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1. Introduction

The classification of high-dimensional manifolds and the understanding of their au-
tomorphism groups is a long-standing question in algebraic topology. The former
turned out to be intimately related to the algebraic K- and L-theory of group rings
[Wall 1999], while the latter has a deep connection to pseudo-isotopy theory and
Waldhausen’s algebraic K-theory of spaces [Waldhausen et al. 2013; Weiss and
Williams 2014].

Since the 1970s, a lot of progress has been made to calculate the algebraic K-
and L-theory of group rings. This culminated in what is now called the Farrell–
Jones conjecture, first stated in [Farrell and Jones 1993]. For algebraic K-theory, it
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predicts that the algebraic K-theory of R[G] can be computed from the algebraic
K-theory of a certain set of subgroups by a homological recipe. The Farrell–Jones
conjectures for algebraic K- and L-theory of group rings have been a highly active
research area over the last 20 years. Though many cases of the conjectures are
known by now, they remain open in general.

In the language of [Davis and Lück 1998], the conjecture takes the following
form: Let F be a homotopy invariant functor from spaces to spectra. Let X be a
connected CW-complex with fundamental group G. Then we obtain an induced
functor FX from the orbit category Or(G) to the category of spectra which sends
G/H to F(X̃ ×G G/H). By the methods of [Davis and Lück 1998], FX gives rise
to a G-homology theory H G

∗
(– ; FX ). The Farrell–Jones conjecture for FX predicts

that the assembly map

H G
n (EVCycG; FX )→ H G

n (G/G; FX )∼= πnF(X), (1.1)

which is induced by the projection map EVCycG → G/G from the classifying
space for virtually cyclic subgroups to a point, is an isomorphism for all n ∈ Z. If
we choose F to be nonconnective algebraic K-theory K−∞(Z[π1( – )]) or Ranicki’s
ultimate lower L-theory L−∞(Z[π1( – )]), we obtain the K- or L-theoretic Farrell–
Jones conjecture for group rings, respectively.

In this article, we consider the case that F(–)=A−∞(–), a nonconnective deloop-
ing of Waldhausen’s algebraic K-theory of spaces. We obtain the following result:

1.2. Theorem. Let X be a connected CW-complex with fundamental group G. If
G is a virtually poly-Z-group, then the assembly map

H G
n (EVCycG;A−∞X )→ πnA−∞(X)

is an isomorphism for all n ∈ Z.

In addition to the algebraic K- and L-theory of group rings, Farrell and Jones
also stated conjecture (1.1) for pseudo-isotopy. They went on to prove the pseudo-
isotopy version of the conjecture for spaces whose fundamental group is a co-
compact lattice in an almost connected Lie group, assuming that it holds for spaces
whose fundamental group is virtually poly-Z. However, the announced proof of this
special case was never published; see [Bartels et al. 2014a, Remark 7.1]. Since the
isomorphism conjecture in A-theory is in fact equivalent to the (topological, PL
and smooth) pseudo-isotopy version [Enkelmann et al. 2018, Theorem 3.2], the
present article closes this gap in the published literature.

We also give a description of the A-theory of spaces with finite fundamental
group, which is similar to Lemma 4.1 of [Bartels and Lück 2007]. Call a finite
group D a Dress group if there are primes p and q and a normal series P EC E D
such that P is a p-group, C/P is cyclic and D/C is a q-group.
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1.3. Theorem. Let X be a connected CW-complex with finite fundamental group G.
Let D denote the family of Dress subgroups of G. Then the assembly map

H G
n (EDG;A−∞X )→ πnA−∞(X)

is an isomorphism for all n ∈ Z.

Theorems 1.2 and 1.3 are not the first results of this type. For the algebraic
K-theory and L-theory of group rings, the last decade has seen dramatic progress
on the Farrell–Jones conjecture. To name some important results, the conjecture
has been shown to hold for word-hyperbolic groups [Bartels et al. 2008b], CAT(0)-
groups [Bartels and Lück 2012a; Wegner 2012], lattices in almost connected Lie
groups [Bartels et al. 2014a; Kammeyer et al. 2016], subgroups of GLn(Z) [Bartels
et al. 2014b] and GLn(Q) as well as GLn(F(t)) for any finite field F [Rüping 2016],
solvable groups [Wegner 2015], and mapping class groups [Bartels and Bestvina
2019].

The proofs of these results make heavy use of a set of ideas known as “con-
trolled algebra”, which go back to work of Connell and Hollingsworth [1969] and
Quinn [1979]. It was shown in [Bartels et al. 2004] that the methods of controlled
algebra can be used to produce explicit models for the (equivariant) assembly map
H G

n (EVCycG;K−∞R )→ Kn(R[G]). Precursors of this model appeared for example
in [Pedersen and Weibel 1989] and [Anderson et al. 1994]. All recent proofs of the
Farrell–Jones conjecture use this setup, and rely on at least one of two sufficient
criteria to prove the conjecture: the notions of transfer reducibility and being a
Farrell–Hsiang group (see [Bartels 2016]).

For the algebraic K-theory of spaces, known as A-theory, Vogell used the ideas
of controlled algebra in the setting of retractive spaces to describe an A-theory
assembly map [Vogell 1990; Carlsson et al. 1998]. These models were recast in
[Weiss 2002] to repair some problems with the original approach.

In this article, we promote Weiss’ categories of controlled retractive spaces to
the equivariant setting (even though our notions of weak equivalence are closer
to those of Carlsson–Pedersen–Vogell). We give a self-contained discussion of
the categories of equivariant, controlled retractive spaces. We prove a number of
theorems modeled after those of [Bartels et al. 2004], and produce a model for the
equivariant A-theory assembly map. One particular feature of our treatment lies
in the fact that we can reuse a considerable amount of results from [Bartels et al.
2004] and subsequent work.

One obtains a category (of controlled retractive spaces) whose K-theory vanishes
if and only if the assembly map for G is an isomorphism. In the linear case, proofs
of the Farrell–Jones conjecture proceed by using the notions of transfer reducibil-
ity or Farrell–Hsiang group to show that the K-theory of a similar “obstruction
category” is trivial. We adapt the “Farrell–Hsiang method” to our setting:
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1.4. Definition. Let G be a group and S be a finite, symmetric generating set of G.
Let F be a family of subgroups of G.

Call (G, S) a Dress–Farrell–Hsiang group with respect to F if there exists N ∈
N such that for every ε > 0 there is an epimorphism π : G � F onto a finite
group F such that the following holds: for every Dress group D 6 F , there are
a D := π−1(D)-simplicial complex ED of dimension at most N whose isotropy
groups lie in F , and a D-equivariant map ϕD : G→ ED such that

d`
1
(ϕD(g), ϕD(g′))6 ε

whenever g−1g′ ∈ S.

1.5. Theorem. Let X be a connected CW-complex with fundamental group G.
Let F be a family of subgroups of G. If G is a Dress–Farrell–Hsiang group with
respect to F , then the assembly map

H G
n (EFG;A−∞X )→ πnA−∞(X)

is an isomorphism for all n ∈ Z.

Theorem 1.3 follows immediately from this result. Theorem 1.2 is deduced in
Section 11 following the strategy of [Bartels et al. 2014a], using previous results
from [Winges 2015] that all relevant instances of Farrell–Hsiang groups are actually
Dress–Farrell–Hsiang.

Using the framework we develop here, the proof of the Farrell–Jones conjec-
ture for transfer reducible groups can also be adapted to the A-theory setting; see
[Enkelmann et al. 2018].

Structure of the article. Let us outline the structure of this article.
In the first half, we set up the technical background for our constructions. In

Section 2, we define the notion of a coarse structure and explain how a coarse
structure Z gives rise to the notion of a controlled space relative to a base space W .
In Section 3, we use these notions to construct the category of controlled retrac-
tive spaces R(W,Z) relative to a base space W . Every subspace A of Z gives
rise to a class of weak equivalences h A on R(W,Z); if A is empty, this gives a
notion of homotopy equivalence. We show that the category R(W,Z), together
with the weak equivalences h A, is a Waldhausen category which has a cylinder
functor and satisfies the saturation axiom and the cylinder axiom. As usual, we
need some finiteness condition to make algebraic K-theory nontrivial, so we define
subcategories of finite, homotopy finite and finitely dominated objects. In fact, we
work G-equivariantly and obtain in particular a Waldhausen category of finite, G-
equivariant controlled retractive spaces RG

f (W,Z).
In Section 4, we compare the different finiteness conditions and show that the

resulting (connective) algebraic K-theory differs at most in degree 0. We show
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that we have a version of Waldhausen’s fibration theorem which applies in our
situation, even though the h A-equivalences do not satisfy the extension axiom. We
call this the modified fibration theorem and prove it as Proposition 4.14. (Such a
statement was already used in [Weiss 2002].) We use this to construct homotopy
fiber sequences which compare homotopy equivalences and h A-equivalences and
show an excision result, the “coarse Mayer–Vietoris theorem” in Theorem 4.23.
These results still have a certain “defect” in degree 0, which is corrected in the next
section. The section concludes with a criterion for the vanishing of the algebraic
K-theory of the categories RG

f (W,Z).
In Section 5, we define a delooping of the algebraic K-theory space K (RG

f (W,Z))
to obtain the nonconnective algebraic K-theory spectrum K−∞(RG

f (W,Z)). We
establish nonconnective versions of the homotopy fiber sequences and “coarse
Mayer–Vietoris theorem” from the previous section. In particular, this repairs the
“defect” in degree 0 of the connective case.

The second half of the article discusses the Farrell–Jones conjecture for A-theory.
Section 6 constructs a model for the assembly map. As in the linear case, there
exists for any G-CW-complex X a coarse structure J(X) which, together with a
certain class of weak equivalences h∞, makes

K−∞(RG
f (W, J( – )), h∞)

into a G-homology theory. If W is a free G-CW-complex, we identify its coeffi-
cients with A−∞(H\W ). Here, A−∞(V ) is a nonconnective delooping of Wald-
hausen’s algebraic K-theory of spaces A(V ), which we define using the results of
Section 5. Applying the G-homology theory to the map EFG→ G/G gives the
assembly map. We conclude with a criterion when this assembly map is a weak
equivalence.

In Section 7, we recall the fibered isomorphism conjecture for A-theory. We
define the notion of a Dress–Farrell–Hsiang group with respect to a family F .
Theorem 7.4 states that the fibered isomorphism conjecture is true for this class
of groups. Imitating [Bartels and Lück 2012b], we show how the theorem follows
once we know Corollary 9.6 and Theorem 10.1. Theorem 1.5 is a special case of
Theorem 7.4.

In Section 8, we introduce the A-theoretic Swan group and show that it acts
on the K-theory of the categories RG

f (W, J(X)). We prove an analog of Swan’s
induction theorem as Theorem 8.7. This is used to construct a “transfer map” in
Section 9. Section 10 contains a proof of the “squeezing theorem”, Theorem 10.1.

Section 11 is devoted to applications. We prove Theorem 1.3 and proceed to
show Theorem 1.2 following the strategy of [Bartels et al. 2014a]. We state the
“fibered Farrell–Jones conjecture with wreath products in A-theory”, establish the
usual inheritance properties and generalize Theorem 7.4 to cover this case as well.
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We conclude with the proof that virtually poly-Z-groups satisfy the fibered Farrell–
Jones conjecture with wreath products in A-theory.

2. Controlled equivariant CW-complexes

Throughout this article, G denotes a discrete group and W denotes a G-space.

2.1. Definition. Let Z be a G-space which is Hausdorff. A set of morphism control
conditions C is a collection of G-invariant subsets of Z × Z with the following
properties:

(C1) Every C ∈ C contains the diagonal 1(Z) := {(z, z) | z ∈ Z}.

(C2) Every C ∈ C is symmetric.

(C3) For all C,C ′ ∈ C there is some C ′′ ∈ C such that C ∪C ′ ⊆ C ′′.

(C4) For all C,C ′ ∈ C there is some C ′′ ∈ C such that C ′ ◦C ⊆ C ′′, where the
composition C ′ ◦C is defined as

C ′ ◦C := {(z′′, z) | ∃z′ : (z′, z) ∈ C, (z′′, z′) ∈ C ′}.

A set of object support conditions S is a collection of G-invariant subsets of Z
with the following property:

(S1) For all S, S′ ∈S there is some S′′ ∈S such that S ∪ S′ ⊆ S′′.

The triple Z= (Z ,C,S) is called a coarse structure.

Note that conditions (C1) and (C4) imply condition (C3).

2.2. Example [Bartels et al. 2004, Sections 2.3.2 and 2.3.3; 2008b, Section 3.2].

(1) Let Z be a G-space. The trivial object support condition is Striv(Z) = {Z}.
The trivial morphism control condition is given by Ctriv(Z) := {Z × Z}. To-
gether, these form the trivial coarse structure T(Z).

(2) Let X be a G-space. The G-compact support condition is the object support
condition defined to be

CG-cpt(X) := {K ⊆ X | K is G-compact}.

(3) Let M be a metric space with isometric G-action; metrics are allowed to map
to the extended real line R∪ {∞}. The bounded morphism control condition
is defined to be

Cbdd(M) := {B ∈ P(M ×M) | there is some R > 0 such that

d(m1,m2)6 R for all (m1,m2) ∈ B}.
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Together with the trivial object support condition on M , we obtain the bounded
coarse structure

B(M) := (M,Cbdd(M),Striv(M)).

(4) Let X be a G-space. The G-continuous control condition CG-cc(X) is the
morphism control condition given by the set of all subsets

C ⊆ (X ×[1,∞[)× (X ×[1,∞[)

which satisfy the following:

(a) For every x ∈ X and every Gx -invariant open neighborhood U of (x,∞)
in X ×[1,∞], there exists a Gx -invariant open neighborhood V ⊆U of
(x,∞) in X ×[1,∞] such that ((X ×[1,∞[) \U )× V )∩C =∅.

(b) Let p[1,∞[ : X×[1,∞[→ [1,∞[ be the projection map and equip [1,∞[
with the Euclidean metric. Then the set (p[1,∞[× p[1,∞[)(C) is a member
of Cbdd([1,∞[).

(c) C is symmetric, G-invariant and contains the diagonal.

(5) If C1, C2 are sets of morphism control conditions on the same space Z , then

C1 eC2 := {C1 ∩C2 | C1 ∈ C1,C2 ∈ C2}

is again a set of control conditions. We refer to this construction as “pointwise
intersection”.

There are further constructions which allow us to produce new coarse structures
out of these; see [Bartels et al. 2004, Section 2.3.1]. We will introduce these on
the way as we need them; see, for example, Definitions 5.1, 5.2 and 6.1.

Recall that W is a space with a G-action. Let Y be a G-CW-complex relative
to W . The structural inclusion of the relative G-CW-complex (Y,W ) is usually
denoted by s : W → Y . If we speak about a “cell” of Y , this always means a
(nonequivariant) open, relative cell. The closure of a cell e is denoted by ē, and
∂e is always the boundary of the cell e, i.e., the image of any attaching map for e.
Let �kY denote the set of k-cells of Y . Set �Y :=

⋃
k �kY . If e ∈ �Y is a cell in Y ,

we define 〈e〉 ⊆ Y to be the smallest nonequivariant subcomplex of Y (relative W )
which contains e. For a subgroup H 6 G, let 〈e〉H ⊆ Y denote the smallest H -
CW-subcomplex of Y which contains e. Similarly, we define 〈S〉, 〈S〉H for any
subset S ⊆ Y .

A nonequivariant version of the following definition was already considered in
[Weiss 2002].

2.3. Definition. Let Z = (Z ,C,S) be a coarse structure. Let Y be a G-CW-
complex relative to W . A control map for Y is an equivariant function κ : �Y → Z .
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A G-CW-complex Y relative W together with a control map κ is called a labeled
G-CW-complex relative W .

Let (Y1, κ1) and (Y2, κ2) be labeled G-CW-complexes relative W . A Z-controlled
map f : Y1→ Y2 is an equivariant, cellular map (relative W ) such that for all k ∈N

there is some C ∈ C for which

(κ2× κ1)
(
{(e2, e1) | e1 ∈ �kY1, e2 ∈ �Y2, 〈 f (e1)〉 ∩ e2 6=∅}

)
⊆ C

holds.
A Z-controlled G-CW-complex relative W is a labeled G-CW-complex (Y, κ)

such that the identity map on Y is a Z-controlled map and for all k ∈ N there is
some S ∈S such that

κ(�kY )⊆ S.

We abbreviate the terminology to controlled map and controlled G-CW-complex if
the coarse structure Z is understood.

2.4. Remark. The Z-control condition for a labeled G-CW-complex (Y, κ) is a
statement about attaching maps. Since C is closed under composition and taking
finite unions, the control condition in Definition 2.3 is equivalent to requiring that
for each k, there is some Ck ∈ C such that for every k-cell e and every cell e′

intersecting the closed cell ē nontrivially, we have (κ(e′), κ(e)) ∈ Ck .
Moreover, if Ck witnesses Z-controlledness for a given complex Y , we may

assume that Ck ⊆Ck+1, and the same holds for the support conditions. In particular,
if Y is finite-dimensional, there are a single support condition S and a single control
condition C witnessing that Y is Z-controlled.

Let (Y, κ) be a labeled G-CW-complex relative W . Define the relative cylinder
Y h [0, 1] by the pushout

W ×[0, 1] W

Y ×[0, 1] Y h [0, 1]

s× id[0,1]

The projection map p : Y h [0, 1]→ Y induces a function �p : �(Y h [0, 1])→�Y ,
so κ ◦�p is a control map for Y h [0, 1]. This turns Y h [0, 1] into a labeled G-CW
complex relative to W . If (Y, κ) is Z-controlled, then (Y h [0, 1], κ ◦ �p) is also
Z-controlled.

2.5. Definition. Let (Y1, κ1) and (Y2, κ2) be labeled G-CW-complexes relative W .
A Z-controlled homotopy is a Z-controlled map H : Y1h [0, 1] → Y2. Two maps
f0, f1 : Y1→ Y2 are Z-controlled homotopic, f0 'Z f1, if there is a Z-controlled
homotopy whose restriction to Y1×{0} and Y1×{1} equals f0 and f1, respectively.
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A Z-controlled map f : Y1→ Y2 is a Z-controlled homotopy equivalence if there
is a Z-controlled map f̄ : Y2→ Y1 such that f̄ f 'Z idY1 and f f̄ 'Z idY2 .

Suppose (Y, κ) is a labeled G-CW-complex relative to W , and that B ⊆ Y is a G-
invariant subcomplex of Y which contains W . Then B naturally becomes a labeled
G-CW-complex relative to W by restricting κ to B. If we do not say otherwise,
we always think about subcomplexes as labeled G-CW-complexes in this way.

2.6. Proposition (Z-controlled homotopy extension property [Weiss and Williams
1998, Section 1.A.6]). Let (Y, κ) be a Z-controlled G-CW-complex relative W , and
let B ⊆ Y be a G-invariant subcomplex. Let Y1 be a Z-controlled G-CW-complex
relative W , and suppose that h : Y ×{0} ∪ Bh [0, 1] → Y1 is a Z-controlled map.

Then there is a Z-controlled map Y h [0, 1] → Y1 extending h.

Proof. The proof follows the usual pattern. Subject to a choice of deformation
retraction of Dn

×[0, 1] to Dn
×{0}∪ ∂Dn

×[0, 1], we can define a G-equivariant
deformation retraction of (sknY∪B)h[0, 1] onto sknY×{0}∪Bh[0, 1] by compos-
ing with the characteristic maps of equivariant n-cells. The resulting deformation
retraction can be chosen to be constant on all points which do not lie on an n-cell
of Y which is not in B. It is Z-controlled because points on a given cell are moved
at most into the image of the attaching sphere of the same cell (and attaching maps
are controlled).

We obtain a deformation retraction of Yh[0, 1] onto Y×{0}∪Bh[0, 1] by stack-
ing the homotopies defined in the first step. This produces another Z-controlled
homotopy since, for each n, all but finitely many of the stacked homotopies are
constant on the n-skeleton. The endpoint of this homotopy is a retraction

r : Y h [0, 1] → Y ×{0} ∪ Bh [0, 1],

so we may define an extension of h by H := h ◦ r . �

3. Categories of controlled retractive spaces

The primary objective of the following discussion is to form a Waldhausen category
of controlled G-CW-complexes relative W . This enables us to study the controlled
A-theory of W in the sequel. Since the terminology can be considered standard
by now, we freely use the notions of category with cofibrations [Waldhausen 1985,
page 320], Waldhausen category [Waldhausen 1985, page 326] (where it is called
“category with cofibrations and weak equivalences”) and cylinder functor [Wald-
hausen 1985, page 348]. The saturation and extension axioms [Waldhausen 1985,
page 327] as well as the cylinder axiom [Waldhausen 1985, page 349] play a role.

3.1. Definition. Let Z= (Z ,C,S) be a coarse structure. The category RG(W,Z)
of Z-controlled retractive spaces over W is the category whose objects are Z-
controlled, free G-CW-complexes Y relative to W which come equipped with an
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equivariant retraction r : Y →W (i.e., r ◦ s = idW , where s denotes the structural
inclusion W → Y ). Morphisms in this category are Z-controlled maps over and
under W .

We write (Y, sY , rY ) or Y�W for objects of RG(W,Z), if we want to emphasize
the section and retraction or the base space.

3.2. Remark. We would like to emphasize a few points about Definition 3.1 which
may be easy to overlook.

By definition, the morphisms in RG(W,Z) are all cellular maps, and we never
consider maps which are not cellular. This is important for inductive arguments,
and also provides us with mapping cylinders.

Requiring the relative G-CW-complexes (Y,W ) to have a retraction Y→W and
morphisms to respect this retraction provides RG(W,Z) with a basepoint. How-
ever, the homotopy equivalences we define later are inherited from the category of
relative G-CW-complexes. This means that some arguments lead us to consider
maps which do not have to respect the retraction. We use the word morphism if a
map respects the retractions, and speak about maps if the retractions do not need
to be preserved.

3.3. Definition (finiteness conditions). Let (Y �W, κ) be a Z-controlled retractive
space over W .

We call Y finite if it is finite-dimensional, the image of Y \W under the retraction
meets the orbits of only finitely many path components of W , and for all z ∈ Z
there is some open neighborhood U of z such that κ−1(U ) is finite.

An object Y is homotopy finite if there is a finite object F and a morphism
F→ Y which is a Z-controlled homotopy equivalence.

We call Y finitely dominated if there are a finite Z-controlled G-CW-complex D
relative W , a Z-controlled morphism p : D→ Y and a Z-controlled map i : Y → D
such that pi 'Z idY as Z-controlled maps.

Let us denote the full subcategories of finite, homotopy finite and finitely domi-
nated Z-controlled retractive spaces by RG

f (W,Z), R
G
h f (W,Z) and RG

fd(W,Z).

3.4. Remark. Note that the cells of finite objects can only be labeled with points
whose isotropy group is finite. In fact, all control spaces we consider are free.

3A. RG(W,Z) as a Waldhausen category. Observe that RG(W,Z) is canoni-
cally pointed by the zero object ∗ = (W � W,∅), and that ∗ is finite. Let
coRG(W,Z) be the subcategory of all morphisms which are isomorphic to the
inclusion of a G-invariant subcomplex. We call such morphisms cofibrations and
denote them by “�”. Since isomorphisms are controlled, the controlled homotopy
extension property (CHEP) holds with respect to cofibrations as a consequence of
Proposition 2.6. As observed in [Weiss and Williams 1998, Section 1.A.6], the
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CHEP is key to showing that RG(W,Z) is a Waldhausen category. In the remain-
der of this section, we elaborate on this remark, and also introduce a more general
notion of weak equivalences in RG(W,Z), which is inspired by [Carlsson et al.
1998].

3.5. Lemma. The subcategory coRG(W,Z) is a subcategory of cofibrations for
RG(W,Z). If in a diagram Y2← Y0� Y1 all three objects are finite, then so is the
pushout Y1 ∪Y0 Y2.

Proof. The unique morphism ∗→ Y (given by the structural inclusion) is clearly
in coRG(W,Z), and the same holds true for any isomorphism. This shows Wald-
hausen’s first two axioms. We are left to show that cofibrations admit cobase
changes. Clearly isomorphisms do, so we can restrict ourselves to inclusions of
G-invariant subcomplexes.

Let a diagram of the form Y2← Y0� Y1 be given, where Y0 is a subcomplex
of Y1. The pushout Y := Y1 ∪Y0 Y2 exists in the category of G-CW-complexes
relative W , and the resulting map Y2→ Y is the inclusion of a subcomplex. By
the universal property of the pushout, we obtain a structural retraction Y →W .

We observe that �Y = �Y2 t (�Y1 \ �Y0). This allows us to define a control map
κ : �Y → Z by setting

κ(e) :=
{
κ2(e), e ∈ �Y2,

κ1(e), e ∈ �Y1 \ Y0.

Then (Y, κ) is an object in RG(W,Z) because the map Y0→ Y2 is controlled. If
Y1 and Y2 are finite, then so is Y .

By the universal property of Y , morphisms of retractive spaces out of Y are in
bijection with compatible pairs of morphisms of retractive spaces out of Y1 and Y2.
It is straightforward to check that this correspondence restricts to a bijection be-
tween controlled maps. Hence, (Y, κ) is also a pushout in RG(W,Z). �

Setting coRG
f (W,Z) :=RG

f (W,Z)∩ coRG(W,Z), Lemma 3.5 shows that both
RG(W,Z) and RG

f (W,Z) are categories with cofibrations.
The pushout of homotopy finite or finitely dominated objects is also homotopy

finite or finitely dominated, respectively, and both RG
h f (W,Z) and RG

fd(W,Z) are
therefore also categories with cofibrations. However, the proof requires us to
know more about the Waldhausen category structure of RG(W,Z). It is given
in Lemma 3.25.

