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tangent spaces to Hilbert schemes

Sen Yang

Using K-theory, we construct a map π : TY Hilbp(X)→ H p
y (�

p−1
X/Q) from the tan-

gent space to the Hilbert scheme at a point Y to the local cohomology group. We
use this map π to answer (after slight modification) a question by Mark Green
and Phillip Griffiths on constructing a map from the tangent space TY Hilbp(X) to
the Hilbert scheme at a point Y to the tangent space to the cycle group TZ p(X).

1. Introduction

Let X be a smooth projective variety over a field k of characteristic 0 and let Y ⊂ X
be a subvariety of codimension p. Considering Y as an element of Hilbp(X), it
is well known that the Zariski tangent space TY Hilbp(X) can be identified with
H 0(Y,NY/X ), where NY/X is the normal sheaf.

The element Y also defines an element of the cycle group Z p(X). We are
interested in defining the tangent space TZ p(X) to the cycle group Z p(X). In
[Green and Griffiths 2005], Mark Green and Phillip Griffiths define TZ p(X) for
p = 1 (divisors) and p = dim(X) (0-cycles) and leave the general case as an
open question. Much of their theory was extended by Benjamin Dribus, Jerome
W. Hoffman and the author in [Dribus et al. 2018; Yang 2016a]. In [Yang 2016a],
we define TZ p(X) for any integer p satisfying 1 6 p 6 dim(X), generalizing
Green and Griffiths’ definitions. We recall the following fact from [Yang 2016a]
for our purpose, and refer to [Green and Griffiths 2005; Yang 2016a] for definition
of TZ p(X).

Theorem 1.1 [Yang 2016a, Theorem 2.8]. For X a smooth projective variety over
a field k of characteristic 0 and for any integer p > 1, the tangent space TZ p(X)
is identified with Ker(∂ p,−p

1 ):

TZ p(X)∼= Ker(∂ p,−p
1 ),
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where ∂ p,−p
1 is the differential of the Cousin complex [Hartshorne 1966] of �p−1

X/Q
in position p:

0→�
p−1
k(X)/Q→ · · · →

⊕
y∈X (p)

H p
y (�

p−1
X/Q)

∂
p,−p
1
−−−→

⊕
x∈X (p+1)

H p+1
x (�

p−1
X/Q)→ · · · .

We want to study the relation between TY Hilbp(X) and TZ p(X). The following
question is suggested in [Green and Griffiths 2005, pp. 18 and 87–89].

Question 1.2 [Green and Griffiths 2005]. For X a smooth projective variety over
a field k of characteristic 0 and for any integer p > 1, is it possible to define a
map from the tangent space TY Hilbp(X) to the Hilbert scheme at a point Y to the
tangent space to the cycle group TZ p(X)?

For p = dim(X), this has been answered affirmatively in [Green and Griffiths
2005, Section 7.2].

Theorem 1.3 [Green and Griffiths 2005]. For p = d := dim(X), there exists a map

TY Hilbd(X)→ TZd(X)

from the tangent space to the Hilbert scheme at a point Y to the tangent space to
the cycle group.

The main result of this short note is to construct a map

π : TY Hilbp(X)→ H p
y (�

p−1
X/Q)

(see Definition 4.1), and use this map to study the above Question 1.2.
In Example 4.4, we show, for a general subvariety Y ⊂ X of codimension p

and Y ′ ∈ TY Hilbp(X), that π(Y ′) may not lie in TZ p(X) (the kernel of ∂ p,−p
1 ).

However, we show in Theorem 4.6 that there exist Z ⊂ X of codimension p and
Z ′ ∈ TZ Hilbp(X) such that π(Y ′)+π(Z ′) ∈ TZ p(X).

As an application, we show how to find Milnor K-theoretic cycles in Theorem 4.7.
In [Yang 2016b], we will apply these techniques to eliminate obstructions to de-
forming curves on a threefold.

Notations and conventions.

(1) K-theory used in this note is Thomason–Trobaugh nonconnective K-theory, if
not stated otherwise.

(2) For any abelian group M , MQ denotes the image of M in M ⊗Z Q.

