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Segal operations in the algebraic K-theory
of topological spaces

Thomas Gunnarsson and Ross Staffeldt

We extend earlier work of Waldhausen which defines operations on the algebraic
K-theory of the one-point space. For a connected simplicial abelian group X and
symmetric groups 6n , we define operations θn

: A(X)→ A(X × B6n) in the
algebraic K-theory of spaces. We show that our operations can be given the
structure of E∞-maps. Let φn : A(X× B6n)→ A(X× E6n)' A(X) be the 6n-
transfer. We also develop an inductive procedure to compute the compositions
φn ◦ θ

n , and outline some applications.

1. Introduction

Let X be a connected simplicial abelian group, let 6n be the symmetric group on
n letters, and let B6n be the classifying space. Our goal is to define a family of
Segal operations

θn
: A(X)−→ A(X × B6n)

satisfying the properties listed in Theorems 1.1 and 1.3 below. We follow [Wald-
hausen 1982] in our naming convention, which can be explained as follows. Around
1972, Graeme Segal [1974b] defined a set of operations in stable homotopy theory
θn
: π s

i (S
0)→ π s

i ((B6n)+), verified certain properties and used the information to
give a proof of the Kahn–Priddy theorem. The key to the Kahn–Priddy proof is a
certain relation satisfied by the composition of an operation followed by a transfer
homomorphism.

Waldhausen [1982] adapted the construction in [Segal 1974b] to define oper-
ations θn

: A(∗)→ A(B6n), and proved these new operations have properties
precisely analogous to fundamental properties of Segal’s original operations. Con-
sequently, Waldhausen used the same notation and called the operations “Segal
operations”.

We obtain the following result.

We thank Friedhelm Waldhausen for suggesting this problem, and we thank the Institut für Mathe-
matik of the University of Osnabrück for its hospitality and institute faculty members for their interest
and encouragement.
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Theorem 1.1. Given a connected simplicial abelian group X , there are maps
θn
: A(X)→ A(X × B6n) which have the following properties.

(1) The map θ1 is the identity.

(2) The combined map

θ =
∏
n≥1

θn
: A(X)→ {1}×

∏
n≥1

A(X × B6n)

has the structure of an E∞-map if the target is equipped with the E∞-structure
arising from certain pairings A(X× B6m)× A(X× B6n)→ A(X× B6n+m)

derived from the box-tensor operation of Definition 3.10.

The first property is a normalization condition, as satisfied by the constructions
of Segal and Waldhausen. The second property implies that for every j > 0 the op-
erations induce homomorphisms π j A(X)→{1}×

∏
n≥1 π j A(X × B6n) when the

target is given a particular algebraic structure. A third algebraic property of Wald-
hausen’s operations is recalled in Proposition 8.1. This third property is crucial in
the applications made by Segal and Waldhausen. Our extended operations exhibit
a more technical algebraic property stated in Theorem 1.3 and Theorem 8.12.

A large part of our work follows [Gunnarsson and Schwänzl 2002] in which
many results are developed for quite general situations, satisfying certain technical
conditions. Part of this paper verifies these conditions. In order to explain the
necessity of this technical work, we repeat several definitions from [Gunnarsson
and Schwänzl 2002] and quote many results.

In Section 2 the main results are Proposition 2.17 and Theorem 2.1. For the pur-
poses of algebraic K-theory we verify exactness properties of certain constructions;
to prepare for the E∞-structure we verify coherence properties.

In Section 3 we recall the G•-construction for algebraic K-theory [Gunnarsson
et al. 1992; Grayson 1989] and prepare the constructions underlying the definition
of the operations in Definition 3.29.

In Section 4 we set up to apply general machinery, taking the first step toward
a main result: For X a connected simplicial abelian group, there is an operation

ω =
∏
n≥1

ωn
: A(X)−→ {1}×

∏
n≥1

A6n,{all}(X) (1.2)

which is a map of E∞-spaces with respect to specific algebraic structures described
in Section 4. The target of ω is the algebraic K-theory of 6n-spaces retracting
to X (with the trivial 6n-action) and relatively finite with respect to X . See
Definition 3.5. In the first step the E∞-structure is only visible if we restrict to
spherical objects. The next section addresses this problem.
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In Section 5 we study how the functors from Definition 3.29 interact with sus-
pension operators. At the end of the section we complete the construction of the
operation displayed in (1.2).

In Theorem 6.1, we split A6n,{all}(X) as a product of the algebraic K-theory of
other spaces, one of which is A(X × B6n). This corresponds to the subcategory of
6n-spaces retracting to X (with the trivial 6n action), relatively finite with respect
to X , and with 6n acting freely outside of X . We also obtain an expression for the
composite functors “projecting to the free part”

θn
: A(X) ωn

−→ A6n,{all}(X)→ A(X × B6n).

This expression is used in Section 8.
In Section 7 we establish equivalences among various models for equivariant

K-theory and discuss the functors that induce transfer operations.
In Section 8 our main computational result evaluates the composition

A(X) θ
n
−→ A(X × B6n)

φn
−→ A(X),

where φn is the transfer map.

Theorem 1.3 (Theorem 8.12). Let X be a connected simplicial abelian group,
thinking of the group operation as a multiplication, and let τ n

: X → X be the
homomorphism that raises elements to the n-th power. Then

φnθ
n
∗
= (−1)n−1

· (n− 1)! · τ n
∗
: π j A(X)→ π j A(X)

for j > 0.

We conclude this introduction with some comments on applications. First, we
recall one formulation of the Kahn–Priddy theorem in stable homotopy theory. Let
Q(X)=�∞S∞(X+) denote unreduced stable homotopy theory and define reduced
stable homotopy theory Q̃(X) = fiber(Q(X)→ Q(∗)), the homotopy fiber. For
each n there is a transfer map Q(B6n)→ Q(E6n)' Q(∗), and, by composition,
there results a map Q̃(B6n)→ Q(∗). The formulation of the Kahn–Priddy theorem
that we prefer is that the map

π j (Q̃ B6p)(p)→ π j (Q(∗))(p)

of homotopy groups localized at a prime p is surjective for j > 0.
Waldhausen’s analogue of this result applies to the algebraic K-theory of the

one-point space. For the formulation we let A(X) denote the algebraic K-theory
of the space X and let Ã(X)= fiber(A(X)→ A(∗)) be the algebraic K-theory of
X reduced relative to a point. Manipulations formally similar to those above yield
a map Ã(B6n)→ A(∗) and the analogue of the Kahn–Priddy theorem is that the
induced map

π j ( Ã(B6p)(p)→ π j (A(∗))(p)



4 THOMAS GUNNARSSON AND ROSS STAFFELDT

of homotopy groups localized at p is surjective for j > 0. In [Waldhausen 1987]
these operations are further developed and used to prove that the third factor µ(X)
in the splitting

A(X)' Q(X+)×WhDiff(X)×µ(X)

is contractible, yielding the final result A(X)' Q(X+)×WhDiff(X). The signifi-
cance of this fact is developed in [Waldhausen et al. 2013].

In our situation we fix as base space a connected simplicial abelian group X and
define reduced algebraic K-theory relative to X as

Ã(X × B6n rel X)= fiber(A(X × B6n)→ A(X)).

The inclusion of a point into B6n combined with the definition of the algebraic
K-theory of X × B6n reduced relative to X yields a splitting

π j A(X × B6n)∼= π j Ã(X × B6n rel X)⊕π j A(X) (1.4)

for any j ≥ 0. We have transfer maps φn : A(X × B6n)→ A(X × E6n)' A(X)
and a basic calculation in Lemma 7.8 that the composition

A(X)→ A(X × B6n)
φn
−→ A(X)

is multiplication by n! = |6n|, where the first map is induced by inclusion of a
point into B6n .

When we specialize n to a prime number p, we have the following observa-
tions. Make the following diagram of homotopy groups reduced mod p, where the
splitting (1.4) appears as the middle column:

π j Ã(X × B6p rel X)/pZ

��

φp∗

**

π j A(X)/pZ
θ

p
∗
// π j A(X × B6p)/pZ

φp∗
// π j A(X)/pZ

π j A(X)/pZ

i∗

OO

0

44

The diagonal arrow from the bottom row is multiplication by p! = |6p|, which is
0 modulo p. Thus, in terms of the splitting of π j A(X × B6p)/pZ given above,
on the second component of the image of θ p

∗ , the map φp∗ is zero. Applying
Theorem 8.12, φp∗ applied to the first component π j Ã(X × B6p rel X)/pZ of the
splitting contains the image of φp∗θ

p
∗ = (−1)p−1

· (p−1)! · τ p
∗ , where τ p

: X→ X
raises elements to the p-th power. The numerical factors are invertible mod p
so that

φp∗(π j Ã(X × B6p rel X)/pZ)⊃ Image τ p
∗
,

viewing τ p
∗ as an endomorphism of π j A(X)/pZ.
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From these calculations one extracts various additional observations. It may
happen that the p-th power homomorphism τ p is an isomorphism, as in the case
when X is a connected simplicial abelian group, finite in each simplicial dimension
and p is relatively prime to the order of Xn for each n. Then for j > 0,

φp∗ : π j Ã(X × B6p rel X)/pZ→ π j A(X)/pZ

is surjective. The next input is the following theorem.

Theorem 1.5 [Betley 1986, Theorem I]. If π1(X) is a finite group, and πi (X) is
finitely generated for all i ≥ 2, then π j (A(X)) is finitely generated for all j .

Then Nakayama’s lemma applies as in [Waldhausen 1982] to lift the result on
mod p homotopy to a result on p-localized homotopy. We obtain the following
theorem of Kahn–Priddy type.

Theorem 1.6. Let X be a connected simplicial abelian group, finite in each dimen-
sion, such that the order of Xn is prime to p. For j > 0 and p an odd prime, the
transfer induces surjections

π j Ã(X × B6p rel X)(p)→ π j A(X)(p)

on homotopy groups localized at p. �

In particular, take X = BC2 = RP∞ and p an odd prime. There are similar
statements for all the lens spaces BCq , q prime to p.

A very interesting case is X = BC∞, the classifying space of the infinite cyclic
group C∞. Of course X ' S1, and there are splittings-up-to-homotopy of infinite
loop spaces

A fd(S1)' A fd(∗)× BA fd(∗)× N−A fd(∗)× N+A fd(∗)

and

A fd(S1
× B6n)' A fd(B6n)× BA fd(B6n)× N−A fd(B6n)× N+A fd(B6n).

These are studied in [Klein and Williams 2008] and the first is examined in great
detail in [Grunewald et al. 2008]. In future work we would like to understand
the operations we have constructed in terms of these splittings. As a first step
in this direction we have shown in Section 4 that the operations we construct are
morphisms of infinite loop spaces. Should the θ operations be compatible with the
splitting, one must then investigate whether or not the θ operations commute with
the Frobenius and Verschiebung operations on the nil-terms defined in [Grunewald
et al. 2008].
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Our work also admits a generalization where X may be any connected space.
This result is a total operation

ω̃ : A(X)→ {1}×
∏
n≥1

A6n,{all}(Xn),

about which we know little at this point. Our experiments have also lead to the
observation that if G is a simplicial group, not necessarily abelian, whose real-
ization is homotopy equivalent to a finite CW -complex then there is a product
structure on A(BG). This will be the subject of a later paper. Finally, reversing
the progression from Segal’s original idea to Waldhausen’s generalization, we can
develop operations θn

: π s
∗
(X+)→ π s

∗
(X × B6n), where X is again a connected

simplicial abelian group.

2. The symmetric bimonoidal category of retractive spaces
over a connected simplicial abelian group

The category R(X) is the category of retractive simplicial sets (Y, r, s) over the
simplicial set X , where r : Y → X is a retraction, s : X → Y is a section for
r and morphisms (Y1, r1, s1) → (Y2, r2, s2) respect all the data. A cofibration
(Y1, r1, s1)� (Y2, r2, s2) in R f (X) is a map such that Y1 → Y2 is injective. A
weak equivalence is a map (Y1, r1, s1)→ (Y2, r2, s2) whose realization |Y1|→ |Y2|

is a homotopy equivalence of spaces. For algebraic K-theory we use the full sub-
category R f (X) of relatively finite retractive simplicial sets with cofibrations and
weak equivalences. “Relatively finite” means that there are only finitely many
nondegenerate simplices in Y−X . For background on the terminology, see [Wald-
hausen 1985, Section 1.1].

We aim to construct a total operation

θ : A(X)→ {1}×
∏
n≥1

A(X × B6n)

for X a connected simplicial abelian group with multiplication µ : X × X→ X and
to prove the operation has an E∞-structure. In order to achieve this, the elements
from which the construction is developed must be of high quality. The necessary
qualities are recorded in the first part of Theorem 2.1; the second part of the the-
orem records algebraic properties of the product operation ∧µ. We discuss first
the definition of the product operation, prove the second part of the theorem, and
finish this section with the proof of the first part of the theorem.

Concerning the first part of the theorem, our constructions require a coherence
result for diagrams involving sum and product operations, as provided by LaPlaza
[1972, Proposition 10]. His coherence theorem takes as input the commutativity
of 24 diagrams, reducible to a smaller, but still relatively large, subset [Laplaza
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1972, pp. 40–41]. We will see that the coherence properties we need rest on the
well-understood coherence properties of the one-point union and smash product of
pointed sets. On the other hand, the second part of the theorem involves properties
of the operations not reducible to dimensionwise considerations.

Theorem 2.1. Let X be a connected simplicial abelian group.

(1) The triple (R(X),∨X ,∧µ), where ∨X denotes the operation of union along
the common subspace X and ∧µ denotes the pairing (2.7), is a symmetric
bimonoidal category.

(2) The pairing ∧µ restricts to R f (X), where it is biexact, meaning exact in each
variable separately. Explicitly, the functors defined by – ∧µ Y and Y ∧µ –
preserve cofibrations, pushouts along cofibrations, and weak equivalences.

Our product operation ∧µ derives from an exterior smash product ∧e of retrac-
tive simplicial sets, following the exterior smash product of retractive spaces as
described in [May and Sigurdsson 2006]. Since we are working with simplicial sets,
our version of the exterior smash product has a description in terms of operations
on discrete sets, applied dimensionwise. See the discussion at the start of the proof
of part one of Theorem 2.1.

Definition 2.2. Let (Yi , ri , si ) be objects of R(X i ), for i = 1, 2. The exterior smash
product of (Y1, r1, s1) with (Y2, r2, s2) is in R(X1× X2), and the underlying space
Y1 ∧e Y2 completes the following square to a pushout:

Y1× X2 ∪X1×X2 X1× Y2 // //

r1×r2

��

Y1× Y2

��

X1× X2 //
s1∧e s2

// Y1 ∧e Y2

(2.3)

The square displays the section s1 ∧e s2; the retraction r1 ∧e r2 arises from the
universal property of the pushout.

Note that if both X1 and X2 are the one-point space, then this is the smash
product in the category of pointed spaces. Extending this idea, if x1 : {∗} → X1

and x2 : {∗} → X2 are two maps of the one-point space into X1 and X2, and we
take preimages r−1

1 (x1) and r−1
2 (x2), then these are pointed spaces, and there is an

injective map r−1
1 (x1)∧ r−1

2 (x2)→ Y1 ∧e Y2 over the point (x1, x2)∈ X1×X2. This
observation helps explain the “fiberwise smash product” terminology and indicates
how the coherence issues for products may be resolved at the level of pointed sets.
Examples 2.4 and 2.5 here play roles in the proof of part one of Theorem 2.1. Also,
since we work with simplicial sets, underlying the symmetric monoidal structure
(R(X),∨X ,∧µ) is the symmetric monoidal structure on the category of sets.
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Example 2.4. For any Y2 ∈ R(X2), note that X1∧e Y2∼= X1×X2, the “zero” object
in R(X1× X2). Colloquially, the exterior smash product of a terminal object with
any object yields a terminal object. Explicitly, a natural isomorphism

λ∗Y2
: X1 ∧e Y2→ X1× X2

arises from the following diagram by mapping the pushout of the top row to the
pushout of the bottom row:

X1× X2

=

��

X1× X2 ∪X1×X2 X1× Y2oo // //

∼=

��

X1× Y2

=

��

X1× X2 X1× Y2oo // // X1× Y2

Example 2.5. The bifunctor R(∗)×R(X)→R(X) given by (Y1, Y2) 7→ Y1∧e Y2

defines an action of R(∗) on R(X) after identifying {∗}×X with X in the canonical
way. This bifunctor also restricts to an action R f (∗)×R f (X)→R f (X).

This action has an identity element. Indeed, for S0
= {∗, ∗′} in R f (∗), with r

the constant map to the basepoint ∗, s the inclusion, and Y ∈R(X), the function
S0
× Y → Y defined by (∗, y) 7→ sr(y) and (∗′, y) 7→ y induces an isomorphism

S0
∧e Y

∼=
−→ Y of retractive spaces over X . An inverse to this isomorphism is

provided by y 7→ [(∗′, y)] ∈ S0
∧e Y .

