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Almost complex structures
on connected sums of complex projective spaces

Oliver Goertsches and Panagiotis Konstantis

We show that the m-fold connected sum m#CP2n admits an almost complex
structure if and only if m is odd.

1. Introduction

A complex structure on a real vector bundle F over a connected CW complex X
is a complex vector bundle E over X such that its underlying real vector bundle
ER is isomorphic to F . A stable complex structure on F is a complex structure
on F ⊕ εd , where εd is the d-dimensional trivial real vector bundle over X . For
X a manifold we say that X has an almost complex structure if its tangent bundle
admits a complex structure, and a stable almost complex structure if its tangent
bundle admits a stable complex structure. Motivated by the question in [Miller
2015] we consider in this paper the m-fold connected sum of complex projective
spaces m#CP2n .

As shown by Hirzebruch [1987, Kommentare, p. 777], a necessary condition for
the existence of an almost complex structure on a 4n-dimensional compact mani-
fold M is the congruence χ(M) ≡ (−1)nσ(M) mod 4, where χ(M) is the Euler
characteristic and σ(M) is the signature of M . Thus, for even m, the connected
sums above cannot carry an almost complex structure. We show that for odd m
they do admit almost complex structures, thus showing the following:

Theorem 1.1. The m-fold connected sum m#CP2n admits an almost complex struc-
ture if and only if m is odd.

In odd complex dimensions, the connected sums m#CP2n+1 are Kähler: CP2n+1

admits an orientation reversing diffeomorphism, and therefore m#CP2n+1 is dif-
feomorphic to CP2n+1#(m − 1)CP2n+1, which is a blow–up of CP2n+1 in m − 1
points. Furthermore Theorem 1.1 is known for n = 1 and n = 2; see [Audin 1991]
and [Müller and Geiges 2000], respectively. In both cases the authors use general
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results on the existence of almost complex structures on manifolds of dimension 4
and 8, respectively.

In [Sutherland 1965, Theorem 1.1] or [Thomas 1967, Theorem 1.7] the authors
showed the following.

Theorem 1.2. Let M be a closed smooth 2d-dimensional manifold. Then TM
admits an almost complex structure if and only if it admits a stable almost complex
structure E such that cd(E) = e(M), where cd is the d-th Chern class of E and
e(M) is the Euler class of M.

In Section 2 we describe the full set of stable almost complex structures in the
reduced K-theory of m#CP2n . In Section 3 we give, for odd m, an explicit example
of a stable almost complex structure to which Theorem 1.2 applies, thus completing
the proof of Theorem 1.1.

2. Stable almost complex structures on m#CP2n

For a CW complex X let K(X) and KO(X) denote the complex and real K-groups,
respectively. Moreover we denote by K̃(X) and K̃O(X) the reduced groups. Let
r : K(X)→ KO(X) denote the real reduction map, which can be restricted to a
map K̃(X)→ K̃O(X). We denote the restricted map again with r . A real vector
bundle F over X has a stable almost complex structure if there is a an element
y ∈ K̃(X) such that r(y)= F − dim F . Since r is a group homomorphism, the set
of all stable complex vector bundles such that the underlying real vector bundle is
stably isomorphic to F is given by

y+ ker r ⊂ K̃(X),

where y is such that r(y) = F − dim F . Let c : KO(X) → K(X) denote the
complexification map and t : K(X)→ K(X) the map which is induced by complex
conjugation of complex vector bundles. The maps t and c are ring homomorphisms,
but r preserves only the group structure. The identities

c ◦ r = 1+ t : K(X)→ K(X), r ◦ c = 2 : KO(X)→ KO(X),

involving the maps r , c and t are well known. We write ȳ = t (y) for an element
y ∈ K(X).

For two oriented manifolds M and N of the same dimension d, we denote by
M#N the connected sum of M with N , which inherits an orientation from M and N .
First, let us characterize the stable tangent bundle of M#N .

