d-dimensional singular affine variety in a future project.
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It was predicted as part of the relation between algebraic K-theory and motivic
cohomology that the Chow group of 0-cycles should be (integrally) a subgroup
of the Grothendieck group. This is also now a consequence of Roitman’s theorem.
We shall prove the analogue of this for singular schemes in the next section. Recall
that the Riemann–Roch theorem says that this inclusion of the Chow group inside
the Grothendieck group is always true rationally. For applications concerning the
relation between Chow groups and étale cohomology, see [Bloch 1979].

In this section, we apply the theory of Chern classes from KH-theory to Deligne
cohomology from Section 6 to construct the intermediate Jacobian and Abel–Jacobi
map from the geometric part of the motivic cohomology of any singular projective
variety over C. In the next section, we shall use the Abel–Jacobi map to prove
a Roitman torsion theorem for singular schemes. As another application of our
Chern classes and the Roitman torsion theorem, we shall show that the cycle map
from the geometric part of motivic cohomology to the KH groups, constructed
in Theorem 5.9, is injective for a large class of schemes.

7.1. The Abel–Jacobi map. In the rest of this section, we consider all schemes
over C and mostly deal with projective schemes. Let X be a projective scheme
over C of dimension d. Let Xsing and Xreg denote the singular (with the reduced
induced subscheme structure) and the smooth loci of X , respectively. Let r denote
the number of d-dimensional irreducible components of X . We fix a resolution of
singularities f : X̃→ X and let E = f −1(Xsing) throughout this section. The fol-
lowing is an immediate consequence of the cdh-descent for Deligne cohomology.

Lemma 7.2. For any integer q ≥ d + 1, one has Hq+d+i
D (X,Z(q))= 0 for i ≥ 1.

Proof. If X is smooth, this follows immediately from (6.19). In general, the cdh-
descent for Deligne cohomology (see Lemma 6.18 or [Barbieri-Viale et al. 1996,
Variant 3.2]) implies that there is an exact sequence

Hq+d+i−1
D (E,Z(q))→ Hq+d+i

D (X,Z(q))

→ Hq+d+i
D (X̃ ,Z(q))⊕ Hq+d+i

D (Xsing,Z(q)).

We conclude the proof by using this exact sequence and induction on dim(X). �

It follows from the definition of the Deligne cohomology that there is a natu-
ral map of complexes 0D(q)|X → Z(q)|X (see (6.19)) and in particular, there is
a natural map H p

D(X,Z(q))
κX
−→ H p

an(X,Z(q)). For any integer 0 ≤ q ≤ d, the
intermediate Jacobian J q(X) is defined so that we have an exact sequence

0→ J q(X)→ H 2q
D (X,Z(q))

κX
−→ H 2q

an (X,Z(q)).
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It follows from Theorem 6.20 that there is a commutative diagram

KH0(X)
cX,d,0

//

f ∗
��

H 2d
D (X,Z(d))

κX
//

f ∗
��

H 2d
an (X,Z(d))

f ∗
��

KH0(X̃)
cX,d,0

// H 2d
D (X̃ ,Z(d))

κX̃
// H 2d

an (X̃ ,Z(d))

(7.3)

It follows from (6.19) that κX̃ is surjective. The cdh-descent for the Deligne
cohomology and Lemma 7.2 together imply that the middle vertical arrow in (7.3)
is surjective. The cdh-excision property of singular cohomology (see [Deligne
1974, 8.3.10]) yields an exact sequence

H 2d−1
an (E,Z(d))→ H 2d

an (X,Z(d))

→ H 2d
an (X̃ ,Z(d))⊕ H 2d

an (Xsing,Z(d))→ H 2d+1
an (E,Z(d)).

Since Xsing and E are projective schemes of dimension at most d − 1, it follows
that the right vertical arrow in (7.3) is an isomorphism. We conclude that there is
a short exact sequence

0→ J d(X)→ H 2d
D (X,Z(d))

κX
−→ H 2d

an (X,Z(d))→ 0. (7.4)

A similar Mayer–Vietoris property of the motivic cohomology yields an exact
sequence

H 2d−1(E,Z(d))→ H 2d(X,Z(d))

→ H 2d(X̃ ,Z(d))⊕ H 2d(Xsing,Z(d))→ H 2d+1(E,Z(d)).