Definition 2.6. Let X be a space with a multiplication µ : X2
→ X . We operate

on the category R(X), using the pairing

∧µ = µ∗ ◦∧e :R(X)×R(X) ∧e
−→R(X × X) µ∗−→R(X), (2.7)

where ∧e is the external smash product pairing defined in (2.3) and µ∗ is the functor
induced by the multiplication µ : X2

→ X . Explicitly, (Y1, r1, s1)∧µ (Y2, r2, s2)

completes the following diagram to a pushout:

Y1× X ∪X×X X × Y2

µ(r1,id)∪µ(id,r2)

��

// // Y1× Y2

��

X //
s

// Y1 ∧µ Y2

(2.8)

We use these notations to bring this section close to conformity with [Gunnars-
son and Schwänzl 2002]. Perfect conformity is not possible, for we must use
both the one-point union of pointed spaces ∨ and the union of two spaces along a
common subspace X , denoted ∨X . We also point out that the usual notation ∧ has
been used in [May and Sigurdsson 2006] for a product defined by restricting the
external smash product of two spaces over X to the diagonal of X × X .

The next lemma is used to develop properties of the smash products; the proof
will be given after demonstrating applications in Propositions 2.13 and 2.17.
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Lemma 2.9. Let C be a category with cofibrations and let

A2 B2oo // // C2

A1

OO

OO

��

B1oo // //

OO

OO

��

C1

OO

OO

��

A0 B0oo // // C0

(2.10)

be a commutative diagram in which the canonical map from B2 ∪B1 C1 to C2 is a
cofibration. Passing to pushouts by columns results in a diagram

A0 ∪A1 A2← B0 ∪B1 B2 � C0 ∪C1 C2 (2.11)

in which the right-pointing arrow is a cofibration. The diagram

A0 ∪B0 C0← A1 ∪B1 C1 � A2 ∪B2 C2 (2.12)

obtained by passing to pushouts by rows has a similar property.

Proposition 2.13. The exterior smash product ∧e is functorial for pairs of maps.
That is, given f1 : X1→ X ′1 and f2 : X2→ X ′2, the diagram

R f (X1)×R f (X2)
∧e
//

f1∗× f2∗
��

R f (X1× X2)

( f1× f2)∗
��

R f (X ′1)×R f (X ′2)
∧e
// R f (X ′1× X ′2)

(2.14)

commutes up to natural isomorphism.

Proof. For the naturality property of the external smash product, consider the dia-
gram

X1× X2 Y1× X2 ∪X1×X2 X1× Y2oo // // Y1× Y2

X1× X2

OO

OO

f1× f2
��

X1× X2oo

OO

OO

// //

f1× f2
��

X1× X2

OO

OO

f1× f2
��

X ′1× X ′2 X ′1× X ′2oo // // X ′1× X ′2

(2.15)

which fulfills the hypotheses of Lemma 2.9. Computing the colimits of the columns
in this diagram yields the diagram

X ′1× X ′2 ( f1∗Y1)× X ′2 ∪X ′1×X ′2 X ′1× ( f2∗Y2)
r ′1×r ′2
oo // // f1∗Y1× f2∗Y2,

whose pushout is by definition f1∗Y1 ∧e f2∗Y2.
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On the other hand, computing the colimits of the rows in the diagram yields the
diagram

X ′1× X ′2 X1× X2
f1× f2
oo // // Y1 ∧e Y2,

whose pushout is ( f1× f2)∗(Y1 ∧e Y2). Since both iterative procedures compute
the colimit of diagram (2.15), they are canonically isomorphic:

f1∗Y1 ∧e f2∗Y2 ∼= ( f1× f2)∗(Y1 ∧e Y2). �

As a consequence, we have the following result.

Proposition 2.16. Let X be a monoid with unit. The action of R(∗) on R(X) set
up in Example 2.5 may be made internal to R(X). Diagrammatically,

R(∗)×R(X)
ie∗×id

//

∧e

((

R(X)×R(X)

∧µ

��

R(X)

commutes up to natural isomorphism.

Proof. Let ie : {∗} → X be the inclusion of the one-point space to the identity
element of the monoid X . The functor ie∗ :R(∗)→R(X) sends a pointed retractive
space Y to X ∨ Y , where the base point of Y is identified with the unit element
of X . The new retraction collapses Y ⊂ X ∨ Y to the identity {e} in X . We have
the diagram

R(∗)×R(X)
∧e
//

ie∗×id
��

R({∗}× X)

(ie×id)∗
��

p2∗

&&

R(X)×R(X)
∧e
// R(X × X)

µ∗
// R(X)

The left-hand square commutes by Proposition 2.13, and the right-hand triangle
commutes because e is the monoid identity. The bottom row defines ∧µ and the
trip across the top defines the action of R(∗) on R(X). �

For example, this result has the consequence that coherent associativity for ∧µ
implies corresponding coherent associativity for the ∧e action of R(∗) on R(X).

Next, we record the biexactness property of the external smash product as de-
fined in the statement of Theorem 2.1.

Proposition 2.17. The external smash product functor

∧e :R f (X1)×R f (X2)→R f (X1× X2)

is biexact.
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Remark 2.18. In the approach of [May and Sigurdsson 2006] the external smash
product is shown to preserve all colimits by exhibiting a left adjoint functor. Their
approach uses properties of convenient categories of topological spaces.

For our applications in algebraic K-theory it seems more reasonable to give
arguments modeled on those of [Waldhausen 1985, Lemma 1.1.1], which serve to
illuminate other constructions we make.

Proof of Proposition 2.17. For simplicial sets, cofibrations are precisely the injec-
tions. Given a pair of cofibrations

(W1, r1, s1)� (W ′1, r
′

1, s ′1) and (W2, r2, s2)� (W ′2, r
′

2, s ′2)

in R f (X1) and R f (X2), respectively, the maps of differences of simplicial sets
W1−X1 → W ′1−X1 and W2 − X2 → W ′2 − X2 are injective maps of sets in
each simplicial dimension. The product of these maps is also injective. Since
(W1∧eW2)−X1×X2= (W1−X1)×(W2−X2), it follows that W1∧eW2�W ′1∧eW ′2
is also a cofibration. Finally, if W1− X1 and W2− X2 contain only finitely many
nondegenerate simplices, then the same is true of their product. Thus, the pairing
∧e restricts to a pairing of R f (X1)×R f (X2) to R f (X1× X2).

To prove that the functor Z ∧e (– ) : R f (X2)→ R f (X1× X2) preserves pushouts
of cofibrations, start by considering the diagram

X1× X2 Z × X2 ∪X1×X2 X1× Y2oo // // Z × Y2

X1× X2 Z × X2 ∪X1×X2 X1× Y1oo // //

OO

OO

��

Z × Y1

OO

OO

��

X1× X2 Z × X2 ∪X1×X2 X1× Y0oo // // Z × Y0

(2.19)

where the right-pointing arrows are induced from the retractions and the left-pointing
arrows are induced by inclusions. We verify the cofibration hypothesis of Lemma 2.9
using the following diagram to analyze the upper right-hand corner of (2.19):

Z×X2 ∪X1×X2 X1×Y2
xx

xx

(Z×X2 ∪X1×X2 X1×Y1)∪X1×Y1 X1×Y2
∼=
oo X1×Y2oo

Z×Y2 Z×X2 ∪X1×X2 X1×Y1

OO

OO

��

��

Z×X2 ∪X1×X2 X1×Y1
=

oo

OO

OO

��

��

X1×Y1oo

OO

OO

��

��

Z×Y1

ff

ff

Z×Y1
=

oo Z×Y1
=

oo

Pass to pushouts in the columns, apply the universal mapping properties of the
pushouts, and use isomorphism (2.24) to simplify the pushout of the middle column
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to obtain the commuting diagram

Z×Y1 ∪X1×Y1 X1×Y2

∼=
��

Z×Y1 ∪X1×Y1 X1×Y2
∼=

oo

��

��

Z×Y1 ∪(Z×X2∪X1×X2 X1×Y1) (Z×X2 ∪X1×X2 X1×Y2) // Z × Y2

The space Z×Y1∪X1×Y1 X1×Y2 is a subspace of Z×Y2, so the downward arrow on
the right is a cofibration. Since isomorphisms are cofibrations, it follows that the
lower arrow is also a cofibration. Thus, we have verified the cofibration condition
of Lemma 2.9 for (2.19).

We may now calculate the colimit of diagram (2.19) by two different iterative
procedures. Computing the pushouts of the rows first and applying Lemma 2.9
gives a diagram

Z ∧e Y2 � Z ∧e Y1→ Z ∧e Y0 (2.20)

and calculating the pushouts of the columns first and applying Lemma 2.9 again
gives a another diagram

X1× X2← Z × X2 ∪X1×X2 X1× (Y0 ∪Y1 Y2)� Z × (Y0 ∪Y1 Y2). (2.21)

To see this formula for the middle object in (2.21), make the following considera-
tions. We have the diagram

Z2× X2 X1× X2oo // // X1× Y2

Z2× X2

OO
=

OO

=

��

X1× X2oo // //

OO
=

OO

=

��

X1× Y1

OO

OO

��

Z2× X2 X1× X2oo // // X1× Y0

(2.22)

meeting the conditions of Lemma 2.9, whose colimit we also compute iteratively.
Computing the pushouts of the rows first gives precisely the middle column in
(2.19), whose pushout we are now evaluating. On the other hand, computing the
pushouts along the columns first gives a diagram

Z2× X2← X1× X2 � X1× (Y2 ∪Y1 Y0)

whose pushout is the middle term displayed in (2.21). As the iterated pushouts of
(2.22) are isomorphic to the colimit of the entire diagram, the iterated pushouts are
isomorphic. This justifies (2.21).

Completing the analysis of diagram (2.19), the pushouts of (2.20) and (2.21) are
isomorphic, because they both represent the colimit of the original diagram (2.19).
Interpreting this statement, we have the result that Z ∧e – preserves pushouts of
cofibrations.
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Suppose f1 : Y1→ Y ′1 and f2 : Y2→ Y ′2 are weak equivalences in R f (X1) and
R f (X2), respectively. That is, the geometric realizations | f1| and | f2| are homo-
topy equivalences. Then | f1| × id|X2| and id|X1|× | f2| are homotopy equivalences.
By the ordinary gluing lemma for homotopy equivalences applied to the diagram

|Y1| × |X2|

| f1|×id|X2|
��

|X1| × |X2|oooo // //

id|X1|×id|X2|
��

|X1| × |Y2|

id|X1|×| f2|
��

|Y ′1| × |X2| |X1| × |X2|oooo // // |X1| × |Y ′2|

the central arrow in

|X1| × |X2|

id|X1|×id|X2|
��

|Y1| × |X2| ∪|X1|×|X2| |X1| × |Y2|oo // //

'

��

|Y1| × |Y2|

| f1|×| f2|
��

|X1| × |X2| |Y ′1| × |X2| ∪|X1|×|X2| |X1| × |Y ′2|oo // // |Y ′1| × |Y
′

2|

is also a homotopy equivalence. Since the pushout of the last diagram is homeo-
morphic to |Y1 ∧e Y2| → |Y ′1 ∧e Y ′2| (“colimits commute”), Y1 ∧e Y2→ Y ′1 ∧e Y ′2 is
a weak equivalence. �

Remark 2.23. The external smash product also preserves many colimits. How-
ever, our applications principally involve the special colimits that are pushouts of
cofibration squares.

Here is the postponed proof of Lemma 2.9.

Proof of Lemma 2.9. We make frequent use of the isomorphism

(A∪B C)∪C D ∼= A∪B D. (2.24)

The canonical arrow B2∪B1 B0→C2∪C1 C0 factors into the composition of canon-
ical arrows induced by passing to pushouts of the columns in the map of diagrams

B2
=
// B2 // // C2

B1

OO

OO

=
//

��

B1 // //

OO

OO

��

C1

OO

OO

��

B0 // // C0
=
// C0

We show each arrow in the factorization is a cofibration. The first arrow in the
factorization appears as the lower row in the completed pushout diagram

B0 // //

��

C0

��

B2 ∪B1 B0 // // (B2 ∪B1 B0)∪B0 C0
∼=
// B2 ∪B1 C0
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augmented by an isomorphism, so the first arrow is a cofibration, as claimed. From
the hypothesis on the canonical map from B2 ∪B1 C1 to C2, the upper arrow in the
next diagram is a cofibration, so the lower arrow in the completed pushout diagram
is as well:

B2 ∪B1 C1 // //

��

C2

��

B2 ∪B1 C0 (B2 ∪B1 C1)∪C1 C0
∼=
oo // // C2 ∪B2∪B1 C1 ((B2 ∪B1 C1)∪C1 C0)

∼=
// C2 ∪C1 C0

Augmenting the completed pushout diagram by the two isomorphisms, the second
arrow B2 ∪B1 C0→ C2 ∪C1 C0 in the factorization is also a cofibration. Then the
composition B2 ∪B1 B0 � B2 ∪B0 C0 � C2 ∪C1 C0 is a cofibration and this arrow
is isomorphic to the arrow in diagram (2.11).

To obtain the result for the row-wise pushouts from the result for columnwise
pushouts, observe that the properties of the arrows in the diagram are symmetric
with respect to reflection in the diagonal A0 B1C2. Therefore, it suffices to reflect
the diagram in this diagonal and apply the columnwise result. �

Proof of the second part of Theorem 2.1. Since the functor

µ∗ :R f (X × X)→R f (X)

is exact [Waldhausen 1985, Lemma 2.1.6], and we have seen that ∧e is biexact in
Proposition 2.17, the composite ∧µ = µ∗ ◦∧e is biexact. �

Now we take up coherence properties.

Proof of the first part of Theorem 2.1. It is well-known that the disjoint union of sets
and the one-point union ∨ of pointed sets are categorical sum operations, so that all
coherence conditions for these operations are automatically met. For the category
of sets containing a fixed set S the union ∨S of two sets along the common subset
is also the categorical sum, so ∨S fulfills all coherence conditions. Concerning
products, the cartesian product of sets and the smash product of pointed sets are
operations also meeting coherence conditions. When these operations of sum and
product are considered together, they are related by distributivity isomorphisms,
and the combined systems exhibit the coherence properties discussed in [Laplaza
1972]. It is possible to develop the coherence properties we need for operations
on retractive spaces from these basic elements by developing the operation ∨X

dimensionwise and pointwise over X from one-point union and the operation ∧e

dimensionwise and pointwise over X1× X2 from the smash product of pointed sets.
Compare the remark following Definition 2.2. We take a different approach here.

For the sum ∨X , we need a slight extension of the union of sets along a common
subset to cover the case of the disjoint union of two simplicial sets along a common
simplicial subset. Let T be the category of triples (T, r : T → S, s : S→ T ), where
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S and T are sets and the functions satisfy r ◦ s = idS . Occasionally, it is convenient
to view S as a subset of T. A morphism

( f, f ′) : (T1, r1 : T1→ S1, s1 : S1→ T1)→ (T0, r0 : T0→ S0, s0 : S0→ T0)

is a pair of maps f : T1→ T0 and f ′ : S1→ S0 such that s0 f ′= f s1 and r0 f = f ′r1.
An object (Y, r, s) of R(X) can be viewed as a functor 1op

→ T , and conversely.
There is a functor u : T → Set that selects the subset S and morphisms f ′ : S1→ S0.
On the pullback category

T ×Set T //

��

T × T
u×u
��

Set 1
// Set×Set

define the operation (T1, r1 : T1→ S, s1 : S→ T1)∨S (T2, r2 : T2→ S, s2 : S→ T2),
abbreviated (T1, r1, s1)∨S (T2, r2, s2), or even T1 ∨S T2. Set

T1 ∨S T2 = T1q T2 /∼,

where ∼ is the equivalence relation generated by setting s1(x)∼ s2(x) for x ∈ S.
Set i j : T j → T1 ∨S T2 to be the inclusion T j → T1q T2 followed by the quotient
map to T1 ∨s T2. For the rest of the structure, set

r : T1 ∨S T2→ S

to be the unique function satisfying ri j = rj , for j = 1, 2, and let

s : S→ T1 ∨S T2

satisfy s(x)= i1s1(x)= i2s2(x) for x ∈ S. Define

(i1, i ′1 = id) : (T1, s1, r1)→ (T1 ∨S T2, r, s)

to obtain a morphism in T . The identities ri1 = i ′1r1 and si ′1 = i1s1 are satisfied by
definition and by the condition r1s1 = id. Define

(i2, i ′2) : (T2, s2, r2)→ (T1 ∨S T2, r, s).

similarly. If (T ′, r ′, s ′) is another object of T , let ( fi , f ′i ) : (Ti , ri , si )→ (T ′, r ′, s ′)
be a morphism in T ×Set T for i = 1, 2. This just means that f ′1 = f ′2 : S→ S′.
Then the categorical sum properties of the disjoint union on the category Set and
the quotient construction deliver a unique morphism

(h, h′) : (T1 ∨S T2, r ′, s ′)→ (T ′, r ′, s ′)
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such that (h, h′)◦ (i1, i ′1)= ( f1, f ′1) and (h, h′)◦ (i2, i ′2)= ( f2, f ′2). When the base
set is fixed, we obtain a categorical sum; in general, when the base set varies, we
obtain a (partially defined) categorical sum on T .

