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Using K-theory, we construct a map 7 : TyHilb?(X) — H) (Qf&é) from the tan-
gent space to the Hilbert scheme at a point Y to the local cohomology group. We
use this map 7 to answer (after slight modification) a question by Mark Green
and Phillip Griffiths on constructing a map from the tangent space Ty Hilb” (X) to

the Hilbert scheme at a point Y to the tangent space to the cycle group 727 (X).

1. Introduction

Let X be a smooth projective variety over a field k of characteristic 0 and let ¥ C X
be a subvariety of codimension p. Considering Y as an element of Hilb? (X), it
is well known that the Zariski tangent space TyHilb” (X) can be identified with
HO(Y, Ny,x), where Ny, x is the normal sheaf.

The element Y also defines an element of the cycle group Z”(X). We are
interested in defining the tangent space TZ”(X) to the cycle group Z”(X). In
[Green and Griffiths 2005], Mark Green and Phillip Griffiths define T7Z” (X) for
p = 1 (divisors) and p = dim(X) (0-cycles) and leave the general case as an
open question. Much of their theory was extended by Benjamin Dribus, Jerome
W. Hoffman and the author in [Dribus et al. 2018; Yang 2016a]. In [Yang 2016a],
we define TZ7(X) for any integer p satisfying 1 < p < dim(X), generalizing
Green and Griffiths’ definitions. We recall the following fact from [Yang 2016a]
for our purpose, and refer to [Green and Griffiths 2005; Yang 2016a] for definition
of TZ?(X).

Theorem 1.1 [Yang 2016a, Theorem 2.8]. For X a smooth projective variety over
a field k of characteristic O and for any integer p > 1, the tangent space TZ? (X)
is identified with Ker(3]"~"):

TZP(X) = Ker(d] "),
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where 8{’ " s the differential of the Cousin complex [Hartshorne 1966] of Q[;( /(LID
in position p:

p.

p—1 p—1 +1 p—1

0= 0=~ P HP(QX/@)_> D HM Q) ~
yeX(P) xeX P+

We want to study the relation between Ty Hilb? (X) and TZ” (X). The following
question is suggested in [Green and Griffiths 2005, pp. 18 and 87-89].

Question 1.2 [Green and Griffiths 2005]. For X a smooth projective variety over
a field k of characteristic 0 and for any integer p > 1, is it possible to define a
map from the tangent space TyHilb?” (X) to the Hilbert scheme at a point Y to the
tangent space to the cycle group 7Z7(X)?

For p = dim(X), this has been answered affirmatively in [Green and Griffiths
2005, Section 7.2].

Theorem 1.3 [Green and Griffiths 2005]. For p =d := dim(X), there exists a map
TyHilb? (X) - TZ4(X)

from the tangent space to the Hilbert scheme at a point Y to the tangent space to

the cycle group.

The main result of this short note is to construct a map
. 1
m : TyHilb? (X) — H (QF )

(see Definition 4.1), and use this map to study the above Question 1.2.

In Example 4.4, we show, for a general subvariety ¥ C X of codimension p
and Y’ € TyHilb”(X), that 7(Y’) may not lie in TZ”(X) (the kernel of 3"~ ").
However, we show in Theorem 4.6 that there exist Z C X of codimension p and
Z' € Tz7Hilb? (X) such that 7 (Y") +7(Z') € TZP(X).

As an application, we show how to find Milnor K-theoretic cycles in Theorem 4.7.
In [Yang 2016b], we will apply these techniques to eliminate obstructions to de-
forming curves on a threefold.

Notations and conventions.

(1) K-theory used in this note is Thomason—Trobaugh nonconnective K-theory, if
not stated otherwise.

(2) For any abelian group M, Mg denotes the image of M in M ®z Q.
(3) X[e] denote the first-order trivial deformation of X, i.e.,

X[e]l = X xx Spec(k[e]/(¢%)),

where k[e]/ (€?) is the ring of dual numbers.
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2. K-theory and tangent spaces to Hilbert schemes

For X a smooth projective variety over a field k of characteristic 0 and ¥ C X
a subvariety of codimension p, leti : ¥ — X be the inclusion. Then i, Oy is a
coherent Ox-module and can be resolved by a bounded complex of vector bundles
on X. Let Y’ be a first-order deformation of Y, that is, Y cX [&] such that Y is
flat over Spec(k[e]/(sz)) and Y’ ®klel/e2) k =Y. Then i, Oy can be resolved by a
bounded complex of vector bundles on X[e], where i : Y X [e].