3.6. Definition (cofinal subcomplexes). Let A ⊆ Z be a G-invariant subspace. A
Z-thickening A is a set of the form

AC
:= {z ∈ Z | (z, a) ∈ C, a ∈ A}

for some C ∈ C.
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Let additionally (Y, κ) be a labeled G-CW-complex relative W . A subcomplex
Y ′ ⊆ Y is called cofinal away from A if for every k ∈ N there is some Z-thickening
AC of A such that κ−1(Z \ AC)∩�kY ⊆ �kY ′.

In the following discussion, we tacitly assume the next lemma.

3.7. Lemma. Let Y, Y1, Y2 be labeled G-CW-complexes.

(1) If Y ′ ⊆ Y and Y ′′ ⊆ Y are cofinal subcomplexes away from A, then so is
Y ′ ∩ Y ′′.

(2) If Y ′′ ⊆ Y ′ ⊆ Y are inclusions of subcomplexes, Y ′ ⊆ Y is cofinal away from
A and Y ′′ ⊆ Y ′ is cofinal away from A, then Y ′′ ⊆ Y is cofinal away from A.

(3) Let f : (Y1, κ1)→ (Y2, κ2) be a controlled map, and let Y ′2 ⊆ Y2 be cofinal
away from A. Let f ∗Y ′2 be the largest subcomplex of Y1 whose image under f
is contained in Y ′2. Then f ∗Y ′2 ⊆ Y1 is cofinal away from A.

(4) Suppose that Y is Z-controlled. Let B ⊆ Y be a subcomplex and B ′ ⊆ B a co-
final subcomplex. Then there is a cofinal subcomplex Y ′ ⊆ Y with Y ′∩ B = B ′.

Proof. (1) Let k ∈ N. Choose morphism control conditions C ′ and C ′′ such that
κ−1(Z \ AC ′)∩�kY ⊆ �kY ′ and κ−1(Z \ AC ′′)∩�kY ⊆ �kY ′′. Let C ∈ C such that
C ′ ∪C ′′ ⊆ C . Then Z \ AC

⊆ Z \ AC ′ and Z \ AC
⊆ Z \ AC ′′ , so

κ−1(Z \ AC)∩�kY ⊆ �k(Y ′ ∩ Y ′′).

(2) Let k ∈ N. This time, take morphism control conditions C ′ and C ′′ such that
κ−1(Z \ AC ′)∩�kY ⊆ �kY ′ and κ−1(Z \ AC ′′)∩�kY ′ ⊆ �kY ′′. Let C ∈ C such that
C ′ ∪C ′′ ⊆ C . Then Z \ AC

⊆ Z \ AC ′ and Z \ AC
⊆ Z \ AC ′′, so

κ−1(Z \ AC)∩�kY ⊆ κ−1(Z \ AC ′′)∩ κ−1(Z \ AC ′)∩�kY

⊆ κ−1(Z \ AC ′′)∩�kY ′

⊆ �kY ′′.

(3) Let k ∈ N. Choose C ∈ C such that

(κ2× κ1)
(
{(e2, e1) | e1 ∈ �kY1, e2 ∈ �Y2, 〈 f (e1)〉 ∩ e2 6=∅}

)
⊆ C,

and let C ′ ∈ C such that κ−1
2 (Z \ AC ′)∩ �kY2 ⊆ �kY ′2. Choose C ′′ ∈ C such that

C ′ ◦C ⊆ C ′′. Let e1 ∈ �kY1 such that κ1(e1) ∈ Z \ AC ′′ . Then κ2(e2) ∈ Z \ AC ′ for
all e2 ∈ 〈 f (e1)〉, so e2 ∈ Y ′2 and hence e2 ∈ �k f ∗Y ′2.

(4) This is proven by induction over the skeleta. For k = 0, define the 0-skeleton
of Y ′ to contain all 0-cells of B ′ and all 0-cells of Y which do not lie in B. Suppose
that the k-skeleton skkY ′ of Y ′ has been defined such that skkY ′ ⊆ skkY is cofinal
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and skkY ′∩B= skk B ′. There exists Ck ∈C such that κ−1(Z \ACk )∩�6kY ⊆�6kY ′.
Choose C ∈ C such that

(κ × κ)
(
{(e′, e) | e ∈ �k+1Y, e′ ∈ 〈e〉}

)
⊆ C.

Choose C ′k+1 ∈ C such that Ck ◦ C ⊆ C ′k+1. Define skk+1Y ′ by adding to skkY ′

all (k + 1)-cells of Y which lie in B ′ or which do not lie in B ′ and are labeled
by points in Z \ AC ′k+1 . Then skk+1Y ′ ∩ B = skk+1 B ′, and it is easy to check that
skk+1Y ′ ⊆ skk+1Y is cofinal.

The desired complex Y ′ is obtained by taking the union over all skkY ′. �

3.8. Definition (partially defined maps). Let (Y1, κ1), (Y2, κ2) and (Y3, κ3) be
labeled G-CW-complexes. A partially defined Z-controlled map (away from A)
Y1→

A Y2 is a pair (Y ′1, f1) where Y ′1 ⊆ Y1 is cofinal away from A and f1 : Y ′1→ Y2

is a controlled map.
For two partially defined controlled maps (Y ′1, f1) : Y1 →

A Y2 and (Y ′2, f2) :

Y2→
A Y3, their composition (Y ′2, f2) ◦

A (Y ′1, f1) is the partially defined controlled
map ( f ∗1 Y ′2, f2 ◦ f1| f ∗1 Y ′2) : Y1→

A Y3.

Composition of partially defined maps is well-defined. It is also associative:
Let (Y ′1, f1) : Y1 →

A Y2, (Y ′2, f2) : Y2 →
A Y3 and (Y ′3, f3) : Y3 →

A Y4 be par-
tially defined maps, In order to show associativity, it is enough to check that the
cofinal subcomplexes ( f2 ◦ f1| f ∗1 Y ′2)

∗Y ′3 and f ∗1 ( f ∗2 Y ′3) coincide. Observe that e
is a cell in ( f2 ◦ f1| f ∗1 Y ′2)

∗Y ′3 if and only if f1(e) ⊆ Y ′2 and f2( f1(e)) ⊆ Y ′3. If e
is a cell in f ∗1 ( f ∗2 Y ′3), then f1(e) ⊆ f ∗2 Y ′3 ⊆ Y ′2 and hence f2( f1(e)) ⊆ Y ′3. So,
we have f ∗1 ( f ∗2 Y ′3) ⊆ ( f2 ◦ f1| f ∗1 Y ′2)

∗Y ′3. On the other hand, if f1(e) ⊆ Y ′2 and
f2( f1(e))⊆ Y ′3, then f2(〈 f1(e)〉)⊆ 〈 f2( f1(e))〉 ⊆ Y ′3. Therefore, f1(e)⊆ f ∗2 Y ′3, so
( f2 ◦ f1| f ∗1 Y ′2)

∗Y ′3 ⊆ f ∗1 ( f ∗2 Y ′3).

3.9. Definition. Let (Y ′1, f0), (Y ′′1 , f1) : Y1→
A Y2 be partially defined controlled

maps. Then (Y ′1, f0) and (Y ′′1 , f1) are controlled homotopic away from A, written
(Y ′1, f0)'

A (Y ′′1 , f1), if there is a cofinal subcomplex Y ′′′1 ⊆Y ′1∩Y ′′1 and a controlled
homotopy H : Y ′′′1 h [0, 1] → Y2 from f0

∣∣
Y ′′′1

to f1
∣∣
Y ′′′1

.

3.10. Lemma. Let H : Y1h [0, 1] → Y2 be a controlled homotopy, and suppose
that Y ′2 ⊆ Y2 is cofinal away from A ⊆ Z.

Then there is a cofinal subcomplex Y ′1 ⊆ Y1 away from A such that H restricts
to a controlled homotopy Y ′1h [0, 1] → Y ′2.

Proof. We construct Y ′1 by induction over the skeleta. Assume that we have
constructed skn−1Y ′1 ⊆ Y1 such that skn−1Y ′1 ⊆ skn−1Y1 is cofinal and such that
H(skn−1Y ′1h [0, 1])⊆ Y ′2. Define

In := {e ∈ �nY1 | ∂e ⊆ skn−1Y ′1, H(〈e〉h [0, 1])⊆ Y ′2}.
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Then sknY ′1 := skn−1Y ′1 ∪
⋃

e∈In
〈e〉 is a G-invariant subcomplex such that

H(sknY ′1h [0, 1])⊆ Y ′2.

So we only have to show that sknY ′1⊆ sknY1 is cofinal. There are control conditions
C1, C ′1, C and C ′2 with the following properties:

(1) For all e, e′ ∈ �sknY1 with e′ ⊆ 〈e〉 we have (κ1(e′), κ1(e)) ∈ C1.

(2) κ−1
1 (Z \ AC ′1)∩�skn−1Y1 ⊆ �skn−1Y ′1.

(3) For all e ∈ �nY1 and all e′ ∈ �〈H(〈e〉h [0, 1])〉, we have (κ2(e′), κ1(e)) ∈ C .

(4) κ−1
2 (Z \ AC ′2)∩�skn+1Y2 ⊆ �skn+1Y ′2.

Suppose e ∈ �nY1 such that e /∈ In . If ∂e * skn−1Y ′1, then κ1(e) ∈ AC ′1◦C1 . If
H(〈e〉h [0, 1]) * Y ′2, then κ1(e) ∈ AC ′2◦C . Hence, κ1(�nY1 \ In) ⊆ AC ′1◦C1∪C ′2◦C .
This proves that sknY ′1 ⊆ sknY1 is cofinal away from A.

Defining Y ′1 :=
⋃

n sknY ′1 finishes the proof. �

3.11. Lemma. Let (Y 0
1 , f0), (Y 1

1 , f1) : Y1→
A Y2 be partially defined controlled

maps such that (Y 0
1 , f0)'

A (Y 1
1 , f1).

(1) For every partially defined controlled map (Y ′0, α) : Y0→
A Y1 we have

(Y 0
1 , f0) ◦

A (Y ′0, α)'
A (Y 1

1 , f1) ◦
A (Y ′0, α).

(2) For every partially defined controlled map (Y ′2, β) : Y2→
A Y3 we have

(Y ′2, β) ◦
A (Y 0

1 , f0)'
A (Y ′2, β) ◦

A (Y 1
1 , f1).

Proof. Consider the second claim. Since (Y 0
1 , f0)'

A (Y 1
1 , f1), there are a cofinal

subcomplex Y ′1 ⊆ Y1 and a controlled homotopy H : Y ′1h [0, 1] → Y2 from f0|Y ′1
to f1|Y ′1 . Consider Y ′2 ⊆ Y2. By Lemma 3.10, there is a cofinal subcomplex Y ′′1 ⊆ Y ′1
such that H restricts to a homotopy H ′ :Y ′′1 h[0, 1]→Y ′2. Then β◦H ′ is the desired
homotopy. The other claim is similar, but easier. �

3.12. Definition (homotopy equivalences away from A). A controlled map f :Y1→Y2

between controlled G-CW-complexes relative W is a controlled homotopy equiva-
lence away from A if there is a partially defined controlled map (Y ′2, f̄ ) : Y2→

A Y1

such that f ◦A (Y ′2, f̄ )'A idY2 and (Y ′2, f̄ ) ◦A f 'A idY1 .
Such maps are called h A-equivalences, abbreviated to h-equivalences if A =∅.

We denote by h ARG(W,Z) the collection of all morphisms in RG(W,Z) which
are controlled homotopy equivalences away from A.

3.13. Remark. Note that maps in h ARG(W,Z) are morphisms, hence required to
respect the retractions, while in general partially defined maps and partially defined
homotopy equivalences do not need to respect the retractions. This means that ho-
motopy inverses of morphisms in h ARG(W,Z) do not need to lie in h ARG(W,Z).
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See Section 2.1 of [Waldhausen 1985], where weak equivalences are defined in a
similar way.

The following results are proven using maps. We obtain results about hARG(W,Z)
because it is the intersection of the h A-equivalences with the morphisms.

Note also that h-equivalences are h A-equivalences for any choice of A.

The collection h ARG(W,Z) is closed under composition of morphisms, and
identity morphisms are controlled homotopy equivalences away from A. Hence
h ARG(W,Z) is a subcategory of RG(W,Z). Moreover, this subcategory satisfies
the saturation axiom, i.e., whenever f1 and f2 are composable morphisms, and two
out of f1, f2 and f2 f1 are h A-equivalences, so is the third.

We also need to discuss the cylinder functor on RG
f (W,Z) before we are ready

to continue. Let f : Y1→ Y2 be a controlled map of controlled G-CW-complexes
relative W . Then we define Cyl( f ) by the pushout

Y1×{1} = Y1 Y2

Y1h [0, 1] Cyl( f )

f

of G-CW-complexes relative W . We choose the canonical cofibration Y2� Cyl( f )
as the back inclusion of the cylinder, and let Y1= Y1×{0}� Y1 h [0, 1]→ Cyl( f )
be the front inclusion. The back projection Cyl( f )→ Y2 is induced by idY2 and f
via the projection Y1h [0, 1] → Y1 and the universal property of the pushout. If
f is a morphism in RG(W,Z), we can equip Cyl( f ) with the induced structural
retraction to obtain a retractive space CylW ( f ). Then the above diagram becomes a
pushout in RG(W,Z), and the front inclusion, back inclusion and back projection
are morphisms in RG(W,Z).

If we use the construction of the pushout given in the proof of Lemma 3.5 and
the fact that Y1 � Y1 h [0, 1] is the inclusion of a subcomplex, it is clear that
this defines a functor from the category of arrows in RG(W,Z) to the category of
diagrams of the shape

Y1 CylW ( f ) Y2

Y2

f =
(3.14)

in RG(W,Z). Observe also that the back projection is a controlled homotopy
equivalence: the usual deformation retraction of Cyl( f ) onto Y2 is a controlled
homotopy. We can choose CylW (∗→ A)= A, which is needed for the following
lemma.
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3.15. Lemma. CylW ( – ) gives a cylinder functor on RG(W,Z) which satisfies the
cylinder axiom with respect to h-equivalences.

We are heading towards the following proposition.

3.16. Proposition (gluing lemma). Assume we have the following commutative
diagram in RG(W,Z):

X2 X0 X1

Y2 Y0 Y1

x1

y1

x2

y2

∼
A f2 ∼A f0 ∼A f1 (3.17)

Assume x1, y1 are cofibrations and the fi are h A-equivalences. Then the induced
map on the pushouts f : X2 ∪X0 X1→ Y2 ∪Y0 Y1 is an h A-equivalence.

The uncontrolled version of Proposition 3.16 is well-known. Our proof follows
the strategy pursued in [Kamps and Porter 1997, pages 33–59], which gives a
detailed argument relying only on the homotopy extension property.

For the purpose of the proof, we introduce the following notation: if f and g
are partially defined maps X→A Y whose restrictions to some cofinal subcomplex
of X are equal, we write f =A g.

3.18. Remark. Note that Definition 3.12 could have been phrased in terms of
equivalence classes with respect to the equivalence relation =A, and that some of
the more formal properties of the subcategory h ARG(W,Z) can be easily derived
by manipulating such equivalence classes.

However, “germs” of this kind are not adequate for proofs which require explicit
constructions involving partially defined maps. The proof of the gluing lemma re-
lies heavily on the CHEP, Proposition 2.6; see, e.g., Lemmas 3.19 and 3.20, which
can only be applied to explicit choices of representatives. Similarly, the proof of
Theorem 4.16 only makes sense with explicitly chosen partially defined maps.

For the proof of the gluing lemma, we need the following auxiliary results.

3.19. Lemma. Let ji : B� Yi , for i = 1, 2, be cofibrations. Let f : Y1→ Y2 be
an h A-equivalence which satisfies f j1 = j2. Then there is a partially defined map
(Y ′2, g) :Y2→

A Y1 with (Y ′2, g)◦A j2=A j1 and a homotopy H : (Y ′2, g)◦A f 'A idY1

away from A with H ◦A ( j1×[0, 1])=A j1×[0, 1].
Furthermore, f ◦A (Y ′2, g) is also homotopic to the inclusion via a homotopy

under B, i.e., f is an “h A-equivalence under B”.

Proof. This is very similar to the standard proofs in the uncontrolled case, e.g.,
[May 1999, §6.5]. In our situation, one needs to take into account that maps and
homotopies are only defined on cofinal subcomplexes. �
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3.20. Lemma (left inverses for h A-equivalences, relative case). Assume we have
the following diagram:

B1 B2

Y1 Y2

i1 i2

b

f

(3.21)

Assume that b is an h A-equivalence with inverse (B ′2, b′) : B2→
A B1 and homotopy

HB1 : (B
′

2, b′) ◦A b 'A idB1 . (We do not need to specify the other homotopy.)
If f is an h A-equivalence, then there is a partially defined map (Y ′2, f ′):Y2→

AY1

and a homotopy HY1 : (Y
′

2, f ′)◦A f 'A idY1 such that i1◦
A (B ′2, b′)=A (Y ′2, f ′)◦A i2

and HY1 ◦
A (i1× [0, 1]) =A i1 ◦

A HB1 . (In short, f has a left h A-inverse relative
to Bi .)

Proof. Compare [Kamps and Porter 1997, I.7.3]. For the purpose of this proof,
we omit the domains of partially defined maps from the notation. Let g be an h A-
inverse for f . The map g ◦A i2 is homotopic away from A to g ◦A i2 ◦

A b ◦A b′ and
hence to i1 ◦

A b′. As i2 is a cofibration, g is homotopic to a map g′ : Y2→
A Y1

such that g′ ◦A i2 =
A i1 ◦

A b′. Now i1 ◦
A HB1 is a homotopy away from A from

i1 ◦
A b′ ◦A b=A g′ ◦A f ◦A i1 to i1. As i1 is a cofibration, homotopy extension gives

a homotopy K , extending HB1 , from g′ ◦A f to a map l.
Then l◦A i1=

A i1. Hence, Lemma 3.19 provides a left h A-inverse l ′ of l under B1.
Define f ′ := l ′ ◦A g′. Then, as a composition of h A-equivalences, f ′ is itself an
h A-equivalence, and f ′ ◦A i2 =

A i1.
We have homotopies f ′◦A f =A l ′◦A g′◦A f 'A

K l ′◦A l'A id. Restricting along i1,
this is the concatenation of the homotopy HB1 and the constant homotopy. There is
a cofinal subcomplex B ′1⊆ B1 such that we get a map B ′1h [0, 1]h [0, 1]→A Y1 by
projecting to the first two factors and then applying HB1 . The homotopies above
extend this to a map Y ′1 h [0, 1] h 0 ∪ Y1 h {0, 1} h [0, 1] →A Y1, defined on
some cofinal subcomplex Y ′1 ⊆ Y1. We may assume that B ′1 ⊆ Y ′1. The CHEP,
Proposition 2.6, then gives the homotopy HY1 . �

3.22. Remark. We cannot make special assumptions about the cofinal subcomplex
on which f ′ is defined. In particular, it could happen that Y ′2 ∩ B2 6⊆ B ′2. We need
to take care of this situation in the proof of Lemma 3.23 below.

3.23. Lemma (gluing lemma, special case). Assume in (3.17) additionally that x2

and y2 are cofibrations. Then the conclusion of the proposition holds, i.e., the map
f on the pushout is an h A-equivalence.

Proof. We can assume xi , yi are cellular inclusions, because they are so up to
isomorphism.
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Pick an h A-inverse (Y ′0, g0) of f0 and a homotopy H0 : (Y ′0, g0)◦
A f0'

A idX0 . By
Lemma 3.20, for i = 1, 2 there are h A-left inverses (Y ′i , gi ) of fi and homotopies
Hi : (Y ′i , gi ) ◦

A fi '
A idX i such that

(Y ′i , gi ) ◦
A yi =

A xi ◦
A (Y ′0, g0) and Hi ◦

A (xi ×[0, 1])=A yi ◦
A H0.

Choose a cofinal subcomplex Y ′′0 of Y0 such that the diagram

Y ′2 Y ′′0 Y ′1

X2 X0 X1

y1

x1

y2

x2

∼
A g2 ∼A g0 ∼A g1

commutes. However, Y ′1 ∪Y ′′0 Y ′2 does not need to be a subcomplex of Y1 ∪Y0 Y2, as
the Y ′′0 provided by Lemma 3.20 could be too small. But by part (4) of Lemma 3.7
we can restrict further to cofinal subcomplexes Y ′′i , i = 1, 2, such that Y ′′i ∩Y0 = Y ′′0 .
Then Y ′′ := Y ′′1 ∪Y ′′0 Y ′′2 is canonically isomorphic to the cofinal subcomplex Y ′′2 ∪Y ′′1
of Y1∪Y0 Y2. Thus we get a partially defined map (Y ′′, g) : Y1∪Y0 Y2→

A X1∪X0 X2.
By the same argument, we get a partially defined homotopy from (Y ′′, g) ◦A f

to the inclusion.
Repeating the argument with gi instead of fi , we get a partially defined map

l : X1∪X0 X2→
A Y1∪Y0 Y2 with l◦Ag'A idY2∪Y0 Y1 . It follows that f ◦Ag'A idY2∪Y0 Y1 ,

and hence f is an h A-equivalence. �

3.24. Lemma. Assume that (3.21) is a pushout square and b an h-equivalence.
Then f is an h-equivalence.

Proof. We can factor b into B1� Cyl(b)→ B2, and by saturation both maps are
h-equivalences. Taking the pushout along the first map, we obtain the diagram

B1 Cyl(b) B2

Y1 Mb,i1 Y2

i1 i ′ i2

b′

j

f

p

Here Mb,i1 is the double mapping cylinder. One now shows that j is an h-equivalence
using that b′ is a cofibration and an h-equivalence, and that p is an h-equivalence
because i1 is a cofibration. The usual proofs of these facts apply almost verbatim.
We refer to [Kamps and Porter 1997, Proposition I.7.4] for the details. �

Proof of Proposition 3.16. See also [Kamps and Porter 1997, Theorem 7.1]. Using
the mapping cylinder we can factor the diagram (3.17) as follows:
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X2 X ′ X0 X1

Y2 Y ′ Y0 Y1

x1

y1

x ′2

y′2

x2

y2

∼

x3

∼

y3

∼
A f2 ∼

A f ′ ∼
A f0 ∼

A f1

The maps x3 and y3 are h-equivalences by Lemma 3.15, so f ′ is an h A-equivalence
by saturation. The right part of the diagram consisting of x ′2, y′2, x1, y1 satisfies the
assumptions of Lemma 3.23. Therefore, the induced map f ′′ : X ′∪X0 X1→Y ′∪Y0 Y1

is an h A-equivalence. Abbreviate X ′′ := X ′∪X0 X1, Y ′′ :=Y ′∪Y0 Y1. We get induced
cofibrations x4 : X ′� X ′′, y4 : Y ′� Y ′′.

We obtain the cube

X ′ X ′′

X2 X2 ∪X0 X1

Y ′ Y ′′

Y2 Y2 ∪Y0 Y1

x4

f ′
∼

A f ′′
x3

∼

y3

∼

x5

y5
y4

f2

f

where the top and bottom are pushout squares. By Lemma 3.24, the maps x5, y5

are h-equivalences. By saturation, f is an h A-equivalence, which proves the propo-
sition. �

3.25. Lemma. Let Y2 ← Y0 � Y1 be a diagram of homotopy finite or finitely
dominated objects. Then the pushout Y1 ∪Y0 Y2 in RG(W,Z) is also homotopy
finite or finitely dominated, respectively.

Proof. For homotopy finite objects, this is a formal consequence of the gluing
lemma, Proposition 3.16, for h-equivalences. For the second claim, we show that
the following two statements are equivalent:

(1) Y ∈RG(W,Z) is finitely dominated.

(2) Y ∈RG(W,Z) is a retract of a homotopy finite object.
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Suppose (Y, sY , rY ) is finitely dominated, i.e., there are a finite object (D, sD, rD),
a morphism p : D→ Y , a controlled map i : Y → D and a homotopy h : pi ' idY .
These data give a map f : Cyl(i)→ Y whose composition with the front inclusion
is idY and whose composition with the back inclusion is p. Then r := rY ◦ f is a
retraction which makes Cyl(i) into a retractive space over W , and both f and the
front inclusion Y � Cyl(i) are morphisms. By construction, Y is a retract of Cyl(i).
The back inclusion D� Cyl(i) is an h-equivalence. Hence Cyl(i) is a homotopy
finite object.

Conversely, assume that there is a homotopy finite object F as well as mor-
phisms s : Y → F and q : F→ Y such that qs = idY . Since F is homotopy finite,
there is a finite object D and a morphism e : D→ F which is an h-equivalence.
Let ē : F→ D be an inverse controlled map. Then i := ēs : Y → D is a controlled
map to a finite object, and p := qe : D→ Y is a morphism. Moreover, we have
pi = qeēs ' qs = idY by assumption, so Y is finitely dominated.

With the characterization of finitely dominated objects as retracts of homotopy
finite objects at our disposal, it is a formal consequence of the first part of the
lemma and the universal property of the pushout that pushouts of finitely dominated
objects are finitely dominated.

