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Segal operations in the algebraic K-theory
of topological spaces

Thomas Gunnarsson and Ross Staffeldt

We extend earlier work of Waldhausen which defines operations on the algebraic
K-theory of the one-point space. For a connected simplicial abelian group X and
symmetric groups 6n , we define operations θn

: A(X)→ A(X × B6n) in the
algebraic K-theory of spaces. We show that our operations can be given the
structure of E∞-maps. Let φn : A(X× B6n)→ A(X× E6n)' A(X) be the 6n-
transfer. We also develop an inductive procedure to compute the compositions
φn ◦ θ

n , and outline some applications.

1. Introduction

Let X be a connected simplicial abelian group, let 6n be the symmetric group on
n letters, and let B6n be the classifying space. Our goal is to define a family of
Segal operations

θn
: A(X)−→ A(X × B6n)

satisfying the properties listed in Theorems 1.1 and 1.3 below. We follow [Wald-
hausen 1982] in our naming convention, which can be explained as follows. Around
1972, Graeme Segal [1974b] defined a set of operations in stable homotopy theory
θn
: π s

i (S
0)→ π s

i ((B6n)+), verified certain properties and used the information to
give a proof of the Kahn–Priddy theorem. The key to the Kahn–Priddy proof is a
certain relation satisfied by the composition of an operation followed by a transfer
homomorphism.

Waldhausen [1982] adapted the construction in [Segal 1974b] to define oper-
ations θn

: A(∗)→ A(B6n), and proved these new operations have properties
precisely analogous to fundamental properties of Segal’s original operations. Con-
sequently, Waldhausen used the same notation and called the operations “Segal
operations”.

We obtain the following result.

We thank Friedhelm Waldhausen for suggesting this problem, and we thank the Institut für Mathe-
matik of the University of Osnabrück for its hospitality and institute faculty members for their interest
and encouragement.
MSC2010: primary 19D10; secondary 19D23.
Keywords: algebraic K-theory of topological spaces, Segal operations, operations.
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2 THOMAS GUNNARSSON AND ROSS STAFFELDT

Theorem 1.1. Given a connected simplicial abelian group X , there are maps
θn
: A(X)→ A(X × B6n) which have the following properties.

(1) The map θ1 is the identity.

(2) The combined map

θ =
∏
n≥1

θn
: A(X)→ {1}×

∏
n≥1

A(X × B6n)

has the structure of an E∞-map if the target is equipped with the E∞-structure
arising from certain pairings A(X× B6m)× A(X× B6n)→ A(X× B6n+m)

derived from the box-tensor operation of Definition 3.10.

The first property is a normalization condition, as satisfied by the constructions
of Segal and Waldhausen. The second property implies that for every j > 0 the op-
erations induce homomorphisms π j A(X)→{1}×

∏
n≥1 π j A(X × B6n) when the

target is given a particular algebraic structure. A third algebraic property of Wald-
hausen’s operations is recalled in Proposition 8.1. This third property is crucial in
the applications made by Segal and Waldhausen. Our extended operations exhibit
a more technical algebraic property stated in Theorem 1.3 and Theorem 8.12.

A large part of our work follows [Gunnarsson and Schwänzl 2002] in which
many results are developed for quite general situations, satisfying certain technical
conditions. Part of this paper verifies these conditions. In order to explain the
necessity of this technical work, we repeat several definitions from [Gunnarsson
and Schwänzl 2002] and quote many results.

In Section 2 the main results are Proposition 2.17 and Theorem 2.1. For the pur-
poses of algebraic K-theory we verify exactness properties of certain constructions;
to prepare for the E∞-structure we verify coherence properties.

In Section 3 we recall the G•-construction for algebraic K-theory [Gunnarsson
et al. 1992; Grayson 1989] and prepare the constructions underlying the definition
of the operations in Definition 3.29.

In Section 4 we set up to apply general machinery, taking the first step toward
a main result: For X a connected simplicial abelian group, there is an operation

ω =
∏
n≥1

ωn
: A(X)−→ {1}×

∏
n≥1

A6n,{all}(X) (1.2)

which is a map of E∞-spaces with respect to specific algebraic structures described
in Section 4. The target of ω is the algebraic K-theory of 6n-spaces retracting
to X (with the trivial 6n-action) and relatively finite with respect to X . See
Definition 3.5. In the first step the E∞-structure is only visible if we restrict to
spherical objects. The next section addresses this problem.
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In Section 5 we study how the functors from Definition 3.29 interact with sus-
pension operators. At the end of the section we complete the construction of the
operation displayed in (1.2).

In Theorem 6.1, we split A6n,{all}(X) as a product of the algebraic K-theory of
other spaces, one of which is A(X × B6n). This corresponds to the subcategory of
6n-spaces retracting to X (with the trivial 6n action), relatively finite with respect
to X , and with 6n acting freely outside of X . We also obtain an expression for the
composite functors “projecting to the free part”

θn
: A(X) ωn

−→ A6n,{all}(X)→ A(X × B6n).

This expression is used in Section 8.
In Section 7 we establish equivalences among various models for equivariant

K-theory and discuss the functors that induce transfer operations.
In Section 8 our main computational result evaluates the composition

A(X) θ
n
−→ A(X × B6n)

φn
−→ A(X),

where φn is the transfer map.

Theorem 1.3 (Theorem 8.12). Let X be a connected simplicial abelian group,
thinking of the group operation as a multiplication, and let τ n

: X → X be the
homomorphism that raises elements to the n-th power. Then

φnθ
n
∗
= (−1)n−1

· (n− 1)! · τ n
∗
: π j A(X)→ π j A(X)

for j > 0.

We conclude this introduction with some comments on applications. First, we
recall one formulation of the Kahn–Priddy theorem in stable homotopy theory. Let
Q(X)=�∞S∞(X+) denote unreduced stable homotopy theory and define reduced
stable homotopy theory Q̃(X) = fiber(Q(X)→ Q(∗)), the homotopy fiber. For
each n there is a transfer map Q(B6n)→ Q(E6n)' Q(∗), and, by composition,
there results a map Q̃(B6n)→ Q(∗). The formulation of the Kahn–Priddy theorem
that we prefer is that the map

π j (Q̃ B6p)(p)→ π j (Q(∗))(p)

of homotopy groups localized at a prime p is surjective for j > 0.
Waldhausen’s analogue of this result applies to the algebraic K-theory of the

one-point space. For the formulation we let A(X) denote the algebraic K-theory
of the space X and let Ã(X)= fiber(A(X)→ A(∗)) be the algebraic K-theory of
X reduced relative to a point. Manipulations formally similar to those above yield
a map Ã(B6n)→ A(∗) and the analogue of the Kahn–Priddy theorem is that the
induced map

π j ( Ã(B6p)(p)→ π j (A(∗))(p)
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of homotopy groups localized at p is surjective for j > 0. In [Waldhausen 1987]
these operations are further developed and used to prove that the third factor µ(X)
in the splitting

A(X)' Q(X+)×WhDiff(X)×µ(X)

is contractible, yielding the final result A(X)' Q(X+)×WhDiff(X). The signifi-
cance of this fact is developed in [Waldhausen et al. 2013].

In our situation we fix as base space a connected simplicial abelian group X and
define reduced algebraic K-theory relative to X as

Ã(X × B6n rel X)= fiber(A(X × B6n)→ A(X)).

The inclusion of a point into B6n combined with the definition of the algebraic
K-theory of X × B6n reduced relative to X yields a splitting

π j A(X × B6n)∼= π j Ã(X × B6n rel X)⊕π j A(X) (1.4)

for any j ≥ 0. We have transfer maps φn : A(X × B6n)→ A(X × E6n)' A(X)
and a basic calculation in Lemma 7.8 that the composition

A(X)→ A(X × B6n)
φn
−→ A(X)

is multiplication by n! = |6n|, where the first map is induced by inclusion of a
point into B6n .

When we specialize n to a prime number p, we have the following observa-
tions. Make the following diagram of homotopy groups reduced mod p, where the
splitting (1.4) appears as the middle column:

π j Ã(X × B6p rel X)/pZ

��

φp∗

**

π j A(X)/pZ
θ

p
∗
// π j A(X × B6p)/pZ

φp∗
// π j A(X)/pZ

π j A(X)/pZ

i∗

OO

0

44

The diagonal arrow from the bottom row is multiplication by p! = |6p|, which is
0 modulo p. Thus, in terms of the splitting of π j A(X × B6p)/pZ given above,
on the second component of the image of θ p

∗ , the map φp∗ is zero. Applying
Theorem 8.12, φp∗ applied to the first component π j Ã(X × B6p rel X)/pZ of the
splitting contains the image of φp∗θ

p
∗ = (−1)p−1

· (p−1)! · τ p
∗ , where τ p

: X→ X
raises elements to the p-th power. The numerical factors are invertible mod p
so that

φp∗(π j Ã(X × B6p rel X)/pZ)⊃ Image τ p
∗
,

viewing τ p
∗ as an endomorphism of π j A(X)/pZ.
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From these calculations one extracts various additional observations. It may
happen that the p-th power homomorphism τ p is an isomorphism, as in the case
when X is a connected simplicial abelian group, finite in each simplicial dimension
and p is relatively prime to the order of Xn for each n. Then for j > 0,

φp∗ : π j Ã(X × B6p rel X)/pZ→ π j A(X)/pZ

is surjective. The next input is the following theorem.

Theorem 1.5 [Betley 1986, Theorem I]. If π1(X) is a finite group, and πi (X) is
finitely generated for all i ≥ 2, then π j (A(X)) is finitely generated for all j .

Then Nakayama’s lemma applies as in [Waldhausen 1982] to lift the result on
mod p homotopy to a result on p-localized homotopy. We obtain the following
theorem of Kahn–Priddy type.

Theorem 1.6. Let X be a connected simplicial abelian group, finite in each dimen-
sion, such that the order of Xn is prime to p. For j > 0 and p an odd prime, the
transfer induces surjections

π j Ã(X × B6p rel X)(p)→ π j A(X)(p)

on homotopy groups localized at p. �

In particular, take X = BC2 = RP∞ and p an odd prime. There are similar
statements for all the lens spaces BCq , q prime to p.

A very interesting case is X = BC∞, the classifying space of the infinite cyclic
group C∞. Of course X ' S1, and there are splittings-up-to-homotopy of infinite
loop spaces

A fd(S1)' A fd(∗)× BA fd(∗)× N−A fd(∗)× N+A fd(∗)

and

A fd(S1
× B6n)' A fd(B6n)× BA fd(B6n)× N−A fd(B6n)× N+A fd(B6n).

These are studied in [Klein and Williams 2008] and the first is examined in great
detail in [Grunewald et al. 2008]. In future work we would like to understand
the operations we have constructed in terms of these splittings. As a first step
in this direction we have shown in Section 4 that the operations we construct are
morphisms of infinite loop spaces. Should the θ operations be compatible with the
splitting, one must then investigate whether or not the θ operations commute with
the Frobenius and Verschiebung operations on the nil-terms defined in [Grunewald
et al. 2008].
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Our work also admits a generalization where X may be any connected space.
This result is a total operation

ω̃ : A(X)→ {1}×
∏
n≥1

A6n,{all}(Xn),

about which we know little at this point. Our experiments have also lead to the
observation that if G is a simplicial group, not necessarily abelian, whose real-
ization is homotopy equivalent to a finite CW -complex then there is a product
structure on A(BG). This will be the subject of a later paper. Finally, reversing
the progression from Segal’s original idea to Waldhausen’s generalization, we can
develop operations θn

: π s
∗
(X+)→ π s

∗
(X × B6n), where X is again a connected

simplicial abelian group.

2. The symmetric bimonoidal category of retractive spaces
over a connected simplicial abelian group

The category R(X) is the category of retractive simplicial sets (Y, r, s) over the
simplicial set X , where r : Y → X is a retraction, s : X → Y is a section for
r and morphisms (Y1, r1, s1) → (Y2, r2, s2) respect all the data. A cofibration
(Y1, r1, s1)� (Y2, r2, s2) in R f (X) is a map such that Y1 → Y2 is injective. A
weak equivalence is a map (Y1, r1, s1)→ (Y2, r2, s2) whose realization |Y1|→ |Y2|

is a homotopy equivalence of spaces. For algebraic K-theory we use the full sub-
category R f (X) of relatively finite retractive simplicial sets with cofibrations and
weak equivalences. “Relatively finite” means that there are only finitely many
nondegenerate simplices in Y−X . For background on the terminology, see [Wald-
hausen 1985, Section 1.1].

We aim to construct a total operation

θ : A(X)→ {1}×
∏
n≥1

A(X × B6n)

for X a connected simplicial abelian group with multiplication µ : X × X→ X and
to prove the operation has an E∞-structure. In order to achieve this, the elements
from which the construction is developed must be of high quality. The necessary
qualities are recorded in the first part of Theorem 2.1; the second part of the the-
orem records algebraic properties of the product operation ∧µ. We discuss first
the definition of the product operation, prove the second part of the theorem, and
finish this section with the proof of the first part of the theorem.

Concerning the first part of the theorem, our constructions require a coherence
result for diagrams involving sum and product operations, as provided by LaPlaza
[1972, Proposition 10]. His coherence theorem takes as input the commutativity
of 24 diagrams, reducible to a smaller, but still relatively large, subset [Laplaza
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1972, pp. 40–41]. We will see that the coherence properties we need rest on the
well-understood coherence properties of the one-point union and smash product of
pointed sets. On the other hand, the second part of the theorem involves properties
of the operations not reducible to dimensionwise considerations.

Theorem 2.1. Let X be a connected simplicial abelian group.

(1) The triple (R(X),∨X ,∧µ), where ∨X denotes the operation of union along
the common subspace X and ∧µ denotes the pairing (2.7), is a symmetric
bimonoidal category.

(2) The pairing ∧µ restricts to R f (X), where it is biexact, meaning exact in each
variable separately. Explicitly, the functors defined by – ∧µ Y and Y ∧µ –
preserve cofibrations, pushouts along cofibrations, and weak equivalences.

Our product operation ∧µ derives from an exterior smash product ∧e of retrac-
tive simplicial sets, following the exterior smash product of retractive spaces as
described in [May and Sigurdsson 2006]. Since we are working with simplicial sets,
our version of the exterior smash product has a description in terms of operations
on discrete sets, applied dimensionwise. See the discussion at the start of the proof
of part one of Theorem 2.1.

Definition 2.2. Let (Yi , ri , si ) be objects of R(X i ), for i = 1, 2. The exterior smash
product of (Y1, r1, s1) with (Y2, r2, s2) is in R(X1× X2), and the underlying space
Y1 ∧e Y2 completes the following square to a pushout:

Y1× X2 ∪X1×X2 X1× Y2 // //

r1×r2

��

Y1× Y2

��

X1× X2 //
s1∧e s2

// Y1 ∧e Y2

(2.3)

The square displays the section s1 ∧e s2; the retraction r1 ∧e r2 arises from the
universal property of the pushout.

Note that if both X1 and X2 are the one-point space, then this is the smash
product in the category of pointed spaces. Extending this idea, if x1 : {∗} → X1

and x2 : {∗} → X2 are two maps of the one-point space into X1 and X2, and we
take preimages r−1

1 (x1) and r−1
2 (x2), then these are pointed spaces, and there is an

injective map r−1
1 (x1)∧ r−1

2 (x2)→ Y1 ∧e Y2 over the point (x1, x2)∈ X1×X2. This
observation helps explain the “fiberwise smash product” terminology and indicates
how the coherence issues for products may be resolved at the level of pointed sets.
Examples 2.4 and 2.5 here play roles in the proof of part one of Theorem 2.1. Also,
since we work with simplicial sets, underlying the symmetric monoidal structure
(R(X),∨X ,∧µ) is the symmetric monoidal structure on the category of sets.
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Example 2.4. For any Y2 ∈ R(X2), note that X1∧e Y2∼= X1×X2, the “zero” object
in R(X1× X2). Colloquially, the exterior smash product of a terminal object with
any object yields a terminal object. Explicitly, a natural isomorphism

λ∗Y2
: X1 ∧e Y2→ X1× X2

arises from the following diagram by mapping the pushout of the top row to the
pushout of the bottom row:

X1× X2

=

��

X1× X2 ∪X1×X2 X1× Y2oo // //

∼=

��

X1× Y2

=

��

X1× X2 X1× Y2oo // // X1× Y2

Example 2.5. The bifunctor R(∗)×R(X)→R(X) given by (Y1, Y2) 7→ Y1∧e Y2

defines an action of R(∗) on R(X) after identifying {∗}×X with X in the canonical
way. This bifunctor also restricts to an action R f (∗)×R f (X)→R f (X).

This action has an identity element. Indeed, for S0
= {∗, ∗′} in R f (∗), with r

the constant map to the basepoint ∗, s the inclusion, and Y ∈R(X), the function
S0
× Y → Y defined by (∗, y) 7→ sr(y) and (∗′, y) 7→ y induces an isomorphism

S0
∧e Y

∼=
−→ Y of retractive spaces over X . An inverse to this isomorphism is

provided by y 7→ [(∗′, y)] ∈ S0
∧e Y .

Definition 2.6. Let X be a space with a multiplication µ : X2
→ X . We operate

on the category R(X), using the pairing

∧µ = µ∗ ◦∧e :R(X)×R(X) ∧e
−→R(X × X) µ∗−→R(X), (2.7)

where ∧e is the external smash product pairing defined in (2.3) and µ∗ is the functor
induced by the multiplication µ : X2

→ X . Explicitly, (Y1, r1, s1)∧µ (Y2, r2, s2)

completes the following diagram to a pushout:

Y1× X ∪X×X X × Y2

µ(r1,id)∪µ(id,r2)

��

// // Y1× Y2

��

X //
s

// Y1 ∧µ Y2

(2.8)

We use these notations to bring this section close to conformity with [Gunnars-
son and Schwänzl 2002]. Perfect conformity is not possible, for we must use
both the one-point union of pointed spaces ∨ and the union of two spaces along a
common subspace X , denoted ∨X . We also point out that the usual notation ∧ has
been used in [May and Sigurdsson 2006] for a product defined by restricting the
external smash product of two spaces over X to the diagonal of X × X .

The next lemma is used to develop properties of the smash products; the proof
will be given after demonstrating applications in Propositions 2.13 and 2.17.
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Lemma 2.9. Let C be a category with cofibrations and let

A2 B2oo // // C2

A1

OO

OO

��

B1oo // //

OO

OO

��

C1

OO

OO

��

A0 B0oo // // C0

(2.10)

be a commutative diagram in which the canonical map from B2 ∪B1 C1 to C2 is a
cofibration. Passing to pushouts by columns results in a diagram

A0 ∪A1 A2← B0 ∪B1 B2 � C0 ∪C1 C2 (2.11)

in which the right-pointing arrow is a cofibration. The diagram

A0 ∪B0 C0← A1 ∪B1 C1 � A2 ∪B2 C2 (2.12)

obtained by passing to pushouts by rows has a similar property.

Proposition 2.13. The exterior smash product ∧e is functorial for pairs of maps.
That is, given f1 : X1→ X ′1 and f2 : X2→ X ′2, the diagram

R f (X1)×R f (X2)
∧e
//

f1∗× f2∗
��

R f (X1× X2)

( f1× f2)∗
��

R f (X ′1)×R f (X ′2)
∧e
// R f (X ′1× X ′2)

(2.14)

commutes up to natural isomorphism.

Proof. For the naturality property of the external smash product, consider the dia-
gram

X1× X2 Y1× X2 ∪X1×X2 X1× Y2oo // // Y1× Y2

X1× X2

OO

OO

f1× f2
��

X1× X2oo

OO

OO

// //

f1× f2
��

X1× X2

OO

OO

f1× f2
��

X ′1× X ′2 X ′1× X ′2oo // // X ′1× X ′2

(2.15)

which fulfills the hypotheses of Lemma 2.9. Computing the colimits of the columns
in this diagram yields the diagram

X ′1× X ′2 ( f1∗Y1)× X ′2 ∪X ′1×X ′2 X ′1× ( f2∗Y2)
r ′1×r ′2
oo // // f1∗Y1× f2∗Y2,

whose pushout is by definition f1∗Y1 ∧e f2∗Y2.
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On the other hand, computing the colimits of the rows in the diagram yields the
diagram

X ′1× X ′2 X1× X2
f1× f2
oo // // Y1 ∧e Y2,

whose pushout is ( f1× f2)∗(Y1 ∧e Y2). Since both iterative procedures compute
the colimit of diagram (2.15), they are canonically isomorphic:

f1∗Y1 ∧e f2∗Y2 ∼= ( f1× f2)∗(Y1 ∧e Y2). �

As a consequence, we have the following result.

Proposition 2.16. Let X be a monoid with unit. The action of R(∗) on R(X) set
up in Example 2.5 may be made internal to R(X). Diagrammatically,

R(∗)×R(X)
ie∗×id

//

∧e

((

R(X)×R(X)

∧µ

��

R(X)

commutes up to natural isomorphism.

Proof. Let ie : {∗} → X be the inclusion of the one-point space to the identity
element of the monoid X . The functor ie∗ :R(∗)→R(X) sends a pointed retractive
space Y to X ∨ Y , where the base point of Y is identified with the unit element
of X . The new retraction collapses Y ⊂ X ∨ Y to the identity {e} in X . We have
the diagram

R(∗)×R(X)
∧e
//

ie∗×id
��

R({∗}× X)

(ie×id)∗
��

p2∗

&&

R(X)×R(X)
∧e
// R(X × X)

µ∗
// R(X)

The left-hand square commutes by Proposition 2.13, and the right-hand triangle
commutes because e is the monoid identity. The bottom row defines ∧µ and the
trip across the top defines the action of R(∗) on R(X). �

For example, this result has the consequence that coherent associativity for ∧µ
implies corresponding coherent associativity for the ∧e action of R(∗) on R(X).

Next, we record the biexactness property of the external smash product as de-
fined in the statement of Theorem 2.1.

Proposition 2.17. The external smash product functor

∧e :R f (X1)×R f (X2)→R f (X1× X2)

is biexact.
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Remark 2.18. In the approach of [May and Sigurdsson 2006] the external smash
product is shown to preserve all colimits by exhibiting a left adjoint functor. Their
approach uses properties of convenient categories of topological spaces.

For our applications in algebraic K-theory it seems more reasonable to give
arguments modeled on those of [Waldhausen 1985, Lemma 1.1.1], which serve to
illuminate other constructions we make.

Proof of Proposition 2.17. For simplicial sets, cofibrations are precisely the injec-
tions. Given a pair of cofibrations

(W1, r1, s1)� (W ′1, r
′

1, s ′1) and (W2, r2, s2)� (W ′2, r
′

2, s ′2)

in R f (X1) and R f (X2), respectively, the maps of differences of simplicial sets
W1−X1 → W ′1−X1 and W2 − X2 → W ′2 − X2 are injective maps of sets in
each simplicial dimension. The product of these maps is also injective. Since
(W1∧eW2)−X1×X2= (W1−X1)×(W2−X2), it follows that W1∧eW2�W ′1∧eW ′2
is also a cofibration. Finally, if W1− X1 and W2− X2 contain only finitely many
nondegenerate simplices, then the same is true of their product. Thus, the pairing
∧e restricts to a pairing of R f (X1)×R f (X2) to R f (X1× X2).

To prove that the functor Z ∧e (– ) : R f (X2)→ R f (X1× X2) preserves pushouts
of cofibrations, start by considering the diagram

X1× X2 Z × X2 ∪X1×X2 X1× Y2oo // // Z × Y2

X1× X2 Z × X2 ∪X1×X2 X1× Y1oo // //

OO

OO

��

Z × Y1

OO

OO

��

X1× X2 Z × X2 ∪X1×X2 X1× Y0oo // // Z × Y0

(2.19)

where the right-pointing arrows are induced from the retractions and the left-pointing
arrows are induced by inclusions. We verify the cofibration hypothesis of Lemma 2.9
using the following diagram to analyze the upper right-hand corner of (2.19):

Z×X2 ∪X1×X2 X1×Y2
xx

xx

(Z×X2 ∪X1×X2 X1×Y1)∪X1×Y1 X1×Y2
∼=
oo X1×Y2oo

Z×Y2 Z×X2 ∪X1×X2 X1×Y1

OO

OO

��

��

Z×X2 ∪X1×X2 X1×Y1
=

oo

OO

OO

��

��

X1×Y1oo

OO

OO

��

��

Z×Y1

ff

ff

Z×Y1
=

oo Z×Y1
=

oo

Pass to pushouts in the columns, apply the universal mapping properties of the
pushouts, and use isomorphism (2.24) to simplify the pushout of the middle column
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to obtain the commuting diagram

Z×Y1 ∪X1×Y1 X1×Y2

∼=
��

Z×Y1 ∪X1×Y1 X1×Y2
∼=

oo

��

��

Z×Y1 ∪(Z×X2∪X1×X2 X1×Y1) (Z×X2 ∪X1×X2 X1×Y2) // Z × Y2

The space Z×Y1∪X1×Y1 X1×Y2 is a subspace of Z×Y2, so the downward arrow on
the right is a cofibration. Since isomorphisms are cofibrations, it follows that the
lower arrow is also a cofibration. Thus, we have verified the cofibration condition
of Lemma 2.9 for (2.19).

We may now calculate the colimit of diagram (2.19) by two different iterative
procedures. Computing the pushouts of the rows first and applying Lemma 2.9
gives a diagram

Z ∧e Y2 � Z ∧e Y1→ Z ∧e Y0 (2.20)

and calculating the pushouts of the columns first and applying Lemma 2.9 again
gives a another diagram

X1× X2← Z × X2 ∪X1×X2 X1× (Y0 ∪Y1 Y2)� Z × (Y0 ∪Y1 Y2). (2.21)

To see this formula for the middle object in (2.21), make the following considera-
tions. We have the diagram

Z2× X2 X1× X2oo // // X1× Y2

Z2× X2

OO
=

OO

=

��

X1× X2oo // //

OO
=

OO

=

��

X1× Y1

OO

OO

��

Z2× X2 X1× X2oo // // X1× Y0

(2.22)

meeting the conditions of Lemma 2.9, whose colimit we also compute iteratively.
Computing the pushouts of the rows first gives precisely the middle column in
(2.19), whose pushout we are now evaluating. On the other hand, computing the
pushouts along the columns first gives a diagram

Z2× X2← X1× X2 � X1× (Y2 ∪Y1 Y0)

whose pushout is the middle term displayed in (2.21). As the iterated pushouts of
(2.22) are isomorphic to the colimit of the entire diagram, the iterated pushouts are
isomorphic. This justifies (2.21).