(3) X [ε] denote the first-order trivial deformation of X , i.e.,

X [ε] = X ×k Spec(k[ε]/(ε2)),

where k[ε]/(ε2) is the ring of dual numbers.
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2. K-theory and tangent spaces to Hilbert schemes

For X a smooth projective variety over a field k of characteristic 0 and Y ⊂ X
a subvariety of codimension p, let i : Y → X be the inclusion. Then i∗OY is a
coherent OX -module and can be resolved by a bounded complex of vector bundles
on X . Let Y

′

be a first-order deformation of Y , that is, Y
′

⊂ X [ε] such that Y
′

is
flat over Spec(k[ε]/(ε2)) and Y

′

⊗k[ε]/(ε2) k ∼= Y . Then i∗OY ′ can be resolved by a
bounded complex of vector bundles on X [ε], where i : Y

′

→ X [ε].
Let Dperf(X [ε]) denote the derived category of perfect complexes of OX [ε]-

modules, and let L(i)(X [ε])⊂ Dperf(X [ε]) be defined as

L(i)(X [ε]) := {E ∈ Dperf(X [ε]) | codimKrull(supph(E))≥−i},

where the closed subset supph(E)⊂ X is the support of the total homology of the
perfect complex E .

The resolution of i∗OY ′ , which is a perfect complex of OX [ε]-modules supported
on Y , defines an element of the Verdier quotient L(−p)(X [ε])/L(−p−1)(X [ε]), de-
noted [i∗OY ′].

In general, the length of the perfect complex [i∗OY ′] may not be equal to p.
Since Y ⊂ X is of codimension p, we expect the perfect complex [i∗OY ′] to
be of length p. To achieve this, instead of considering [i∗OY ′] as an element
of the Verdier quotient L(−p)(X [ε])/L(−p−1)(X [ε]), we consider its image in the
idempotent completion (L(−p)(X [ε])/L(−p−1)(X [ε]))#, denoted [i∗OY ′]

#, where
the idempotent completion is in the sense of [Balmer and Schlichting 2001]. We
have the following result:

Theorem 2.1 [Balmer 2007]. For each i ∈ Z, localization induces an equivalence

(L(i)(X [ε])/L(i−1)(X [ε]))# '
⊔

x[ε]∈X [ε](−i)

Dperf
x[ε](X [ε])

between the idempotent completion of L(i)(X [ε])/L(i−1)(X [ε]) and the coproduct
over x[ε] ∈ X [ε](−i) of the derived category of perfect complexes of OX [ε],x[ε]-
modules with homology supported on the closed point x[ε] ∈ Spec(OX [ε],x[ε]).
Consequently, one has

K0
(
(L(i)(X [ε])/L(i−1)(X [ε]))#

)
'

⊕
x[ε]∈X [ε](−i)

K0(D
perf
x[ε](X [ε])).

Let y be the generic point of Y and let IY be the ideal sheaf of Y . Then there
exists the short exact sequence

0→ IY → OX → i∗OY → 0,
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whose localization at y is the short exact sequence

0→ (IY )y→ OX,y→ (i∗OY )y→ 0.

We have OY,y = OX,y/(IY )y . Since OY,y is a field, (IY )y is the maximal ideal
of the regular local ring (of dimension p) OX,y . So the maximal ideal (IY )y is
generated by a regular sequence f1, . . . , fp of length p.

Let IY ′ be the ideal sheaf of Y ′, so IY ′/(ε)IY ′ = IY because of flatness. So we
have (IY ′)y/(ε)(IY ′)y = (IY )y . Lift f1, . . . , fp to f1+εg1, . . . , fp+εgp in (IY ′)y ,
where g1, . . . , gp ∈ OX,y . Then f1+ εg1, . . . , fp + εgp generates (IY ′)y because
of Nakayama’s lemma:

(IY ′)y = ( f1+ εg1, . . . , fp + εgp).

Moreover, f1 + εg1, . . . , fp + εgp is a regular sequence, which can be checked
directly.

We see that Y is generically defined by a regular sequence f1, . . . , fp of length p,
where f1, . . . , fp ∈ OX,y . Moreover, Y ′ is generically given by lifting f1, . . . , fp to
f1+εg1, . . . , fp+εgp, where g1, . . . , gp ∈OX,y . Let F•( f1+εg1, . . . , fp+εgp) de-
note the Koszul complex associated to the regular sequence f1+εg1, . . . , fp+εgp,
which is a resolution of OX,y[ε]/( f1+ εg1, . . . , fp + εgp):

0→ Fp
Ap
−→ Fp−1

Ap−1
−−−→ · · ·

A2
−→ F1

A1
−→ F0→ 0,

where each Fi =
∧i
(OX,y[ε])

⊕p and Ai :
∧i
(OX,y[ε])

⊕p
→
∧i−1

(OX,y[ε])
⊕p are

defined as usual.
Under the equivalence in Theorem 2.1, the localization at the generic point y

sends [i∗OY ′]
# to the Koszul complex F•( f1+ εg1, . . . , fp + εgp):

[i∗OY ′]
#
→ F•( f1+ εg1, . . . , fp + εgp).