Sections 7.3 and 7.4 of [Ullmann 2018] spell out the formal arguments we left
out here. �

3.26. Corollary. For any G-invariant subset A ⊆ Z , the categories RG(W,Z),
RG

f (W,Z), R
G
h f (W,Z) and RG

fd(W,Z) are Waldhausen categories with respect
to h ARG(W,Z). The saturation axiom holds for these categories.

There is a cylinder functor on RG(W,Z) which restricts to a cylinder functor
on the subcategories of finite, homotopy finite and finitely dominated objects; the
h A-equivalences satisfy the cylinder axiom.

Proof. We only need to summarize what we already know. Lemmas 3.5 and 3.25
state that the cofibrations indeed form a subcategory of cofibrations. The collec-
tion of h A-equivalences defines a subcategory of weak equivalences by the gluing
lemma, Proposition 3.16. Saturation and the cylinder functor have been discussed
right before the statement of the gluing lemma. Since every h-equivalence is an
h A-equivalence, the cylinder axiom is obvious. �

3B. Functoriality. Let us turn to the question of in which sense the categories
RG(W,Z) are functorial with respect to the space W and the coarse structure Z.
Changing G is discussed in Section 6.

If f :W1→W2 is a G-equivariant (continuous) map, pushout along f and the
structural inclusion of a given object defines an exact functor

RG( f,Z) :RG(W1,Z)→RG(W2,Z).
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For changing the coarse structure, we need to define a notion of morphism;
compare [Bartels et al. 2004, Section 3.3].

3.27. Definition. Let Z1 = (Z1,C1,S1), Z2 = (Z2,C2,S2) be two coarse struc-
tures. A morphism of coarse structures z : Z1→ Z2 is a G-equivariant map of sets
z : Z1→ Z2 satisfying the following properties:

(1) For every S1 ∈S1, there is some S2 ∈S2 such that z(S1)⊆ S2.

(2) For every S ∈S1 and C1 ∈ C1, there is some C2 ∈ C2 such that

(z× z)((S× S)∩C1)⊆ C2.

(3) For every S ∈S1 and all subsets A ⊆ S which are locally finite in Z1, the set
z(A) is locally finite in Z2 and for all x ∈ z(A), the set z−1(x)∩ A is finite.

Note that z does not need to be continuous, but the topology of Z1 and Z2 is used
in the third condition. Morphisms of coarse spaces induce morphisms of controlled
categories:

3.28. Proposition. The categories RG(W,Z), RG
f (W,Z), R

G
hf (W,Z) and RG

fd(W,Z)
are functorial in Z, i.e., they define functors from the category of coarse structures
and their morphisms to the category of Waldhausen categories.

The canonical inclusion functors yield natural transformations

RG
f (W, – )→RG

h f (W, – )→RG
fd(W, – )→RG(W, – ).

See also Remark 3.30 for some set-theoretical issues.

Proof. Let z : Z1→ Z2 be a morphism of coarse structures. Define the induced
functor

RG(W, z) :RG(W,Z1)→RG(W,Z2)

by mapping an object (Y, κ) to (Y, z ◦ κ) and by the identity on morphisms. We
only have to show that this is well-defined. Let (Y, κ) ∈ RG(W,Z1). For every
k ∈ N, there is some S1 ∈ S1 such that κ(�kY ) ⊆ S1. Since z is a morphism of
coarse structures, we can find some S2 ∈S2 such that z(κ(�kY ))⊆ z(S1)⊆ S2. The
verification that controlled maps are sent to controlled maps is similar. Condition
(3) of Definition 3.27 ensures that this construction preserves finiteness. Hence,
homotopy finite and finitely dominated objects are also preserved. �

3.29. Example. One of the most frequent examples of a morphism of coarse
structures is the following. Let Z = (Z ,C,S) be a coarse structure, and sup-
pose that A ⊆ Z is a G-invariant subspace. Denote by Z∩ A the coarse structure
(A,Ce {A× A},Se {A}), where e denotes pointwise intersection.

If A is closed in Z , the inclusion map of A into Z defines a morphism Z∩ A→Z

of coarse structures. Here closedness is required to preserve local finiteness of
subsets.
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3.30. Remark (set-theoretical smallness requirements). In the following, we dis-
cuss the algebraic K-theory of the categories RG

f (W,Z) and RG
fd(W,Z). As al-

ways, one faces certain set-theoretic difficulties in making sense of the K-theory of
these categories; see [Waldhausen 1985, Remark on page 379]. Possible solutions
include the use of a change-of-universe functor to make the categories at hand
small, or to choose small models to replace these categories. For example, we may
redefine RG(W,Z) so that the underlying set of every retractive space is a subset
of W × λ, where λ is a sufficiently large cardinal.

The algebraic K-theory of RG
f (W,Z) does not depend, up to homotopy, on

the set-theoretic model we choose, as long as λ is large enough compared to Z.
Proposition 3.28 then only asserts functoriality on some small, but arbitrarily large
subcategory of the category of all coarse structures. To avoid further complications,
we ignore these matters from now on.

4. Comparison theorems and vanishing theorems

In addition to the notions used in the previous section, we now have the opportunity
to use all three fundamental results of Waldhausen K-theory: the additivity theorem
[Waldhausen 1985, Theorem 1.4.2], the fibration theorem [Waldhausen 1985, The-
orem 1.6.4] and the approximation theorem [Waldhausen 1985, Theorem 1.6.7].

4A. Comparing finiteness conditions. We discuss to which extent the K-theory
spaces arising from the various finiteness conditions differ. The answer is given in
Proposition 4.8, but the proof requires two preparatory lemmas.

4.1. Lemma (mapping cylinder argument). Let f : Y → Y ′ and g : Y ′′→ Y ′ be
morphisms in RG(W,Z). Suppose that g is a retraction up to homotopy, i.e., that
there exists a map ḡ : Y ′→ Y ′′ such that gḡ is controlled homotopic to the identity
map. Then there is an object Q in RG(W,Z) which fits into the commutative
diagram

Y Y ′

Q Y ′′

iY

iY ′′

∼

f

g
q (4.2)

in RG(W,Z), in which iY and iY ′′ are cofibrations. The underlying controlled G-
CW-complex of Q can be chosen to be Cyl(ḡ f ).

In particular, q is an h-equivalence if and only if g is one.

Proof. Denote the retractions of Y, Y ′, Y ′′ by r, r ′, r ′′. Note that ḡ does not need
to respect the retraction. Define Q := Cyl(ḡ f ), and let iY and iY ′′ be the front and
back inclusion. Since gḡ f ' f , any choice of homotopy gḡ ' idY ′′ induces a map
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q : Q→ Y ′ which restricts to f and g on the front and back of the cylinder. We
can turn q into a morphism of retractive spaces by defining a retraction on Q via
rQ := r ′ ◦ q. Since q restricts to f and g on the two ends of the cylinder and
both of these maps are morphisms of retractive spaces, iY and iY ′′ also respect the
retractions. This proves the existence of the commutative diagram (4.2). �

The following lemma reflects the fact that something close to a Puppe sequence
exists in any Waldhausen category C with a cylinder functor. Even though the
extension axiom does not hold in RG(W,Z) [Waldhausen 1985, Section 1.2], it
follows that the axiom does hold up to suspension. Recall that the suspension of
an object A ∈ C is defined to be

6A := Cyl(A→∗)/A,

and that this extends to an exact endofunctor on C [Waldhausen 1985, page 349].

4.3. Lemma. Let C be a Waldhausen category which possesses a cylinder functor
such that the cylinder axiom and the saturation axiom hold. Consider a morphism
between cofiber sequences

A B C

A′ B ′ C ′

α

α′

β

β ′
a ∼ b c ∼ (4.4)

in which a and c are weak equivalences. Then 6b is a weak equivalence.

Proof. Repeated use of the cylinder functor gives rise to the commutative diagram
in Figure 1.

The cylinder and saturation axioms imply that all vertical arrows in this diagram
are weak equivalences. Moreover, we have the following commutative square in
the category of arrows of C:

(A
α
−→ B) (A′

α′

−→ B ′)

(A→∗) (A′→∗)

(a, b)

(id, ∗) (id, ∗)

(a, ∗)

Applying the cylinder functor to this square, and taking quotients with respect to
the front and back inclusions of the cylinders, we obtain a commutative square

S = Cyl(α)/(A∨ B) Cyl(α′)/(A′ ∨ B ′)= S′

6A 6A′

s

∼ ∼

6a

(4.5)
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A′ B ′ C ′

A B C

A′ Cyl(α′) C(α′)

A Cyl(α) C(α)

B ′ C(α′) S′

B C(α) S

B ′ Cyl( j ′) C( j ′)

B Cyl( j) C( j)

C(α′) C( j ′) T ′

C(α) C( j) T

α′

j ′

β ′

a b c

a

b s

b

t

α

j

β

Figure 1. The “Puppe sequence”.

in which the vertical arrows are weak equivalences. Since we assumed a to be a
weak equivalence, 6a is one by the gluing lemma. It follows that s, and there-
fore also the induced (nameless) morphism C( j)→ C( j ′), is a weak equivalence.
Note that the (also nameless) morphism C(α)→ C(α′) is also a weak equivalence
because c is a weak equivalence. Hence, t is a weak equivalence by the gluing
lemma. Just like s, the morphism t sits in a square like (4.5) together with the
induced morphism 6b :6B→6B ′. Hence, 6b is a weak equivalence. �

We also need the following cofinality theorem [Vogell 1990, Theorem 1.6],
which Vogell attributes to Thomason.

4.6. Theorem (Vogell cofinality). Let (C, coC, wC) be a Waldhausen category
which has a cylinder functor such that the cylinder axiom holds. Let D ⊆ C be a
full subcategory of C such that (D, coC∩D, wC∩D) is also a Waldhausen category.
Assume that

(1) D ⊆ C is weakly cofinal in the sense that for all C ∈ C there exist C ′ ∈ C and
k ∈ N such that 6kC ∨C ′ is isomorphic to an object in D;

(2) D is saturated in C, i.e., any object weakly equivalent (via some zig-zag) to
an object in D lies in D.
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Then there is a homotopy fiber sequence

wS•D→ wS•C→ N• coker(K0D→ K0C).

4.7. Remark. The conditions on D imply that D⊆ C is a subcategory with cofibra-
tions and weak equivalences in the sense of [Waldhausen 1985, Section 1.1], and
that D satisfies condition (iii) of [Vogell 1990, Theorem 1.6].

Let us also remark why Vogell’s cofinality theorem holds true: As written,
Vogell seems to prove only the cofinality theorem suggested by [Thomason and
Trobaugh 1990, Exercise 1.10.2] since, in the last three lines of his proof, he
chooses “C ′0 such that C0 ∨C ′0 is in D”. This proves Theorem 4.6 under the addi-
tional assumption that k = 0 in condition (1). In fact, the more general statement
follows:

For k ∈ N, set Ck := {C ∈ C | ∃C ′∈ C : 6kC ∨ C ′∈ D}. Then C =
⋃

k∈N Ck ,
each Ck is a full subcategory of C and inherits a Waldhausen structure from C
(one needs to check that each Ck is closed under pushouts), and D is cofinal in C0.
Hence, we can apply the case k = 0 of Theorem 4.6 to conclude that there is a
homotopy fiber sequence wS•D→ wS•C0→ N• coker(K0D→ K0C0). Observe
that the suspension functor induces a functor 6 : Ck+1→ Ck ; since the suspension
functor induces an equivalence on algebraic K-theory [Waldhausen 1985, Proposi-
tion 1.6.2], we conclude that the inclusion functor Ck ⊆ Ck+1 does so, too. Therefore,
wS•C ' hocolimk wS•Ck ' wS•C0, and Theorem 4.6 follows.

4.8. Proposition. (1) The natural inclusion of the finite into the homotopy finite
objects induces a weak equivalence

hS•RG
f (W,Z)

∼
−→ hS•RG

h f (W,Z),

hence a weak equivalence on algebraic K-theory spaces.

(2) The inclusion RG
f (W,Z) ⊆ RG

fd(W,Z) induces an isomorphism on Ki for
i > 1 and an injection on K0, where we take K-theory with respect to the
h-equivalences.

Proof. To prove the first part, we appeal to Waldhausen’s approximation theorem.
Both categories satisfy the saturation axiom and have a cylinder functor which
satisfies the cylinder axiom. The first part of the approximation property is clear.
We check the second part.

Let F be a finite object, let Y be homotopy finite, and let f : F → Y be a
morphism. We have to construct a finite object F ′, and further, a morphism F→ F ′

as well as an h-equivalence F ′ ∼−→ Y such that their composition is f .
Since Y is homotopy finite, there is a finite object F0 and an h-equivalence

e : F0
∼
−→ Y . The approximation property now follows from the mapping cylinder

argument, Lemma 4.1.
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We turn to the proof of the second part of the proposition, which uses Vogell’s
cofinality Theorem 4.6.

Since the inclusion of RG
f (W,Z) into RG

fd(W,Z) factors via RG
h f (W,Z), we

need only consider the inclusion of the latter category. We show that Vogell’s
cofinality theorem applies in this situation.

We show first that RG
h f (W,Z) is saturated in RG

fd(W,Z). Let Y1 be homotopy
finite. There is a finite object (F, sF , rF ) and an h-equivalence a : F → Y1. Let
b : Y2 → Y1 be an h-equivalence. There is an inverse map b̄ : Y1 → Y2, but
the composition b̄a does not have to respect the retractions. Define a retraction
r ′ := rY2 b̄a. Then (F, sF , r ′)→ (Y2, sY2, rY2) is an h-equivalence and (F, sF , r ′) is
a different object, but still finite. Hence Y2 is homotopy finite. The case b : Y1→ Y2

is obvious and the general case follows by induction.
So we are left with showing weak cofinality. Let Y ∈ RG

fd(W,Z) be arbitrary.
Then we can find a finite object D as well as a morphism d : D→ Y and a map
i : Y → D such that d ◦ i is controlled homotopic to the identity map. Define an
object Ỹ which is the same controlled G-CW-complex as Y , but equipped with a
new retraction which turns i : Ỹ → D into a morphism. Note that the composition
d ◦ i : Ỹ → Y is an h-equivalence.

Let CỸ denote the cone Cyl(idỸ )/Ỹ , let SỸ denote the object CỸ ∪Ỹ CỸ , and
define SCyl(i) and SC(i) analogously. Then we have a canonical h-equivalence
SỸ→CỸ∪Ỹ ∗

∼=6Ỹ . Moreover, we have a morphism SCyl(i)→6Cyl(i)∨6Cyl(i)
given by the quotient map with respect to the canonical cofibration Cyl(i) ↪→ SCyl(i).
These objects fit into a commutative diagram

SỸ SCyl(i) SC(i)

6Y 6Y ∨6C(i) 6C(i)

in which the upper row comes from the cofiber sequence and the lower row is the
split cofiber sequence. The vertical arrows are given as follows: The left vertical
morphism is the composition SỸ ∼

−→6Ỹ 6di
−−→6Y , and the right vertical arrow is

the canonical morphism SC(i)→∗∪C(i)C(C(i))∼=6C(i), i.e., the collapse of the
other half of SC(i). For the middle vertical morphism, we take the composition
SCyl(i)→6Cyl(i)∨6Cyl(i) 6d ′∨6q

−−−−−→6Y ∨6C(i), where d ′ is the composition
of the back projection Cyl(i)→ D with d, and q is the projection Cyl(i)→ C(i).
Since both the left and the right vertical arrows are h-equivalences, it follows
from Lemma 4.3 that the induced morphism 6SCyl(i)→ 62Y ∨62C(i) is an
h-equivalence. Recall that Cyl(i) is homotopy finite (since it is h-equivalent to D).
Since 6SCyl(i) is h-equivalent to 62Cyl(i), and suspension preserves finiteness, it
follows that 62Y ∨62C(i) is homotopy finite. This proves weak cofinality, and
we are done. �
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4.9. Definition. Let D ∈RG(W,Z), and let α : D→ D be a controlled map. The
mapping telescope Tel(α) of α is the controlled G-CW-complex relative W

Cyl(α)∪D Cyl(α)∪D · · ·

obtained by taking countably many copies of the mapping cylinder of α and gluing
the back and front end of each consecutive pair of cylinders.

Note that Tel(α) does not need to be a retractive space. However, in certain cases
it can be equipped with a retraction, and can then be used to replace dominated
spaces by “nicer” ones.

4.10. Proposition. Let Y, D ∈RG(W,Z). Suppose we have maps i : Y → D and
d : D→ Y such that d ◦ i is (controlled) homotopic to idY .

Then the canonical map j : Y i
−→ D � Tel(i ◦ d) is a controlled homotopy

equivalence. If d is a morphism, Tel(i ◦ d) admits a retraction such that there
exists an h-equivalence Tel(i ◦ d) ∼−→ Y which is a homotopy inverse to j .

Proof. The proof of Proposition 1.4 in [Ferry and Ranicki 2001] works also in our
setting. Note that we have an h-equivalence Y ' Y h [0,∞[ because the control
map disregards the cylinder coordinate.

The homotopy d ◦ i ' idY induces a map d̄ : Cyl(i ◦ d)→ Y which restricts to
d on the front and back. Hence, countably many copies of d̄ glue to a controlled
map T (d) :Tel(i ◦d)→ Y . Since T (d)◦ j = d ◦ i ' idY , the map T (d) is homotopy
inverse to j . If d is a morphism, we can define a retraction r : Tel(i ◦ d)→ W
by composing T (d) with the retraction of Y . This makes D� Tel(i ◦ d) into a
morphism, and T (d) becomes an h-equivalence. �

4.11. Corollary. Let RG
fd,dim<∞(W,Z)⊆RG

fd(W,Z) denote the full Waldhausen
subcategory of finite-dimensional objects. Then the inclusion functor induces a
weak equivalence

hS•RG
fd,dim<∞(W,Z)

∼
−→ hS•RG

fd(W,Z).

Proof. This comes from another application of the approximation theorem, using
Proposition 4.10 and the mapping cylinder argument Lemma 4.1. �

4B. Comparing different notions of weak equivalences. Let Z be a coarse struc-
ture, and let A ⊆ Z be a G-invariant subspace. We would like to compare the
K-theory spaces of RG

f (W,Z) with respect to the h- and h A-equivalences. Unfor-
tunately, the standard procedure to obtain homotopy fiber sequences relating these
does not apply in our situation since the fibration theorem requires one subcategory
of weak equivalences to satisfy the extension axiom.1 We present a solution to this

1Added in proof: Meanwhile, Raptis [2018, Theorem 2.7] has observed that the extension axiom
can be dropped in the assumptions of the fibration theorem.
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problem which has also been employed by Weiss [2002, towards the end of the
proof of Proposition 8.3]. For the sake of completeness, we record its validity for
any suitable Waldhausen category.

Let (C, coC, wC) be a small Waldhausen category which satisfies the saturation
axiom and possesses a cylinder functor which satisfies the cylinder axiom with
respect to wC.

4.12. Definition. We call a morphism f in C an equivalence after n-fold suspen-
sion if 6n f lies in wC. We say that f is a stable equivalence if there is some
n ∈ N such that f is an equivalence after n-fold suspension. Denote the class of
equivalences after n-fold suspension by w6,nC, and the class of stable equivalences
by w6C.

4.13. Lemma. Let n > 0.

(1) The collections w6,nC and w6C are classes of weak equivalences which sat-
isfy the saturation axiom. The cylinder functor satisfies the cylinder axiom
with respect to both classes. Moreover, w6C satisfies the extension axiom.

(2) The natural map wS•C→ w6S•C is a weak equivalence.

Proof. Almost everything in (1) is straightforward; the only exception is the validity
of the extension axiom for w6C.

Assume that we have a commutative diagram of exact sequences

A B C

A′ B ′ C ′

a b c

in which a and c are weak equivalences after n-fold suspension. Suspend the
diagram n times to obtain a diagram of the same shape in which the left and right
arrows are weak equivalences. Then it follows from Lemma 4.3 that b is a weak
equivalence after (n+ 1)-fold suspension.

For (2), we can apply the fibration theorem to the inclusion wC ⊆w6C since we
have just shown that w6C satisfies the saturation and extension axioms, and that the
cylinder axiom holds as well. So, it suffices to show that wS•Cw6 is contractible.
Observe that Cw6 is the union of the ascending sequence Cw ⊆ Cw6,1 ⊆ Cw6,2 ⊆ · · · .
Since K-theory commutes with directed colimits, it is enough to show that each
Cw6,n has contractible K-theory.

By the additivity theorem, the exact endofunctor 6n
: Cw6,n → Cw6,n induces

a self-homotopy equivalence in K-theory. Furthermore, it factors over Cw. Since
wS•Cw is contractible, the claim follows. �

4.14. Proposition (modified fibration theorem). Let C be a category with cofibra-
tions. Let vC ⊆ wC be two subcategories of weak equivalences. Suppose that C has
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a cylinder functor which satisfies the cylinder axiom with respect to vC (hence also
with respect to wC). Assume that vC and wC satisfy the saturation axiom.

Then the canonical inclusion functors induce a homotopy pullback square

vS•Cw wS•Cw ' ∗

vS•C wS•C

in which the corner on the top right is canonically contractible.

Proof. The square that we are claiming to be a homotopy pullback comes with a
transformation to the square

vS•Cw6 w6S•Cw6 ' ∗

vS•C w6S•C

(4.15)

This transformation is the identity on the lower left corner, and is induced by
the canonical inclusion functors on the other three corners. As w6C satisfies the
extension axiom by Lemma 4.13, the square (4.15) is a homotopy pullback by
the fibration theorem. The entries on the top right corners of both squares are
contractible. The map between the lower right corners is a weak equivalence by
Lemma 4.13. So all we have to check is that the canonical map vS•Cw→ vS•Cw6
is a weak equivalence.

Just as in the proof of Lemma 4.13, we can write Cw6 as a directed union
Cw6 =

⋃
n C

w6,n . In the direct limit system

Cw ↪→ Cw6,1 ↪→ Cw6,2 ↪→ · · · ,

each arrow induces an equivalence in K-theory (the suspension functor provides a
homotopy inverse), and the claim follows from this. �

We can now begin to study the K-theory of categories of controlled retractive
spaces. For technical reasons, we need to impose certain intermediate finiteness
conditions on the objects as long as we are dealing with connective K-theory. This
phenomenon is well-known in the linear setting; see [Cárdenas and Pedersen 1997].

Let F 6 K0(RG
fd(W,Z), h) be a subgroup. Denote by RG

fd,F (W,Z) the full
subcategory of all those objects whose K0-class lies in F . We think of these objects
as being subject to an intermediate finiteness condition. Note that these objects can
be equivalently characterized as those complexes whose K0-class lies in the kernel
of the projection homomorphism K0(RG

fd(W,Z), h)→ K0(RG
fd(W,Z), h)/F . It

is now a consequence of Thomason’s cofinality theorem [Thomason and Trobaugh
1990, Cofinality Theorem 1.10.1] that there is a homotopy fiber sequence

hS•RG
fd,F (W,Z)→ hS•RG

fd(W,Z)→ N•(K0(RG
fd(W,Z), h)/F).
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In particular, the change of finiteness condition only affects K0; there, the in-
duced map is a monomorphism which can be identified with the inclusion map
F ↪→ K0(RG

fd(W,Z), h). A typical choice for F is F := K0(RG
f (W,Z), h), which

we regard as a subgroup of K0(RG
fd(W,Z), h) by virtue of Proposition 4.8.

Let Z= (Z ,C,S) be a coarse structure and A be a G-invariant subset of Z . Let
S〈A〉 be the collection of all sets of the form AC

∩ S, where S is an element of S
and C ∈ C; see Definition 3.6. Define a new coarse structure Z〈A〉 := (Z ,C,S〈A〉).

Recall from Definition 3.12 that A gives rise to a class of weak equivalences
h ARG

f (W,Z).

4.16. Theorem. Let Z be a coarse structure and let A⊆ Z be a G-invariant subset.
Set K := K0(RG

f (W,Z), h)6 K0(RG
fd(W,Z), h). Let F 6 K0(RG

fd(W,Z〈A〉), h)
be the preimage of K under the natural homomorphism K0(RG

fd(W,Z〈A〉), h)→
K0(RG

fd(W,Z), h). Then

hS•RG
fd,F (W,Z〈A〉)→ hS•RG

fd,K (W,Z)→ h A S•RG
fd,K (W,Z) (4.17)

is a homotopy fiber sequence. Upon realization, there is a homotopy fiber sequence

|hS•RG
fd,F (W,Z〈A〉)| → |hS•RG

f (W,Z)| → |h
A S•RG

f (W,Z)| (4.18)

which is weakly equivalent to the former one.

Proof. The modified fibration theorem (Proposition 4.14) applies to our situation,
so we have a homotopy fiber sequence

hS•RG
f (W,Z)

h A
→ hS•RG

f (W,Z)→ h A S•RG
f (W,Z).

Define F ′ 6 K0(RG
fd(W,Z)

h A
, h) to be the preimage of K0(RG

f (W,Z), h) under
the canonical homomorphism K0(RG

fd(W,Z)
h A
, h)→ K0(RG

fd(W,Z), h). We first
prove the following two assertions:

(1) The natural inclusion functor RG
f (W,Z)

h A
→RG

fd,F ′(W,Z)
h A

induces an equiv-
alence in K-theory.