Completing the analysis of diagram (2.19), the pushouts of (2.20) and (2.21) are
isomorphic, because they both represent the colimit of the original diagram (2.19).
Interpreting this statement, we have the result that Z ∧e – preserves pushouts of
cofibrations.
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Suppose f1 : Y1→ Y ′1 and f2 : Y2→ Y ′2 are weak equivalences in R f (X1) and
R f (X2), respectively. That is, the geometric realizations | f1| and | f2| are homo-
topy equivalences. Then | f1| × id|X2| and id|X1|× | f2| are homotopy equivalences.
By the ordinary gluing lemma for homotopy equivalences applied to the diagram

|Y1| × |X2|

| f1|×id|X2|
��

|X1| × |X2|oooo // //

id|X1|×id|X2|
��

|X1| × |Y2|

id|X1|×| f2|
��

|Y ′1| × |X2| |X1| × |X2|oooo // // |X1| × |Y ′2|

the central arrow in

|X1| × |X2|

id|X1|×id|X2|
��

|Y1| × |X2| ∪|X1|×|X2| |X1| × |Y2|oo // //

'

��

|Y1| × |Y2|

| f1|×| f2|
��

|X1| × |X2| |Y ′1| × |X2| ∪|X1|×|X2| |X1| × |Y ′2|oo // // |Y ′1| × |Y
′

2|

is also a homotopy equivalence. Since the pushout of the last diagram is homeo-
morphic to |Y1 ∧e Y2| → |Y ′1 ∧e Y ′2| (“colimits commute”), Y1 ∧e Y2→ Y ′1 ∧e Y ′2 is
a weak equivalence. �

Remark 2.23. The external smash product also preserves many colimits. How-
ever, our applications principally involve the special colimits that are pushouts of
cofibration squares.

Here is the postponed proof of Lemma 2.9.

Proof of Lemma 2.9. We make frequent use of the isomorphism

(A∪B C)∪C D ∼= A∪B D. (2.24)

The canonical arrow B2∪B1 B0→C2∪C1 C0 factors into the composition of canon-
ical arrows induced by passing to pushouts of the columns in the map of diagrams

B2
=
// B2 // // C2

B1

OO

OO

=
//

��

B1 // //

OO

OO

��

C1

OO

OO

��

B0 // // C0
=
// C0

We show each arrow in the factorization is a cofibration. The first arrow in the
factorization appears as the lower row in the completed pushout diagram

B0 // //

��

C0

��

B2 ∪B1 B0 // // (B2 ∪B1 B0)∪B0 C0
∼=
// B2 ∪B1 C0
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augmented by an isomorphism, so the first arrow is a cofibration, as claimed. From
the hypothesis on the canonical map from B2 ∪B1 C1 to C2, the upper arrow in the
next diagram is a cofibration, so the lower arrow in the completed pushout diagram
is as well:

B2 ∪B1 C1 // //

��

C2

��

B2 ∪B1 C0 (B2 ∪B1 C1)∪C1 C0
∼=
oo // // C2 ∪B2∪B1 C1 ((B2 ∪B1 C1)∪C1 C0)

∼=
// C2 ∪C1 C0

Augmenting the completed pushout diagram by the two isomorphisms, the second
arrow B2 ∪B1 C0→ C2 ∪C1 C0 in the factorization is also a cofibration. Then the
composition B2 ∪B1 B0 � B2 ∪B0 C0 � C2 ∪C1 C0 is a cofibration and this arrow
is isomorphic to the arrow in diagram (2.11).

To obtain the result for the row-wise pushouts from the result for columnwise
pushouts, observe that the properties of the arrows in the diagram are symmetric
with respect to reflection in the diagonal A0 B1C2. Therefore, it suffices to reflect
the diagram in this diagonal and apply the columnwise result. �

Proof of the second part of Theorem 2.1. Since the functor

µ∗ :R f (X × X)→R f (X)

is exact [Waldhausen 1985, Lemma 2.1.6], and we have seen that ∧e is biexact in
Proposition 2.17, the composite ∧µ = µ∗ ◦∧e is biexact. �

Now we take up coherence properties.

Proof of the first part of Theorem 2.1. It is well-known that the disjoint union of sets
and the one-point union ∨ of pointed sets are categorical sum operations, so that all
coherence conditions for these operations are automatically met. For the category
of sets containing a fixed set S the union ∨S of two sets along the common subset
is also the categorical sum, so ∨S fulfills all coherence conditions. Concerning
products, the cartesian product of sets and the smash product of pointed sets are
operations also meeting coherence conditions. When these operations of sum and
product are considered together, they are related by distributivity isomorphisms,
and the combined systems exhibit the coherence properties discussed in [Laplaza
1972]. It is possible to develop the coherence properties we need for operations
on retractive spaces from these basic elements by developing the operation ∨X

dimensionwise and pointwise over X from one-point union and the operation ∧e

dimensionwise and pointwise over X1× X2 from the smash product of pointed sets.
Compare the remark following Definition 2.2. We take a different approach here.

For the sum ∨X , we need a slight extension of the union of sets along a common
subset to cover the case of the disjoint union of two simplicial sets along a common
simplicial subset. Let T be the category of triples (T, r : T → S, s : S→ T ), where
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S and T are sets and the functions satisfy r ◦ s = idS . Occasionally, it is convenient
to view S as a subset of T. A morphism

( f, f ′) : (T1, r1 : T1→ S1, s1 : S1→ T1)→ (T0, r0 : T0→ S0, s0 : S0→ T0)

is a pair of maps f : T1→ T0 and f ′ : S1→ S0 such that s0 f ′= f s1 and r0 f = f ′r1.
An object (Y, r, s) of R(X) can be viewed as a functor 1op

→ T , and conversely.
There is a functor u : T → Set that selects the subset S and morphisms f ′ : S1→ S0.
On the pullback category

T ×Set T //

��

T × T
u×u
��

Set 1
// Set×Set

define the operation (T1, r1 : T1→ S, s1 : S→ T1)∨S (T2, r2 : T2→ S, s2 : S→ T2),
abbreviated (T1, r1, s1)∨S (T2, r2, s2), or even T1 ∨S T2. Set

T1 ∨S T2 = T1q T2 /∼,

where ∼ is the equivalence relation generated by setting s1(x)∼ s2(x) for x ∈ S.
Set i j : T j → T1 ∨S T2 to be the inclusion T j → T1q T2 followed by the quotient
map to T1 ∨s T2. For the rest of the structure, set

r : T1 ∨S T2→ S

to be the unique function satisfying ri j = rj , for j = 1, 2, and let

s : S→ T1 ∨S T2

satisfy s(x)= i1s1(x)= i2s2(x) for x ∈ S. Define

(i1, i ′1 = id) : (T1, s1, r1)→ (T1 ∨S T2, r, s)

to obtain a morphism in T . The identities ri1 = i ′1r1 and si ′1 = i1s1 are satisfied by
definition and by the condition r1s1 = id. Define

(i2, i ′2) : (T2, s2, r2)→ (T1 ∨S T2, r, s).

similarly. If (T ′, r ′, s ′) is another object of T , let ( fi , f ′i ) : (Ti , ri , si )→ (T ′, r ′, s ′)
be a morphism in T ×Set T for i = 1, 2. This just means that f ′1 = f ′2 : S→ S′.
Then the categorical sum properties of the disjoint union on the category Set and
the quotient construction deliver a unique morphism

(h, h′) : (T1 ∨S T2, r ′, s ′)→ (T ′, r ′, s ′)
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such that (h, h′)◦ (i1, i ′1)= ( f1, f ′1) and (h, h′)◦ (i2, i ′2)= ( f2, f ′2). When the base
set is fixed, we obtain a categorical sum; in general, when the base set varies, we
obtain a (partially defined) categorical sum on T .

We have observed that an object of the category R(X) is a simplicial object
in the category T , that is, a functor 1op

→ T . A pair of objects (Y1, r1, s1) and
(Y2, r2, s2) in R(X) defines a functor 1op

→ T ×Set T . We obtain the operation
(Y1, r1, s1)∨X (Y2, r2, s2) based on the dimensionwise operation (Y1)p ∨X p (Y2)p.
This makes ∨X a categorical sum in R(X), with unit (zero element, thinking
additively) the space X . The commutativity isomorphisms γ ′, associativity iso-
morphisms α′, and left and right unit isomorphisms λ′ and ρ ′ are straightforward
consequences of the analogous properties of the disjoint union operation on sets.
Essentially, all the basic properties required for coherence of the sum operation
∨X are automatically fulfilled. That ∨X is the categorical sum simplifies almost
all coherence considerations involving diagrams involving both ∨X and ∧µ.

To complete the input for LaPlaza’s coherence result we need to identify in
R(X) an additive identity, a multiplicative zero element, a multiplicative identity,
commutativity and associativity isomorphisms for ∧µ, and, finally, distributivity
isomorphisms.

Clearly (X, id, id) is the identity for ∨X . Example 2.4 implies that (X, id, id) is
a zero object from the left and the right for ∧µ, in the sense that there are natural
isomorphisms

λ∗Y : X ∧µ Y → X and ρ∗Y : Y ∧µ X→ X.

Example 2.5 combined with Proposition 2.16 delivers the fact that ie∗(S0)= X∨S0,
where the base point of S0 is identified with the multiplicative identity of X and
the retraction collapses S0 to the identity of X , is a multiplicative identity in the
sense that there are natural isomorphisms

λY : (X∨S0)∧µ Y → Y and ρY : Y ∧µ (X∨S0)→ Y.

For commutativity of the product ∧µ = µ∗ ◦∧e, we have the following consid-
erations. Use commutativity for cartesian products and apply the definitions from
(2.8) of the internal smash product to obtain the following diagram:

X X × X
µ
oo

γ

��

Y1× X ∪X×X X × Y2oo // //

γ

��

Y1× Y2

γ

��

X X × X
µ
oo Y2× X ∪X×X X × Y1oo // // Y2× Y1

(2.25)

In the diagram the arrows labeled γ are the isomorphisms switching the factors in
the cartesian products. Note that

r1 ∧µ r2 = µ∗(r1 ∧e r2)= r1 · r2 = r2 · r1 = µ∗(r2 ∧e r1)= r2 ∧µ r1,
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since X is abelian. Passage to pushouts yields an isomorphism

γY1,Y2 : (Y1 ∧µ Y2, r1 ∧µ r2, s1 ∧µ s2)
∼=
−→ (Y2 ∧µ Y1, r2 ∧µ r1, s2 ∧µ s1).

It is easily seen that γY2,Y1γY1,Y2 = id holds (often written “γ 2
= id” and called the

inverse law), and that the left and right unit laws are compatible. These facts are
recorded in the following commuting diagrams:

Y2 ∧µ Y1
γY2,Y1

%%

Y ∧µ (X∨S0)
γY,X∨S 0

//

ρY
$$

(X∨S0)∧µ Y

λYyy
Y1 ∧µ Y2

γY1,Y2
88

Y1 ∧µ Y2 Y

Consider now associativity, for which we use the diagram

((Y1× Y2)× X)∪ ((Y1× X)× Y3)
∪((X × Y2)× Y3)

µ(µ(r1,r2),id)∪µ(µ(r1,id),r3)

∪µ(µ(id,r2),r3)
vv

// // (Y1× Y2)× Y3

X

((Y1× X)× X)
∪ ((X × Y2)× X)

OO

OO

(µ(r1,id),id)
∪(µ(id,r2),id)

��

µ(µ(r1,id),id)
∪µ(µ(id,r2),id)

vv

//
=

// ((Y1× X)× X)
∪ ((X × Y2)× X)

OO

OO

(µ(r1,id),id)
∪(µ(id,r2),id)

��

X
OO

=

OO

=

��

X × X
µ

uu

//
=

// X × X

X

(2.26)

The point is that the associativity for ∧µ rests on associativity for ×, ∪, and associa-
tivity of the multiplication µ on X . By passage to colimits we obtain associativity
for ∧µ. For the usual smash product, associativity for cartesian products passes to
associativity for smash products; our argument is similarly structured.

The first step is to obtain an expression for (Y1 ∧µ Y2) ∧µ Y3 that involves
only cartesian products and colimits. Diagram (2.26) fulfills the hypotheses of
Lemma 2.9, so we may calculate the colimit iteratively in two ways. Taking the
colimit along the columns produces the diagram

X ((Y1 ∧µ Y2)× X)∪ (X × Y3)
µ(r12,id)∪µ(id,r3)
oo // // (Y1 ∧µ Y2)× Y3
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whose colimit is by definition (Y1 ∧µ Y2)∧µ Y3. On the other hand, computing the
colimit along the rows produces the diagram

((Y1× Y2)× X)∪ ((Y1× X)× Y3)
∪ ((X × Y2)× Y3)

µ(µ(r1,r2),id)∪µ(µ(r1,id),r3)

∪µ(µ(id,r2),r3)
vv

// // (Y1× Y2)× Y3

X

a copy of the top row in (2.26). Therefore, the colimit, or pushout, of this diagram
is another representation of (Y1∧µ Y2)∧µ Y3, and we record the completed diagram

((Y1× Y2)× X)∪ ((Y1× X)× Y3)
∪ ((X × Y2)× Y3)

µ(µ(r1,r2),id)∪µ(µ(r1,id),r3)∪µ(µ(id,r2),r3)

��

// // (Y1× Y2)× Y3

��

X // // (Y1 ∧µ Y2)∧µ Y3

(2.27)

as a preferred alternative representation of (Y1 ∧µ Y2)∧µ Y3. Starting from a di-
agram similar to (2.26), but with parentheses shifted to the right, there is another
completed pushout diagram

(Y1× (Y2× X))∪ (Y1× (X × Y3))
∪ (X × (Y2× Y3))

µ(r1,µ(r2,id))∪µ(r1,µ(id,r3))∪µ(id,µ(r2,r3))

��

// // Y1× (Y2× Y3)

��

X // // Y1 ∧µ (Y2 ∧µ Y3)

(2.28)

representing Y1 ∧µ (Y2 ∧µ Y3). Consequently, the associativity isomorphisms

αY1,Y2,Y3 : Y1× (Y2× Y3)→ (Y1× Y2)× Y3,

αY1,Y2,X : Y1× (Y2× X)→ (Y1× Y2)× X,

and so on, induce an isomorphism of diagram (2.28) with diagram (2.27) and an
associativity isomorphism

αY1,Y2,Y3 : Y1 ∧µ (Y2 ∧µ Y3)→ (Y1 ∧µ Y2)∧µ Y3. (2.29)

In Laplaza’s framework [1972], left distributivity of the product over the sum
operation is encoded by a monomorphism

δY0,Y1,Y2 : Y0 ∧µ (Y1 ∨X Y2)→ (Y0 ∧µ Y1)∨X (Y0 ∧µ Y2).

The fact that ∨X is a categorical sum enables us to construct an isomorphism
δ−1

Y0,Y1,Y2
: (Y0 ∧µ Y1) ∨X (Y0 ∧µ Y2)→ Y0 ∧µ (Y1 ∨X Y2) quite easily as follows.

Applying the functor Y0 ∧µ – to the sum diagram Y1→ Y1 ∨X Y2← Y2 provides a
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diagram Y0∧µ Y1→ Y0∧µ (Y1∨X Y2)← Y0∧µ Y2. Since ∨X is a categorical sum,
there results a map (Y0∧µY1)∨X (Y0∧µY2)→ Y0∧µ (Y1∨X Y2). To check that this
map is an isomorphism observe that in a simplicial dimension p the p-simplices
outside of X in the domain are (Y0−X)p×(Y1−X)pq(Y0−X)p×(Y2−X)p, the
p-simplices outside of X in the target are (Y0−X)p×((Y1−X)pq(Y2−X)p), and
the induced map is a one-to-one correspondence. Thus, we obtain the isomorphism
δ−1

Y0,Y1,Y2
: (Y0 ∧µ Y1)∨X (Y0 ∧µ Y2)→ Y0 ∧µ (Y1 ∨X Y2), whose inverse

δY0,Y1,Y2 : Y0 ∧µ (Y1 ∨X Y2)∼= (Y0 ∧µ Y1)∨X (Y0 ∧µ Y2) (2.30)

can be shown to meet LaPlaza’s conditions. Similarly, we obtain an isomorphism

δ#
Y0,Y1,Y2

: (Y0 ∨X Y1)∧µ Y2 ∼= (Y0 ∧µ Y2)∨X (Y1 ∧µ Y2). (2.31)

This concludes the catalog of basic inputs for LaPlaza’s theorem.
Given the basic inputs, the next step is to establish the commutativity of certain

diagrams, twenty-four in number. Because ∨X is a categorical sum and ∧µ is
biexact, preserving sums, checking the commutativity of seventeen of the diagrams
is routine. The other seven diagrams involve the multiplicative or additive neutral
objects or the multiplicative zero object and are straightforward to verify. LaPlaza’s
main theorem applies and “all diagrams that should commute do, in fact, commute”.
These remarks complete the proof of part one of Theorem 2.1. �

3. Defining the operations

The ingredients for the operations take values in categories of retractive spaces
on which groups are acting. We first establish language and notation following
[Gunnarsson and Schwänzl 2002, Definitions 5.1–5.4] for the following definitions.

Definition 3.1. A set F of subgroups of 6n is called a family of subgroups if it
contains at most one member from each conjugacy class of subgroups.

Definition 3.2. For a finite group G, a G-simplicial set Y has orbit types in a family
F relative to another G-simplicial set W if Y may be obtained from W by direct
limit and by formation of pushouts of diagrams of the form

Y ′← ∂1n
× (G/H)�1n

× (G/H), (3.3)

where 1n is the standard simplicial n-simplex, ∂1n is the simplicial boundary,
and H ∈ F .

Definition 3.4. For a 6n-simplicial set W, let R(W, 6n,F) denote the category
whose objects are the triples (Y, r, s), where Y is a 6n-simplicial set with orbit
types in F relative to a 6n-section s : W → Y . The map r : Y → W is a 6n-
retraction of Y to W , that is, r ◦ s = idW . Morphisms are 6n-equivariant maps
commuting with the retractions and sections.
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Definition 3.5. Let R f (W, 6n,F) denote the full subcategory of R(W, 6n,F)
whose objects are the triples (Y, r, s) such that Y is built from W by formation of
finitely many pushouts of the form of (3.3). The category R f (W, 6n,F) is also
equipped with cofibrations and weak equivalences. A cofibration (W1, r1, s1)�
(W2, r2, s2) is an injective6n-map and a weak equivalence (Y1, r1, s1)→(Y2, r2, s2)

is a morphism for which the geometric realization of the underlying map Y1→ Y2

is a 6n-equivariant homotopy equivalence.

For X a connected simplicial abelian group on which 6n acts trivially, we need
the categories R f (X, 6n, {all}) of retractive left 6n-spaces Ỹ over X which are fi-
nite relative to X . In principle, we may also allow X to be a connected commutative
simplicial monoid with unit. We write�|wS•R f (X, 6n, {all})| = A6n,{all}(X). The
category of retractive left 6n-spaces on which 6n acts with trivial isotropy outside
of X is then R f (X, 6n, {e}). In other words, the 6n-action on simplices outside of
X is free on those simplices. Later, we abbreviate R f (X, 6n, {e}) = R f (X, 6n).
In Lemma 7.3 we justify the notation �|wS•R f (X, 6n, {e})| = A(X × B6n).

There are two constructions underlying our approach to the Segal operations.
First is a family of biexact functors

�k,` :R f (X, 6k, {all})×R f (X, 6`, {all})→R f (X, 6k+`, {all})

defined for k, ` ≥ 0, called box-tensor operations (Definition 3.10). Second is a
family of functors

�n,k :R f (X, 6n, {all})[k]→R f (X, 6kn, {all}),

called diamond operations (Definition 3.16). Here R f (X, 6n, {all})[k] is the cate-
gory of filtered objects

Y1 � Y2 � · · ·� Yk

with Yi in R f (X, 6n, {all}) and natural transformations of such sequences.
First we set up the box-tensor operation. For a connected simplicial abelian

group X , let n = k+ ` and define an induction functor

Ind6n
6k×6`

:R f (X, 6k ×6`, {all})→R f (X, 6n, {all}). (3.6)

Let n be a finite set of cardinality n (for example, the standard example), let
k ∪ l be the disjoint union of finite sets of cardinality k and l, respectively, and
let Iso(n, k ∪ l) be the set of isomorphisms from n to the disjoint union. Let
Iso(n, k∪l)+= Iso(n, k∪l)∪{∗} be viewed as an object of R f (∗), with the obvious
section and with the retraction the constant map to {∗}. The group 6n acts from
the left on Iso(n, k∪ l)+ by fixing the basepoint and by the rule σ · f = f ◦ σ−1

for σ ∈ 6n and f : n → k ∪ l . Normally 6k × 6` also acts from the left by
post-composition, but we find it convenient to use the right action defined by
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f · (σ1, σ2)= (σ
−1
1 , σ−1

2 )◦ f . For (Y, r, s) ∈R f (X, 6k×6`, {all}) we unwind the
defining pushout square

(Iso(n, k∪ l)+× X)∪∗×X (∗× Y ) // //

��

Iso(n, k∪ l)+× Y

��

∗× X // // Iso(n, k∪ l)+ ∧e Y

(3.7)

to find that the exterior smash product Iso(n, k∪ l)+∧e Y amounts to Iso(n, k∪ l)-
copies of Y , pasted together along the common subspace X . The retraction

r ′ : Iso(n, k∪ l)+ ∧e Y → X

given by r ′([ f, y]) = r(y) is 6n-equivariant when 6n acts trivially on X . We
may also apply the principle of Proposition 2.16 to re-express the exterior smash
product as an internal smash product and write

Iso(n, k∪ l)+ ∧e Y ∼= (X ∨ Iso(n, k∪ l)+)∧µ Y.

Define Iso(n, k∪ l)+∧6k×6`
e Y to be the quotient space of Iso(n, k∪ l)+∧e Y by

the equivalence relation generated by [ f · (σ1, σ2), y] ∼ [ f, (σ1, σ2) · y]. The left
action of 6n passes to the quotient, and, since the action of 6n on X is trivial, the
retraction r ′ defined above also passes to the quotient, as does the section. Thus,
we obtain the necessary structure maps

X � Iso(n, k∪ l)+ ∧6k×6`
e Y r

−→ X.

This completes the definition of the induction functor

Ind6n
6k×6`

:R f (X, 6k ×6`, {all})→R f (X, 6n, {all}). (3.8)

Next we need an elementary pairing functor

R f (X, 6k, {all})×R f (X, 6`, {all})→R f (X, 6k ×6`, {all}). (3.9)

The pairing sends ((Y1, r1, s1), (Y2, r2, s2)) to (Y1, r1, s1)∧µ (Y2, r2, s2).

Definition 3.10. Define the box-tensor operations by composing the pairing func-
tor (3.9) with the induction functor (3.8):

�k,` :R f (X, 6k, {all})×R f (X, 6`, {all})
∧µ
−−→R f (X, 6k ×6`, {all})

Ind6n
6k×6`

−−−−−→R f (X, 6n, {all}) (3.11)

Proposition 3.12. The box-tensor operations are associative up to natural isomor-
phism.
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Proof. The associativity of the box-tensor operations is a consequence of the
symmetric monoidal structure on R f (X) associated with ∧µ, along with proper-
ties of the cartesian product of groups and disjoint union of sets. Abbreviating
idR f (X,6k1 ,{all}) by id1 and idR f (X,6k3 ,{all}) by id3, the assertion in detail is that the
diagram

R f (X, 6k1 , {all})×R f (X, 6k2 , {all})×R f (X, 6k3 , {all})

�k1,k2×id3

ww

id1×�k2,k3

''

R f (X, 6k1+k2 , {all})×R f (X, 6k3 , {all})

�k1+k2,k3
''

R f (X, 6k1 , {all})×R f (X, 6k2+k3 , {all})

�k1,k2+k3
ww

R f (X, 6k1+k2+k3 , {all})

commutes up to canonical isomorphism. Given a triple (Y1, Y2, Y3) in the category
at the top of the diagram, the value of the left-hand sequence of arrows is

Iso(k1+ k2+ k3, k1+ k2 ∪ k3)+

∧
6k1+k2×6k3
e

((
Iso(k1+ k2, k1 ∪ k2)+ ∧

6k1×6k2
e Y1 ∧µ Y2

)
∧µ Y3

)
,

and we claim this space is isomorphic to

Iso(k1+ k2+ k3, (k1 ∪ k2)∪ k3)+ ∧
(61×62)×63
e (Y1 ∧µ Y2)∧µ Y3. (3.13)

To clarify the notation, k1+ k2+ k3 denotes the standard finite set of cardinality
k1+k2+k3, k1+k2∪k3 denotes the disjoint union of finite sets of cardinality k1+k2

and k3, and so on. Similarly, the value of the right-hand sequence of arrows is

Iso(k1+ k2+ k3, k1 ∪ k2+ k3)+

∧
6k1×6k2+k3
e

(
Y1 ∧µ

(
Iso(k2+ k3, k2 ∪ k3)+ ∧

6k2×6k3
e Y2 ∧µ Y3

))
,

which we claim is isomorphic to

Iso(k1+ k2+ k3, k1 ∪ (k2 ∪ k3))+ ∧
61×(62×63)
e Y1 ∧µ (Y2 ∧µ Y3). (3.14)

The spaces in (3.13) and (3.14) are isomorphic by the combination of the associativ-
ity isomorphisms for disjoint union, cartesian products of groups, and the smash
product ∧µ. Thus, we have proved that the box-tensor operations are naturally
associative, granting the two isomorphisms.

To establish one of these isomorphisms requires several steps. We concentrate
on the first case, since the second is completely parallel. First, since Iso(k3, k3)=6k3 ,
there is an isomorphism

Iso(k3, k3)+ ∧
6k3
e Y3

∼=
−→ Y3 (3.15)
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in R f (X, 63) induced by the formula [ f3, y] 7→ f −1
3 y. With the right action of 6k3

on Iso(k3, k3) given by f ·σ =σ−1
◦ f , we have [ f3 ·σ, y] 7→ (σ−1 f3)

−1 y= f −1
3 σ y;

starting from [ f3, σ y], we also arrive at f −1
3 σ y. Thus, a map

Iso(k3, k3)+ ∧
6k3
e Y3→ Y3

exists. Surjectivity is clear. For injectivity, if [ f3, y] and [ f ′3, y′] map to the same
element of Y , we have f −1

3 y= ( f ′3)
−1 y′. Putting σ = f ′3 f −1

3 , we have y′ = σ y and
f ′3 · σ = σ

−1 f ′3 = f3( f ′3)
−1 f ′3 = f3, so [ f3, y] = [ f ′3 · σ, y] ∼ [ f ′3, σ y] = [ f ′3, y′].