Lemma 2.1. Let pM : M#N → M and pN : M#N → N be collapsing maps to
each factor of M#N. Then we have

p∗M(M)⊕ p∗N (N )∼= T (M#N )⊕ εd .
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Proof. Let DM ⊂M and DN ⊂ N be embedded closed disks and WM and WN collar
neighborhoods of ∂(M \ D̊M) and ∂(N \ D̊N ), respectively, where D̊ denotes the
interior of D. Thus WM ∼= Sd−1

×[−2, 0] and WN ∼= Sd−1
×[0, 2]. The manifold

M#N is obtained by identifying Sd−1
× 0 ⊂ WM with Sd−1

× 0 ⊂ WN by the
identity map. Set W :=WM ∪WN ⊂ M#N and note that V1 := p∗M(M)⊕ p∗N (N )
as well as V2 := T (M#N )⊕ εn are trivial over W . Moreover let UM ⊂ M#N be
the open set diffeomorphic to (M \WM)∪ (Sd−1

×[−2,−1[), and analogously for
UN ⊂ M#N .

Now, since V1|UM
∼= p∗M(TM)⊕ εd and p∗M(TM)|UM = T (M#N )|UM , we have

an isomorphism given by 8M : V2|UM → V1|UM , (ξ, w) 7→ ((pM)∗(ξ), w). For
8N : V2|UN → V1|UN , we set 8N (η,w)= (w,−(pN )∗(η)). Moreover, both vector
bundles V1 and V2 are trivial over W and it is possible to choose trivializations of
V1 and V2 over W such that 8M is given by (v,w) 7→ (v,w) over WM and such
that 8N is represented by (v,w) 7→ (w,−v) over WN . Over Sd−1

× [−1, 1] we
can interpolate these isomorphisms by(

v

w

)
7→

(
cos
(
π
4 (t + 1)

)
sin
(
π
4 (t + 1)

)
− sin

(
π
4 (t + 1)

)
cos
(
π
4 (t + 1)

))(v
w

)
for t ∈ [−1, 1]. Using this interpolation we can glue 8M and 8N to a global
isomorphism V2→ V1. �

Hence, T (M#N )−d= TM+TN−2d in K̃O(M#N ), where TM and TN denote
the elements in K̃O(M#N ) induced by p∗M(TM) and p∗N (TN ), respectively. This
shows that if M and N admit stable almost complex structures so does M#N ; see
[Kahn 1969]. For M = N = CP2n we consider the natural orientation induced by
the complex structure of CP2n .

We proceed with recalling some basic facts on complex projective spaces. Let H
be the tautological line bundle over CPd and let x ∈ H 2(CPd

;Z) be the generator,
such that the total Chern class c(H) is given by 1+ x . The cohomology ring of
CPd is isomorphic to Z[x]/〈xd+1

〉. The K and KO theory of CPd are completely
understood. Let η := H − 1 ∈ K̃(CPd) and ηR := r(η) ∈ K̃O(CPd).

Theorem 2.2 (cf. [Sanderson 1964, Theorem 3.9; Fujii 1966, Lemma 3.5; Milnor
and Stasheff 1974, p. 170; Thomas 1974, Proposition 4.3]).

(a) K(CPd)= Z[η]/〈ηd+1
〉. Letting n be the largest integer ≤ d/2, the following

sets of elements are an integral basis of K(CPd):

(i) 1, η, η(η+ η), . . . , η(η+ η)n−1, (η+ η), . . . , (η+ η)n , and also, in case
d is odd, η2n+1

= η(η+ η)n;
(ii) 1, η, η(η+ η), . . . , η(η+ η)n−1, (η− η)(η+ η), . . . , (η− η)(η+ η)n−1,

and also, in case d is odd, η2n+1.
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(b) (i) If d = 2n then KO(CPd)= Z[ηR]/〈η
n+1
R 〉.

(ii) If d = 4n+ 1 then KO(CPd)= Z[ηR]/〈η
2n+1
R , 2η2n+2

R 〉.
(iii) If d = 4n+ 3 then KO(CPd)= Z[ηR]/〈η

2n+2
R 〉.

(c) The complex stable tangent bundle is given by (2n+ 1)η ∈ K̃(CP2n) and the
real stable tangent bundle is given by r((2n+ 1)η) ∈ K̃O(CP2n).