We have observed that an object of the category R(X) is a simplicial object
in the category T , that is, a functor 1op

→ T . A pair of objects (Y1, r1, s1) and
(Y2, r2, s2) in R(X) defines a functor 1op

→ T ×Set T . We obtain the operation
(Y1, r1, s1)∨X (Y2, r2, s2) based on the dimensionwise operation (Y1)p ∨X p (Y2)p.
This makes ∨X a categorical sum in R(X), with unit (zero element, thinking
additively) the space X . The commutativity isomorphisms γ ′, associativity iso-
morphisms α′, and left and right unit isomorphisms λ′ and ρ ′ are straightforward
consequences of the analogous properties of the disjoint union operation on sets.
Essentially, all the basic properties required for coherence of the sum operation
∨X are automatically fulfilled. That ∨X is the categorical sum simplifies almost
all coherence considerations involving diagrams involving both ∨X and ∧µ.

To complete the input for LaPlaza’s coherence result we need to identify in
R(X) an additive identity, a multiplicative zero element, a multiplicative identity,
commutativity and associativity isomorphisms for ∧µ, and, finally, distributivity
isomorphisms.

Clearly (X, id, id) is the identity for ∨X . Example 2.4 implies that (X, id, id) is
a zero object from the left and the right for ∧µ, in the sense that there are natural
isomorphisms

λ∗Y : X ∧µ Y → X and ρ∗Y : Y ∧µ X→ X.

Example 2.5 combined with Proposition 2.16 delivers the fact that ie∗(S0)= X∨S0,
where the base point of S0 is identified with the multiplicative identity of X and
the retraction collapses S0 to the identity of X , is a multiplicative identity in the
sense that there are natural isomorphisms

λY : (X∨S0)∧µ Y → Y and ρY : Y ∧µ (X∨S0)→ Y.

For commutativity of the product ∧µ = µ∗ ◦∧e, we have the following consid-
erations. Use commutativity for cartesian products and apply the definitions from
(2.8) of the internal smash product to obtain the following diagram:

X X × X
µ
oo

γ

��

Y1× X ∪X×X X × Y2oo // //

γ

��

Y1× Y2

γ

��

X X × X
µ
oo Y2× X ∪X×X X × Y1oo // // Y2× Y1

(2.25)

In the diagram the arrows labeled γ are the isomorphisms switching the factors in
the cartesian products. Note that

r1 ∧µ r2 = µ∗(r1 ∧e r2)= r1 · r2 = r2 · r1 = µ∗(r2 ∧e r1)= r2 ∧µ r1,
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since X is abelian. Passage to pushouts yields an isomorphism

γY1,Y2 : (Y1 ∧µ Y2, r1 ∧µ r2, s1 ∧µ s2)
∼=
−→ (Y2 ∧µ Y1, r2 ∧µ r1, s2 ∧µ s1).

It is easily seen that γY2,Y1γY1,Y2 = id holds (often written “γ 2
= id” and called the

inverse law), and that the left and right unit laws are compatible. These facts are
recorded in the following commuting diagrams:

Y2 ∧µ Y1
γY2,Y1

%%

Y ∧µ (X∨S0)
γY,X∨S 0

//

ρY
$$

(X∨S0)∧µ Y

λYyy
Y1 ∧µ Y2

γY1,Y2
88

Y1 ∧µ Y2 Y

Consider now associativity, for which we use the diagram

((Y1× Y2)× X)∪ ((Y1× X)× Y3)
∪((X × Y2)× Y3)

µ(µ(r1,r2),id)∪µ(µ(r1,id),r3)

∪µ(µ(id,r2),r3)
vv

// // (Y1× Y2)× Y3

X

((Y1× X)× X)
∪ ((X × Y2)× X)

OO

OO

(µ(r1,id),id)
∪(µ(id,r2),id)

��

µ(µ(r1,id),id)
∪µ(µ(id,r2),id)

vv

//
=

// ((Y1× X)× X)
∪ ((X × Y2)× X)

OO

OO

(µ(r1,id),id)
∪(µ(id,r2),id)

��

X
OO

=

OO

=

��

X × X
µ

uu

//
=

// X × X

X

(2.26)

The point is that the associativity for ∧µ rests on associativity for ×, ∪, and associa-
tivity of the multiplication µ on X . By passage to colimits we obtain associativity
for ∧µ. For the usual smash product, associativity for cartesian products passes to
associativity for smash products; our argument is similarly structured.

The first step is to obtain an expression for (Y1 ∧µ Y2) ∧µ Y3 that involves
only cartesian products and colimits. Diagram (2.26) fulfills the hypotheses of
Lemma 2.9, so we may calculate the colimit iteratively in two ways. Taking the
colimit along the columns produces the diagram

X ((Y1 ∧µ Y2)× X)∪ (X × Y3)
µ(r12,id)∪µ(id,r3)
oo // // (Y1 ∧µ Y2)× Y3
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whose colimit is by definition (Y1 ∧µ Y2)∧µ Y3. On the other hand, computing the
colimit along the rows produces the diagram

((Y1× Y2)× X)∪ ((Y1× X)× Y3)
∪ ((X × Y2)× Y3)

µ(µ(r1,r2),id)∪µ(µ(r1,id),r3)

∪µ(µ(id,r2),r3)
vv

// // (Y1× Y2)× Y3

X

a copy of the top row in (2.26). Therefore, the colimit, or pushout, of this diagram
is another representation of (Y1∧µ Y2)∧µ Y3, and we record the completed diagram

((Y1× Y2)× X)∪ ((Y1× X)× Y3)
∪ ((X × Y2)× Y3)

µ(µ(r1,r2),id)∪µ(µ(r1,id),r3)∪µ(µ(id,r2),r3)

��

// // (Y1× Y2)× Y3

��

X // // (Y1 ∧µ Y2)∧µ Y3

(2.27)

as a preferred alternative representation of (Y1 ∧µ Y2)∧µ Y3. Starting from a di-
agram similar to (2.26), but with parentheses shifted to the right, there is another
completed pushout diagram

(Y1× (Y2× X))∪ (Y1× (X × Y3))
∪ (X × (Y2× Y3))

µ(r1,µ(r2,id))∪µ(r1,µ(id,r3))∪µ(id,µ(r2,r3))

��

// // Y1× (Y2× Y3)

��

X // // Y1 ∧µ (Y2 ∧µ Y3)

(2.28)

representing Y1 ∧µ (Y2 ∧µ Y3). Consequently, the associativity isomorphisms

αY1,Y2,Y3 : Y1× (Y2× Y3)→ (Y1× Y2)× Y3,

αY1,Y2,X : Y1× (Y2× X)→ (Y1× Y2)× X,

and so on, induce an isomorphism of diagram (2.28) with diagram (2.27) and an
associativity isomorphism

αY1,Y2,Y3 : Y1 ∧µ (Y2 ∧µ Y3)→ (Y1 ∧µ Y2)∧µ Y3. (2.29)

In Laplaza’s framework [1972], left distributivity of the product over the sum
operation is encoded by a monomorphism

δY0,Y1,Y2 : Y0 ∧µ (Y1 ∨X Y2)→ (Y0 ∧µ Y1)∨X (Y0 ∧µ Y2).

The fact that ∨X is a categorical sum enables us to construct an isomorphism
δ−1

Y0,Y1,Y2
: (Y0 ∧µ Y1) ∨X (Y0 ∧µ Y2)→ Y0 ∧µ (Y1 ∨X Y2) quite easily as follows.

Applying the functor Y0 ∧µ – to the sum diagram Y1→ Y1 ∨X Y2← Y2 provides a
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diagram Y0∧µ Y1→ Y0∧µ (Y1∨X Y2)← Y0∧µ Y2. Since ∨X is a categorical sum,
there results a map (Y0∧µY1)∨X (Y0∧µY2)→ Y0∧µ (Y1∨X Y2). To check that this
map is an isomorphism observe that in a simplicial dimension p the p-simplices
outside of X in the domain are (Y0−X)p×(Y1−X)pq(Y0−X)p×(Y2−X)p, the
p-simplices outside of X in the target are (Y0−X)p×((Y1−X)pq(Y2−X)p), and
the induced map is a one-to-one correspondence. Thus, we obtain the isomorphism
δ−1

Y0,Y1,Y2
: (Y0 ∧µ Y1)∨X (Y0 ∧µ Y2)→ Y0 ∧µ (Y1 ∨X Y2), whose inverse

δY0,Y1,Y2 : Y0 ∧µ (Y1 ∨X Y2)∼= (Y0 ∧µ Y1)∨X (Y0 ∧µ Y2) (2.30)

can be shown to meet LaPlaza’s conditions. Similarly, we obtain an isomorphism

δ#
Y0,Y1,Y2

: (Y0 ∨X Y1)∧µ Y2 ∼= (Y0 ∧µ Y2)∨X (Y1 ∧µ Y2). (2.31)

This concludes the catalog of basic inputs for LaPlaza’s theorem.
Given the basic inputs, the next step is to establish the commutativity of certain

diagrams, twenty-four in number. Because ∨X is a categorical sum and ∧µ is
biexact, preserving sums, checking the commutativity of seventeen of the diagrams
is routine. The other seven diagrams involve the multiplicative or additive neutral
objects or the multiplicative zero object and are straightforward to verify. LaPlaza’s
main theorem applies and “all diagrams that should commute do, in fact, commute”.
These remarks complete the proof of part one of Theorem 2.1. �

3. Defining the operations

The ingredients for the operations take values in categories of retractive spaces
on which groups are acting. We first establish language and notation following
[Gunnarsson and Schwänzl 2002, Definitions 5.1–5.4] for the following definitions.

Definition 3.1. A set F of subgroups of 6n is called a family of subgroups if it
contains at most one member from each conjugacy class of subgroups.

Definition 3.2. For a finite group G, a G-simplicial set Y has orbit types in a family
F relative to another G-simplicial set W if Y may be obtained from W by direct
limit and by formation of pushouts of diagrams of the form

Y ′← ∂1n
× (G/H)�1n

× (G/H), (3.3)

where 1n is the standard simplicial n-simplex, ∂1n is the simplicial boundary,
and H ∈ F .

Definition 3.4. For a 6n-simplicial set W, let R(W, 6n,F) denote the category
whose objects are the triples (Y, r, s), where Y is a 6n-simplicial set with orbit
types in F relative to a 6n-section s : W → Y . The map r : Y → W is a 6n-
retraction of Y to W , that is, r ◦ s = idW . Morphisms are 6n-equivariant maps
commuting with the retractions and sections.
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Definition 3.5. Let R f (W, 6n,F) denote the full subcategory of R(W, 6n,F)
whose objects are the triples (Y, r, s) such that Y is built from W by formation of
finitely many pushouts of the form of (3.3). The category R f (W, 6n,F) is also
equipped with cofibrations and weak equivalences. A cofibration (W1, r1, s1)�
(W2, r2, s2) is an injective6n-map and a weak equivalence (Y1, r1, s1)→(Y2, r2, s2)

is a morphism for which the geometric realization of the underlying map Y1→ Y2

is a 6n-equivariant homotopy equivalence.

For X a connected simplicial abelian group on which 6n acts trivially, we need
the categories R f (X, 6n, {all}) of retractive left 6n-spaces Ỹ over X which are fi-
nite relative to X . In principle, we may also allow X to be a connected commutative
simplicial monoid with unit. We write�|wS•R f (X, 6n, {all})| = A6n,{all}(X). The
category of retractive left 6n-spaces on which 6n acts with trivial isotropy outside
of X is then R f (X, 6n, {e}). In other words, the 6n-action on simplices outside of
X is free on those simplices. Later, we abbreviate R f (X, 6n, {e}) = R f (X, 6n).
In Lemma 7.3 we justify the notation �|wS•R f (X, 6n, {e})| = A(X × B6n).

There are two constructions underlying our approach to the Segal operations.
First is a family of biexact functors

�k,` :R f (X, 6k, {all})×R f (X, 6`, {all})→R f (X, 6k+`, {all})

defined for k, ` ≥ 0, called box-tensor operations (Definition 3.10). Second is a
family of functors

�n,k :R f (X, 6n, {all})[k]→R f (X, 6kn, {all}),

called diamond operations (Definition 3.16). Here R f (X, 6n, {all})[k] is the cate-
gory of filtered objects

Y1 � Y2 � · · ·� Yk

with Yi in R f (X, 6n, {all}) and natural transformations of such sequences.
First we set up the box-tensor operation. For a connected simplicial abelian

group X , let n = k+ ` and define an induction functor

Ind6n
6k×6`

:R f (X, 6k ×6`, {all})→R f (X, 6n, {all}). (3.6)

Let n be a finite set of cardinality n (for example, the standard example), let
k ∪ l be the disjoint union of finite sets of cardinality k and l, respectively, and
let Iso(n, k ∪ l) be the set of isomorphisms from n to the disjoint union. Let
Iso(n, k∪l)+= Iso(n, k∪l)∪{∗} be viewed as an object of R f (∗), with the obvious
section and with the retraction the constant map to {∗}. The group 6n acts from
the left on Iso(n, k∪ l)+ by fixing the basepoint and by the rule σ · f = f ◦ σ−1

for σ ∈ 6n and f : n → k ∪ l . Normally 6k × 6` also acts from the left by
post-composition, but we find it convenient to use the right action defined by
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f · (σ1, σ2)= (σ
−1
1 , σ−1

2 )◦ f . For (Y, r, s) ∈R f (X, 6k×6`, {all}) we unwind the
defining pushout square

(Iso(n, k∪ l)+× X)∪∗×X (∗× Y ) // //

��

Iso(n, k∪ l)+× Y

��

∗× X // // Iso(n, k∪ l)+ ∧e Y

(3.7)

to find that the exterior smash product Iso(n, k∪ l)+∧e Y amounts to Iso(n, k∪ l)-
copies of Y , pasted together along the common subspace X . The retraction

r ′ : Iso(n, k∪ l)+ ∧e Y → X

given by r ′([ f, y]) = r(y) is 6n-equivariant when 6n acts trivially on X . We
may also apply the principle of Proposition 2.16 to re-express the exterior smash
product as an internal smash product and write

Iso(n, k∪ l)+ ∧e Y ∼= (X ∨ Iso(n, k∪ l)+)∧µ Y.

Define Iso(n, k∪ l)+∧6k×6`
e Y to be the quotient space of Iso(n, k∪ l)+∧e Y by

the equivalence relation generated by [ f · (σ1, σ2), y] ∼ [ f, (σ1, σ2) · y]. The left
action of 6n passes to the quotient, and, since the action of 6n on X is trivial, the
retraction r ′ defined above also passes to the quotient, as does the section. Thus,
we obtain the necessary structure maps

X � Iso(n, k∪ l)+ ∧6k×6`
e Y r

−→ X.

This completes the definition of the induction functor

Ind6n
6k×6`

:R f (X, 6k ×6`, {all})→R f (X, 6n, {all}). (3.8)

Next we need an elementary pairing functor

R f (X, 6k, {all})×R f (X, 6`, {all})→R f (X, 6k ×6`, {all}). (3.9)

The pairing sends ((Y1, r1, s1), (Y2, r2, s2)) to (Y1, r1, s1)∧µ (Y2, r2, s2).

