
vol. 3 no. 42018

K-theory, local cohomology and tangent spaces to Hilbert schemes

Sen Yang

K-theory, local cohomology and tangent spaces to Hilbert schemes

Sen Yang

Using K-theory, we construct a map $\pi: T_{Y} \operatorname{Hilb}^{p}(X) \rightarrow H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right)$ from the tangent space to the Hilbert scheme at a point Y to the local cohomology group. We use this map π to answer (after slight modification) a question by Mark Green and Phillip Griffiths on constructing a map from the tangent space $T_{Y} \operatorname{Hilb}^{p}(X)$ to the Hilbert scheme at a point Y to the tangent space to the cycle group $T Z^{p}(X)$.

1. Introduction

Let X be a smooth projective variety over a field k of characteristic 0 and let $Y \subset X$ be a subvariety of codimension p. Considering Y as an element of $\operatorname{Hilb}^{p}(X)$, it is well known that the Zariski tangent space $T_{Y} \operatorname{Hilb}^{p}(X)$ can be identified with $H^{0}\left(Y, \mathcal{N}_{Y / X}\right)$, where $\mathcal{N}_{Y / X}$ is the normal sheaf.

The element Y also defines an element of the cycle group $Z^{p}(X)$. We are interested in defining the tangent space $T Z^{p}(X)$ to the cycle group $Z^{p}(X)$. In [Green and Griffiths 2005], Mark Green and Phillip Griffiths define $T Z^{p}(X)$ for $p=1$ (divisors) and $p=\operatorname{dim}(X)$ (0 -cycles) and leave the general case as an open question. Much of their theory was extended by Benjamin Dribus, Jerome W. Hoffman and the author in [Dribus et al. 2018; Yang 2016a]. In [Yang 2016a], we define $T Z^{p}(X)$ for any integer p satisfying $1 \leqslant p \leqslant \operatorname{dim}(X)$, generalizing Green and Griffiths' definitions. We recall the following fact from [Yang 2016a] for our purpose, and refer to [Green and Griffiths 2005; Yang 2016a] for definition of $T Z^{p}(X)$.

Theorem 1.1 [Yang 2016a, Theorem 2.8]. For X a smooth projective variety over a field k of characteristic 0 and for any integer $p \geqslant 1$, the tangent space $T Z^{p}(X)$ is identified with $\operatorname{Ker}\left(\partial_{1}^{p,-p}\right)$:

$$
T Z^{p}(X) \cong \operatorname{Ker}\left(\partial_{1}^{p,-p}\right)
$$

MSC2010: 14C25.
Keywords: deformation of cycles, tangent spaces to cycle groups, K-theory, Chern character, tangent spaces to Hilbert schemes, Koszul complex, Newton class, absolute differentials.
where $\partial_{1}^{p,-p}$ is the differential of the Cousin complex [Hartshorne 1966] of $\Omega_{X / \mathbb{Q}}^{p-1}$ in position p :

$$
0 \rightarrow \Omega_{k(X) / \mathbb{Q}}^{p-1} \rightarrow \cdots \rightarrow \bigoplus_{y \in X^{(p)}} H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right) \xrightarrow{\partial_{1}^{p,-p}} \bigoplus_{x \in X^{(p+1)}} H_{x}^{p+1}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right) \rightarrow \cdots
$$

We want to study the relation between $T_{Y} \operatorname{Hilb}^{p}(X)$ and $T Z^{p}(X)$. The following question is suggested in [Green and Griffiths 2005, pp. 18 and 87-89].

Question 1.2 [Green and Griffiths 2005]. For X a smooth projective variety over a field k of characteristic 0 and for any integer $p \geqslant 1$, is it possible to define a map from the tangent space $T_{Y} \operatorname{Hilb}^{p}(X)$ to the Hilbert scheme at a point Y to the tangent space to the cycle group $T Z^{p}(X)$?

For $p=\operatorname{dim}(X)$, this has been answered affirmatively in [Green and Griffiths 2005, Section 7.2].

Theorem 1.3 [Green and Griffiths 2005]. For $p=d:=\operatorname{dim}(X)$, there exists a map

$$
T_{Y} \operatorname{Hilb}^{d}(X) \rightarrow T Z^{d}(X)
$$

from the tangent space to the Hilbert scheme at a point Y to the tangent space to the cycle group.

The main result of this short note is to construct a map

$$
\pi: T_{Y} \operatorname{Hilb}^{p}(X) \rightarrow H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right)
$$

(see Definition 4.1), and use this map to study the above Question 1.2.
In Example 4.4, we show, for a general subvariety $Y \subset X$ of codimension p and $Y^{\prime} \in T_{Y} \operatorname{Hilb}^{p}(X)$, that $\pi\left(Y^{\prime}\right)$ may not lie in $T Z^{p}(X)$ (the kernel of $\partial_{1}^{p,-p}$). However, we show in Theorem 4.6 that there exist $Z \subset X$ of codimension p and $Z^{\prime} \in T_{Z} \operatorname{Hilb}^{p}(X)$ such that $\pi\left(Y^{\prime}\right)+\pi\left(Z^{\prime}\right) \in T Z^{p}(X)$.

As an application, we show how to find Milnor K-theoretic cycles in Theorem 4.7. In [Yang 2016b], we will apply these techniques to eliminate obstructions to deforming curves on a threefold.

Notations and conventions.

(1) K-theory used in this note is Thomason-Trobaugh nonconnective K-theory, if not stated otherwise.
(2) For any abelian group $M, M_{\mathbb{Q}}$ denotes the image of M in $M \otimes_{\mathbb{Z}} \mathbb{Q}$.
(3) $X[\varepsilon]$ denote the first-order trivial deformation of X, i.e.,

$$
X[\varepsilon]=X \times_{k} \operatorname{Spec}\left(k[\varepsilon] /\left(\varepsilon^{2}\right)\right)
$$

where $k[\varepsilon] /\left(\varepsilon^{2}\right)$ is the ring of dual numbers.

2. K-theory and tangent spaces to Hilbert schemes

For X a smooth projective variety over a field k of characteristic 0 and $Y \subset X$ a subvariety of codimension p, let $i: Y \rightarrow X$ be the inclusion. Then $i_{*} O_{Y}$ is a coherent O_{X}-module and can be resolved by a bounded complex of vector bundles on X. Let Y^{\prime} be a first-order deformation of Y, that is, $Y^{\prime} \subset X[\varepsilon]$ such that Y^{\prime} is flat over $\operatorname{Spec}\left(k[\varepsilon] /\left(\varepsilon^{2}\right)\right)$ and $Y^{\prime} \otimes_{k[\varepsilon] /\left(\varepsilon^{2}\right)} k \cong$. Then $i_{*} O_{Y^{\prime}}$ can be resolved by a bounded complex of vector bundles on $X[\varepsilon]$, where $i: Y^{\prime} \rightarrow X[\varepsilon]$.

Let $D^{\text {perf }}(X[\varepsilon])$ denote the derived category of perfect complexes of $O_{X}[\varepsilon]-$ modules, and let $\mathcal{L}_{(i)}(X[\varepsilon]) \subset D^{\text {perf }}(X[\varepsilon])$ be defined as

$$
\mathcal{L}_{(i)}(X[\varepsilon]):=\left\{E \in D^{\text {perf }}(X[\varepsilon]) \mid \operatorname{codim}_{\text {Krull }}(\operatorname{supph}(E)) \geq-i\right\},
$$

where the closed subset $\operatorname{supph}(E) \subset X$ is the support of the total homology of the perfect complex E.