Milnor K-groups with support are rationally defined in terms of eigenspaces of
Adams operations in [Yang 2016c] as follows:

Definition 2.2 [Yang 2016c, Definition 3.2]. Let X be a finite equidimensional
noetherian scheme and x ∈ X ( j). For m ∈ Z, the Milnor K-group with support
K M

m (OX,x on x) is rationally defined to be

K M
m (OX,x on x) := K (m+ j)

m (OX,x on x)Q,

where K (m+ j)
m is the eigenspace of ψk

= km+ j and ψk are the Adams operations.

Theorem 2.3 [Gillet and Soulé 1987, Proposition 4.12]. The Adams operations
ψk defined on perfect complexes (defined in [Gillet and Soulé 1987]) satisfy

ψk(F•( f1+ εg1, . . . , fp + εgp))= k p F•( f1+ εg1, . . . , fp + εgp).
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Hence, F•( f1+ εg1, . . . , fp + εgp) is of eigenweight p and can be considered
as an element of K (p)

0 (OX,y[ε] on y[ε])Q:

F•( f1+ εg1, . . . , fp + εgp) ∈ K (p)
0 (OX,y[ε] on y[ε])Q = K M

0 (OX,y[ε] on y[ε]).

Definition 2.4. We define a map µ : TY Hilbp(X)→ K M
0 (OX,y[ε] on y[ε]) by

µ : Y ′ 7→ F•( f1+ εg1, . . . , fp + εgp).

3. Chern character

For any integer m, let K (i)
m (OX,y[ε] on y[ε], ε)Q denote the weight i eigenspace of

the relative K-group, that is, the kernel of the natural projection

K (i)
m (OX,y[ε] on y[ε])Q

ε=0
−−→ K (i)

m (OX,y on y)Q.

Recall that we have proved the following isomorphisms in [Dribus et al. 2018;
Yang 2016c]:

Theorem 3.1 [Dribus et al. 2018, Corollary 9.5; Yang 2016c, Corollary 3.11]. Let
X be a smooth projective variety over a field k of characteristic 0 and let y ∈ X (p).
The Chern character ( from K-theory to negative cyclic homology) induces isomor-
phisms

K (i)
m (OX,y[ε] on y[ε], ε)Q ∼= H p

y
(
�
•,(i)
X/Q

)
between relative K-groups and local cohomology groups, where{

�
•,(i)
X/Q =�

2i−(m+p)−1
X/Q if 1

2(m+ p) < i ≤ m+ p,

�
•,(i)
X/Q = 0 else.

The main tool for proving these isomorphisms is the space-level versions of
Goodwillie’s and Cathelineau’s isomorphisms, proved in [Cortiñas et al. 2009, Ap-
pendix B].

Let K M
m (OX,y[ε] on y[ε], ε) denote the relative K-group, that is, the kernel of

the natural projection

K M
m (OX,y[ε] on y[ε])

ε=0
−−→ K M

m (OX,y on y).

In other words, K M
m (OX,y[ε] on y[ε], ε) is K (m+p)

m (OX,y[ε] on y[ε], ε)Q. In partic-
ular, by taking i = p and m = 0 in Theorem 3.1, we obtain the following formula:

Corollary 3.2. K M
0 (OX,y[ε] on y[ε], ε)

∼=
−→ H p

y (�
p−1
X/Q).

Definition 3.3. Let X be a smooth projective variety over a field k of characteristic
0 and let y ∈ X (p). There exists a natural surjective map

Ch : K M
0 (OX,y[ε] on y[ε])→ H p

y (�
p−1
X/Q),
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which is defined to be the composition of the natural projection

K M
0 (OX,y[ε] on y[ε])→ K M

0 (OX,y[ε] on y[ε], ε)

and the isomorphism

K M
0 (OX,y[ε] on y[ε], ε)

∼=
−→ H p

y (�
p−1
X/Q).

Now we recall a beautiful construction of Angéniol and Lejeune-Jalabert, which
describes the map

Ch : K M
0 (OX,y[ε] on y[ε])→ H p

y (�
p−1
X/Q)

in Definition 3.3.
An element M ∈ K M

0 (OX,y[ε] on y[ε])⊂ K0(OX,y[ε] on y[ε])Q is represented
by a strict perfect complex L• supported at y[ε]:

0→ Fn
Mn
−−→ Fn−1

Mn−1
−−−→ · · ·

M2
−−→ F1

M1
−−→ F0→ 0,

where each Fi = OX,y[ε]
ri and the Mi are matrices with entries in OX,y[ε].