(d) The kernel of the real reduction map r : K̃(CPd)→ K̃O(CPd) is freely gener-
ated by the elements

(i) η− η, (η− η)(η+ η), . . . , (η− η)(η+ η)(d/2)−1, if d is even,
(ii) η− η, (η− η)(η+ η), . . . , (η− η)(η+ η)2n−1, 2ηd , if d = 4n+ 1,

(iii) η− η, (η− η)(η+ η), . . . , (η− η)(η+ η)2n, ηd , if d = 4n+ 3.

Next we would like to describe the integer cohomology ring of m#CP2n . For
that we introduce the following notation. Let 3 denote either Z or Q. We define an
ideal Rd(X1, . . . , Xm) in 3[X1, . . . , Xm], where X1, . . . , Xm are indeterminants,
as the ideal generated by the following elements

X i · X j , i 6= j, Xd
i − Xd

j , i 6= j, Xd+1
j , j = 1, . . . ,m.

Hence, we have

H∗(m#CPd
;3)∼=3[x1, . . . , xm]/Rd(x1, . . . , xm), (2.3)

where x j = p∗j (x) ∈ H 2(m#CPd
;3), for x ∈ H 2(CPd

;3) defined as above and
p j : m#CPd

→ CPd the projection onto the j-th factor. Note that p j induces an
monomorphism on cohomology.

The stable tangent bundle of m#CP2n in K̃O(m#CP2n) is represented by

(2n+ 1)
m∑

j=1

r(η j ),

where η j := p∗j (η) ∈ K̃(CP2n) and r : K̃(m#CP2n)→ K̃O(m#CP2n) is the real
reduction map. Hence the set of stable almost complex structures on m#CP2n is
given by

(2n+ 1)
m∑

j=1

η j + ker r. (2.4)

For k ∈N and j = 1, . . . ,m, set wk
j = p∗j (H)

k
− p∗j (H)

−k , en−1
j = η j (η j +η j )

n−1

and ω = η2n
1 .

Proposition 2.5. The kernel of r : K̃(m#CP2n)→ K̃O(m#CP2n) is freely generated
by

{wk
j : k = 1, . . . , n−1, j = 1, . . . ,m}∪{en−1

1 −en−1
j : j = 2, . . . ,m}∪{2en−1

1 −ω}
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for n even, and
{wk

j : k = 1, . . . , n, j = 1, . . . ,m}
for n odd.

Proof. Consider the cofiber sequence
m∨

j=1

CP2n−1 i
−→ m#CP2n π

−→ S4n. (2.6)

Note that the line bundle i∗ p∗j (H) is the tautological line bundle over the j-th
summand of

∨m
j=1 CP2n−1 and the trivial bundle on the other summands, since

the first Chern classes are the same. For the reduced groups we have

K̃
( m∨

j=1

CP2n−1
)
∼=

m⊕
j=1

K̃(CP2n−1)

and i∗ p∗j (η) generates the j -th summand of the above sum according to Theorem 2.2.
The long exact sequence in K -theory of the cofibration (2.6) is given by

· · · → K̃−1
( m∨

j=1

CP2n−1
)
→ K̃(S4n)→ K̃(m#CP2n)

→ K̃
( m∨

j=1

CP2n−1
)
→ K̃ 1(S4n)→ · · · . (2.7)

From Theorem 2 in [Fujii 1967], we have that K̃−1(CP2n−1) = 0, and hence
K̃−1

(∨m
j=1 CP2n−1

)
= 0. Then from Bott periodicity we deduce the equality

K̃ 1(S4n)= K̃−1(S4n)= 0. So we obtain a short exact sequence

0−→ K̃(S4n)
π∗

−→ K̃(m#CP2n)
i∗
−→ K̃

( m∨
j=1

CP2n−1
)
−→ 0

which splits, since the groups involved are finitely generated, torsion free abelian
groups. Let ωC be the generator of K̃(S4n). Then the set