The resolution of $i_{*} O_{Y^{\prime}}$, which is a perfect complex of $O_{X}[\varepsilon]$-modules supported on Y, defines an element of the Verdier quotient $\mathcal{L}_{(-p)}(X[\varepsilon]) / \mathcal{L}_{(-p-1)}(X[\varepsilon])$, denoted $\left[i_{*} O_{Y^{\prime}}\right]$.

In general, the length of the perfect complex $\left[i_{*} O_{Y^{\prime}}\right]$ may not be equal to p. Since $Y \subset X$ is of codimension p, we expect the perfect complex $\left[i_{*} O_{Y^{\prime}}\right]$ to be of length p. To achieve this, instead of considering $\left[i_{*} O_{Y^{\prime}}\right]$ as an element of the Verdier quotient $\mathcal{L}_{(-p)}(X[\varepsilon]) / \mathcal{L}_{(-p-1)}(X[\varepsilon])$, we consider its image in the idempotent completion $\left(\mathcal{L}_{(-p)}(X[\varepsilon]) / \mathcal{L}_{(-p-1)}(X[\varepsilon])\right)^{\#}$, denoted $\left[i_{*} O_{Y^{\prime}}\right]^{\#}$, where the idempotent completion is in the sense of [Balmer and Schlichting 2001]. We have the following result:

Theorem 2.1 [Balmer 2007]. For each $i \in \mathbb{Z}$, localization induces an equivalence

$$
\left(\mathcal{L}_{(i)}(X[\varepsilon]) / \mathcal{L}_{(i-1)}(X[\varepsilon])\right)^{\#} \simeq \bigsqcup_{x[\varepsilon] \in X[\varepsilon]^{(-i)}} D_{x[\varepsilon]}^{\text {perf }}(X[\varepsilon])
$$

between the idempotent completion of $\mathcal{L}_{(i)}(X[\varepsilon]) / \mathcal{L}_{(i-1)}(X[\varepsilon])$ and the coproduct over $x[\varepsilon] \in X[\varepsilon]^{(-i)}$ of the derived category of perfect complexes of $O_{X[\varepsilon], x[\varepsilon]-}$ modules with homology supported on the closed point $x[\varepsilon] \in \operatorname{Spec}\left(O_{X[\varepsilon], x[\varepsilon]}\right)$. Consequently, one has

$$
K_{0}\left(\left(\mathcal{L}_{(i)}(X[\varepsilon]) / \mathcal{L}_{(i-1)}(X[\varepsilon])\right)^{\#}\right) \simeq \bigoplus_{x[\varepsilon] \in X[\varepsilon]^{(-i)}} K_{0}\left(D_{x[\varepsilon]}^{\text {prrf }}(X[\varepsilon])\right) .
$$

Let y be the generic point of Y and let \mathcal{I}_{Y} be the ideal sheaf of Y. Then there exists the short exact sequence

$$
0 \rightarrow \mathcal{I}_{Y} \rightarrow O_{X} \rightarrow i_{*} O_{Y} \rightarrow 0,
$$

whose localization at y is the short exact sequence

$$
0 \rightarrow\left(\mathcal{I}_{Y}\right)_{y} \rightarrow O_{X, y} \rightarrow\left(i_{*} O_{Y}\right)_{y} \rightarrow 0 .
$$

We have $O_{Y, y}=O_{X, y} /\left(\mathcal{I}_{Y}\right)_{y}$. Since $O_{Y, y}$ is a field, $\left(\mathcal{I}_{Y}\right)_{y}$ is the maximal ideal of the regular local ring (of dimension p) $O_{X, y}$. So the maximal ideal $\left(\mathcal{I}_{Y}\right)_{y}$ is generated by a regular sequence f_{1}, \ldots, f_{p} of length p.

Let $\mathcal{I}_{Y^{\prime}}$ be the ideal sheaf of Y^{\prime}, so $\mathcal{I}_{Y^{\prime}} /(\varepsilon) \mathcal{I}_{Y^{\prime}}=\mathcal{I}_{Y}$ because of flatness. So we have $\left(\mathcal{I}_{Y^{\prime}}\right)_{y} /(\varepsilon)\left(\mathcal{I}_{Y^{\prime}}\right)_{y}=\left(\mathcal{I}_{Y}\right)_{y}$. Lift f_{1}, \ldots, f_{p} to $f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}$ in $\left(\mathcal{I}_{Y^{\prime}}\right)_{y}$, where $g_{1}, \ldots, g_{p} \in O_{X, y}$. Then $f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}$ generates $\left(\mathcal{I}_{Y^{\prime}}\right)_{y}$ because of Nakayama's lemma:

$$
\left(\mathcal{I}_{Y^{\prime}}\right)_{y}=\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right) .
$$

Moreover, $f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}$ is a regular sequence, which can be checked directly.

We see that Y is generically defined by a regular sequence f_{1}, \ldots, f_{p} of length p, where $f_{1}, \ldots, f_{p} \in O_{X, y}$. Moreover, Y^{\prime} is generically given by lifting f_{1}, \ldots, f_{p} to $f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}$, where $g_{1}, \ldots, g_{p} \in O_{X, y}$. Let $F_{.}\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right)$ denote the Koszul complex associated to the regular sequence $f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}$, which is a resolution of $O_{X, y}[\varepsilon] /\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right)$:

$$
0 \rightarrow F_{p} \xrightarrow{A_{p}} F_{p-1} \xrightarrow{A_{p-1}} \cdots \xrightarrow{A_{2}} F_{1} \xrightarrow{A_{1}} F_{0} \rightarrow 0,
$$

where each $F_{i}=\bigwedge^{i}\left(O_{X, y}[\varepsilon]\right)^{\oplus p}$ and $A_{i}: \bigwedge^{i}\left(O_{X, y}[\varepsilon]\right)^{\oplus p} \rightarrow \bigwedge^{i-1}\left(O_{X, y}[\varepsilon]\right)^{\oplus p}$ are defined as usual.

Under the equivalence in Theorem 2.1, the localization at the generic point y sends $\left[i_{*} O_{Y^{\prime}}\right]^{\#}$ to the Koszul complex $F_{.}\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right)$:

$$
\left[i_{*} O_{Y^{\prime}}\right]^{\#} \rightarrow F_{\bullet}\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right) .
$$

Milnor K-groups with support are rationally defined in terms of eigenspaces of Adams operations in [Yang 2016c] as follows:

Definition 2.2 [Yang 2016c, Definition 3.2]. Let X be a finite equidimensional noetherian scheme and $x \in X^{(j)}$. For $m \in \mathbb{Z}$, the Milnor K-group with support $K_{m}^{M}\left(O_{X, x}\right.$ on $\left.x\right)$ is rationally defined to be

$$
K_{m}^{M}\left(O_{X, x} \text { on } x\right):=K_{m}^{(m+j)}\left(O_{X, x} \text { on } x\right)_{\mathbb{Q}},
$$

where $K_{m}^{(m+j)}$ is the eigenspace of $\psi^{k}=k^{m+j}$ and ψ^{k} are the Adams operations.
Theorem 2.3 [Gillet and Soulé 1987, Proposition 4.12]. The Adams operations ψ^{k} defined on perfect complexes (defined in [Gillet and Soulé 1987]) satisfy

$$
\psi^{k}\left(F_{\mathbf{\bullet}}\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right)\right)=k^{p} F_{\bullet}\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right) .
$$

Hence, $F_{\cdot}\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right)$ is of eigenweight p and can be considered as an element of $K_{0}^{(p)}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon]\right)_{\mathbb{Q}}$:

$$
F_{\cdot}\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right) \in K_{0}^{(p)}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon]\right)_{\mathbb{Q}}=K_{0}^{M}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon]\right) .
$$