(2) The natural inclusion functor RG
fd,F (W,Z〈A〉)→RG

fd,F ′(W,Z)
h A

induces an
equivalence in K-theory.

The first claim is proved in a fashion similar to that of Proposition 4.8. First
of all, we may replace RG

f (W,Z)
h A

by the category of homotopy finite objects
RG

h f (W,Z)
h A

since the inclusion of the former into the latter induces an equivalence
in K-theory by the approximation theorem.

To conclude that the inclusion RG
h f (W,Z)

h A
→RG

fd,F ′(W,Z)
h A

induces an equiv-
alence as well, we rely on Vogell’s cofinality Theorem 4.6 once again. As we al-
ready saw in the proof of Proposition 4.8, for every object Y1∈RG

fd,F ′(W,Z)
h A

there
are some finitely dominated object Y2 ∈RG

fd(W,Z) with [Y2] ∈ K0(RG
f (W,Z), h),
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a finite object Y ∈RG
f (W,Z) and an h-equivalence f : Y ∼

−→62Y1 ∨ Y2. However,
there is no reason for Y2 to be h A-contractible, so we have to improve it.

Since Y1 is h A-contractible, there is some cofinal subcomplex Y ′1⊆ Y1 away from
A such that the inclusion map j1 : Y ′1 ↪→ Y1 is nullhomotopic. By Lemma 3.7, there
is a cofinal subcomplex Y ′⊆Y whose image under f is contained in62Y ′1∨Y2; note
that Y ′⊆Y is finite. Let j :Y ′→Y be the inclusion map. Define f ′ :Y ′→Y2 as the
composition Y ′ j

−→ Y f
−→62Y1 ∨ Y2� Y2. Set Y3 := C( f ′) and observe that this is

a finitely dominated object with [Y3] ∈ K0(RG
f (W,Z), h). Let i2 : Y2�62Y1∨Y2

be the canonical cofibration. Since j1 is nullhomotopic, the map f j is homotopic
to i2 f ′. Hence, there is an h-equivalence C( f j) ∼h

−→C(i2 f ′)'h 6
2Y1∨Y3. Observe

that C( f j) is homotopy finite, so 62Y1 ∨ Y3 is homotopy finite, too.
Moreover, the natural map C( f j)→ C( f ) is an h A-equivalence because j is

one. As C( f ) is contractible, both C( f j) and 62Y1 ∨ Y3 are h A-contractible. It
follows that Y3 is also h A-contractible. Note [Y3] ∈ F ′. Therefore, Vogell’s cofi-
nality theorem applies. That is, all higher K-theory groups of RG

h f (W,Z)
h A

and
RG

fd,F ′(W,Z)
h A

coincide, and the induced homomorphism K0(RG
h f (W,Z)

h A
, h)→

K0(RG
fd,F ′(W,Z)

h A
, h) is injective.

On the level of K0, we have a commutative diagram

K0(RG
f (W,Z)

h A
, h) K0(RG

fd(W,Z)
h A
, h)

K0(RG
fd,F ′(W,Z)

h A
, h)

in which the left diagonal arrow is an injection. The right diagonal map is an
injection by Thomason’s cofinality theorem. Since the top horizontal and right
diagonal homomorphism have the same image, it follows that the left diagonal
map is an isomorphism. This shows claim (1).

Let us now turn to the second claim. We apply the approximation theorem.
By Corollary 4.11, we may assume without loss of generality that all complexes
are finite-dimensional. Only the second part of the approximation property needs
checking. Let Y0∈RG

fd,F,dim<∞(W,Z〈A〉); then Y0 is h A-contractible. Let f :Y0→Y
be a morphism in RG

fd,F ′,dim<∞(W,Z)
h A

.
Let r : Y → W be the structural retraction and s : W → Y be the structural

inclusion of Y . Since Y is h A-contractible, there are a subcomplex Y ′ ⊆ Y which
is cofinal away from A and a homotopy h from the inclusion map Y ′ ↪→ Y to
the composition Y ′ r |Y ′−−→ W s

−→ Y . By the CHEP, we find an extension of h to a
controlled homotopy H : Y h [0, 1] → Y from idY to a controlled map p′ : Y → Y
which extends s ◦ r |Y ′ .

Let Y ′′ be the G-subcomplex of Y generated by the image of p′. Since p′ is
controlled and Y is finite-dimensional, Y ′′ is supported on some Z-thickening of A.
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Note that we do not claim that Y ′′ is finitely dominated. Let j : Y ′′ ↪→ Y be the
inclusion. Denote by p the map p′, regarded as a map Y→ Y ′′. Then Y p

−→ Y ′′ j
−→ Y

is homotopic to the identity. Proposition 4.10 provides us with an h-equivalence
T ( j) : Tel( jp) ∼−→ Y . In particular, [Tel( jp)] = [Y ] ∈ K0(RG

fd(W,Z), h), and
hence both lie in K0(RG

f (W,Z), h). Observe that Tel( jp) is also supported on a
Z-thickening of A.

Pick now a finite domination Y i
−→ D d

−→ Y of Y in RG(W,Z). Let D′ be the
smallest subcomplex of D which contains the image of i ◦ T ( j). Since i ◦ T ( j)
is a controlled map and Tel( jp) is supported on a Z-thickening of A, the complex
D′ is also supported on some Z-thickening of A. The composition of the maps
Tel( jp) i◦T ( j)

−−−→ D′ and d ′ : D′ ↪→ D d
−→ Y → Tel( jp) is homotopic to the identity.

Redefining the retraction of D′ to be d ′ composed with the retraction of Tel( jp),
the latter map becomes a morphism. Hence, Tel( jp) ∈RG

fd(W,Z〈A〉).
Another application of the mapping cylinder argument (Lemma 4.1) to the di-

agram Y0
f
−→ Y T ( j)

←−− Tel( jp) yields the approximation property, and hence the
second assertion.

There is a map of homotopy fiber sequences

hS•RG
f (W,Z)

h A
hS•RG

f (W,Z) h A S•RG
f (W,Z)

hS•RG
fd,K (W,Z)

h A
hS•RG

fd,K (W,Z) h A S•RG
fd,K (W,Z)

The middle vertical map is a weak equivalence by Thomason cofinality. Observe
that RG

fd,F ′(W,Z)
h A
=RG

fd,K (W,Z)
h A

. Hence, assertion (1) implies that the left
vertical map is a weak equivalence. Therefore, the right vertical map is a weak
equivalence, too. Composing the weak equivalence

hS•RG
fd,F (W,Z〈A〉)

∼
−→ hS•RG

fd,F ′(W,Z)
h A

from assertion (2) with the inclusion of the homotopy fiber yields sequence (4.17).
After taking realizations, we can invert the weak equivalence of assertion (1) to

obtain sequence (4.18). �

4.19. Definition (cf. [Bartels et al. 2004, Definition 4.1]). A coarse structure Z is
called G-proper with respect to A if for every C ∈ C and every S ∈ S there are
S′ ∈S, C ′ ∈ C and a G-equivariant function c : AC

∩ S→ A∩ S′ such that

(1) {(c(z), z) | z ∈ AC
∩ S} ⊆ C ′,

(2) for every set B ⊆ AC
∩ S which is locally finite in Z , the image c(B) is locally

finite in Z and c−1(x)∩ B is finite for all x ∈ c(B).

4.20. Proposition. Let A ⊆ Z be a closed, G-invariant subset. Let Z be a coarse
structure which is G-proper with respect to A. Recall the definition of the coarse
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structure Z∩A from Example 3.29. Let F 6 K0(RG
fd(W,Z∩A), h) be the preimage

of K0(RG
f (W,Z), h) under the natural homomorphism K0(RG

fd(W,Z∩ A), h)→
K0(RG

fd(W,Z), h), and define F ′ 6 K0(RG
fd(W,Z〈A〉), h) analogously.

Then the exact inclusion functor

RG
fd,F (W,Z∩ A) ↪→RG

fd,F ′(W,Z〈A〉)

is an equivalence of Waldhausen categories.

Proof. It suffices to show that the inclusion functor is essentially surjective. So let
Y ∈RG

fd,F ′(W,Z〈A〉). For each k ∈ N, pick Sk ∈S such that κ(�kY )⊆ ACk ∩ Sk .
Since Z is G-proper with respect to A, there is a G-equivariant function

ck : ACk ∩ Sk→ A∩ S′k

as in Definition 4.19. The collection {ck ◦ κ|�kY }k defines a G-equivariant function
κA : �Y → A such that κ(�kY ) ⊆ A ∩ S′k . By construction, the identity map is
a controlled isomorphism between (Y, κ) and (Y, κA), where the latter complex
is now supported on A. The modification we make to the control map κ also
preserves finiteness, and hence finite dominations. Note that [(Y, κ)] = [(Y, κA)]

is in K0(RG
fd(W,Z), h), i.e., [(Y, κA)] ∈ F . This finishes the proof. �

4C. The coarse Mayer–Vietoris theorem. The main application of the homotopy
fiber sequence established in the previous subsection is the excision result we prove
next. Let Z= (Z ,C,S) be a coarse structure.

4.21. Definition [Bartels et al. 2004, Proposition 4.3]. A pair (A, B) of G-invariant
subspaces in Z is called coarsely excisive if for all C ∈ C there is C ′ ∈ C such that
AC
∩ BC

⊆ (A∩ B)C
′

.
A coarsely excisive triple is a coarse structure Z together with two closed, G-

invariant subspaces A1, A2 ⊆ Z such that A1 ∪ A2 = Z and the pair (A1, A2) is
coarsely excisive.

We require a little more notation. For a closed, G-invariant subspace A ⊆ Z we
define Z|A := (Z ,C,Se A). Observe that RG(W,Z|A)∼=RG(W,Z∩ A).

4.22. Lemma. Suppose that (A, B) is a coarsely excisive pair. Then

h A∩B S•RG
f (W,Z|A)= hB S•RG

f (W,Z|A).

Proof. Let (Y, κ) be an object in RG
f (W,Z|A). Note that the image of κ is contained

in A. It suffices to show that a subcomplex Y ′ ⊆ Y is cofinal away from A∩ B if
and only if it is cofinal away from B. Since A ∩ B ⊆ B, it is obvious that every
subcomplex which is cofinal away from A∩ B is also cofinal away from B.
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Now suppose that Y ′ ⊆ Y is cofinal away from B. Let k ∈ N. Then there is
C ∈ C such that κ−1(Z \ BC)∩�kY ⊆ �kY ′. By assumption, we can find C ′ ∈ C
such that AC

∩ BC
⊆ (A∩ B)C

′

. Then we have

κ−1(Z \ (A∩ B)C
′

)∩�kY ⊆ κ−1(Z \ (AC
∩ BC))∩�kY

= κ−1(Z \ AC
∪ Z \ BC)∩�kY

= (κ−1(Z \ AC)∩�kY )∪ (κ−1(Z \ BC)∩�kY )

= κ−1(Z \ BC)∩�kY

⊆ �kY ′.

This shows that Y ′ ⊆ Y is cofinal away from A∩ B, and we are done. �

4.23. Theorem (coarse Mayer–Vietoris, connective version). Let (Z, A1, A2) be
a coarsely excisive triple, and assume that Z is G-proper with respect to A1, A2

and A1∩ A2. Let F be the preimage of K := K0(RG
f (W,Z), h) under the canonical

homomorphism K0(RG
fd(W,Z∩ A2), h)→ K0(RG

fd(W,Z), h), and let F ′ be the
preimage of K ′ := K0(RG

f (W,Z ∩ A1), h) under the canonical homomorphism
K0(RG

fd(W,Z∩ (A1 ∩ A2)), h)→ K0(RG
fd(W,Z∩ A1), h).

Then the natural inclusion maps induce a homotopy pullback square

hS•RG
fd,F ′(W,Z∩ (A1 ∩ A2)) hS•RG

fd,K ′(W,Z∩ A1)

hS•RG
fd,F (W,Z∩ A2) hS•RG

fd,K (W,Z)

Proof. Using Theorem 4.16 and Proposition 4.20, we have a map of homotopy
fiber sequences

hS•RG
fd,F ′(W,Z∩(A1∩ A2)) hS•RG

fd,K ′(W,Z∩ A1) h A1∩A2S•RG
fd,K ′(W,Z∩ A1)

hS•RG
fd,F (W,Z∩ A2) hS•RG

fd,K (W,Z) h A2 S•RG
fd,K (W,Z)

Hence, it suffices to show that the right vertical map is a weak equivalence. We may
replace RG

fd,K ′(W,Z∩ A1) and RG
fd,K (W,Z) by RG

f (W,Z∩ A1) and RG
f (W,Z),

respectively. Using Lemma 4.22, we can therefore identify the right vertical map
as the natural inclusion map

h A1∩A2 S•RG
f (W,Z∩ A1)∼= h A1∩A2 S•RG

f (W,Z|A1)= h A2 S•RG
f (W,Z|A1)

→ h A2 S•RG
f (W,Z).

Our claim is that the approximation theorem applies to show that this is an equiv-
alence. We need only check the second part of the approximation property. So let
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f : Y1→ Y2 be a morphism in RG
f (W,Z) such that Y1 is an object in RG

f (W,Z|A1).
Define Y ′2 as the smallest subcomplex of Y2 which contains both the image of f
and all cells which are labeled with points in A1. Then Y ′2 is supported on a Z-
thickening of A1. Since κ−1(Z \ A2)⊆ κ

−1(A1)⊆ �Y ′2, the subcomplex Y ′2 ⊆ Y2

is cofinal away from A2. This implies that the inclusion map Y ′2 ↪→ Y2 is an h A2-
equivalence. As in the proof of Proposition 4.20, Z being G-proper with respect
to A1 implies that Y ′2 is isomorphic to an object Y3 with support in A1. Then f
factors over Y3, which shows the approximation property. �

4D. A vanishing result. To conclude this section, we also record a criterion which
guarantees the vanishing of the K-theory of a category of controlled retractive
spaces.

4.24. Proposition (Eilenberg swindles). Let C be a small Waldhausen category.
Let ∨ be a functorial coproduct on C. Suppose that there is an exact endofunctor
sw on C and a natural isomorphism id∨ sw∼= sw.

Then there is a contraction Hsw of K (C) which is natural in the following sense:
Let C1 and C2 be small Waldhausen categories, equipped with functorial coproducts
∨i , i = 1, 2. Let F : C1 → C2 be an exact functor which strictly preserves the
coproduct, i.e., F ◦∨1=∨2 ◦(F×F). Let swi be exact endofunctors on Ci together
with natural isomorphisms ηi : idCi ∨ swi ∼= swi , i =1, 2, such that sw2 ◦F = F◦sw1

and F ◦ η1,A = η2,FA. Then

Hsw2 ◦ (K (F)×[0, 1])= K (F) ◦ Hsw1 .

Proof. Recall that K (C)=�|wS•C|, so concatenation of loops defines an H -space
structure “+” on K (C). Subject to the choice of an orientation-preserving homeo-
morphism [0, 1] ∼= [0, 2], the H -space product is naturally homotopy associative.
Similarly, any choice of orientation-reversing homeomorphism [0, 1] ∼= [0, 1], say
t 7→ 1− t , induces a homotopy inverse inv such that id+ inv is nullhomotopic. This
nullhomotopy depends on a choice of contraction of [0, 1] to the point 0. Fixing,
once and for all, suitable homeomorphisms [0, 1] ∼= [0, 2] and [0, 1] ∼= [0, 1] and
a contraction of [0, 1], all these homotopies become natural with respect to maps
induced by exact functors.

The functorial coproduct ∨ : C× C→ C induces another H -space structure “∨”
on K (C). Since + and ∨ satisfy the interchange law, the Eckmann–Hilton argument
shows that there is a natural homotopy ∨ '+. By abuse of notation, we use in the
sequel the same name for functors and the maps they induce on K-theory. Let 0
denote the constant functor mapping everything to the zero object. Then we have

id' id+0' id+(sw+(inv ◦ sw))' (id+ sw)+ (inv ◦ sw)

' (id∨ sw)+ (inv ◦ sw)' sw+ inv ◦ sw' 0.
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The fifth homotopy is induced by the natural isomorphism η. Hence, the concate-
nation of these homotopies defines a contraction of K (C), and it is straightforward
to check that this contraction is natural in the desired sense. �

4.25. Proposition. Let Z be a coarse structure and let A⊆ Z be a G-invariant sub-
set. Suppose that there is a sequence of G-equivariant functions (sn : Z→ Z)n∈N

which satisfies the following properties:

(1) s0 = idZ .

(2) For every C ∈ C and S ∈S there is some C ′ ∈ C such that⋃
n>0

(sn × sn)(C ∩ (S× S))⊆ C ′.

(3) For every S ∈S there is some S′ ∈S such that
⋃

n sn(S)⊆ S′.

(4) For every S ∈S and every B ⊆ S which is locally finite in Z , each image sn(B)
is locally finite in Z and s−1

n (x)∩ B is finite for all x ∈ sn(B). Furthermore,
there are for every z ∈ Z some n0 and an open neighborhood U of z such that
s−1

n (U )=∅ for all n > n0.

(5) For every C ∈ C there exists C ′ ∈ C such that⋃
n>0

sn(AC)⊆ AC ′ .

(6) For every S ∈S there is some C ∈ C such that⋃
n>0

{(sn+1(x), sn(x)) | x ∈ S} ⊆ C.

Then there is an exact endofunctor on (RG
f (W,Z), h A) as in Proposition 4.24. This

swindle is natural in the following sense: Let z : Z1→ Z2 be a morphism of coarse
structures. If (si

n : Zi→ Zi )n , i = 1, 2, are as above such that z◦s1
n = s2

n ◦z for all n,
then the induced exact functor R(z) satisfies the assumptions of Proposition 4.24.

The same holds with (RG
fd(W,Z), h A) instead of (RG

f (W,Z), h A).

Proof. Define a functor S :RG
f (W,Z)→RG

f (W,Z) as follows. Given a controlled
retractive space (Y, κ) over W , consider the infinite coproduct Y∞ :=

∨
n>0 Y . So

�Y∞ =
∐

n>0 �Y . Define a control map κ∞ : �Y∞→ Z by κ∞(e) := (sn ◦κ)(e) if
e is a cell in the n-th copy of Y . Then conditions (2) and (3) ensure that (Y∞, κ∞)
is a controlled retractive space over W . If f : Y1→ Y2 is a controlled morphism,
then

∨
n>0 f : Y∞1 → Y∞2 is again a controlled morphism. Moreover, condition (4)

guarantees that Y∞ is finite if Y is finite.
Define S(Y ) := (Y∞, κ∞). We claim that this functor preserves h A-equivalences.

It suffices to check that for any subcomplex Y ′ ⊆ Y which is cofinal away from A,
the subcomplex S(Y ′)⊆ S(Y ) is also cofinal away from A.
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For the next paragraph, denote the n-th copy of Y by Yn , and use Y ′n in the same
way. Let k ∈ N. Then there is some C ∈ C such that κ−1(Z \ AC)∩�kY ⊆ �kY ′.
Let e ∈ (κ∞)−1(Z \ sn(AC))∩�kYn , and let e′ be the corresponding k-cell in the
original copy of Y . Since sn(κ(e′)) = κ∞(e) /∈ sn(AC), it follows that e′ ∈ �kY ′.
Consequently, e∈�kY ′n , and we have shown that (κ∞)−1(Z \sn(AC))∩�kYn⊆�kY ′n .
Choosing C ′ ∈ C as in (5), we have

(κ∞)−1(Z \ AC ′)
∩�kY∞ ⊆ (κ∞)−1

(
Z \

⋃
n

sn(AC)
)
∩�kY∞

⊆

⋃
m>0

(
(κ∞)−1

(
Z \

⋃
n

sn(AC)
)
∩�kYm

)
⊆

⋃
m>0

(
(κ∞)−1(Z \ sm(AC))∩�kYm

)
⊆

⋃
m>0

�kY ′m = �k(Y ′)∞.

So S(Y ′) ⊆ S(Y ) is also cofinal away from A, and it follows that S is an exact
functor with respect to the h A-equivalences.

The map Y ∨Y∞→ Y∞ which maps Yn identically to Yn+1 and Y to Y0 is a con-
trolled isomorphism by condition (6). It induces a natural isomorphism id∨S ∼= S.

Checking the naturality statement is straightforward. �

4.26. Remark. Note that the conditions of Proposition 4.25 hold for A =∅ when-
ever they are satisfied for some A⊆ Z . Hence, the K-theory space�|hS•RG

f (W,Z)|
is also contractible.

Most of the time, the sequence of maps (sn)n is induced by an infinite shift map,
i.e., a G-equivariant function s : Z→ Z with the following properties:

(1) For every C ∈ C and S ∈S there is some C ′ ∈ C such that⋃
n

(s× s)n(C ∩ (S× S))⊆ C ′.

(2) For every S ∈S there is some S′ ∈S such that
⋃

n sn(S)⊆ S′.

(3) For every S ∈S and every B ⊆ S which is locally finite in Z , the image s(B)
is locally finite in Z and s−1(x)∩ B is finite for all x ∈ s(B). Furthermore,
there are for every z ∈ Z some n0 and an open neighborhood U of z such that
(sn)−1(U )=∅ for all n > n0.

(4) For every C ∈ C there exists C ′ ∈ C such that⋃
n>0

sn(AC)⊆ AC ′ .
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(5) For every S ∈S there is some C ∈ C such that{
(s(x), x)

∣∣ x ∈
⋃

n

sn(S)
}
⊆ C.

In this case, the proposition applies with sn := sn , and the corresponding naturality
statement applies whenever we have two infinite shift maps s1 and s2 as well as a
morphism of coarse structures z such that z ◦ s1 = s2 ◦ z.

5. Nonconnective A-theory spectra

We are now ready to put the results of the previous sections to use. Namely, we
define (potentially) nonconnective deloopings of the K-theory spaces of controlled
retractive spaces. The resulting spectra are insensitive to specific choices of finite-
ness conditions, and the main results of Section 4 simplify accordingly.

For linear K-theory, such deloopings have been defined previously by Pedersen
and Weibel [1985]. Vogell [1990] adopted this approach to define a nonconnective
delooping of A(X).

5.1. Definition. Suppose that Z = Z1× Z2, and that (Z1,C,S) is a coarse struc-
ture. Let p : Z → Z1 be the projection map. Then we define a coarse structure
(Z , p∗C, p∗S) by setting

p∗C := {(p× p)−1(C) | C ∈ C} and p∗S := {p−1(S) | S ∈S}.

Let Z= (Z,C,S) be a coarse structure. Let pn :R
n
×Z→Rn and pZ :R

n
×Z→Z

denote the respective projection maps. Consider the bounded coarse structure
B(Rn)= (Rn,Cbdd(R

n),Striv(R
n)) from Example 2.2.

5.2. Definition. For n ∈N define the coarse structure Z(n)= (Rn
×Z ,C(n),S(n))

by letting a set C ⊆ (Rn
× Z)2 be in C(n) if and only if

(1) C is symmetric, G-invariant and contains the diagonal.

(2) There is a C ′ ∈ p∗nCbdd(R
n) such that C ⊆ C ′.

(3) For all K ⊆ Rn compact, there is a C ′′ ∈ p∗ZC such that

C ∩ ((K × Z)× (K × Z))⊆ C ′′.

Set S(n) := p∗ZS.

Consider for all n also the restricted coarse structures

Z(n+ 1)+ := Z(n+ 1)∩ (Rn
×R>0× Z),

Z(n+ 1)− := Z(n+ 1)∩ (Rn
×R60× Z).

Note that Z(n+ 1)∩ (Rn
×{0}× Z)= Z(n).
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Let A ⊆ Z be a G-invariant subset. The obvious inclusion maps give rise to a
commutative square

h A S•RG
f (W,Z(n)) h A S•RG

f (W,Z(n+ 1)+)

h A S•RG
f (W,Z(n+ 1)−) h A S•RG

f (W,Z(n+ 1))

(5.3)

Using the results of Section 4D, the top right and bottom left corners of this square
are contractible since they admit infinite shift maps (Ex, xn+1, z) 7→ (Ex, xn+1±1, z).
This provides us with structure maps for a spectrum

K−∞(RG
f (W,Z), h A) :=

{
K (RG

f (W,Z(n)), h A)
}

n.

These are the algebraic K-theory spectra we use for our main results. It follows
from Propositions 3.28, 4.24 and 4.25 that the construction of this spectrum is
natural in Z.

5.4. Remark. Definition 5.2 is more involved than one might expect. The coarse
structure

Z[n] := (Rn
× Z , p∗nCbdd(R

n)e p∗ZC, p∗ZS)

might appear to be a more intuitive choice. There is a canonical inclusion func-
tor RG

f (W,Z[n])→ RG
f (W,Z(n)) which induces an isomorphism on homotopy

groups in sufficiently high degrees, using Z[0] = Z(0) and Proposition 5.5 below.
We conjecture that this map is in fact a weak equivalence.

The difference between the coarse structures Z(n) and Z[n] is analogous to the
linear situation (cf. [Pedersen and Weibel 1989]). Take, for example, categories
CX (R) of bounded morphisms over a metric space. Then Z[n] corresponds to the
category CRn×X (R), while Z(n) corresponds to CRn (CX (R)). The inclusion functor
CRn×X (R)→ CRn (CX (R)) always induces an equivalence of algebraic K-theory
spectra: apply nonconnective algebraic K-theory to the inclusion map and prove
that both sides are equivalent to the spectrum �nK−∞(CX (R)).