Definition 3.10. Define the box-tensor operations by composing the pairing func-
tor (3.9) with the induction functor (3.8):

�k,` :R f (X, 6k, {all})×R f (X, 6`, {all})
∧µ
−−→R f (X, 6k ×6`, {all})

Ind6n
6k×6`

−−−−−→R f (X, 6n, {all}) (3.11)

Proposition 3.12. The box-tensor operations are associative up to natural isomor-
phism.
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Proof. The associativity of the box-tensor operations is a consequence of the
symmetric monoidal structure on R f (X) associated with ∧µ, along with proper-
ties of the cartesian product of groups and disjoint union of sets. Abbreviating
idR f (X,6k1 ,{all}) by id1 and idR f (X,6k3 ,{all}) by id3, the assertion in detail is that the
diagram

R f (X, 6k1 , {all})×R f (X, 6k2 , {all})×R f (X, 6k3 , {all})

�k1,k2×id3

ww

id1×�k2,k3

''

R f (X, 6k1+k2 , {all})×R f (X, 6k3 , {all})

�k1+k2,k3
''

R f (X, 6k1 , {all})×R f (X, 6k2+k3 , {all})

�k1,k2+k3
ww

R f (X, 6k1+k2+k3 , {all})

commutes up to canonical isomorphism. Given a triple (Y1, Y2, Y3) in the category
at the top of the diagram, the value of the left-hand sequence of arrows is

Iso(k1+ k2+ k3, k1+ k2 ∪ k3)+

∧
6k1+k2×6k3
e

((
Iso(k1+ k2, k1 ∪ k2)+ ∧

6k1×6k2
e Y1 ∧µ Y2

)
∧µ Y3

)
,

and we claim this space is isomorphic to

Iso(k1+ k2+ k3, (k1 ∪ k2)∪ k3)+ ∧
(61×62)×63
e (Y1 ∧µ Y2)∧µ Y3. (3.13)

To clarify the notation, k1+ k2+ k3 denotes the standard finite set of cardinality
k1+k2+k3, k1+k2∪k3 denotes the disjoint union of finite sets of cardinality k1+k2

and k3, and so on. Similarly, the value of the right-hand sequence of arrows is

Iso(k1+ k2+ k3, k1 ∪ k2+ k3)+

∧
6k1×6k2+k3
e

(
Y1 ∧µ

(
Iso(k2+ k3, k2 ∪ k3)+ ∧

6k2×6k3
e Y2 ∧µ Y3

))
,

which we claim is isomorphic to

Iso(k1+ k2+ k3, k1 ∪ (k2 ∪ k3))+ ∧
61×(62×63)
e Y1 ∧µ (Y2 ∧µ Y3). (3.14)

The spaces in (3.13) and (3.14) are isomorphic by the combination of the associativ-
ity isomorphisms for disjoint union, cartesian products of groups, and the smash
product ∧µ. Thus, we have proved that the box-tensor operations are naturally
associative, granting the two isomorphisms.

To establish one of these isomorphisms requires several steps. We concentrate
on the first case, since the second is completely parallel. First, since Iso(k3, k3)=6k3 ,
there is an isomorphism

Iso(k3, k3)+ ∧
6k3
e Y3

∼=
−→ Y3 (3.15)
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in R f (X, 63) induced by the formula [ f3, y] 7→ f −1
3 y. With the right action of 6k3

on Iso(k3, k3) given by f ·σ =σ−1
◦ f , we have [ f3 ·σ, y] 7→ (σ−1 f3)

−1 y= f −1
3 σ y;

starting from [ f3, σ y], we also arrive at f −1
3 σ y. Thus, a map

Iso(k3, k3)+ ∧
6k3
e Y3→ Y3

exists. Surjectivity is clear. For injectivity, if [ f3, y] and [ f ′3, y′] map to the same
element of Y , we have f −1

3 y= ( f ′3)
−1 y′. Putting σ = f ′3 f −1

3 , we have y′ = σ y and
f ′3 · σ = σ

−1 f ′3 = f3( f ′3)
−1 f ′3 = f3, so [ f3, y] = [ f ′3 · σ, y] ∼ [ f ′3, σ y] = [ f ′3, y′].

To get equivariance, recall that the left action of 6k3 on Iso(k3, k3) is given by
σ · f3 = f ◦ σ−1. Thus,

[σ ∗ f, y] = [ f ◦ σ−1, y] 7→ ( f ◦ σ−1)−1 y = σ( f −1 y)

shows equivariance.
Consequently,

Iso(k1+ k2+ k3, k1+ k2 ∪ k3)+

∧
6k1+k2×6k3
e

((
Iso(k1+ k2, k1 ∪ k2)+ ∧

6k1×6k2
e Y1 ∧µ Y2

)
∧µ Y3

)
is isomorphic to

Iso(k1+ k2+ k3, k1+ k2 ∪ k3)+

∧
6k1+k2×6k3
e

((
Iso(k1+ k2, k1∪ k2)+ ∧

6k1×6k2
e Y1∧µY2

)
∧µ

(
Iso(k3, k3)+∧

6k3
e Y3

))
.

Applying a commutativity isomorphism of the product ∧e, this is isomorphic to(
Iso(k1+k2+k3, k1+k2∪k3)+∧

6k1+k2×6k3
e

(
Iso(k1+k2, k1∪k2)+∧e Iso(k3, k3)+

))
∧
(6k1×6k2 )×6k3
e (Y1 ∧µ Y2)∧µ Y3.

Now we claim there is an isomorphism(
Iso(k1+k2+k3, k1+k2∪k3)+∧

6k1+k2×6k3
e

(
Iso(k1+k2, k1∪k2)+∧e Iso(k3, k3)+

))
∼= Iso

(
k1+ k2+ k3, (k1∪ k2)∪ k3

)
+

induced by the formula [ f123, [ f12, f3]] 7→ ( f12, f3)◦ f123. We check that balanced
expressions in(

Iso(k1+ k2+ k3, k1+ k2 ∪ k3)+ ∧e
(
Iso(k1+ k2, k1 ∪ k2)+ ∧e Iso(k3, k3)+

))
map to the same element of the target:

[ f123 · (g12, g3), [ f12, f3]] = [(g−1
12 , g−1

3 ) ◦ f123, [ f12, f3]]

7→ ( f12, f3) ◦
(
(g−1

12 , g−1
3 ) ◦ f123

)
.
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On the other hand,

[ f123, (g12, g3)·[ f12, f3]]=[ f123, [ f12◦g−1
12 , f3◦g−1

3 ]] 7→ ( f12◦g−1
12 , f3◦g−1

3 )◦ f123

and these expressions are the same, by associativity of composition. Now suppose
[ f123, [ f12, f3]] and [ f ′123, [ f

′

12, f ′3]] map to the same isomorphism. The equation
( f12, f3)◦ f123= ( f ′12, f ′3)◦ f ′123 is equivalent to ( f ′12, f ′3)

−1
◦( f12, f3)= f ′123◦ f −1

123.
Putting (σ12, σ3)= ( f ′12, f ′3)

−1
◦( f12, f3)= f ′123 ◦ f −1

123, we have

f ′123 · (σ12, σ3)= ( f ′123 ◦ f −1
123)
−1
◦ f ′123 = f123,

and

(σ12, σ3) · ( f12, f3)= ( f12, f3) ◦
(
( f ′12, f ′3)

−1
◦ ( f12, f3)

)−1
= ( f ′12, f ′3),

so that

[ f123, [ f12, f3]] = [ f ′123 · (σ12, σ3), [ f12, f3]]

∼ [ f ′123, (σ12, σ3) · [ f12, f3]] = [ f ′123, [ f
′

12, f ′3]]. �

The diamond operation �k,1 = �k requires some preliminary definitions. First re-
call the category of filtered objects FkR f (X) from [Waldhausen 1985, Section 1.1];
this is a category with cofibrations and weak equivalences. Let

P = (P1 � P2 � · · ·� Pk)

be an object of FkR f (X). For functions f, g : k→ k we say f ≤ g if f (i)≤ g(i)
for all i ∈ k. Let I (k)= { f : k→ k | there is σ ∈6k such that f ≤ σ }.

The set I (k) is partially ordered by ≤, and the sequence P defines a functor
P : I (k)→R f (X) by the rule P( f )= P f (1) ∧µ P f (2) ∧µ · · · ∧µ P f (k) on objects.
We apply the convention that parentheses in iterated products are collected to the
left. In particular, P f (1) ∧µ P f (2) ∧µ P f (3) = (P f (1) ∧µ P f (2)) ∧µ P f (3), and, in
general,

P f (1) ∧µ P f (2) ∧µ · · · ∧µ P f (k) = (· · · (P f (1) ∧µ P f (2))∧µ · · · ∧µ P f (k)).

For arrows we observe that f ≤ g implies there are cofibrations P f (i) � Pg(i)

which induce a cofibration P( f )� P(g). This depends on the exactness of ∧µ,
proved in Theorem 2.1.

Definition 3.16. Define the functor �k : FkR f (X)→R f (X, 6k, {all}) on objects
by making a choice of colimI (k) P and setting

�k(P)= colim
I (k)

P.

The definition extends to arrows by the universal property of the colimit. The 6k

action is induced by the permutation of factors.
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Example 3.17. Applied to a constant cofibration sequence Y = (Y =�Y =� · · · =�Y )
of length k, we obtain simply

�k(Y )= Y ∧µ Y ∧µ · · · ∧µ Y

with the group 6k permuting the factors. Thus, the purpose of �k is to extend
∧µ-powers to filtered objects.

Definition 3.18. The generalized diamond operation

�n,k : FkR f (X, 6n, {all})→R f (X, 6nk, {all})

is a composition

�n,k : FkR f (X, 6n, {all}) �k
−→R f (X, Bn,k, {all})

Ind
6nk
Bn,k

−−−−→R f (X, 6nk, {all}),

with a basic diamond operation �k followed by an induction construction Ind6nk
Bn,k

.
The intermediate group Bn,k is the group of block permutations of nk objects
blocked into k groups of n objects. Thus, the group Bn,k is a wreath product:
Bn,k =6k o6n . Explicitly, there is a short exact sequence of groups

1→ (6n)
k
→ Bn,k→6k→ 1.

Recall G• briefly here, following [Gunnarsson et al. 1992]. For a simplicial set
Z the corresponding simplicial path set PZ is defined by PZn = Zn+1. The face
operator di : PZn → PZn−1 coincides with di+1 : Zn+1 → Zn; the degeneracy
operator si : PZn→ PZn+1 coincides with si+1 : Zn+1→ Zn+2. The face operator
d0 : Zn+1 → Zn induces a simplicial map d0 : PZ → Z . The simplicial set PZ
is simplicially homotopy equivalent to the constant simplicial set Z0 [Waldhausen
1985, Lemma 1.5.1, p. 328]. Viewing Z1 = PZ0 as another constant simplicial set
provides a simplicial map Z1→ PZ .

Definition 3.19 [Gunnarsson et al. 1992, p. 257]. For a category C with cofibrations
and weak equivalences the simplicial category G•C is defined by the cartesian
square

wG•C //

��

PwS•C

d0
��

PwS•C
d0

// wS•C

(3.20)

Recalling a few more details from [Gunnarsson et al. 1992], G•C has cofibra-
tions and weak equivalences. As GnC= (PS•C)n×SnC (PS•C)n= Sn+1C×SnC Sn+1C,
the weak equivalences and cofibrations in wG•C are given by pullback. There is
also a stabilization map η : C→ G•C, where C is viewed as a constant simplicial
category with cofibrations and weak equivalences, defined as follows. We have the
map C = (PwS•C)0→ PwS•C and the constant map C→ PwS•C carrying C to
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the terminal object. These two combine to give an inclusion η : C→ G•C. After
passing to diagonals, the construction may be iterated so there results a stabilization
sequence

C→G•C→G•(G•C)→ · · ·→ Gn
•
C := G(Gn−1

•
C)→ · · ·→ colim

n
Gn
•
C := G∞

•
C

of simplicial categories with cofibrations and weak equivalences. Returning to
the square (3.20), after passage to nerves in the w-direction, diagonalization, and
geometric realization, there results a natural map

|wG•C| →�|wS•C|.

This may not always be a homotopy equivalence, but it is a homotopy equivalence
when C has a property called pseudo-additivity [Gunnarsson et al. 1992, Defini-
tion 2.3 and Theorem 2.6]. In our case, with C =R f (X) we follow [Gunnarsson
et al. 1992] to achieve the pseudo-additivity property by using the cylinder functor
defined in [Waldhausen 1985, Section 1.6]. The cylinder functor induces a cone
functor c : R f (X)→ R f (X) and a suspension functor 6 : R f (X)→ R f (X) so
that we may define a category of prespectra

6∞R f (X)= colim
(
R f (X)

6
−→R f (X)

6
−→R f (X)

6
−→ · · ·

)
.

Then 6∞R f (X) has the pseudo-additivity property [Gunnarsson et al. 1992, Re-
mark 2.4 and Lemma 2.5, p. 258–259], so

|wG•6∞R f (X)| →�|wS•6∞R f (X)|

is a weak homotopy equivalence. Also, by [Waldhausen 1985, Proposition 1.6.2],
|wS•R f (X)| → |wS•6∞R f (X)| is a weak homotopy equivalence.

Additionally, we need the fact that there are weak homotopy equivalences

|wG∞
•
C| →�|wG∞

•
S•C| ←�|wS•C| (3.21)

for any category C with cofibrations and weak equivalences [Gunnarsson et al.
1992, Theorem 4.1, p. 268].

The G•C construction has an explicit description as a category of exact functors.
For full details refer to [Gunnarsson and Schwänzl 2002; Grayson 1989]. First,
extend the partially ordered set A ∈ 1 to the set γ (A) = {L , R} q A with the
ordering in which L and R are not comparable, L < a and R < a for every a ∈ A,
and, for a, a′ ∈ A, a< a′ in γ (A) if and only if a< a′ in A. Pictorially, for A= [n],
γ (A) looks like

L
)) 0 // 1 // · · · // n

R
55
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The category 0(A) is the category of arrows in γ (A), omitting the identity ar-
rows on L and R. Diagrammatically, 0(A) looks like

0/L // //

��

1/L // //

��

· · · // // n/L

��

0/R // //

%%

1/R // //

%%

· · · // // n/R

%%

0/0 // // 1/0 // //

��

· · · // // n/0
��

1/1 // // · · · // // n/1
��

· · ·
...

��

n/n

Here a/b stands for b→ a (or b< a), and an arrow a/b→ c/d stands for a square

a // c

b

OO

// d

OO

in γ (A). The exact sequences in 0(A) are sequences j/k → i/k → i/j where
k→ j→ i in γ (A). Then, for A ∈1,

G AC = Exact(0(A), C).

Since 0(A) is functorial in A, preserving exact sequences j/k→ i/k→ i/j , we
have another description of G•C :1op

→Cat. In this interpretation the stabilization
η : C→ G•C sends an object C of C to the functor η(C) : 0(A)→ C whose value
at i/L is C for all i ∈ A and whose value at any other object of 0(A) is the zero
object of C. Given an arrow i/L→ i ′/L in 0(A), η(C) assigns to it the identity
on C ; other arrows are assigned by the universal property of the zero object.

Definition 3.22 (cf. [Gunnarsson and Schwänzl 2002, Section 2.1, p. 268; Grayson
1989, Section 4]). Let Z be a simplicial object in a category D. Define a concate-
nation operation con :1k

→1. For a sequence (A1, . . . , Ak) of finite nonempty
ordered sets, order their disjoint union A1q · · ·q Ak so that the subset Ai inherits
the original order and so that, if i ≤ j and ai ∈ Ai and a j ∈ A j , then ai < a j . Then
define the k-fold edgewise subdivision of a simplicial object Z to be the composite
functor

subk Z :1k con
−−→1

Z
−→ D.

For a simplicial set Z there is a natural homeomorphism |subk Z | → |Z |.
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Several more constructions are necessary before we can define for every integer
k ≥ 1 operations

ωk
: w subk G•R f (X)→ wGk

•
R f (X, 6k, {all}).

The original framework has proved to be quite robust, so we refer to [Grayson 1989,
Sections 5–7; Gunnarsson and Schwänzl 2002, Section 2] for complete details and
summarize what we use.

Theorem 3.23 [Grayson 1989, Sections 5–7, pp. 253–257]. For A ∈1, let 01(A)
be the category 0(A) discussed before Definition 3.22.

(1) For each A ∈ 1 and for each integer k ≥ 1 there is a category with exact
sequences 0k(A). The category 0k(A) is natural in the variable A.

(2) For A1, . . . , Ak ∈1, let A1 . . . Ak be the concatenation. There is a functor

4k : 0(A1)× · · ·×0(Ak)→ 0k(A1 . . . Ak)

which is multi-exact, i.e., exact in each variable separately, and is natural in
each of the variables. �

Grayson [1989, pp. 255–256] enumerates compatibility conditions (E1)–(E5)
abstracted from properties of higher exterior powers and tensor products when
applied to filtered modules. Given that the box-tensor operations � and diamond
operations �n,k fulfill (E1)–(E5) the robustness of the framework enables us to
make the following observation.

Definition 3.24. For A ∈1, the collection of operations �n,k and � define functors

3k
�,� : Exact

(
0(A),R f (X, 6n, {all})

)
→ Exact

(
0k(A),R f (X, 6n,k, {all})

)
.

These functors are natural in A.

Remark 3.25. Since we don’t need the explicit formula for 3k
�,� except in a few

specific cases, we refer the reader to the discussion in [Grayson 1989, p. 256–257]
for all the details. For guidance, we point out that the categories 0k(A) mentioned
in Theorem 3.23 are constructed precisely to deliver the definition of 3k

�,� on
an object. Properties (E1) through (E4) ensure that the formulas on arrows yield
a well-defined functor. Property (E5) of Grayson’s list ensures that the functors
3k
�,� carry an exact functor M to another exact functor.

In our situation we need the following property of a category with cofibrations.