To get equivariance, recall that the left action of 6k3 on Iso(k3, k3) is given by
σ · f3 = f ◦ σ−1. Thus,

[σ ∗ f, y] = [ f ◦ σ−1, y] 7→ ( f ◦ σ−1)−1 y = σ( f −1 y)

shows equivariance.
Consequently,

Iso(k1+ k2+ k3, k1+ k2 ∪ k3)+

∧
6k1+k2×6k3
e

((
Iso(k1+ k2, k1 ∪ k2)+ ∧

6k1×6k2
e Y1 ∧µ Y2

)
∧µ Y3

)
is isomorphic to

Iso(k1+ k2+ k3, k1+ k2 ∪ k3)+

∧
6k1+k2×6k3
e

((
Iso(k1+ k2, k1∪ k2)+ ∧

6k1×6k2
e Y1∧µY2

)
∧µ

(
Iso(k3, k3)+∧

6k3
e Y3

))
.

Applying a commutativity isomorphism of the product ∧e, this is isomorphic to(
Iso(k1+k2+k3, k1+k2∪k3)+∧

6k1+k2×6k3
e

(
Iso(k1+k2, k1∪k2)+∧e Iso(k3, k3)+

))
∧
(6k1×6k2 )×6k3
e (Y1 ∧µ Y2)∧µ Y3.

Now we claim there is an isomorphism(
Iso(k1+k2+k3, k1+k2∪k3)+∧

6k1+k2×6k3
e

(
Iso(k1+k2, k1∪k2)+∧e Iso(k3, k3)+

))
∼= Iso

(
k1+ k2+ k3, (k1∪ k2)∪ k3

)
+

induced by the formula [ f123, [ f12, f3]] 7→ ( f12, f3)◦ f123. We check that balanced
expressions in(

Iso(k1+ k2+ k3, k1+ k2 ∪ k3)+ ∧e
(
Iso(k1+ k2, k1 ∪ k2)+ ∧e Iso(k3, k3)+

))
map to the same element of the target:

[ f123 · (g12, g3), [ f12, f3]] = [(g−1
12 , g−1

3 ) ◦ f123, [ f12, f3]]

7→ ( f12, f3) ◦
(
(g−1

12 , g−1
3 ) ◦ f123

)
.
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On the other hand,

[ f123, (g12, g3)·[ f12, f3]]=[ f123, [ f12◦g−1
12 , f3◦g−1

3 ]] 7→ ( f12◦g−1
12 , f3◦g−1

3 )◦ f123

and these expressions are the same, by associativity of composition. Now suppose
[ f123, [ f12, f3]] and [ f ′123, [ f

′

12, f ′3]] map to the same isomorphism. The equation
( f12, f3)◦ f123= ( f ′12, f ′3)◦ f ′123 is equivalent to ( f ′12, f ′3)

−1
◦( f12, f3)= f ′123◦ f −1

123.
Putting (σ12, σ3)= ( f ′12, f ′3)

−1
◦( f12, f3)= f ′123 ◦ f −1

123, we have

f ′123 · (σ12, σ3)= ( f ′123 ◦ f −1
123)
−1
◦ f ′123 = f123,

and

(σ12, σ3) · ( f12, f3)= ( f12, f3) ◦
(
( f ′12, f ′3)

−1
◦ ( f12, f3)

)−1
= ( f ′12, f ′3),

so that

[ f123, [ f12, f3]] = [ f ′123 · (σ12, σ3), [ f12, f3]]

∼ [ f ′123, (σ12, σ3) · [ f12, f3]] = [ f ′123, [ f
′

12, f ′3]]. �

The diamond operation �k,1 = �k requires some preliminary definitions. First re-
call the category of filtered objects FkR f (X) from [Waldhausen 1985, Section 1.1];
this is a category with cofibrations and weak equivalences. Let

P = (P1 � P2 � · · ·� Pk)

be an object of FkR f (X). For functions f, g : k→ k we say f ≤ g if f (i)≤ g(i)
for all i ∈ k. Let I (k)= { f : k→ k | there is σ ∈6k such that f ≤ σ }.

The set I (k) is partially ordered by ≤, and the sequence P defines a functor
P : I (k)→R f (X) by the rule P( f )= P f (1) ∧µ P f (2) ∧µ · · · ∧µ P f (k) on objects.
We apply the convention that parentheses in iterated products are collected to the
left. In particular, P f (1) ∧µ P f (2) ∧µ P f (3) = (P f (1) ∧µ P f (2)) ∧µ P f (3), and, in
general,

P f (1) ∧µ P f (2) ∧µ · · · ∧µ P f (k) = (· · · (P f (1) ∧µ P f (2))∧µ · · · ∧µ P f (k)).

For arrows we observe that f ≤ g implies there are cofibrations P f (i) � Pg(i)

which induce a cofibration P( f )� P(g). This depends on the exactness of ∧µ,
proved in Theorem 2.1.

Definition 3.16. Define the functor �k : FkR f (X)→R f (X, 6k, {all}) on objects
by making a choice of colimI (k) P and setting

�k(P)= colim
I (k)

P.

The definition extends to arrows by the universal property of the colimit. The 6k

action is induced by the permutation of factors.
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Example 3.17. Applied to a constant cofibration sequence Y = (Y =�Y =� · · · =�Y )
of length k, we obtain simply

�k(Y )= Y ∧µ Y ∧µ · · · ∧µ Y

with the group 6k permuting the factors. Thus, the purpose of �k is to extend
∧µ-powers to filtered objects.

Definition 3.18. The generalized diamond operation

�n,k : FkR f (X, 6n, {all})→R f (X, 6nk, {all})

is a composition

�n,k : FkR f (X, 6n, {all}) �k
−→R f (X, Bn,k, {all})

Ind
6nk
Bn,k

−−−−→R f (X, 6nk, {all}),

with a basic diamond operation �k followed by an induction construction Ind6nk
Bn,k

.
The intermediate group Bn,k is the group of block permutations of nk objects
blocked into k groups of n objects. Thus, the group Bn,k is a wreath product:
Bn,k =6k o6n . Explicitly, there is a short exact sequence of groups

1→ (6n)
k
→ Bn,k→6k→ 1.

Recall G• briefly here, following [Gunnarsson et al. 1992]. For a simplicial set
Z the corresponding simplicial path set PZ is defined by PZn = Zn+1. The face
operator di : PZn → PZn−1 coincides with di+1 : Zn+1 → Zn; the degeneracy
operator si : PZn→ PZn+1 coincides with si+1 : Zn+1→ Zn+2. The face operator
d0 : Zn+1 → Zn induces a simplicial map d0 : PZ → Z . The simplicial set PZ
is simplicially homotopy equivalent to the constant simplicial set Z0 [Waldhausen
1985, Lemma 1.5.1, p. 328]. Viewing Z1 = PZ0 as another constant simplicial set
provides a simplicial map Z1→ PZ .

Definition 3.19 [Gunnarsson et al. 1992, p. 257]. For a category C with cofibrations
and weak equivalences the simplicial category G•C is defined by the cartesian
square

wG•C //

��

PwS•C

d0
��

PwS•C
d0

// wS•C

(3.20)

Recalling a few more details from [Gunnarsson et al. 1992], G•C has cofibra-
tions and weak equivalences. As GnC= (PS•C)n×SnC (PS•C)n= Sn+1C×SnC Sn+1C,
the weak equivalences and cofibrations in wG•C are given by pullback. There is
also a stabilization map η : C→ G•C, where C is viewed as a constant simplicial
category with cofibrations and weak equivalences, defined as follows. We have the
map C = (PwS•C)0→ PwS•C and the constant map C→ PwS•C carrying C to
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the terminal object. These two combine to give an inclusion η : C→ G•C. After
passing to diagonals, the construction may be iterated so there results a stabilization
sequence

C→G•C→G•(G•C)→ · · ·→ Gn
•
C := G(Gn−1

•
C)→ · · ·→ colim

n
Gn
•
C := G∞

•
C

of simplicial categories with cofibrations and weak equivalences. Returning to
the square (3.20), after passage to nerves in the w-direction, diagonalization, and
geometric realization, there results a natural map

|wG•C| →�|wS•C|.

This may not always be a homotopy equivalence, but it is a homotopy equivalence
when C has a property called pseudo-additivity [Gunnarsson et al. 1992, Defini-
tion 2.3 and Theorem 2.6]. In our case, with C =R f (X) we follow [Gunnarsson
et al. 1992] to achieve the pseudo-additivity property by using the cylinder functor
defined in [Waldhausen 1985, Section 1.6]. The cylinder functor induces a cone
functor c : R f (X)→ R f (X) and a suspension functor 6 : R f (X)→ R f (X) so
that we may define a category of prespectra

6∞R f (X)= colim
(
R f (X)

6
−→R f (X)

6
−→R f (X)

6
−→ · · ·

)
.

Then 6∞R f (X) has the pseudo-additivity property [Gunnarsson et al. 1992, Re-
mark 2.4 and Lemma 2.5, p. 258–259], so

|wG•6∞R f (X)| →�|wS•6∞R f (X)|

is a weak homotopy equivalence. Also, by [Waldhausen 1985, Proposition 1.6.2],
|wS•R f (X)| → |wS•6∞R f (X)| is a weak homotopy equivalence.

Additionally, we need the fact that there are weak homotopy equivalences

|wG∞
•
C| →�|wG∞

•
S•C| ←�|wS•C| (3.21)

for any category C with cofibrations and weak equivalences [Gunnarsson et al.
1992, Theorem 4.1, p. 268].

The G•C construction has an explicit description as a category of exact functors.
For full details refer to [Gunnarsson and Schwänzl 2002; Grayson 1989]. First,
extend the partially ordered set A ∈ 1 to the set γ (A) = {L , R} q A with the
ordering in which L and R are not comparable, L < a and R < a for every a ∈ A,
and, for a, a′ ∈ A, a< a′ in γ (A) if and only if a< a′ in A. Pictorially, for A= [n],
γ (A) looks like

L
)) 0 // 1 // · · · // n

R
55
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The category 0(A) is the category of arrows in γ (A), omitting the identity ar-
rows on L and R. Diagrammatically, 0(A) looks like

0/L // //

��

1/L // //

��

· · · // // n/L

��

0/R // //

%%

1/R // //

%%

· · · // // n/R

%%

0/0 // // 1/0 // //

��

· · · // // n/0
��

1/1 // // · · · // // n/1
��

· · ·
...

��

n/n

Here a/b stands for b→ a (or b< a), and an arrow a/b→ c/d stands for a square

a // c

b

OO

// d

OO

in γ (A). The exact sequences in 0(A) are sequences j/k → i/k → i/j where
k→ j→ i in γ (A). Then, for A ∈1,

G AC = Exact(0(A), C).

Since 0(A) is functorial in A, preserving exact sequences j/k→ i/k→ i/j , we
have another description of G•C :1op

→Cat. In this interpretation the stabilization
η : C→ G•C sends an object C of C to the functor η(C) : 0(A)→ C whose value
at i/L is C for all i ∈ A and whose value at any other object of 0(A) is the zero
object of C. Given an arrow i/L→ i ′/L in 0(A), η(C) assigns to it the identity
on C ; other arrows are assigned by the universal property of the zero object.

Definition 3.22 (cf. [Gunnarsson and Schwänzl 2002, Section 2.1, p. 268; Grayson
1989, Section 4]). Let Z be a simplicial object in a category D. Define a concate-
nation operation con :1k

→1. For a sequence (A1, . . . , Ak) of finite nonempty
ordered sets, order their disjoint union A1q · · ·q Ak so that the subset Ai inherits
the original order and so that, if i ≤ j and ai ∈ Ai and a j ∈ A j , then ai < a j . Then
define the k-fold edgewise subdivision of a simplicial object Z to be the composite
functor

subk Z :1k con
−−→1

Z
−→ D.

For a simplicial set Z there is a natural homeomorphism |subk Z | → |Z |.
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Several more constructions are necessary before we can define for every integer
k ≥ 1 operations

ωk
: w subk G•R f (X)→ wGk

•
R f (X, 6k, {all}).

The original framework has proved to be quite robust, so we refer to [Grayson 1989,
Sections 5–7; Gunnarsson and Schwänzl 2002, Section 2] for complete details and
summarize what we use.

Theorem 3.23 [Grayson 1989, Sections 5–7, pp. 253–257]. For A ∈1, let 01(A)
be the category 0(A) discussed before Definition 3.22.

(1) For each A ∈ 1 and for each integer k ≥ 1 there is a category with exact
sequences 0k(A). The category 0k(A) is natural in the variable A.

(2) For A1, . . . , Ak ∈1, let A1 . . . Ak be the concatenation. There is a functor

4k : 0(A1)× · · ·×0(Ak)→ 0k(A1 . . . Ak)

which is multi-exact, i.e., exact in each variable separately, and is natural in
each of the variables. �

Grayson [1989, pp. 255–256] enumerates compatibility conditions (E1)–(E5)
abstracted from properties of higher exterior powers and tensor products when
applied to filtered modules. Given that the box-tensor operations � and diamond
operations �n,k fulfill (E1)–(E5) the robustness of the framework enables us to
make the following observation.

Definition 3.24. For A ∈1, the collection of operations �n,k and � define functors

3k
�,� : Exact

(
0(A),R f (X, 6n, {all})

)
→ Exact

(
0k(A),R f (X, 6n,k, {all})

)
.

These functors are natural in A.

Remark 3.25. Since we don’t need the explicit formula for 3k
�,� except in a few

specific cases, we refer the reader to the discussion in [Grayson 1989, p. 256–257]
for all the details. For guidance, we point out that the categories 0k(A) mentioned
in Theorem 3.23 are constructed precisely to deliver the definition of 3k

�,� on
an object. Properties (E1) through (E4) ensure that the formulas on arrows yield
a well-defined functor. Property (E5) of Grayson’s list ensures that the functors
3k
�,� carry an exact functor M to another exact functor.

In our situation we need the following property of a category with cofibrations.

Definition 3.26 (cf. [Gunnarsson et al. 1992, Definition 4.3, p. 274]). A category
C with cofibrations has the extension property if for all commutative diagrams of
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cofibration sequences
A // //

��

��

B // //

i
��

C
��

��

A′ // // B ′ // // C ′

in C, with vertical cofibrations as indicated, it follows that the middle arrow i is
also a cofibration.

Lemma 3.27. Let C be a category with cofibrations, A1, . . . , Ak ∈ 1, and let
A1 . . . Ak be the concatenation.

(1) If C has the extension property, then the natural inclusion

Gk
A1...Ak

C→ Exact(0(A1)× · · ·×0(Ak), C)

is an isomorphism.

(2) The categories R f (X, 6n,F) with cofibrations have the extension property.

Proof. The first statement is [Gunnarsson and Schwänzl 2002, Remark 4.4, p. 274].
For (2), because we are working inside R(X) with simplicial sets, cofibrations are
the injective maps. Therefore, the extension property holds for R f (X, 6n,F). �

Proposition 3.28 [Gunnarsson and Schwänzl 2002, Proposition 4.5]. The box-
tensor operations and the diamond operations fulfill properties (E1)–(E5).

Proof. Properties (E1)–(E4) are consequences of the symmetric bimonoidal struc-
ture of Theorem 2.1. Properties (E3) and (E4) also depend on the associativity of
� established in Proposition 3.12. Property (E5) depends on the extension prop-
erty of Definition 3.26 and takes some additional work manipulating cocartesian
diagrams, cofibration sequences, and colimits. The necessary steps are laid out
in [Gunnarsson and Schwänzl 2002, Lemmas 4.6–4.10, Corollary 4.11]. Because
all those manipulations rely just on the coherence of the symmetric bimonoidal
category structure, all steps work in the present, more general, situation. �

The subdivision construction (concatenation), the functors 3k
�,�, and the func-

tors 4k come into play in the following definition.

Definition 3.29. For k ≥ 1, the components ωk for the total Segal operation are
defined as follows:

Exact
(
0(A1 . . . Ak),R f (X, 6n, {all})

) subk 3
k
//

ωk

��

Exact
(
0k(A1 . . . Ak),R f (X, 6n, {all})

)
4k

vv

Exact
(
0(A1)× · · ·×0(Ak),R f (X, 6n, {all})

)
(3.30)
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By Lemma 3.27(1) we may interpret Exact
(
0(A1)×· · ·×0(Ak),R f (X,6n, {all})

)
as Gk

A1...Ak
R f (X, 6n, {all}). The result is a family of functors

ωk
: w subk G•R f (X)→ wGk

•
R f (X, 6k, {all})

for k ≥ 1.
Referring to the discussion preceding Definition 3.22, the stabilization map

η :R f (X)→ G0R f (X) has been concisely written in [Gunnarsson and Schwänzl
2002] as

(Y, r, s) 7→ η((Y, r, s))=
Y
X
.

The extension to higher simplicial dimensions admits the description (s0)
k(η(Y )),

where sk
0 : G0R f (X)→ GkR f (X) is the iterated degeneracy. This can be denoted

Y = Y = · · · = Y
X = X = · · · = X

(3.31)

where the top row indicates constant filtered object and the bottom row indicates
the constant filtration of the zero object. Since subk G•C in simplicial dimension 0
can be identified with GkC, diagram (3.31) also represents

η :R f (X)→ subk G0R f (X)

for each k ≥ 1. The next example incorporates Example 3.17 and is fundamental.

Example 3.32. The formula for the composite

α̃k
1 :R f (X)

η
−→ subk G•R f (X)

ωk
−−→ Gk

•
R f (X, 6k, {all}) (3.33)

is the functor 0([0])k→R f (X, 6k, {all}) given by{
Y ∧µ Y ∧µ · · · ∧µ Y in positions 0/L , 0(2)/L(2), . . . , 0(k)/L(k),
X in all other positions.

4. E∞-structure and restriction to spherical objects

We have already seen that, in order to obtain the algebraic K-theory of spaces using
the G•-model, one uses a category of prespectra 6∞R f (X) obtained from R f (X)
by passage to a limit using a suspension operation. We are now going to deal with
natural transformations of semigroup valued functors

[ – ,R f (X)] →
[

– , {1}×
∏
n≥1

A6n,{all}(X)
]
,

where the target is an abelian-group-valued functor. First we restrict to categories of
n-spherical objects Rn

f (X), whose definition is recalled below. Segal’s group com-
pletion theorem [1974a, Proposition 4.1] provides a unique natural transformation
of abelian-group-valued functors [–, �|hN0Rn

f (X)|]→
[
–, {1}×

∏
n≥1 A6n,{all}(X)

]
.
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In the domain, hN•Rn
f (X) is the simplicial category arising from the categorical

sum operation ∨, as described in [Waldhausen 1985, Section 1.8], and maps are
weak homotopy equivalences. The following diagram displays this result as the
diagonal arrow:

[ – , �|hN0Rn
f (X)|]

�� ,,

[ – , |hRn
f (X)|]oo // [ – , |hR f (X)|]

ω
��

[ – , A(X)] //
[

– , {1}×
∏

n≥1 A6n,{all}(X)
] (4.1)

In this section we show that the diagonal arrow is induced by an E∞-map

�|hN0Rn
f (X)| → {1}×

∏
n≥1

A6n,{all}(X).

But we want a natural transformation of abelian-group-valued functors [–, A(X)]→[
– , 1×

∏
n≥1 A6n,{all}(X)

]
as displayed by the lower horizontal arrow in the dia-

gram, and we want it to be induced by an E∞-map A(X)→{1}×
∏

n≥1 A6n,{all}(X).
There is a natural chain of equivalences

lim
n→∞

hN•Rn(X)' hS•R f (X)' hS•6∞R f (X),

where the colimit is taken over suspension relative to X [Waldhausen 1985, The-
orems 1.7.1 and 1.8.1]. This implies we have to examine the behavior of our
constructions as they relate to suspension, which we analyze in Section 5.

We recall from [Waldhausen 1985, Section 1.7, p. 360] a definition of spherical
objects in the category R f (X), where X is a connected space. On this category we
have the homology theory H∗(Y, r, s)= H∗(Y, s(X); r∗(Z[π1 X ])) (homology with
local coefficients), and we say (Y, r, s) is n-spherical if Hq(Y, r, s)= 0 for q 6= n
and Hn(Y, r, s) is a stably free Z[π1 X ]-module. For n≥ 0 denote by Rn

f (X) the full
subcategory of R f (X) whose objects are n-spherical. For example, in case X is a
connected simplicial abelian group, Rn

f (X) contains spaces homotopy equivalent
to retractive spaces (Y, r, s) obtained by completing to pushouts diagrams of the
form

X
∨N

i=1 ∂1
n∨φi

oo // // 1n,

where the attaching maps φi are constant maps to the identity element of X .
Let N be the natural numbers {0, 1, . . .}, and F the category of finite subsets of

N and injections. Let F+ ⊂ F be the full subcategory of nonempty finite subsets.
Let q denote the associative sum on F+ given by

{xi | 1≤ i ≤m}q{y j | 1≤ j ≤ n}= {xi | 1≤ i ≤m}∪{y j+xm− y1+1 | 1≤ j ≤ n},

where we assume x1 < · · ·< xm and y1 < · · ·< yn .
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Lemma 4.2 [Gunnarsson and Schwänzl 2002, Lemma 10.2, p. 289]. The category
F+ is contractible.

Proof. The functor t : F+→ F+ defined by t (x)= {0}q x receives natural trans-
formations from the identity functor on F+ and from the constant functor with
value {0}. Geometric realization of the nerve converts the natural transformations to
homotopies, so the identity map on the realization of the nerve of F+ is homotopic
to a constant map. �

Under the assumption that the category C satisfies the extension property for cofi-
brations, which has been verified for R f (X) and R f (X, 6n, {all}) in Lemma 3.27(2),
one may identify the iterated G•-construction Gn

•
C with Exact(0(–)n, C) according

to Lemma 3.27(1). Using the adjointness relation, or diagonals, we have

G3
A(C) := Exact(0(A)3, C)= Exact(0(A)×0(A),Exact(0(A), C))

= · · · = G A(G A(G AC)),

for example. Now extend n 7→Exact(0(–)n, C)=Gn
•
C to G(–)

• : F→Cat1
op

follow-
ing the recipe in [Gunnarsson and Schwänzl 2002]. Thus, on objects x ∈ Ob(F+)
and A ∈ 1, put Gx

AC := Exact(0(A)x , C). To obtain the extension to F , identify
0(A)∅ with the one-point category, so that G∅

•
C := Exact(0(A)∅, C)= C.

For the behavior on morphisms we distinguish cases. An isomorphism x→ x ′

in F induces a natural morphism Gx
•
C → Gx ′

•
C by permuting coordinates. An

injection i : x→ y induces Gx
•
C→ G y

•C using stabilization

0(A)i(x)
∼=
//

≡

��

0(A)i(x)×{L/0}y\i(x) //

��

0(A)i(x)×0(0)y\i(x)

X ′

ss

0(A)x
X

// C 0(A)x ×0(A)y\i(x)
≡ 0(A)y

i∗X
oo

OO

where we recall 0(0) = {L/0, R/0} is the two point discrete category, and we
define X ′ to be zero outside 0(A)i(x)×0(0)y\i(x). This is the η-stabilization given
by inclusion of C on the L-line in G0C, as described before Definition 3.22.

Let F
∫

G AC be Thomason’s homotopy colimit construction, which is the cate-
gory consisting of objects (x, X : 0(A)x → C) and morphisms (x, X)→ (y, Y )
given by i : x→ y in F and a natural transformation i∗X→ Y in G y

AC [Thomason
1979, Definition 1.2.2]. The unique morphisms ∅ → x in F provide functors
C→ Exact(0(A)x , C), eventually functors C→ F

∫
G AC natural in A, and finally

a functor C → F
∫

G•C. With the next result, we have made a step toward the
right-hand column of diagram (4.1).

Theorem 4.3 (cf. [Gunnarsson and Schwänzl 2002, Theorem 10.3]). The construc-
tion F

∫
wG•C gives a model for K-theory.
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Comments on the proof. The proof given in [Gunnarsson and Schwänzl 2002] can
be summarized in the chain of weak homotopy equivalences

�|wS•C|
(1)
←−�|wG∞

•
S•C|

(1)
−→ |wG∞

•
C| (2)−→ |wG•G∞• C|

(3)
−→

(3)
−→ |F+

∫
wG•G∞• C|

(4)
←− colim

t̃
|F+

∫
wG•C|

(5)
←− |F+

∫
wG•C|

(6)
−→ |F

∫
wG•C|.

Concerning the links in the chain, the arrows labeled (1) are recorded in (3.21);
the arrow (2) results from swallowing the extra G• into the colimit defining G∞

•
.

That (3) is an equivalence depends on the fact that |F+
∫
wG•G∞• C| → |F+| can be

shown to be a quasifibration with |F+| contractible. To account for (4), the functor
t : F+→ F+ induces a functor t̃ : F+

∫
wG•C→ F+

∫
wG•C for which

colim
t̃

F+
∫
wG•C = colim

(
F+
∫
wG•C

t̃
−→ F+

∫
wG•CF+

t̃
−→ F+

∫
wG•C

t̃
−→ · · ·

)
is naturally identifiable to F+

∫
wG•G∞• C. The realizations of the functors t̃ are all

cofibrations, so the inclusion (5) into the base of the telescope is a weak equiva-
lence. Finally, cofinality of F+ in F implies that the arrow (6) is a weak homotopy
equivalence. �

As in [Gunnarsson and Schwänzl 2002], the E∞-structure on the total Segal
operation is described in terms of the diagram

Rn
f (X)
α1
��

α̃1

,,

{1}×
∏

n≥1
R f (X, 6n, {all})

β1
//

α2
��

{1}×
∏

n≥1
Gn
•
R f (X, 6n, {all})

β3
��

{1}×
∏

n≥1
F
∫

G•R f (X, 6n, {all})
β2
// {1}×

∏
n≥1

F
∫

G•Gn
•
R f (X, 6n, {all})

(4.4)

The components of the map α̃1 are defined in Example 3.32. The other maps in
diagram (4.4) are defined as follows.

Definition 4.5. For α1 the n-th component α1(Y )n is Y ∧µ
n terms
· · · ∧µ Y , where 6n

acts by permuting factors using the coherence data.
The maps β1 and β2 come from stabilizations

jn
:R f (X, 6n, {all})→ Gn

•
R f (X, 6n, {all}).

The maps α2 and β3 are given by the identification

R f (X, 6n, {all})∼= {∅}
∫

G•R f (X, 6n, {all})∼= G∅
•
R f (X, 6n, {all}).

The category Rn
f (X) has the pairing derived from the categorical sum ∨X . This

feature allows us to dispense with the subdivision construction. Each of the four
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categories in the lower part of the diagram also has a natural pairing derived from
the box tensor pairings

�k,` :R f (X, 6k, {all})×R f (X, 6`, {all})→R f (X, 6k+`, {all}).

Underlying the coherence properties of these pairings is the fact, established in
Theorem 2.1, that R f (X) is a category with cofibrations and weak equivalences,
with a categorical sum ∨ and a symmetric monoidal biexact product ∧µ. We refer
to [Gunnarsson and Schwänzl 2002, pp. 291–292] for explicit formulas for the
pairings, which are given in the abstract context of a category C with cofibrations
and weak equivalences and subcategories C6n of 6n-equivariant objects. Here we
record only notations for use in the next theorem.