5.5. Proposition. (1) The structure maps of the spectrum K−∞(RG
f (W,Z), h)

induce isomorphisms on πi for i > 1.

(2) The structure maps of the spectrum K−∞(RG
f (W,Z), h A) induce isomorphisms

on πi for i > 2.

Proof. By Theorem 4.23, there is a homotopy pullback square

hS•RG
fd,F ′(W,Z(n)) hS•RG

fd,K ′(W,Z(n+ 1)+)

hS•RG
fd,F (W,Z(n+ 1)−) hS•RG

fd,K (W,Z(n+ 1))

(5.6)
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There is a transformation from square (5.3) to (5.6) induced by inclusion func-
tors. By Thomason cofinality, this transformation is a weak equivalence on the top
right and bottom right corners. Therefore, hS•RG

fd,K ′(W,Z(n + 1)+) is weakly
contractible. In particular, its K0 is trivial, so RG

fd,F ′(W,Z(n))=RG
fd(W,Z(n)).

We claim that K0(RG
f (W,Z(n+ 1)), h)= 0. Since we can filter any object by

its skeleta, and suspension corresponds to taking inverses in K0, the class of any
object in RG

f (W,Z(n+1)) equals its K-theoretic Euler characteristic, i.e., it equals
an alternating sum of classes of 0-dimensional objects. The same argument as in
the linear case [Pedersen and Weibel 1985, Corollary 1.3.1] now shows that the
K0-class of every 0-dimensional object is trivial.

From K0(RG
f (W,Z(n+ 1)), h)= 0 it follows that

RG
fd,F (W,Z(n+ 1)−)=RG

fd(W,Z(n+ 1)−).

Since Z(n + 1)− admits an infinite shift map, hS•RG
fd(W,Z(n + 1)−) is weakly

contractible by Section 4D. We already know that hS•RG
f (W,Z(n+1)−) is weakly

contractible, so the transformation from (5.3) to (5.6) is also a weak equivalence
on the bottom left corner.

As the square (5.6) is a homotopy pullback in which the bottom left and top
right corners are weakly contractible, we get a weak equivalence

|hS•RG
fd(W,Z(n))|

∼
−→�|hS•RG

fd,K (W,Z(n+ 1))|. (5.7)

By Proposition 4.8, the map |hS•RG
f (W,Z(n))| → |hS•RG

fd(W,Z(n))| induces an
isomorphism on πi for i > 2. Hence, the structure map

K (RG
f (W,Z(n)), h)→�K (RG

f (W,Z(n+ 1)), h)

is an isomorphism on πi for i > 1.
The structure map K (RG

f (W,Z(n)), h A)→�K (RG
f (W,Z(n+1)), h A) sits in a

map of homotopy fiber sequences arising from Theorem 4.16. The second assertion
of the proposition follows from the first assertion and a five-lemma argument. �

5.8. Remark. We can also define a nonconnective spectrum K−∞(RG
fd(W,Z), h A)

using the finitely dominated objects. The natural maps

K (RG
f (W,Z(n)), h A)→ K (RG

fd(W,Z(n)), h A)

are isomorphisms on πi for i > 1; hence, the induced map

K−∞(RG
f (W,Z), h A)→ K−∞(RG

fd(W,Z), h A)

is a stable equivalence of spectra by Proposition 5.5.

For convenience, we record the nonconnective versions of the main results of
the previous section.



FARRELL–HSIANG METHOD FOR ALGEBRAIC K-THEORY OF SPACES 97

5.9. Theorem. Let Z be a coarse structure and let A ⊆ Z be a closed, G-invariant
subset such that Z is G-proper with respect to A. Then the inclusion functors
induce a homotopy fiber sequence

K−∞(RG
f (W,Z∩ A), h)→ K−∞(RG

f (W,Z), h)→ K−∞(RG
f (W,Z), h A).

Proof. This is Theorem 4.16 together with Proposition 4.20 and Remark 5.8. �

5.10. Theorem (coarse Mayer–Vietoris theorem). Let (Z, A1, A2) be a coarsely
excisive triple, and assume that Z is G-proper with respect to A1, A2 and A1 ∩ A2.
Then the obvious inclusion maps give rise to a homotopy pullback square of spectra

K−∞(RG
f (W,Z∩ (A1 ∩ A2)), h) K−∞(RG

f (W,Z∩ A1), h)

K−∞(RG
f (W,Z∩ A2), h) K−∞(RG

f (W,Z), h)

Proof. This is Theorem 4.23 together with Remark 5.8. �

5.11. Theorem (Eilenberg swindle). Let Z be a coarse structure and let A ⊆ Z
be a G-invariant subset. Suppose that there is a sequence of G-equivariant func-
tions (sn : Z→ Z)n as in Proposition 4.25. Then K−∞(RG

f (W,Z), h A) is weakly
contractible.

Proof. This follows from Section 4D. �

6. The Davis–Lück assembly map

We can now translate the model of the assembly map given in [Bartels et al. 2004]
to A-theory. Assume from now on that G is a countable discrete group.

6.1. Definition. Let X be a G-CW-complex and M a metric space with free, iso-
metric G-action.

Define the coarse structure J(M, X)= (M × X ×[1,∞[,C(M, X),S(M, X))
as follows. Let pM , pM×X , pX×[1,∞[ and p[1,∞[ denote the projection maps from
M × X ×[1,∞[ to the factor indicated by the index of p. Set

C(M, X) := p∗MB(M)e p∗X×[1,∞[CG-cc(X),

S(M, X) := p∗M×XSG-cpt(M × X).

The bounded coarse structure, G-compact support condition and G-continuous
control condition have been defined in Example 2.2.

One particular instance of this definition is the case where M = G, equipped
with a left invariant and proper metric, “proper” meaning that every ball of finite
radius is finite. Such metrics exist [Dranishnikov and Smith 2006, Proposition 1.3];
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if G is finitely generated, we can pick a word metric. Whenever d and d ′ are
two left invariant, proper metrics on G, the identity map id : (G, d)→ (G, d ′)
is a coarse equivalence by [Dranishnikov and Smith 2006, Proposition 1.1]. In
particular, every R-ball with respect to d is contained in some R′-ball with respect
to d ′, and vice versa. Hence, the bounded control condition on G is independent
of the choice of left invariant, proper metric, and we can suppress the metric in our
notation.

6.2. Definition. We abbreviate J(X) := J(G, X).

When considering RG
f (W, J(M, X)), we denote the class of weak equivalences

hM×X×{1} by h∞. Observe also that for a G-invariant subcomplex A⊆ X , we have
J(M, X)∩(M×A×[1,∞[)=J(M, A). Finally, we note that J(M, X) is G-proper
with respect to subspaces of the form M × A× [1,∞[ for A ⊆ X a G-invariant
subcomplex.

6.3. Definition. Let us introduce the following shorthands:

T(G,W, X) := K−∞
(
RG

f (W, J(X)∩ (G× X ×{1})), h
)
,

F(G,W, X) := K−∞
(
RG

f (W, J(X)), h
)
,

D(G,W, X) := K−∞
(
RG

f (W, J(X)), h∞
)
.

As a consequence of Theorem 5.9, these spectra fit into a natural homotopy fiber
sequence

T(G,W, X)→ F(G,W, X)→ D(G,W, X). (6.4)

6.5. Definition. An (unreduced) G-homology theory is a functor H from the cate-
gory of G-CW-complexes to the category of spectra such that the following hold:

(1) Every G-equivariant homotopy equivalence f : X1
∼
−→ X2 induces a weak

equivalence H( f ) : H(X1)→ H(X2).

(2) Every homotopy pushout square of G-CW-complexes induces a homotopy
pullback square of spectra upon application of H( – ).

(3) If X=colimi X i is a directed colimit, the natural map hocolimi H(X i )→H(X)
is a weak equivalence.

6.6. Remark. Observe that any unreduced G-homology theory in the sense of
Definition 6.5 automatically respects finite coproducts because

∅ X1

X2 X1q X2

is a homotopy pushout square. From the direct limit axiom Definition 6.5(3), con-
clude that any unreduced G-homology theory commutes with arbitrary coproducts.
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6.7. Theorem. (1) The projection X→ G/G induces a weak equivalence

T(G,W, X) ∼−→ T(G,W,G/G)

for every G-CW-complex X.

(2) The assignment X 7→D(G,W, X) is an unreduced G-equivariant homology
theory.

(3) The connecting map �D(G,W,G/G)→ T(G,W,G/G) is a weak equiva-
lence.

Proof. For part (1), consider the functor

p :RG
f (W, J(X)(n)∩(G×X×{1})(n))→RG

f (W, J(G/G)∩(G×G/G×{1})(n))

induced by the projection map X → G/G; it is well-defined because of the G-
compact support condition on G × X . Let (Y � W, κ) be any object from the
category on the right-hand side. Then any choice of a point x ∈ X induces a
control map

κ̃ : �Y → Rn
×G× X, e 7→ (κRn (e), κG(e), κG(e) · x)

which turns Y into an object Ỹ of the left-hand side. This construction provides an
inverse to p, showing that p is an exact equivalence of Waldhausen categories.

For the second part of the theorem, observe first that X 7→ RG
f (W, J(X)) is

indeed a functor on G-CW-complexes; this follows from Proposition 3.28 using
Lemma 3.3 from [Bartels et al. 2004] and the G-compact support condition. Also,
due to the G-compact support condition, in conjunction with the fact that algebraic
K-theory commutes with directed colimits, we immediately obtain the direct limit
axiom (3). Hence, it suffices to consider only cocompact G-CW-complexes. The
remainder of the proof is formally the same as in [Bartels et al. 2004, §5]; note
that in the proof of the property Definition 6.5(2), the special case of a coproduct
is missing in [Bartels et al. 2004] and has to be treated separately. For more details,
see also [Ullmann 2010, Section 7.2].

For the last part of the theorem, consider RG
f (W, J(G/G)). The map

s : G×G/G×[1,∞[, (g,G, t) 7→ (g,G, t + 1)

is an infinite shift map, so F(G,W,G/G) is weakly contractible by Theorem 5.11.
The claim follows. �

Let Or(G) denote the orbit category of G, i.e., the category of left G-sets G/H
and G-equivariant maps between them.

Let V be a topological space. Then R f (V ), the category of finite retractive
spaces over V , is isomorphic to the category R{1}f (V,T(∗)), where T(∗) is the
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trivial coarse structure over a point from Example 2.2. The results of Section 5
provide us with a spectrum

A−∞(V ) := K−∞(R{1}f (V,T(∗)), h)

which is a (potentially nonconnective) delooping of A(V ). We call this the non-
connective algebraic K-theory spectrum of V . Given any G-space W , we may
therefore define an Or(G)-spectrum A−∞W by setting

A−∞W (G/H) := A−∞(W op
×G G/H)∼= A−∞(H\W ),

where W op denotes the space W equipped with the right action of G induced by
the original left action via w · g := g−1w.

6.8. Theorem. Let W be a free G-CW-complex. Then there is a zig-zag of equiva-
lences of Or(G)-spectra

�D(G,W, – )' A−∞W ( – ).

With the exception of Corollary 6.17 below, the proof of this theorem occu-
pies the rest of this section. Both the strategy of proof and the method to use
Theorem 6.8 to relate the connecting map �D(G,W, X)→ T(G,W, X) to the
Davis–Lück assembly map go back to work of Hambleton and Pedersen [2004,
Sections 7 and 8].

Consider D(G,W,G/H) for some G/H ∈ Or(G). Define a coarse structure

Jdis(G/H)= (G×G/H ×[1,∞[,Cdis(G,G/H),S(G,G/H)),

where Cdis(G,G/H) is the collection of all C ∈ C(G,G/H) such that γ H = γ ′H
for all ((g, γ H, t), (g′, γ ′H, t ′)) ∈ C .

6.9. Lemma. For all n, the natural inclusion functor

RG
f (W, Jdis(G/H)(n)) ↪→RG

f (W, J(G/H)(n))

induces an equivalence in K-theory with respect to the h∞-equivalences.

Proof. Let f : Y1→ Y2 be an arbitrary morphism in RG
f (W, J(G/H)(n)). Let C

be a control condition witnessing that f is a controlled map. For each closed ball
BR ⊆ Rn , C ∩ (BR ×G×G/H ×[1,∞[)2 satisfies the continuous control condi-
tion. Therefore, there is some t0 > 1 such that ((x, g, γ H, t), (x ′, g′, γ ′H, t ′)) ∈ C
implies γ H = γ ′H whenever x, x ′ ∈ BR and t, t ′ > t0. Since we require bounded
control over Rn , and since the G-continuous control condition includes bounded
control over [1,∞[ , there exists some cofinal subcomplex Y ′1 ⊆ Y1 away from
Rn
×G×G/H ×{1} such that f |Y ′1 satisfies a control condition in Cdis(G,G/H).
We want to prove the approximation property. For the first part, consider a

morphism f : Y1 → Y2 in RG
f (W, Jdis(G/H)(n)) which is an h∞-equivalence
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in RG
f (W, J(G/H)(n)). If g is an h∞-inverse to f , we can restrict it to a suit-

able cofinal subcomplex such that its restriction satisfies a control condition in
Cdis(G,G/H) by the previous paragraph. The same works for homotopies. This
shows the first part of the approximation property.

For the second part, let f : Y1→ Y2 be a morphism in RG
f (W, J(G/H)), where

Y1 is an object in RG
f (W, Jdis(G/H)). Again by the first paragraph, there is some

cofinal subcomplex Y ′2 ⊆ Y2 which satisfies a control condition in Cdis(G,G/H).
Then there exists a cofinal subcomplex Y ′1 ⊆ Y1 such that f |Y ′1 maps into Y ′2. Let
Y be the pushout of

Y1� Y ′1
f |Y ′1−−→ Y ′2.

Then Y is an object in RG
f (W, Jdis(G/H)(n)) and the canonical morphism Y ′2� Y

is an h∞-equivalence. Hence, the morphism Y → Y2 induced by the universal
property of the pushout is also an h∞-equivalence by saturation. This proves the
second part of the approximation property. �

Defining D′(G,W,G/H) :=K−∞(RG
f (W, Jdis(G/H)), h∞), Lemma 6.9 states

that the natural map D′(G,W,G/H)→ D(G,W,G/H) is a weak equivalence.
Observe that, by considering Jdis(G/H), we have effectively eliminated the G-
continuous control condition. It has been replaced by bounded control over [1,∞[
together with discrete control over G/H .

6.10. Lemma. For all n > 1, there is a zig-zag of exact functors(
RG

f (W, Jdis(G/H)(n− 1)), h∞
)
→

· · · ←
(
RG

f (W, (J
dis(G/H)∩ (G×G/H ×{1}))(n), h)

)
which induces equivalences in K-theory and which is natural in G/H.

Proof. Recall the temporary notation Z[n] we introduced in Remark 5.4. We only
need to use

Z[1] := (R× Z , p∗RCbdd(R)e p∗ZC, p∗ZS).

In analogy to the delooping construction we discussed in Section 5, we also use
coarse structures Z[1]+ and Z[1]−.

For the purpose of this proof, define

Jdis(G/H)1 := Jdis(G/H)∩ (G×G/H ×{1}).

The underlying space of the coarse structure Jdis(G/H)(n − 1) is the product
Rn−1

× G × G/H × [1,∞[ . The obvious isometry [1,∞[ ∼= [0,∞[ induces a
homeomorphism Rn−1

×G×G/H ×[1,∞[ ∼= Rn−1
×[0,∞[×G×G/H . This

homeomorphism gives rise to an isomorphism of Waldhausen categories

RG
f (W, Jdis(G/H)(n− 1))∼=RG

f (W, Jdis(G/H)1[1]+(n− 1)). (6.11)
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Under this isomorphism, the class of h∞-equivalences corresponds to the homo-
topy equivalences h0 away from Rn−1

×{0}×G×G/H ×{1}. As in the proof of
Theorem 4.23, we obtain a weak equivalence

h0S•RG
f (W, Jdis(G/H)1[1]+(n− 1))

∼
−→ h−S•RG

f (W, Jdis(G/H)1[1](n− 1)), (6.12)

where in the second term h− refers to the class of homotopy equivalences away
from Rn−1

×R60×G×G/H ×{1}.
There is a natural, exact inclusion functor

RG
f (W, Jdis(G/H)1[1](n− 1)) ↪→RG

f (W, Jdis(G/H)1(1)(n− 1)).

Analogous to (5.7) in the proof of Proposition 5.5, there are weak equivalences

|hS•RG
fd(W, Jdis(G/H)1(n− 1))| ∼−→�|hS•RG

f (W, Jdis(G/H)1[1](n− 1))|,

|hS•RG
fd(W, Jdis(G/H)1(n− 1))| ∼−→�|hS•RG

f (W, Jdis(G/H)1(1)(n− 1))|.

Since the inclusion maps

hS•RG
f (W, Jdis(G/H)1[1](n− 1))→ h−S•RG

f (W, Jdis(G/H)1[1](n− 1)),

hS•RG
f (W, Jdis(G/H)1(1)(n− 1))→ h−S•RG

f (W, Jdis(G/H)1(1)(n− 1))

are weak equivalences, too, we conclude that the map

h−S•RG
f (W,J

dis(G/H)1[1](n−1))→h−S•RG
f (W,J

dis(G/H)1(1)(n−1)) (6.13)

is also a weak equivalence. There is another exact inclusion functor

RG
f (W, Jdis(G/H)1(n)) ↪→RG

f (W, Jdis(G/H)1(1)(n− 1)), (6.14)

which induces an equivalence on K-theory with respect to the h−-equivalences for
similar reasons. The desired zig-zag is then formed by the equivalences arising
from (6.11), (6.12), (6.13) and (6.14). �

Since there is a weak equivalence from the shifted spectrum {D′(G,W,G/H)n−1}n ,
where we set D′(G,W,G/H)−1 = ∗, to �D′(G,W,G/H), Lemma 6.10 provides
us with a zig-zag of natural weak equivalences

�D′(G,W,G/H)' K−∞
(
RG

f (W, Jdis(G/H)∩ (G×G/H ×{1})), h
)
. (6.15)

In order to prove Theorem 6.8, it is therefore sufficient to identify the latter Or(G)-
spectrum.

6.16. Lemma. There is a zig-zag of weak equivalences of Or(G)-spectra

K−∞
(
RG

f (W, Jdis( – )∩ (G× – ×{1})), h
)
' A−∞W ( – ).
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Proof. Let R̂⊆RG
f

(
W, (Jdis(G/H)∩ (G×G/H ×{1}))

)
be the full Waldhausen

subcategory of those objects (Y, κ) for which the set of cells κ−1({1G}×{H}×{1})
intersects every G-orbit of cells.

We claim that the inclusion functor R̂↪→RG
f

(
W,(Jdis(G/H)∩(G×G/H×{1}))

)
is an exact equivalence. What we need to show is that every object is isomorphic
to some object in R̂. Let (Y, κ) ∈RG

f

(
W, (Jdis(G/H)∩ (G×G/H ×{1}))

)
. Due

to the G-compact support condition, we can find a set of representatives R for
the G-cells of Y such that κ(R) ⊆ F1 × F2 × {1} for some finite sets F1 ⊆ G,
F2 ⊆ G/H . Multiplying by appropriate group elements, we can assume without
loss of generality that κ(R) ⊆ F × {H} × {1} for some finite set F ⊆ G. Let
c : F → {1G} be the unique function. By requiring G-equivariance, c induces a
G-equivariant function κc : �Y → G ×G/H × {1}. Since there are only finitely
many equivariant cells in Y , the labeled G-CW-complex (Y, κc) satisfies bounded
control over G. By construction, (Y, κc) is an object of R̂. The identity map on Y
defines an isomorphism (Y, κ)∼= (Y, κc). This proves that the inclusion functor is
an equivalence.

Next, we define an exact functor Q :R̂→R f (W op
×G G/H,T(∗)). Let (Y, κ)∈ R̂.

Define YH ⊆ Y to be the H -invariant subcomplex given by κ−1(H ×{H}× {1}).
Then H\YH is naturally a retractive space over H\ resG

H W ∼=W op
×G G/H . Set

Q(Y ) := H\YH .
We claim that this functor is also an equivalence of Waldhausen categories. The

following argument is similar to [Waldhausen 1985, Lemma 2.1.3].
Let (X, κ) ∈ R f (W op

×G G/H,T(∗)). Let π : W × G/H → W op
×G G/H

denote the G-equivariant map sending (w, gH) to (g−1w, H). By pulling back
along π , we obtain a retractive space X̃ relative W ×G/H . Define 8(X) as the
pushout

W ×G/H X̃

W 8(X)
8(s)

The retraction of X̃ induces a retraction 8(r) on 8(X). Note that there is a canoni-
cal bijection �8(X) ∼−→�X̃ . The projection map X̃→W ×G/H→ G/H induces
a G-equivariant function κ̃ : �X̃→ G/H with the property that, if e, e′ are cells in
X̃ such that e′ ⊆ 〈e〉, then κ̃(e)= κ̃(e′).

Choose a set of representatives S for the G-orbits of cells in 8(X) such that
κ̃(e)= H for all e ∈ S. Define the G-equivariant function

8(κ) : �8(X)→ G×G/H ×{1}

by 8(κ)(e) := (1G, H, 1) for all e ∈ S and extending G-equivariantly. This turns
8(X) into an object (8(X),8(κ))∈ R̂. As W is a free G-CW complex, 8(Q(Y ))
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is canonically isomorphic to Y . Since Q(8(X)) is canonically isomorphic to X ,
this shows that Q is essentially surjective and fully faithful. This finishes the proof
of the lemma. �

Combining Lemmas 6.9 and 6.16 with the zig-zag (6.15), we obtain the zig-zag
of weak equivalences of Or(G)-spectra

�D(G,W, – )'�D(G,W, – )

' K−∞
(
RG

f (W, Jdis( – )∩ (G× – ×{1})), h
)

' A−∞W ( – ),

whose existence we claimed in Theorem 6.8.
As explained in [Davis and Lück 1998], any Or(G)-spectrum E gives rise to a

G-homology theory HG( – ; E). By considering the map induced by the projection
X→ G/G, one obtains for every G-CW-complex X a Davis–Lück assembly map

αX : H
G(X; E)→ E(G/G).

The upshot of our discussion is that we have constructed a model for the assembly
map associated to the Or(G)-spectrum A−∞W :

6.17. Corollary. Let W be a free G-CW-complex. Then the following holds:

(1) The connecting map �D(G,W, X)→ T(G,W, X) is equivalent to the equi-
variant A-theory assembly map

αX,W : H
G(X;A−∞W )→ A−∞W (G/G)' A−∞(G\W ).

(2) The assembly map αX,W is a weak equivalence if and only if F(G,W, X) is
weakly contractible.

Proof. The first claim follows from Theorem 6.8 by the argument given in [Bartels
et al. 2004, Section 6.2]. The second part of the corollary is then evident from the
homotopy fiber sequence T(G,W, X)→ F(G,W, X)→ D(G,W, X). �

7. The isomorphism conjecture for Dress–Farrell–Hsiang groups

Recall (e.g., from [Lück and Reich 2005, Conjecture 113]) the statement of the
isomorphism conjecture for A-theory:

7.1. Conjecture (A-theoretic fibered isomorphism conjecture). Let F be a family
of groups and let G be a countable discrete group. Then for every free G-CW-
complex W the assembly map

αF,W : H
G(EFG;A−∞W )→ HG(G/G;A−∞W )∼= A−∞(G\W )

is a weak equivalence, where EFG is the classifying space of G for the family F .
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Whenever Conjecture 7.1 holds for some group G, we say that G satisfies the
A-theoretic fibered isomorphism conjecture with respect to F . For the special case
that F = VCyc is the family of virtually cyclic groups, we also say that G satisfies
the A-theoretic fibered Farrell–Jones conjecture.

Due to Corollary 6.17, the fibered isomorphism conjecture is equivalent to the
weak contractibility of the spectra F(G,W, EFG) introduced in the previous sec-
tion. Thus, the A-theoretic isomorphism conjecture becomes accessible via the
methods employed in [Bartels et al. 2008b; Bartels and Lück 2012a; 2012b] for
the algebraic K-theory and L-theory of group rings. Our goal is to establish an
analog of the main result of [Bartels and Lück 2012b].

Let us recall the definition of Dress–Farrell–Hsiang groups.

7.2. Definition. Let D be a finite group. We call D a Dress group if there are
primes p and q and subgroups P EC E D such that P is a p-group, C/P is cyclic
and D/C is a q-group.

Recall the definition of the `1-metric on a simplicial complex. If X is a simplicial
complex and ξ =

∑
x ξx · x , η =

∑
x ηx · x are points in X , this metric is given by

d`
1
(ξ, η)=

∑
x

|ξx − ηx |.

All simplicial complexes we consider are equipped with this metric.
We call a generating set S of a group G symmetric if s ∈ S implies s−1

∈ S.

7.3. Definition. Let G be a group and S be a symmetric, finite generating set of G.
Let F be a family of subgroups of G.

Call (G, S) a Dress–Farrell–Hsiang group with respect to F if there exists
N ∈ N such that for every ε > 0 there is an epimorphism π : G � F onto a
finite group F such that the following holds: for every Dress group D 6 F , there
are a D := π−1(D)-simplicial complex ED of dimension at most N whose isotropy
groups lie in F , and a D-equivariant map ϕD : G→ ED such that

d`
1
(ϕD(g), ϕD(g′))6 ε

whenever g−1g′ ∈ S.