{π∗(ωC)} ∪ {η
k
j : j = 1, . . . ,m, k = 1, . . . , 2n− 1}

is an integral basis of K̃(m#CP2n). We claim that η2n
j = π

∗(ωC) for all j . In-
deed, the elements η2n

j lie in the kernel of i∗, and hence there are k j ∈ Z such
that η2n

j = k j · π
∗(ωC). Let c̃h : K̃(X)→ H̃(X;Q) denote the Chern character

for a finite CW complex X , then c̃h is a monomorphism for X = m#CPd (since
H̃∗(m#CPd

;Z) has no torsion [Atiyah and Hirzebruch 1961, Section 2.5, Corol-
lary]) and an isomorphism for X = Sd onto H̃∗(Sd

;Z) embedded in H̃∗(Sd
;Q).

Using the notation of (2.3) we have

c̃h(η2n
j )= (e

x j − 1)2n
= x2n

j
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and using the naturality of c̃h

c̃h(π∗(ωC))= π
∗(c̃h(ωC))=±x2n

j ,

since π∗ is an isomorphism on cohomology in dimension 2n. We can choose ωC

such that c̃h(π∗(ωC))= x2n
j . This shows k j = 1 for all j and K̃(m#CP2n) is freely

generated by

{ηk
j : j = 1, . . . ,m, k = 1, . . . , 2n− 1} ∪ {η2n

1 = · · · = η
2n
m }.

Hence K(m#CP2n) = Z[η1, . . . , ηm]/R2n(η1, . . . , ηm). Since p∗j (H)⊗ p∗j (H) is
the trivial bundle we compute the identity

η j =
−η j

1+ η j
=−η j + η

2
j − · · ·+ η

2n
j .

The ring Z[η1, . . . , ηm]/R2n(η1, . . . , ηm) is isomorphic to( m⊕
j=1

Z[η j ]/〈η
2n+1
j 〉

)/ 〈
η2n

j − η
2n
i : j 6= i

〉
and from Theorem 2.2 the set 0 j which contains the elements

η j , η j (η j + η j ), . . . , η j (η j + η j )
n−1,

η j − η j , (η j − η j )(η j + η j ), . . . , (η j − η j )(η j + η j )
n−1

together with {1} is an integral basis of Z[η j ]/〈η
2n+1
j 〉. Thus the set

01 ∪ · · · ∪0m ⊂ K̃(m#CP2n)

generates the group K̃(m#CP2n). Observe that

(η j + η j )
k
= 2η j (η j + η j )

k−1
− (η j − η j )(η j + η j )

k−1. (2.8)

Thus

η2n
j = (η j + η j )

n
= 2η j (η j + η j )

n−1
− (η j − η j )(η j + η j )

n−1. (2.9)

We set ω := η2n
j for any j = 1, . . . ,m and

ek
j := η j (η j + η j )

k, j = 1, . . . ,m, k = 0, . . . , n− 1,

f k
j := (η j − η j )(η j + η j )

k, j = 1, . . . ,m, k = 0, . . . , n− 1,

and by virtue of relation (2.9) the set

B := {ω} ∪ {ek
j : j = 1, . . . ,m, k = 0, . . . , n− 1}

∪ { f k
j : j = 1, . . . ,m, k = 0, . . . , n− 2}

is an integral basis of K̃(m#CP2n).
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We proceed with the computation of KO(m#CP2n). We have a long exact se-
quence for K̃O-theory like in (2.7). From Theorem 2 in [Fujii 1967] we deduce
K̃O−1

(CP2n)= 0 and therefore K̃O−1(∨m
j=1 CP2n

)
= 0. Moreover,

K̃O1
(S4n)= K̃O−7

(S4n)= K̃O(S4n+7)= 0

by Bott periodicity. Hence we obtain a short exact sequence

0→ K̃O(S4n)→ K̃O(m#CP2n)→ K̃O
( m∨

j=1

CP2n−1
)
→ 0. (2.10)

Now we have to distinguish between the cases where n is even or odd. We first
assume that n= 2l. In that case the ring KO(CP2n−1) is isomorphic to Z[ηR]/〈η

n
R〉;

see Theorem 2.2(b). Hence all groups in (2.10) are torsion free. Therefore the
kernel of r : K̃(m#CP2n)→ K̃O(m#CP2n) is the same as the kernel of