Definition 2.4. We define a map $\mu: T_{Y} \operatorname{Hilb}^{p}(X) \rightarrow K_{0}^{M}\left(O_{X, y}[\varepsilon]\right.$ on $\left.y[\varepsilon]\right)$ by

$$
\mu: Y^{\prime} \mapsto F_{\cdot}\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right) .
$$

3. Chern character

For any integer m, let $K_{m}^{(i)}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon], \varepsilon\right)_{\mathbb{Q}}$ denote the weight i eigenspace of the relative K-group, that is, the kernel of the natural projection

$$
K_{m}^{(i)}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon]\right)_{\mathbb{Q}} \xrightarrow{\varepsilon=0} K_{m}^{(i)}\left(O_{X, y} \text { on } y\right)_{\mathbb{Q}} .
$$

Recall that we have proved the following isomorphisms in [Dribus et al. 2018; Yang 2016c]:

Theorem 3.1 [Dribus et al. 2018, Corollary 9.5; Yang 2016c, Corollary 3.11]. Let X be a smooth projective variety over a field k of characteristic 0 and let $y \in X^{(p)}$. The Chern character (from K-theory to negative cyclic homology) induces isomorphisms

$$
K_{m}^{(i)}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon], \varepsilon\right)_{\mathbb{Q}} \cong H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{*,(i)}\right)
$$

between relative K-groups and local cohomology groups, where

$$
\begin{cases}\Omega_{X / \mathbb{Q}}^{\bullet,(i)}=\Omega_{X / \mathbb{Q}}^{2 i-(m+p)-1} & \text { if } \frac{1}{2}(m+p)<i \leq m+p, \\ \Omega_{X / \mathbb{Q}}^{\bullet,(i)}=0 & \text { else. }\end{cases}
$$

The main tool for proving these isomorphisms is the space-level versions of Goodwillie's and Cathelineau's isomorphisms, proved in [Cortiñas et al. 2009, Appendix B].

Let $K_{m}^{M}\left(O_{X, y}[\varepsilon]\right.$ on $\left.y[\varepsilon], \varepsilon\right)$ denote the relative K-group, that is, the kernel of the natural projection

$$
K_{m}^{M}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon]\right) \xrightarrow{\varepsilon=0} K_{m}^{M}\left(O_{X, y} \text { on } y\right) .
$$

In other words, $K_{m}^{M}\left(O_{X, y}[\varepsilon]\right.$ on $\left.y[\varepsilon], \varepsilon\right)$ is $K_{m}^{(m+p)}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon], \varepsilon\right)_{\mathbb{Q}}$. In particular, by taking $i=p$ and $m=0$ in Theorem 3.1, we obtain the following formula:

Corollary 3.2. $\quad K_{0}^{M}\left(O_{X, y}[\varepsilon]\right.$ on $\left.y[\varepsilon], \varepsilon\right) \xrightarrow{\cong} H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right)$.
Definition 3.3. Let X be a smooth projective variety over a field k of characteristic 0 and let $y \in X^{(p)}$. There exists a natural surjective map

$$
\mathrm{Ch}: K_{0}^{M}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon]\right) \rightarrow H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right),
$$

which is defined to be the composition of the natural projection

$$
K_{0}^{M}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon]\right) \rightarrow K_{0}^{M}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon], \varepsilon\right)
$$

and the isomorphism

$$
K_{0}^{M}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon], \varepsilon\right) \xrightarrow{\cong} H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right)
$$

Now we recall a beautiful construction of Angéniol and Lejeune-Jalabert, which describes the map

$$
\mathrm{Ch}: K_{0}^{M}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon]\right) \rightarrow H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right)
$$

in Definition 3.3.
An element $M \in K_{0}^{M}\left(O_{X, y}[\varepsilon]\right.$ on $\left.y[\varepsilon]\right) \subset K_{0}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon]\right)_{\mathbb{Q}}$ is represented by a strict perfect complex L. supported at $y[\varepsilon]$:

$$
0 \rightarrow F_{n} \xrightarrow{M_{n}} F_{n-1} \xrightarrow{M_{n-1}} \cdots \xrightarrow{M_{2}} F_{1} \xrightarrow{M_{1}} F_{0} \rightarrow 0
$$

where each $F_{i}=O_{X, y}[\varepsilon]^{r_{i}}$ and the M_{i} are matrices with entries in $O_{X, y}[\varepsilon]$.
Definition 3.4 [Angéniol and Lejeune-Jalabert 1989, p. 24]. The local fundamental class attached to this perfect complex is defined to be the collection

$$
[L .]_{\mathrm{loc}}=\left\{\frac{1}{p!} d M_{i} \circ d M_{i+1} \circ \cdots \circ d M_{i+p-1}\right\}, \quad i=0,1, \ldots,
$$

where $d=d_{\mathbb{Q}}$ and each $d M_{i}$ is the matrix of absolute differentials. In other words,

$$
d M_{i} \in \operatorname{Hom}\left(F_{i}, F_{i-1} \otimes \Omega_{O_{X, y}[\varepsilon] / \mathbb{Q}}^{1}\right)
$$

Theorem 3.5 [Angéniol and Lejeune-Jalabert 1989, Lemma 3.1.1, p. 24 and Definition 3.4, p. 29]. The class [$\left.L_{\bullet}\right]_{\text {loc }}$ above is a cycle in $\mathcal{H o m}\left(L_{\bullet}, \Omega_{O_{X, y}[\varepsilon] / \mathbb{Q}}^{p} \otimes L_{\bullet}\right)$, and the image of $\left[L_{\bullet}\right]_{\text {loc }}$ in $H^{p}\left(\mathcal{H o m}\left(L_{\bullet}, \Omega_{O_{X, y}[\varepsilon] / \mathbb{Q}}^{p} \otimes L_{\bullet}\right)\right)$ does not depend on the choice of the basis of L.

Since

$$
H^{p}\left(\mathcal{H o m}\left(L_{\bullet}, \Omega_{O_{X, y}[\varepsilon] / \mathbb{Q}}^{p} \otimes L_{\bullet}\right)\right)=\mathcal{E} X T^{p}\left(L_{\bullet}, \Omega_{O_{X, y}[\varepsilon] / \mathbb{Q}}^{p} \otimes L_{\bullet}\right)
$$

the local fundamental class $\left[L_{\bullet}\right]_{\text {loc }}$ defines an element in $\mathcal{E X T}{ }^{p}\left(L_{\bullet}, \Omega_{O_{X, y}[\varepsilon] / \mathbb{Q}}^{p} \otimes L_{\bullet}\right)$:

$$
\left[L_{\bullet}\right]_{\mathrm{loc}} \in \mathcal{E} X T^{p}\left(L_{\bullet}, \Omega_{O_{X, y}[\varepsilon] / \mathbb{Q}}^{p} \otimes L_{\bullet}\right)
$$

Noting L_{0} is supported on y (same underlying space as $y[\varepsilon]$), there exists the following trace map (see [Angéniol and Lejeune-Jalabert 1989, p. 98-99] for details):

$$
\operatorname{Tr}: \mathcal{E} X T^{p}\left(L_{\bullet}, \Omega_{O_{X, y}[\varepsilon] / \mathbb{Q}}^{p} \otimes L_{\bullet}\right) \rightarrow H_{y}^{p}\left(\Omega_{X[\varepsilon] / \mathbb{Q}}^{p}\right)
$$

Definition 3.6 [Angéniol and Lejeune-Jalabert 1989, Definition 2.3.2, p. 99]. The image of $\left[L_{.}\right]_{\text {loc }}$ under the above trace map, denoted $\mathcal{V}_{L_{\bullet}}^{p}$, is called the Newton class.
$K_{0}\left(O_{X, y}[\varepsilon]\right.$ on $\left.y[\varepsilon]\right)$ is the Grothendieck group of the triangulated category $D^{b}\left(O_{X, y}[\varepsilon]\right.$ on $\left.y[\varepsilon]\right)$, which is the derived category of perfect complexes of $O_{X, y}[\varepsilon]-$ modules with homology supported on the closed point $y[\varepsilon] \in \operatorname{Spec}\left(O_{X, y}[\varepsilon]\right)$. Recall that the Grothendieck group of a triangulated category is the monoid of isomorphism objects modulo the submonoid formed from distinguished triangles.