(1) There is a product denoted �̃ on {1}×
∏

n≥1 R f (X, 6n, {all}) and a product
also denoted �̃ on {1}×

∏
n≥1 Gn

•
R f (X, 6n, {all}).

(2) There is a product denoted �̂ on {1} ×
∏

n≥1 F
∫

G•R f (X, 6n, {all}) and a
product also denoted �̂ on {1}×

∏
n≥1 F

∫
G•Gn

•
R f (X, 6n, {all}).

Theorem 4.6 (cf. [Gunnarsson and Schwänzl 2002, Theorem 10.7, p. 292]).

(1) In the left column of (4.4), the categories {1} ×
∏

n≥1 R f (X, 6n, {all}) and
{1}×

∏
n≥1 F

∫
G•R f (X, 6n, {all}), with their composition laws �̃ and �̂ , in-

herit symmetric monoidal structures from the coherence data on R f (X).

(2) In the right column of (4.4), the categories {1} ×
∏

n≥1 Gn
•
R f (X, 6n, {all})

and {1} ×
∏

n≥1 F
∫

G•Gn
•
R f (X, 6n, {all}), with their composition laws �̃

and �̂ , inherit monoidal structures from the coherence data on R f (X).

(3) The maps α1 and α2 in (4.4) are maps of symmetric monoidal categories.

(4) The maps β1, β2, and β3 are maps of monoidal categories.

(5) The map β2 is a homotopy equivalence, and in the pseudo-additive case β3 is
also a homotopy equivalence.

(6) The diagram (4.4) is commutative in the category of monoidal categories.

Theorem 4.7. Let X be a connected simplicial abelian group. The functor

Z 7→
[

Z , {1}×
∏
n≥1

A6n,{all}(X)
]

takes values in the category of abelian groups.

Proof. By Theorem 4.3, we take

{1}×
∏
n≥1

A6n,{all}(X)= {1}×
∏
n≥1

|F
∫

G•R f (X, 6n, {all})|.

Since the category {1}×
∏

n≥1 F
∫

G•R f (X, 6n, {all}) has a symmetric monoidal
structure by part (1) of Theorem 4.6, the functor

[
– , {1}×

∏
n≥1 A6n,{all}(X)

]
takes
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values in the category of abelian monoids. Repeating the argument of [Waldhausen
1982, Lemma 2.3, p. 404] shows that values taken are actually in the category of
abelian groups. �

Remarks on the proof of Theorem 4.6.. The entire proof of the analogous result in
[Gunnarsson and Schwänzl 2002, pp. 293–295] is essentially a formal appeal to
LaPlaza’s coherence theorem [1972], so it carries over completely.

The reader who investigates further will find the symmetry of the pairing on
{1} ×

∏
n≥1 F

∫
G•R f (X, 6n, {all}) involves manipulating products of values of

functors

Y ∈ Gm
•
R f (X, 6n, {all}) and Z ∈ Gn

•
R f (X, 6n, {all}).

What is required is comparison of expressions

Y (i1/j1, . . . , im/jm)∧µ Z(i ′1/j ′1, . . . , i ′n/j ′n)

and

Z(i ′1/j ′1, . . . , i ′n/j ′n)∧µ Y (i1/j1, . . . , im/jm),

and one sees that not only are commutativity isomorphisms for ∧µ involved, but
so are permutations of inputs, which are taken care of by means of the homotopy
colimit.

Another interesting part of the proof is the claims about the maps α1 and α2,
so it deserves a comment. The biexactness and coherence of ∧µ give canonical
natural isomorphisms γ k

n called Cartan multinomial formulas:

γ k
n : (∧µ)n

( k∨
i=1

ci

)
∼=
−→

∨
s1+···+sk=n

Ind6n
6s1×···×6sk

(∧µ)
k
i=1((∧µ)si ci ).

These induce natural isomorphisms

γ k
: α1 ◦∨

k
X
∼=
H⇒ (�̃)k ◦αk

1 .

Then the coherence theorem implies that α1 has a (lax) symmetric monoidal struc-
ture. The functor α2 is the inclusion of a symmetric monoid subcategory, so the
assertion for α2 is immediate.

In contrast to the algebraic roles played by α1 and α2, the roles of β1, β2, and β3

are to assure us that we are ending in the correct target. Since the proof that β3 is a
homotopy equivalence requires the pseudo-additivity condition, which is fulfilled
by suspension, this part of the argument actually depends on the next section. �

5. Suspension

Let us first state the main theorem of this section.
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Theorem 5.1. Let X be a simplicial abelian group. The total Segal operation

ω : A(X)→ {1}×
∏
n≥1

A6n,all(X)

carries an infinite loop map structure.

Section 4 has delivered an infinite loop map

�|hN0Rn
f (X)| → {1}×

∏
n≥1

A6n,all(X)

whose domain is the K-theory of a category of n-spherical objects. To obtain
Theorem 5.1, we have to examine the passage to the limit over suspension in view
of Waldhausen’s result

lim
n→∞

hN•Rn
f (X)' hS•R f (X).

The technically challenging part is the compatibility of the operations with sus-
pension. Fortunately, the machinery set up in [Gunnarsson and Schwänzl 2002,
Section 10] is sufficiently general that we need only extend some definitions and
quote a sequence of results to prove our generalization.

First we need a description of the suspension operation that is amenable to coher-
ence considerations. To this end, we go step-by-step through Waldhausen’s cone
and suspension constructions and identify the result with a construction involving
the operation ∧e. The cone construction for (Y, r, s) in R f (X) takes the ordinary
mapping cylinder of the retraction M(r) and collapses out the cylinder 11

× X so
that end result is in R f (X). To amplify the definition, consider the diagram

Y q X ∂11
× Yidqr

oo // // 11
× Y

X q X

��

OO

OO

∂11
× Xoo // //

��

OO

OO

11
× X
OO

OO

��

X Xoo // // X

(5.2)

which fulfills the hypotheses of Lemma 2.9. Taking the pushouts of the rows pro-
duces a diagram

X←11
× X � M(r),

where M(r) is the usual mapping cylinder of r and the pushout of the top row.
As described above, taking the pushout of this diagram produces cY , the under-
lying space of the cone construction. The retraction to X arises from a map of
diagram (5.2) to a trivial diagram of identity maps on X ; the section X→ cY and
a cofibration i : Y → cY arise from canonical maps of ingredients of the diagram
to the colimit. Then the suspension 6Y is defined as the pushout of the diagram
X r
←− Y � cY .
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Lemma 5.3. For Y ∈R f (X) there is a commuting diagram

{0}× Y

��

//
i0
// 11

1 ∧e Y
∼=
��

Y //
i

// cY

(5.4)

where 11
1 ∈ R f (∗) is the standard simplicial one-simplex given the base point 1,

and i0 is induced from the inclusion {0} →11. Moreover,

6Y := cY/Y ∼= S1
∧e Y,

where S1
=11/∂11 is the standard simplicial circle.

Proof. Pass to pushouts in the commutative diagram

X

��

11
1× X ∪{1}×X {1}× Y

p2∪r p2
oo // //

id∪r
��

11
× Y

��

X 11
× X

p2
oo // // M(r)

(5.5)

to obtain a unique natural map η1 :1
1
1 ∧e Y → cY making the diagram

11
1 ∧e Y

η1

��

11
1× Y

55

**

X
hh

s′hh

vv

vv
cY

(5.6)

commute. Restricting 11
1× Y →11

1 ∧e Y to ∂11
1× Y yields a diagram

∂11
1× Y // //

r ′
��

11
1× Y

��

Y q X //
i ′
// 11

1 ∧e Y

where r ′(0, y)= y, r ′(1, y)= r(y) and i ′(y)= i0(y), i ′(x)= s ′(x). There results
a canonical arrow M(r)→11

1 ∧e Y such that the following square commutes:

11
1× X // //

p2
��

M(r)

��

X //
s′

// 11
1 ∧e Y

In turn, there is a unique map η̄1 : cY →11
1 ∧e Y such that

cY

η̄1

��

11
1× Y

44

))

Xii
ii

vv

s′vv

11
1 ∧e Y

(5.7)
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commutes. Combining diagrams (5.6) and (5.7) shows that η1 and η̄1 are mutually
inverse isomorphisms, relative to the common subspace X and compatible with the
retractions.

Restricting the left half of (5.6) to {0}× Y ⊂11
1× Y gives (5.4):

11
1 ∧e Y

η1
��

{0}× Y ≡ Y

i0 33

i ++ cY

(5.8)

Replace S0
= {∗, ∗′} with basepoint ∗ in Example 2.5 by ∂11

1 with basepoint 1,
and obtain the diagram

X
=

��

∂11
1 ∧e Yr

oo // //

∼=
��

11
1 ∧e Y
∼=
��

X Yr
oo //

i
//

66

i0
66

cY

(5.9)

Passage to pushouts shows that the quotient (11
1∧eY )/(∂11

1∧e Y ) is isomorphic to
6Y in R f (X). According to Proposition 2.17, the functor

– ∧e Y :R f (∗)→R f (X ×{∗})∼=R f (X)

preserves colimits, so we deduce

(11
1 ∧e Y )/(∂11

1 ∧e Y )∼= (11
1/∂1

1
1)∧e Y ≡ S1

∧e Y,

where we define S1
:=11

1/∂1
1
1 in R f (∗). �

According to Proposition 2.16, the action of R f (∗) on R f (X) may be made
internal. Explicitly, there is a natural isomorphism ie∗S1

∧µ Y ∼= S1
∧e Y . In

the following we abuse notation slightly and write simply S1
∧µ Y , leaving ie∗

understood, where ie : {∗} → X is the inclusion of the one-point space as the
identity element of X . We do this to emphasize the dependence of the rest of this
section on the coherence of the operation ∧µ.

Proposition 5.10 (cf. [Gunnarsson and Schwänzl 2002, Proposition 6.1, p. 283]).
The following diagram commutes up to natural isomorphism:

w subk G•R f (X)
ωk
//

S1
∧µ

��

wGk
•
R f (X, 6k, {all})

�k S1
∧µ
��

w subk G•R f (X)
ωk
// wGk

•
R f (X, 6k, {all})

Proof. Write F1 for the composite functor ωk
◦ (S1

∧µ – ) and F2 for the com-
posite �k S1

∧µ ω
k( – ). Although ωk(S1) = �k S1

= S1
∧µ

k terms
· · · ∧µ S1, we use

the �k-notation for orientation purposes. Following [Gunnarsson and Schwänzl
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2002, p. 297; Grayson 1989, p. 257], given a functor M : 0(A1 . . . Ak)→R f (X)
representing an object of subk G•R f (X), the value of ωk(M) on a typical element
of 0k(A1 . . . Ak) has the form

(�n1 M( – ))� (�n2 M( – ))� · · ·� (�nk M( – ))= Zn1 � · · ·� Znk ,

where Zni := �ni M( – ) is an object of R f (X, 6ni , {all}). Extending the formulas
in the argument of Proposition 3.28 for the associativity of �, we write

Zn1 � · · ·� Znk = Ind
6n1+···+nk
6n1×···×6nk

(Zn1 ∧µ · · · ∧µ Znk )

and set n = n1+ · · ·+ nk .
Then a typical value of F1(M) has the form

Ind6n
6n1×···×6nk

(
(S1
∧µ

n1 terms
· · · ∧µS1

∧µ Zn1)∧µ · · ·∧µ (S
1
∧µ

nk terms
· · · ∧µS1

∧µ Znk )
)

∼= Ind
6n1+···+nk
6n1×···×6nk

(
(S1
∧µ

n1 terms
· · · ∧µS1)∧µ

k groups
· · · ∧µ(S1

∧µ
nk terms
· · · ∧µS1)

∧µ(Zn1 ∧µ · · · ∧µ Znk )
)
,

applying commutativity and associativity isomorphisms. Now Proposition 5.12
applies to deliver an isomorphism of 6n1+···+nk -spaces:

Ind6n
6n1×···×6nk

(
(S1
∧µ

n1 terms
· · · ∧µS1)∧µ

k groups
· · · ∧µ(S1

∧µ
nk terms
· · · ∧µS1)

∧µ(Zn1 ∧µ · · · ∧µ Znk )
)

∼=
→ (�k S1)∧µ

n terms
· · · ∧µ(�k S1)∧µ

(
Ind6n

6n1×···×6nk
(Zn1 ∧µ · · · ∧µ Znk )

)
.

This final expression is the value of F2 on the same typical element M , so we have
a natural isomorphism of functors ε : F1⇒ F2. �

Now we prove the general Lemma 5.11 and its specialization Proposition 5.12.

Lemma 5.11. Let H be a subgroup of G, let Y ∈R(X,G), and let Z ∈R(X, H).
By restricting the G-action on Y to H , we obtain Y ∧µ Z ∈ R(X, H), where the
action is diagonal. Then there is a natural isomorphism of left G-spaces

G+ ∧H
e (Y ∧µ Z)

∼=
−→ Y ∧µ (G+ ∧H

e Z),

where the G-action on the right-hand space is diagonal.

Proof. First define a G-map f :G+∧e (Y ∧µ Z)→ Y ∧µ (G+∧H
e Z) by the formula

f (g, (y, z))= (gy, [g, z]).

Applying the equivalence relation defining Y ∧µ (G+ ∧H
e Z),

f (g, (hy, hz))= (g(hy), [g, hz])= ((gh)y, [gh, z])= f (gh, (y, z)).
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Therefore, there is an induced G-map

f ′ : G+ ∧H
e (Y ∧µ Z)→ Y ∧µ (G+ ∧H

e Z).

To reverse this map, define F : Y ∧µ (G+∧e Z)→G+∧H
e (Y ∧µ Z) by the formula

F(y, [g, z])= [g, (g−1 y, z)].

Now
F(y, [gh, z])= [gh, (h−1g−1 y, z)]

= [g, (hh−1g−1 y, hz)] = [g, (g−1 y, hz)] = F(y, [g, hz]),

so there is an induced G-map

F ′ : Y ∧µ (G+ ∧H
e Z)→ G+ ∧H

e (Y ∧µ Z).

Clearly the composites f ′F ′ and F ′ f ′ are the respective identities. �

Proposition 5.12. Let n = n1 + · · · + nk . Let Z ∈ R(X, 6n1 × · · · ×6nk , {all}).
There is a natural isomorphism of 6n-spaces

Iso(n, n1∪· · ·∪nk)+∧
6n1×···×6nk
e

(
(S�

n1 terms
· · · �S)∧µ · · ·∧µ (S�

nk terms
· · · �S)∧µ Z

)
∼=
−→ (S�

n terms
· · · �S)∧µ

(
Iso(n, n1 ∪ · · · ∪ nk)+ ∧

6n1×···×6nk
e Z

)
.

Proof. Apply Lemma 5.11, and observe that the operation � is defined in terms
of ∧µ, which is coherently associative. Collect all parentheses in expressions

(S�
n1 terms
· · · �S)∧µ · · · ∧µ (S�

nk terms
· · · �S)

to the left. Note that we need only the map f ′ :G+∧H
e (Y ∧µ Z)→Y ∧µ (G+∧H

e Z)
from the lemma, so the choice of an identification of Iso(n, n1 ∪ · · · ∪ nk) with 6n

is required to make sense of f ′. This amounts to identifying n1 ∪ · · · ∪ nk with

{1, . . . , n1, n1+ 1, . . . , n1+ n2, . . . , n1+ · · ·+ nk}. �

We use the Thomason homotopy colimit construction on functors defined on
the category F to pass to the limit with suspensions. To treat suspension by S1 on
subk wG•R f (X), define an op-lax functor 81 : F→ Cat1

op
by

81(x)= subk wG•R f (X) for an object x ∈ F ,

81(σ )= id for an isomorphism σ : x→ x ,

81(i : y→ x) is induced by suspension by x\i(y) factors S1.

Interpreting the smash product with an empty number of factors as S0, the def-
initions coincide on isomorphisms. For x i

←− y j
←− z we need to produce the

natural transformation 81(ij)⇒81(i) ◦81( j). On (Y, r, s) the value of 81( j) is



SEGAL OPERATIONS IN THE ALGEBRAIC K-THEORY OF TOPOLOGICAL SPACES 41

((S1)y\ j (z)
∧e Y, r ′, s ′) and the value of 81(i) applied to this is(

(S1)x\i(y)∧e ((S1)y\ j (z)
∧e Y ), r ′′, s ′′

)
.

Since i is injective, the set y\ j (z) is identified with i(y\ j (z)). Since x\ij (z) =
x\i(y)∪ i(y\ j (z)), we use associativity isomorphisms of the ∧e-action to write
81(i ◦ j)

∼=
H⇒81(i)◦81( j). The coherence properties of the action imply commu-

tativity of the necessary diagrams [Thomason 1979, Definition 3.1.1, p. 99].
In a similar way we treat �k S1

∧µ – on wGk
•
R f (X, 6n{all}), defining an op-lax

functor 82 : F→ Cat1
op

:

82(x)=wGk
•
R f (X,6n{all}) for an object x ∈ F ,

82(σ )= id for an isomorphism σ : x→ x ,

82(i : y→ x) is induced by suspension by x\i(y) factors �k S1.

The natural transformation82(i ◦ j)
∼=
H⇒82(i)◦82( j) is treated in the same manner.

The results are two categories

hocolim
S1∧µ–

subk wG•R f (X) := F
∫
81 and hocolim�k S1∧µ–wGk

•
R f (X) := F

∫
82.

Remark 5.13. There are a number of constructions in [Thomason 1979] that may
justifiably be termed homotopy colimits. This particular construction F

∫
8i is es-

sential, but we use the hocolim notation to provide context for the reader.

Now we explain how Proposition 5.10 promotes

ωk
: subk wG•R f (X)→ wGk

•
R f (X)

to a left-op natural transformation (lont) ε :81⇒82. First, we need to associate to
an object x of F a functor ε(x) :81(x)→82(x). This is just ωk . Then we need for
each arrow i : y→ x in F a natural transformation ε(i) : ε(x)◦81(i)⇒82(i)◦ε(y).
For any morphism i such that x\i(y) has cardinality 1, we obtain ε(i) by inverting
the isomorphism of functors provided by Proposition 5.10. For the general case,
one just goes back to the proof and replaces the symbol 1 by x\i(y) everywhere it
occurs. The coherence results of Section 2 guarantee that the necessary diagrams
commute, so ε is a lont. By [Thomason 1979, Definition 3.1.4, p. 101], ε induces
a functor

F
∫
ε : F

∫
81→ F

∫
82.

We have now proved the following result.

Theorem 5.14. The operations ωk pass through the Thomason homotopy colimit
construction to deliver operations

F
∫
ε := ωk

: hocolimS1∧µ– subk wG•R f (X)→ hocolim�k S1∧µ–wGk
•
R f (X). �
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Proof of Theorem 5.1. The main result of Section 4 is that

�|hN0Rn
f (X)| → {1}×

∏
n≥1

A6n,all(X)

is an infinite loop map, and this section shows these maps are compatible with
suspension. Likewise for the equivalence �|hN0Rn

f (X)| → �|wS•Rn
f (X)|. The

maps obtained by passing to the limit over suspension remain infinite loop maps,
and we know � colim|wS•Rn

f (X)| '�|wS•R f (X)| = A(X). �

6. Projecting to the free part

As stated in Theorem 5.1, the constructions of [Gunnarsson and Schwänzl 2002]
as modified in Section 5 deliver a total operation

ω =
∏

ωn
: A(X)→

∏
n≥1

A6n,{all}(X),

where A6n,{all}(X)=�|hS•Rh f (X, 6n, {all})|. We examine the target of this map,
and introduce the Weyl group notation W6n H = N6n H/H , where H is a subgroup
of the permutation group 6n and N6n H is the normalizer in 6n of H.

Theorem 6.1. Let X be a space on which symmetric groups 6n act trivially. For
each n there is a homotopy equivalence

hn : A6n,{all}(X)→
∏

H∈{all}

A(X × B(W6n H))

of infinite loop spaces. Here A(X × B(W6n H))=�|hS•R f (X,W6n H, {e})| is the
K-theory of the category of retractive W6n H-spaces relative to X with the action
being free outside of X.

Proof. The argument is largely formal, based on some well-known facts. Let
F be the set of conjugacy classes (Hi ) of subgroups of 6n . This set is finite and
partially ordered in the usual way: (Hi )� (Hj ) if some conjugate of Hi is contained
in Hj . The partial ordering may be extended to a linear ordering, or enumeration
{(H0), (H1), . . . , (HN )}, so that (Hi )≺ (Hj ) implies i < j . Observe that (H0)={e},
we may take (H1) as the class of transpositions, and (HN )=6n .

For any 6n-space Z we may define

F�(H)Z = colim
(K )�(H)

Z (K ),

essentially the union of the fixed point sets of the conjugates of all the subgroups
properly containing a conjugate of H. The space F�(H)Z is by definition a 6n-
invariant subspace of Z . If (Hi )≺ (Hi+1) in the enumeration then we may compute
F�(Hi+1)(F�(Hi )Z), essentially the fixed points of conjugates of Hi+1 inside the
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fixed points of Hi . On the complement F�(Hi )Z\(F�(Hi+1)(F�(Hi )Z)) the group
6n acts and the Weyl group W6n Hi = N6n Hi/Hi acts freely.

Inductively define exact functors

Si , Q j :R f (X, 6n, {all})→R f (X, 6n, {all}), −1≤ i ≤ N , 0≤ j ≤ N

by letting S−1 be the identity functor, and putting Si (Y )=F�(Hi )(Si−1(Y )) for i ≥ 0.
Then the functors Q j are defined by the natural cofibration sequences

S j (Y )� S j−1(Y )� Q j (Y ), 0≤ j ≤ N .

For us, the important case is S0: Since H0 = {e}, S0(Y ) is the union of the fixed
point sets of all the nonidentity subgroups of G. Then the quotient Q0(Y ) can be
thought of as extracting the part of Y on which G acts freely.

Let ik : R f (X, 6n, {Hk})→ R f (X, 6n, {all}) be the inclusion. Since Qk(Y )
actually lies in R f (X, 6n, {Hj }), we may formally write Qk = ik ◦ Qk , where
Qk :R f (X, 6n, {all})→R f (X, 6n, {Hk}) is a retraction. We want to make an
inductive application of the additivity theorem for the G• construction, but this
requires that the input be pseudo-additive. Passing to prespectra 6∞R f (X), by
[Gunnarsson et al. 1992] there results a splitting

hocolimwG•R f (X, 6n, {all})→
∏

H∈{all}

hocolimwG•R f (X, 6n, {H})

induced by the functors Qk for 0 ≤ k ≤ N . Recalling that W6n H = N6n H/H is
the Weyl group of H , consider the exact functor

R f (X, 6n, {H})→R f (X,W6n H, {e}), Y 7→ Y H.

The induction construction Z 7→ Z ×W6n H 6n provides an exact functor going the
other way and the composites in either order are equivalent to the identities. Putting
these equivalences together and specializing the notation establishes a chain of
homotopy equivalences

hocolimwG•R f (X, 6n, {all})→
∏

H∈{all}

hocolimwG•R f (X, 6n, {H})

→

∏
H∈{all}

hocolimwG•R f (X,W6n H, {e}). �

This completes the proof of Theorem 1.1; to explain Theorem 1.3 is the object
of the next two sections. We are focusing on the composition

θn
: A(X) ω

n
−→ A6n,{all}(X)

hn
−→

∏
H∈{all}

�|hS•R f (X, N6n H/H, {e})|

pe
−→�|hS•Rh f (X, 6n, {e})|.
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In Section 7 we justify the interpretation �|hS•Rh f (X, 6n, {e})| = A(X × B6n).
Then we want to understand what happens when we follow this composition by
the transfer φn : A(X × B6n)→ A(X × E6n) ' A(X). We start by introducing
notation for the composition

R f (X)→ subn G•R f (X)
ωn
−→ Gn

•
R f (X, 6n, {all}) Q0=S−1/S0

−−−−−−→ Gn
•
R f (X, 6n, {e}).

On (Y, r, s)∈R f (X), the composition of the first two maps in the chain is α̃n(Y ) in
the notation of Example 3.32, so we want to evaluate the functor Q0 = S−1/S0 ◦ α̃n

on the object (Y, r, s). By the terminology used in the proof of Theorem 6.1, S−1

is the identity and S0 is the union of subobjects that are fixed by some nonidentity
subgroup of 6n . The interpretation and transfer issues are taken up in Section 7;
to prepare for the analysis of φn ◦ θn in Section 8 we introduce some notation.

The definitions of the Segal operations in [Waldhausen 1982] use certain sub-
functors Pn

j of the smash power functor Pn on pointed sets. We extend the consider-
ations to define certain subfunctors of ∧e and ∧µ powers. For (Y, r, s) ∈R(X), the
set Y∧en is a quotient of the cartesian product Y n . In a fixed simplicial dimension,
we view this as the set of functions y : n→ Y . The pushout construction identifies
any such function y with at least one value yi in X with the composite function r ◦ y.
Thus, to represent points of Y∧en in a given dimension, we just need to look at
functions all of whose values are in Y − X and functions all of whose values are
in X . For 0≤ j ≤ n we define P̃n

j Y to be the subset of functions y : i 7→ yi such
that the cardinality of y−1(Y − X) is less than or equal to j , if the image of y is
contained in (Y − X). Said another way, P̃n

j Y is the set of n-tuples where at most
j distinct elements of Y − X are involved. For example, P̃n

0 Y = Xn and P̃n
1 Y is

the union of Xn with the diagonal of (Y − X)n . Most important for us, the subset
P̃n

n−1Y consists of all n-tuples involving no more than n− 1 distinct elements of Y ,
so that if no member of (y1, . . . , yn) is in X , then there are at least two distinct
indices i, j with yi = y j .

When X is a connected abelian group, then we can push out along the iterated
multiplication Xn

→ X , obtaining functors Pn
j Y relative to X . In particular, Pn

n−1Y
is the subset of PnY consisting of points fixed by some nontrivial subgroup of 6n ,
so not all members of an n-tuple can be distinct. Thus Pn

n−1Y = S0α̃n(Y ). In terms
of functions y : n→ Y , Pn

n−1Y is the set of functions where the cardinality of
y−1(Y − X) is at most n− 1.

Definition 6.2. Define θ̃nY and θnY by means of the pushout squares

P̃n
n−1Y // //

∧
n
e r
��

P̃nY

��

Xn // // θ̃nY

and

Pn
n−1Y // //

r
��

PnY

��

X // // θnY
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Letting jn
: R f (X, 6n, {e})→ Gn

•
R f (X, 6n, {e}) be the iterated stabilization,

we combine the preceding observations with the definitions to immediately obtain
the following proposition.