ϕ := c ◦ r = 1+ t : K̃(m#CP2n)→ K̃(m#CP2n)

since r◦c=2, and thus c is a monomorphism of the torsion free part of K̃O(m#CP2n).
Next we compute a basis of kerϕ. Using relation (2.8) we have ϕ(ω) = 2ω,

ϕ(ek
j )= 2ek

j − f k
j and ϕ( f k

j )= 0. Thus if

y = λω+
m∑

j=1

n−1∑
k=0

λk
j e

k
j ,

then

ϕ(y)= 2λω+
m∑

j=1

n−1∑
k=0

λk
j (2ek

j − f k
j )=

(
2λ+

m∑
j=1

λn−1
j

)
ω+

m∑
j=1

n−2∑
k=0

λk
j (2ek

j − f k
j ),

using the fact that f n−1
j = 2en−1

j −ω by (2.9). As ω and 2ek
j − f k

j , j = 1, . . . ,m,
k = 0, . . . , n− 2, are linearly independent, we conclude that ϕ(y)= 0 if and only
if λk

j = 0 for j = 1, . . . ,m, k = 1, . . . , n− 2 and
m∑

j=1

λn−1
j + 2λ= 0.

This implies that the set

{ f k
j : j = 1, . . . ,m, k = 0, . . . , n−2}∪{en−1

1 −en−1
j : j = 2, . . . ,m}∪{2en−1

1 −ω}

is an integral basis of kerϕ. Note that from (2.9) we have

2en−1
1 −ω = (η1− η1)(η1+ η1)

n−1.

By an inductive argument we see that

(η j − η j )(η j + η j )
k
= wk+1

j + linear combinations of w1
j , . . . , w

k
j (2.11)
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and
en−1

1 − en−1
j = η2n−1

1 − η2n−1
j .

Thus an integral basis of the kernel, in case n is even, is given by

{wk
j : j = 1, . . . ,m, k = 1, . . . , n− 1} ∪ {wn

1} ∪ {η
2n−1
1 − η2n−1

j : j = 2, . . . ,m}.

Now let us assume that n = 2l + 1. Consider the commutative diagram

0 K̃(S4n) K̃(m#CP2n) K̃
(∨m

j=1 CP2n−1
)

0

0 K̃O(S4n) K̃O(m#CP2n) K̃O
(∨m

j=1 CP2n−1
)

0

π∗

rS

i∗

r# r∨

π∗ i∗

The map rS : K̃(S8l+4)→ K̃O(S8l+4) is an isomorphism and therefore the map
i∗|ker r# : ker r#→ ker r∨ is an isomorphism. Hence the rank of ker r# is mn. We
see that the set

{ f k
j : j = 1, . . . ,m, k = 0, . . . , n− 2} ∪ {2en−1

j : j = 1, . . . ,m} ∪ {ω}

is an integral basis of (i∗)−1(ker r∨), which follows from en−1
j = η2n−1

j − (n− 1)ω
and the structure of the kernel of r∨; see Theorem 2.2(d)(ii). The elements f k

j for
j = 1, . . . ,m and k = 0, . . . , n− 2 lie in the kernel of r#. Let

y = λω+
m∑

j=1

λn−1
j 2en−1

j

for λ, λn−1
j ∈Z and suppose r#(y)=0. From ϕ(ω)=2ω and ϕ(en−1

j )= (η j+η j )
n
=

η2n
j = ω it follows that

λ+

m∑
j=1

λn−1
j = 0.