Definition 3.4 [Angéniol and Lejeune-Jalabert 1989, p. 24]. The local fundamen-
tal class attached to this perfect complex is defined to be the collection

[L•]loc =

{ 1
p!

dMi ◦ dMi+1 ◦ · · · ◦ dMi+p−1

}
, i = 0, 1, . . . ,

where d = dQ and each dMi is the matrix of absolute differentials. In other words,

dMi ∈ Hom
(
Fi , Fi−1⊗�

1
OX,y [ε]/Q

)
.

Theorem 3.5 [Angéniol and Lejeune-Jalabert 1989, Lemma 3.1.1, p. 24 and Def-
inition 3.4, p. 29]. The class [L•]loc above is a cycle in Hom

(
L•, �

p
OX,y [ε]/Q

⊗ L•
)
,

and the image of [L•]loc in H p
(
Hom

(
L•, �

p
OX,y [ε]/Q

⊗ L•
))

does not depend on the
choice of the basis of L•.

Since

H p(Hom
(
L•, �

p
OX,y [ε]/Q

⊗ L•
))
= EXT p(L•, �p

OX,y [ε]/Q
⊗ L•

)
,

the local fundamental class [L•]loc defines an element in EXT p
(
L•, �

p
OX,y [ε]/Q

⊗L•
)
:

[L•]loc ∈ EXT p(L•, �p
OX,y [ε]/Q

⊗ L•
)
.

Noting L• is supported on y (same underlying space as y[ε]), there exists the fol-
lowing trace map (see [Angéniol and Lejeune-Jalabert 1989, p. 98–99] for details):

Tr : EXT p(L•, �p
OX,y [ε]/Q

⊗ L•
)
→ H p

y (�
p
X [ε]/Q).

Definition 3.6 [Angéniol and Lejeune-Jalabert 1989, Definition 2.3.2, p. 99]. The
image of [L•]loc under the above trace map, denoted V p

L•, is called the Newton class.
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K0(OX,y[ε] on y[ε]) is the Grothendieck group of the triangulated category
Db(OX,y[ε] on y[ε]), which is the derived category of perfect complexes of OX,y[ε]-
modules with homology supported on the closed point y[ε] ∈ Spec(OX,y[ε]). Re-
call that the Grothendieck group of a triangulated category is the monoid of iso-
morphism objects modulo the submonoid formed from distinguished triangles.

Theorem 3.7 [Angéniol and Lejeune-Jalabert 1989, Proposition 4.3.1, p. 113].
The Newton class V p

L• is well-defined on K0(OX,y[ε] on y[ε]).

The truncation map
⌋
∂

∂ε

∣∣∣
ε=0
:�

p
X [ε]/Q→�

p−1
X/Q induces a map⌋

∂

∂ε

∣∣∣
ε=0
: H p

y (�
p
X [ε]/Q)→ H p

y (�
p−1
X/Q).

Lemma 3.8. The map

Ch : K M
0 (OX,y[ε] on y[ε])→ H p

y (�
p−1
X/Q)

from Definition 3.3 can be described as a composition

KM
0 (OX,y[ε] on y[ε])→EXT p(L•,�p

OX,y [ε]/Q
⊗ L•

)
→H p

y (�
p
X [ε]/Q)→H p

y (�
p−1
X/Q),

L• 7→ [L•]loc 7→ V p
L• 7→ V p

L•

⌋
∂

∂ε

∣∣∣
ε=0
.

In particular, for the Koszul complex F•( f1+εg1, . . . , fp+εgp) in Definition 2.4,
the Ch map can be described as follows. The diagram{F•( f1+ εg1, . . . , fp + εgp) −−−→ OX,y[ε]/( f1+ εg1, . . . , fp + εgp),

Fp(∼= OX,y[ε])
[F•]loc
−−−→ F0⊗�

p
OX,y [ε]/Q

(∼=�
p
OX,y [ε]/Q

),

where [F•]loc is the local fundamental class attached to F•( f1+ εg1, . . . , fp+ εgp),
gives an element in Extp

OX,y [ε]
(OX,y[ε]/( f1+ εg1, . . . , fp + εgp),�

p
X [ε]/Q). This,

moreover, gives an element in H p
y (�

p
X [ε]/Q), denoted V p

F• .
We use F•( f1, . . . , fp) to denote the Koszul complex associated to the regular

sequence f1, . . . , fp, which is a resolution of OX,y/( f1, . . . , fp). The truncation
of V p

F• in ε produces an element in H p
y (�

p−1
X/Q), which can be represented by the

diagram 
F•( f1, . . . , fp) −−−→ OX,y/( f1, . . . , fp),

Fp(∼= OX,y)
[F•]loc

⌋
∂
∂ε

∣∣
ε=0

−−−−−−−−→ F0⊗�
p−1
OX,y/Q

(
∼=�

p−1
OX,y/Q

)
.