Proposition 6.3. As functors from R f (X) to Gn
•
R f (X, 6n, {e}),

Q0 ◦ α̃n = jn
◦ θn. �

7. Transfer constructions

Our immediate goal is to interpret�|hS•R f (Xn,6n, {e})| and�|hS•R f (X,6n, {e})|
in terms of the algebraic K-theory of topological spaces. In this section, families
of subgroups play no role, so we revert to the less ornate notation �|hS•R f (X,G)|
for �|hS•R f (X,G, {e})|, the algebraic K-theory of G-spaces retracting to X , finite
relative to X , and with G acting freely outside X .

There are two steps to this goal and each step uses arguments based on [Wald-
hausen 1985]. We let G be a finite group and Z a G-space. Let EG be the
canonical contractible free left G-space. We prefer the model EGn = Gn+1 with
the G-action given by multiplication on the left in each factor, face maps defined
by projecting away from a coordinate, and degeneracies defined by repeating a
coordinate. An isomorphism of the quotient space ∗×G EG ∼= BG is induced by
(g0, . . . , gi−1, gi , . . . , gn) 7→ (g−1

0 g1, . . . , g−1
i−1gi , . . . , g−1

n−1gn).
First, [Waldhausen 1985, Lemma 2.1.3, p. 381] applies to yield the following

result.

Lemma 7.1. There is an equivalence of categories

R(EG×G Z)∼R(EG× Z ,G). �

For reference, pullback along the projection

EG× Z→ EG×G Z

defines a functor R(EG×G Z)→R(EG× Z ,G); the orbit map defines a functor
in the opposite direction. The composites in either order are isomorphic to the
respective identity functors. Moreover, these functors preserve weak equivalences
and homotopy finite objects.

Next, we want the following lemma, which permits us to replace the G-action
on Z with a free G-action on a homotopy equivalent space.

Lemma 7.2. The projection EG× Z→ Z induces a homotopy equivalence

hS•Rh f (EG× Z ,G)−→ hS•Rh f (Z ,G).

Proof. The argument here is similar to that given to prove [Waldhausen 1985,
Proposition 2.1.4, p. 382]. In detail, let (Y ′, r ′, s ′) ∈Rh f (EG× Z ,G). Completing
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the diagram
Y ′ EG× Zoo

s′
oo

p2
// Z

to a pushout defines an exact functor Rh f (EG× Z ,G)→Rh f (Z ,G). Certainly,
homotopy finite objects are carried to homotopy finite objects, and, incidentally,
finite objects are carried to finite objects. Also, weak equivalences are mapped to
weak equivalences.

Taking the product with EG gives an exact functor Rh f (Z,G)→Rh f (EG×Z ,G).
In this case, when G is nontrivial, finite objects are carried to homotopy finite
objects, since EG is contractible.

For (Y, r, s) in Rh f (Z ,G), taking the induced map of pushouts in the diagram

EG× Y
p2
��

EG× Zoooo //

p2
��

Z

id
��

Y Zoos
oo

id
// Z

provides a natural transformation from the composite endofunctor on Rh f (Z ,G)
to the identity functor. This natural transformation is a weak equivalence. For
(Y ′, r ′, s ′) in Rh f (EG× Z ,G), taking the induced map of pushouts in the diagram

Y ′

p1r ′×id
��

EG× Zoo
s′

oo
id

//

1×id
��

EG× Z

id
��

EG× Y ′ EG× EG× Zoo
id×s′
oo

p1×p3
// EG× Z

provides a natural transformation from the identity functor on Rh f (EG × Z ,G)
to the other composite endofunctor. Again, this is a weak equivalence. By [Wald-
hausen 1985, Proposition 1.3.1, p. 330], hS•Rh f (Z × EG,G)→ hS•Rh f (Z ,G) is
a homotopy equivalence. �

Substituting for G the symmetric group 6n , we combine Lemmas 7.1 and 7.2
to record useful alternative models for A(B6n × X) and A(Dn X). The first part
covers a remark made following Definition 3.5.

Lemma 7.3. Let X have the trivial 6n-action, so that B6n × X is the quotient of
E6n × X by the action of 6n . There are homotopy equivalences

hS•Rh f (B6n × X)' hS•Rh f (E6n × X, 6n)' hS•Rh f (X, 6n). (7.4)

Thus, the space �|hS•R f (X, 6n)| is homotopy equivalent to A(B6n × X).
Similarly, let Xn have the permutation action of 6n , and let Dn X = E6n×

6n Xn

be the quotient of E6n × Xn by the diagonal action of 6n . There are homotopy
equivalences

hS•Rh f (Dn X)' hS•Rh f (E6n × Xn, 6n)' hS•Rh f (Xn, 6n).

Thus, the space �|hS•Rh f (Xn, 6n)| is homotopy equivalent to A(Dn X). �
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We recall here basic facts about the transfer in the algebraic K-theory of spaces
adapted to our context. We are actually interested in two cases of transfer opera-
tions. For the first case the transfer operations are associated with finite subgroups
of the symmetric groups 6n . In the second case the operations are associated with
(injective) homomorphisms of simplicial abelian groups X̃→ X , where the fiber
is homotopy finite.

In terms of the description A(X) = �|hS•R f (X)|, we have the following di-
rect transfer construction. A fiber bundle projection p : E → B with finite fiber
induces by pullback a functor R f (B)→ R f (E), or with homotopy finite fiber,
R f (B)→ Rh f (E). We then obtain a transfer morphism p∗ : A(B)→ A(E). In
terms of equivariant models for algebraic K-theory, there are other descriptions of
the transfer, as given below. We need to relate the various descriptions.

Eventually we need the transfer operations A(B6n× X)→ A(B H × X), where
H is a subgroup of6n . Our working definition is A(B6n×X)=�|hS•Rh f (X, 6n)|

but, in view of the equivalences (7.4), we have to compare three definitions in each
context.

To this end, let G be a discrete group, H a subgroup of finite index, and Z a
trivial G-space. Observe that EG×Z is the total space of a principal G-bundle with
base EG×G Z . To make this transparent, and for use in the study of diagram (7.5),
we replace the notation EG×G Z by ∗×G (EG× Z). To explain the connection,
∗ ×

G (EG × Z) is the orbit space of EG × Z under the diagonal left G-action,
thought of as the balanced product of EG× Z with the trivial right G-space ∗. We
can turn the left action of G on EG into a right action by setting e ·r g = g−1

·l e.
Then left G-orbits in EG × Z are seen to correspond to equivalence classes in
EG × Z under the equivalence relation generated by (e ·r g, z) ∼ (e, gz). The
associated quotient space is usually denoted EG×G Z .

We consider the diagram

R(Z , H) // R(EG× Z , H) R(EG×H Z)oo

R(Z ,G)

p∗1

OO

// R(EG× Z ,G)

p∗2

OO

R(EG×G Z)oo

p∗3

OO

(7.5)

where the vertical arrows represent transfer constructions. The forgetful functor
p∗1 :R(Z ,G)→R(Z , H) just restricts the action to the subgroup H . This provides
the simplest path to p∗1 : A(BG × Z) → A(B H × Z), using the basic model
A(BG× Z)=�|hS•(Rh f (Z ,G)|. In the middle, the functor p∗2 is also a forgetful
functor. At the right, the functor p∗3 is given by a pullback construction, explained
in detail below.

To reach the categories in the middle column from those in the left column
we compute products with EG. Along the top, the fact that EG is a nonstandard
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contractible H -space is an insignificant detail. Comparing with p∗1 on the left, the
transfer p∗2 in the middle column is also obtained by restricting the action of G
to H . Thus, the left-hand square in diagram (7.5) obviously commutes.

Before we compare p∗3 with p∗2 , we discuss p∗3 , the rightmost column in diagram
(7.5), in detail. In order to manipulate pullback squares efficiently we replace the
notation EG×G Z by ∗×G (EG× Z) as discussed before Lemma 7.1. Suppose H
is a subgroup of the group G, and let EG be the standard model for a contractible
G-space on which G acts freely from the right. The space EG plays a similar role
relative to the subgroup H . In order to compare situations, we take the standard
model X = ∗×G (EG × Z) and a modified model X̃ = ∗×H (EG × Z). In this
situation we have the basic pullback square

(∗×H G)× (EG× Z)
p2
��

// (∗×H EG× Z)= X̃

��

EG× Z // ∗×
G (EG× Z)= X

(7.6)

This displays the comparison map X̃→ X of the chosen models as a fiber bundle,
with fiber ∗×H G. One may identify ∗×H (EG× Z)∼= (∗×H G)×G (EG× Z),
and then the right-hand vertical arrow is isomorphic to the map

(∗×H G)×G (EG× Z)→∗×G (EG× Z)

induced by projecting the coset space ∗×H G to a point. This replacement also
displays the upper horizontal map as the quotient projection

(∗×H G)× (EG× Z)→ (∗×H G)×G (Z × EG).

The direct construction p∗ :R(X)→R(X̃) maps (Y, r, s) to (Ỹ , r̃ , s̃), derived
from the pullback square

Ỹ r̃
//

��

X̃ = ∗×H (EG× Z)

p
��

Y r
// X = ∗×G (EG× Z)

(7.7)

Augmenting the right-hand column of (7.7) to the square of (7.6) shows that Ỹ→ Y
is a fiber bundle with fiber ∗×H G.

Now we address commutativity of the right-hand square in diagram (7.5). To
reach the categories in the middle column from the categories in the right column,
we also compute pullbacks. Recalling Lemma 7.1, the equivalence of categories
R(EG ×G Z) 'R(EG × Z ,G) [Waldhausen 1985, Lemma 2.1.3] describes the
functor moving left to the middle column. This functor assigns to a retractive space
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(Y, r, s) over EG×G Z the retractive G-space (Y ′, r ′, s ′) over EG× Z defined as
the pullback in the following diagram:

Y ′ r ′
//

��

EG× Z

��

Y r
// X = ∗×G (EG× Z)

Then moving up to R(EG × Z , H) amounts to restricting the G-action in this
pullback to H.

On the other hand, to move from the lower right to the upper middle by going
up and then to the left, compute first the pullback (7.7) and then compute

Ỹ ′ r̃ ′
//

��

EG× Z

��

Ỹ r̃
// X̃ = ∗×H (EG× Z).

The composition of the two functors may be displayed in the stacked diagram

Ỹ ′ r̃ ′
//

��

EG× Z

��

Ỹ r̃
//

��

X̃ = ∗×H (EG× Z)

p
��

Y r
// X = ∗×G (EG× Z)

The end result is that (Ỹ ′, r̃ ′, s̃ ′) is simply the G-space (Y ′, r ′, s ′) with the action
restricted to H. Therefore, the right-hand square commutes.

Lemma 7.8 (cf. [Waldhausen 1982, Lemma 1.3, p. 399]). Let G be a finite group,
EG a universal G-bundle, BG = ∗×G EG a classifying space, and Z a space with
a trivial G-action. Then the composition

A(Z) inclusion
// A(BG× Z) transfer

// A(EG× Z)' A(Z)

is given by multiplication by the order of G, in the sense of the additive H-space
structure. �

8. A fundamental cofibration sequence

Waldhausen’s main result is this proposition.

Proposition 8.1 (cf. [Waldhausen 1982, Proposition 2.7, p. 407]). The composition
of the operation θn

:A(∗)→A(B6n×∗) with the transfer map φn:A(B6n×∗)→A(∗)
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is the same, up to weak homotopy, as the polynomial map on A(∗) given by the
polynomial

p(x)= x(x − 1) · · · (x − n+ 1). �

The analogous result for the present situation with the one-point space replaced
by a simplicial abelian group X is more complicated to formulate and to work
with. To prepare for the analogue of Waldhausen’s result, we develop the following
constructions, taking up where we left off with Definition 6.2 and Proposition 6.3.
We make use of the maps

δ
n,k
n−1 : X

n−1
→ Xn, (x1, . . . , xn−1) 7→ (x1, . . . , xn−1, xk),

and the respective induced functors δn,k
n−1∗ : R f (Xn−1)→ R f (Xn). The pushout

construction
Xn−1 // s

//

δ
n,k
n−1

��

Z

in,k
n−1
��

Xn // // δ
n,k
n−1∗Z

defines an exact functor δn,k
n−1∗ : R f (Xn−1) → R f (Xn). For a retractive space

(Z , r, s) over Xn−1 with retraction r : Z→ Xn−1 written in terms of components
as r = (r1, . . . , rn−1), the composition of the canonical map in,k

n−1 followed by the
retraction δn,k

n−1∗r is given by the formula

(δ
n,k
n−1∗r) ◦ in,k

n−1(z)= δ
n,k
n−1 ◦ r(z)= (r1(z), . . . , rk(z), . . . , rn−1(z), rk(z)).

Note that in the special case Z = P̃n−1Y = (∧e)
n−1Y , we have, for each k such

that 1≤ k ≤ n− 1,(
δ

n,k
n−1∗(P̃

n−1r)
)
◦ in,k

n−1(y1, . . . , yn−1)= (r(y1), . . . ,r(yk), . . . ,r(yn−1),r(yk)). (8.2)

Next we assemble these functors by gluing along the common space Xn , obtaining

1̃n
n−1 :R f (Xn−1)→R f (Xn)

given on objects by 1̃n
n−1(Z)= δ

n,1
n−1∗Z ∪Xn · · · ∪Xn δ

n,n−1
n−1∗ Z , which can be viewed

as an iterated pushout or as the colimit of a diagram modeled on the cone on n− 1
points. We also need to push this construction forward to R f (X) by µ∗, the iterated
multiplication, obtaining

1n
n−1 = µ∗ ◦ 1̃

n
n−1 :R f (Xn−1)→R f (X)

given on objects by 1n
n−1(Z) = µ∗(δ

n,1
n−1∗Z) ∪X . . . ∪X µ∗(δ

n,n−1
n−1∗ Z). If we start

with
Z = Y∧e

n− 1 factors
· · · ∧eY = P̃n−1Y,
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then the formula for the retraction on the k-th summand µ∗(δ
n,k
n−1∗ P̃n−1Y ) is(

µ∗δ
n,k
n−1∗(P̃

n−1r)
)
◦ in,k

n−1(y1, . . . , yn−1)

= µ(r(y1), . . . , r(yk), . . . , r(yn−1), r(yk)), (8.3)

where µ is the iterated multiplication.
We can now succinctly state our general results. Let

φ̃k :R f (X k, 6k, {all})→R f (X k) and φk :R f (X, 6k, {all})→R f (X)

be the functors that forget the group action.

Proposition 8.4 (cf. [Waldhausen 1982, Proposition 2.7, p. 407]). There is a cofi-
bration sequence of functors R f (X)→R f (Xn)

1̃n
n−1φ̃n−1θ̃

n−1Y // // φ̃n−1θ̃
n−1Y ∧e θ̃

1Y // // φ̃n θ̃
nY. (8.5)

In the case that X is a connected simplicial abelian group, we have the cofibration
sequence

1n
n−1φ̃n−1θ̃

n−1Y // // φn−1θ
n−1Y ∧µ θ1Y // // φnθ

nY (8.6)

of functors R f (X)→R f (X).

Remark 8.7. The second cofibration sequence is obtained by applying the exact
functor induced by the iterated multiplication µ : Xn

→ X to the first sequence.
The result in the middle term of the second sequence is open to interpretation. The
formulation chosen amounts to interpretation of the factorization µ= µ ◦ (µ× id)
along with the facts that µ∗ ◦∧e =∧µ and θ̃1Y = θ1Y = Y .

Proof of Proposition 8.4. Following Section 7, we interpret the transfer maps

φn : A(Dn X)→ A(Xn) and φn : A(X × B6n)→ A(X)

as induced by the forgetful functors

R f (Xn, 6n, {all})→R f (Xn, {e}) and R f (X, 6n, {all})→R f (X, {e}),

respectively. This means we have to make nonequivariant analyses of the functors
θ̃n and θn , respectively.

To obtain the surjections, we consider the diagram

X

��

Xn−1
× X

µ
oo

��

P̃n−1
n−2 Y ∧e Y

((∧e)
n−1r)∧er

oo // //

��

P̃n−1Y ∧e Y

∼=

��

X Xnµ
oo P̃n

n−1Yrn
oo // // P̃nY

(8.8)
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Clearly, P̃n−1
n−2 ∧e Y maps into P̃n

n−1, because, if there are two indices i, j with
1≤ i, j≤n−1 and i 6= j and with yi = y j , then this still holds for ((y1, . . . , yn−1), y)
rebracketed as (y1, . . . , yn−1, y). Taking the pushouts along the rows using the
columns two, three, and four produces a surjection

φn−1θ̃
n−1Y ∧e θ̃

1Y � φn θ̃
nY

in R f (Xn) and pushing out along the rows using columns one, three and four yields

φn−1θ
n−1Y ∧µ θ1Y = µ∗(φn−1θ

n−1Y ∧e θ
1Y )� φnθ

nY,

the surjection in R f (X). Now we have to identify the “kernels”.
Reviewing the remarks at the end of Section 6, P̃n−1Y ∧e Y = P̃nY is the space

whose simplices outside of Xn are n-tuples of simplices from Y−X ; P̃n−1
n−2 Y ∧e Y is

the space whose simplices outside of Xn are n-tuples ((y1, . . . , yn−1), y) with the
condition that there are at least two distinct indices 1≤ i, j ≤ n−1 with yi = y j ; and
P̃n

n−1Y is the space whose simplices outside of Xn are n-tuples (y1, . . . , yn−1, yn)

with the condition that there are at least two distinct indices 1 ≤ i, j ≤ n with
yi = y j . Then the simplices of P̃n

n−1Y not in the image of P̃n−1
n−2 Y ∧e Y are those

n-tuples where the first n− 1 are distinct but yn = yk for some 1≤ k ≤ n− 1.
Using this observation we extend the diagram (8.8) by means of the following

constructions. For 1≤ k ≤ n− 1, consider the diagrams

Xn

��

Xn−1
δ

n,k
n−1

oo

δ
n,k
n−1
��

// P̃n−1Y

δ
n,k
n−1
��

Xn P̃n−1Y × X ∪Xn Xn−1
× Yoo // P̃n−1Y × Y

where δn,k
n−1 : X

n−1
→ Xn is given by δn,k

n−1(x1, . . . , xn−1)= (x1, . . . , xn−1, xk) and
the other maps labeled δn,k

n−1 are given by similar formulas. For each k, taking
the pushout of the first row extends P̃n−1Y over Xn−1 to the space δn,k

n−1∗ P̃n−1Y
over Xn; taking the pushout of the second row yields P̃n−1Y ∧e Y . Since the
diagram commutes, we obtain a family of maps over Xn

δ
n,k
n−1 : δ

n,k
n−1∗φ̃n−1 P̃n−1Y → φ̃n−1 P̃n−1Y ∧e Y

with δn,k
n−1(y1, . . . , yn−1)= (y1, . . . , yk, . . . , yn−1, yk).

Now we are ready to augment diagram (8.8), after which we can compute the
desired cofibration sequence. Having established the notation

1̃n
n−1φ̃n−1 P̃n−1Y = δn,1

n−1∗φ̃n−1 P̃n−1Y ∪Xn · · · ∪Xn δ
n,n−1
n−1∗ φ̃n−1 P̃n−1Y,

write 1n
n−1 :1

n
n−1φn−1 P̃n−1Y → φn−1 P̃n−1Y ∧e Y for the union of the maps δn,k

n−1
just defined. Add this map above the upper right corner of (8.8) and fill out the
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following diagram:

X

��

Xnµ
oo

∼=

��

1n
n−1φ̃n−1 P̃n−1

n−2 Yoo //
i ′
//

��

1n
n−1
��

1n
n−1φ̃n−1 P̃n−1Y

��

1n
n−1
��

X

��

Xn−1
× X

µ
oo

��

φ̃n−1 P̃n−1
n−2 Y ∧e Y

rn−1
∧er

oo //
i
//

��

φ̃n−1 P̃n−1Y ∧e Y

∼=

��

X Xnµ
oo P̃n

n−1Yrn
oo //

i ′′
// P̃nY

(8.9)

To explain the entry at the top of the third column, we identify the conditions on

(z1, . . . , zn) ∈ (φ̃n−1 P̃n−1
n−2 Y )∧e Y and (y1, . . . , yn−1) ∈1

n
n−1φ̃n−1 P̃n−1Y

such that i(z1, . . . , zn)=1
n
n−1(y1, . . . , yn−1). We see that z j = y j for 1≤ j ≤ n−1

and that there is k between 1 and n− 1 such that zn = yk . Moreover, since no more
than n − 2 of the first n − 1 simplices z j are distinct, no more than n − 2 of the
simplices y j are distinct. Hence, we obtain the description of the term at the top
of the third column. Additionally we obtain the fact that the induced map(
φn−1 P̃n−1

n−2 Y ∧e Y
)
∪(1n

n−1φn−1 P̃n−1
n−2 Y )

(
1n

n−1φn−1 P̃n−1Y
)
// // φn−1 P̃n−1Y ∧e Y

is a cofibration, so Lemma 2.9 applies to diagram (8.9).
One takes the row-wise pushout of the three columns on the right and obtains

the cofibration sequence in R f (Xn)

1̃n
n−1φ̃n−1θ̃

n−1Y //
1̃n

n−1
// φ̃n−1θ̃

n−1Y ∧e θ
1Y // // φ̃n θ̃

nY,

which is (8.5) from the statement.
One also composes the arrows pointing to the left in each row and takes the

row-wise pushout of the resulting diagram, which consists of columns one, three,
and four of the diagram (8.9), obtaining

1n
n−1φ̃n−1θ̃

n−1Y //
µ∗1̃

n
n−1
// φn−1θ

n−1Y ∧µ θ1Y // // φnθ
nY,

which is the second cofibration sequence (8.6) in the statement. �

We want to apply the cofibration sequence (8.6) to evaluate the composite φnθ
n

on a homotopy class in π j A(X), where the basepoint is taken in the zero com-
ponent. Two features of algebraic K-theory make this possible. The first feature
is essentially a consequence of the additivity theorem and says that cofibration
sequences imply additive relations.
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Lemma 8.10. Let Z be a space. The two composite maps

|hS2R f (Z)|
t
//

s∨q
// |hR f (Z)| // �|hS•R(Z)|

are homotopic, where the right-hand arrow is the canonical map

|hR f (Z)| →�|hS•R f (Z)|. �

The second feature is the triviality of products in higher homotopy groups, ex-
plained as follows. Since X is a simplicial abelian group, the homotopy functor
Y 7→ [Y, A(X)] has a ring structure induced from the biexact pairing

R(X)×R(X) ∧e
−−→R(X × X) µ∗

−−→R(X).

Now suppose Y = 6Y ′ is a suspension. Under this ring structure the product of
two elements [ f1] and [ f2] in [Y, A(X)] is zero, because [ f1] may be represented
by a map taking the upper cone C+Y ′ in 6Y ′ to the point in A(X) represented by
the zero element in R f (X), while [ f2] is represented by a map taking the lower
cone C−Y ′ in 6Y ′ to the zero element. In a similar manner, there are pairings

R(Xn−1)×R(X) ∧e
−−→R(Xn−1

× X)=R(Xn)

and these are also zero on higher homotopy groups. Combining these observations
means we have a chance to compute by induction the action of φnθ

n on higher
homotopy groups, because at each stage of the induction the middle term of the
relevant cofibration contributes nothing to the final answer.

To start the induction, we compute (φ2θ
2)∗[ f ] for f : S j

→ A(X). Applying
the additivity theorem to the cofibration sequence (8.6), we can write

(φ2θ
2)∗[ f ] = (θ1

∗
[ f ] ∧µ θ1

∗
[ f ])− (12

1θ
1)∗[ f ].

For the first term on the right side of the equation, we have observed that this
product is zero. So we first obtain

(φ2θ
2)∗[ f ] = −(12

1θ
1)∗[ f ]. (8.11)

We analyze this expression as follows. First, φ1 and θ1 are identity functors. For
n = 2, there is one diagonal map δ2,1

1 : Z→ δ
2,1
1 Z , so

1̃2
1φ1θ

1Y = δ2,1
1∗ φ1θ

1(Y )= δ2,1
1∗ Y.

Then 12
1φ1θ

1
= µ∗ ◦ 1̃

2
1φ1θ

1
= µ∗ ◦ δ

2,1
1∗ , and the point is to see what is happening

with the retraction r : Y → X . Applying formula (8.3), the composition

µ ◦ (1̃2
1r) ◦ i2,1

1 (y)= µ(r(y), r(y))= (r(y))2 = (τ2 ◦ r)(y),
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where τ 2
: X→ X is the squaring homomorphism. That is, the action of12

1=µ∗1̃
2
1

on homotopy is the same as the action on homotopy induced by the squaring ho-
momorphism τ 2. Consequently,

(φ2θ
2)∗[ f ] = −τ 2

∗
[ f ].

The general result is the next theorem.

Theorem 8.12. Let τ n
: X→ X be the homomorphism that raises elements to the

n-th power, thinking of the operation in X as multiplication. Then

φnθ
n
∗
= (−1)n−1

· (n− 1)! · τ n
∗
: π j A(X)→ π j A(X)

for j > 0.

Proof. First we observe that on higher homotopy groups,

(φnθ
n)∗ = (−1)n−1

· (1n
n−11̃

n−1
n−2 · · · 1̃

2
1)∗.

An application of the cofibration sequence (8.6) and the vanishing product principle
gives (φnθ

n)∗ = (−1) · (1n
n−1φ̃n−1θ̃

n−1)∗. Then one continues, with applications
of the cofibration sequence (8.5) and the vanishing pairing principle,

(φnθ
n)∗ = (−1)2 ·

(
1n

n−11̃
n−1
n−2φ̃n−2θ̃

n−2)
∗
= · · ·

= (−1)n−1
·
(
1n

n−11̃
n−1
n−2 · · · 1̃

2
1
)
∗
= (−1)n−1

·
(
µ∗1̃

n
n−11̃

n−1
n−2 · · · 1̃

2
1
)
∗
,

recalling that φ̃1 and θ̃1 are identity functors.
Since the functors 1̃p

p−1 are built by unions from functors δ̃ p,k
p−1∗, we have to

analyze composites

δ
n,kn−1
n−1∗ ◦ δ

n−1,kn−2
n−2∗ ◦ · · · ◦ δ

2,1
1∗ :R f (X)→R f (Xn)

for all choices of indices 1≤ kn−1 ≤ n− 1, 1≤ kn−2 ≤ n− 2, . . . , 1≤ k2 ≤ 2. On
(Y, r, s) the value of the chain is (Y ∪X Xn, rn, s), where the retraction rn

: Y→ Xn

is evaluated by repeated application of formula (8.2). When we apply µ∗ to this
object, the value on (Y, r, s) is seen to be (Y, τ n

◦ r, s). Finally, we identify the
numerical coefficient (n− 1)! by counting the number of terms in the composites
1̃n

n−11̃
n−1
n−2 · · · 1̃

2
1 according to the description above. �
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We prove the Farrell–Jones conjecture for algebraic K-theory of spaces for virtu-
ally poly-Z-groups. For this, we transfer the “Farrell–Hsiang method” from the
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1. Introduction

The classification of high-dimensional manifolds and the understanding of their au-
tomorphism groups is a long-standing question in algebraic topology. The former
turned out to be intimately related to the algebraic K- and L-theory of group rings
[Wall 1999], while the latter has a deep connection to pseudo-isotopy theory and
Waldhausen’s algebraic K-theory of spaces [Waldhausen et al. 2013; Weiss and
Williams 2014].