Theorem 3.7 [Angéniol and Lejeune-Jalabert 1989, Proposition 4.3.1, p. 113]. The Newton class $\mathcal{V}_{L_{\bullet}}^{p}$ is well-defined on $K_{0}\left(O_{X, y}[\varepsilon]\right.$ on $\left.y[\varepsilon]\right)$.

The truncation map $\rfloor\left.\frac{\partial}{\partial \varepsilon}\right|_{\varepsilon=0}: \Omega_{X[\varepsilon] / \mathbb{Q}}^{p} \rightarrow \Omega_{X / \mathbb{Q}}^{p-1}$ induces a map

$$
\rfloor\left.\frac{\partial}{\partial \varepsilon}\right|_{\varepsilon=0}: H_{y}^{p}\left(\Omega_{X[\varepsilon] / \mathbb{Q}}^{p}\right) \rightarrow H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right) .
$$

Lemma 3.8. The map

$$
\mathrm{Ch}: K_{0}^{M}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon]\right) \rightarrow H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right)
$$

from Definition 3.3 can be described as a composition

$$
\begin{aligned}
K_{0}^{M}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon]\right) & \rightarrow \mathcal{E} X T^{p}\left(L_{\bullet}, \Omega_{O_{X, y}[\varepsilon] / \mathbb{Q}}^{p} \otimes L_{\bullet}\right) \rightarrow H_{y}^{p}\left(\Omega_{X[\varepsilon] / \mathbb{Q}}^{p}\right) \rightarrow H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right), \\
L_{\bullet} & \left.\mapsto\left[L_{\bullet}\right]_{\mathrm{loc}} \mapsto \mathcal{V}_{L_{\bullet}}^{p} \mapsto \mathcal{V}_{L_{\bullet}}^{p}\right\rfloor\left.\frac{\partial}{\partial \varepsilon}\right|_{\varepsilon=0}
\end{aligned}
$$

In particular, for the Koszul complex $F_{\bullet}\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right)$ in Definition 2.4, the Ch map can be described as follows. The diagram

$$
\left\{\begin{array}{cll}
F_{\bullet}\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right) & \longrightarrow & O_{X, y}[\varepsilon] /\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right), \\
F_{p}\left(\cong O_{X, y}[\varepsilon]\right) & \left.\longrightarrow F_{\bullet}\right]_{\mathrm{loc}} & F_{0} \otimes \Omega_{O_{X, y}[\varepsilon] / \mathbb{Q}}^{p}\left(\cong \Omega_{O_{X, y}[\varepsilon] / \mathbb{Q}}^{p}\right),
\end{array}\right.
$$

where $\left[F_{.}\right]_{\text {loc }}$ is the local fundamental class attached to $F_{.}\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right)$, gives an element in $\operatorname{Ext}_{O_{X, y}[\varepsilon]}^{p}\left(O_{X, y}[\varepsilon] /\left(f_{1}+\varepsilon g_{1}, \ldots, f_{p}+\varepsilon g_{p}\right), \Omega_{X[\varepsilon] / \mathbb{Q}}^{p}\right)$. This, moreover, gives an element in $H_{y}^{p}\left(\Omega_{X[\varepsilon] / \mathbb{Q}}^{p}\right)$, denoted $\mathcal{V}_{F_{\bullet}}^{p}$.

We use $F_{\bullet}\left(f_{1}, \ldots, f_{p}\right)$ to denote the Koszul complex associated to the regular sequence f_{1}, \ldots, f_{p}, which is a resolution of $O_{X, y} /\left(f_{1}, \ldots, f_{p}\right)$. The truncation of $\mathcal{V}_{F_{\bullet}}^{p}$ in ε produces an element in $H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right)$, which can be represented by the diagram

$$
\left\{\begin{array}{ccc}
F_{\bullet}\left(f_{1}, \ldots, f_{p}\right) & O_{X, y} /\left(f_{1}, \ldots, f_{p}\right), \\
F_{p}\left(\cong O_{X, y}\right) & \xrightarrow{\left.\left[F_{\bullet} l_{\text {loc }}\right\rfloor \frac{\partial}{\partial \varepsilon}\right|_{\varepsilon=0}} & F_{0} \otimes \Omega_{O_{X, y} / \mathbb{Q}}^{p-1}\left(\cong \Omega_{O_{X, y} / \mathbb{Q}}^{p-1}\right) .
\end{array}\right.
$$

For simplicity, assuming $g_{2}=\cdots=g_{p}=0$, we see that

$$
[F \cdot]_{\text {loc }}\left|\frac{\partial}{\partial \varepsilon}\right|_{\varepsilon=0}=g_{1} d f_{2} \wedge \cdots \wedge d f_{p}
$$

and the truncation of $\mathcal{V}_{F_{\mathbf{\bullet}}}^{p}$ in ε is represented by the diagram

$$
\left\{\begin{array}{ccc}
F_{\bullet}\left(f_{1}, \ldots, f_{p}\right) & O_{X, y} /\left(f_{1}, \ldots, f_{p}\right), \\
F_{p}\left(\cong O_{X, y}\right) & \xrightarrow{g_{1} d f_{2} \wedge \cdots \wedge d f_{p}} & F_{0} \otimes \Omega_{O_{X, y} / \mathbb{Q}}^{p-1}\left(\cong \Omega_{O_{X, y} / \mathbb{Q}}^{p-1}\right) .
\end{array}\right.
$$

Further concrete examples can be found in [Green and Griffiths 2005, Chapter 7, p. 90-91].

4. The map π

Definition 4.1. We define a map from $T_{Y} \operatorname{Hilb}^{p}(X)$ to $H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right)$ by composing Ch in Definition 3.3 with μ in Definition 2.4:

$$
\pi: T_{Y} \operatorname{Hilb}^{p}(X) \xrightarrow{\mu} K_{0}^{M}\left(O_{X, y}[\varepsilon] \text { on } y[\varepsilon]\right) \xrightarrow{\mathrm{Ch}} H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right) .
$$

Recall that the Cousin complex of $\Omega_{X / \mathbb{Q}}^{p-1}$ is of the form

$$
0 \rightarrow \Omega_{k(X) / \mathbb{Q}}^{p-1} \rightarrow \cdots \rightarrow \bigoplus_{y \in X^{(p)}} H_{y}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right) \xrightarrow{\partial_{1}^{p,-p}} \bigoplus_{x \in X^{(p+1)}} H_{x}^{p+1}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right) \rightarrow \cdots
$$

and the tangent space $T Z^{p}(X)$ is identified with $\operatorname{Ker}\left(\partial_{1}^{p,-p}\right)$ (see Theorem 1.1).
For $p=d:=\operatorname{dim}(X), \partial_{1}^{d,-d}=0$ because of dimensional reasons. So

$$
T Z^{d}(X)=\operatorname{Ker}\left(\partial_{1}^{d,-d}\right)=\bigoplus_{y \in X^{(d)}} H_{y}^{d}\left(\Omega_{X / \mathbb{Q}}^{d-1}\right)
$$

Corollary 4.2. For $p=d:=\operatorname{dim}(X)$, the map π defines a map from $T_{Y} \operatorname{Hilb}^{d}(X)$ to $T Z^{d}(X)$ and it agrees with the map by Green and Griffiths in Theorem 1.3.