It follows from Theorem 5.1 that H 2d(Xsing,Z(d)) = H 2d+1(E,Z(d)) = 0. In
particular, there exists a short exact sequence

0→
H 2d−1(E,Z(d))

H 2d−1(X̃ ,Z(d))+ H 2d−1(Xsing,Z(d))

→ H 2d(X,Z(d))→ H 2d(X̃ ,Z(d))→ 0. (7.5)

Since the map H 2d(X̃ ,Z(d)) ∼= CHd(X̃)→ H 2d
an (X̃ ,Z(d)) is the degree map,

which is surjective, we deduce that the “degree” map H 2d(X,Z(d))→H 2d
an (X,Z(d))

is also surjective. We let Ad(X) denote the kernel of this degree map.
It follows from Theorem 6.20 that there is a Chern class map (take p = 0)

cX,q : KH0(X)→ H 2q
D (X,Z(q)). Theorem 5.9 says that the spectral sequence (4.28)

induces a cycle class map cycX,0 : H
2d(X,Z(d))→ KH0(X). Composing the two

maps, we get a cycle class map from motivic to Deligne cohomology

c̃d
X : H

2d(X,Z(d))→ H 2q
D (X,Z(q)) (7.6)
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and a commutative diagram of short exact sequences:

0 // Ad(X)

AJd
X
��

// H 2d(X,Z(d)) //

c̃d
X��

H 2d
an (X,Z(d)) // 0

0 // J d(X) // H 2q
D (X,Z(q)) // H 2d

an (X,Z(d)) // 0

(7.7)

It is known that J d(X) is a semiabelian variety whose abelian variety quotient is
the classical Albanese variety of X̃ ; see [Biswas and Srinivas 1999, Theorem 1.1]
or [Barbieri-Viale and Srinivas 2001]. The induced map AJd

X : Ad(X)→ J d(X) is
called the Abel–Jacobi map for the singular scheme X . We shall prove our main
result about this Abel–Jacobi map in the next section. Here, we recall the following
description of J d(X) in terms of 1-motives. Recall from [Barbieri-Viale and Kahn
2016, §12.12] that every projective scheme X of dimension d over C has a 1-motive
Alb+(X) associated to it. This is called the cohomological Albanese 1-motive of X .
This is a generalization of the Albanese variety of smooth projective schemes.

Theorem 7.8 [Barbieri-Viale and Srinivas 2001, Corollary 3.3.2]. For a projective
scheme X of dimension d over C, there is a canonical isomorphism

J d(X)∼= Alb+(X).

7.9. Levine–Weibel Chow group and motivic cohomology. In order to prove our
main theorem of this section, we need to compare the motivic cohomology of
singular schemes with another “motivic cohomology”, called the (cohomological)
Chow-group of 0-cycles, introduced by Levine and Weibel [1985]. We assume
throughout our discussion that X is a reduced projective scheme of dimension d
over C. However, we remark that the following definition of the Chow group of
0-cycles makes sense over any ground field. Let Z0(X) denote the free abelian
group on the closed points of Xreg.

Definition 7.10. Let C be a pure dimension one reduced scheme in SchC. We say
that a pair (C, Z) is a good curve relative to X if there exists a finite morphism
ν : C→ X and a closed proper subscheme Z ( C such that the following hold.

(1) No component of C is contained in Z .

(2) ν−1(Xsing)∪Csing ⊆ Z .

(3) ν is a local complete intersection morphism at every point x ∈ C such that
ν(x) ∈ Xsing.

Let (C, Z) be a good curve relative to X and let {η1, . . . , ηr } be the set of generic
points of C . Let OC,Z denote the semilocal ring of C at S = Z ∪ {η1, . . . , ηr }. Let
C(C) denote the ring of total quotients of C and write O×C,Z for the group of units



THE SLICE SPECTRAL SEQUENCE FOR SINGULAR SCHEMES 699

in OC,Z . Notice that OC,Z coincides with k(C) if |Z | = ∅. As C is Cohen–
Macaulay, O×C,Z is the subgroup of k(C)× consisting of those f which are regular
and invertible in the local rings OC,x for every x ∈ Z .

Given any f ∈ O×C,Z ↪→ C(C)×, we denote by div( f ) the divisor of zeros
and poles of f on C , which is defined as follows. If C1, . . . ,Cr are the irre-
ducible components of C , we set div( f ) to be the 0-cycle

∑r
i=1 div( fi ), where

( f1, . . . , fr ) = θ(C,Z)( f ) and div( fi ) is the usual divisor of a rational function
on an integral curve in the sense of [Fulton 1998]. Let Z0(C, Z) denote the free
abelian group on the closed points of C \ Z . As f is an invertible regular function
on C along Z , div( f ) ∈ Z0(C, Z).