Hence ker r# is freely generated by the elements f k
j and 2en−1

j −ω. Observe from
(2.9) that 2en−1

j −ω = (η− η)(η+ η)n−1. Thus in the case that n is odd we deduce
like in (2.11) that the kernel of r# is freely generated by wk

j for j = 1, . . . ,m and
k = 1, . . . , n. �

Hence by (2.4), stable almost complex structures of m#CP2n for n even are
given by elements of the form

y = (2n+ 1)
m∑

i=1

η j +

m∑
j=1

n−1∑
k=1

ak
jw

k
j + an

1w
n
1 +

m∑
j=2

b j (η
2n−1
1 − η2n−1

j ), (2.12)

and for n odd,
y = (2n+ 1)

m∑
i=1

η j +

m∑
j=1

n∑
k=1

ak
jw

k
j (2.13)
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for ak
j , b j ∈ Z. For Theorem 1.2 we have to compute the 2n-th Chern class c2n(E)

of a vector bundle E representing an element of the form (2.12) and (2.13). Let
η2n−1

1 −η2n−1
j denote also a vector bundle over m#CP2n which represents the ele-

ment η2n−1
1 −η2n−1

j in K̃(m#CP2n). The total Chern class of η2n−1
1 −η2n−1

j can be
computed through the Chern character: we have

c̃h(η2n−1
1 − η2n−1

j )= c̃h(η1)
2n−1
− c̃h(η j )

2n−1
= x2n−1

1 − x2n−1
j .

The elements of degree k in the Chern character are given by νk(c1, . . . , ck)/k!,
where νk are the Newton polynomials. The coefficient in front of ck in νk(c1, . . . , ck)

is k (see [Mimura and Toda 1991, p. 195]) and the other terms are products of Chern
classes of lower degree; hence the only nonvanishing Chern class is given by

c2n−1(η
2n−1
1 − η2n−1

j )= (2n− 2)! (x2n−1
1 − x2n−1

j ).

Thus the total Chern class of a vector bundle E representing an element of the form
(2.12) is given by

c(E)= (1− (x1+ · · ·+ xm))
2n+1

·

(1+ nx1

1− nx1

)an
1

m∏
j=2

(1+ (2n− 2)!(x2n−1
1 − x2n−1

j ))b j

m∏
j=1

n−1∏
k=1

(1+ kx j

1− kx j

)ak
j
,

and for (2.13),

c(E)= (1− (x1+ · · ·+ xm))
2n+1

m∏
j=1

n∏
k=1

(1+ kx j

1− kx j

)ak
j
,

where the coefficient in front of x2n
1 = · · · = x2n

m is equal to c2n(E).

Remark 2.14. Note that for m = 1 (and complex projective spaces of arbitrary
dimension) this total Chern class was already computed by Thomas [1974, p. 130].

3. Almost complex structures on m#CP2n

We now describe an explicit stable almost complex structure on m#CP2n , where
m = 2u+ 1, for which the assumptions of Theorem 1.2 are satisfied, thereby pro-
ducing an almost complex structure on m#CP2n . We choose, in the notation of
(2.12) and (2.13), ak

j = 2 for j = 1, . . . , u and k = 1, and all other coefficients 0.
Then the top Chern class is as desired:

Proposition 3.1. Let m = 2u + 1 be an odd number. In the cohomology ring of
m#CP2n , the coefficient c2n of x2n

1 = · · · = x2n
m of the class

c = (1− (x1+ · · ·+ x2u+1))
2n+1

u∏
r=1

(1+ xr

1− xr

)2

is c2n = m(2n− 1)+ 2= χ(m#CP2n).
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Proof. As xi · x j = 0 for i 6= j , we have

(1− (x1+ · · ·+ x2u+1))
2n+1
=

2n+1∑
j0=0

(−1) j0

(
2n+ 1

j0

)
(x j0

1 + · · ·+ x j0
2u+1)

=

2u+1∑
r=1

2n+1∑
j0=0

(−1) j0

(
2n+ 1

j0

)
x j0

r .

Thus,

c =
u∏

r=1

(1− xr )
2n−1(1+ xr )

2
2u+1∏

s=u+1

(1− xs)
2n+1.

The factors (1−xs)
2n+1 contribute 2n+1 to c2n , while the factors (1−xr )

2n−1(1+xr )
2

contribute 2n− 3. Thus,

c2n = u(2n− 3)+ (u+ 1)(2n+ 1)

= (2u+ 1)(2n− 1)+ 2

= χ((2u+ 1)#CP2n). �
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