We want to know, for general p, whether this map π defines a map from $T_{Y} \operatorname{Hilb}^{p}(X)$ to $T Z^{p}(X)$, as Green and Griffiths asked in Question 1.2.

Remark 4.3. In an email to the author, Christophe Soulé suggested considering the image of suitable Koszul complexes under the Ch map in Definition 3.3. This leads us to the following example, showing that π does not define a map from $T_{Y} \operatorname{Hilb}^{p}(X)$ to $T Z^{p}(X)$ in general. The Koszul complex technique is also used in Theorem 4.6.

The author sincerely thanks Christophe Soule for very helpful suggestions.
Example 4.4. For a smooth projective threefold X over a field k of characteristic 0 , let $Y \subset X$ be a curve with generic point y. We assume a point $x \in Y \subset X$ is defined by (f, g, h) and Y is generically defined by (f, g). Then $O_{X, y}=\left(O_{X, x}\right)_{(f, g)}$.

We consider the infinitesimal deformation Y^{\prime} of Y which is generically given by $(f+\varepsilon / h, g)$, where $1 / h \in O_{X, y}=\left(O_{X, x}\right)_{(f, g)}$. Note $1 / h \notin O_{X, x}$. The Koszul
complex of $(f+\varepsilon / h, g)$ is of the form

$$
0 \rightarrow\left(O_{X, x}\right)_{(f, g)}[\varepsilon] \xrightarrow{(g,-f-\varepsilon / h)^{\mathrm{T}}}\left(O_{X, x}\right)_{(f, g)}^{\oplus 2}[\varepsilon] \xrightarrow{(f+\varepsilon / h, g)}\left(O_{X, x}\right)_{(f, g)}[\varepsilon] \rightarrow 0,
$$

where $(-,-)^{\mathrm{T}}$ denotes transpose.
The image $\pi\left(Y^{\prime}\right) \in H_{y}^{2}\left(\Omega_{X / \mathbb{Q}}^{1}\right)$ is represented by the diagram

$$
\left\{\begin{array}{c}
\left(O_{X, x}\right)_{(f, g)} \rightarrow\left(O_{X, x}\right)_{(f, g)}^{\oplus 2} \rightarrow\left(O_{X, x}\right)_{(f, g)} \rightarrow\left(O_{X, x}\right)_{(f, g)} /(f, g) \rightarrow 0, \\
\left(O_{X, x}\right)_{(f, g)} \xrightarrow{(1 / h) d g} \Omega_{\left.\left(O_{X, x}\right)_{(f, g)}\right) / \mathbb{Q}}^{1} .
\end{array}\right.
$$

Let $F_{\bullet}(f, g, h)$ be the Koszul complex of f, g, h :

$$
0 \rightarrow O_{X, x} \rightarrow O_{X, x}^{\oplus 3} \rightarrow O_{X, x}^{\oplus 3} \rightarrow O_{X, x} \rightarrow 0
$$

Then $\partial_{1}^{2,-2}\left(\pi\left(Y^{\prime}\right)\right)$ in $H_{x}^{3}\left(\Omega_{X / \mathbb{Q}}^{1}\right)$ is represented by the diagram

$$
\left\{\begin{array}{ccc}
F_{\bullet}(f, g, h) & \longrightarrow & O_{X, x} /(f, g, h), \\
O_{X, x} & \longrightarrow & \Omega_{O_{X, x} / \mathbb{Q}}^{1}
\end{array}\right.
$$

which is not zero.
This example shows that, in general, the image of π may not lie in $T Z^{p}(X)$ (the kernel of $\partial_{1}^{p,-p}$). However, we will show, in Theorem 4.6 below, that given $Y \subset X$ of codimension p and $Y^{\prime} \in T_{Y} \operatorname{Hilb}^{p}(X)$, there exists $Z \subset X$ of codimension p and $Z^{\prime} \in T_{Z} \operatorname{Hilb}^{p}(X)$ such that $\pi\left(Y^{\prime}\right)+\pi\left(Z^{\prime}\right)$ is a nontrivial element of $T Z^{p}(X)$.

To fix notation, let X be a smooth projective variety over a field k of characteristic 0 and let $Y \subset X$ be a subvariety of codimension p with generic point y. Let $W \subset Y$ be a subvariety of codimension 1 in Y with generic point w. One assumes W is generically defined by $f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}$ and Y is generically defined by $f_{1}, f_{2}, \ldots, f_{p}$. So one has $O_{X, y}=\left(O_{X, w}\right)_{P}$, where P is the ideal $\left(f_{1}, f_{2}, \ldots, f_{p}\right) \subset O_{X, w}$.

The element Y^{\prime} is generically given by $\left(f_{1}+\varepsilon g_{1}, f_{2}+\varepsilon g_{2}, \ldots, f_{p}+\varepsilon g_{p}\right)$, where $g_{1}, \ldots, g_{p} \in O_{X, y}$. We assume $g_{2}=\cdots=g_{p}=0$. Since $O_{X, y}=\left(O_{X, w}\right)_{P}$, we write $g_{1}=a / b$, where $a, b \in O_{X, w}$ and $b \notin P$. In Theorem 4.6, we will consider the cases of whether or not b is in the maximal ideal $\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right) \subset O_{X, w}$.

Lemma 4.5. If $b \notin\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right)$, then $\partial_{1}^{p,-p}\left(\pi\left(Y^{\prime}\right)\right)=0$.
Proof. If $b \notin\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right)$, then b is a unit in $O_{X, w}$, so $g_{1}=a / b \in O_{X, w}$. Then $\pi\left(Y^{\prime}\right)$ is represented by the diagram

$$
\left\{\begin{array}{l}
F_{\bullet}\left(f_{1}, f_{2}, \ldots, f_{p}\right) \quad \longrightarrow \\
F_{p}\left(O_{X, w}\right)_{P} /\left(f_{1}, f_{2}, \ldots, f_{p}\right), \\
\left.\left(O_{X, w}\right)_{P}\right)
\end{array} \xrightarrow{g_{1} d f_{2} \wedge \cdots \wedge d f_{p}} F_{0} \otimes \Omega_{\left(O_{X, w}\right)_{P} / \mathbb{Q}}^{p-1}\left(\cong \Omega_{\left(O_{X, w}\right)_{P} / \mathbb{Q}}^{p-1}\right) .\right.
$$

Here, $F_{\mathbf{\bullet}}\left(f_{1}, f_{2}, \ldots, f_{p}\right)$ is of the form

$$
0 \rightarrow F_{p} \xrightarrow{A_{p}} F_{p-1} \xrightarrow{A_{p-1}} \cdots \xrightarrow{A_{2}} F_{1} \xrightarrow{A_{1}} F_{0},
$$

where each $F_{i}=\bigwedge^{i}\left(\left(O_{X, w}\right)_{P}\right)^{\oplus p}$. Since $f_{p+1} \notin P, f_{p+1}^{-1}$ exists in $\left(O_{X, w}\right)_{P}$, and we can write

$$
g_{1} d f_{2} \wedge \cdots \wedge d f_{p}=\frac{g_{1} f_{p+1}}{f_{p+1}} d f_{2} \wedge \cdots \wedge d f_{p}
$$