Definition 3.26 (cf. [Gunnarsson et al. 1992, Definition 4.3, p. 274]). A category
C with cofibrations has the extension property if for all commutative diagrams of
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cofibration sequences
A // //

��

��

B // //

i
��

C
��

��

A′ // // B ′ // // C ′

in C, with vertical cofibrations as indicated, it follows that the middle arrow i is
also a cofibration.

Lemma 3.27. Let C be a category with cofibrations, A1, . . . , Ak ∈ 1, and let
A1 . . . Ak be the concatenation.

(1) If C has the extension property, then the natural inclusion

Gk
A1...Ak

C→ Exact(0(A1)× · · ·×0(Ak), C)

is an isomorphism.

(2) The categories R f (X, 6n,F) with cofibrations have the extension property.

Proof. The first statement is [Gunnarsson and Schwänzl 2002, Remark 4.4, p. 274].
For (2), because we are working inside R(X) with simplicial sets, cofibrations are
the injective maps. Therefore, the extension property holds for R f (X, 6n,F). �

Proposition 3.28 [Gunnarsson and Schwänzl 2002, Proposition 4.5]. The box-
tensor operations and the diamond operations fulfill properties (E1)–(E5).

Proof. Properties (E1)–(E4) are consequences of the symmetric bimonoidal struc-
ture of Theorem 2.1. Properties (E3) and (E4) also depend on the associativity of
� established in Proposition 3.12. Property (E5) depends on the extension prop-
erty of Definition 3.26 and takes some additional work manipulating cocartesian
diagrams, cofibration sequences, and colimits. The necessary steps are laid out
in [Gunnarsson and Schwänzl 2002, Lemmas 4.6–4.10, Corollary 4.11]. Because
all those manipulations rely just on the coherence of the symmetric bimonoidal
category structure, all steps work in the present, more general, situation. �

The subdivision construction (concatenation), the functors 3k
�,�, and the func-

tors 4k come into play in the following definition.

Definition 3.29. For k ≥ 1, the components ωk for the total Segal operation are
defined as follows:

Exact
(
0(A1 . . . Ak),R f (X, 6n, {all})

) subk 3
k
//

ωk

��

Exact
(
0k(A1 . . . Ak),R f (X, 6n, {all})

)
4k

vv

Exact
(
0(A1)× · · ·×0(Ak),R f (X, 6n, {all})

)
(3.30)
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By Lemma 3.27(1) we may interpret Exact
(
0(A1)×· · ·×0(Ak),R f (X,6n, {all})

)
as Gk

A1...Ak
R f (X, 6n, {all}). The result is a family of functors

ωk
: w subk G•R f (X)→ wGk

•
R f (X, 6k, {all})

for k ≥ 1.
Referring to the discussion preceding Definition 3.22, the stabilization map

η :R f (X)→ G0R f (X) has been concisely written in [Gunnarsson and Schwänzl
2002] as

(Y, r, s) 7→ η((Y, r, s))=
Y
X
.

The extension to higher simplicial dimensions admits the description (s0)
k(η(Y )),

where sk
0 : G0R f (X)→ GkR f (X) is the iterated degeneracy. This can be denoted

Y = Y = · · · = Y
X = X = · · · = X

(3.31)

where the top row indicates constant filtered object and the bottom row indicates
the constant filtration of the zero object. Since subk G•C in simplicial dimension 0
can be identified with GkC, diagram (3.31) also represents

η :R f (X)→ subk G0R f (X)

for each k ≥ 1. The next example incorporates Example 3.17 and is fundamental.

Example 3.32. The formula for the composite

α̃k
1 :R f (X)

η
−→ subk G•R f (X)

ωk
−−→ Gk

•
R f (X, 6k, {all}) (3.33)

is the functor 0([0])k→R f (X, 6k, {all}) given by{
Y ∧µ Y ∧µ · · · ∧µ Y in positions 0/L , 0(2)/L(2), . . . , 0(k)/L(k),
X in all other positions.

4. E∞-structure and restriction to spherical objects

We have already seen that, in order to obtain the algebraic K-theory of spaces using
the G•-model, one uses a category of prespectra 6∞R f (X) obtained from R f (X)
by passage to a limit using a suspension operation. We are now going to deal with
natural transformations of semigroup valued functors

[ – ,R f (X)] →
[

– , {1}×
∏
n≥1

A6n,{all}(X)
]
,

where the target is an abelian-group-valued functor. First we restrict to categories of
n-spherical objects Rn

f (X), whose definition is recalled below. Segal’s group com-
pletion theorem [1974a, Proposition 4.1] provides a unique natural transformation
of abelian-group-valued functors [–, �|hN0Rn

f (X)|]→
[
–, {1}×

∏
n≥1 A6n,{all}(X)

]
.
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In the domain, hN•Rn
f (X) is the simplicial category arising from the categorical

sum operation ∨, as described in [Waldhausen 1985, Section 1.8], and maps are
weak homotopy equivalences. The following diagram displays this result as the
diagonal arrow:

[ – , �|hN0Rn
f (X)|]

�� ,,

[ – , |hRn
f (X)|]oo // [ – , |hR f (X)|]

ω
��

[ – , A(X)] //
[

– , {1}×
∏

n≥1 A6n,{all}(X)
] (4.1)

In this section we show that the diagonal arrow is induced by an E∞-map

�|hN0Rn
f (X)| → {1}×

∏
n≥1

A6n,{all}(X).

But we want a natural transformation of abelian-group-valued functors [–, A(X)]→[
– , 1×

∏
n≥1 A6n,{all}(X)

]
as displayed by the lower horizontal arrow in the dia-

gram, and we want it to be induced by an E∞-map A(X)→{1}×
∏

n≥1 A6n,{all}(X).
There is a natural chain of equivalences

lim
n→∞

hN•Rn(X)' hS•R f (X)' hS•6∞R f (X),

where the colimit is taken over suspension relative to X [Waldhausen 1985, The-
orems 1.7.1 and 1.8.1]. This implies we have to examine the behavior of our
constructions as they relate to suspension, which we analyze in Section 5.

We recall from [Waldhausen 1985, Section 1.7, p. 360] a definition of spherical
objects in the category R f (X), where X is a connected space. On this category we
have the homology theory H∗(Y, r, s)= H∗(Y, s(X); r∗(Z[π1 X ])) (homology with
local coefficients), and we say (Y, r, s) is n-spherical if Hq(Y, r, s)= 0 for q 6= n
and Hn(Y, r, s) is a stably free Z[π1 X ]-module. For n≥ 0 denote by Rn

f (X) the full
subcategory of R f (X) whose objects are n-spherical. For example, in case X is a
connected simplicial abelian group, Rn

f (X) contains spaces homotopy equivalent
to retractive spaces (Y, r, s) obtained by completing to pushouts diagrams of the
form

X
∨N

i=1 ∂1
n∨φi

oo // // 1n,

where the attaching maps φi are constant maps to the identity element of X .
Let N be the natural numbers {0, 1, . . .}, and F the category of finite subsets of

N and injections. Let F+ ⊂ F be the full subcategory of nonempty finite subsets.
Let q denote the associative sum on F+ given by

{xi | 1≤ i ≤m}q{y j | 1≤ j ≤ n}= {xi | 1≤ i ≤m}∪{y j+xm− y1+1 | 1≤ j ≤ n},

where we assume x1 < · · ·< xm and y1 < · · ·< yn .
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Lemma 4.2 [Gunnarsson and Schwänzl 2002, Lemma 10.2, p. 289]. The category
F+ is contractible.

Proof. The functor t : F+→ F+ defined by t (x)= {0}q x receives natural trans-
formations from the identity functor on F+ and from the constant functor with
value {0}. Geometric realization of the nerve converts the natural transformations to
homotopies, so the identity map on the realization of the nerve of F+ is homotopic
to a constant map. �

Under the assumption that the category C satisfies the extension property for cofi-
brations, which has been verified for R f (X) and R f (X, 6n, {all}) in Lemma 3.27(2),
one may identify the iterated G•-construction Gn

•
C with Exact(0(–)n, C) according

to Lemma 3.27(1). Using the adjointness relation, or diagonals, we have

G3
A(C) := Exact(0(A)3, C)= Exact(0(A)×0(A),Exact(0(A), C))

= · · · = G A(G A(G AC)),

for example. Now extend n 7→Exact(0(–)n, C)=Gn
•
C to G(–)

• : F→Cat1
op

follow-
ing the recipe in [Gunnarsson and Schwänzl 2002]. Thus, on objects x ∈ Ob(F+)
and A ∈ 1, put Gx

AC := Exact(0(A)x , C). To obtain the extension to F , identify
0(A)∅ with the one-point category, so that G∅

•
C := Exact(0(A)∅, C)= C.

For the behavior on morphisms we distinguish cases. An isomorphism x→ x ′

in F induces a natural morphism Gx
•
C → Gx ′

•
C by permuting coordinates. An

injection i : x→ y induces Gx
•
C→ G y

•C using stabilization

0(A)i(x)
∼=
//

≡

��

0(A)i(x)×{L/0}y\i(x) //

��

0(A)i(x)×0(0)y\i(x)

X ′

ss

0(A)x
X

// C 0(A)x ×0(A)y\i(x)
≡ 0(A)y

i∗X
oo

OO

where we recall 0(0) = {L/0, R/0} is the two point discrete category, and we
define X ′ to be zero outside 0(A)i(x)×0(0)y\i(x). This is the η-stabilization given
by inclusion of C on the L-line in G0C, as described before Definition 3.22.

Let F
∫

G AC be Thomason’s homotopy colimit construction, which is the cate-
gory consisting of objects (x, X : 0(A)x → C) and morphisms (x, X)→ (y, Y )
given by i : x→ y in F and a natural transformation i∗X→ Y in G y

AC [Thomason
1979, Definition 1.2.2]. The unique morphisms ∅ → x in F provide functors
C→ Exact(0(A)x , C), eventually functors C→ F

∫
G AC natural in A, and finally

a functor C → F
∫

G•C. With the next result, we have made a step toward the
right-hand column of diagram (4.1).

Theorem 4.3 (cf. [Gunnarsson and Schwänzl 2002, Theorem 10.3]). The construc-
tion F

∫
wG•C gives a model for K-theory.
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Comments on the proof. The proof given in [Gunnarsson and Schwänzl 2002] can
be summarized in the chain of weak homotopy equivalences

�|wS•C|
(1)
←−�|wG∞

•
S•C|

(1)
−→ |wG∞

•
C| (2)−→ |wG•G∞• C|

(3)
−→

(3)
−→ |F+

∫
wG•G∞• C|

(4)
←− colim

t̃
|F+

∫
wG•C|

(5)
←− |F+

∫
wG•C|

(6)
−→ |F

∫
wG•C|.

Concerning the links in the chain, the arrows labeled (1) are recorded in (3.21);
the arrow (2) results from swallowing the extra G• into the colimit defining G∞

•
.

That (3) is an equivalence depends on the fact that |F+
∫
wG•G∞• C| → |F+| can be

shown to be a quasifibration with |F+| contractible. To account for (4), the functor
t : F+→ F+ induces a functor t̃ : F+

∫
wG•C→ F+

∫
wG•C for which

colim
t̃

F+
∫
wG•C = colim

(
F+
∫
wG•C

t̃
−→ F+

∫
wG•CF+

t̃
−→ F+

∫
wG•C

t̃
−→ · · ·

)
is naturally identifiable to F+

∫
wG•G∞• C. The realizations of the functors t̃ are all

cofibrations, so the inclusion (5) into the base of the telescope is a weak equiva-
lence. Finally, cofinality of F+ in F implies that the arrow (6) is a weak homotopy
equivalence. �

As in [Gunnarsson and Schwänzl 2002], the E∞-structure on the total Segal
operation is described in terms of the diagram

Rn
f (X)
α1
��

α̃1

,,

{1}×
∏

n≥1
R f (X, 6n, {all})

β1
//

α2
��

{1}×
∏

n≥1
Gn
•
R f (X, 6n, {all})

β3
��

{1}×
∏

n≥1
F
∫

G•R f (X, 6n, {all})
β2
// {1}×

∏
n≥1

F
∫

G•Gn
•
R f (X, 6n, {all})

(4.4)

The components of the map α̃1 are defined in Example 3.32. The other maps in
diagram (4.4) are defined as follows.

Definition 4.5. For α1 the n-th component α1(Y )n is Y ∧µ
n terms
· · · ∧µ Y , where 6n

acts by permuting factors using the coherence data.
The maps β1 and β2 come from stabilizations

jn
:R f (X, 6n, {all})→ Gn

•
R f (X, 6n, {all}).

The maps α2 and β3 are given by the identification

R f (X, 6n, {all})∼= {∅}
∫

G•R f (X, 6n, {all})∼= G∅
•
R f (X, 6n, {all}).

The category Rn
f (X) has the pairing derived from the categorical sum ∨X . This

feature allows us to dispense with the subdivision construction. Each of the four
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categories in the lower part of the diagram also has a natural pairing derived from
the box tensor pairings

�k,` :R f (X, 6k, {all})×R f (X, 6`, {all})→R f (X, 6k+`, {all}).

Underlying the coherence properties of these pairings is the fact, established in
Theorem 2.1, that R f (X) is a category with cofibrations and weak equivalences,
with a categorical sum ∨ and a symmetric monoidal biexact product ∧µ. We refer
to [Gunnarsson and Schwänzl 2002, pp. 291–292] for explicit formulas for the
pairings, which are given in the abstract context of a category C with cofibrations
and weak equivalences and subcategories C6n of 6n-equivariant objects. Here we
record only notations for use in the next theorem.

(1) There is a product denoted �̃ on {1}×
∏

n≥1 R f (X, 6n, {all}) and a product
also denoted �̃ on {1}×

∏
n≥1 Gn

•
R f (X, 6n, {all}).

(2) There is a product denoted �̂ on {1} ×
∏

n≥1 F
∫

G•R f (X, 6n, {all}) and a
product also denoted �̂ on {1}×

∏
n≥1 F

∫
G•Gn

•
R f (X, 6n, {all}).

Theorem 4.6 (cf. [Gunnarsson and Schwänzl 2002, Theorem 10.7, p. 292]).

(1) In the left column of (4.4), the categories {1} ×
∏

n≥1 R f (X, 6n, {all}) and
{1}×

∏
n≥1 F

∫
G•R f (X, 6n, {all}), with their composition laws �̃ and �̂ , in-

herit symmetric monoidal structures from the coherence data on R f (X).

(2) In the right column of (4.4), the categories {1} ×
∏

n≥1 Gn
•
R f (X, 6n, {all})

and {1} ×
∏

n≥1 F
∫

G•Gn
•
R f (X, 6n, {all}), with their composition laws �̃

and �̂ , inherit monoidal structures from the coherence data on R f (X).

(3) The maps α1 and α2 in (4.4) are maps of symmetric monoidal categories.

(4) The maps β1, β2, and β3 are maps of monoidal categories.

(5) The map β2 is a homotopy equivalence, and in the pseudo-additive case β3 is
also a homotopy equivalence.

(6) The diagram (4.4) is commutative in the category of monoidal categories.

Theorem 4.7. Let X be a connected simplicial abelian group. The functor

Z 7→
[

Z , {1}×
∏
n≥1

A6n,{all}(X)
]

takes values in the category of abelian groups.

Proof. By Theorem 4.3, we take

{1}×
∏
n≥1

A6n,{all}(X)= {1}×
∏
n≥1

|F
∫

G•R f (X, 6n, {all})|.

Since the category {1}×
∏

n≥1 F
∫

G•R f (X, 6n, {all}) has a symmetric monoidal
structure by part (1) of Theorem 4.6, the functor

[
– , {1}×

∏
n≥1 A6n,{all}(X)

]
takes
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values in the category of abelian monoids. Repeating the argument of [Waldhausen
1982, Lemma 2.3, p. 404] shows that values taken are actually in the category of
abelian groups. �

Remarks on the proof of Theorem 4.6.. The entire proof of the analogous result in
[Gunnarsson and Schwänzl 2002, pp. 293–295] is essentially a formal appeal to
LaPlaza’s coherence theorem [1972], so it carries over completely.

The reader who investigates further will find the symmetry of the pairing on
{1} ×

∏
n≥1 F

∫
G•R f (X, 6n, {all}) involves manipulating products of values of

functors

Y ∈ Gm
•
R f (X, 6n, {all}) and Z ∈ Gn

•
R f (X, 6n, {all}).

What is required is comparison of expressions

Y (i1/j1, . . . , im/jm)∧µ Z(i ′1/j ′1, . . . , i ′n/j ′n)

and

Z(i ′1/j ′1, . . . , i ′n/j ′n)∧µ Y (i1/j1, . . . , im/jm),

and one sees that not only are commutativity isomorphisms for ∧µ involved, but
so are permutations of inputs, which are taken care of by means of the homotopy
colimit.