By definition, given any good curve (C, Z) relative to X , we have a pushforward
map Z0(C, Z)

ν∗
−→ Z0(X). We write R0(C, Z , X) for the subgroup of Z0(X) gener-

ated by the set {ν∗(div( f )) | f ∈O×C,Z }. Let RBK
0 (X) denote the subgroup of Z0(X)

generated by the image of the map Z0(C, Z , X)→Z0(X), where Z0(C, Z , X) runs
through all good curves. We let CHBK

0 (X)= Z0(X)/RBK
0 (X).

If we let RLW
0 (X) denote the subgroup of Z0(X) generated by the divisors of

rational functions on good curves as above, where we further assume that the map
ν :C→ X is a closed immersion, then the resulting quotient group Z0(X)/RLW

0 (X)
is denoted by CHLW

0 (X). There is a canonical surjection CHLW
0 (X)� CHBK

0 (X).
However, we can say more about this map in the present context. This comparison
will be an essential ingredient in the proof of Theorem 8.4.

Theorem 7.11. For a projective scheme X over C, the map CHLW
0 (X)�CHBK

0 (X)
is an isomorphism.

Proof. By [Binda and Krishna 2018, Lemma 3.13], there are cycle class maps
CHLW

0 (X) � CHBK
0 (X) → K0(X), and one knows from [Levine 1987, Corol-

lary 2.7] that the kernel of the composite map is (d − 1)!-torsion. It follows that
Ker(CHLW

0 (X)→ CHBK
0 (X)) is torsion. In particular, it lies in CHLW

0 (X)deg 0.
On the other hand, it follows from [Binda and Krishna 2018, Proposition 9.7]

that the Abel–Jacobi map CHLW
0 (X)deg 0→ J d(X) (see [Biswas and Srinivas 1999,

Theorem 1.1]) factors through CHLW
0 (X)deg 0 � CHBK

0 (X)deg 0→ J d(X). More-
over, it follows from [Biswas and Srinivas 1999, Theorem 1.1] that the composite
map is an isomorphism on the torsion subgroups. In particular,

Ker(CHLW
0 (X)deg 0 � CHBK

0 (X)deg 0)

is torsion-free. It must therefore be zero. �

In the rest of this text, we identify the above two Chow groups for projective
schemes over C and write them as CHd(X). There is a degree map

degX : CHd(X)→ H 2d
an (X,Z(d))∼= Zr .
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Let CHd(X)deg 0 denote the kernel of this degree map. In order to obtain ap-
plications of the above Abel–Jacobi map, we connect CHd(X) with the motivic
cohomology as follows.

Lemma 7.12. There is a canonical map γX : CHd(X) → H 2d(X,Z(d)) which
restricts to a map γX : CHd(X)deg 0→ Ad(X).

Proof. We let U denote the smooth locus of X and let x ∈U be a closed point. The
excision for the local cohomology with support in a closed subscheme tells us that
the map

H0
{x},cdh(X,C∗zequi(A

d
C, 0)cdh)→ H0

{x},cdh(U,C∗zequi(A
d
C, 0)cdh)

is an isomorphism. On the other hand, the purity theorem for the motivic cohomol-
ogy of smooth schemes and the isomorphism between the motivic cohomology and
higher Chow groups [Voevodsky 2002a] imply that the map

H0
{x},cdh(U,C∗zequi(A

d
C, 0)cdh)→ H0

cdh(U,C∗zequi(A
d
C, 0)cdh)

is same as the map of the Chow groups Z ∼= CH0({x})→ CH0(U ). In particular,
we obtain a map

γx : Z→ H0
{x},cdh(X,C∗zequi(A

d
C, 0)cdh)

→ H0
cdh(X,C∗zequi(A

d
C, 0)cdh)= H 2d(X,Z(d)).

We let γX ([x]) be the image of 1 ∈ Z under this map. This yields a homomorphism
γX : Z0(X)→ H 2d(X,Z(d)). We now show that this map kills R0(X).

We first assume that X is a reduced curve. In this case, an easy application of
the spectral sequence of Theorem 4.27 and the vanishing result of Theorem 5.1
shows that there is a short exact sequence

0→ H 2(X,Z(1))→ KH0(X)→ H 0(X,Z(0))→ 0. (7.13)

Using H 0(X,Z(0))
∼=
−→ H 0

an(X,Z) and the natural map K∗(X)→ KH∗(X), we
have a commutative diagram of the short exact sequences

0 // Pic(X) // K0(X) //

��

H 0
an(X,Z)

��

// 0

0 // H 2(X,Z(1)) // KH0(X) // H 0
an(X,Z) // 0

(7.14)

It follows from [Binda and Krishna 2018, Lemma 3.11] that the map Z0(X)→K0(X)
given by cycX ([x])= [O{x}] ∈ K0(X) defines an isomorphism CH1(X)

∼=
−→ Pic(X).