Now $\partial_{1}^{p,-p}\left(\pi\left(Y^{\prime}\right)\right)$ is represented by the diagram

$$
\left\{\begin{array}{ccc}
F_{\cdot}\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right) \\
F_{p+1}\left(\cong O_{X, w}\right) & \xrightarrow{g_{1} f_{p+1} d f_{2} \wedge \cdots \wedge d f_{p}} & O_{X, w} /\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right), \\
F_{0} \otimes \Omega_{O_{X, w} / \mathbb{Q}}^{p-1}\left(\cong \Omega_{O_{X, w} / \mathbb{Q}}^{p-1}\right) .
\end{array}\right.
$$

The complex $F_{.}\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right)$ is of the form

$$
0 \rightarrow \bigwedge^{p+1}\left(O_{X, w}\right)^{\oplus p+1} \xrightarrow{A_{p+1}} \bigwedge^{p}\left(O_{X, w}\right)^{\oplus p+1} \rightarrow \cdots
$$

Let $\left\{e_{1}, \ldots, e_{p+1}\right\}$ be a basis of $\left(O_{X, w}\right)^{\oplus p+1}$; the map A_{p+1} is

$$
e_{1} \wedge \cdots \wedge e_{p+1} \rightarrow \sum_{j=1}^{p+1}(-1)^{j} f_{j} e_{1} \wedge \cdots \wedge \hat{e}_{j} \wedge \cdots e_{p+1}
$$

where \hat{e}_{j} means to omit the j-th term.
Since f_{p+1} appears in A_{p+1},

$$
g_{1} f_{p+1} d f_{2} \wedge \cdots \wedge d f_{p} \equiv 0 \in \operatorname{Ext}_{O_{X, w}}^{p+1}\left(O_{X, w} /\left(f_{1}, \ldots, f_{p}, f_{p+1}\right), \Omega_{O_{X, w} / \mathbb{Q}}^{p-1}\right)
$$

and $\partial_{1}^{p,-p}\left(\pi\left(Y^{\prime}\right)\right)=0$.
This lemma doesn't contradict Example 4.4, where $h \in(f, g, h) \subset O_{X, x}$.
Theorem 4.6. For $Y^{\prime} \in T_{Y} \operatorname{Hilb}^{p}(X)$ generically defined by $\left(f_{1}+\varepsilon g_{1}, f_{2}, \ldots, f_{p}\right)$, where $g_{1}=a / b \in O_{X, y}=\left(O_{X, w}\right)_{P}$, we have:
Case 1: If $b \notin\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right)$, then $\pi\left(Y^{\prime}\right) \in T Z^{p}(X)$, i.e., $\partial_{1}^{p,-p}\left(\pi\left(Y^{\prime}\right)\right)=0$.
Case 2: If $b \in\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right)$, then there exist $Z \subset X$ of codimension p and $Z^{\prime} \in T_{Z} \operatorname{Hilb}^{p}(X)$ with $\pi\left(Y^{\prime}\right)+\pi\left(Z^{\prime}\right) \in T Z^{p}(X)$, i.e., $\partial_{1}^{p,-p}\left(\pi\left(Y^{\prime}\right)+\pi\left(Z^{\prime}\right)\right)=0$.

Proof. Case 1 is Lemma 4.5. Now we consider the case $b \in\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right)$. Since $b \notin\left(f_{1}, f_{2}, \ldots, f_{p}\right)$, we can write $b=\sum_{i=1}^{p} a_{i} f_{i}^{n_{i}}+a_{p+1} f_{p+1}^{n_{p+1}}$, where a_{p+1} is a unit in $O_{X, w}$ and each n_{j} is some integer. For simplicity, we assume each $n_{j}=1$ and $a_{p+1}=1$.

Since Y^{\prime} is generically given by $\left(f_{1}+\varepsilon g_{1}, f_{2}, \ldots, f_{p}\right)$, then $\pi\left(Y^{\prime}\right)$ is represented by the following diagram (where $g_{1}=a / b$):

$$
\left\{\begin{array}{ccc}
F_{\cdot}\left(f_{1}, f_{2}, \ldots, f_{p}\right) \quad \longrightarrow & \left(O_{X, w}\right)_{P} /\left(f_{1}, f_{2}, \ldots, f_{p}\right) \\
F_{p}\left(\cong\left(O_{X, w}\right)_{P}\right) & \xrightarrow{(a / b) d f_{2} \wedge \cdots \wedge d f_{p}} & F_{0} \otimes \Omega_{\left(O_{X, w}\right)_{P} / \mathbb{Q}}^{p-1}\left(\cong \Omega_{\left(O_{X, w}\right)_{P} / \mathbb{Q}}^{p-1}\right) .
\end{array}\right.
$$

Here, $F_{.}\left(f_{1}, f_{2}, \ldots, f_{p}\right)$ is of the form

$$
0 \rightarrow F_{p} \xrightarrow{A_{p}} F_{p-1} \xrightarrow{A_{p-1}} \cdots \xrightarrow{A_{2}} F_{1} \xrightarrow{A_{1}} F_{0},
$$

where each $F_{i}=\bigwedge^{i}\left(\left(O_{X, w}\right)_{P}\right)^{\oplus p}$. Let $\left\{e_{1}, \ldots, e_{p}\right\}$ be a basis of $\left(O_{X, w}\right)^{\oplus p}$; the map A_{p} is

$$
e_{1} \wedge \cdots \wedge e_{p} \rightarrow \sum_{j=1}^{p}(-1)^{j} f_{j} e_{1} \wedge \cdots \wedge \hat{e}_{j} \wedge \cdots e_{p}
$$

where \hat{e}_{j} means to omit the j-th term.
Noting

$$
\frac{1}{b}-\frac{1}{f_{p+1}}=\frac{-\sum_{i=1}^{p} a_{i} f_{i}}{b f_{p+1}}
$$

and each $f_{i}(i=1, \ldots, p)$ appears in A_{p}, the above diagram representing $\pi\left(Y^{\prime}\right)$ can be replaced by the following one:

$$
\left\{\begin{array}{ccc}
F_{\bullet}\left(f_{1}, f_{2}, \ldots, f_{p}\right) & \left(O_{X, w}\right)_{P} /\left(f_{1}, f_{2}, \ldots, f_{p}\right), \\
F_{p}\left(\cong\left(O_{X, w}\right)_{P}\right) & \xrightarrow{\left(a / f_{p+1}\right) d f_{2} \wedge \cdots \wedge d f_{p}} & \left.F_{0} \otimes \Omega_{\left(O_{X, w}\right)_{P} / \mathbb{Q}}^{p-1} \cong \Omega_{\left(O_{X, w}\right)_{P} / \mathbb{Q}}^{p-1}\right) .
\end{array}\right.
$$

Then $\partial_{1}^{p,-p}\left(\pi\left(Y^{\prime}\right)\right)$ is represented by the diagram

$$
\left\{\begin{array}{clc}
F_{\bullet}\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right) & \longrightarrow & O_{X, w} /\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right), \\
F_{p+1}\left(\cong O_{X, w}\right) & \xrightarrow{a d f_{2} \wedge \cdots \wedge d f_{p}} & \left.F_{0} \otimes \Omega_{O_{X, w} / \mathbb{Q}}^{p-1} \cong \Omega_{O_{X, w} / \mathbb{Q}}^{p-1}\right) .
\end{array}\right.
$$