For simplicity, assuming g2 = · · · = gp = 0, we see that

[F•]loc

⌋
∂

∂ε

∣∣∣
ε=0
= g1df2 ∧ · · · ∧ dfp
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and the truncation of V p
F• in ε is represented by the diagram{F•( f1, . . . , fp) −−−→ OX,y/( f1, . . . , fp),

Fp(∼= OX,y)
g1df2∧···∧dfp
−−−−−−−→ F0⊗�

p−1
OX,y/Q

(
∼=�

p−1
OX,y/Q

)
.

Further concrete examples can be found in [Green and Griffiths 2005, Chapter 7,
p. 90–91].

4. The map π

Definition 4.1. We define a map from TY Hilbp(X) to H p
y (�

p−1
X/Q) by composing

Ch in Definition 3.3 with µ in Definition 2.4:

π : TY Hilbp(X)
µ
−→ K M

0 (OX,y[ε] on y[ε])
Ch
−→ H p

y (�
p−1
X/Q).

Recall that the Cousin complex of �p−1
X/Q is of the form

0→�
p−1
k(X)/Q→ · · · →

⊕
y∈X (p)

H p
y (�

p−1
X/Q)

∂
p,−p
1
−−−→

⊕
x∈X (p+1)

H p+1
x (�

p−1
X/Q)→ · · ·

and the tangent space TZ p(X) is identified with Ker(∂ p,−p
1 ) (see Theorem 1.1).

For p = d := dim(X), ∂d,−d
1 = 0 because of dimensional reasons. So

TZd(X)= Ker(∂d,−d
1 )=

⊕
y∈X (d)

H d
y (�

d−1
X/Q).

Corollary 4.2. For p = d := dim(X), the map π defines a map from TY Hilbd(X)
to TZd(X) and it agrees with the map by Green and Griffiths in Theorem 1.3.

We want to know, for general p, whether this map π defines a map from
TY Hilbp(X) to TZ p(X), as Green and Griffiths asked in Question 1.2.

Remark 4.3. In an email to the author, Christophe Soulé suggested considering
the image of suitable Koszul complexes under the Ch map in Definition 3.3. This
leads us to the following example, showing that π does not define a map from
TY Hilbp(X) to TZ p(X) in general. The Koszul complex technique is also used in
Theorem 4.6.

The author sincerely thanks Christophe Soulé for very helpful suggestions.

Example 4.4. For a smooth projective threefold X over a field k of characteristic 0,
let Y ⊂ X be a curve with generic point y. We assume a point x ∈ Y ⊂ X is defined
by ( f, g, h) and Y is generically defined by ( f, g). Then OX,y = (OX,x)( f,g).

We consider the infinitesimal deformation Y ′ of Y which is generically given
by ( f + ε/h, g), where 1/h ∈ OX,y = (OX,x)( f,g). Note 1/h /∈ OX,x . The Koszul
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complex of ( f + ε/h, g) is of the form

0→ (OX,x)( f,g)[ε]
(g,− f−ε/h)T
−−−−−−−→ (OX,x)

⊕2
( f,g)[ε]

( f+ε/h,g)
−−−−−−→ (OX,x)( f,g)[ε] → 0,

where ( – , – )T denotes transpose.
The image π(Y ′) ∈ H 2

y (�
1
X/Q) is represented by the diagram{

(OX,x)( f,g)→ (OX,x)
⊕2
( f,g)→ (OX,x)( f,g)→ (OX,x)( f,g)/( f, g)→ 0,

(OX,x)( f,g)
(1/h)dg
−−−−→�1

(OX,x )( f,g)/Q
.

Let F•( f, g, h) be the Koszul complex of f, g, h:

0→ OX,x → O⊕3
X,x → O⊕3

X,x → OX,x → 0.

Then ∂2,−2
1 (π(Y ′)) in H 3

x (�
1
X/Q) is represented by the diagram{F•( f, g, h) −−−→ OX,x/( f, g, h),

OX,x
1dg
−−−→ �1

OX,x/Q
,

which is not zero.

This example shows that, in general, the image of π may not lie in TZ p(X)(the
kernel of ∂ p,−p

1 ). However, we will show, in Theorem 4.6 below, that given Y ⊂ X
of codimension p and Y ′ ∈ TY Hilbp(X), there exists Z ⊂ X of codimension p and
Z ′ ∈ TZ Hilbp(X) such that π(Y ′)+π(Z ′) is a nontrivial element of TZ p(X).