Since the 1970s, a lot of progress has been made to calculate the algebraic K-
and L-theory of group rings. This culminated in what is now called the Farrell–
Jones conjecture, first stated in [Farrell and Jones 1993]. For algebraic K-theory, it
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predicts that the algebraic K-theory of R[G] can be computed from the algebraic
K-theory of a certain set of subgroups by a homological recipe. The Farrell–Jones
conjectures for algebraic K- and L-theory of group rings have been a highly active
research area over the last 20 years. Though many cases of the conjectures are
known by now, they remain open in general.

In the language of [Davis and Lück 1998], the conjecture takes the following
form: Let F be a homotopy invariant functor from spaces to spectra. Let X be a
connected CW-complex with fundamental group G. Then we obtain an induced
functor FX from the orbit category Or(G) to the category of spectra which sends
G/H to F(X̃ ×G G/H). By the methods of [Davis and Lück 1998], FX gives rise
to a G-homology theory H G

∗
(– ; FX ). The Farrell–Jones conjecture for FX predicts

that the assembly map

H G
n (EVCycG; FX )→ H G

n (G/G; FX )∼= πnF(X), (1.1)

which is induced by the projection map EVCycG → G/G from the classifying
space for virtually cyclic subgroups to a point, is an isomorphism for all n ∈ Z. If
we choose F to be nonconnective algebraic K-theory K−∞(Z[π1( – )]) or Ranicki’s
ultimate lower L-theory L−∞(Z[π1( – )]), we obtain the K- or L-theoretic Farrell–
Jones conjecture for group rings, respectively.

In this article, we consider the case that F(–)=A−∞(–), a nonconnective deloop-
ing of Waldhausen’s algebraic K-theory of spaces. We obtain the following result:

1.2. Theorem. Let X be a connected CW-complex with fundamental group G. If
G is a virtually poly-Z-group, then the assembly map

H G
n (EVCycG;A−∞X )→ πnA−∞(X)

is an isomorphism for all n ∈ Z.

In addition to the algebraic K- and L-theory of group rings, Farrell and Jones
also stated conjecture (1.1) for pseudo-isotopy. They went on to prove the pseudo-
isotopy version of the conjecture for spaces whose fundamental group is a co-
compact lattice in an almost connected Lie group, assuming that it holds for spaces
whose fundamental group is virtually poly-Z. However, the announced proof of this
special case was never published; see [Bartels et al. 2014a, Remark 7.1]. Since the
isomorphism conjecture in A-theory is in fact equivalent to the (topological, PL
and smooth) pseudo-isotopy version [Enkelmann et al. 2018, Theorem 3.2], the
present article closes this gap in the published literature.

We also give a description of the A-theory of spaces with finite fundamental
group, which is similar to Lemma 4.1 of [Bartels and Lück 2007]. Call a finite
group D a Dress group if there are primes p and q and a normal series P EC E D
such that P is a p-group, C/P is cyclic and D/C is a q-group.
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1.3. Theorem. Let X be a connected CW-complex with finite fundamental group G.
Let D denote the family of Dress subgroups of G. Then the assembly map

H G
n (EDG;A−∞X )→ πnA−∞(X)

is an isomorphism for all n ∈ Z.

Theorems 1.2 and 1.3 are not the first results of this type. For the algebraic
K-theory and L-theory of group rings, the last decade has seen dramatic progress
on the Farrell–Jones conjecture. To name some important results, the conjecture
has been shown to hold for word-hyperbolic groups [Bartels et al. 2008b], CAT(0)-
groups [Bartels and Lück 2012a; Wegner 2012], lattices in almost connected Lie
groups [Bartels et al. 2014a; Kammeyer et al. 2016], subgroups of GLn(Z) [Bartels
et al. 2014b] and GLn(Q) as well as GLn(F(t)) for any finite field F [Rüping 2016],
solvable groups [Wegner 2015], and mapping class groups [Bartels and Bestvina
2019].

The proofs of these results make heavy use of a set of ideas known as “con-
trolled algebra”, which go back to work of Connell and Hollingsworth [1969] and
Quinn [1979]. It was shown in [Bartels et al. 2004] that the methods of controlled
algebra can be used to produce explicit models for the (equivariant) assembly map
H G

n (EVCycG;K−∞R )→ Kn(R[G]). Precursors of this model appeared for example
in [Pedersen and Weibel 1989] and [Anderson et al. 1994]. All recent proofs of the
Farrell–Jones conjecture use this setup, and rely on at least one of two sufficient
criteria to prove the conjecture: the notions of transfer reducibility and being a
Farrell–Hsiang group (see [Bartels 2016]).

For the algebraic K-theory of spaces, known as A-theory, Vogell used the ideas
of controlled algebra in the setting of retractive spaces to describe an A-theory
assembly map [Vogell 1990; Carlsson et al. 1998]. These models were recast in
[Weiss 2002] to repair some problems with the original approach.

In this article, we promote Weiss’ categories of controlled retractive spaces to
the equivariant setting (even though our notions of weak equivalence are closer
to those of Carlsson–Pedersen–Vogell). We give a self-contained discussion of
the categories of equivariant, controlled retractive spaces. We prove a number of
theorems modeled after those of [Bartels et al. 2004], and produce a model for the
equivariant A-theory assembly map. One particular feature of our treatment lies
in the fact that we can reuse a considerable amount of results from [Bartels et al.
2004] and subsequent work.

One obtains a category (of controlled retractive spaces) whose K-theory vanishes
if and only if the assembly map for G is an isomorphism. In the linear case, proofs
of the Farrell–Jones conjecture proceed by using the notions of transfer reducibil-
ity or Farrell–Hsiang group to show that the K-theory of a similar “obstruction
category” is trivial. We adapt the “Farrell–Hsiang method” to our setting:



60 MARK ULLMANN AND CHRISTOPH WINGES

1.4. Definition. Let G be a group and S be a finite, symmetric generating set of G.
Let F be a family of subgroups of G.

Call (G, S) a Dress–Farrell–Hsiang group with respect to F if there exists N ∈
N such that for every ε > 0 there is an epimorphism π : G � F onto a finite
group F such that the following holds: for every Dress group D 6 F , there are
a D := π−1(D)-simplicial complex ED of dimension at most N whose isotropy
groups lie in F , and a D-equivariant map ϕD : G→ ED such that

d`
1
(ϕD(g), ϕD(g′))6 ε

whenever g−1g′ ∈ S.

1.5. Theorem. Let X be a connected CW-complex with fundamental group G.
Let F be a family of subgroups of G. If G is a Dress–Farrell–Hsiang group with
respect to F , then the assembly map

H G
n (EFG;A−∞X )→ πnA−∞(X)

is an isomorphism for all n ∈ Z.

Theorem 1.3 follows immediately from this result. Theorem 1.2 is deduced in
Section 11 following the strategy of [Bartels et al. 2014a], using previous results
from [Winges 2015] that all relevant instances of Farrell–Hsiang groups are actually
Dress–Farrell–Hsiang.

Using the framework we develop here, the proof of the Farrell–Jones conjec-
ture for transfer reducible groups can also be adapted to the A-theory setting; see
[Enkelmann et al. 2018].

Structure of the article. Let us outline the structure of this article.
In the first half, we set up the technical background for our constructions. In

Section 2, we define the notion of a coarse structure and explain how a coarse
structure Z gives rise to the notion of a controlled space relative to a base space W .
In Section 3, we use these notions to construct the category of controlled retrac-
tive spaces R(W,Z) relative to a base space W . Every subspace A of Z gives
rise to a class of weak equivalences h A on R(W,Z); if A is empty, this gives a
notion of homotopy equivalence. We show that the category R(W,Z), together
with the weak equivalences h A, is a Waldhausen category which has a cylinder
functor and satisfies the saturation axiom and the cylinder axiom. As usual, we
need some finiteness condition to make algebraic K-theory nontrivial, so we define
subcategories of finite, homotopy finite and finitely dominated objects. In fact, we
work G-equivariantly and obtain in particular a Waldhausen category of finite, G-
equivariant controlled retractive spaces RG

f (W,Z).
In Section 4, we compare the different finiteness conditions and show that the

resulting (connective) algebraic K-theory differs at most in degree 0. We show
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that we have a version of Waldhausen’s fibration theorem which applies in our
situation, even though the h A-equivalences do not satisfy the extension axiom. We
call this the modified fibration theorem and prove it as Proposition 4.14. (Such a
statement was already used in [Weiss 2002].) We use this to construct homotopy
fiber sequences which compare homotopy equivalences and h A-equivalences and
show an excision result, the “coarse Mayer–Vietoris theorem” in Theorem 4.23.
These results still have a certain “defect” in degree 0, which is corrected in the next
section. The section concludes with a criterion for the vanishing of the algebraic
K-theory of the categories RG

f (W,Z).
In Section 5, we define a delooping of the algebraic K-theory space K (RG

f (W,Z))
to obtain the nonconnective algebraic K-theory spectrum K−∞(RG

f (W,Z)). We
establish nonconnective versions of the homotopy fiber sequences and “coarse
Mayer–Vietoris theorem” from the previous section. In particular, this repairs the
“defect” in degree 0 of the connective case.

The second half of the article discusses the Farrell–Jones conjecture for A-theory.
Section 6 constructs a model for the assembly map. As in the linear case, there
exists for any G-CW-complex X a coarse structure J(X) which, together with a
certain class of weak equivalences h∞, makes

K−∞(RG
f (W, J( – )), h∞)

into a G-homology theory. If W is a free G-CW-complex, we identify its coeffi-
cients with A−∞(H\W ). Here, A−∞(V ) is a nonconnective delooping of Wald-
hausen’s algebraic K-theory of spaces A(V ), which we define using the results of
Section 5. Applying the G-homology theory to the map EFG→ G/G gives the
assembly map. We conclude with a criterion when this assembly map is a weak
equivalence.

In Section 7, we recall the fibered isomorphism conjecture for A-theory. We
define the notion of a Dress–Farrell–Hsiang group with respect to a family F .
Theorem 7.4 states that the fibered isomorphism conjecture is true for this class
of groups. Imitating [Bartels and Lück 2012b], we show how the theorem follows
once we know Corollary 9.6 and Theorem 10.1. Theorem 1.5 is a special case of
Theorem 7.4.

In Section 8, we introduce the A-theoretic Swan group and show that it acts
on the K-theory of the categories RG

f (W, J(X)). We prove an analog of Swan’s
induction theorem as Theorem 8.7. This is used to construct a “transfer map” in
Section 9. Section 10 contains a proof of the “squeezing theorem”, Theorem 10.1.

Section 11 is devoted to applications. We prove Theorem 1.3 and proceed to
show Theorem 1.2 following the strategy of [Bartels et al. 2014a]. We state the
“fibered Farrell–Jones conjecture with wreath products in A-theory”, establish the
usual inheritance properties and generalize Theorem 7.4 to cover this case as well.
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We conclude with the proof that virtually poly-Z-groups satisfy the fibered Farrell–
Jones conjecture with wreath products in A-theory.

2. Controlled equivariant CW-complexes

Throughout this article, G denotes a discrete group and W denotes a G-space.

2.1. Definition. Let Z be a G-space which is Hausdorff. A set of morphism control
conditions C is a collection of G-invariant subsets of Z × Z with the following
properties:

(C1) Every C ∈ C contains the diagonal 1(Z) := {(z, z) | z ∈ Z}.

(C2) Every C ∈ C is symmetric.

(C3) For all C,C ′ ∈ C there is some C ′′ ∈ C such that C ∪C ′ ⊆ C ′′.

(C4) For all C,C ′ ∈ C there is some C ′′ ∈ C such that C ′ ◦C ⊆ C ′′, where the
composition C ′ ◦C is defined as

C ′ ◦C := {(z′′, z) | ∃z′ : (z′, z) ∈ C, (z′′, z′) ∈ C ′}.

A set of object support conditions S is a collection of G-invariant subsets of Z
with the following property:

(S1) For all S, S′ ∈S there is some S′′ ∈S such that S ∪ S′ ⊆ S′′.

The triple Z= (Z ,C,S) is called a coarse structure.

Note that conditions (C1) and (C4) imply condition (C3).

2.2. Example [Bartels et al. 2004, Sections 2.3.2 and 2.3.3; 2008b, Section 3.2].

(1) Let Z be a G-space. The trivial object support condition is Striv(Z) = {Z}.
The trivial morphism control condition is given by Ctriv(Z) := {Z × Z}. To-
gether, these form the trivial coarse structure T(Z).

(2) Let X be a G-space. The G-compact support condition is the object support
condition defined to be

CG-cpt(X) := {K ⊆ X | K is G-compact}.

(3) Let M be a metric space with isometric G-action; metrics are allowed to map
to the extended real line R∪ {∞}. The bounded morphism control condition
is defined to be

Cbdd(M) := {B ∈ P(M ×M) | there is some R > 0 such that

d(m1,m2)6 R for all (m1,m2) ∈ B}.
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Together with the trivial object support condition on M , we obtain the bounded
coarse structure

B(M) := (M,Cbdd(M),Striv(M)).

(4) Let X be a G-space. The G-continuous control condition CG-cc(X) is the
morphism control condition given by the set of all subsets

C ⊆ (X ×[1,∞[)× (X ×[1,∞[)

which satisfy the following:

(a) For every x ∈ X and every Gx -invariant open neighborhood U of (x,∞)
in X ×[1,∞], there exists a Gx -invariant open neighborhood V ⊆U of
(x,∞) in X ×[1,∞] such that ((X ×[1,∞[) \U )× V )∩C =∅.

(b) Let p[1,∞[ : X×[1,∞[→ [1,∞[ be the projection map and equip [1,∞[
with the Euclidean metric. Then the set (p[1,∞[× p[1,∞[)(C) is a member
of Cbdd([1,∞[).

(c) C is symmetric, G-invariant and contains the diagonal.

(5) If C1, C2 are sets of morphism control conditions on the same space Z , then

C1 eC2 := {C1 ∩C2 | C1 ∈ C1,C2 ∈ C2}

is again a set of control conditions. We refer to this construction as “pointwise
intersection”.

There are further constructions which allow us to produce new coarse structures
out of these; see [Bartels et al. 2004, Section 2.3.1]. We will introduce these on
the way as we need them; see, for example, Definitions 5.1, 5.2 and 6.1.

Recall that W is a space with a G-action. Let Y be a G-CW-complex relative
to W . The structural inclusion of the relative G-CW-complex (Y,W ) is usually
denoted by s : W → Y . If we speak about a “cell” of Y , this always means a
(nonequivariant) open, relative cell. The closure of a cell e is denoted by ē, and
∂e is always the boundary of the cell e, i.e., the image of any attaching map for e.
Let �kY denote the set of k-cells of Y . Set �Y :=

⋃
k �kY . If e ∈ �Y is a cell in Y ,

we define 〈e〉 ⊆ Y to be the smallest nonequivariant subcomplex of Y (relative W )
which contains e. For a subgroup H 6 G, let 〈e〉H ⊆ Y denote the smallest H -
CW-subcomplex of Y which contains e. Similarly, we define 〈S〉, 〈S〉H for any
subset S ⊆ Y .

A nonequivariant version of the following definition was already considered in
[Weiss 2002].

2.3. Definition. Let Z = (Z ,C,S) be a coarse structure. Let Y be a G-CW-
complex relative to W . A control map for Y is an equivariant function κ : �Y → Z .
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A G-CW-complex Y relative W together with a control map κ is called a labeled
G-CW-complex relative W .

Let (Y1, κ1) and (Y2, κ2) be labeled G-CW-complexes relative W . A Z-controlled
map f : Y1→ Y2 is an equivariant, cellular map (relative W ) such that for all k ∈N

there is some C ∈ C for which

(κ2× κ1)
(
{(e2, e1) | e1 ∈ �kY1, e2 ∈ �Y2, 〈 f (e1)〉 ∩ e2 6=∅}

)
⊆ C

holds.
A Z-controlled G-CW-complex relative W is a labeled G-CW-complex (Y, κ)

such that the identity map on Y is a Z-controlled map and for all k ∈ N there is
some S ∈S such that

κ(�kY )⊆ S.

We abbreviate the terminology to controlled map and controlled G-CW-complex if
the coarse structure Z is understood.

2.4. Remark. The Z-control condition for a labeled G-CW-complex (Y, κ) is a
statement about attaching maps. Since C is closed under composition and taking
finite unions, the control condition in Definition 2.3 is equivalent to requiring that
for each k, there is some Ck ∈ C such that for every k-cell e and every cell e′

intersecting the closed cell ē nontrivially, we have (κ(e′), κ(e)) ∈ Ck .
Moreover, if Ck witnesses Z-controlledness for a given complex Y , we may

assume that Ck ⊆Ck+1, and the same holds for the support conditions. In particular,
if Y is finite-dimensional, there are a single support condition S and a single control
condition C witnessing that Y is Z-controlled.

Let (Y, κ) be a labeled G-CW-complex relative W . Define the relative cylinder
Y h [0, 1] by the pushout

W ×[0, 1] W

Y ×[0, 1] Y h [0, 1]

s× id[0,1]

The projection map p : Y h [0, 1]→ Y induces a function �p : �(Y h [0, 1])→�Y ,
so κ ◦�p is a control map for Y h [0, 1]. This turns Y h [0, 1] into a labeled G-CW
complex relative to W . If (Y, κ) is Z-controlled, then (Y h [0, 1], κ ◦ �p) is also
Z-controlled.

2.5. Definition. Let (Y1, κ1) and (Y2, κ2) be labeled G-CW-complexes relative W .
A Z-controlled homotopy is a Z-controlled map H : Y1h [0, 1] → Y2. Two maps
f0, f1 : Y1→ Y2 are Z-controlled homotopic, f0 'Z f1, if there is a Z-controlled
homotopy whose restriction to Y1×{0} and Y1×{1} equals f0 and f1, respectively.
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A Z-controlled map f : Y1→ Y2 is a Z-controlled homotopy equivalence if there
is a Z-controlled map f̄ : Y2→ Y1 such that f̄ f 'Z idY1 and f f̄ 'Z idY2 .

Suppose (Y, κ) is a labeled G-CW-complex relative to W , and that B ⊆ Y is a G-
invariant subcomplex of Y which contains W . Then B naturally becomes a labeled
G-CW-complex relative to W by restricting κ to B. If we do not say otherwise,
we always think about subcomplexes as labeled G-CW-complexes in this way.

2.6. Proposition (Z-controlled homotopy extension property [Weiss and Williams
1998, Section 1.A.6]). Let (Y, κ) be a Z-controlled G-CW-complex relative W , and
let B ⊆ Y be a G-invariant subcomplex. Let Y1 be a Z-controlled G-CW-complex
relative W , and suppose that h : Y ×{0} ∪ Bh [0, 1] → Y1 is a Z-controlled map.

Then there is a Z-controlled map Y h [0, 1] → Y1 extending h.

Proof. The proof follows the usual pattern. Subject to a choice of deformation
retraction of Dn

×[0, 1] to Dn
×{0}∪ ∂Dn

×[0, 1], we can define a G-equivariant
deformation retraction of (sknY∪B)h[0, 1] onto sknY×{0}∪Bh[0, 1] by compos-
ing with the characteristic maps of equivariant n-cells. The resulting deformation
retraction can be chosen to be constant on all points which do not lie on an n-cell
of Y which is not in B. It is Z-controlled because points on a given cell are moved
at most into the image of the attaching sphere of the same cell (and attaching maps
are controlled).

We obtain a deformation retraction of Yh[0, 1] onto Y×{0}∪Bh[0, 1] by stack-
ing the homotopies defined in the first step. This produces another Z-controlled
homotopy since, for each n, all but finitely many of the stacked homotopies are
constant on the n-skeleton. The endpoint of this homotopy is a retraction

r : Y h [0, 1] → Y ×{0} ∪ Bh [0, 1],

so we may define an extension of h by H := h ◦ r . �

3. Categories of controlled retractive spaces

The primary objective of the following discussion is to form a Waldhausen category
of controlled G-CW-complexes relative W . This enables us to study the controlled
A-theory of W in the sequel. Since the terminology can be considered standard
by now, we freely use the notions of category with cofibrations [Waldhausen 1985,
page 320], Waldhausen category [Waldhausen 1985, page 326] (where it is called
“category with cofibrations and weak equivalences”) and cylinder functor [Wald-
hausen 1985, page 348]. The saturation and extension axioms [Waldhausen 1985,
page 327] as well as the cylinder axiom [Waldhausen 1985, page 349] play a role.

3.1. Definition. Let Z= (Z ,C,S) be a coarse structure. The category RG(W,Z)
of Z-controlled retractive spaces over W is the category whose objects are Z-
controlled, free G-CW-complexes Y relative to W which come equipped with an
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equivariant retraction r : Y →W (i.e., r ◦ s = idW , where s denotes the structural
inclusion W → Y ). Morphisms in this category are Z-controlled maps over and
under W .

We write (Y, sY , rY ) or Y�W for objects of RG(W,Z), if we want to emphasize
the section and retraction or the base space.

3.2. Remark. We would like to emphasize a few points about Definition 3.1 which
may be easy to overlook.

By definition, the morphisms in RG(W,Z) are all cellular maps, and we never
consider maps which are not cellular. This is important for inductive arguments,
and also provides us with mapping cylinders.

Requiring the relative G-CW-complexes (Y,W ) to have a retraction Y→W and
morphisms to respect this retraction provides RG(W,Z) with a basepoint. How-
ever, the homotopy equivalences we define later are inherited from the category of
relative G-CW-complexes. This means that some arguments lead us to consider
maps which do not have to respect the retraction. We use the word morphism if a
map respects the retractions, and speak about maps if the retractions do not need
to be preserved.

3.3. Definition (finiteness conditions). Let (Y �W, κ) be a Z-controlled retractive
space over W .

We call Y finite if it is finite-dimensional, the image of Y \W under the retraction
meets the orbits of only finitely many path components of W , and for all z ∈ Z
there is some open neighborhood U of z such that κ−1(U ) is finite.

An object Y is homotopy finite if there is a finite object F and a morphism
F→ Y which is a Z-controlled homotopy equivalence.

We call Y finitely dominated if there are a finite Z-controlled G-CW-complex D
relative W , a Z-controlled morphism p : D→ Y and a Z-controlled map i : Y → D
such that pi 'Z idY as Z-controlled maps.

Let us denote the full subcategories of finite, homotopy finite and finitely domi-
nated Z-controlled retractive spaces by RG

f (W,Z), R
G
h f (W,Z) and RG

fd(W,Z).

3.4. Remark. Note that the cells of finite objects can only be labeled with points
whose isotropy group is finite. In fact, all control spaces we consider are free.

3A. RG(W,Z) as a Waldhausen category. Observe that RG(W,Z) is canoni-
cally pointed by the zero object ∗ = (W � W,∅), and that ∗ is finite. Let
coRG(W,Z) be the subcategory of all morphisms which are isomorphic to the
inclusion of a G-invariant subcomplex. We call such morphisms cofibrations and
denote them by “�”. Since isomorphisms are controlled, the controlled homotopy
extension property (CHEP) holds with respect to cofibrations as a consequence of
Proposition 2.6. As observed in [Weiss and Williams 1998, Section 1.A.6], the
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CHEP is key to showing that RG(W,Z) is a Waldhausen category. In the remain-
der of this section, we elaborate on this remark, and also introduce a more general
notion of weak equivalences in RG(W,Z), which is inspired by [Carlsson et al.
1998].

3.5. Lemma. The subcategory coRG(W,Z) is a subcategory of cofibrations for
RG(W,Z). If in a diagram Y2← Y0� Y1 all three objects are finite, then so is the
pushout Y1 ∪Y0 Y2.

Proof. The unique morphism ∗→ Y (given by the structural inclusion) is clearly
in coRG(W,Z), and the same holds true for any isomorphism. This shows Wald-
hausen’s first two axioms. We are left to show that cofibrations admit cobase
changes. Clearly isomorphisms do, so we can restrict ourselves to inclusions of
G-invariant subcomplexes.

Let a diagram of the form Y2← Y0� Y1 be given, where Y0 is a subcomplex
of Y1. The pushout Y := Y1 ∪Y0 Y2 exists in the category of G-CW-complexes
relative W , and the resulting map Y2→ Y is the inclusion of a subcomplex. By
the universal property of the pushout, we obtain a structural retraction Y →W .

We observe that �Y = �Y2 t (�Y1 \ �Y0). This allows us to define a control map
κ : �Y → Z by setting

κ(e) :=
{
κ2(e), e ∈ �Y2,

κ1(e), e ∈ �Y1 \ Y0.

Then (Y, κ) is an object in RG(W,Z) because the map Y0→ Y2 is controlled. If
Y1 and Y2 are finite, then so is Y .

By the universal property of Y , morphisms of retractive spaces out of Y are in
bijection with compatible pairs of morphisms of retractive spaces out of Y1 and Y2.
It is straightforward to check that this correspondence restricts to a bijection be-
tween controlled maps. Hence, (Y, κ) is also a pushout in RG(W,Z). �

Setting coRG
f (W,Z) :=RG

f (W,Z)∩ coRG(W,Z), Lemma 3.5 shows that both
RG(W,Z) and RG

f (W,Z) are categories with cofibrations.
The pushout of homotopy finite or finitely dominated objects is also homotopy

finite or finitely dominated, respectively, and both RG
h f (W,Z) and RG

fd(W,Z) are
therefore also categories with cofibrations. However, the proof requires us to
know more about the Waldhausen category structure of RG(W,Z). It is given
in Lemma 3.25.

3.6. Definition (cofinal subcomplexes). Let A ⊆ Z be a G-invariant subspace. A
Z-thickening A is a set of the form

AC
:= {z ∈ Z | (z, a) ∈ C, a ∈ A}

for some C ∈ C.
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Let additionally (Y, κ) be a labeled G-CW-complex relative W . A subcomplex
Y ′ ⊆ Y is called cofinal away from A if for every k ∈ N there is some Z-thickening
AC of A such that κ−1(Z \ AC)∩�kY ⊆ �kY ′.

In the following discussion, we tacitly assume the next lemma.

3.7. Lemma. Let Y, Y1, Y2 be labeled G-CW-complexes.

(1) If Y ′ ⊆ Y and Y ′′ ⊆ Y are cofinal subcomplexes away from A, then so is
Y ′ ∩ Y ′′.