Let P^{\prime} denote the prime $\left(f_{p+1}, f_{2}, \ldots, f_{p}\right) \subset O_{X, w}$. Then P^{\prime} defines a generic point $z \in X^{(p)}$ and one has $O_{X, z}=\left(O_{X, w}\right)_{P^{\prime}}$. We define the subscheme

$$
Z:=\overline{\{z\}}
$$

Let Z^{\prime} be a first-order infinitesimal deformation of Z, which is generically given by $\left(f_{p+1}+\varepsilon a / f_{1}, f_{2}, \ldots, f_{p}\right)$. Then $\pi\left(Z^{\prime}\right)$ is represented by the diagram

$$
\left\{\begin{array}{ccc}
F_{\bullet}\left(f_{p+1}, f_{2}, \ldots, f_{p}\right) & \left(O_{X, w}\right)_{P^{\prime}} /\left(f_{p+1}, f_{2}, \ldots, f_{p}\right) \\
F_{p}\left(\cong\left(O_{X, w}\right)_{P^{\prime}}\right) & \xrightarrow{\left(a / f_{1}\right) d f_{2} \wedge \cdots \wedge d f_{p}} & F_{0} \otimes \Omega_{\left(O_{X, w}\right)_{P^{\prime}} / \mathbb{Q}}^{p-1}\left(\cong \Omega_{\left(O_{X, w}\right)_{P^{\prime}} / \mathbb{Q}}^{p-1}\right),
\end{array}\right.
$$

and $\partial_{1}^{p,-p}\left(\pi\left(Z^{\prime}\right)\right)$ is represented by the diagram

$$
\left\{\begin{array}{ccc}
F_{\cdot}\left(f_{p+1}, f_{2}, \ldots, f_{p}, f_{1}\right) & \longrightarrow & O_{X, w} /\left(f_{p+1}, f_{2}, \ldots, f_{p}, f_{1}\right), \\
F_{p+1}\left(\cong O_{X, w}\right) & \xrightarrow{a d f_{2} \wedge \cdots \wedge d f_{p}} & F_{0} \otimes \Omega_{O_{X, w} / \mathbb{Q}}^{p-1}\left(\cong \Omega_{O_{X, w} / \mathbb{Q}}^{p-1}\right) .
\end{array}\right.
$$

Here, $F_{\mathbf{\bullet}}\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right)$ and $F_{.}\left(f_{p+1}, f_{2}, \ldots, f_{p}, f_{1}\right)$ are Koszul resolutions of $O_{X, w} /\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right)$ and $O_{X, w} /\left(f_{p+1}, f_{2}, \ldots, f_{p}, f_{1}\right)$, respectively.

These Koszul complexes $F_{\mathbf{\bullet}}\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right)$ and $F_{\mathbf{\bullet}}\left(f_{p+1}, f_{2}, \ldots, f_{p}, f_{1}\right)$ are related by the commutative diagram

(see [Griffiths and Harris 1978, p. 691]), where each D_{i} and E_{i} are defined as usual. In particular, $D_{1}=\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right), E_{1}=\left(f_{p+1}, f_{2}, \ldots, f_{p}, f_{1}\right)$, and A_{1} is the matrix

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 1 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

Since $\operatorname{det} A_{1}=-1$, one has
$\partial_{1}^{p,-p}\left(\pi\left(Z^{\prime}\right)\right)=-\partial_{1}^{p,-p}\left(\pi\left(Y^{\prime}\right)\right) \in \operatorname{Ext}_{O_{X, w}}^{p+1}\left(O_{X, w} /\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right), \Omega_{O_{X, w} / \mathbb{Q}}^{p-1}\right)$, and consequently, $\partial_{1}^{p,-p}\left(\pi\left(Z^{\prime}\right)+\pi\left(Y^{\prime}\right)\right)=0 \in H_{w}^{p+1}\left(\Omega_{O_{X, w} / \mathbb{Q}}^{p-1}\right)$. In other words,

$$
\pi\left(Z^{\prime}\right)+\pi\left(Y^{\prime}\right) \in T Z^{p}(X) .
$$

There exists the following commutative diagram, which is part of the commutative diagram of [Yang 2016c, Theorem 3.14] (taking $j=1$):

$$
\begin{aligned}
& \underset{x \in X^{(p)}}{\bigoplus_{x}} H_{x}^{p}\left(\Omega_{X / \mathbb{Q}}^{p-1}\right) \quad \mathrm{Ch} \underset{x[\varepsilon] \in X[\varepsilon]]^{p p}}{\longleftrightarrow} K_{0}^{M}\left(O_{X, x}[\varepsilon] \text { on } x[\varepsilon]\right) \\
& \partial_{1}^{p,-p} \downarrow \square d_{1, X \mid \varepsilon]}^{p,-p} \downarrow \\
& \bigoplus_{x \in X^{(p+1)}} H_{x}^{p+1}\left(\Omega_{X / \mathbb{Q})}^{p-1}\right) \stackrel{\mathrm{Ch}}{\cong} \bigoplus_{x[\varepsilon] \in X[\varepsilon]^{(p+1)}} K_{-1}^{M}\left(O_{X, x}[\varepsilon] \text { on } x[\varepsilon]\right)
\end{aligned}
$$

For $Y^{\prime} \in T_{Y} \operatorname{Hilb}^{p}(X)$, which is generically defined by $\left(f_{1}+\varepsilon g_{1}, f_{2}, \ldots, f_{p}\right)$ for $g_{1}=a / b \in O_{X, y}=\left(O_{X, w}\right)_{P}$, we use $F_{\bullet}\left(f_{1}+\varepsilon g_{1}, f_{2}, \ldots, f_{p}\right)$ to denote the Koszul complex associated to $f_{1}+\varepsilon g_{1}, f_{2}, \ldots, f_{p}$. Theorem 4.6 implies the following.

Case 1: If $b \notin\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right), \partial_{1}^{p,-p}\left(\pi\left(Y^{\prime}\right)\right)=0$, the commutative diagram

$$
\begin{array}{ccc}
\pi\left(Y^{\prime}\right) & \stackrel{\mathrm{Ch}}{\longleftarrow} \quad F_{\bullet}\left(f_{1}+\varepsilon g_{1}, f_{2}, \ldots, f_{p}\right) \\
\partial_{1}^{p,-p} \downarrow & \\
0 & \stackrel{\mathrm{Ch}}{\cong} d_{1, X[\varepsilon]}^{p,-p} \downarrow
\end{array} d_{1, X[\varepsilon]}^{p,-p}\left(F_{\bullet}\left(f_{1}+\varepsilon g_{1}, f_{2}, \ldots, f_{p}\right)\right)
$$

says $d_{1, X[\varepsilon]}^{p,-p}\left(F_{\bullet}\left(f_{1}+\varepsilon g_{1}, f_{2}, \ldots, f_{p}\right)\right)=0$.
Case 2: If $b \in\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right)$, we are reduced to considering $b=f_{p+1}$. Then there exist $Z \subset X$ which is generically defined by $\left(f_{p+1}, f_{2}, \ldots, f_{p}\right)$ and $Z^{\prime} \in T_{Z} \operatorname{Hilb}^{p}(X)$ which is generically defined by $\left(f_{p+1}+\varepsilon a / f_{1}, f_{2}, \ldots, f_{p}\right)$ such that $\partial_{1}^{p,-p}\left(\pi\left(Y^{\prime}\right)+\pi\left(Z^{\prime}\right)\right)=0$. We use $F_{.}\left(f_{p+1}+\varepsilon a / f_{1}, f_{2}, \ldots, f_{p}\right)$ to denote the Koszul complex associated to $f_{p+1}+\varepsilon a / f_{1}, f_{2}, \ldots, f_{p}$.