To fix notation, let X be a smooth projective variety over a field k of charac-
teristic 0 and let Y ⊂ X be a subvariety of codimension p with generic point y.
Let W ⊂ Y be a subvariety of codimension 1 in Y with generic point w. One
assumes W is generically defined by f1, f2, . . . , fp, fp+1 and Y is generically
defined by f1, f2, . . . , fp. So one has OX,y = (OX,w)P , where P is the ideal
( f1, f2, . . . , fp)⊂ OX,w.

The element Y ′ is generically given by ( f1+εg1, f2+εg2, . . . , fp+εgp), where
g1, . . . , gp ∈ OX,y . We assume g2= · · · = gp = 0. Since OX,y = (OX,w)P , we write
g1 = a/b, where a, b ∈ OX,w and b /∈ P . In Theorem 4.6, we will consider the
cases of whether or not b is in the maximal ideal ( f1, f2, . . . , fp, fp+1)⊂ OX,w.

Lemma 4.5. If b /∈ ( f1, f2, . . . , fp, fp+1), then ∂ p,−p
1 (π(Y ′))= 0.

Proof. If b /∈ ( f1, f2, . . . , fp, fp+1), then b is a unit in OX,w, so g1 = a/b ∈ OX,w.
Then π(Y ′) is represented by the diagram{F•( f1, f2, . . . , fp) −−−→ (OX,w)P/( f1, f2, . . . , fp),

Fp(∼= (OX,w)P)
g1df2∧···∧dfp
−−−−−−−→ F0⊗�

p−1
(OX,w)P/Q

(∼=�
p−1
(OX,w)P/Q

).
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Here, F•( f1, f2, . . . , fp) is of the form

0→ Fp
Ap
−→ Fp−1

Ap−1
−−−→ · · ·

A2
−→ F1

A1
−→ F0,

where each Fi =
∧i
((OX,w)P)

⊕p. Since fp+1 /∈ P , f −1
p+1 exists in (OX,w)P , and

we can write

g1df2 ∧ · · · ∧ dfp =
g1 fp+1

fp+1
df2 ∧ · · · ∧ dfp.

Now ∂
p,−p
1 (π(Y ′)) is represented by the diagram{F•( f1, f2, . . . , fp, fp+1) −−−→ OX,w/( f1, f2, . . . , fp, fp+1),

Fp+1(∼= OX,w)
g1 fp+1df2∧···∧dfp
−−−−−−−−−−→ F0⊗�

p−1
OX,w/Q

(∼=�
p−1
OX,w/Q

).

The complex F•( f1, f2, . . . , fp, fp+1) is of the form

0→
∧p+1

(OX,w)
⊕p+1 Ap+1

−−−→

∧p
(OX,w)

⊕p+1
→ · · · .

Let {e1, . . . , ep+1} be a basis of (OX,w)
⊕p+1; the map Ap+1 is

e1 ∧ · · · ∧ ep+1→

p+1∑
j=1

(−1) j f j e1 ∧ · · · ∧ ê j ∧ · · · ep+1,

where ê j means to omit the j-th term.
Since fp+1 appears in Ap+1,

g1 fp+1df2 ∧ · · · ∧ dfp ≡ 0 ∈ Extp+1
OX,w

(
OX,w/( f1, . . . , fp, fp+1),�

p−1
OX,w/Q

)
and ∂ p,−p

1 (π(Y ′))= 0. �

This lemma doesn’t contradict Example 4.4, where h ∈ ( f, g, h)⊂ OX,x .

Theorem 4.6. For Y ′ ∈ TY Hilbp(X) generically defined by ( f1+ εg1, f2, . . . , fp),
where g1 = a/b ∈ OX,y = (OX,w)P , we have:

Case 1: If b /∈ ( f1, f2, . . . , fp, fp+1), then π(Y ′)∈ TZ p(X), i.e., ∂ p,−p
1 (π(Y ′))= 0.

Case 2: If b ∈ ( f1, f2, . . . , fp, fp+1), then there exist Z ⊂ X of codimension p and
Z ′ ∈ TZ Hilbp(X) with π(Y ′)+π(Z ′) ∈ TZ p(X), i.e., ∂ p,−p

1 (π(Y ′)+π(Z ′))= 0.