Let DP*™(X[g]) denote the derived category of perfect complexes of Ox|[e]-
modules, and let L;)(X[¢]) C DPf(X[e]) be defined as

L) (X[e]) := {E € D*"(X[e]) | codimg (supph(E)) > —i},

where the closed subset supph(E) C X is the support of the total homology of the
perfect complex E.

The resolution of i, Oys, which is a perfect complex of Ox[e]-modules supported
on Y, defines an element of the Verdier quotient £_ ) (X[e])/L—p—1)(X[e]), de-
noted [i, Oy/].

In general, the length of the perfect complex [i, Oy/] may not be equal to p.
Since Y C X is of codimension p, we expect the perfect complex [i,Oy’] to
be of length p. To achieve this, instead of considering [i,Oy’] as an element
of the Verdier quotient £_,)(X[e])/L—p—1)(X[€]), we consider its image in the
idempotent completion (E(_p)(X[e])/ﬁ(_p_l)(X[e]))#, denoted [i.Oy/]*, where
the idempotent completion is in the sense of [Balmer and Schlichting 2001]. We
have the following result:

Theorem 2.1 [Balmer 2007]. For eachi € Z, localization induces an equivalence

(Liy(X[eD)/La—1y(X[e])* =~ |_| DE?g(X[S])
x[eleX[e]D

between the idempotent completion of L;)(X[e]l)/Li—1)(X[g]) and the coproduct
over x[e] € X[e]©) of the derived category of perfect complexes of Ox[el.x[el-
modules with homology supported on the closed point x[e] € Spec(Ox[e].x[e])-
Consequently, one has

Ko((Lay(X[eD/Li—n(X[eD)F) = P Ko(Dlp(X[eD).
x[eleX[g]D

Let y be the generic point of Y and let Zy be the ideal sheaf of Y. Then there
exists the short exact sequence

0—Zy - Ox — i,0y — 0,
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whose localization at y is the short exact sequence
0— (Iy)y —> OX,y — (l'*OY)y — 0.

We have Oy,y, = Ox,,/(Zy),. Since Oy, is a field, (Zy), is the maximal ideal
of the regular local ring (of dimension p) Oy ,. So the maximal ideal (Zy), is
generated by a regular sequence fi, ..., f, of length p.

Let Zy be the ideal sheaf of Y’, so Zy//(¢)Zy, = Zy because of flatness. So we
have (Iy/)y/(é‘)(ny)y = (Iy)y. Lift f1,..., fp to f1+eg1, ..., fp +egp in (ny)y,
where g1, ..., gy € Ox,y. Then fi +e¢g1, ..., f, + &g, generates (Zy'), because
of Nakayama’s lemma:

Zy)y=(f1+eg1, .-, [p+egp).

Moreover, fi+é&gi1,..., fp +£gp is a regular sequence, which can be checked
directly.

We see that Y is generically defined by a regular sequence fi, ..., f, of length p,
where fi, ..., f, € Ox . Moreover, Y’ is generically given by lifting fi, ..., f, to
fitegi, ..., fptegp, where gy, ..., g, € Ox y. Let F,(fi+eg1, ..., fp+egy) de-
note the Koszul complex associated to the regular sequence f1+é&gi, ..., f, +£gp,
which is a resolution of Oy ,[e]/(f1 +¢€g1, ..., fp+€gp):

A A, A A
0— Fp 5 Fpoy —> -+ =5 F| = Fy— 0,

where each F; = /\i(OX,y[s])GBI’ and A; : /\i(OX,y[s])@f’ — /\i_l(OX,y[s])@f’ are
defined as usual.

Under the equivalence in Theorem 2.1, the localization at the generic point y
sends [i, Oy ]* to the Koszul complex F,(f1 +¢&g1, ..., fp+¢€gp):

[ix Oy 1" — F.(fi+eg1, ... fp+egp).
Milnor K-groups with support are rationally defined in terms of eigenspaces of

Adams operations in [Yang 2016c] as follows:

Definition 2.2 [Yang 2016c, Definition 3.2]. Let X be a finite equidimensional
noetherian scheme and x € X, For m € Z, the Milnor K-group with support
K,],‘f (Ox x on x) is rationally defined to be

KM(Ox.; on x) := K" ") (0x., on x)q,

where K77 is the eigenspace of ¥* = k”*/ and y* are the Adams operations.