(2) If Y ′′ ⊆ Y ′ ⊆ Y are inclusions of subcomplexes, Y ′ ⊆ Y is cofinal away from
A and Y ′′ ⊆ Y ′ is cofinal away from A, then Y ′′ ⊆ Y is cofinal away from A.

(3) Let f : (Y1, κ1)→ (Y2, κ2) be a controlled map, and let Y ′2 ⊆ Y2 be cofinal
away from A. Let f ∗Y ′2 be the largest subcomplex of Y1 whose image under f
is contained in Y ′2. Then f ∗Y ′2 ⊆ Y1 is cofinal away from A.

(4) Suppose that Y is Z-controlled. Let B ⊆ Y be a subcomplex and B ′ ⊆ B a co-
final subcomplex. Then there is a cofinal subcomplex Y ′ ⊆ Y with Y ′∩ B = B ′.

Proof. (1) Let k ∈ N. Choose morphism control conditions C ′ and C ′′ such that
κ−1(Z \ AC ′)∩�kY ⊆ �kY ′ and κ−1(Z \ AC ′′)∩�kY ⊆ �kY ′′. Let C ∈ C such that
C ′ ∪C ′′ ⊆ C . Then Z \ AC

⊆ Z \ AC ′ and Z \ AC
⊆ Z \ AC ′′ , so

κ−1(Z \ AC)∩�kY ⊆ �k(Y ′ ∩ Y ′′).

(2) Let k ∈ N. This time, take morphism control conditions C ′ and C ′′ such that
κ−1(Z \ AC ′)∩�kY ⊆ �kY ′ and κ−1(Z \ AC ′′)∩�kY ′ ⊆ �kY ′′. Let C ∈ C such that
C ′ ∪C ′′ ⊆ C . Then Z \ AC

⊆ Z \ AC ′ and Z \ AC
⊆ Z \ AC ′′, so

κ−1(Z \ AC)∩�kY ⊆ κ−1(Z \ AC ′′)∩ κ−1(Z \ AC ′)∩�kY

⊆ κ−1(Z \ AC ′′)∩�kY ′

⊆ �kY ′′.

(3) Let k ∈ N. Choose C ∈ C such that

(κ2× κ1)
(
{(e2, e1) | e1 ∈ �kY1, e2 ∈ �Y2, 〈 f (e1)〉 ∩ e2 6=∅}

)
⊆ C,

and let C ′ ∈ C such that κ−1
2 (Z \ AC ′)∩ �kY2 ⊆ �kY ′2. Choose C ′′ ∈ C such that

C ′ ◦C ⊆ C ′′. Let e1 ∈ �kY1 such that κ1(e1) ∈ Z \ AC ′′ . Then κ2(e2) ∈ Z \ AC ′ for
all e2 ∈ 〈 f (e1)〉, so e2 ∈ Y ′2 and hence e2 ∈ �k f ∗Y ′2.

(4) This is proven by induction over the skeleta. For k = 0, define the 0-skeleton
of Y ′ to contain all 0-cells of B ′ and all 0-cells of Y which do not lie in B. Suppose
that the k-skeleton skkY ′ of Y ′ has been defined such that skkY ′ ⊆ skkY is cofinal
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and skkY ′∩B= skk B ′. There exists Ck ∈C such that κ−1(Z \ACk )∩�6kY ⊆�6kY ′.
Choose C ∈ C such that

(κ × κ)
(
{(e′, e) | e ∈ �k+1Y, e′ ∈ 〈e〉}

)
⊆ C.

Choose C ′k+1 ∈ C such that Ck ◦ C ⊆ C ′k+1. Define skk+1Y ′ by adding to skkY ′

all (k + 1)-cells of Y which lie in B ′ or which do not lie in B ′ and are labeled
by points in Z \ AC ′k+1 . Then skk+1Y ′ ∩ B = skk+1 B ′, and it is easy to check that
skk+1Y ′ ⊆ skk+1Y is cofinal.

The desired complex Y ′ is obtained by taking the union over all skkY ′. �

3.8. Definition (partially defined maps). Let (Y1, κ1), (Y2, κ2) and (Y3, κ3) be
labeled G-CW-complexes. A partially defined Z-controlled map (away from A)
Y1→

A Y2 is a pair (Y ′1, f1) where Y ′1 ⊆ Y1 is cofinal away from A and f1 : Y ′1→ Y2

is a controlled map.
For two partially defined controlled maps (Y ′1, f1) : Y1 →

A Y2 and (Y ′2, f2) :

Y2→
A Y3, their composition (Y ′2, f2) ◦

A (Y ′1, f1) is the partially defined controlled
map ( f ∗1 Y ′2, f2 ◦ f1| f ∗1 Y ′2) : Y1→

A Y3.

Composition of partially defined maps is well-defined. It is also associative:
Let (Y ′1, f1) : Y1 →

A Y2, (Y ′2, f2) : Y2 →
A Y3 and (Y ′3, f3) : Y3 →

A Y4 be par-
tially defined maps, In order to show associativity, it is enough to check that the
cofinal subcomplexes ( f2 ◦ f1| f ∗1 Y ′2)

∗Y ′3 and f ∗1 ( f ∗2 Y ′3) coincide. Observe that e
is a cell in ( f2 ◦ f1| f ∗1 Y ′2)

∗Y ′3 if and only if f1(e) ⊆ Y ′2 and f2( f1(e)) ⊆ Y ′3. If e
is a cell in f ∗1 ( f ∗2 Y ′3), then f1(e) ⊆ f ∗2 Y ′3 ⊆ Y ′2 and hence f2( f1(e)) ⊆ Y ′3. So,
we have f ∗1 ( f ∗2 Y ′3) ⊆ ( f2 ◦ f1| f ∗1 Y ′2)

∗Y ′3. On the other hand, if f1(e) ⊆ Y ′2 and
f2( f1(e))⊆ Y ′3, then f2(〈 f1(e)〉)⊆ 〈 f2( f1(e))〉 ⊆ Y ′3. Therefore, f1(e)⊆ f ∗2 Y ′3, so
( f2 ◦ f1| f ∗1 Y ′2)

∗Y ′3 ⊆ f ∗1 ( f ∗2 Y ′3).

3.9. Definition. Let (Y ′1, f0), (Y ′′1 , f1) : Y1→
A Y2 be partially defined controlled

maps. Then (Y ′1, f0) and (Y ′′1 , f1) are controlled homotopic away from A, written
(Y ′1, f0)'

A (Y ′′1 , f1), if there is a cofinal subcomplex Y ′′′1 ⊆Y ′1∩Y ′′1 and a controlled
homotopy H : Y ′′′1 h [0, 1] → Y2 from f0

∣∣
Y ′′′1

to f1
∣∣
Y ′′′1

.

3.10. Lemma. Let H : Y1h [0, 1] → Y2 be a controlled homotopy, and suppose
that Y ′2 ⊆ Y2 is cofinal away from A ⊆ Z.

Then there is a cofinal subcomplex Y ′1 ⊆ Y1 away from A such that H restricts
to a controlled homotopy Y ′1h [0, 1] → Y ′2.

Proof. We construct Y ′1 by induction over the skeleta. Assume that we have
constructed skn−1Y ′1 ⊆ Y1 such that skn−1Y ′1 ⊆ skn−1Y1 is cofinal and such that
H(skn−1Y ′1h [0, 1])⊆ Y ′2. Define

In := {e ∈ �nY1 | ∂e ⊆ skn−1Y ′1, H(〈e〉h [0, 1])⊆ Y ′2}.
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Then sknY ′1 := skn−1Y ′1 ∪
⋃

e∈In
〈e〉 is a G-invariant subcomplex such that

H(sknY ′1h [0, 1])⊆ Y ′2.

So we only have to show that sknY ′1⊆ sknY1 is cofinal. There are control conditions
C1, C ′1, C and C ′2 with the following properties:

(1) For all e, e′ ∈ �sknY1 with e′ ⊆ 〈e〉 we have (κ1(e′), κ1(e)) ∈ C1.

(2) κ−1
1 (Z \ AC ′1)∩�skn−1Y1 ⊆ �skn−1Y ′1.

(3) For all e ∈ �nY1 and all e′ ∈ �〈H(〈e〉h [0, 1])〉, we have (κ2(e′), κ1(e)) ∈ C .

(4) κ−1
2 (Z \ AC ′2)∩�skn+1Y2 ⊆ �skn+1Y ′2.

Suppose e ∈ �nY1 such that e /∈ In . If ∂e * skn−1Y ′1, then κ1(e) ∈ AC ′1◦C1 . If
H(〈e〉h [0, 1]) * Y ′2, then κ1(e) ∈ AC ′2◦C . Hence, κ1(�nY1 \ In) ⊆ AC ′1◦C1∪C ′2◦C .
This proves that sknY ′1 ⊆ sknY1 is cofinal away from A.

Defining Y ′1 :=
⋃

n sknY ′1 finishes the proof. �

3.11. Lemma. Let (Y 0
1 , f0), (Y 1

1 , f1) : Y1→
A Y2 be partially defined controlled

maps such that (Y 0
1 , f0)'

A (Y 1
1 , f1).

(1) For every partially defined controlled map (Y ′0, α) : Y0→
A Y1 we have

(Y 0
1 , f0) ◦

A (Y ′0, α)'
A (Y 1

1 , f1) ◦
A (Y ′0, α).

(2) For every partially defined controlled map (Y ′2, β) : Y2→
A Y3 we have

(Y ′2, β) ◦
A (Y 0

1 , f0)'
A (Y ′2, β) ◦

A (Y 1
1 , f1).

Proof. Consider the second claim. Since (Y 0
1 , f0)'

A (Y 1
1 , f1), there are a cofinal

subcomplex Y ′1 ⊆ Y1 and a controlled homotopy H : Y ′1h [0, 1] → Y2 from f0|Y ′1
to f1|Y ′1 . Consider Y ′2 ⊆ Y2. By Lemma 3.10, there is a cofinal subcomplex Y ′′1 ⊆ Y ′1
such that H restricts to a homotopy H ′ :Y ′′1 h[0, 1]→Y ′2. Then β◦H ′ is the desired
homotopy. The other claim is similar, but easier. �

3.12. Definition (homotopy equivalences away from A). A controlled map f :Y1→Y2

between controlled G-CW-complexes relative W is a controlled homotopy equiva-
lence away from A if there is a partially defined controlled map (Y ′2, f̄ ) : Y2→

A Y1

such that f ◦A (Y ′2, f̄ )'A idY2 and (Y ′2, f̄ ) ◦A f 'A idY1 .
Such maps are called h A-equivalences, abbreviated to h-equivalences if A =∅.

We denote by h ARG(W,Z) the collection of all morphisms in RG(W,Z) which
are controlled homotopy equivalences away from A.

3.13. Remark. Note that maps in h ARG(W,Z) are morphisms, hence required to
respect the retractions, while in general partially defined maps and partially defined
homotopy equivalences do not need to respect the retractions. This means that ho-
motopy inverses of morphisms in h ARG(W,Z) do not need to lie in h ARG(W,Z).
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See Section 2.1 of [Waldhausen 1985], where weak equivalences are defined in a
similar way.

The following results are proven using maps. We obtain results about hARG(W,Z)
because it is the intersection of the h A-equivalences with the morphisms.

Note also that h-equivalences are h A-equivalences for any choice of A.

The collection h ARG(W,Z) is closed under composition of morphisms, and
identity morphisms are controlled homotopy equivalences away from A. Hence
h ARG(W,Z) is a subcategory of RG(W,Z). Moreover, this subcategory satisfies
the saturation axiom, i.e., whenever f1 and f2 are composable morphisms, and two
out of f1, f2 and f2 f1 are h A-equivalences, so is the third.

We also need to discuss the cylinder functor on RG
f (W,Z) before we are ready

to continue. Let f : Y1→ Y2 be a controlled map of controlled G-CW-complexes
relative W . Then we define Cyl( f ) by the pushout

Y1×{1} = Y1 Y2

Y1h [0, 1] Cyl( f )

f

of G-CW-complexes relative W . We choose the canonical cofibration Y2� Cyl( f )
as the back inclusion of the cylinder, and let Y1= Y1×{0}� Y1 h [0, 1]→ Cyl( f )
be the front inclusion. The back projection Cyl( f )→ Y2 is induced by idY2 and f
via the projection Y1h [0, 1] → Y1 and the universal property of the pushout. If
f is a morphism in RG(W,Z), we can equip Cyl( f ) with the induced structural
retraction to obtain a retractive space CylW ( f ). Then the above diagram becomes a
pushout in RG(W,Z), and the front inclusion, back inclusion and back projection
are morphisms in RG(W,Z).

If we use the construction of the pushout given in the proof of Lemma 3.5 and
the fact that Y1 � Y1 h [0, 1] is the inclusion of a subcomplex, it is clear that
this defines a functor from the category of arrows in RG(W,Z) to the category of
diagrams of the shape

Y1 CylW ( f ) Y2

Y2

f =
(3.14)

in RG(W,Z). Observe also that the back projection is a controlled homotopy
equivalence: the usual deformation retraction of Cyl( f ) onto Y2 is a controlled
homotopy. We can choose CylW (∗→ A)= A, which is needed for the following
lemma.
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3.15. Lemma. CylW ( – ) gives a cylinder functor on RG(W,Z) which satisfies the
cylinder axiom with respect to h-equivalences.

We are heading towards the following proposition.

3.16. Proposition (gluing lemma). Assume we have the following commutative
diagram in RG(W,Z):

X2 X0 X1

Y2 Y0 Y1

x1

y1

x2

y2

∼
A f2 ∼A f0 ∼A f1 (3.17)

Assume x1, y1 are cofibrations and the fi are h A-equivalences. Then the induced
map on the pushouts f : X2 ∪X0 X1→ Y2 ∪Y0 Y1 is an h A-equivalence.

The uncontrolled version of Proposition 3.16 is well-known. Our proof follows
the strategy pursued in [Kamps and Porter 1997, pages 33–59], which gives a
detailed argument relying only on the homotopy extension property.

For the purpose of the proof, we introduce the following notation: if f and g
are partially defined maps X→A Y whose restrictions to some cofinal subcomplex
of X are equal, we write f =A g.

3.18. Remark. Note that Definition 3.12 could have been phrased in terms of
equivalence classes with respect to the equivalence relation =A, and that some of
the more formal properties of the subcategory h ARG(W,Z) can be easily derived
by manipulating such equivalence classes.

However, “germs” of this kind are not adequate for proofs which require explicit
constructions involving partially defined maps. The proof of the gluing lemma re-
lies heavily on the CHEP, Proposition 2.6; see, e.g., Lemmas 3.19 and 3.20, which
can only be applied to explicit choices of representatives. Similarly, the proof of
Theorem 4.16 only makes sense with explicitly chosen partially defined maps.

For the proof of the gluing lemma, we need the following auxiliary results.

3.19. Lemma. Let ji : B� Yi , for i = 1, 2, be cofibrations. Let f : Y1→ Y2 be
an h A-equivalence which satisfies f j1 = j2. Then there is a partially defined map
(Y ′2, g) :Y2→

A Y1 with (Y ′2, g)◦A j2=A j1 and a homotopy H : (Y ′2, g)◦A f 'A idY1

away from A with H ◦A ( j1×[0, 1])=A j1×[0, 1].
Furthermore, f ◦A (Y ′2, g) is also homotopic to the inclusion via a homotopy

under B, i.e., f is an “h A-equivalence under B”.

Proof. This is very similar to the standard proofs in the uncontrolled case, e.g.,
[May 1999, §6.5]. In our situation, one needs to take into account that maps and
homotopies are only defined on cofinal subcomplexes. �
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3.20. Lemma (left inverses for h A-equivalences, relative case). Assume we have
the following diagram:

B1 B2

Y1 Y2

i1 i2

b

f

(3.21)

Assume that b is an h A-equivalence with inverse (B ′2, b′) : B2→
A B1 and homotopy

HB1 : (B
′

2, b′) ◦A b 'A idB1 . (We do not need to specify the other homotopy.)
If f is an h A-equivalence, then there is a partially defined map (Y ′2, f ′):Y2→

AY1

and a homotopy HY1 : (Y
′

2, f ′)◦A f 'A idY1 such that i1◦
A (B ′2, b′)=A (Y ′2, f ′)◦A i2

and HY1 ◦
A (i1× [0, 1]) =A i1 ◦

A HB1 . (In short, f has a left h A-inverse relative
to Bi .)

Proof. Compare [Kamps and Porter 1997, I.7.3]. For the purpose of this proof,
we omit the domains of partially defined maps from the notation. Let g be an h A-
inverse for f . The map g ◦A i2 is homotopic away from A to g ◦A i2 ◦

A b ◦A b′ and
hence to i1 ◦

A b′. As i2 is a cofibration, g is homotopic to a map g′ : Y2→
A Y1

such that g′ ◦A i2 =
A i1 ◦

A b′. Now i1 ◦
A HB1 is a homotopy away from A from

i1 ◦
A b′ ◦A b=A g′ ◦A f ◦A i1 to i1. As i1 is a cofibration, homotopy extension gives

a homotopy K , extending HB1 , from g′ ◦A f to a map l.
Then l◦A i1=

A i1. Hence, Lemma 3.19 provides a left h A-inverse l ′ of l under B1.
Define f ′ := l ′ ◦A g′. Then, as a composition of h A-equivalences, f ′ is itself an
h A-equivalence, and f ′ ◦A i2 =

A i1.
We have homotopies f ′◦A f =A l ′◦A g′◦A f 'A

K l ′◦A l'A id. Restricting along i1,
this is the concatenation of the homotopy HB1 and the constant homotopy. There is
a cofinal subcomplex B ′1⊆ B1 such that we get a map B ′1h [0, 1]h [0, 1]→A Y1 by
projecting to the first two factors and then applying HB1 . The homotopies above
extend this to a map Y ′1 h [0, 1] h 0 ∪ Y1 h {0, 1} h [0, 1] →A Y1, defined on
some cofinal subcomplex Y ′1 ⊆ Y1. We may assume that B ′1 ⊆ Y ′1. The CHEP,
Proposition 2.6, then gives the homotopy HY1 . �

3.22. Remark. We cannot make special assumptions about the cofinal subcomplex
on which f ′ is defined. In particular, it could happen that Y ′2 ∩ B2 6⊆ B ′2. We need
to take care of this situation in the proof of Lemma 3.23 below.

3.23. Lemma (gluing lemma, special case). Assume in (3.17) additionally that x2

and y2 are cofibrations. Then the conclusion of the proposition holds, i.e., the map
f on the pushout is an h A-equivalence.

Proof. We can assume xi , yi are cellular inclusions, because they are so up to
isomorphism.
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Pick an h A-inverse (Y ′0, g0) of f0 and a homotopy H0 : (Y ′0, g0)◦
A f0'

A idX0 . By
Lemma 3.20, for i = 1, 2 there are h A-left inverses (Y ′i , gi ) of fi and homotopies
Hi : (Y ′i , gi ) ◦

A fi '
A idX i such that

(Y ′i , gi ) ◦
A yi =

A xi ◦
A (Y ′0, g0) and Hi ◦

A (xi ×[0, 1])=A yi ◦
A H0.

Choose a cofinal subcomplex Y ′′0 of Y0 such that the diagram

Y ′2 Y ′′0 Y ′1

X2 X0 X1

y1

x1

y2

x2

∼
A g2 ∼A g0 ∼A g1

commutes. However, Y ′1 ∪Y ′′0 Y ′2 does not need to be a subcomplex of Y1 ∪Y0 Y2, as
the Y ′′0 provided by Lemma 3.20 could be too small. But by part (4) of Lemma 3.7
we can restrict further to cofinal subcomplexes Y ′′i , i = 1, 2, such that Y ′′i ∩Y0 = Y ′′0 .
Then Y ′′ := Y ′′1 ∪Y ′′0 Y ′′2 is canonically isomorphic to the cofinal subcomplex Y ′′2 ∪Y ′′1
of Y1∪Y0 Y2. Thus we get a partially defined map (Y ′′, g) : Y1∪Y0 Y2→

A X1∪X0 X2.
By the same argument, we get a partially defined homotopy from (Y ′′, g) ◦A f

to the inclusion.
Repeating the argument with gi instead of fi , we get a partially defined map

l : X1∪X0 X2→
A Y1∪Y0 Y2 with l◦Ag'A idY2∪Y0 Y1 . It follows that f ◦Ag'A idY2∪Y0 Y1 ,

and hence f is an h A-equivalence. �

3.24. Lemma. Assume that (3.21) is a pushout square and b an h-equivalence.
Then f is an h-equivalence.

Proof. We can factor b into B1� Cyl(b)→ B2, and by saturation both maps are
h-equivalences. Taking the pushout along the first map, we obtain the diagram

B1 Cyl(b) B2

Y1 Mb,i1 Y2

i1 i ′ i2

b′

j

f

p

Here Mb,i1 is the double mapping cylinder. One now shows that j is an h-equivalence
using that b′ is a cofibration and an h-equivalence, and that p is an h-equivalence
because i1 is a cofibration. The usual proofs of these facts apply almost verbatim.
We refer to [Kamps and Porter 1997, Proposition I.7.4] for the details. �

Proof of Proposition 3.16. See also [Kamps and Porter 1997, Theorem 7.1]. Using
the mapping cylinder we can factor the diagram (3.17) as follows:
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X2 X ′ X0 X1

Y2 Y ′ Y0 Y1

x1

y1

x ′2

y′2

x2

y2

∼

x3

∼

y3

∼
A f2 ∼

A f ′ ∼
A f0 ∼

A f1

The maps x3 and y3 are h-equivalences by Lemma 3.15, so f ′ is an h A-equivalence
by saturation. The right part of the diagram consisting of x ′2, y′2, x1, y1 satisfies the
assumptions of Lemma 3.23. Therefore, the induced map f ′′ : X ′∪X0 X1→Y ′∪Y0 Y1

is an h A-equivalence. Abbreviate X ′′ := X ′∪X0 X1, Y ′′ :=Y ′∪Y0 Y1. We get induced
cofibrations x4 : X ′� X ′′, y4 : Y ′� Y ′′.

We obtain the cube

X ′ X ′′

X2 X2 ∪X0 X1

Y ′ Y ′′

Y2 Y2 ∪Y0 Y1

x4

f ′
∼

A f ′′
x3

∼

y3

∼

x5

y5
y4

f2

f

where the top and bottom are pushout squares. By Lemma 3.24, the maps x5, y5

are h-equivalences. By saturation, f is an h A-equivalence, which proves the propo-
sition. �

3.25. Lemma. Let Y2 ← Y0 � Y1 be a diagram of homotopy finite or finitely
dominated objects. Then the pushout Y1 ∪Y0 Y2 in RG(W,Z) is also homotopy
finite or finitely dominated, respectively.

Proof. For homotopy finite objects, this is a formal consequence of the gluing
lemma, Proposition 3.16, for h-equivalences. For the second claim, we show that
the following two statements are equivalent:

(1) Y ∈RG(W,Z) is finitely dominated.

(2) Y ∈RG(W,Z) is a retract of a homotopy finite object.
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Suppose (Y, sY , rY ) is finitely dominated, i.e., there are a finite object (D, sD, rD),
a morphism p : D→ Y , a controlled map i : Y → D and a homotopy h : pi ' idY .
These data give a map f : Cyl(i)→ Y whose composition with the front inclusion
is idY and whose composition with the back inclusion is p. Then r := rY ◦ f is a
retraction which makes Cyl(i) into a retractive space over W , and both f and the
front inclusion Y � Cyl(i) are morphisms. By construction, Y is a retract of Cyl(i).
The back inclusion D� Cyl(i) is an h-equivalence. Hence Cyl(i) is a homotopy
finite object.

Conversely, assume that there is a homotopy finite object F as well as mor-
phisms s : Y → F and q : F→ Y such that qs = idY . Since F is homotopy finite,
there is a finite object D and a morphism e : D→ F which is an h-equivalence.
Let ē : F→ D be an inverse controlled map. Then i := ēs : Y → D is a controlled
map to a finite object, and p := qe : D→ Y is a morphism. Moreover, we have
pi = qeēs ' qs = idY by assumption, so Y is finitely dominated.

With the characterization of finitely dominated objects as retracts of homotopy
finite objects at our disposal, it is a formal consequence of the first part of the
lemma and the universal property of the pushout that pushouts of finitely dominated
objects are finitely dominated.

Sections 7.3 and 7.4 of [Ullmann 2018] spell out the formal arguments we left
out here. �

3.26. Corollary. For any G-invariant subset A ⊆ Z , the categories RG(W,Z),
RG

f (W,Z), R
G
h f (W,Z) and RG

fd(W,Z) are Waldhausen categories with respect
to h ARG(W,Z). The saturation axiom holds for these categories.

There is a cylinder functor on RG(W,Z) which restricts to a cylinder functor
on the subcategories of finite, homotopy finite and finitely dominated objects; the
h A-equivalences satisfy the cylinder axiom.

Proof. We only need to summarize what we already know. Lemmas 3.5 and 3.25
state that the cofibrations indeed form a subcategory of cofibrations. The collec-
tion of h A-equivalences defines a subcategory of weak equivalences by the gluing
lemma, Proposition 3.16. Saturation and the cylinder functor have been discussed
right before the statement of the gluing lemma. Since every h-equivalence is an
h A-equivalence, the cylinder axiom is obvious. �

3B. Functoriality. Let us turn to the question of in which sense the categories
RG(W,Z) are functorial with respect to the space W and the coarse structure Z.
Changing G is discussed in Section 6.

If f :W1→W2 is a G-equivariant (continuous) map, pushout along f and the
structural inclusion of a given object defines an exact functor

RG( f,Z) :RG(W1,Z)→RG(W2,Z).
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For changing the coarse structure, we need to define a notion of morphism;
compare [Bartels et al. 2004, Section 3.3].

3.27. Definition. Let Z1 = (Z1,C1,S1), Z2 = (Z2,C2,S2) be two coarse struc-
tures. A morphism of coarse structures z : Z1→ Z2 is a G-equivariant map of sets
z : Z1→ Z2 satisfying the following properties:

(1) For every S1 ∈S1, there is some S2 ∈S2 such that z(S1)⊆ S2.

(2) For every S ∈S1 and C1 ∈ C1, there is some C2 ∈ C2 such that

(z× z)((S× S)∩C1)⊆ C2.

(3) For every S ∈S1 and all subsets A ⊆ S which are locally finite in Z1, the set
z(A) is locally finite in Z2 and for all x ∈ z(A), the set z−1(x)∩ A is finite.

Note that z does not need to be continuous, but the topology of Z1 and Z2 is used
in the third condition. Morphisms of coarse spaces induce morphisms of controlled
categories:

3.28. Proposition. The categories RG(W,Z), RG
f (W,Z), R

G
hf (W,Z) and RG

fd(W,Z)
are functorial in Z, i.e., they define functors from the category of coarse structures
and their morphisms to the category of Waldhausen categories.

The canonical inclusion functors yield natural transformations

RG
f (W, – )→RG

h f (W, – )→RG
fd(W, – )→RG(W, – ).