Proof. Case 1 is Lemma 4.5. Now we consider the case b ∈ ( f1, f2, . . . , fp, fp+1).
Since b /∈ ( f1, f2, . . . , fp), we can write b =

∑p
i=1 ai f ni

i + ap+1 f n p+1
p+1 , where ap+1

is a unit in OX,w and each n j is some integer. For simplicity, we assume each n j = 1
and ap+1 = 1.
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Since Y ′ is generically given by ( f1+εg1, f2, . . . , fp), then π(Y ′) is represented
by the following diagram (where g1 = a/b):{F•( f1, f2, . . . , fp) −−−→ (OX,w)P/( f1, f2, . . . , fp),

Fp(∼= (OX,w)P)
(a/b)df2∧···∧dfp
−−−−−−−−−→ F0⊗�

p−1
(OX,w)P/Q

(∼=�
p−1
(OX,w)P/Q

).

Here, F•( f1, f2, . . . , fp) is of the form

0→ Fp
Ap
−→ Fp−1

Ap−1
−−−→ · · ·

A2
−→ F1

A1
−→ F0,

where each Fi =
∧i
((OX,w)P)

⊕p. Let {e1, . . . , ep} be a basis of (OX,w)
⊕p; the

map Ap is

e1 ∧ · · · ∧ ep→

p∑
j=1

(−1) j f j e1 ∧ · · · ∧ ê j ∧ · · · ep,

where ê j means to omit the j-th term.
Noting

1
b
−

1
fp+1
=
−
∑p

i=1 ai fi

b fp+1

and each fi (i = 1, . . . , p) appears in Ap, the above diagram representing π(Y ′)
can be replaced by the following one:{F•( f1, f2, . . . , fp) −−−→ (OX,w)P/( f1, f2, . . . , fp),

Fp(∼= (OX,w)P)
(a/ fp+1)df2∧···∧dfp
−−−−−−−−−−−→ F0⊗�

p−1
(OX,w)P/Q

(∼=�
p−1
(OX,w)P/Q

).

Then ∂ p,−p
1 (π(Y ′)) is represented by the diagram{F•( f1, f2, . . . , fp, fp+1) −−−→ OX,w/( f1, f2, . . . , fp, fp+1),

Fp+1(∼= OX,w)
adf2∧···∧dfp
−−−−−−−→ F0⊗�

p−1
OX,w/Q

(∼=�
p−1
OX,w/Q

).

Let P ′ denote the prime ( fp+1, f2, . . . , fp)⊂ OX,w. Then P ′ defines a generic
point z ∈ X (p) and one has OX,z = (OX,w)P ′ . We define the subscheme

Z := {z}.

Let Z ′ be a first-order infinitesimal deformation of Z , which is generically given
by ( fp+1+ εa/ f1, f2, . . . , fp). Then π(Z ′) is represented by the diagram{F•( fp+1, f2, . . . , fp) −−−→ (OX,w)P ′/( fp+1, f2, . . . , fp),

Fp(∼= (OX,w)P ′)
(a/ f1)df2∧···∧dfp
−−−−−−−−−−→ F0⊗�

p−1
(OX,w)P ′/Q

(∼=�
p−1
(OX,w)P ′/Q

),

and ∂ p,−p
1 (π(Z ′)) is represented by the diagram
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Fp+1(∼= OX,w)
adf2∧···∧dfp
−−−−−−−→ F0⊗�

p−1
OX,w/Q

(∼=�
p−1
OX,w/Q

).

Here, F•( f1, f2, . . . , fp, fp+1) and F•( fp+1, f2, . . . , fp, f1) are Koszul resolutions
of OX,w/( f1, f2, . . . , fp, fp+1) and OX,w/( fp+1, f2, . . . , fp, f1), respectively.

These Koszul complexes F•( f1, f2, . . . , fp, fp+1) and F•( fp+1, f2, . . . , fp, f1)

are related by the commutative diagram

OX,w
Dp+1
−−−→

∧p O⊕p+1
X,w

Dp
−−−→ · · · −−−→ O⊕p+1

X,w
D1
−−−→ OX,w

det A1

y ∧p A1

y y A1

y =

y
OX,w

E p+1
−−−→

∧p O⊕p+1
X,w

E p
−−−→ · · · −−−→ O⊕p+1

X,w
E1
−−−→ OX,w

(see [Griffiths and Harris 1978, p. 691]), where each Di and Ei are defined as usual.
In particular, D1 = ( f1, f2, . . . , fp, fp+1), E1 = ( fp+1, f2, . . . , fp, f1), and A1 is
the matrix 

0 0 0 · · · 1
0 1 0 · · · 0
0 0 1 · · · 0
. . . . . . . . . . .