Theorem 2.3 [Gillet and Soulé 1987, Proposition 4.12]. The Adams operations
Yk defined on perfect complexes (defined in [Gillet and Soulé 1987]) satisfy

Wk(F.(fl +8g15 ""fp+8gp)) :ka.(fl +8g1’ st fp +8gp)-
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Hence, F,(f1+¢€g1, ..., fp +€gp) is of eigenweight p and can be considered
as an element of K p)(OX yle] on y[eDa:

F.(fi+egi.... fr+egp) € K (Oxylel on yleDa = K (Ox,yle] on ylel).
Definition 2.4. We define a map u : TyHilb” (X) — Ké” (Ox,yle] on y[e]) by

pw:Y = F.(fi+egi, ... fr+egp).

3. Chern character

For any integer m, let K ,51' )(O x,yle] on y[e], &)q denote the weight i eigenspace of
the relative K-group, that is, the kernel of the natural projection

. =0 .
KD (0x.,le] on y[el)g —— KD (0x., on y)a.

Recall that we have proved the following isomorphisms in [Dribus et al. 2018;
Yang 2016¢]:

Theorem 3.1 [Dribus et al. 2018, Corollary 9.5; Yang 2016¢, Corollary 3.11]. Let
X be a smooth projective variety over a field k of characteristic 0 and let y € XP).
The Chern character (from K-theory to negative cyclic homology) induces isomor-
phisms o
l
K\ (Ox yle] on ylel, )a = HP (23)0)

between relative K-groups and local cohomology groups, where

., 1 20— —1 . .

Qx%zﬁ};/amﬂ) if Xm+p)<i<m+p,

3(% =0 else.

The main tool for proving these isomorphisms is the space-level versions of
Goodwillie’s and Cathelineau’s isomorphisms, proved in [Cortifias et al. 2009, Ap-
pendix B].

Let K nﬁ” (Ox,yle] on y[e], €) denote the relative K-group, that is, the kernel of
the natural projection

=0
K%(Ox,y[s] on y[e]) = K%(Ox,y on y).

In other words, KM (Ox y[¢] on y[e], £) is K\ " (Ox y[€] on y[e], £)g. In partic-
ular, by taking i = p and m = 0 in Theorem 3.1, we obtain the following formula:

Corollary 3.2. K(Z)V’(Ox,y[s] on yle], e ) = H”(QX/@)

Definition 3.3. Let X be a smooth projective variety over a field k of characteristic
0 and let y € XP, There exists a natural surjective map

Ch: KJ'(Ox.yle] on y[e]) — HEP (2% 4).
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which is defined to be the composition of the natural projection
K" (Ox ylel on yle]) — Kq'(Ox,yle] on yle]. &)
and the isomorphism
K" (Oxyle] on ylel, &) = HP (@Y q)-
Now we recall a beautiful construction of Angéniol and Lejeune-Jalabert, which

describes the map

Ch: KJ'(Oxyle] on yle]) — HP (2% q)
in Definition 3.3.
An element M € Ké”(OX,y[s] on y[e]) C Ko(Ox,y[e] on y[e])q is represented
by a strict perfect complex L, supported at y[e]:

M, M, M, M,
0> F,—5F_ — . ...—=SF — Fy— 0,

where each F; = Ox ,[¢]" and the M; are matrices with entries in Oy ,[¢].
Definition 3.4 [Angéniol and Lejeune-Jalabert 1989, p. 24]. The local fundamen-
tal class attached to this perfect complex is defined to be the collection

1 .
(L] = {FdM,- odMiy, o-~-odMi+p_1}, i=0,1,...,

where d = dg and each dM; is the matrix of absolute differentials. In other words,

Theorem 3.5 [Angéniol and Lejeune-Jalabert 1989, Lemma 3.1.1, p. 24 and Def-
inition 3.4, p. 29]. The class [L,]ioc above is a cycle in Hom(L., ng Jlel/Q & L.),
and the image of [L.lioc in H? (Hom(L,, ng,y[s]/@ ® L,)) does not dépend on the
choice of the basis of L,.

Since

HP (Hom(L., ), .10 ®L.)) = EXT? (L., 24, 1.0 ®L.),

the local fundamental class [L.]joc defines an element in EXT7(L,, ng,,[s] /a ®L.):
P
[L.Jioc € SXTP(L., QOX_),[S]/@ ® L.)