The commutative diagram

$$
\begin{aligned}
& \pi\left(Y^{\prime}\right)+\pi\left(Z^{\prime}\right) \stackrel{\mathrm{Ch}}{\longleftarrow} F_{\bullet}\left(f_{1}+\varepsilon a / f_{p+1}, f_{2}, \ldots, f_{p}\right)+F_{\bullet}\left(f_{p+1}+\varepsilon a / f_{1}, f_{2}, \ldots, f_{p}\right) \\
& \partial_{1}^{p,-p} \downarrow \quad d_{1, X[\varepsilon]}^{p,-p} \downarrow \\
& 0 \quad \stackrel{\mathrm{Ch}}{\cong} \quad d_{1, X[\varepsilon]}^{p,-p}\left(F_{\bullet}\left(f_{1}+\varepsilon a / f_{p+1}, f_{2}, \ldots, f_{p}\right)\right. \\
& \left.+F_{\bullet}\left(f_{p+1}+\varepsilon a / f_{1}, f_{2}, \ldots, f_{p}\right)\right)
\end{aligned}
$$

says $d_{1, X[\varepsilon]}^{p,-p}\left(F_{\bullet}\left(f_{1}+\varepsilon a / f_{p+1}, f_{2}, \ldots, f_{p}\right)+F_{\bullet}\left(f_{p+1}+\varepsilon a / f_{1}, f_{2}, \ldots, f_{p}\right)\right)=0$.
Recall that in [Yang 2016c, Definition 3.4 and Corollary 3.15], the p-th Milnor K-theoretic cycle is defined as

$$
Z_{p}^{M}\left(D^{\operatorname{Perf}}(X[\varepsilon])\right):=\operatorname{Ker}\left(d_{1, X[\varepsilon]}^{p,-p}\right)
$$

The above can be summarized as follows:
Theorem 4.7. For $Y^{\prime} \in T_{Y} \operatorname{Hilb}^{p}(X)$ generically defined by $\left(f_{1}+\varepsilon g_{1}, f_{2}, \ldots, f_{p}\right)$ for $g_{1}=a / b \in O_{X, y}=\left(O_{X, w}\right)_{P}$, we use $F_{\bullet}\left(f_{1}+\varepsilon g_{1}, f_{2}, \ldots, f_{p}\right)$ to denote the Koszul complex associated to $f_{1}+\varepsilon g_{1}, f_{2}, \ldots, f_{p}$.

Case 1: If $b \notin\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right)$, then

$$
F_{\cdot}\left(f_{1}+\varepsilon g_{1}, f_{2}, \ldots, f_{p}\right) \in Z_{p}^{M}\left(D^{\operatorname{Perf}}(X[\varepsilon])\right)
$$

Case 2: If $b \in\left(f_{1}, f_{2}, \ldots, f_{p}, f_{p+1}\right)$, we are reduced to considering $b=f_{p+1}$. Then there exist $Z \subset X$ which is generically defined by $\left(f_{p+1}, f_{2}, \ldots, f_{p}\right)$ and $Z^{\prime} \in T_{Z} \operatorname{Hilb}^{p}(X)$ generically defined by $\left(f_{p+1}+\varepsilon a / f_{1}, f_{2}, \ldots, f_{p}\right)$ such that $F_{\bullet}\left(f_{1}+\varepsilon a / f_{p+1}, f_{2}, \ldots, f_{p}\right)+F_{\bullet}\left(f_{p+1}+\varepsilon a / f_{1}, f_{2}, \ldots, f_{p}\right) \in Z_{p}^{M}\left(D^{\text {Perf }}(X[\varepsilon])\right)$.

The existence of Z and $Z^{\prime} \in T_{Z} \operatorname{Hilb}^{p}(X)$ has applications in deformation of
cycles; see [Yang 2016b] for a concrete example of eliminating obstructions to deforming curves on a threefold.

Acknowledgements

This short note is a follow-up to [Yang 2016a]. The author is very grateful to Mark Green and Phillip Griffiths for asking interesting questions. He is also very grateful to Spencer Bloch, for ideas shared during discussions at Tsinghua University in the spring of 2015 and fall of 2016, as well as Christophe Soulé (Remark 4.3).

The author thanks the following professors for discussions: Benjamin Dribus, David Eisenbud, Jerome Hoffman, Luc Illusie, Chao Zhang. He also thanks the anonymous referee(s) for professional suggestions that improved this note a lot.

References

[Angéniol and Lejeune-Jalabert 1989] B. Angéniol and M. Lejeune-Jalabert, Calcul différentiel et classes caractéristiques en géométrie algébrique, Travaux en Cours 38, Hermann, 1989. MR Zbl
[Balmer 2007] P. Balmer, "Supports and filtrations in algebraic geometry and modular representation theory", Amer. J. Math. 129:5 (2007), 1227-1250. MR Zbl
[Balmer and Schlichting 2001] P. Balmer and M. Schlichting, "Idempotent completion of triangulated categories", J. Algebra 236:2 (2001), 819-834. MR Zbl
[Cortiñas et al. 2009] G. Cortiñas, C. Haesemeyer, and C. A. Weibel, "Infinitesimal cohomology and the Chern character to negative cyclic homology", Math. Ann. 344:4 (2009), 891-922. MR Zbl
[Dribus et al. 2018] B. F. Dribus, J. W. Hoffman, and S. Yang, "Tangents to Chow groups: On a question of Green-Griffiths", Boll. Unione Mat. Ital. 11:2 (2018), 205-244. MR
[Gillet and Soulé 1987] H. Gillet and C. Soulé, "Intersection theory using Adams operations", Invent. Math. 90:2 (1987), 243-277. MR Zbl
[Green and Griffiths 2005] M. Green and P. Griffiths, On the tangent space to the space of algebraic cycles on a smooth algebraic variety, Annals of Mathematics Studies 157, Princeton University Press, 2005. MR Zbl
[Griffiths and Harris 1978] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978. MR Zbl
[Hartshorne 1966] R. Hartshorne, Residues and duality, Lecture Notes in Mathematics 20, Springer, 1966. MR Zbl
[Yang 2016a] S. Yang, "Deformation of K-theoretic cycles", preprint, 2016. arXiv
[Yang 2016b] S. Yang, "Eliminate obstructions: Curves on a 3-fold", preprint, 2016. arXiv
[Yang 2016c] S. Yang, "On extending Soulé's variant of Bloch-Quillen identification", preprint, 2016. To appear in Asian J. Math. arXiv

Received 6 Feb 2018. Revised 14 May 2018. Accepted 30 May 2018.
SEN YANG: syang@math.tsinghua.edu.cn
School of Mathematics and Shing-Tung Yau Center, Southeast University, Nanjing, Jiangsu, China and
Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

ANNALS OF K-THEORY

msp.org/akt

Annals of K-Theory is a journal of the K-Theory Foundation (ktheoryfoundation.org). The K-Theory Foundation acknowledges the precious support of Foundation Compositio Mathematica, whose help has been instrumental in the launch of the Annals of K-Theory.

See inside back cover or msp.org/akt for submission instructions.
The subscription price for 2018 is US $\$ 475 /$ year for the electronic version, and $\$ 535 /$ year $(+\$ 25$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Annals of K-Theory (ISSN 2379-1681 electronic, 2379-1683 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

AKT peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2018 Mathematical Sciences Publishers
ANNALS OF K-THEORY2018vol. 3no. 4
The A_{∞}-structure of the index map 581
Oliver Braunling, Michael Groechenig and Jesse WOLFSON
Localization C^{*}-algebras and K-theoretic duality 615
Marius Dadarlat, Rufus Willett and Jianchao Wu
Hecke modules for arithmetic groups via bivariant K-theory 631 Bram Mesland and Mehmet Haluk Şengün
The slice spectral sequence for singular schemes and applications 657
Amalendu Krishna and Pablo Pelaez
K-theory, local cohomology and tangent spaces to Hilbert schemes 709
SEN Yang
Droites sur les hypersurfaces cubiques 723
Jean-Louis Colliot-Thélène