Another interesting part of the proof is the claims about the maps α1 and α2,
so it deserves a comment. The biexactness and coherence of ∧µ give canonical
natural isomorphisms γ k

n called Cartan multinomial formulas:

γ k
n : (∧µ)n

( k∨
i=1

ci

)
∼=
−→

∨
s1+···+sk=n

Ind6n
6s1×···×6sk

(∧µ)
k
i=1((∧µ)si ci ).

These induce natural isomorphisms

γ k
: α1 ◦∨

k
X
∼=
H⇒ (�̃)k ◦αk

1 .

Then the coherence theorem implies that α1 has a (lax) symmetric monoidal struc-
ture. The functor α2 is the inclusion of a symmetric monoid subcategory, so the
assertion for α2 is immediate.

In contrast to the algebraic roles played by α1 and α2, the roles of β1, β2, and β3

are to assure us that we are ending in the correct target. Since the proof that β3 is a
homotopy equivalence requires the pseudo-additivity condition, which is fulfilled
by suspension, this part of the argument actually depends on the next section. �

5. Suspension

Let us first state the main theorem of this section.
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Theorem 5.1. Let X be a simplicial abelian group. The total Segal operation

ω : A(X)→ {1}×
∏
n≥1

A6n,all(X)

carries an infinite loop map structure.

Section 4 has delivered an infinite loop map

�|hN0Rn
f (X)| → {1}×

∏
n≥1

A6n,all(X)

whose domain is the K-theory of a category of n-spherical objects. To obtain
Theorem 5.1, we have to examine the passage to the limit over suspension in view
of Waldhausen’s result

lim
n→∞

hN•Rn
f (X)' hS•R f (X).

The technically challenging part is the compatibility of the operations with sus-
pension. Fortunately, the machinery set up in [Gunnarsson and Schwänzl 2002,
Section 10] is sufficiently general that we need only extend some definitions and
quote a sequence of results to prove our generalization.

First we need a description of the suspension operation that is amenable to coher-
ence considerations. To this end, we go step-by-step through Waldhausen’s cone
and suspension constructions and identify the result with a construction involving
the operation ∧e. The cone construction for (Y, r, s) in R f (X) takes the ordinary
mapping cylinder of the retraction M(r) and collapses out the cylinder 11

× X so
that end result is in R f (X). To amplify the definition, consider the diagram

Y q X ∂11
× Yidqr

oo // // 11
× Y

X q X

��

OO

OO

∂11
× Xoo // //

��

OO

OO

11
× X
OO

OO

��

X Xoo // // X

(5.2)

which fulfills the hypotheses of Lemma 2.9. Taking the pushouts of the rows pro-
duces a diagram

X←11
× X � M(r),

where M(r) is the usual mapping cylinder of r and the pushout of the top row.
As described above, taking the pushout of this diagram produces cY , the under-
lying space of the cone construction. The retraction to X arises from a map of
diagram (5.2) to a trivial diagram of identity maps on X ; the section X→ cY and
a cofibration i : Y → cY arise from canonical maps of ingredients of the diagram
to the colimit. Then the suspension 6Y is defined as the pushout of the diagram
X r
←− Y � cY .
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Lemma 5.3. For Y ∈R f (X) there is a commuting diagram

{0}× Y

��

//
i0
// 11

1 ∧e Y
∼=
��

Y //
i

// cY

(5.4)

where 11
1 ∈ R f (∗) is the standard simplicial one-simplex given the base point 1,

and i0 is induced from the inclusion {0} →11. Moreover,

6Y := cY/Y ∼= S1
∧e Y,

where S1
=11/∂11 is the standard simplicial circle.

Proof. Pass to pushouts in the commutative diagram

X

��

11
1× X ∪{1}×X {1}× Y

p2∪r p2
oo // //

id∪r
��

11
× Y

��

X 11
× X

p2
oo // // M(r)

(5.5)

to obtain a unique natural map η1 :1
1
1 ∧e Y → cY making the diagram

11
1 ∧e Y

η1

��

11
1× Y

55

**

X
hh

s′hh

vv

vv
cY

(5.6)

commute. Restricting 11
1× Y →11

1 ∧e Y to ∂11
1× Y yields a diagram

∂11
1× Y // //

r ′
��

11
1× Y

��

Y q X //
i ′
// 11

1 ∧e Y

where r ′(0, y)= y, r ′(1, y)= r(y) and i ′(y)= i0(y), i ′(x)= s ′(x). There results
a canonical arrow M(r)→11

1 ∧e Y such that the following square commutes:

11
1× X // //

p2
��

M(r)

��

X //
s′

// 11
1 ∧e Y

In turn, there is a unique map η̄1 : cY →11
1 ∧e Y such that

cY

η̄1

��

11
1× Y

44

))

Xii
ii

vv

s′vv

11
1 ∧e Y

(5.7)



38 THOMAS GUNNARSSON AND ROSS STAFFELDT

commutes. Combining diagrams (5.6) and (5.7) shows that η1 and η̄1 are mutually
inverse isomorphisms, relative to the common subspace X and compatible with the
retractions.

Restricting the left half of (5.6) to {0}× Y ⊂11
1× Y gives (5.4):

11
1 ∧e Y

η1
��

{0}× Y ≡ Y

i0 33

i ++ cY

(5.8)

Replace S0
= {∗, ∗′} with basepoint ∗ in Example 2.5 by ∂11

1 with basepoint 1,
and obtain the diagram

X
=

��

∂11
1 ∧e Yr

oo // //

∼=
��

11
1 ∧e Y
∼=
��

X Yr
oo //

i
//

66

i0
66

cY

(5.9)

Passage to pushouts shows that the quotient (11
1∧eY )/(∂11

1∧e Y ) is isomorphic to
6Y in R f (X). According to Proposition 2.17, the functor

– ∧e Y :R f (∗)→R f (X ×{∗})∼=R f (X)

preserves colimits, so we deduce

(11
1 ∧e Y )/(∂11

1 ∧e Y )∼= (11
1/∂1

1
1)∧e Y ≡ S1

∧e Y,

where we define S1
:=11

1/∂1
1
1 in R f (∗). �

According to Proposition 2.16, the action of R f (∗) on R f (X) may be made
internal. Explicitly, there is a natural isomorphism ie∗S1

∧µ Y ∼= S1
∧e Y . In

the following we abuse notation slightly and write simply S1
∧µ Y , leaving ie∗

understood, where ie : {∗} → X is the inclusion of the one-point space as the
identity element of X . We do this to emphasize the dependence of the rest of this
section on the coherence of the operation ∧µ.

Proposition 5.10 (cf. [Gunnarsson and Schwänzl 2002, Proposition 6.1, p. 283]).
The following diagram commutes up to natural isomorphism:

w subk G•R f (X)
ωk
//

S1
∧µ

��

wGk
•
R f (X, 6k, {all})

�k S1
∧µ
��

w subk G•R f (X)
ωk
// wGk

•
R f (X, 6k, {all})

Proof. Write F1 for the composite functor ωk
◦ (S1

∧µ – ) and F2 for the com-
posite �k S1

∧µ ω
k( – ). Although ωk(S1) = �k S1

= S1
∧µ

k terms
· · · ∧µ S1, we use

the �k-notation for orientation purposes. Following [Gunnarsson and Schwänzl
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2002, p. 297; Grayson 1989, p. 257], given a functor M : 0(A1 . . . Ak)→R f (X)
representing an object of subk G•R f (X), the value of ωk(M) on a typical element
of 0k(A1 . . . Ak) has the form

(�n1 M( – ))� (�n2 M( – ))� · · ·� (�nk M( – ))= Zn1 � · · ·� Znk ,

where Zni := �ni M( – ) is an object of R f (X, 6ni , {all}). Extending the formulas
in the argument of Proposition 3.28 for the associativity of �, we write

Zn1 � · · ·� Znk = Ind
6n1+···+nk
6n1×···×6nk

(Zn1 ∧µ · · · ∧µ Znk )

and set n = n1+ · · ·+ nk .
Then a typical value of F1(M) has the form

Ind6n
6n1×···×6nk

(
(S1
∧µ

n1 terms
· · · ∧µS1

∧µ Zn1)∧µ · · ·∧µ (S
1
∧µ

nk terms
· · · ∧µS1

∧µ Znk )
)

∼= Ind
6n1+···+nk
6n1×···×6nk

(
(S1
∧µ

n1 terms
· · · ∧µS1)∧µ

k groups
· · · ∧µ(S1

∧µ
nk terms
· · · ∧µS1)

∧µ(Zn1 ∧µ · · · ∧µ Znk )
)
,

applying commutativity and associativity isomorphisms. Now Proposition 5.12
applies to deliver an isomorphism of 6n1+···+nk -spaces:

Ind6n
6n1×···×6nk

(
(S1
∧µ

n1 terms
· · · ∧µS1)∧µ

k groups
· · · ∧µ(S1

∧µ
nk terms
· · · ∧µS1)

∧µ(Zn1 ∧µ · · · ∧µ Znk )
)

∼=
→ (�k S1)∧µ

n terms
· · · ∧µ(�k S1)∧µ

(
Ind6n

6n1×···×6nk
(Zn1 ∧µ · · · ∧µ Znk )

)
.

This final expression is the value of F2 on the same typical element M , so we have
a natural isomorphism of functors ε : F1⇒ F2. �

Now we prove the general Lemma 5.11 and its specialization Proposition 5.12.

Lemma 5.11. Let H be a subgroup of G, let Y ∈R(X,G), and let Z ∈R(X, H).
By restricting the G-action on Y to H , we obtain Y ∧µ Z ∈ R(X, H), where the
action is diagonal. Then there is a natural isomorphism of left G-spaces

G+ ∧H
e (Y ∧µ Z)

∼=
−→ Y ∧µ (G+ ∧H

e Z),

where the G-action on the right-hand space is diagonal.

Proof. First define a G-map f :G+∧e (Y ∧µ Z)→ Y ∧µ (G+∧H
e Z) by the formula

f (g, (y, z))= (gy, [g, z]).

Applying the equivalence relation defining Y ∧µ (G+ ∧H
e Z),

f (g, (hy, hz))= (g(hy), [g, hz])= ((gh)y, [gh, z])= f (gh, (y, z)).
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Therefore, there is an induced G-map

f ′ : G+ ∧H
e (Y ∧µ Z)→ Y ∧µ (G+ ∧H

e Z).

To reverse this map, define F : Y ∧µ (G+∧e Z)→G+∧H
e (Y ∧µ Z) by the formula

F(y, [g, z])= [g, (g−1 y, z)].

Now
F(y, [gh, z])= [gh, (h−1g−1 y, z)]

= [g, (hh−1g−1 y, hz)] = [g, (g−1 y, hz)] = F(y, [g, hz]),

so there is an induced G-map

F ′ : Y ∧µ (G+ ∧H
e Z)→ G+ ∧H

e (Y ∧µ Z).

Clearly the composites f ′F ′ and F ′ f ′ are the respective identities. �

Proposition 5.12. Let n = n1 + · · · + nk . Let Z ∈ R(X, 6n1 × · · · ×6nk , {all}).
There is a natural isomorphism of 6n-spaces

Iso(n, n1∪· · ·∪nk)+∧
6n1×···×6nk
e

(
(S�

n1 terms
· · · �S)∧µ · · ·∧µ (S�

nk terms
· · · �S)∧µ Z

)
∼=
−→ (S�

n terms
· · · �S)∧µ

(
Iso(n, n1 ∪ · · · ∪ nk)+ ∧

6n1×···×6nk
e Z

)
.

Proof. Apply Lemma 5.11, and observe that the operation � is defined in terms
of ∧µ, which is coherently associative. Collect all parentheses in expressions

(S�
n1 terms
· · · �S)∧µ · · · ∧µ (S�

nk terms
· · · �S)

to the left. Note that we need only the map f ′ :G+∧H
e (Y ∧µ Z)→Y ∧µ (G+∧H

e Z)
from the lemma, so the choice of an identification of Iso(n, n1 ∪ · · · ∪ nk) with 6n

is required to make sense of f ′. This amounts to identifying n1 ∪ · · · ∪ nk with

{1, . . . , n1, n1+ 1, . . . , n1+ n2, . . . , n1+ · · ·+ nk}. �

We use the Thomason homotopy colimit construction on functors defined on
the category F to pass to the limit with suspensions. To treat suspension by S1 on
subk wG•R f (X), define an op-lax functor 81 : F→ Cat1

op
by

81(x)= subk wG•R f (X) for an object x ∈ F ,

81(σ )= id for an isomorphism σ : x→ x ,

81(i : y→ x) is induced by suspension by x\i(y) factors S1.

Interpreting the smash product with an empty number of factors as S0, the def-
initions coincide on isomorphisms. For x i

←− y j
←− z we need to produce the

natural transformation 81(ij)⇒81(i) ◦81( j). On (Y, r, s) the value of 81( j) is
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((S1)y\ j (z)
∧e Y, r ′, s ′) and the value of 81(i) applied to this is(

(S1)x\i(y)∧e ((S1)y\ j (z)
∧e Y ), r ′′, s ′′

)
.

Since i is injective, the set y\ j (z) is identified with i(y\ j (z)). Since x\ij (z) =
x\i(y)∪ i(y\ j (z)), we use associativity isomorphisms of the ∧e-action to write
81(i ◦ j)

∼=
H⇒81(i)◦81( j). The coherence properties of the action imply commu-

tativity of the necessary diagrams [Thomason 1979, Definition 3.1.1, p. 99].
In a similar way we treat �k S1

∧µ – on wGk
•
R f (X, 6n{all}), defining an op-lax

functor 82 : F→ Cat1
op

:

82(x)=wGk
•
R f (X,6n{all}) for an object x ∈ F ,

82(σ )= id for an isomorphism σ : x→ x ,

82(i : y→ x) is induced by suspension by x\i(y) factors �k S1.

The natural transformation82(i ◦ j)
∼=
H⇒82(i)◦82( j) is treated in the same manner.

The results are two categories

hocolim
S1∧µ–

subk wG•R f (X) := F
∫
81 and hocolim�k S1∧µ–wGk

•
R f (X) := F

∫
82.

Remark 5.13. There are a number of constructions in [Thomason 1979] that may
justifiably be termed homotopy colimits. This particular construction F

∫
8i is es-

sential, but we use the hocolim notation to provide context for the reader.

Now we explain how Proposition 5.10 promotes

ωk
: subk wG•R f (X)→ wGk

•
R f (X)

to a left-op natural transformation (lont) ε :81⇒82. First, we need to associate to
an object x of F a functor ε(x) :81(x)→82(x). This is just ωk . Then we need for
each arrow i : y→ x in F a natural transformation ε(i) : ε(x)◦81(i)⇒82(i)◦ε(y).
For any morphism i such that x\i(y) has cardinality 1, we obtain ε(i) by inverting
the isomorphism of functors provided by Proposition 5.10. For the general case,
one just goes back to the proof and replaces the symbol 1 by x\i(y) everywhere it
occurs. The coherence results of Section 2 guarantee that the necessary diagrams
commute, so ε is a lont. By [Thomason 1979, Definition 3.1.4, p. 101], ε induces
a functor

F
∫
ε : F

∫
81→ F

∫
82.

We have now proved the following result.

Theorem 5.14. The operations ωk pass through the Thomason homotopy colimit
construction to deliver operations

F
∫
ε := ωk

: hocolimS1∧µ– subk wG•R f (X)→ hocolim�k S1∧µ–wGk
•
R f (X). �
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Proof of Theorem 5.1. The main result of Section 4 is that

�|hN0Rn
f (X)| → {1}×

∏
n≥1

A6n,all(X)

is an infinite loop map, and this section shows these maps are compatible with
suspension. Likewise for the equivalence �|hN0Rn

f (X)| → �|wS•Rn
f (X)|. The

maps obtained by passing to the limit over suspension remain infinite loop maps,
and we know � colim|wS•Rn

f (X)| '�|wS•R f (X)| = A(X). �

6. Projecting to the free part

As stated in Theorem 5.1, the constructions of [Gunnarsson and Schwänzl 2002]
as modified in Section 5 deliver a total operation

ω =
∏

ωn
: A(X)→

∏
n≥1

A6n,{all}(X),

where A6n,{all}(X)=�|hS•Rh f (X, 6n, {all})|. We examine the target of this map,
and introduce the Weyl group notation W6n H = N6n H/H , where H is a subgroup
of the permutation group 6n and N6n H is the normalizer in 6n of H.

Theorem 6.1. Let X be a space on which symmetric groups 6n act trivially. For
each n there is a homotopy equivalence

hn : A6n,{all}(X)→
∏

H∈{all}

A(X × B(W6n H))

of infinite loop spaces. Here A(X × B(W6n H))=�|hS•R f (X,W6n H, {e})| is the
K-theory of the category of retractive W6n H-spaces relative to X with the action
being free outside of X.