A slightly stricter version of this definition appeared previously in [Winges 2015,
Definition 3.1]. The notion of Dress–Farrell–Hsiang groups generalizes that of
Farrell–Hsiang groups from [Bartels and Lück 2012b, Definition 1.1; 2014a, Defi-
nition 2.14]. For examples, we refer to Section 11 and [Winges 2015].

7.4. Theorem. Let G be a discrete group. Suppose that there are a symmetric,
finite generating set S ⊆ G and a family of subgroups F of G such that (G, S)
is a Dress–Farrell–Hsiang group with respect to F . Then G satisfies the fibered
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isomorphism conjecture in A-theory, Conjecture 7.1, with respect to F , i.e., the
assembly map

HG(EFG;A−∞W )→ A−∞(G\W )

is a weak equivalence for every free G-CW-complex W .

Choosing W to be the universal cover of a given connected CW-complex whose
fundamental group is G, Theorem 7.4 implies Theorem 1.5.

Before we can turn to the proof of Theorem 7.4, we need to extend the defini-
tion of the obstruction category RG

f (W, J(X)). Recall the definition of the coarse
structure J(M, X)= (M × X × [1,∞[,C(M, X),S(M, X)) from Definition 6.1.
Let (Mk)k∈N be a sequence of metric spaces with a free, isometric G-action, and
suppose that X is a G-CW-complex. Equip G with a proper, left invariant metric.
Then we define a coarse structure

J((Mk)k, X)=
(∐

k∈N

Mk × X ×[1,∞[,C((Mk)k, X),S((Mk)k, X)
)

as follows:

(1) A set C lies in C((Mk)k, X) if it is of the form C =
∐

k Ck with Ck ∈C(Mk, X),
and it additionally satisfies the following uniform metric control condition:
there is some R > 0 such that for all pairs ((m, x, t), (m′, x ′, t ′)) ∈ C we have
d(m,m′) < R (i.e., the bound does not depend on k).

(2) A set S lies in S((Mk)k, X) if it is of the form S=
∐

k Sk with Sk ∈S(Mk, X).

We consider the Waldhausen category RG
f (W, J((Mk)k, X)). Note that this is a

subcategory of
∏

k∈N RG
f (W, J(Mk, X)) in a natural way, and that we therefore

typically write objects and morphisms as sequences (Yk)k and ( fk)k . Moreover,
the category∏fin

RG
f (W, J(Mk, X)) := coliml

l∏
k=1

RG
f (W, J(Mk, X))

of eventually trivial sequences is a full subcategory of RG
f (W, J((Mk)k, X)) and

inherits a Waldhausen structure. With this additional notation at our disposal, the
proof of Theorem 7.4 proceeds as follows.

Suppose that (G, S) is a Dress–Farrell–Hsiang group with respect to F . Pick N
to be as in Definition 7.3, so that for every k > 1, there are a finite group Fk , an
epimorphism πk : G� Fk and a family of maps (ϕD : G→ ED)D∈Dk such that

(1) the space ED is a D := π−1
k (D)-simplicial complex of dimension at most N

whose stabilizers lie in F ,

(2) the map ϕD is D-equivariant and d`
1
(ϕD(g), ϕD(g′))61/k whenever g−1g′∈ S,
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where Dk denotes the family of Dress subgroups of Fk . Then the proof is organized
around a sequence of diagrams, indexed over j ∈ N, of the form∏fin

RG
f (W, J(Ek ×G, EFG))

RG
f (W, J((Tk ×G)k, EFG)) RG

f (W, J((Ek ×G)k, EFG))

RG
f (W, J(G, EFG))

((ϕk)k)∗

Pj Q j

tr

Define Tk :=
∐

D∈Dk
G/D, equipped with the discrete metric which assigns dis-

tance∞ to any two points which are not equal. Define Ek :=
∐

D∈Dk
G×D ED,

equipped with the diagonal G-action. Consider the metric k · d`1 on Ek . Equip G
with the word metric given by S. The products Tk ×G and Ek ×G become metric
spaces by summing up the metrics on the two factors.

Define Pj to be the projection functor which takes the inclusion into the full
product category, projects onto the j-th component, and then applies the functor
induced by the projection T j ×G× EFG×[1,∞[→ G× EFG×[1,∞[. Define
Q j analogously, and let the unlabeled arrow be the canonical inclusion functor.

To show that the K-theory of the obstruction category RG
f (W, J(G, EFG)) is

trivial, the following input is required:

(1) There is a sequence of G-equivariant maps ϕk : Tk ×G→ Ek ×G inducing
the functor ((ϕk)k)∗ such that Q j ◦ ((ϕk)k)∗ = Pj for all j . This is Lemma 7.5.

(2) For each n, there is a transfer functor

tr :RG
f (W, J(G, EFG)(n))→RG

f (W, J((Tk ×G)k, EFG)(n))

(the dashed arrow in the above diagram) such that Pj ◦ tr induces the identity in
K-theory for all j ; in fact, there is even an appropriate map on nonconnective
K-theory, but we do not need to know that. This is covered in Section 9; see
Corollary 9.6 in particular.

(3) The canonical inclusion functor∏fin
RG

f (W, J(Ek ×G, EFG))→RG
f (W, J((Ek ×G)k, EFG))

induces a weak equivalence in nonconnective K-theory. This follows from
Theorem 10.1.

Using the fact that K−n
(
RG

f (W, J(X))
)
∼=K1

(
RG

f (W, J(X)(n+1))
)

for any G-CW-
complex X (Proposition 5.5), a diagram chase shows that Kn

(
RG

f (W, J(X))
)
= 0
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for all n ∈ Z under these assumptions; see [Bartels and Lück 2012b, Section 4]. We
remark that the only part of the proof which uses the presence of the classifying
space EFG is (3); the other two parts still work if we replace EFG with an arbitrary
G-CW-complex.

7.5. Lemma (cf. [Bartels and Lück 2012b, Section 7]). Let X be a G-CW-complex.
For each D, the D-equivariant map ϕD gives rise to a G-equivariant map

ϕ̃D : G/D×G→ G×D ED,

(γ D, g) 7→ (γ, ϕD(γ
−1g)).

Then the equivariant maps

ϕk : Tk ×G× X ×[1,∞[→ Ek ×G× X ×[1,∞[,

(γ D, g, x, t) 7→ (ϕ̃D(γ D, g), g, x, t)
induce an exact functor

((ϕk)k)∗ :RG
f (W, J((Tk ×G)k, X))→RG

f (W, J((Ek ×G)k, X))

such that Q j ◦ ((ϕk)k)∗ = Pj for all j .

Proof. If the given maps induce a well-defined functor, this functor has the re-
quired property. So we have to check that composing with the maps ϕk pre-
serves the uniform metric control condition. Let k be arbitrary. Suppose that
dTk×G((γ D, g), (γ ′D′, g′)) < R. Then dG(g, g′) < R and dTk (γ D, γ ′D′) < R,
which implies that γ D = γ ′D′. Hence, D = D′ and there is some δ ∈ D such that
γ ′= γ δ. Moreover, we can find m < R and s1, . . . , sm ∈ S such that g′= gs1 · · · sm .
It follows that

d`
1

G×D ED

(
(γ, ϕD(γ

−1g)), (γ ′, ϕD(γ
′−1g′))

)
= d`

1

G×D ED

(
(γ, ϕD(γ

−1g)), (γ δ, ϕD(δ
−1γ−1g′))

)
= d`

1

G×D ED

(
(γ, ϕD(γ

−1g)), (γ, ϕD(γ
−1g′))

)
= d`

1

ED
(ϕD(γ

−1g), ϕD(γ
−1g′))

6 m
k
<

R
k

due to the S-equivariance of ϕD up to 1/k. We conclude that

dEk×G
(
(ϕ̃D(γ D, g), g), (ϕ̃D(γ

′D′, g′), g′)
)

= dEk×G
(
(ϕ̃D(γ D, g), g), (ϕ̃D(γ D, g′), g′)

)
< dG(g, g′)+ k · R

k
< 2R,

so uniform metric control is preserved. �
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8. The A-theoretic Swan group

In the linear setting, the transfer functors mentioned in the previous section are
defined via the action of the Swan group of G on the K-theory of the obstruction
category. This group arises as the Grothendieck group of the category of integral,
finite-rank G-representations, and the action is induced by tensoring such a repre-
sentation with geometric modules. See [Bartels and Lück 2012b, Section 5].

To establish the existence of a transfer functor, we need a nonlinear analog of
this action. For this purpose, recall the notion of biexact functor from [Waldhausen
1985, page 342]: If C1, C2 and C3 are Waldhausen categories, a biexact functor is a
functor

∧ : C1× C2→ C3

with the following properties:

(E1) The functor is exact in the first variable, i.e., for all A2 ∈ C2 the functor
– ∧ A2 : C1→ C3 is exact.

(E2) The functor is exact in the second variable, i.e., for all A1 ∈ C1 the functor
A1 ∧ – : C2→ C3 is exact.

(TC) The functor satisfies the “more technical condition” that for every pair of
cofibrations A1 � A′1 in C1 and A2 � A′2 in C2, the canonical morphism
(A1 ∧ A′2)∪A1∧A2 (A

′

1 ∧ A2)→ A′1 ∧ A′2 is a cofibration in C3.

As explained in [loc. cit.], such a functor induces pairings on homotopy groups

Ki (C1)× K j (C2)→ Ki+ j (C3)

for all i, j ∈ N.
Define Rep(G) to be the category of pointed (right) G-CW-complexes whose

underlying CW-complex is finite; the morphisms of this category are those maps
which are pointed, equivariant and cellular. This category can be equipped with
a Waldhausen structure in which the cofibrations are the morphisms isomorphic
to a cellular inclusion, and the weak equivalences are the morphisms which are
homotopy equivalences in the nonequivariant sense. We denote the subcategory
of these weak equivalences by hRep(G).

8.1. Definition. Define the A-theoretic Swan group SwA(G) to be

SwA(G) := K0(Rep(G), h).

Explicitly, SwA(G) is generated by h-equivalence classes of objects in Rep(G),
subject to the condition that [D0] + [D2] = [D1] whenever there is a cofibration
sequence D0�D1�D2 in Rep(G). As−[D]=[6D], every element s ∈SwA(G)
can be written as s = [D] for some object D ∈Rep(G).
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We can extend the abelian group structure on SwA(G) to a ring structure using
the smash product. The proof of the following proposition amounts to a number
of well-known facts about the smash product of CW-complexes.

8.2. Proposition. The functor

∧ :Rep(G)×Rep(G)→Rep(G), (D, D′) 7→ D∧ D′

is biexact. The functors – ∧ S0 and S0
∧ – are naturally equivalent to the identity

functor, and the square

Rep(G)×Rep(G)×Rep(G) Rep(G)×Rep(G)

Rep(G)×Rep(G) Rep(G)

id×∧

∧× id ∧

∧

commutes up to natural isomorphism.

Thus, SwA(G) becomes a ring under the product [D] · [D′] := [D ∧ D′]. The
main point about SwA(G) is that it admits an action on A-theory. Suppose that
(Y � W, κ) is a labeled G-CW-complex and retractive space relative W ; let
s :W → Y be the structural inclusion and r : Y →W be the structural retraction.
Then we can form the pushout

(∗× Y )∪ (D×W ) W

D× Y D∧W Y

r ∪ prW

inc∪(id×s) D∧W s

to obtain a G-CW-complex under W . We equip the product D×Y with the diagonal
action g · (d, y) := (dg−1, gy). By the universal property of the pushout, every map
of retractive spaces f : Y1→ Y2 induces a map D∧W f : D∧W Y1→ D∧W Y2. In
particular, we can equip D∧W Y with a structural retraction

D∧W r : D∧W Y → D∧W W ∼=W.

Regarding D as a G-CW-complex relative to the basepoint, we let �D denote the
set of relative cells in D. Then D∧W Y becomes a labeled G-CW-complex via the
control map

D∧W κ : �(D∧W Y )∼= �D×�Y pr
−→�Y κ

−→ Z .

Our goal is to show that this pairing defines a biexact functor. To do this, we need
the controlled version of a well-known statement about homotopy equivalences of
free G-CW-complexes.
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Let Z be a coarse structure and consider the category of controlled retractive
spaces RG(W,Z). Observe that we have a notion of control for nonequivariant
maps between labeled G-CW-complexes.

8.3. Lemma. Let Y1 and Y2 be objects in RG(W,Z). Suppose f : Y1 → Y2 is
a morphism in RG(W,Z) such that there are a nonequivariant controlled map
ḡ : Y2→ Y1 as well as nonequivariant controlled homotopies H : idY1 'Z ḡ f and
K : idY2 'Z f ḡ.

Then f is an h-equivalence, i.e., there are a G-equivariant, controlled inverse g
and G-equivariant, controlled homotopies g f ' idY1 and fg ' idY2 .

Proof. The proof works as in the uncontrolled case; cf. [tom Dieck 1987, Proposi-
tion II.2.7]. �

8.4. Proposition. The smash product ∧W over W induces a biexact functor

∧W :Rep(G)×RG(W,Z)→RG(W,Z),

(D, (Y �W, κ)) 7→ (D∧W Y �W, D∧W κ)

which preserves the property of being finite.
The functor S0

∧W − is naturally equivalent to the identity functor, and the
diagram

Rep(G)×Rep(G)×RG(W,Z) Rep(G)×RG(W,Z)

Rep(G)×RG(W,Z) RG(W,Z)

∧× id

id×∧W ∧W

∧W

commutes up to natural isomorphism.

Proof. Observe that D ∧W Y contains only free G-cells because Y is assumed to
be free (relative W ). Every cell (eD, eY ) of D∧W Y is labeled by the same point
in Z as eY , so it is immediate that the support and control conditions are preserved
by ∧W . Moreover, for any subset A⊆ Z we have (D∧W κ)

−1(A)=�D×κ−1(A);
since D is finite, D∧W Y lies in RG

f (W,Z) whenever Y is an object in RG
f (W,Z).

Let us turn to exactness in the first variable. Fix Y ∈ RG(W,Z). We have
∗∧W Y =W . Let i : D� D′ be a cofibration in Rep(G). Then

i ∧W Y : D∧W Y → D′ ∧W Y

is also a cofibration, because the same holds for cellular inclusions.
Suppose that D is the pushout of D2← D0� D1 in Rep(G). Then D× Y is

also the pushout of (D2← D0� D1)× Y , and similarly for (∗× Y )∪ (D×W ).
Since pushouts commute with each other, we see that D∧W Y is also the pushout
of (D2 ∧W Y )← (D0 ∧W Y )� (D1 ∧W Y ).
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The interesting part of the argument is to show that – ∧W Y preserves h-
equivalences. Suppose that δ : D ∼

−→ D′ is a weak equivalence, i.e., there is a
nonequivariant map δ̄ : D′ → D such that δδ̄ and δ̄δ are (nonequivariantly) ho-
motopic to the identity map. Taking smash products with idY and the constant
homotopy on Y , we observe that δ ∧W Y is a morphism in RG(W,Z) which is
an h-equivalence in R(W,Z), i.e., upon forgetting all G-actions. By Lemma 8.3,
δ∧W Y is an h-equivalence in RG(W,Z).

Exactness in the second variable is similar, but easier. To show condition (TC),
one has to show that for D′ ∈Rep(G), Y ′ ∈RG(W,Z) and subcomplexes D ⊆ D′

and Y ⊆ Y ′, the complex (D ∧W Y ′) ∪ (D′ ∧W Y ) is naturally a subcomplex of
D′ ∧W Y ′, which is the case.

Finally, S0
∧W Y ∼= Y , and associativity of the pairing follows again from the

fact that pushouts commute with each other. �

As explained at the beginning of this section, the biexact functor – ∧W –
from Proposition 8.4 turns Ki (RG

f (W,Z), h) and Ki (RG
fd(W,Z), h) into SwA(G)-

modules for all i ∈ Z (using that K−i (RG
f (W,Z), h) := K1

(
RG

f (W,Z(i + 1), h)
)

for i > 0).

8.5. Remark. Let us digress for a moment to outline the connection between the
pairing induced by the biexact functor ∧W and bivariant A-theory [Williams 2000,
Section 4] (see also [Raptis and Steimle 2014, Section 3]). For the purpose of this
remark, we relax the definition of retractive spaces to allow for spaces which are
not CW-complexes.

Let p : V1 → V2 be a fibration. Then the category R(p) consists of those
retractive spaces (Y, r, s) over V1 such that the composition p ◦ r is a fibration, and
for every v ∈ V2 the (homotopy) fiber Fv(p ◦ r) of p ◦ r at v is finitely dominated
in R(Fv(p)). Note that R(V →∗) is simply the category of (finitely dominated)
retractive spaces over V .

For two composable fibrations p : V1→ V2 and q : V2→ V3, there is defined an
exact functor

R(q)×R(p)→R(q ◦ p)

given on objects by first pulling back along p, then taking the external smash
product and finally pulling back once more along the diagonal map 1:V1→V1×V1.

Let W be a free G-CW-complex (or more generally, a principal G-bundle). Let
V := ∗×G W = G\W denote the quotient. Taking quotients with respect to the
G-action defines a functor RG

fd(W )→ R fd(V ) = R(V → ∗) which induces an
equivalence in K-theory [Waldhausen 1985, Lemma 2.1.3].

Moreover, there exists an exact functor F :Rep(G)→R(V id
−→V ) sending D to

D×G W ; since D comes equipped with a base point, there is an induced section
to the canonical retraction map D×G W →∗×G W = V .
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Combining these functors, we obtain a diagram

Rep(G)×RG(W ) RG(W )

R(idV )×R(∗×G W →∗) R(V →∗)

∧W

commutative up to natural isomorphism, which relates the action of SwA(G) on
A-theory to the bivariant theory.

In fact, Malkiewich and Merling [2016, Proposition 3.7] have shown that the
functor F induces an equivalence in K-theory for W = EG; they have the standing
assumption that the group G is finite, but this specific part of the argument works
for arbitrary discrete groups. Hence, the action of SwA(G) on A(BG) coincides
with that of the “upside-down-A-theory” of BG.

This ends the digression.

We need to consider functoriality of SwA in G to some extent. For any group
homomorphism ϕ : H → G, restriction defines an exact functor

resϕ :Rep(G)→Rep(H), D 7→ resϕ D.

If H is a subgroup of G and [G : H ]<∞, we can also define an exact induction
functor

indG
H :Rep(H)→Rep(G), D 7→ D∧H (G+).

Note that this does not preserve the unit object S0; in fact, indG
H S0
= (H\G)+.

We also consider the case of A-theory. Abbreviate the category RG(W,B(G)(n))
by RG(W, n). There we have for an arbitrary subgroup H 6G an induction functor

indG
H :R

H (resH
G W, n)→RG(W, n), (Y, κ) 7→ (indG

H Y, indG
H κ),

where indG
H Y is defined as the pushout

G×H (resH
G W ) W

G×H Y indG
H Y

(g, w) 7→ g ·w

G×H s indG
H s

and the control map indG
H κ is given by

indG
H κ : �(indG

H Y )= G×H (�Y )→ G×H (R
n
× H)∼= Rn

×G,

(g, e) 7→ (κ(e), g).

Suppose [G : H ] <∞. Choose a set-theoretic section σ to the projection map
G → H\G which satisfies σ(H) = 1. Then σ induces an H -equivariant map
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pσ : G → H , g 7→ gσ(Hg)−1 which defines a morphism of coarse structures
B(G)(n)→ B(H)(n); we retain bounded control because H\G is finite. Then
define an exact functor

resH
G :R

G(W, n)→RH (resH
G W, n), (Y, κ) 7→ (resH

G Y, (Rn
× pσ ) ◦ κ).

Note that this functor also preserves finiteness. The functor resH
G depends on the

choice of σ , but a different choice of σ yields a naturally isomorphic functor.
Hence, we suppress σ in what follows.

The restriction and induction functors are related in the expected way:

8.6. Lemma (Frobenius reciprocity). Let G be a group and let H 6 G be a sub-
group of finite index. Then we have

indG
H (s) · t = indG

H (s · resH
G t),

indG
H (s) · a = indG

H (s · resH
G a)

for all s ∈ SwA(H), t ∈ SwA(G) and a ∈ Ki (RG
f (W, n)). More precisely, there are

natural equivalences

∧◦ (indG
H × id) ∼−→ indG

H ◦∧ ◦(id× resH
G ) :Rep(H)×Rep(G)→Rep(G)

and

∧W ◦(indG
H × id) ∼−→ indG

H ◦∧W ◦(id× resH
G ) :Rep(H)×RG(W,Z)→RG(W,Z).

Proof. Let D ∈ Rep(H) and D′ ∈ Rep(G). Then the first equivalence is imple-
mented by the G-equivariant homeomorphism

(D∧H G+)∧ D′
∼=
−→ (D∧ resH

G D′)∧H G+, ((d, g), d ′) 7→ ((d, d ′g−1), g).

For D ∈Rep(H) and Y ∈RG(W,Z), the G-equivariant homeomorphism

(D∧H G+)∧W Y
∼=
−→ indG

H
(
D∧resH

G W resH
G Y

)
, ((d, g), y) 7→ (g−1, (d, gy))

yields the second equivalence. �

8.7. Theorem. Let G be a finite group. The homomorphism∑
H

indG
H :

⊕
H6G Dress

SwA(H)→ SwA(G)

is a surjection.

Proof. By Frobenius reciprocity, it suffices to show that 1G = [S0
] lies in the

image of the homomorphism. Since we can filter D ∈Rep(G) by its skeleta and
suspension of objects corresponds to taking inverses in K0, the class of D equals
its (equivariant) Euler characteristic. Hence, if [S0

] = [D+] for some finite G-CW-
complex D which has no G-fixed-point, then [S0

] is a sum of elements which are
induced from proper subgroups.
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If G is not a Dress group, then G acts on a finite, contractible CW-complex
D without G-fixed points by a theorem of Oliver [1975]. Then [D+] = [S0

] in
SwA(G). The claim follows by induction. �

8.8. Remark. For the sake of completeness, note that Oliver’s theorem [1975] even
says that a finite group acts without a global fixed-point on a finite, contractible
CW-complex if and only if the group is not Dress.

One can do slightly better than the induction argument in the proof of Theorem 8.7.
As shown in [Winges 2015, Corollary 2.10], Oliver’s theorem implies the existence
of a finite, contractible G-CW-complex, all of whose stabilizers are Dress groups.

8.9. Corollary. Let G be a finite group, and let W be a G-CW-complex. Then the
homomorphism∑

H

indG
H :

⊕
H6G Dress

Ki (RH
f (resH

G W, n))→ Ki (RG
f (W, n))

is surjective for all i ∈ Z.

Proof. Immediate from Lemma 8.6 and Theorem 8.7. �

We are also able to describe the kernel of the surjection in Corollary 8.9 once we
have proven Theorem 7.4 (see Theorem 11.1). As a second application, we obtain
a variant of Swan’s induction theorem [1960, Corollary 4.2]. Recall that the Swan
group Sw(G) is the Grothendieck group of integral, finite-rank G-representations.

8.10. Corollary. Let G be a finite group. Then the unit element 1G = [Z] ∈ Sw(G)
can be written as a sum of permutation modules

1G =

k∑
i=1

ni ·
[
Z[G/Hi ]

]
,

where each Hi is a Dress group and ni ∈ Z.

Proof. We define a linearization homomorphism

SwA(G)→ Sw(G), [D] 7→
∞∑

k=0

(−1)k[C̃k(D)],

where C̃∗ denotes the reduced cellular chain complex. This is a well-defined ring
homomorphism. Then the claim follows from the proof of Theorem 8.7. �

Corollary 8.10 differs from Swan’s theorem [1960, Corollary 4.2] in that we
obtain a description of 1G in terms of permutation modules instead of arbitrary
representations, at the expense of considering a larger family of subgroups.
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9. The transfer functor

We proceed to construct the transfer functors tr from Section 7. This uses the
action of SwA induced by “∧W ” on A-theory from the previous section. The proof
proceeds as in [Bartels and Lück 2012b, Section 6].

Let G be a countable discrete group and X a G-CW-complex. Let π : G→ Q
be a surjective group homomorphism, and let H 6 Q be a subgroup of finite index.
Then we define a biexact functor

Tπ,H :Rep(H)×RG
f (W, J(X))→RG

f (W, J(X)),

(D, (Y, κ)) 7→ resπ (indQ
H D)∧W (Y, κ).

Recall the coarse structure J(X)= J(G, X) from Definition 6.1. Let H := π−1(H),
and equip G/H ×G with the metric

dG,H ((γ1 H , g1), (γ2 H , g2)) :=

{
dG(g1, g2), γ1 H = γ2 H ,
∞, otherwise.

Next, we define another functor

T̂π,H :Rep(H)×RG
f (W, J(G, X))→RG

f (W, J(G/H ×G, X))

which lifts Tπ,H along the projection functor induced by G/H ×G→ G. To do
so, we equip resπ (indQ

H D)∧W Y with a different control map whose definition we
give next.

The unique map �D→ H\H induces a Q-equivariant function �(indQ
H D) =

(�D)×H Q→ H\Q. Restricting the Q-actions along π , we obtain a G-equivariant
function c′D : �(resπ indQ

H D)→ H\G. Regarding source and target as left G-sets
by letting g act via g−1 on the right, we obtain a map of left G-sets. Moreover,
we can identify H\G with its left G-action with G/H . Then we regard c′D as a
G-equivariant function of left G-sets

cD : �(resπ indQ
H D)→ G/H .