Noting L, is supported on y (same underlying space as y[e]), there exists the fol-
lowing trace map (see [Angéniol and Lejeune-Jalabert 1989, p. 98-99] for details):

. p p
Tr: EXTP (L., Qp, o/ ® L) = HY (Qyp/0)-

Definition 3.6 [Angéniol and Lejeune-Jalabert 1989, Definition 2.3.2, p. 99]. The
image of [L,]joc under the above trace map, denoted Vf., is called the Newton class.
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Ko(Ox,yle] on y[e]) is the Grothendieck group of the triangulated category
Db(0 x,yle] on y[e]), which is the derived category of perfect complexes of Oy y[£]-
modules with homology supported on the closed point y[e] € Spec(Ox y[¢]). Re-
call that the Grothendieck group of a triangulated category is the monoid of iso-
morphism objects modulo the submonoid formed from distinguished triangles.

Theorem 3.7 [Angéniol and Lejeune-Jalabert 1989, Proposition 4.3.1, p. 113].
The Newton class Vf. is well-defined on Ko(Ox y[€] on y[e]).

The truncation map J Qf([ Y e Qﬁ;& induces a map

%)E:O
J d
de

Lemma 3.8. The map

1
HY (Qy1,1/0) = HY (Q0)-

e= 0

Ch: KO (Ox,yle] on y[e]) — HP(SZX/@)
from Definition 3.3 can be described as a composition

K{'(Ox ylel on yle]) > EXTP (L., Q) [8]/@®L)—>H () — HY (Qf(/é)
J

L. L > V) > VL.J -

8:0'

In particular, for the Koszul complex F,(f1+¢g1, ..., fp+&gp) in Definition 2.4,
the Ch map can be described as follows. The diagram

F.(fi+egi, ..., [p+egy) —— Ox,lel/(fi+egi,.... fr+egp),

~ [Feltoc V4 ~ p
F[J(: OX,y[S]) > Fy® QOX,y[S]/@(: QOXJ,-[S]/@)’

where [F,Jioc is the local fundamental class attached to F,(f1 +&g1, ..., fp +£8p),
gives an element in Extgx [SJ(OX ylel/(fi+egr, ..., fp+egp), QX[W@) This,
moreover, gives an element in H (Q X[e] /@) denoted Vp

We use F,(f1, ..., fp) to denote the Koszul Complex associated to the regular
sequence f, .. fp, which is a resolution of Ox.,y/(f1, ..., fp). The truncation
of VF in ¢ produces an element in Hj A3 X /@) which can be represented by the
diagram

F.(flwn’fp) — OX,y/(flwn’fp),

)
~ [F-]IOCJ e e 1
Fp(E 0xy) ——— RoQy ! o(=95) o).

For simplicity, assuming g, = - - - = g, = 0, we see that

[F.]IOCJ 88_8‘ =gidfan---Adfy
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and the truncation of Vﬁ_ in ¢ is represented by the diagram

Fo(fl?""fp) —_— OXy/(fl»--- fp

N gidfan--Adf, 1
Fp(=0x,) ———> F@Qp  o(=Q0, o)

Further concrete examples can be found in [Green and Griffiths 2005, Chapter 7,
p- 90-91].

4. The map ©

Definition 4.1. We define a map from TyHilb” (X) to Hy PP /@) by composing
Ch in Definition 3.3 with w in Definition 2.4:

7 TyHilb? (X) 2 KM (O yle] on yle]) => HP 2@ 0)-

Recall that the Cousin complex of Q /@ is of the form

1
0— Qk(x)/@ N QB H”(QX/@) AN @ HP* (QX/@)—>

yeX(l’) xeXPt+h

and the tangent space 7Z”(X) is identified with Ker(af ""Py (see Theorem 1.1).
For p =d := dim(X), af*“’ = 0 because of dimensional reasons. So

7Z4(X) =Ker(@" ™) = @ HI(Q%d)-
)EX({[)

Corollary 4.2. For p =d := dim(X), the map 7 defines a map from TyHilb? (X)
to TZ4(X) and it agrees with the map by Green and Griffiths in Theorem 1.3.

We want to know, for general p, whether this map m defines a map from
TyHilb? (X) to TZP(X), as Green and Griffiths asked in Question 1.2.