Proof. The argument is largely formal, based on some well-known facts. Let
F be the set of conjugacy classes (Hi ) of subgroups of 6n . This set is finite and
partially ordered in the usual way: (Hi )� (Hj ) if some conjugate of Hi is contained
in Hj . The partial ordering may be extended to a linear ordering, or enumeration
{(H0), (H1), . . . , (HN )}, so that (Hi )≺ (Hj ) implies i < j . Observe that (H0)={e},
we may take (H1) as the class of transpositions, and (HN )=6n .

For any 6n-space Z we may define

F�(H)Z = colim
(K )�(H)

Z (K ),

essentially the union of the fixed point sets of the conjugates of all the subgroups
properly containing a conjugate of H. The space F�(H)Z is by definition a 6n-
invariant subspace of Z . If (Hi )≺ (Hi+1) in the enumeration then we may compute
F�(Hi+1)(F�(Hi )Z), essentially the fixed points of conjugates of Hi+1 inside the



SEGAL OPERATIONS IN THE ALGEBRAIC K-THEORY OF TOPOLOGICAL SPACES 43

fixed points of Hi . On the complement F�(Hi )Z\(F�(Hi+1)(F�(Hi )Z)) the group
6n acts and the Weyl group W6n Hi = N6n Hi/Hi acts freely.

Inductively define exact functors

Si , Q j :R f (X, 6n, {all})→R f (X, 6n, {all}), −1≤ i ≤ N , 0≤ j ≤ N

by letting S−1 be the identity functor, and putting Si (Y )=F�(Hi )(Si−1(Y )) for i ≥ 0.
Then the functors Q j are defined by the natural cofibration sequences

S j (Y )� S j−1(Y )� Q j (Y ), 0≤ j ≤ N .

For us, the important case is S0: Since H0 = {e}, S0(Y ) is the union of the fixed
point sets of all the nonidentity subgroups of G. Then the quotient Q0(Y ) can be
thought of as extracting the part of Y on which G acts freely.

Let ik : R f (X, 6n, {Hk})→ R f (X, 6n, {all}) be the inclusion. Since Qk(Y )
actually lies in R f (X, 6n, {Hj }), we may formally write Qk = ik ◦ Qk , where
Qk :R f (X, 6n, {all})→R f (X, 6n, {Hk}) is a retraction. We want to make an
inductive application of the additivity theorem for the G• construction, but this
requires that the input be pseudo-additive. Passing to prespectra 6∞R f (X), by
[Gunnarsson et al. 1992] there results a splitting

hocolimwG•R f (X, 6n, {all})→
∏

H∈{all}

hocolimwG•R f (X, 6n, {H})

induced by the functors Qk for 0 ≤ k ≤ N . Recalling that W6n H = N6n H/H is
the Weyl group of H , consider the exact functor

R f (X, 6n, {H})→R f (X,W6n H, {e}), Y 7→ Y H.

The induction construction Z 7→ Z ×W6n H 6n provides an exact functor going the
other way and the composites in either order are equivalent to the identities. Putting
these equivalences together and specializing the notation establishes a chain of
homotopy equivalences

hocolimwG•R f (X, 6n, {all})→
∏

H∈{all}

hocolimwG•R f (X, 6n, {H})

→

∏
H∈{all}

hocolimwG•R f (X,W6n H, {e}). �

This completes the proof of Theorem 1.1; to explain Theorem 1.3 is the object
of the next two sections. We are focusing on the composition

θn
: A(X) ω

n
−→ A6n,{all}(X)

hn
−→

∏
H∈{all}

�|hS•R f (X, N6n H/H, {e})|

pe
−→�|hS•Rh f (X, 6n, {e})|.
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In Section 7 we justify the interpretation �|hS•Rh f (X, 6n, {e})| = A(X × B6n).
Then we want to understand what happens when we follow this composition by
the transfer φn : A(X × B6n)→ A(X × E6n) ' A(X). We start by introducing
notation for the composition

R f (X)→ subn G•R f (X)
ωn
−→ Gn

•
R f (X, 6n, {all}) Q0=S−1/S0

−−−−−−→ Gn
•
R f (X, 6n, {e}).

On (Y, r, s)∈R f (X), the composition of the first two maps in the chain is α̃n(Y ) in
the notation of Example 3.32, so we want to evaluate the functor Q0 = S−1/S0 ◦ α̃n

on the object (Y, r, s). By the terminology used in the proof of Theorem 6.1, S−1

is the identity and S0 is the union of subobjects that are fixed by some nonidentity
subgroup of 6n . The interpretation and transfer issues are taken up in Section 7;
to prepare for the analysis of φn ◦ θn in Section 8 we introduce some notation.

The definitions of the Segal operations in [Waldhausen 1982] use certain sub-
functors Pn

j of the smash power functor Pn on pointed sets. We extend the consider-
ations to define certain subfunctors of ∧e and ∧µ powers. For (Y, r, s) ∈R(X), the
set Y∧en is a quotient of the cartesian product Y n . In a fixed simplicial dimension,
we view this as the set of functions y : n→ Y . The pushout construction identifies
any such function y with at least one value yi in X with the composite function r ◦ y.
Thus, to represent points of Y∧en in a given dimension, we just need to look at
functions all of whose values are in Y − X and functions all of whose values are
in X . For 0≤ j ≤ n we define P̃n

j Y to be the subset of functions y : i 7→ yi such
that the cardinality of y−1(Y − X) is less than or equal to j , if the image of y is
contained in (Y − X). Said another way, P̃n

j Y is the set of n-tuples where at most
j distinct elements of Y − X are involved. For example, P̃n

0 Y = Xn and P̃n
1 Y is

the union of Xn with the diagonal of (Y − X)n . Most important for us, the subset
P̃n

n−1Y consists of all n-tuples involving no more than n− 1 distinct elements of Y ,
so that if no member of (y1, . . . , yn) is in X , then there are at least two distinct
indices i, j with yi = y j .

When X is a connected abelian group, then we can push out along the iterated
multiplication Xn

→ X , obtaining functors Pn
j Y relative to X . In particular, Pn

n−1Y
is the subset of PnY consisting of points fixed by some nontrivial subgroup of 6n ,
so not all members of an n-tuple can be distinct. Thus Pn

n−1Y = S0α̃n(Y ). In terms
of functions y : n→ Y , Pn

n−1Y is the set of functions where the cardinality of
y−1(Y − X) is at most n− 1.

Definition 6.2. Define θ̃nY and θnY by means of the pushout squares

P̃n
n−1Y // //

∧
n
e r
��

P̃nY

��

Xn // // θ̃nY

and

Pn
n−1Y // //

r
��

PnY

��

X // // θnY
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Letting jn
: R f (X, 6n, {e})→ Gn

•
R f (X, 6n, {e}) be the iterated stabilization,

we combine the preceding observations with the definitions to immediately obtain
the following proposition.

Proposition 6.3. As functors from R f (X) to Gn
•
R f (X, 6n, {e}),

Q0 ◦ α̃n = jn
◦ θn. �

7. Transfer constructions

Our immediate goal is to interpret�|hS•R f (Xn,6n, {e})| and�|hS•R f (X,6n, {e})|
in terms of the algebraic K-theory of topological spaces. In this section, families
of subgroups play no role, so we revert to the less ornate notation �|hS•R f (X,G)|
for �|hS•R f (X,G, {e})|, the algebraic K-theory of G-spaces retracting to X , finite
relative to X , and with G acting freely outside X .

There are two steps to this goal and each step uses arguments based on [Wald-
hausen 1985]. We let G be a finite group and Z a G-space. Let EG be the
canonical contractible free left G-space. We prefer the model EGn = Gn+1 with
the G-action given by multiplication on the left in each factor, face maps defined
by projecting away from a coordinate, and degeneracies defined by repeating a
coordinate. An isomorphism of the quotient space ∗×G EG ∼= BG is induced by
(g0, . . . , gi−1, gi , . . . , gn) 7→ (g−1

0 g1, . . . , g−1
i−1gi , . . . , g−1

n−1gn).
First, [Waldhausen 1985, Lemma 2.1.3, p. 381] applies to yield the following

result.

Lemma 7.1. There is an equivalence of categories

R(EG×G Z)∼R(EG× Z ,G). �

For reference, pullback along the projection

EG× Z→ EG×G Z

defines a functor R(EG×G Z)→R(EG× Z ,G); the orbit map defines a functor
in the opposite direction. The composites in either order are isomorphic to the
respective identity functors. Moreover, these functors preserve weak equivalences
and homotopy finite objects.

Next, we want the following lemma, which permits us to replace the G-action
on Z with a free G-action on a homotopy equivalent space.

Lemma 7.2. The projection EG× Z→ Z induces a homotopy equivalence

hS•Rh f (EG× Z ,G)−→ hS•Rh f (Z ,G).

Proof. The argument here is similar to that given to prove [Waldhausen 1985,
Proposition 2.1.4, p. 382]. In detail, let (Y ′, r ′, s ′) ∈Rh f (EG× Z ,G). Completing
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the diagram
Y ′ EG× Zoo

s′
oo

p2
// Z

to a pushout defines an exact functor Rh f (EG× Z ,G)→Rh f (Z ,G). Certainly,
homotopy finite objects are carried to homotopy finite objects, and, incidentally,
finite objects are carried to finite objects. Also, weak equivalences are mapped to
weak equivalences.

Taking the product with EG gives an exact functor Rh f (Z,G)→Rh f (EG×Z ,G).
In this case, when G is nontrivial, finite objects are carried to homotopy finite
objects, since EG is contractible.

For (Y, r, s) in Rh f (Z ,G), taking the induced map of pushouts in the diagram

EG× Y
p2
��

EG× Zoooo //

p2
��

Z

id
��

Y Zoos
oo

id
// Z

provides a natural transformation from the composite endofunctor on Rh f (Z ,G)
to the identity functor. This natural transformation is a weak equivalence. For
(Y ′, r ′, s ′) in Rh f (EG× Z ,G), taking the induced map of pushouts in the diagram

Y ′

p1r ′×id
��

EG× Zoo
s′

oo
id

//

1×id
��

EG× Z

id
��

EG× Y ′ EG× EG× Zoo
id×s′
oo

p1×p3
// EG× Z

provides a natural transformation from the identity functor on Rh f (EG × Z ,G)
to the other composite endofunctor. Again, this is a weak equivalence. By [Wald-
hausen 1985, Proposition 1.3.1, p. 330], hS•Rh f (Z × EG,G)→ hS•Rh f (Z ,G) is
a homotopy equivalence. �

Substituting for G the symmetric group 6n , we combine Lemmas 7.1 and 7.2
to record useful alternative models for A(B6n × X) and A(Dn X). The first part
covers a remark made following Definition 3.5.

Lemma 7.3. Let X have the trivial 6n-action, so that B6n × X is the quotient of
E6n × X by the action of 6n . There are homotopy equivalences

hS•Rh f (B6n × X)' hS•Rh f (E6n × X, 6n)' hS•Rh f (X, 6n). (7.4)

Thus, the space �|hS•R f (X, 6n)| is homotopy equivalent to A(B6n × X).
Similarly, let Xn have the permutation action of 6n , and let Dn X = E6n×

6n Xn

be the quotient of E6n × Xn by the diagonal action of 6n . There are homotopy
equivalences

hS•Rh f (Dn X)' hS•Rh f (E6n × Xn, 6n)' hS•Rh f (Xn, 6n).

Thus, the space �|hS•Rh f (Xn, 6n)| is homotopy equivalent to A(Dn X). �
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We recall here basic facts about the transfer in the algebraic K-theory of spaces
adapted to our context. We are actually interested in two cases of transfer opera-
tions. For the first case the transfer operations are associated with finite subgroups
of the symmetric groups 6n . In the second case the operations are associated with
(injective) homomorphisms of simplicial abelian groups X̃→ X , where the fiber
is homotopy finite.

In terms of the description A(X) = �|hS•R f (X)|, we have the following di-
rect transfer construction. A fiber bundle projection p : E → B with finite fiber
induces by pullback a functor R f (B)→ R f (E), or with homotopy finite fiber,
R f (B)→ Rh f (E). We then obtain a transfer morphism p∗ : A(B)→ A(E). In
terms of equivariant models for algebraic K-theory, there are other descriptions of
the transfer, as given below. We need to relate the various descriptions.

Eventually we need the transfer operations A(B6n× X)→ A(B H × X), where
H is a subgroup of6n . Our working definition is A(B6n×X)=�|hS•Rh f (X, 6n)|

but, in view of the equivalences (7.4), we have to compare three definitions in each
context.

To this end, let G be a discrete group, H a subgroup of finite index, and Z a
trivial G-space. Observe that EG×Z is the total space of a principal G-bundle with
base EG×G Z . To make this transparent, and for use in the study of diagram (7.5),
we replace the notation EG×G Z by ∗×G (EG× Z). To explain the connection,
∗ ×

G (EG × Z) is the orbit space of EG × Z under the diagonal left G-action,
thought of as the balanced product of EG× Z with the trivial right G-space ∗. We
can turn the left action of G on EG into a right action by setting e ·r g = g−1

·l e.
Then left G-orbits in EG × Z are seen to correspond to equivalence classes in
EG × Z under the equivalence relation generated by (e ·r g, z) ∼ (e, gz). The
associated quotient space is usually denoted EG×G Z .

We consider the diagram

R(Z , H) // R(EG× Z , H) R(EG×H Z)oo

R(Z ,G)

p∗1

OO

// R(EG× Z ,G)

p∗2

OO

R(EG×G Z)oo

p∗3

OO

(7.5)

where the vertical arrows represent transfer constructions. The forgetful functor
p∗1 :R(Z ,G)→R(Z , H) just restricts the action to the subgroup H . This provides
the simplest path to p∗1 : A(BG × Z) → A(B H × Z), using the basic model
A(BG× Z)=�|hS•(Rh f (Z ,G)|. In the middle, the functor p∗2 is also a forgetful
functor. At the right, the functor p∗3 is given by a pullback construction, explained
in detail below.

To reach the categories in the middle column from those in the left column
we compute products with EG. Along the top, the fact that EG is a nonstandard
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contractible H -space is an insignificant detail. Comparing with p∗1 on the left, the
transfer p∗2 in the middle column is also obtained by restricting the action of G
to H . Thus, the left-hand square in diagram (7.5) obviously commutes.

Before we compare p∗3 with p∗2 , we discuss p∗3 , the rightmost column in diagram
(7.5), in detail. In order to manipulate pullback squares efficiently we replace the
notation EG×G Z by ∗×G (EG× Z) as discussed before Lemma 7.1. Suppose H
is a subgroup of the group G, and let EG be the standard model for a contractible
G-space on which G acts freely from the right. The space EG plays a similar role
relative to the subgroup H . In order to compare situations, we take the standard
model X = ∗×G (EG × Z) and a modified model X̃ = ∗×H (EG × Z). In this
situation we have the basic pullback square

(∗×H G)× (EG× Z)
p2
��

// (∗×H EG× Z)= X̃

��

EG× Z // ∗×
G (EG× Z)= X

(7.6)

This displays the comparison map X̃→ X of the chosen models as a fiber bundle,
with fiber ∗×H G. One may identify ∗×H (EG× Z)∼= (∗×H G)×G (EG× Z),
and then the right-hand vertical arrow is isomorphic to the map

(∗×H G)×G (EG× Z)→∗×G (EG× Z)

induced by projecting the coset space ∗×H G to a point. This replacement also
displays the upper horizontal map as the quotient projection

(∗×H G)× (EG× Z)→ (∗×H G)×G (Z × EG).

The direct construction p∗ :R(X)→R(X̃) maps (Y, r, s) to (Ỹ , r̃ , s̃), derived
from the pullback square

Ỹ r̃
//

��

X̃ = ∗×H (EG× Z)

p
��

Y r
// X = ∗×G (EG× Z)

(7.7)

Augmenting the right-hand column of (7.7) to the square of (7.6) shows that Ỹ→ Y
is a fiber bundle with fiber ∗×H G.

Now we address commutativity of the right-hand square in diagram (7.5). To
reach the categories in the middle column from the categories in the right column,
we also compute pullbacks. Recalling Lemma 7.1, the equivalence of categories
R(EG ×G Z) 'R(EG × Z ,G) [Waldhausen 1985, Lemma 2.1.3] describes the
functor moving left to the middle column. This functor assigns to a retractive space
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(Y, r, s) over EG×G Z the retractive G-space (Y ′, r ′, s ′) over EG× Z defined as
the pullback in the following diagram:

Y ′ r ′
//

��

EG× Z

��

Y r
// X = ∗×G (EG× Z)

Then moving up to R(EG × Z , H) amounts to restricting the G-action in this
pullback to H.

On the other hand, to move from the lower right to the upper middle by going
up and then to the left, compute first the pullback (7.7) and then compute

Ỹ ′ r̃ ′
//

��

EG× Z

��

Ỹ r̃
// X̃ = ∗×H (EG× Z).