For D ∈Rep(H) and (Y, κ) ∈RG
f (W, J(G, X)), define

T̂π,H (Y ) := resπ (indQ
H D)∧W Y

and its control map

T̂π,H (κ) : �T̂π,H (Y )∼= �(resπ indQ
H D)×�Y cD×κ

−−−→ G/H ×G× X ×[1,∞[.

On morphisms, we set T̂π,H (δ, f ) := resπ (indQ
H δ)∧W f .

9.1. Remark. In this section and the next, we need to pay special attention to the
behavior of morphisms over the metric space M appearing in the control space
M × X ×[1,∞[ underlying J(M, X). We call a morphism f R-controlled if there
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exists a morphism control condition C such that f is C-controlled and dM(m,m′)6R
for all ((m, x, t), (m′, x ′, t ′)) ∈ C .

9.2. Lemma. This defines a biexact functor

T̂π,H :Rep(H)×RG
f (W, J(G, X))→RG

f (W, J(G/H ×G, X))

with the following properties:

(1) If f is a morphism in RG
f (W, J(G, X)) which is R-controlled over G and δ is

any morphism in Rep(H), then T̂π,H (δ, f ) is R-controlled over G/H ×G.

(2) Let P :RG
f (W, J(G/H ×G, X))→RG

f (W, J(G, X)) denote the canonical
projection functor. Then P ◦ T̂π,H = Tπ,H .

Proof. Let δ : D→ D′ be an arbitrary morphism in Rep(H). Then the induced
morphism indG

H δ = δ ∧H Q+ has the property that any cell (e, q) ∈ �D×H Q is
mapped to D ∧H (Hq)+ ⊆ D ∧H Q+. It follows that T̂π,H (δ, f ) is 0-controlled
over G/H . Since the control map of T̂π,H (D, Y ) is defined as a product, T̂π,H (δ, f )
is R-controlled if f is R-controlled. In particular, T̂π,H is well-defined.

The equality P ◦ T̂π,H = Tπ,H is obvious. �

9.3. Proposition. Let G be a countable discrete group and let π : G → F be a
surjective group homomorphism onto a finite group F. Suppose that G is equipped
with a proper, left invariant metric. Let D denote the family of Dress subgroups
of F. Define M :=

∐
H∈D G/H ×G; we equip G/H ×G with the metric in which

different summands are infinitely far apart, and where each summand carries the
metric dG,H .

Then there is an exact functor trπ :RG
f (W, J(X))→RG

f (W, J(M, X)) with the
following properties:

(1) If f is a morphism which is R-controlled over G, then trπ ( f ) is R-controlled
over M.

(2) Let P :RG
f (W, J(M, X))→RG

f (W, J(X)) denote the functor induced by the
projection map M→ G. Then P ◦ trπ induces the identity map on K-groups.

Proof. Using Theorem 8.7, we can find a sequence (DH )H∈D with DH ∈Rep(H)
such that ∑

H∈D

[indF
H DH ] = 1F ∈ SwA(F). (9.4)

Define the transfer by

trπ (Y, κ) :=
∨

H∈D

T̂π,H (DH , (Y, κ)),

where we regard T̂π,H (DH , (Y, κ)) as an object over M × X × [1,∞[ via the
natural inclusion G/H × G × X × [1,∞[ ⊆ M × X × [1,∞[ . Similarly, we
set trπ ( f ) :=

∨
H T̂π,H (idDH , f ) for morphisms.
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As a consequence of Lemma 9.2(1), this functor preserves R-controlled mor-
phisms. Moreover, we have

P ◦ trπ = P ◦
( ∨

H∈D

T̂π,H (DH , – )
)
∼=

∨
H∈D

P ◦ T̂π,H (DH , – )=
∨

H∈D

Tπ,H (DH , – ).

Using the action of SwA(G) on Ki (RG
f (W, J(X)) and the identity (9.4), we con-

clude that for a ∈ Ki (RG
f (W, J(X)),

Ki (P ◦ trπ )(a)=
∑
H∈D

[resπ (indF
H DH )] · a =

(∑
H∈D

[resπ (indF
H DH )]

)
· a

= resπ

(∑
H∈D

[indF
H DH ]

)
· a = resπ (1F ) · a

= 1G · a = a,

so P ◦ trπ induces the identity map as claimed. �

9.5. Corollary. Let G be a countable discrete group. For every k∈N, let πk :G�Fk

be an epimorphism onto a finite group. Let Dk be the family of Dress subgroups
of Fk , and define Tk :=

∐
H∈Dk

G/H × G. Recall the definition of the coarse
structure J((Tk)k, X) from Section 7.

Then there is an exact functor

tr :RG
f (W, J(X))→RG

f (W, J((Tk)k, X))

such that each composition Pk ◦ tr of tr with the functor

Pk :RG
f (W, J((Tk)k, X))→RG

f (W, J(X))

from Section 7 induces the identity on K-groups.

Proof. Define tr := (trπk )k∈N and use Proposition 9.3. �

9.6. Corollary. Assume we are in the same situation as in Corollary 9.5. For every
n ∈ N, there is an exact functor

tr :RG
f (W, J(X)(n))→RG

f (W, J((Tk)k, X)(n))

such that each composition Pk ◦ tr of tr with the functor

Pk :RG
f (W, J((Tk)k, X)(n))→RG

f (W, J(X)(n))

from Section 7 induces the identity on K-groups.

Proof. The definitions above generalize to RG
f (W, J(X)(n)). The statements fol-

low from the case n = 0 because the Rn-coordinate remains untouched. �
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Corollary 9.6 even provides us with a sequence of functors which induces a map
on nonconnective algebraic K-theory spectra. This map splits the map induced by
each functor Pk up to homotopy.

10. The “squeezing” theorem

The main result of this section is the following analog of [Bartels et al. 2008b,
Theorem 7.2], which is the final ingredient for the proof of Theorem 7.4. We
freely use the notation from Section 7. Recall also Remark 9.1.

10.1. Theorem (squeezing theorem). Let G be a countable discrete group, and
let F be a family of subgroups of G. Let (Ek)k be a sequence of G-simplicial
complexes whose isotropy lies in F . Suppose that there is some N such that the
dimension of Ek is at most N for all k. Equip Ek with the metric k · d`

1
. Then the

inclusion functor induces a weak equivalence

K−∞
(∏fin

RG
f (W, J(Ek ×G, EFG))

)
∼
−→ K−∞

(
RG

f (W, J((Ek ×G)k, EFG))
)
.

For the purposes of this section, abbreviate

Bfin((Mk)k) :=
∏fin

RG
f (W, J(Mk, EFG)),

B((Mk)k) :=RG
f (W, J((Mk)k, EFG))

for any sequence (Mk)k of metric spaces with free, isometric G-action (in our case
Mk = Ek ×G). Observe that Bfin((Mk)k) can be described as the full subcategory
of objects in B((Mk)k) with support on a finite disjoint union.

Let Y = (Yk)k be an object in B((Mk)k). For K ∈ N, define (Yk)k>K to be the
sequence (Xk)k with Xk =∗ for k6 K and Xk =Yk for k> K . Define hfinB((Mk)k)

to be the category of those morphisms f = ( fk)k : (Y 1
k )k→ (Y 2

k )k for which there
is some K > 0 such that the induced morphism ( fk)k>K : (Y 1

k )k>K → (Y 2
k )k>K is

an h-equivalence in B((Mk)k). Note that this is a stronger condition than requiring
fk to be a controlled homotopy equivalence for all k > K . Using the modified
fibration theorem (Proposition 4.14), there is a homotopy fiber sequence

hS•B((Mk)k)
hfin
→ hS•B((Mk)k)→ hfinS•B((Mk)k).

It is straightforward to check that this homotopy fiber sequence can be delooped, and
that the approximation theorem applies to the inclusion Bfin((Mk)k) ↪→B((Mk)k)

hfin
.

We conclude that there is a homotopy fiber sequence

K−∞
(
Bfin((Mk)k), h

)
→ K−∞

(
B((Mk)k), h

)
→ K−∞

(
B((Mk)k), hfin). (10.2)

Consequently, it suffices to show that K−∞
(
B((Ek × G)k), hfin

)
is weakly con-

tractible in order to prove Theorem 10.1. As in [Bartels et al. 2008b], the proof is
by induction on N .
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10.3. Remark. Before we start with the actual proof, let us provide some intuition
why Theorem 10.1 holds true. We consider in Lemma 10.4 the case that each
Ek is a disjoint union of equivariant simplices in which different simplices are
infinitely far apart. In this case, the desired vanishing result is easily obtained since
we can define an Eilenberg swindle by contracting each simplex to a point. This
provides almost the start of the induction. However, in the situation considered
in Theorem 10.1 different simplices in Ek are only distance 2k apart from each
other. The basic observation is that this is ultimately the same as considering
different simplices to have distance∞: since the notion of hfin-equivalence allows
us to ignore finitely many Ek and each morphism has a uniform control bound,
morphisms cannot propagate between different simplices for sufficiently large k.
Similarly, objects are forced to decompose over the various simplices provided k is
large enough. This observation is formalized in an application of the approximation
theorem; see Corollary 10.5.

To perform the induction step, we need to show that (B((Ek)k), hfin) is suffi-
ciently excisive after taking K-theory; see Lemma 10.7. The proof of Lemma 10.7
involves technicalities similar to the ones encountered in showing Corollary 10.5.
Morally, excision is accomplished since bounded neighborhoods of the N -skeleton
in the (N + 1)-skeleton become arbitrarily small as k grows, due to the fact that
we blow up the `1-metric as k becomes larger, and since we are allowed to ignore
finitely many components. Consequently, cells which are labeled by points suffi-
ciently “deep” in a simplex can only be attached to cells which are based on the
same simplex; i.e., ignoring finitely many of the Ek and modulo neighborhoods of
the N -skeleton, each object decomposes disjointly over the (N + 1)-simplices.

We turn now to the actual proof of Theorem 10.1.

10.4. Lemma. Suppose that (1k)k is a sequence of G-simplicial complexes of the
form

1k =
∐
i∈Ik

G/Hi ×1
N

such that Hi ∈ F for all i . Equip 1k with the metric which assigns distance∞
to points in different path components, and equals k · d`

1
for points on the same

simplex. Then

K−∞(Bfin((1k×G)k), h), K−∞(B((1k×G)k), h), K−∞(B((1k×G)k), hfin)

are all weakly contractible.

Proof. It is shown in [Bartels et al. 2008b, proof of Proposition 7.4] that there
is a sequence of maps on the underlying control spaces such that Theorem 5.11
applies. �

10.5. Corollary. Theorem 10.1 holds for N = 0.
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Proof. Since each Ek is 0-dimensional, it is a disjoint union of transitive G-sets,
Ek =

∐
i∈Ik

G/Hi with Hi ∈ F . Define 1k to be the simplicial complex Ek ,
equipped with the metric from Lemma 10.4. There is an exact functor

F : B((1k ×G)k)→ B((Ek ×G)k).

We claim that this functor induces a weak equivalence

K−∞(F) : K−∞
(
B((1k ×G)k), hfin) ∼

−→ K−∞
(
B((Ek ×G)k), hfin).

Obviously, F maps hfin-equivalences to hfin-equivalences. We claim that F satisfies
the approximation property.

Let f : (Y 1
k )k → (Y 2

k )k be a morphism in B((1k)k) such that F( f ) is an hfin-
equivalence. Since we require uniform metric control, there is some K > 0 such
that ( fk)k>K is an h-equivalence which is 0-controlled over (Ek)k . We can assume
that ( fk)k>K has an inverse which is 0-controlled over (Ek)k , and that we can find
homotopies between the compositions which are 0-controlled over (Ek)k as well.
Hence, f is also an hfin-equivalence in B((1k ×G)k).

For the second part of the approximation property, let Y 1
= (Y 1

k )k ∈B((1k×G)k),
Y 2
= (Y 2

k )k ∈ B((Ek×G)k), and let f = ( fk)k : F((Y 1
k )k)→ (Y 2

k )k be a morphism
in B((Ek ×G)k). Then there is some K > 0 such that (Y 2

k )k>K and ( fk)k>K are
0-controlled over (Ek)k . Define Y = (Yk)k via Yk := Y 1

k for k 6 K and Yk := Y 2
k

for k > K . Then f factors canonically as Y 1
→ Y → Y 2, where the first morphism

is 0-controlled over (Ek)k and the latter morphism is an hfin-equivalence. Since Y
is also 0-controlled over (Ek)k , this proves the approximation property.

Hence, K−∞(F) is a weak equivalence by the approximation theorem. The
claim follows from Lemma 10.4. �

Suppose now that Theorem 10.1 holds for N , and let (Ek)k be a sequence of G-
simplicial complexes of dimension at most N + 1. Consider for each k the pushout
diagram ∐

i∈I N
k

G/Hi × ∂1
N+1 skN Ek

∐
i∈I N

k
G/Hi ×1

N+1 Ek

(10.6)

describing the attachment of the (N + 1)-simplices of Ek .

10.7. Lemma. Let N > 0. The commutative square of nonconnective K-theory
spectra

K−∞
(
B
((∐

i∈I N
k

G/Hi × ∂1
N+1
×G

)
k

)
, hfin

)
K−∞

(
B((skN Ek ×G)k), hfin

)
K−∞

(
B
((∐

i∈I N
k

G/Hi ×1
N+1
×G

)
k

)
, hfin

)
K−∞

(
B((Ek ×G)k), hfin

)
induced by diagram (10.6) is a homotopy pullback square of spectra.
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Lemma 10.7 provides the induction step: The top left and top right corners of
the square from Lemma 10.7 are weakly contractible by the induction hypothesis.
The bottom left corner is weakly contractible by Lemma 10.4. Hence, the bottom
right corner is also weakly contractible, and Theorem 10.1 follows.

In the rest of this section, we prove Lemma 10.7.

10.8. Lemma. Let (Mk)k be a sequence of metric spaces with free, isometric G-
action, and let Xk ⊆ Mk be G-invariant, closed subspaces.

Define X :=
∐

k Xk ×G× EFG×[1,∞[ . Let h XB((Mk)k) be the subcategory
of controlled homotopy equivalences away from X. Let h X,finB((Mk)k) denote
the subcategory of those morphisms f : (Y 1

k )k → (Y 2
k )k for which there is some

K ∈ N such that the induced morphism ( fk)k>K : (Y 1
k )k>K → (Y 2

k )k>K is an h X -
equivalence.

Then there is a homotopy fiber sequence

K−∞
(
B((Xk)k), hfin)

→ K−∞
(
B((Mk)k), hfin)

→ K−∞
(
B((Mk)k), h X,fin).

Proof. Consider the commutative diagram

K−∞
(
Bfin((Xk)k), h

)
K−∞

(
B((Xk)k), h

)
K−∞

(
B((Xk)k), hfin

)
K−∞

(
Bfin((Mk)k), h

)
K−∞

(
B((Mk)k), h

)
K−∞

(
B((Mk)k), hfin

)
K−∞

(
Bfin((Mk)k), h X

)
K−∞

(
B((Mk)k), h X

)
K−∞

(
B((Mk)k), h X,fin

)
in which all maps are induced by the appropriate inclusion functors. The left and
middle columns are homotopy fiber sequences by Theorem 5.9. The top and middle
rows are instances of the homotopy fiber sequence (10.2). By a straightforward
modification of the argument for (10.2), the bottom row is also a homotopy fiber
sequence. Hence, the right column is a homotopy fiber sequence as claimed. �

Proof of Lemma 10.7. Let 1k :=
∐

i∈I N
k

G/Hi ×1
N+1, equipped with the metric

from Lemma 10.4, and ∂1k :=
∐

i∈I N
k

G/Hi × ∂1
N+1. The inclusion of metric

spaces ∂1k×G⊆1k×G gives rise to a class of weak equivalences h∂,finB((1k×G)k)
and to a corresponding homotopy fiber sequence as in Lemma 10.8. Similarly,
skN Ek×G ⊆ Ek×G gives rise to a class of weak equivalences hN ,finB((Ek×G)k)
and a corresponding homotopy fiber sequence.

Diagram (10.6) induces a map between these homotopy fiber sequences. To
prove the lemma, it suffices to show that the induced map on the homotopy cofibers

K−∞
(
B((1k ×G)k), h∂,fin)

→ K−∞
(
B((Ek ×G)k), hN ,fin)
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is a weak equivalence. Note that this map is induced by an exact functor F , namely
the one induced by the characteristic maps of the (N + 1)-simplices. The claim is
that the approximation theorem applies again, but as for Corollary 10.5, we have
to prove both parts of the approximation property.

We start with a preliminary observation. Let (Y 1, κ1) and (Y 2, κ2) be objects in
B((Ek×G)k), and let f : Y 1

→ Y 2 be a morphism. Suppose that f is R-controlled,
and let e be a cell in Y 1

k such that the Ek-component x of κ1(e) is a point in an
(N + 1)-simplex σ . Let e′ be a cell in Y 2

k with e′ ⊆ 〈 f (e)〉, and suppose that the
Ek-component y of κ2(e′) does not lie in σ . Then kd`

1
(x, y)6 R. According to

[Bartels et al. 2008b, Lemma 7.15], there is a point z on the boundary of σ such
that kd`

1
(x, z) 6 2R. Hence, if the distance of x to the boundary of σ is greater

than 2R, then for every cell e′ in Y 2
k with e′ ⊆ 〈 f (e)〉, the Ek-component of κ2(e′)

also lies in σ .
Let us now turn to the first part of the approximation property. Let f : Y 1

→ Y 2

be a morphism in B((1k ×G)k) such that F( f ) is an hN ,fin-equivalence. Choose
R> 0 such that Y 1, Y 2 and f are all R-controlled, and further, such that F( f ) has a
(partially defined) homotopy inverse and homotopies which are also R-controlled.
Let Y 1

k (6R) be the subobject of Y 1
k spanned by those cells e ∈ �Y 1

k such that the
1k-component of κ1(e) has distance at least 6R to ∂1k . If e is any cell in Y 1

k , the
Ek-component of κ1(e) has distance at least 5R to the boundary of the (N + 1)-
simplex in which it lies; to see this, combine the preliminary observation with the
fact that Y 1 is R-controlled. Since Y 1(6R) := (Y 1

k (6R))k ⊆ Y 1 is cofinal away from∐
k ∂1k ×G× EFG×[1,∞[ , the inclusion is an h∂ -equivalence. In particular, it

is an h∂,fin-equivalence. We can similarly define a subcomplex Y 2(4R)⊆ Y 2, and
this inclusion is also an h∂,fin-equivalence.

Since f is R-controlled, there is an induced morphism f ′ : Y 1(6R)→ Y 2(4R).
The morphism F( f ′) is still an hN ,fin-equivalence; the inverse and homotopies
arise by restricting the inverse and homotopies of F( f ) to appropriate cofinal sub-
complexes. Hence, they are still R-controlled. It follows that they do not cross the
boundaries of simplices, so they lift to B((1k × G)k). This shows that f ′ is an
h∂,fin-equivalence.

For the second part of the approximation property, let Y 1
∈ B((1k × G)k),

Y 2
∈ B((Ek × G)k), and let f : F(Y 1)→ Y 2 be a morphism in B((Ek × G)k).

The argument is similar to the first part. Again, choose R > 0 such that Y1, Y2 and
f are all R-controlled. Then Y 1(6R), defined as before, is a subcomplex of Y 1

which is cofinal away from
∐

k ∂1k ×G× EFG×[1,∞[; similarly, Y 2(4R) is a
subcomplex of Y 2 which is cofinal away from

∐
k skN Ek ×G × EFG × [1,∞[ .

Moreover, Y 2(4R) is supported on the interiors of the (N + 1)-simplices, and if
e is a cell in Y 2(4R), the subcomplex 〈e〉 spanned by e is based on the same
simplex as e by the preliminary observation. Since the characteristic maps of the
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(N + 1)-simplices are homeomorphisms on the interiors (and restrict to isometries
on individual simplices), we can lift Y 2(4R) to an object in B((1k ×G)k). Now
define Y to be the pushout of Y 1 � Y 1(6R)

f |Y 1(6R)−−−−→ Y 2(4R) in B((1k × G)k).
Since the inclusion Y 1(6R)� Y 1 is an h∂,fin-equivalence, the canonical inclusion
Y 2(4R)� Y is also an h∂,fin-equivalence. Since F is exact, F(Y ) is the pushout
of F(Y 1)� F(Y 1(6R))→ F(Y 2(4R)). Let g : F(Y )→ Y 2 be the map induced
by the universal property of the pushout. Since

Y 2(4R) Y 2

F(Y )

∼

∼ g

commutes, g is an hN ,fin-equivalence by the saturation axiom. We conclude that

F(Y 1) Y 2

F(Y )

f

g

is the required factorization. Therefore, the approximation property holds, and we
are done. �

11. Applications

To conclude, we turn to some applications of Theorem 7.4. As an immediate
corollary, we obtain Theorem 1.3, which gives a description of the A-theory of
spaces with finite fundamental group.

11.1. Theorem. Let V be a connected CW-complex with finite fundamental group G.
Let Ṽ be the universal cover of V . Denote by D the family of Dress subgroups of G.
Then the Davis–Lück assembly map

HG(EDG;A−∞
Ṽ
)→ A−∞(V )

is a weak equivalence.

Proof. The group G is Dress–Farrell–Hsiang with respect to D: for every ε > 0,
choose π = idG and let fD be the projection onto a point for all D ∈D. Now apply
Theorem 7.4 with W = Ṽ . �

Our ultimate goal is the proof of Theorem 1.2. Formally, everything we do is
very close to the treatment in [Bartels et al. 2014a]. This involves a rather intri-
cate induction process which relies on a number of inheritance properties of the
isomorphism conjecture. These will be established along the way. The reader is
encouraged to refer to [loc. cit.] for definitions.
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11.2. Proposition (transitivity principle). Let F0 ⊆ F1 be two families of sub-
groups of G. Suppose that G satisfies the fibered isomorphism conjecture in A-
theory with respect to F1, and that every H ∈ F1 satisfies the fibered isomorphism
conjecture in A-theory with respect to F0|H := {H ∩ K | K ∈ F0}.

Then G satisfies the fibered isomorphism conjecture in A-theory with respect
to F0.

Proof. The proof is analogous to the linear case. However, the published proofs
(e.g., [Bartels and Lück 2006, Theorem 2.4; Bartels et al. 2008a, Theorem 3.3]) all
rely on the formalism of equivariant homology theories. Since we want to avoid
discussing to what extent the homology theories associated to A-theory spectra
form equivariant homology theories, we give a proof using the language of Or(G)-
spectra.

Let E be an arbitrary Or(G)-spectrum, and let E be a G-CW-complex. Ob-
serve that G/H× E is naturally G-homeomorphic to indG

H resH
G E = G×H resH

G E .
Induction defines a functor indG

H : Or(H) → Or(G), so we obtain an Or(H)-
spectrum E ◦ indG

H . The same arguments as in the proof of Proposition 157 of
[Lück and Reich 2005] show that there is a natural isomorphism

HH (resH
G E; E ◦ indG

H )
∼= HG(indG

H resH
G E; E).

Now let A−∞W be the Or(G)-spectrum from Section 6 associated to a free G-CW-
complex W . Since W ×G (indG

H H/L)∼= resH
G W ×H H/L , we have

HG(G/H × E;A−∞W )∼= HH (resH
G E;A−∞

resH
G W

)
.

In particular, the map HG(G/H × EF0 G;A−∞W )→ HG(G/H ;A−∞W ) induced by
the projection map is weakly equivalent to the map

HH (resH
G EF0 G;A−∞

resH
G W

)
→ HH (H/H ;A−∞

resH
G W

)
= A−∞(resH

G W/H).

Since resH
G W is a free H -CW-complex and resH

G EF0 G = EF0|H H , this map is an
equivalence for all H ∈ F1 by assumption. It follows that the maps

HG
(∐

i

EF0 G×G/Hi × Dn
;A−∞W

)
→ HG

(∐
i

G/Hi × Dn
;A−∞W

)
are weak equivalences whenever Hi lies in F1 for all i because G/Hi × Dn is
G-homotopy equivalent to G/Hi and the homology theory under consideration
commutes with coproducts. By an induction along the skeleta, it follows that the
projection map EF0 G× X→ X induces an equivalence in HG( – ,A−∞W ) for every
finite-dimensional G-CW-complex X whose isotropy groups lie in F1. Since ho-
mology commutes with filtered colimits, the same holds for all G-CW-complexes
X whose isotropy groups lie in F1.
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In particular, we can pick X = EF1 G. Then EF0 G × EF1 G is G-homotopy
equivalent to EF0 G, so we conclude that the G-map EF0 G → EF1 G (which is
unique up to G-homotopy) induces a weak equivalence. This implies the claim. �

11.3. Proposition. Let ϕ : K → G be a group homomorphism. Suppose that G
satisfies the fibered isomorphism conjecture in A-theory with respect to the family
F of subgroups of G.

Then K satisfies the fibered isomorphism conjecture in A-theory with respect to
the family of subgroups

ϕ∗F := {ϕ−1(H) | H ∈ F}.

Proof. Let Ẽ be a functor from the category of K-sets to the category of spectra;
let E denote its restriction to Or(K ). It has been shown in the proof of [Bartels
and Reich 2007, Proposition 4.2] that there is for every G-CW-complex X a weak
equivalence

HK(resϕ X; E)∼=mapG( – , X)+ ∧Or(G) mapK (?, resϕ – )+ ∧Or(K ) Ẽ(?) (11.4)

which is natural in X . Let G/H ∈ Or(G), and let K\G/H denote the orbit space
of resϕ G/H . Subject to a choice of (set-theoretic) section σ : K\G/H → G of
the obvious projection map, there is an isomorphism

resϕ G/H ∼=
∐

KgH∈K\G/H

Tσ (KgH),

where Tσ (KgH) := K/(K ∩ σ(KgH)Hσ(KgH)−1).