Remark 4.3. In an email to the author, Christophe Soulé suggested considering
the image of suitable Koszul complexes under the Ch map in Definition 3.3. This
leads us to the following example, showing that & does not define a map from
TyHilb? (X) to TZ?(X) in general. The Koszul complex technique is also used in
Theorem 4.6.

The author sincerely thanks Christophe Soulé for very helpful suggestions.

Example 4.4. For a smooth projective threefold X over a field k of characteristic 0,
let Y C X be a curve with generic point y. We assume a point x € Y C X is defined
by (f, g, h) and Y is generically defined by (f, g). Then Ox y = (Ox 1) (r.q)-

We consider the infinitesimal deformation Y’ of ¥ which is generically given
by (f+e¢/h,g), where 1/h € Ox y = (Ox ) (1. Note 1/h ¢ Ox . The Koszul
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complex of (f +¢&/h, g) is of the form

(8.—f—e/M)! (f+e/h.g)
0= (Ox.0)fple]l ——— (0x.0) &[] ———5> (Ox.x)(1.0)[e] = O,
where (—, —)T denotes transpose.
The image 7 (Y') € Hyz(Qﬁ( /@) is represented by the diagram

(/dg

{(OX,x)q,g) — (0x.)(F o = (0Ox.) (1.9 = (Ox.) 1.0/ (f. 8) = 0,
(Ox)(fe) = (04 ) 10/Q"

Let F,(f, g, h) be the Koszul complex of f, g, h:
0— Ox,— 0;?,1 — 0;?,1 — Ox . — 0.
Then 87" 2((Y")) in H? (Qk/@) is represented by the diagram

[F.(f’ gvh) —_— OX,X/(.ﬁ g’h)a

ldg

1
OX,x > QOX,x/@’

which is not zero.

This example shows that, in general, the image of 7 may not lie in 7Z” (X)(the
kernel of 8{’ "~P). However, we will show, in Theorem 4.6 below, that given Y C X
of codimension p and Y’ € TyHilb”(X), there exists Z C X of codimension p and
Z' € TzHilb?(X) such that 7 (Y’) + 7 (Z’) is a nontrivial element of TZ? (X).

To fix notation, let X be a smooth projective variety over a field k of charac-
teristic 0 and let Y C X be a subvariety of codimension p with generic point y.
Let W C Y be a subvariety of codimension 1 in ¥ with generic point w. One
assumes W is generically defined by fi, f2,..., fp, fp+1 and Y is generically
defined by fi, f2,..., fp. So one has Oy, = (Ox ,)p, Where P is the ideal
(f1, f2, -5 fp) C Ox w.

The element Y’ is generically given by (f; +eg1, f>+¢eg2, ..., fp+egp), where

81,-..,8p € Ox,y. Weassume g =--- =g, =0. Since Ox y = (Ox, ,)p, We write
g1 =a/b, where a,b € Ox ., and b ¢ P. In Theorem 4.6, we will consider the
cases of whether or not b is in the maximal ideal (f1, f2, ..., fp, fp+1) C Ox,w-

Lemma 4.5. Ifb ¢ (f1, f2, .-\ [os fo+1), then 3]~ P ((Y')) =0.

Proof. If b ¢ (f1, f2, ..., [p, fp+1), then b is a unitin Ox 4, 0 g1 =a/b € Ox y.
Then 7 (Y’) is represented by the diagram

F.(f1s far s fp) —— (Ox,w)p/(f1s f2r-oos fp)s

~ gidfan-Ndfy p—1 ~ ~p—1
Fp(= (Ox,w)p) > Fo® o, )p0(E 0y,)p0)
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Here, F,(f1, f2, ..., fp) is of the form

A, Apy A A
0— F,~—> Fpoy — - > F| — F,
where each F; = /\i((ox’w)P)@P, Since f,41 ¢ P, fp_+11 exists in (Ox y)p, and
we can write
g1fp+1

p+1

gidfa N+ Ndfy = ———dfr A--- Ndfy.