Note that x ∈ U and hence the class [O{x}] in K0(X) makes sense. We conclude
from this isomorphism and (7.14) that the composite map Z0(X)→K0(X)→KH0(X)
has image in H 2(X,Z(1)) and it factors through CH1(X).
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We now assume d ≥ 2 and ν : (C, Z)→ X be a good curve and let f ∈O×C,Z . We
need to show that γX (ν∗(div( f )))= 0. By [Binda and Krishna 2018, Lemma 3.4],
we can assume that ν is an lci morphism. In particular, there is a functorial push-
forward map ν∗ : H 2(C,Z(1))→ H 2d(X,Z(d)) by Corollary 3.6 and [Navarro
2018, Definition 2.32, Theorem 2.33]. We thus have a commutative diagram

Z0(C, Z)

γC

,,

∼=

//

ν∗

��

⊕
x /∈Z H 0({x},Z(0)) //

ν∗
��

H 2(C,Z(1))

ν∗
��

Z0(X)
∼=
//

γX

22

⊕
x /∈Xsing

H 0({x},Z(0)) // H 2d(X,Z(d))

(7.15)

The two horizontal arrows on the right are the pushforward maps on the motivic
cohomology since the inclusion {x} ↪→ X is an lci morphism for every x /∈ Xsing. We
have shown that γC(div( f ))= 0 and hence γX (ν∗(div( f )))= ν∗(γC(div( f )))= 0.
Furthermore, the composite

Z0(X)→ H 2d(X,Z(d))→ H 2d(X̃ ,Z(d))→ H 2d
an (X̃ ,Z(d))∼= Zr

is the degree map. This shows that γX (Z0(X)deg 0)⊆ Ad(X). �

8. Applications III: Roitman torsion and cycle class map

We now consider a projective scheme X of dimension d over C. Using the map
γX : CHd(X)→ H 2d(X,Z(d)) and the Abel–Jacobi map AJd

X of (7.7), we now
prove our main result on the Abel–Jacobi map and Roitman torsion for singular
schemes. We shall use the following lemma in the proof.

Lemma 8.1. Let X be a reduced projective scheme of dimension d over C. There
is a cycle class map cycQ

X,0 : CHd(X)→ K0(X) and a commutative diagram

CHd(X)
cycQ

X,0
//

γX
��

K0(X)

��

H 2d(X,Z(d))
cycX,0

// KH0(X)

(8.2)

Proof. Every closed point x ∈U defines the natural map

Z= K0({x})= K {x}0 (X)→ K0(X)

and hence a class [O{x}] ∈ K0(X). This defines a map cycQ
X,0 : Z0(X)→ K0(X)

and it factors through CHd(X) by [Levine and Weibel 1985, Proposition 2.1]. Since
CHd(X) is generated by the closed points in U , it suffices to show that for every
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closed point x ∈U , the diagram

K {x}0 (X) // K0(X)

��

K H {x}0 (X) // KH0(X)

(8.3)

commutes. But this is clear from the functorial properties of the map of presheaves
K ( – )→ KH( – ) on SchC. �

We can now prove:

Theorem 8.4. Let X be a projective scheme over C of dimension d. Assume that
either d ≤ 2 or X is regular in codimension one. Then there is a semiabelian
variety J d(X) and an Abel–Jacobi map AJd

X : Ad(X)→ J d(X) which is surjective
and whose restriction to the torsion subgroups AJd

X : Ad(X)tors→ J d(X)tors is an
isomorphism.

Proof. We can assume that X is reduced. We first consider the case when X has
dimension at most two but has arbitrary singularity. In this case, we only need
to prove that AJd

X is surjective and its restriction to the torsion subgroups is an
isomorphism.

The map AJd
X is induced by the Chern class map cX,d,0 :KH0(X)→H 2d

D (X,Z(d))
and the composite map K0(X) → KH0(X) → H 2d

D (X,Z(d)) is Gillet’s Chern
class map C Q

X,d,0 of (6.14). Composing these maps with the cycle class maps and
using Lemma 8.1, we get a commutative diagram

CHd(X)deg 0
γX
//

AJd,Q
X

''

Ad(X)

AJd
X

��

J d(X)

(8.5)

The map AJd,Q
X is surjective and is an isomorphism on the torsion subgroups by

[Barbieri-Viale et al. 1996, Main Theorem]. It follows that AJd
X is also surjective.