1 0 0 · · · 0


Since det A1 =−1, one has

∂
p,−p
1 (π(Z ′))=−∂ p,−p

1 (π(Y ′))∈Extp+1
OX,w

(
OX,w/( f1, f2, . . . , fp, fp+1),�

p−1
OX,w/Q

)
,

and consequently, ∂ p,−p
1 (π(Z ′)+π(Y ′))= 0 ∈ H p+1

w

(
�

p−1
OX,w/Q

)
. In other words,

π(Z ′)+π(Y ′) ∈ TZ p(X). �

There exists the following commutative diagram, which is part of the commuta-
tive diagram of [Yang 2016c, Theorem 3.14] (taking j = 1):⊕

x∈X (p)
H p

x
(
�

p−1
X/Q

) Ch
←−−−

⊕
x[ε]∈X [ε](p)

K M
0 (OX,x [ε] on x[ε])

∂
p,−p
1

y d p,−p
1,X [ε]

y⊕
x∈X (p+1)

H p+1
x

(
�

p−1
X/Q

) Ch
←−−−
∼=

⊕
x[ε]∈X [ε](p+1)

K M
−1(OX,x [ε] on x[ε])

For Y ′ ∈ TY Hilbp(X), which is generically defined by ( f1+εg1, f2, . . . , fp) for
g1 = a/b ∈ OX,y = (OX,w)P , we use F•( f1+εg1, f2, . . . , fp) to denote the Koszul
complex associated to f1+ εg1, f2, . . . , fp. Theorem 4.6 implies the following.
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Case 1: If b /∈ ( f1, f2, . . . , fp, fp+1), ∂
p,−p
1 (π(Y ′))= 0, the commutative diagram

π(Y ′)
Ch
←−−− F•( f1+ εg1, f2, . . . , fp)

∂
p,−p
1

y d p,−p
1,X [ε]

y
0

Ch
←−−−
∼=

d p,−p
1,X [ε](F•( f1+ εg1, f2, . . . , fp))

says d p,−p
1,X [ε](F•( f1+ εg1, f2, . . . , fp))= 0.

Case 2: If b ∈ ( f1, f2, . . . , fp, fp+1), we are reduced to considering b = fp+1.
Then there exist Z ⊂ X which is generically defined by ( fp+1, f2, . . . , fp) and
Z ′ ∈ TZ Hilbp(X) which is generically defined by ( fp+1+ εa/ f1, f2, . . . , fp) such
that ∂ p,−p

1 (π(Y ′)+π(Z ′))= 0. We use F•( fp+1 + εa/ f1, f2, . . . , fp) to denote
the Koszul complex associated to fp+1+ εa/ f1, f2, . . . , fp.

The commutative diagram

π(Y ′)+π(Z ′)
Ch
←−−− F•( f1+εa/ fp+1, f2, . . . , fp)+F•( fp+1+εa/ f1, f2, . . . , fp)

∂
p,−p
1

y d p,−p
1,X [ε]

y
0

Ch
←−−−
∼=

d p,−p
1,X [ε]

(
F•( f1+εa/ fp+1, f2, . . . , fp)

+F•( fp+1+εa/ f1, f2, . . . , fp)
)

says d p,−p
1,X [ε]

(
F•( f1+ εa/ fp+1, f2, . . . , fp)+ F•( fp+1+ εa/ f1, f2, . . . , fp)

)
= 0.

Recall that in [Yang 2016c, Definition 3.4 and Corollary 3.15], the p-th Milnor
K-theoretic cycle is defined as

Z M
p (D

Perf(X [ε])) := Ker
(
d p,−p

1,X [ε]

)
.

The above can be summarized as follows:

Theorem 4.7. For Y ′∈ TY Hilbp(X) generically defined by ( f1+ εg1, f2, . . . , fp)

for g1 = a/b ∈ OX,y = (OX,w)P , we use F•( f1 + εg1, f2, . . . , fp) to denote the
Koszul complex associated to f1+ εg1, f2, . . . , fp.

Case 1: If b /∈ ( f1, f2, . . . , fp, fp+1), then

F•( f1+ εg1, f2, . . . , fp) ∈ Z M
p (D

Perf(X [ε])).

Case 2: If b ∈ ( f1, f2, . . . , fp, fp+1), we are reduced to considering b = fp+1.
Then there exist Z ⊂ X which is generically defined by ( fp+1, f2, . . . , fp) and
Z ′ ∈ TZ Hilbp(X) generically defined by ( fp+1+ εa/ f1, f2, . . . , fp) such that

F•( f1+εa/ fp+1, f2, . . . , fp)+F•( fp+1+εa/ f1, f2, . . . , fp)∈ Z M
p (D

Perf(X [ε])).

The existence of Z and Z ′ ∈ TZ Hilbp(X) has applications in deformation of
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cycles; see [Yang 2016b] for a concrete example of eliminating obstructions to
deforming curves on a threefold.
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