Now 9P ((Y")) is represented by the diagram
F.(f1, far o5 fps fot1) — Ox,w/(f1, f2r oy fps fpt1),
N 1 for1dfs Ao Adf,
Fp+1(: OX’w) M} FO ® QOX /@( QOX /@)

The complex F,(f1, f2,..., fp, fp+1) is of the form

+1 A
0=/ (0x.)®" " 5 N (0x) ! —

Let {ey, ..., ep11} be a basis of (Ox ,)®PT!; the map A, is
p+1
CIA- - ANepr — Z(—l)ffjel/\---/\éj/\---e,,+1,
Jj=1

where ¢; means to omit the j-th term.
Since f,4+1 appearsin A1,

1
g1 fprrdfa A Adfy =0 €BXUYT (Oxw/(fisoos for For) 2L 1)
and 3] P (x (Y")) = 0. O
This lemma doesn’t contradict Example 4.4, where h € (f, g, h) C Ox x.

Theorem 4.6. For Y’ € TyHilb?(X) generically defined by (fi + g1, fa, -+ fp)s
where g1 =a/b € Ox y = (Ox y)p, we have:

Case 1: Ifb ¢ (f1, fou -\ fps fo+1)s thent(Y') € TZP(X), ice., 3] P (m(Y")) =0.

Case 2: If b e (fi1, f2, .-, fps fpt1), then there exist Z C X of codimension p and
Z' € TAHIb? (X) with (Y +n(Z') € TZP (X)), i.e., Bf’_p(n(Y/) +n(Z)) =0.

Proof. Case 1 is Lemma 4.5. Now we consider the case b € (fi, fz, e Jps fpr1).
Since b ¢ (f1, f2, ..., fp), We can write b = Zl Lai fi —I-aerlfp+1 , Where ap41
isaunitin Oy 4, and each n; is some integer. For simplicity, we assume eachn; =1
and apq = 1.
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Since Y is generically given by (fi+¢€g1, f2, ..., fp), then w(Y’) is represented
by the following diagram (where g; = a/b):
Fo(flvaa--~’fp) - (OXw)P/(fl,wa--»f),
N (a/b)dfan--ndf 1
Fp(=(Oxw)p) —— Fo® Qfox p10(E Qfo;:mp/@)'

Here, F,(f1, f2, ..., fp) is of the form

A Ap 1 Az
0— F, —>Fp1—> —>F1—>F0,
where each F; = /\"((OXM)p)@P. Let {e1,...,ep,} be a basis of (Ox,,,)®?; the
map A, is

elA---/\ep—>Z(—l)jfjel/\---/\éj/\--~ep,
j=1

where ¢; means to omit the j-th term.

Noting »

l _ 1 - Zizl a; fi
b f[’-i-l bfp—i-l

and each f; (i =1,..., p) appears in A, the above diagram representing 7 (Y”)

can be replaced by the following one:

E.(f1s far oo fp) — (Ox,w)p/(f1, f2r s [p),
N (@/fp+1)dfarn-Adf,
FP(= (OX,w)P) AR ‘ FO®Q(0X w)P/@( Q(OX UJ)P/@)

Then 8"~ " (7 (Y")) is represented by the diagram
IFo(flv f2,---,fp,fp+l) — OXw/(fl f2"'~ fp,fp+1)s

~ adfa A+ Ndf, 1
Fpi1(= Ox,0) ——> FR® Qp /@( QOX w/@)
Let P’ denote the prime (fy+1, f2, ..., fp) C Ox . Then P’ defines a generic
point z € X and one has Ox.; = (Ox. y)p'. We define the subscheme

={z}.

Let Z’ be a first-order infinitesimal deformation of Z, which is generically given
by (fp+1+¢ea/fi, fo,..., fp). Then w(Z’) is represented by the diagram

F.(fp+1s f2s oo fp) — (Ox.w)p [ (fp+1s J2s s [p)s

~ (a/fr)dfan-ndf, 1
Fp(= (OX,w)P/) 19 F0®Q(pOXw)P,/@(— (OXu)P,/@)

and 311’ "P(7(Z")) is represented by the diagram



720 SEN YANG

adfyA--Ndfy,

Fo(fp-i—]vaa"'vfp’f]) ? OX,UJ/(fp-‘r]»fZa"'7fpvf1)a
Fra(E0xy) b ROQG 0@ ).

Here, F,(f1, f2, ..., fp, fp+1) and F.(fp41, f2, ..., fp, f1) are Koszul resolutions
of Ox w/(f1, f2, -\ fp, fp+1) and Ox w/(fps1, f2, ..., fp, f1), respectively.