To prove that it is an isomorphism on the torsion subgroups, we apply Theorem 7.8
and [Barbieri-Viale and Kahn 2016, Corollary 13.7.5]. It follows from these results
that there is indeed an isomorphism φd

X : J d(X)tor
∼=
−→ Ad(X)tor. Since J d(X) is a

semiabelian variety, we know that for any given integer n ≥ 1, the n-torsion sub-
group n J d(X) is finite. It follows that n Ad(X) and n J d(X) are finite abelian groups
of the same order. We conclude that the Abel–Jacobi map AJd

X : Ad(X)→ J d(X)
induces the map AJd

X : n Ad(X)→ n J d(X) between finite abelian groups which have
same order. Therefore, this map is an isomorphism if and only if it is a surjection.
But this is true by (8.5) because we have seen above that the composite map AJd,Q

X
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is an isomorphism between the n-torsion subgroups. Since n ≥ 1 is arbitrary in
this argument, we conclude the proof of the theorem.

We now consider the case when X has arbitrary dimension but is regular in
codimension one. Let f : X̃→ X be a resolution of singularities of X . It is then
known that J d(X)∼= J d(X̃)= Alb(X̃); see [Mallick 2009, Remark 2, p. 505]. We
have a commutative diagram

CHd(X)deg 0
γX

//

AJLW
X ((

// Ad(X)
f ∗
// //

AJd
X

��

Ad(X̃)

AJd
X̃����

J d(X)
∼=
// J d(X̃)

(8.6)

Since the lower horizontal arrow in this diagram is an isomorphism, it uniquely
defines the Abel–Jacobi map AJd

X . The map f ∗ ◦ γX is known to be surjective by
the moving lemma for 0-cycles on smooth schemes. In particular, f ∗ is surjective.
The map AJd

X̃
is also known to be surjective. It follows that AJd

X is surjective.
To prove that this is an isomorphism on the torsion subgroups, we can argue

exactly as in the first case of the theorem. This reduces us to showing that AJd
X is

surjective on the n-torsion subgroups for every given integer n ≥ 1. But this follows
because AJLW

X (and also AJd
X̃

) is an isomorphism on the n-torsion subgroups by
[Biswas and Srinivas 1999, Theorem 1.1], finishing the proof of the theorem. �

Remark 8.7. For arbitrary d ≥ 1, the map AJd,Q
X in (8.5) is known to be an

isomorphism only up to multiplication by (d − 1)!. This prevents us from ex-
tending Theorem 8.4 to higher dimensions if X has singularities in codimension
one. We also warn the reader that unlike AJd,Q

X in (8.5), the map AJLW
X in (8.6) is

not defined via the Chern class map on K0(X). These maps coincide only up to
multiplication by (d − 1)!.

8.8. Injectivity of the cycle class map. Like the case of smooth schemes, the Roit-
man torsion theorem for singular schemes has many potential applications. Here,
we use this to prove our next main result of this section. It was shown by Levine
[1987, Theorem 3.2] that for a smooth projective scheme X of dimension d over C,
the cycle class map H 2d(X,Z(d))→ K0(X) (see (5.11)) is injective. We generalize
this to singular schemes as follows.

Theorem 8.9. Let X be a projective scheme of dimension d over C. Assume
that either d ≤ 2 or X is regular in codimension one. Then the cycle class map
cyc0 : H

2d(X,Z(d))→ KH0(X) is injective.

Proof. We note that cyc0 : H 2d(X,Z(d))→ KH0(X) is induced by the spectral
sequences (4.28) and (5.11), both of which degenerate with rational coefficients.
In particular, Ker(cyc0) is a torsion group.
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On the other hand, if dim(X)≤ 2, (7.7) and Theorem 8.4 tell us that the compos-
ite map c̃d

X : H
2d(X,Z(d)) cyc0

−−→ KH0(X)
cX,0,d
−−−→ H 2d

D (X,Z(d)) is an isomorphism
on the torsion subgroups. We must therefore have Ker(cyc0)= 0.

If X is regular in codimension one, we let X̃→ X be a resolution of singularities
and consider the commutative diagram

H 2d(X,Z(d))
cycX,0

//

f ∗
��

KH0(X)

f ∗
��

H 2d(X̃ ,Z(d))
cycX̃ ,0

// K0(X̃)

We have shown in the proof of Theorem 8.4 that the left vertical arrow is an
isomorphism on the torsion subgroups. The bottom horizontal arrow is injective
by [Levine 1987, Theorem 3.2]. It follows that cycX,0 is injective on the torsion
subgroup. We must therefore have Ker(cycX,0)= 0. This finishes the proof. �
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