The composition of the two functors may be displayed in the stacked diagram

Ỹ ′ r̃ ′
//

��

EG× Z

��

Ỹ r̃
//

��

X̃ = ∗×H (EG× Z)

p
��

Y r
// X = ∗×G (EG× Z)

The end result is that (Ỹ ′, r̃ ′, s̃ ′) is simply the G-space (Y ′, r ′, s ′) with the action
restricted to H. Therefore, the right-hand square commutes.

Lemma 7.8 (cf. [Waldhausen 1982, Lemma 1.3, p. 399]). Let G be a finite group,
EG a universal G-bundle, BG = ∗×G EG a classifying space, and Z a space with
a trivial G-action. Then the composition

A(Z) inclusion
// A(BG× Z) transfer

// A(EG× Z)' A(Z)

is given by multiplication by the order of G, in the sense of the additive H-space
structure. �

8. A fundamental cofibration sequence

Waldhausen’s main result is this proposition.

Proposition 8.1 (cf. [Waldhausen 1982, Proposition 2.7, p. 407]). The composition
of the operation θn

:A(∗)→A(B6n×∗) with the transfer map φn:A(B6n×∗)→A(∗)
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is the same, up to weak homotopy, as the polynomial map on A(∗) given by the
polynomial

p(x)= x(x − 1) · · · (x − n+ 1). �

The analogous result for the present situation with the one-point space replaced
by a simplicial abelian group X is more complicated to formulate and to work
with. To prepare for the analogue of Waldhausen’s result, we develop the following
constructions, taking up where we left off with Definition 6.2 and Proposition 6.3.
We make use of the maps

δ
n,k
n−1 : X

n−1
→ Xn, (x1, . . . , xn−1) 7→ (x1, . . . , xn−1, xk),

and the respective induced functors δn,k
n−1∗ : R f (Xn−1)→ R f (Xn). The pushout

construction
Xn−1 // s

//

δ
n,k
n−1

��

Z

in,k
n−1
��

Xn // // δ
n,k
n−1∗Z

defines an exact functor δn,k
n−1∗ : R f (Xn−1) → R f (Xn). For a retractive space

(Z , r, s) over Xn−1 with retraction r : Z→ Xn−1 written in terms of components
as r = (r1, . . . , rn−1), the composition of the canonical map in,k

n−1 followed by the
retraction δn,k

n−1∗r is given by the formula

(δ
n,k
n−1∗r) ◦ in,k

n−1(z)= δ
n,k
n−1 ◦ r(z)= (r1(z), . . . , rk(z), . . . , rn−1(z), rk(z)).

Note that in the special case Z = P̃n−1Y = (∧e)
n−1Y , we have, for each k such

that 1≤ k ≤ n− 1,(
δ

n,k
n−1∗(P̃

n−1r)
)
◦ in,k

n−1(y1, . . . , yn−1)= (r(y1), . . . ,r(yk), . . . ,r(yn−1),r(yk)). (8.2)

Next we assemble these functors by gluing along the common space Xn , obtaining

1̃n
n−1 :R f (Xn−1)→R f (Xn)

given on objects by 1̃n
n−1(Z)= δ

n,1
n−1∗Z ∪Xn · · · ∪Xn δ

n,n−1
n−1∗ Z , which can be viewed

as an iterated pushout or as the colimit of a diagram modeled on the cone on n− 1
points. We also need to push this construction forward to R f (X) by µ∗, the iterated
multiplication, obtaining

1n
n−1 = µ∗ ◦ 1̃

n
n−1 :R f (Xn−1)→R f (X)

given on objects by 1n
n−1(Z) = µ∗(δ

n,1
n−1∗Z) ∪X . . . ∪X µ∗(δ

n,n−1
n−1∗ Z). If we start

with
Z = Y∧e

n− 1 factors
· · · ∧eY = P̃n−1Y,
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then the formula for the retraction on the k-th summand µ∗(δ
n,k
n−1∗ P̃n−1Y ) is(

µ∗δ
n,k
n−1∗(P̃

n−1r)
)
◦ in,k

n−1(y1, . . . , yn−1)

= µ(r(y1), . . . , r(yk), . . . , r(yn−1), r(yk)), (8.3)

where µ is the iterated multiplication.
We can now succinctly state our general results. Let

φ̃k :R f (X k, 6k, {all})→R f (X k) and φk :R f (X, 6k, {all})→R f (X)

be the functors that forget the group action.

Proposition 8.4 (cf. [Waldhausen 1982, Proposition 2.7, p. 407]). There is a cofi-
bration sequence of functors R f (X)→R f (Xn)

1̃n
n−1φ̃n−1θ̃

n−1Y // // φ̃n−1θ̃
n−1Y ∧e θ̃

1Y // // φ̃n θ̃
nY. (8.5)

In the case that X is a connected simplicial abelian group, we have the cofibration
sequence

1n
n−1φ̃n−1θ̃

n−1Y // // φn−1θ
n−1Y ∧µ θ1Y // // φnθ

nY (8.6)

of functors R f (X)→R f (X).

Remark 8.7. The second cofibration sequence is obtained by applying the exact
functor induced by the iterated multiplication µ : Xn

→ X to the first sequence.
The result in the middle term of the second sequence is open to interpretation. The
formulation chosen amounts to interpretation of the factorization µ= µ ◦ (µ× id)
along with the facts that µ∗ ◦∧e =∧µ and θ̃1Y = θ1Y = Y .

Proof of Proposition 8.4. Following Section 7, we interpret the transfer maps

φn : A(Dn X)→ A(Xn) and φn : A(X × B6n)→ A(X)

as induced by the forgetful functors

R f (Xn, 6n, {all})→R f (Xn, {e}) and R f (X, 6n, {all})→R f (X, {e}),

respectively. This means we have to make nonequivariant analyses of the functors
θ̃n and θn , respectively.

To obtain the surjections, we consider the diagram

X

��

Xn−1
× X

µ
oo

��

P̃n−1
n−2 Y ∧e Y

((∧e)
n−1r)∧er

oo // //

��

P̃n−1Y ∧e Y

∼=

��

X Xnµ
oo P̃n

n−1Yrn
oo // // P̃nY

(8.8)
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Clearly, P̃n−1
n−2 ∧e Y maps into P̃n

n−1, because, if there are two indices i, j with
1≤ i, j≤n−1 and i 6= j and with yi = y j , then this still holds for ((y1, . . . , yn−1), y)
rebracketed as (y1, . . . , yn−1, y). Taking the pushouts along the rows using the
columns two, three, and four produces a surjection

φn−1θ̃
n−1Y ∧e θ̃

1Y � φn θ̃
nY

in R f (Xn) and pushing out along the rows using columns one, three and four yields

φn−1θ
n−1Y ∧µ θ1Y = µ∗(φn−1θ

n−1Y ∧e θ
1Y )� φnθ

nY,

the surjection in R f (X). Now we have to identify the “kernels”.
Reviewing the remarks at the end of Section 6, P̃n−1Y ∧e Y = P̃nY is the space

whose simplices outside of Xn are n-tuples of simplices from Y−X ; P̃n−1
n−2 Y ∧e Y is

the space whose simplices outside of Xn are n-tuples ((y1, . . . , yn−1), y) with the
condition that there are at least two distinct indices 1≤ i, j ≤ n−1 with yi = y j ; and
P̃n

n−1Y is the space whose simplices outside of Xn are n-tuples (y1, . . . , yn−1, yn)

with the condition that there are at least two distinct indices 1 ≤ i, j ≤ n with
yi = y j . Then the simplices of P̃n

n−1Y not in the image of P̃n−1
n−2 Y ∧e Y are those

n-tuples where the first n− 1 are distinct but yn = yk for some 1≤ k ≤ n− 1.
Using this observation we extend the diagram (8.8) by means of the following

constructions. For 1≤ k ≤ n− 1, consider the diagrams

Xn

��

Xn−1
δ

n,k
n−1

oo

δ
n,k
n−1
��

// P̃n−1Y

δ
n,k
n−1
��

Xn P̃n−1Y × X ∪Xn Xn−1
× Yoo // P̃n−1Y × Y

where δn,k
n−1 : X

n−1
→ Xn is given by δn,k

n−1(x1, . . . , xn−1)= (x1, . . . , xn−1, xk) and
the other maps labeled δn,k

n−1 are given by similar formulas. For each k, taking
the pushout of the first row extends P̃n−1Y over Xn−1 to the space δn,k

n−1∗ P̃n−1Y
over Xn; taking the pushout of the second row yields P̃n−1Y ∧e Y . Since the
diagram commutes, we obtain a family of maps over Xn

δ
n,k
n−1 : δ

n,k
n−1∗φ̃n−1 P̃n−1Y → φ̃n−1 P̃n−1Y ∧e Y

with δn,k
n−1(y1, . . . , yn−1)= (y1, . . . , yk, . . . , yn−1, yk).

Now we are ready to augment diagram (8.8), after which we can compute the
desired cofibration sequence. Having established the notation

1̃n
n−1φ̃n−1 P̃n−1Y = δn,1

n−1∗φ̃n−1 P̃n−1Y ∪Xn · · · ∪Xn δ
n,n−1
n−1∗ φ̃n−1 P̃n−1Y,

write 1n
n−1 :1

n
n−1φn−1 P̃n−1Y → φn−1 P̃n−1Y ∧e Y for the union of the maps δn,k

n−1
just defined. Add this map above the upper right corner of (8.8) and fill out the
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following diagram:

X

��

Xnµ
oo

∼=

��

1n
n−1φ̃n−1 P̃n−1

n−2 Yoo //
i ′
//

��

1n
n−1
��

1n
n−1φ̃n−1 P̃n−1Y

��

1n
n−1
��

X

��

Xn−1
× X

µ
oo

��

φ̃n−1 P̃n−1
n−2 Y ∧e Y

rn−1
∧er

oo //
i
//

��

φ̃n−1 P̃n−1Y ∧e Y

∼=

��

X Xnµ
oo P̃n

n−1Yrn
oo //

i ′′
// P̃nY

(8.9)

To explain the entry at the top of the third column, we identify the conditions on

(z1, . . . , zn) ∈ (φ̃n−1 P̃n−1
n−2 Y )∧e Y and (y1, . . . , yn−1) ∈1

n
n−1φ̃n−1 P̃n−1Y

such that i(z1, . . . , zn)=1
n
n−1(y1, . . . , yn−1). We see that z j = y j for 1≤ j ≤ n−1

and that there is k between 1 and n− 1 such that zn = yk . Moreover, since no more
than n − 2 of the first n − 1 simplices z j are distinct, no more than n − 2 of the
simplices y j are distinct. Hence, we obtain the description of the term at the top
of the third column. Additionally we obtain the fact that the induced map(
φn−1 P̃n−1

n−2 Y ∧e Y
)
∪(1n

n−1φn−1 P̃n−1
n−2 Y )

(
1n

n−1φn−1 P̃n−1Y
)
// // φn−1 P̃n−1Y ∧e Y

is a cofibration, so Lemma 2.9 applies to diagram (8.9).
One takes the row-wise pushout of the three columns on the right and obtains

the cofibration sequence in R f (Xn)

1̃n
n−1φ̃n−1θ̃

n−1Y //
1̃n

n−1
// φ̃n−1θ̃

n−1Y ∧e θ
1Y // // φ̃n θ̃

nY,

which is (8.5) from the statement.
One also composes the arrows pointing to the left in each row and takes the

row-wise pushout of the resulting diagram, which consists of columns one, three,
and four of the diagram (8.9), obtaining

1n
n−1φ̃n−1θ̃

n−1Y //
µ∗1̃

n
n−1
// φn−1θ

n−1Y ∧µ θ1Y // // φnθ
nY,

which is the second cofibration sequence (8.6) in the statement. �

We want to apply the cofibration sequence (8.6) to evaluate the composite φnθ
n

on a homotopy class in π j A(X), where the basepoint is taken in the zero com-
ponent. Two features of algebraic K-theory make this possible. The first feature
is essentially a consequence of the additivity theorem and says that cofibration
sequences imply additive relations.
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Lemma 8.10. Let Z be a space. The two composite maps

|hS2R f (Z)|
t
//

s∨q
// |hR f (Z)| // �|hS•R(Z)|

are homotopic, where the right-hand arrow is the canonical map

|hR f (Z)| →�|hS•R f (Z)|. �

The second feature is the triviality of products in higher homotopy groups, ex-
plained as follows. Since X is a simplicial abelian group, the homotopy functor
Y 7→ [Y, A(X)] has a ring structure induced from the biexact pairing

R(X)×R(X) ∧e
−−→R(X × X) µ∗

−−→R(X).

Now suppose Y = 6Y ′ is a suspension. Under this ring structure the product of
two elements [ f1] and [ f2] in [Y, A(X)] is zero, because [ f1] may be represented
by a map taking the upper cone C+Y ′ in 6Y ′ to the point in A(X) represented by
the zero element in R f (X), while [ f2] is represented by a map taking the lower
cone C−Y ′ in 6Y ′ to the zero element. In a similar manner, there are pairings

R(Xn−1)×R(X) ∧e
−−→R(Xn−1

× X)=R(Xn)

and these are also zero on higher homotopy groups. Combining these observations
means we have a chance to compute by induction the action of φnθ

n on higher
homotopy groups, because at each stage of the induction the middle term of the
relevant cofibration contributes nothing to the final answer.

To start the induction, we compute (φ2θ
2)∗[ f ] for f : S j

→ A(X). Applying
the additivity theorem to the cofibration sequence (8.6), we can write

(φ2θ
2)∗[ f ] = (θ1

∗
[ f ] ∧µ θ1

∗
[ f ])− (12

1θ
1)∗[ f ].

For the first term on the right side of the equation, we have observed that this
product is zero. So we first obtain

(φ2θ
2)∗[ f ] = −(12

1θ
1)∗[ f ]. (8.11)

We analyze this expression as follows. First, φ1 and θ1 are identity functors. For
n = 2, there is one diagonal map δ2,1

1 : Z→ δ
2,1
1 Z , so

1̃2
1φ1θ

1Y = δ2,1
1∗ φ1θ

1(Y )= δ2,1
1∗ Y.

Then 12
1φ1θ

1
= µ∗ ◦ 1̃

2
1φ1θ

1
= µ∗ ◦ δ

2,1
1∗ , and the point is to see what is happening

with the retraction r : Y → X . Applying formula (8.3), the composition

µ ◦ (1̃2
1r) ◦ i2,1

1 (y)= µ(r(y), r(y))= (r(y))2 = (τ2 ◦ r)(y),
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where τ 2
: X→ X is the squaring homomorphism. That is, the action of12

1=µ∗1̃
2
1

on homotopy is the same as the action on homotopy induced by the squaring ho-
momorphism τ 2. Consequently,

(φ2θ
2)∗[ f ] = −τ 2

∗
[ f ].

The general result is the next theorem.

Theorem 8.12. Let τ n
: X→ X be the homomorphism that raises elements to the

n-th power, thinking of the operation in X as multiplication. Then

φnθ
n
∗
= (−1)n−1

· (n− 1)! · τ n
∗
: π j A(X)→ π j A(X)

for j > 0.

Proof. First we observe that on higher homotopy groups,

(φnθ
n)∗ = (−1)n−1

· (1n
n−11̃

n−1
n−2 · · · 1̃

2
1)∗.

An application of the cofibration sequence (8.6) and the vanishing product principle
gives (φnθ

n)∗ = (−1) · (1n
n−1φ̃n−1θ̃

n−1)∗. Then one continues, with applications
of the cofibration sequence (8.5) and the vanishing pairing principle,

(φnθ
n)∗ = (−1)2 ·

(
1n

n−11̃
n−1
n−2φ̃n−2θ̃

n−2)
∗
= · · ·

= (−1)n−1
·
(
1n

n−11̃
n−1
n−2 · · · 1̃

2
1
)
∗
= (−1)n−1

·
(
µ∗1̃

n
n−11̃

n−1
n−2 · · · 1̃

2
1
)
∗
,

recalling that φ̃1 and θ̃1 are identity functors.
Since the functors 1̃p

p−1 are built by unions from functors δ̃ p,k
p−1∗, we have to

analyze composites

δ
n,kn−1
n−1∗ ◦ δ

n−1,kn−2
n−2∗ ◦ · · · ◦ δ

2,1
1∗ :R f (X)→R f (Xn)

for all choices of indices 1≤ kn−1 ≤ n− 1, 1≤ kn−2 ≤ n− 2, . . . , 1≤ k2 ≤ 2. On
(Y, r, s) the value of the chain is (Y ∪X Xn, rn, s), where the retraction rn

: Y→ Xn

is evaluated by repeated application of formula (8.2). When we apply µ∗ to this
object, the value on (Y, r, s) is seen to be (Y, τ n

◦ r, s). Finally, we identify the
numerical coefficient (n− 1)! by counting the number of terms in the composites
1̃n

n−11̃
n−1
n−2 · · · 1̃

2
1 according to the description above. �
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