These Koszul complexes F,(f1, f2, ..., fp. fp+1) and F.(fp1, f2, -, fpo 1)
are related by the commutative diagram

D, D

Dp+1
p A®p+1 ®p+1
OX,w > /\ OX,w OX,w > OX,w

et | A | al -]

Ep+1 E E
P H®p+1 P @Sp+1 1
Oxw —> N\ Oy, Ox.w Ox.u

(see [Griffiths and Harris 1978, p. 691]), where each D; and E; are defined as usual.

In particular7 Dl = (fl? f27 LI ] fpv fp+1)7 El = (fp+17 f27 L] fp9 fl)’ and Al is
the matrix

000 ---1
010---0
001---0
100---0

Since det A; = —1, one has
= ,— 1 -1
O (2 == P (Y €Bxty! (Oxw/(fin fo oo Fo For1)- 20 )
and consequently, 3] " (n(Z)+ 7 (Y') =0¢€ H£+1(Q’5;1w/@). In other words,
7(ZY+nY)eTZ?(X). O

There exists the following commutative diagram, which is part of the commuta-
tive diagram of [Yang 2016¢, Theorem 3.14] (taking j = 1):

® HIQLY) <2 @ K(Ox.lelonxe))

xex®» x[eleX[e]P)

p.—p p.—p
3] l dl,X[E]l

@S HIT(@f0) <= @ KM (Oxulslonxle)

xeX(P+Dh x[s]eX[a](P“)

11

For Y’ € TyHilb? (X), which is generically defined by (fi +¢g1. f2, ..., fp) for
gi=a/be Ox = (0xw)p,weuse F,(fi+¢eg1, f2, ..., fp) to denote the Koszul
complex associated to f| + g1, f2, ..., fp. Theorem 4.6 implies the following.
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Case 1: It b & (f1, f2, s [ps fpt1)s a{’"”(n(y/)) =0, the commutative diagram

(YY) <2 F(fitegt foees f)

alp‘_pl d{f’;[f]l
Ch _
0 <@ AL E gt e )

Says dﬁ;[g](Fo(fl +8g1’ f2, st fp)) =0

Case 2: If b € (f1, f2,..., [p, fp+1), we are reduced to considering b = f, ;.
Then there exist Z C X which is generically defined by (f,41, f2,..., fp) and
Z' € TzHilb?(X) which is generically defined by (f,+1+¢a/ fi, f2. ..., fp) such
that 80" " (w(Y") + 7 (Z)) =0. We use F.(fp4+1 +¢€a/fi, fa, ..., f,) to denote
the Koszul complex associated to f,11 +¢€a/ fi1, f2, ..., fp-

The commutative diagram

T[(Y/)+7T(Z/) (iFO(f1+8a/fp+1’f2’""fp)+F-(fp+1+8a/fl’ f2""7fp)

— p.—p
3117 pl dl,X[s]l

0 ¥y (F(fitea/ fpias oo fp)
+F-(fp+1 +eal/ f1, fa, ..., fp))

SayS dﬁ;{g](F-(fl +8a/fp+l, f2, R ] fp) +Fo(fp+1 +8a/f1s f2a R ] fp)) :0
Recall that in [ Yang 2016c, Definition 3.4 and Corollary 3.15], the p-th Milnor
K-theoretic cycle is defined as

||eTQ

M ; Perf o p.—p
Z (D™ (X[e])) :=Ker(d{ 7))
The above can be summarized as follows:

Theorem 4.7. For Y' e TyHilb?(X) generically defined by (f1 +¢gi1, f2, ..., fp)
for g1 =a/b € Oxy = (Oxw)p, we use F,(fi +¢&g1, f2,..., fp) to denote the
Koszul complex associated to fi + g1, f2, ..., fp-

Case 1: If b ¢ (f1. f2, .- fps fp41), then
F.(fi+eg1, fa, ., fp) € Z) (DP(X[e])).

Case 2: If b € (f1, f2, .-+, fp» fp+1), we are reduced to considering b = f,41.
Then there exist Z C X which is generically defined by (fy41, f2, ..., fp) and
Z' € TZHilb? (X) generically defined by ( fp4+1 +¢€a/ fi, fa, ..., fp) such that

F.(fi+ea/ forts fro oo [) FF(fpa1+eal fis fo. ... fp) € ZN (DY (X[e])).

The existence of Z and Z' € TzHilb”(X) has applications in deformation of
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cycles; see [Yang 2016b] for a concrete example of eliminating obstructions to
deforming curves on a threefold.
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