This isomorphism gives rise to a commutative diagram(∨
KgH∈K\G/H mapK (?, Tσ (KgH))+

)
∧Or(K ) E(?) mapK(?, resϕ G/H)+∧Or(K ) E(?)

∨
KgH∈K\G/H E(Tσ (KgH)) Ẽ(resϕ G/H)

∼=

in which the vertical maps are induced by evaluating Ẽ. The right vertical map
is natural in G/H . The left vertical map is easily seen to be a weak equivalence.
Whenever Ẽ commutes with coproducts, the lower horizontal map is a weak equiva-
lence. In this case, the right vertical map is also a weak equivalence, and we obtain
a weak equivalence of Or(G)-spectra

mapK (?, resϕ – )+ ∧Or(K ) E(?)' Ẽ ◦ resϕ . (11.5)

The weak equivalences (11.4) and (11.5) combine to a weak equivalence, natural
in X ,

HK(resϕ X; E)' HG(X; Ẽ ◦ resϕ).
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Let W be a free K-CW-complex. Since A−∞W extends to a functor on all K-sets and
commutes with coproducts (see Lemma 11.6 below), we obtain a natural equiva-
lence

HK(resϕ EFG;A−∞W )' HG(EFG;A−∞W ◦ resϕ).

Since indϕ W =W ×K resϕ G is a free G-CW-complex and

W ×K resϕ G/H ∼= indϕ W ×G G/H,

we have a natural weak equivalence of Or(G)-spectra A−∞W ◦ resϕ ' A−∞indϕ W . Hence,
there is a natural weak equivalence

HK(resϕ EFG;A−∞W )' HG(EFG;A−∞indϕ W ).

Observe that resϕ EFG = Eϕ∗F K . We conclude that the assembly map

HK(Eϕ∗F K ;A−∞W )→ HK(K/K ;A−∞W )

is weakly equivalent to the assembly map

HG(EFG;A−∞indϕ W )→ HG(G/G;A−∞indϕ W ).

The latter map is assumed to be a weak equivalence, so we are done. �

11.6. Lemma. Let W be a CW-complex, and let W =
∐

i∈I Wi be a decomposition
of W into subspaces. Then the natural map∨

i∈I

A−∞(Wi )→ A−∞(W )

is a weak equivalence.

Proof. Let Y be a CW-complex relative W together with a retraction r : Y → W.
Then the partition W =

∐
i Wi induces a partition of Y into subcomplexes Y =

∐
i Yi ,

where Yi := r−1(Wi ). Similarly, every morphism of retractive spaces f : Y 1
→ Y 2

over W decomposes into a coproduct f =
∐

i fi since f is compatible with the
retractions. Restricting to finite objects, this shows that there is an isomorphism

colimJ⊆I finite
∏
i∈J

R f (Wi ,T(∗)(n))
∼=
−→R f (W,T(∗)(n)).

Here we have used the fact that the image of the retraction of a finite object inter-
sects only finitely many path components of W . It follows that the map of spectra∨

i∈I A−∞(Wi )→ A−∞(W ) is a levelwise equivalence. �

11.7. Corollary. Let G be a discrete group and H 6 G a subgroup. If G satisfies
the fibered isomorphism conjecture in A-theory with respect to the family F , then
H satisfies the fibered isomorphism conjecture in A-theory with respect to F |H .

Proof. Apply Proposition 11.3 to the inclusion H ↪→ G. �
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11.8. Corollary. Let π : G→ Q be a surjective group homomorphism. Suppose
that Q satisfies the fibered Farrell–Jones conjecture in A-theory, and that for every
virtually cyclic subgroup V 6 Q, the preimage π−1(V ) satisfies the fibered Farrell–
Jones conjecture in A-theory. Then G satisfies the fibered Farrell–Jones conjecture
in A-theory.

Proof. Note that π∗VCyc={π−1(V ) | V 6 Q virtually cyclic}. Thus, the claim is a
combination of Proposition 11.3 and the transitivity principle, Proposition 11.2. �

11.9. Corollary. Let π : G→ Q be a surjective group homomorphism with finite
kernel. If Q satisfies the fibered Farrell–Jones conjecture in A-theory, then so
does G.

Proof. If V 6 Q is virtually cyclic, then π−1(V ) is also virtually cyclic, and thus
G satisfies the conjecture by Corollary 11.8. �

The next two statements and their proofs are analogous to [Bartels et al. 2014a,
Sections 3.2 and 3.3]. We only sketch their proofs and refer to [loc. cit.] for details.

11.10. Lemma (cf. [Bartels et al. 2014a, Lemma 3.15]). Let 0 be a crystallo-
graphic group of virtual cohomological dimension 2 which possesses a normal,
infinite cyclic subgroup. Then 0 satisfies the fibered Farrell–Jones conjecture in
A-theory.

Proof. Do an induction on the order of the smallest finite group F such that there
is a short exact sequence 1→ Z2

→ 0→ F→ 1. Using Theorem 7.4, the claim
follows from [Winges 2015, Lemma 5.2 and Proposition 5.3] in conjunction with
the induction hypothesis and the transitivity principle, Proposition 11.2. �

11.11. Proposition (cf. [Bartels et al. 2014a, Section 3.3]). Let 0 be a virtually
finitely generated abelian group. Then 0 satisfies the fibered Farrell–Jones conjec-
ture in A-theory.

Proof. We do an induction on the virtual cohomological dimension of 0. If
vcd(0)6 1, the group 0 is virtually cyclic and there is nothing to show. So assume
vcd(0)> 2. Then do a subinduction on the cardinality of the smallest finite group F
such that 0 admits an epimorphism onto F whose kernel is isomorphic to Zvcd(0).

Since 0 admits a surjection with finite kernel onto a crystallographic group
[Quinn 2012, Lemma 4.2.1], we may assume by Corollary 11.9 that 0 is crystal-
lographic of the same virtual cohomological dimension. Now fix an epimorphism
p : 0� F onto a finite group F such that the kernel of p is isomorphic to Zvcd(0)

and such that the cardinality of F is minimal among all finite groups which admit
such an epimorphism. By induction and the transitivity principle, Proposition 11.2,
it suffices to show that 0 satisfies the fibered isomorphism conjecture with respect
to the family of all virtually finitely generated abelian subgroups A of 0 which
satisfy either of the following:
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• vcd(A) < vcd(0) or

• vcd(A) = vcd(0) and A admits an epimorphism p′ : A→ F ′ onto a finite
group F ′ such that |F ′|< |F | and the kernel of p′ is isomorphic to Zvcd(0).

Suppose that 0 possesses a normal, infinite cyclic subgroup C E0. We want to
apply Corollary 11.8. Since vcd(0/C) < vcd(0), the quotient 0/C satisfies the
fibered Farrell–Jones conjecture. Let π : 0→ 0/C be the projection. For every
virtually cyclic subgroup V 6 G/C , the preimage π−1(V ) has virtual cohomo-
logical dimension 2. Again, π−1(V ) admits a surjection with finite kernel onto
a crystallographic group K [Quinn 2012, Lemma 4.2.1], so we may assume that
π−1(V ) is crystallographic by Corollary 11.9. Since vcd(π−1(V ))= 2 and there
exists a normal, infinite cyclic subgroup, it follows from Lemma 11.10 that π−1(V )
satisfies the fibered Farrell–Jones conjecture. So Corollary 11.8 applies.

Suppose that there is no normal, infinite cyclic subgroup in 0. Then 0 is a Dress–
Farrell–Hsiang group with respect to a family containing only groups to which the
induction hypothesis applies [Winges 2015, Proposition 5.4]. Theorem 7.4 and
Proposition 11.2 imply that 0 satisfies the fibered Farrell–Jones conjecture. �

Proposition 11.11 is the stepping stone to proving an even slightly stronger ver-
sion of Theorem 1.2; see Theorem 11.19 below. Recall that the (unrestricted)
wreath product G1 o G2 of a group G1 with another group G2 is the semidirect
product

(∏
G2

G1
)
oG2, where G2 acts on the left factor by left translations.

11.12. Definition. Let F be a family of groups and let G be a discrete group. We
say that G satisfies the fibered isomorphism conjecture with wreath products in
A-theory with respect to F if for every finite group F , the wreath product G o F
satisfies the fibered isomorphism conjecture in A-theory with respect to F .

If F is the family of virtually cyclic groups, we say that G satisfies the fibered
Farrell–Jones conjecture with wreath products in A-theory.

11.13. Corollary. Every virtually finitely generated abelian group satisfies the
fibered Farrell–Jones conjecture with wreath products in A-theory.

Proof. This is an immediate consequence of Proposition 11.11 since the wreath
product of a virtually finitely generated abelian group with a finite group is again
virtually finitely generated abelian. �

Let us record some additional inheritance properties of the fibered isomorphism
conjecture with wreath products. The following results have been worked out in
[Kühl 2008]; we collect them here for reference and the convenience of the reader.

11.14. Lemma. Let G, G1, G2 be discrete groups, and let F be a family of groups.

(1) Let H 6 G be a subgroup. If G satisfies the fibered isomorphism conjecture
with wreath products with respect to F , then so does H.
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(2) Let H 6G be a subgroup of finite index. If H satisfies the fibered isomorphism
conjecture with wreath products with respect to F , so does G.

(3) If G1 and G2 satisfy the fibered Farrell–Jones conjecture with wreath products,
so does G1×G2.

(4) Suppose G satisfies the fibered isomorphism conjecture with wreath products
with respect to F , and that every subgroup H 6 G which lies in F satisfies the
fibered Farrell–Jones conjecture with wreath products. If F is closed under
taking quotients, then G satisfies the fibered Farrell–Jones conjecture with
wreath products.

(5) Let π : G � Q be a surjective homomorphism. Suppose that Q satisfies
the fibered Farrell–Jones conjecture with wreath products, and that for every
virtually cyclic subgroup V 6 Q the preimage π−1(V ) satisfies the fibered
Farrell–Jones conjecture with wreath products. Then G satisfies the fibered
Farrell–Jones conjecture with wreath products.

(6) Let π : G� Q be a surjective homomorphism with finite kernel. If Q satisfies
the fibered Farrell–Jones conjecture with wreath products, so does G.

Proof. Claim (1) is a consequence of Corollary 11.7 since H o F is a subgroup of
G o F for every group F .

For (2), assume first that H is normal in G. Set F := G/H . Choose a set-
theoretic section s : F → G of the projection map π : G � F . For g ∈ G and
f ∈ F define

h(g, f ) := s( f )−1gs(π(g)−1 f ).

Then g 7→ ((h(g, f )) f , π(g)) defines a monomorphism G ↪→ H o F . Thus, for
every finite group F ′, the wreath product G o F ′ is a subgroup of (H o F) o F ′. Since
(H o F) o F ′ itself embeds into H o (F o F ′) [Kühl 2008, Lemma 1.21], the claim
follows from (1). If H is not normal, (1) allows us to replace H by

⋂
g∈G gHg−1.

For (3), observe that (G1×G2) o F is a subgroup of (G1 o F)× (G2 o F) =: 0.
By (1), it suffices to check that the latter group satisfies the fibered Farrell–Jones
conjecture. Consider the projection map p1 : 0 → G1 o F . We want to apply
Corollary 11.8, so we need to check that V × (G2 o F) satisfies the fibered Farrell–
Jones conjecture for every virtually cyclic subgroup V of G1 o F . This can be
done by another application of Corollary 11.8. The target of the projection map
p2 : V ×(G2 oF)→G2 oF satisfies the fibered Farrell–Jones conjecture, so the only
thing left to verify is that every product V×V ′ of virtually cyclic groups satisfies the
fibered Farrell–Jones conjecture. Since the product of two virtually cyclic groups
is virtually finitely generated abelian, this is true by Proposition 11.11.

Let us turn to (4). Consider a wreath product G o F , where F is finite. Our
goal is to apply the transitivity principle, so we need to check that every subgroup
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H 6 G o F which lies in F satisfies the fibered Farrell–Jones conjecture. Let H be
such a subgroup. Since H ′ := H ∩

(∏
F G

)
is normal in H and has finite index, it

suffices to show that H ′ satisfies the fibered Farrell–Jones conjecture with wreath
products by (2). Observe that H ′ ∈ F . Let H f denote the image of H ′ under the
projection map

(∏
F G

)
→ G onto the factor indexed by f ∈ F . Then H ′ embeds

into
∏

f ∈F H f . Since F is closed under quotients, H f satisfies the fibered Farrell–
Jones conjecture with wreath products, and so does the product

∏
f ∈F H f by (3).

Now (1) implies that H ′ satisfies the fibered Farrell–Jones conjecture with wreath
products, and we are done.

For (5), observe that π induces a surjective homomorphism πF : G o F � Q o F
for every finite group F . The quotient Q o F satisfies the fibered Farrell–Jones
conjecture by assumption. We want to apply Corollary 11.8. So let V 6 Q o F
be virtually cyclic. In order to show that π−1

F (V ) satisfies the fibered Farrell–
Jones conjecture, it suffices to show that Ṽ := π−1

F (V ) ∩
(∏

F G
)

satisfies the
fibered Farrell–Jones conjecture with wreath products. Denote by V f the image
of V ∩

(∏
F Q

)
under the projection

∏
F Q→ Q onto the factor indexed by f ∈ F .

Then Ṽ embeds into
∏

f ∈F π
−1(V f ). Since V f is a virtually cyclic subgroup of Q,

the preimage π−1(V f ) satisfies the fibered Farrell–Jones conjecture with wreath
products by assumption, and hence so does

∏
f ∈F π

−1(V f ) by (3). Then Ṽ satisfies
the fibered Farrell–Jones conjecture with wreath products by (1).

The last part of the lemma follows from (5) because the preimage of each vir-
tually cyclic subgroup of Q is again virtually cyclic (and these satisfy the fibered
Farrell–Jones conjecture with wreath products by Corollary 11.13). �

In analogy to [Wegner 2015, Proposition 2.19], we are going to show next that
the Dress–Farrell–Hsiang condition (Definition 7.3) is well-behaved with respect
to wreath products with finite groups. Let G be a group, F a family of subgroups
and 8 a finite group. Denote by F o8 the family of subgroups of G o8 consisting of
those groups which contain a finite-index subgroup of the form

∏
ψ∈8 Hψ , where

each Hψ lies in F .
Recall the following construction of the product of simplicial complexes. Let

E1, . . . , Ek be (abstract) ordered simplicial complexes. Then define E1⊗ · · ·⊗ Ek

to be the simplicial complex whose r -simplices are ascending chains (e0
1, . . . , e0

k) <

· · ·< (er
1, . . . , er

k) with respect to the lexicographic ordering such that {e0
i , . . . , er

i }

is a simplex in Ei for all i . The map |E1⊗ · · ·⊗ Ek | → |E1| × · · · × |Ek | induced
by the obvious projections E1⊗· · ·⊗ Ek→ Ei is a homeomorphism (with respect
to the topologies induced by the `1-metric).

11.15. Proposition. Let G be a discrete group and let F be a family of subgroups.
Let S be a finite, symmetric generating set such that (G, S) is a Dress–Farrell–
Hsiang group with respect to F .
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Then there is for every finite group 8 a generating set S o8 of G o8 such that
(G o8, S o8) is a Dress–Farrell–Hsiang group with respect to F o8.

Proof. We start with a preliminary observation. Let 8 be a finite group, and let
π : G� F be an epimorphism onto some finite group F . Then π induces a surjec-
tive homomorphism π o8 : G o8� F o8 given by ((gψ)ψ , ϕ) 7→ ((π(gψ))ψ , ϕ).

Let H 6 F o8 be a Dress group. Let 8H be the image of H under the canonical
projection F o8�8, and let Hξ denote the image of H ∩

(∏
8 F

)
under the map

pξ :
(∏

8 F
)
→ F given by projection onto the ξ -th component. Since the class

of Dress groups is closed under quotients, each Hξ is a Dress group. For each
ϕ ∈8H , pick a preimage κϕ = ((κϕψ)ψ , ϕ) ∈ H . Choose a section s :8H\8→8

of the obvious projection map such that s(8H )= 1. Now define

κ :=
((
κ

s(8Hψ)ψ
−1

s(8Hψ)

)
ψ
, 1
)
∈ F o8,

and let Ĥ denote the group( ∏
8Hψ∈8H\8

( ∏
ψ ′∈8Hψ

Hs(8Hψ)

))
o8H ,

where 8H acts on the left-hand side by permuting the index set of every factor∏
8Hψ

Hs(8Hψ). Observe that Ĥ is naturally a subgroup of F o8. We claim that κ
subconjugates H into Ĥ .

To see this, compute first, for an arbitrary element ((αψ)ψ , ϕ) ∈ H ,

κ((αψ)ψ , ϕ)κ
−1
=
((
κ

s(8Hψ)ψ
−1

s(8Hψ)

)
ψ
, 1
)
((αψ)ψ , ϕ)

(([
κ

s(8Hψ)ψ
−1

s(8Hψ)

]−1)
ψ
, 1
)

=
((
κ

s(8Hψ)ψ
−1

s(8Hψ)
αψ
[
κ

s(8Hϕ
−1ψ)ψ−1ϕ

s(8Hϕ−1ψ)

]−1)
ψ
, ϕ
)

=
((
κ

s(8Hψ)ψ
−1

s(8Hψ)
αψ
[
κ

s(8Hψ)ψ
−1ϕ

s(8Hψ)

]−1)
ψ
, ϕ
)
.

In order to show that this element lies in Ĥ , we need to check that for every ξ ∈8,
κ

s(8H ξ)ξ
−1

s(8H ξ)
αξ
[
κ

s(8H ξ)ξ
−1ϕ

s(8H ξ)

]−1 lies in Hs(8H ξ). Indeed,

κs(8H ξ)ξ
−1
((αψ)ψ , ϕ)(κ

s(8H ξ)ξ
−1ϕ)−1

=
(
(κ

s(8H ξ)ξ
−1

ψ 1)ψ , s(8Hξ)ξ
−1)((αψ)ψ , ϕ)(([κs(8H ξ)ξ

−1ϕ

s(8H ξ)ξ−1ϕψ

]−1)
ψ
, ϕ−1ξs(8Hξ)

−1)
=
((
κ

s(8H ξ)ξ
−1

ψ αξs(8H ξ)−1ψ

[
κ

s(8H ξ)ξ
−1ϕ

ψ

]−1)
ψ
, 1
)
.

Since this is an element in H ∩
(∏

8 F
)
, we obtain

κ
s(8H ξ)ξ

−1

s(8H ξ)
αξ
[
κ

s(8H ξ)ξ
−1ϕ

s(8H ξ)

]−1

= ps(8H ξ)

(
κs(8H ξ)ξ

−1
((αψ)ψ , ϕ)[κ

s(8H ξ)ξ
−1ϕ
]
−1)
∈ Hs(8H ξ).

Hence, κHκ−1
⊆ Ĥ .
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Since (G, S) is Dress–Farrell–Hsiang, there is some N as in Definition 7.3. Let
ε′ > 0. Let π = πε′ : G � F be some epimorphism satisfying the conditions in
Definition 7.3. Define π o8 as above. According to our preliminary observation, it
suffices to consider subgroups of F o8 which have the form

H =
( ∏
8Hψ∈8H\8

( ∏
ψ ′∈8Hψ

H8Hψ

))
o8H ,

where 8H is some subgroup of 8 and each H8Hψ is a Dress subgroup of F . Define
a generating set S o8 of G o8 by

S o8 := {((gψ)ψ , ϕ) | gψ ∈ S for all ψ, ϕ ∈8}.

For each8Hψ ∈8H\8, choose a π−1(H8Hψ)-equivariant map f8Hψ :G→ E8Hψ

to a π−1(H8Hψ)-simplicial complex of dimension at most N whose stabilizers lie
in F , and such that d( f8Hψ(g), f8Hψ(g

′))6 ε′ whenever g−1g′ ∈ S. Define

fH : G o8→
∏

8Hψ∈8H\8

∏
ψ ′∈8Hψ

E8Hψ =: EH ,

((gψ)ψ , ϕ) 7→
(
( f8Hψ(gψ ′))ψ ′∈8Hψ

)
8Hψ∈8H\8

.

We regard EH as a simplicial complex via the product construction described pre-
viously. Let H act on EH by

((hψ ′)ψ ′∈8Hψ)8Hψ , ϕ) · ((xψ ′)ψ ′∈8Hψ)8Hψ := ((hψ ′xϕ−1ψ ′)ψ ′∈8Hψ)8Hψ .

This induces a (π o8)−1(H)-action on EH by restriction, and fH is (π o8)−1(H)-
equivariant with respect to this action. Observe that the dimension of EH is
bounded by |8|N , and that this number only depends on 8.

Consider a point x := ((xψ ′)ψ ′∈8Hψ)8Hψ in EH , and the stabilizer (π o8)−1(H)x .
The intersection (π o8)−1(H)x∩

(∏
8 G

)
is a finite-index subgroup of (π o8)−1(H)x ,

and is equal to
∏
8Hψ∈8H\8

∏
ψ ′∈8Hψ

Hxψ ′ . Since each Hxψ ′ lies in F , this shows
that the stabilizer of x lies in F o8.

What is left to show is that the map fH has the desired contracting property. So
let g = ((gψ)ψ , ϕ) and g′ = ((g′ψ)ψ , ϕ

′) be elements in G o8 such that g−1g′ ∈ S o8;
equivalently, g−1

ψ g′ψ ∈ S for all ψ ∈8. For each 8Hψ ∈8H\8 and ψ ′ ∈8Hψ ,
we have

d`
1

E8Hψ
( f8Hψ(gψ ′), f8Hψ(g

′

ψ ′))6 ε
′.

Let ε > 0. By Lemma 11.16 below, d`
1

EH
( fH (g), fH (g′)) 6 ε as long as ε′ was

initially chosen to be small enough. �

11.16. Lemma. Let N , K ∈ N. For every ε > 0 there is some ε′ > 0 such that
for every sequence E1, . . . , EK of (abstract) ordered simplicial complexes, each of
which has dimension at most N , the following holds:
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Let E := E1 ⊗ · · · ⊗ EK . For x ∈ |E |, let (x1, . . . , xK ) denote the image of x
under the canonical map |E | → |E1| × · · · × |EK |. Denote by di the `1-metric
on |Ei |, and let d be the `1-metric on |E |.

Then for all x, x ′ ∈ |E |, we have d(x, x ′)6 ε whenever di (xi , x ′i )6 ε
′.

Proof. The argument is very similar to the one employed in the proof of [Bartels
et al. 2014b, Lemma 5.5]. Since distances with respect to the `1-metric are inde-
pendent of the ambient complex, we may assume that Ei =1

2N+1. Consider the
composition∏

16i6K

|12N+1
| = |E1| × · · · × |EK |

∼=
−→ |E | ⊆ |1(2N+2)K

−1
|

of the inverse of the canonical homeomorphism with the inclusion into the full
simplex. Consider the domain of this map as a metric space by taking the metric
d6 :=

∑
i di and equip the target with its natural `1-metric d1. This map is uni-

formly continuous since the source is compact; hence, there is some ε′′ > 0 such
that d1(x, x ′)6 ε whenever d6((x1, . . . , xK ), (x ′1, . . . , x ′K ))6 ε

′′. Thus, the claim
holds for ε′ := ε′′/K . �

11.17. Corollary. Let G be a discrete group and let F be a family of groups
such that all groups in F satisfy the fibered Farrell–Jones conjecture with wreath
products in A-theory. If there is a finite, symmetric generating set S of G such
that (G, S) is a Dress–Farrell–Hsiang group with respect to F , then G satisfies the
fibered Farrell–Jones conjecture with wreath products in A-theory.

Proof. Let 8 be a finite group. By Proposition 11.15, the wreath product G o8 is a
Dress–Farrell–Hsiang group with respect to F o8, so G o8 satisfies the fibered iso-
morphism conjecture with respect to F o8. Since all groups in F satisfy the fibered
Farrell–Jones conjecture with wreath products, parts (3) and (2) of Lemma 11.14
imply that all groups in F o8 satisfy the fibered Farrell–Jones conjecture. Hence,
G o8 satisfies the fibered Farrell–Jones conjecture by the transitivity principle,
Proposition 11.2. �

11.18. Theorem. Let 0 be an irreducible special affine group. Then 0 satisfies
the fibered Farrell–Jones conjecture with wreath products in A-theory.

Proof. By [Winges 2015, Theorem 6.1], 0 is a Dress–Farrell–Hsiang group with
respect to the family of virtually finitely generated abelian groups. Since we have
already shown that all virtually finitely generated abelian groups satisfy the fibered
Farrell–Jones conjecture with wreath products in Corollary 11.13, the theorem is
an immediate consequence of Corollary 11.17. �

11.19. Theorem (cf. [Bartels et al. 2014a, Section 5]). Let G be a virtually poly-Z-
group. Then G satisfies the fibered Farrell–Jones conjecture with wreath products
in A-theory.
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Proof. Repeat the argument on page 377 of [Bartels et al. 2014a], which relies only
on the inheritance properties of the conjecture. �

Theorem 1.2 from the introduction follows as a special case.
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