See also Remark 3.30 for some set-theoretical issues.

Proof. Let z : Z1→ Z2 be a morphism of coarse structures. Define the induced
functor

RG(W, z) :RG(W,Z1)→RG(W,Z2)

by mapping an object (Y, κ) to (Y, z ◦ κ) and by the identity on morphisms. We
only have to show that this is well-defined. Let (Y, κ) ∈ RG(W,Z1). For every
k ∈ N, there is some S1 ∈ S1 such that κ(�kY ) ⊆ S1. Since z is a morphism of
coarse structures, we can find some S2 ∈S2 such that z(κ(�kY ))⊆ z(S1)⊆ S2. The
verification that controlled maps are sent to controlled maps is similar. Condition
(3) of Definition 3.27 ensures that this construction preserves finiteness. Hence,
homotopy finite and finitely dominated objects are also preserved. �

3.29. Example. One of the most frequent examples of a morphism of coarse
structures is the following. Let Z = (Z ,C,S) be a coarse structure, and sup-
pose that A ⊆ Z is a G-invariant subspace. Denote by Z∩ A the coarse structure
(A,Ce {A× A},Se {A}), where e denotes pointwise intersection.

If A is closed in Z , the inclusion map of A into Z defines a morphism Z∩ A→Z

of coarse structures. Here closedness is required to preserve local finiteness of
subsets.
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3.30. Remark (set-theoretical smallness requirements). In the following, we dis-
cuss the algebraic K-theory of the categories RG

f (W,Z) and RG
fd(W,Z). As al-

ways, one faces certain set-theoretic difficulties in making sense of the K-theory of
these categories; see [Waldhausen 1985, Remark on page 379]. Possible solutions
include the use of a change-of-universe functor to make the categories at hand
small, or to choose small models to replace these categories. For example, we may
redefine RG(W,Z) so that the underlying set of every retractive space is a subset
of W × λ, where λ is a sufficiently large cardinal.

The algebraic K-theory of RG
f (W,Z) does not depend, up to homotopy, on

the set-theoretic model we choose, as long as λ is large enough compared to Z.
Proposition 3.28 then only asserts functoriality on some small, but arbitrarily large
subcategory of the category of all coarse structures. To avoid further complications,
we ignore these matters from now on.

4. Comparison theorems and vanishing theorems

In addition to the notions used in the previous section, we now have the opportunity
to use all three fundamental results of Waldhausen K-theory: the additivity theorem
[Waldhausen 1985, Theorem 1.4.2], the fibration theorem [Waldhausen 1985, The-
orem 1.6.4] and the approximation theorem [Waldhausen 1985, Theorem 1.6.7].

4A. Comparing finiteness conditions. We discuss to which extent the K-theory
spaces arising from the various finiteness conditions differ. The answer is given in
Proposition 4.8, but the proof requires two preparatory lemmas.

4.1. Lemma (mapping cylinder argument). Let f : Y → Y ′ and g : Y ′′→ Y ′ be
morphisms in RG(W,Z). Suppose that g is a retraction up to homotopy, i.e., that
there exists a map ḡ : Y ′→ Y ′′ such that gḡ is controlled homotopic to the identity
map. Then there is an object Q in RG(W,Z) which fits into the commutative
diagram

Y Y ′

Q Y ′′

iY

iY ′′

∼

f

g
q (4.2)

in RG(W,Z), in which iY and iY ′′ are cofibrations. The underlying controlled G-
CW-complex of Q can be chosen to be Cyl(ḡ f ).

In particular, q is an h-equivalence if and only if g is one.

Proof. Denote the retractions of Y, Y ′, Y ′′ by r, r ′, r ′′. Note that ḡ does not need
to respect the retraction. Define Q := Cyl(ḡ f ), and let iY and iY ′′ be the front and
back inclusion. Since gḡ f ' f , any choice of homotopy gḡ ' idY ′′ induces a map
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q : Q→ Y ′ which restricts to f and g on the front and back of the cylinder. We
can turn q into a morphism of retractive spaces by defining a retraction on Q via
rQ := r ′ ◦ q. Since q restricts to f and g on the two ends of the cylinder and
both of these maps are morphisms of retractive spaces, iY and iY ′′ also respect the
retractions. This proves the existence of the commutative diagram (4.2). �

The following lemma reflects the fact that something close to a Puppe sequence
exists in any Waldhausen category C with a cylinder functor. Even though the
extension axiom does not hold in RG(W,Z) [Waldhausen 1985, Section 1.2], it
follows that the axiom does hold up to suspension. Recall that the suspension of
an object A ∈ C is defined to be

6A := Cyl(A→∗)/A,

and that this extends to an exact endofunctor on C [Waldhausen 1985, page 349].

4.3. Lemma. Let C be a Waldhausen category which possesses a cylinder functor
such that the cylinder axiom and the saturation axiom hold. Consider a morphism
between cofiber sequences

A B C

A′ B ′ C ′

α

α′

β

β ′
a ∼ b c ∼ (4.4)

in which a and c are weak equivalences. Then 6b is a weak equivalence.

Proof. Repeated use of the cylinder functor gives rise to the commutative diagram
in Figure 1.

The cylinder and saturation axioms imply that all vertical arrows in this diagram
are weak equivalences. Moreover, we have the following commutative square in
the category of arrows of C:

(A
α
−→ B) (A′

α′

−→ B ′)

(A→∗) (A′→∗)

(a, b)

(id, ∗) (id, ∗)

(a, ∗)

Applying the cylinder functor to this square, and taking quotients with respect to
the front and back inclusions of the cylinders, we obtain a commutative square

S = Cyl(α)/(A∨ B) Cyl(α′)/(A′ ∨ B ′)= S′

6A 6A′

s

∼ ∼

6a

(4.5)
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A′ B ′ C ′

A B C

A′ Cyl(α′) C(α′)

A Cyl(α) C(α)

B ′ C(α′) S′

B C(α) S

B ′ Cyl( j ′) C( j ′)

B Cyl( j) C( j)

C(α′) C( j ′) T ′

C(α) C( j) T

α′

j ′

β ′

a b c

a

b s

b

t

α

j

β

Figure 1. The “Puppe sequence”.

in which the vertical arrows are weak equivalences. Since we assumed a to be a
weak equivalence, 6a is one by the gluing lemma. It follows that s, and there-
fore also the induced (nameless) morphism C( j)→ C( j ′), is a weak equivalence.
Note that the (also nameless) morphism C(α)→ C(α′) is also a weak equivalence
because c is a weak equivalence. Hence, t is a weak equivalence by the gluing
lemma. Just like s, the morphism t sits in a square like (4.5) together with the
induced morphism 6b :6B→6B ′. Hence, 6b is a weak equivalence. �

We also need the following cofinality theorem [Vogell 1990, Theorem 1.6],
which Vogell attributes to Thomason.

4.6. Theorem (Vogell cofinality). Let (C, coC, wC) be a Waldhausen category
which has a cylinder functor such that the cylinder axiom holds. Let D ⊆ C be a
full subcategory of C such that (D, coC∩D, wC∩D) is also a Waldhausen category.
Assume that

(1) D ⊆ C is weakly cofinal in the sense that for all C ∈ C there exist C ′ ∈ C and
k ∈ N such that 6kC ∨C ′ is isomorphic to an object in D;

(2) D is saturated in C, i.e., any object weakly equivalent (via some zig-zag) to
an object in D lies in D.
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Then there is a homotopy fiber sequence

wS•D→ wS•C→ N• coker(K0D→ K0C).

4.7. Remark. The conditions on D imply that D⊆ C is a subcategory with cofibra-
tions and weak equivalences in the sense of [Waldhausen 1985, Section 1.1], and
that D satisfies condition (iii) of [Vogell 1990, Theorem 1.6].

Let us also remark why Vogell’s cofinality theorem holds true: As written,
Vogell seems to prove only the cofinality theorem suggested by [Thomason and
Trobaugh 1990, Exercise 1.10.2] since, in the last three lines of his proof, he
chooses “C ′0 such that C0 ∨C ′0 is in D”. This proves Theorem 4.6 under the addi-
tional assumption that k = 0 in condition (1). In fact, the more general statement
follows:

For k ∈ N, set Ck := {C ∈ C | ∃C ′∈ C : 6kC ∨ C ′∈ D}. Then C =
⋃

k∈N Ck ,
each Ck is a full subcategory of C and inherits a Waldhausen structure from C
(one needs to check that each Ck is closed under pushouts), and D is cofinal in C0.
Hence, we can apply the case k = 0 of Theorem 4.6 to conclude that there is a
homotopy fiber sequence wS•D→ wS•C0→ N• coker(K0D→ K0C0). Observe
that the suspension functor induces a functor 6 : Ck+1→ Ck ; since the suspension
functor induces an equivalence on algebraic K-theory [Waldhausen 1985, Proposi-
tion 1.6.2], we conclude that the inclusion functor Ck ⊆ Ck+1 does so, too. Therefore,
wS•C ' hocolimk wS•Ck ' wS•C0, and Theorem 4.6 follows.

4.8. Proposition. (1) The natural inclusion of the finite into the homotopy finite
objects induces a weak equivalence

hS•RG
f (W,Z)

∼
−→ hS•RG

h f (W,Z),

hence a weak equivalence on algebraic K-theory spaces.

(2) The inclusion RG
f (W,Z) ⊆ RG

fd(W,Z) induces an isomorphism on Ki for
i > 1 and an injection on K0, where we take K-theory with respect to the
h-equivalences.

Proof. To prove the first part, we appeal to Waldhausen’s approximation theorem.
Both categories satisfy the saturation axiom and have a cylinder functor which
satisfies the cylinder axiom. The first part of the approximation property is clear.
We check the second part.

Let F be a finite object, let Y be homotopy finite, and let f : F → Y be a
morphism. We have to construct a finite object F ′, and further, a morphism F→ F ′

as well as an h-equivalence F ′ ∼−→ Y such that their composition is f .
Since Y is homotopy finite, there is a finite object F0 and an h-equivalence

e : F0
∼
−→ Y . The approximation property now follows from the mapping cylinder

argument, Lemma 4.1.
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We turn to the proof of the second part of the proposition, which uses Vogell’s
cofinality Theorem 4.6.

Since the inclusion of RG
f (W,Z) into RG

fd(W,Z) factors via RG
h f (W,Z), we

need only consider the inclusion of the latter category. We show that Vogell’s
cofinality theorem applies in this situation.

We show first that RG
h f (W,Z) is saturated in RG

fd(W,Z). Let Y1 be homotopy
finite. There is a finite object (F, sF , rF ) and an h-equivalence a : F → Y1. Let
b : Y2 → Y1 be an h-equivalence. There is an inverse map b̄ : Y1 → Y2, but
the composition b̄a does not have to respect the retractions. Define a retraction
r ′ := rY2 b̄a. Then (F, sF , r ′)→ (Y2, sY2, rY2) is an h-equivalence and (F, sF , r ′) is
a different object, but still finite. Hence Y2 is homotopy finite. The case b : Y1→ Y2

is obvious and the general case follows by induction.
So we are left with showing weak cofinality. Let Y ∈ RG

fd(W,Z) be arbitrary.
Then we can find a finite object D as well as a morphism d : D→ Y and a map
i : Y → D such that d ◦ i is controlled homotopic to the identity map. Define an
object Ỹ which is the same controlled G-CW-complex as Y , but equipped with a
new retraction which turns i : Ỹ → D into a morphism. Note that the composition
d ◦ i : Ỹ → Y is an h-equivalence.

Let CỸ denote the cone Cyl(idỸ )/Ỹ , let SỸ denote the object CỸ ∪Ỹ CỸ , and
define SCyl(i) and SC(i) analogously. Then we have a canonical h-equivalence
SỸ→CỸ∪Ỹ ∗

∼=6Ỹ . Moreover, we have a morphism SCyl(i)→6Cyl(i)∨6Cyl(i)
given by the quotient map with respect to the canonical cofibration Cyl(i) ↪→ SCyl(i).
These objects fit into a commutative diagram

SỸ SCyl(i) SC(i)

6Y 6Y ∨6C(i) 6C(i)

in which the upper row comes from the cofiber sequence and the lower row is the
split cofiber sequence. The vertical arrows are given as follows: The left vertical
morphism is the composition SỸ ∼

−→6Ỹ 6di
−−→6Y , and the right vertical arrow is

the canonical morphism SC(i)→∗∪C(i)C(C(i))∼=6C(i), i.e., the collapse of the
other half of SC(i). For the middle vertical morphism, we take the composition
SCyl(i)→6Cyl(i)∨6Cyl(i) 6d ′∨6q

−−−−−→6Y ∨6C(i), where d ′ is the composition
of the back projection Cyl(i)→ D with d, and q is the projection Cyl(i)→ C(i).
Since both the left and the right vertical arrows are h-equivalences, it follows
from Lemma 4.3 that the induced morphism 6SCyl(i)→ 62Y ∨62C(i) is an
h-equivalence. Recall that Cyl(i) is homotopy finite (since it is h-equivalent to D).
Since 6SCyl(i) is h-equivalent to 62Cyl(i), and suspension preserves finiteness, it
follows that 62Y ∨62C(i) is homotopy finite. This proves weak cofinality, and
we are done. �
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4.9. Definition. Let D ∈RG(W,Z), and let α : D→ D be a controlled map. The
mapping telescope Tel(α) of α is the controlled G-CW-complex relative W

Cyl(α)∪D Cyl(α)∪D · · ·

obtained by taking countably many copies of the mapping cylinder of α and gluing
the back and front end of each consecutive pair of cylinders.

Note that Tel(α) does not need to be a retractive space. However, in certain cases
it can be equipped with a retraction, and can then be used to replace dominated
spaces by “nicer” ones.

4.10. Proposition. Let Y, D ∈RG(W,Z). Suppose we have maps i : Y → D and
d : D→ Y such that d ◦ i is (controlled) homotopic to idY .

Then the canonical map j : Y i
−→ D � Tel(i ◦ d) is a controlled homotopy

equivalence. If d is a morphism, Tel(i ◦ d) admits a retraction such that there
exists an h-equivalence Tel(i ◦ d) ∼−→ Y which is a homotopy inverse to j .

Proof. The proof of Proposition 1.4 in [Ferry and Ranicki 2001] works also in our
setting. Note that we have an h-equivalence Y ' Y h [0,∞[ because the control
map disregards the cylinder coordinate.

The homotopy d ◦ i ' idY induces a map d̄ : Cyl(i ◦ d)→ Y which restricts to
d on the front and back. Hence, countably many copies of d̄ glue to a controlled
map T (d) :Tel(i ◦d)→ Y . Since T (d)◦ j = d ◦ i ' idY , the map T (d) is homotopy
inverse to j . If d is a morphism, we can define a retraction r : Tel(i ◦ d)→ W
by composing T (d) with the retraction of Y . This makes D� Tel(i ◦ d) into a
morphism, and T (d) becomes an h-equivalence. �

4.11. Corollary. Let RG
fd,dim<∞(W,Z)⊆RG

fd(W,Z) denote the full Waldhausen
subcategory of finite-dimensional objects. Then the inclusion functor induces a
weak equivalence

hS•RG
fd,dim<∞(W,Z)

∼
−→ hS•RG

fd(W,Z).

Proof. This comes from another application of the approximation theorem, using
Proposition 4.10 and the mapping cylinder argument Lemma 4.1. �

4B. Comparing different notions of weak equivalences. Let Z be a coarse struc-
ture, and let A ⊆ Z be a G-invariant subspace. We would like to compare the
K-theory spaces of RG

f (W,Z) with respect to the h- and h A-equivalences. Unfor-
tunately, the standard procedure to obtain homotopy fiber sequences relating these
does not apply in our situation since the fibration theorem requires one subcategory
of weak equivalences to satisfy the extension axiom.1 We present a solution to this

1Added in proof: Meanwhile, Raptis [2018, Theorem 2.7] has observed that the extension axiom
can be dropped in the assumptions of the fibration theorem.



84 MARK ULLMANN AND CHRISTOPH WINGES

problem which has also been employed by Weiss [2002, towards the end of the
proof of Proposition 8.3]. For the sake of completeness, we record its validity for
any suitable Waldhausen category.

Let (C, coC, wC) be a small Waldhausen category which satisfies the saturation
axiom and possesses a cylinder functor which satisfies the cylinder axiom with
respect to wC.

4.12. Definition. We call a morphism f in C an equivalence after n-fold suspen-
sion if 6n f lies in wC. We say that f is a stable equivalence if there is some
n ∈ N such that f is an equivalence after n-fold suspension. Denote the class of
equivalences after n-fold suspension by w6,nC, and the class of stable equivalences
by w6C.

4.13. Lemma. Let n > 0.

(1) The collections w6,nC and w6C are classes of weak equivalences which sat-
isfy the saturation axiom. The cylinder functor satisfies the cylinder axiom
with respect to both classes. Moreover, w6C satisfies the extension axiom.

(2) The natural map wS•C→ w6S•C is a weak equivalence.

Proof. Almost everything in (1) is straightforward; the only exception is the validity
of the extension axiom for w6C.

Assume that we have a commutative diagram of exact sequences

A B C

A′ B ′ C ′

a b c

in which a and c are weak equivalences after n-fold suspension. Suspend the
diagram n times to obtain a diagram of the same shape in which the left and right
arrows are weak equivalences. Then it follows from Lemma 4.3 that b is a weak
equivalence after (n+ 1)-fold suspension.

For (2), we can apply the fibration theorem to the inclusion wC ⊆w6C since we
have just shown that w6C satisfies the saturation and extension axioms, and that the
cylinder axiom holds as well. So, it suffices to show that wS•Cw6 is contractible.
Observe that Cw6 is the union of the ascending sequence Cw ⊆ Cw6,1 ⊆ Cw6,2 ⊆ · · · .
Since K-theory commutes with directed colimits, it is enough to show that each
Cw6,n has contractible K-theory.

By the additivity theorem, the exact endofunctor 6n
: Cw6,n → Cw6,n induces

a self-homotopy equivalence in K-theory. Furthermore, it factors over Cw. Since
wS•Cw is contractible, the claim follows. �

4.14. Proposition (modified fibration theorem). Let C be a category with cofibra-
tions. Let vC ⊆ wC be two subcategories of weak equivalences. Suppose that C has
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a cylinder functor which satisfies the cylinder axiom with respect to vC (hence also
with respect to wC). Assume that vC and wC satisfy the saturation axiom.

Then the canonical inclusion functors induce a homotopy pullback square

vS•Cw wS•Cw ' ∗

vS•C wS•C

in which the corner on the top right is canonically contractible.

Proof. The square that we are claiming to be a homotopy pullback comes with a
transformation to the square

vS•Cw6 w6S•Cw6 ' ∗

vS•C w6S•C

(4.15)

This transformation is the identity on the lower left corner, and is induced by
the canonical inclusion functors on the other three corners. As w6C satisfies the
extension axiom by Lemma 4.13, the square (4.15) is a homotopy pullback by
the fibration theorem. The entries on the top right corners of both squares are
contractible. The map between the lower right corners is a weak equivalence by
Lemma 4.13. So all we have to check is that the canonical map vS•Cw→ vS•Cw6
is a weak equivalence.

Just as in the proof of Lemma 4.13, we can write Cw6 as a directed union
Cw6 =

⋃
n C

w6,n . In the direct limit system

Cw ↪→ Cw6,1 ↪→ Cw6,2 ↪→ · · · ,

each arrow induces an equivalence in K-theory (the suspension functor provides a
homotopy inverse), and the claim follows from this. �

We can now begin to study the K-theory of categories of controlled retractive
spaces. For technical reasons, we need to impose certain intermediate finiteness
conditions on the objects as long as we are dealing with connective K-theory. This
phenomenon is well-known in the linear setting; see [Cárdenas and Pedersen 1997].

Let F 6 K0(RG
fd(W,Z), h) be a subgroup. Denote by RG

fd,F (W,Z) the full
subcategory of all those objects whose K0-class lies in F . We think of these objects
as being subject to an intermediate finiteness condition. Note that these objects can
be equivalently characterized as those complexes whose K0-class lies in the kernel
of the projection homomorphism K0(RG

fd(W,Z), h)→ K0(RG
fd(W,Z), h)/F . It

is now a consequence of Thomason’s cofinality theorem [Thomason and Trobaugh
1990, Cofinality Theorem 1.10.1] that there is a homotopy fiber sequence

hS•RG
fd,F (W,Z)→ hS•RG

fd(W,Z)→ N•(K0(RG
fd(W,Z), h)/F).
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In particular, the change of finiteness condition only affects K0; there, the in-
duced map is a monomorphism which can be identified with the inclusion map
F ↪→ K0(RG

fd(W,Z), h). A typical choice for F is F := K0(RG
f (W,Z), h), which

we regard as a subgroup of K0(RG
fd(W,Z), h) by virtue of Proposition 4.8.

Let Z= (Z ,C,S) be a coarse structure and A be a G-invariant subset of Z . Let
S〈A〉 be the collection of all sets of the form AC

∩ S, where S is an element of S
and C ∈ C; see Definition 3.6. Define a new coarse structure Z〈A〉 := (Z ,C,S〈A〉).

Recall from Definition 3.12 that A gives rise to a class of weak equivalences
h ARG

f (W,Z).

4.16. Theorem. Let Z be a coarse structure and let A⊆ Z be a G-invariant subset.
Set K := K0(RG

f (W,Z), h)6 K0(RG
fd(W,Z), h). Let F 6 K0(RG

fd(W,Z〈A〉), h)
be the preimage of K under the natural homomorphism K0(RG

fd(W,Z〈A〉), h)→
K0(RG

fd(W,Z), h). Then

hS•RG
fd,F (W,Z〈A〉)→ hS•RG

fd,K (W,Z)→ h A S•RG
fd,K (W,Z) (4.17)

is a homotopy fiber sequence. Upon realization, there is a homotopy fiber sequence

|hS•RG
fd,F (W,Z〈A〉)| → |hS•RG

f (W,Z)| → |h
A S•RG

f (W,Z)| (4.18)

which is weakly equivalent to the former one.

Proof. The modified fibration theorem (Proposition 4.14) applies to our situation,
so we have a homotopy fiber sequence

hS•RG
f (W,Z)

h A
→ hS•RG

f (W,Z)→ h A S•RG
f (W,Z).

Define F ′ 6 K0(RG
fd(W,Z)

h A
, h) to be the preimage of K0(RG

f (W,Z), h) under
the canonical homomorphism K0(RG

fd(W,Z)
h A
, h)→ K0(RG

fd(W,Z), h). We first
prove the following two assertions:

(1) The natural inclusion functor RG
f (W,Z)

h A
→RG

fd,F ′(W,Z)
h A

induces an equiv-
alence in K-theory.

(2) The natural inclusion functor RG
fd,F (W,Z〈A〉)→RG

fd,F ′(W,Z)
h A

induces an
equivalence in K-theory.

The first claim is proved in a fashion similar to that of Proposition 4.8. First
of all, we may replace RG

f (W,Z)
h A

by the category of homotopy finite objects
RG

h f (W,Z)
h A

since the inclusion of the former into the latter induces an equivalence
in K-theory by the approximation theorem.

To conclude that the inclusion RG
h f (W,Z)

h A
→RG

fd,F ′(W,Z)
h A

induces an equiv-
alence as well, we rely on Vogell’s cofinality Theorem 4.6 once again. As we al-
ready saw in the proof of Proposition 4.8, for every object Y1∈RG

fd,F ′(W,Z)
h A

there
are some finitely dominated object Y2 ∈RG

fd(W,Z) with [Y2] ∈ K0(RG
f (W,Z), h),
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a finite object Y ∈RG
f (W,Z) and an h-equivalence f : Y ∼

−→62Y1 ∨ Y2. However,
there is no reason for Y2 to be h A-contractible, so we have to improve it.

Since Y1 is h A-contractible, there is some cofinal subcomplex Y ′1⊆ Y1 away from
A such that the inclusion map j1 : Y ′1 ↪→ Y1 is nullhomotopic. By Lemma 3.7, there
is a cofinal subcomplex Y ′⊆Y whose image under f is contained in62Y ′1∨Y2; note
that Y ′⊆Y is finite. Let j :Y ′→Y be the inclusion map. Define f ′ :Y ′→Y2 as the
composition Y ′ j

−→ Y f
−→62Y1 ∨ Y2� Y2. Set Y3 := C( f ′) and observe that this is

a finitely dominated object with [Y3] ∈ K0(RG
f (W,Z), h). Let i2 : Y2�62Y1∨Y2

be the canonical cofibration. Since j1 is nullhomotopic, the map f j is homotopic
to i2 f ′. Hence, there is an h-equivalence C( f j) ∼h

−→C(i2 f ′)'h 6
2Y1∨Y3. Observe

that C( f j) is homotopy finite, so 62Y1 ∨ Y3 is homotopy finite, too.
Moreover, the natural map C( f j)→ C( f ) is an h A-equivalence because j is

one. As C( f ) is contractible, both C( f j) and 62Y1 ∨ Y3 are h A-contractible. It
follows that Y3 is also h A-contractible. Note [Y3] ∈ F ′. Therefore, Vogell’s cofi-
nality theorem applies. That is, all higher K-theory groups of RG

h f (W,Z)
h A

and
RG

fd,F ′(W,Z)
h A

coincide, and the induced homomorphism K0(RG
h f (W,Z)

h A
, h)→

K0(RG
fd,F ′(W,Z)

h A
, h) is injective.

On the level of K0, we have a commutative diagram

K0(RG
f (W,Z)

h A
, h) K0(RG

fd(W,Z)
h A
, h)

K0(RG
fd,F ′(W,Z)

h A
, h)

in which the left diagonal arrow is an injection. The right diagonal map is an
injection by Thomason’s cofinality theorem. Since the top horizontal and right
diagonal homomorphism have the same image, it follows that the left diagonal
map is an isomorphism. This shows claim (1).

Let us now turn to the second claim. We apply the approximation theorem.
By Corollary 4.11, we may assume without loss of generality that all complexes
are finite-dimensional. Only the second part of the approximation property needs
checking. Let Y0∈RG

fd,F,dim<∞(W,Z〈A〉); then Y0 is h A-contractible. Let f :Y0→Y
be a morphism in RG

fd,F ′,dim<∞(W,Z)
h A

.
Let r : Y → W be the structural retraction and s : W → Y be the structural

inclusion of Y . Since Y is h A-contractible, there are a subcomplex Y ′ ⊆ Y which
is cofinal away from A and a homotopy h from the inclusion map Y ′ ↪→ Y to
the composition Y ′ r |Y ′−−→ W s

−→ Y . By the CHEP, we find an extension of h to a
controlled homotopy H : Y h [0, 1] → Y from idY to a controlled map p′ : Y → Y
which extends s ◦ r |Y ′ .

Let Y ′′ be the G-subcomplex of Y generated by the image of p′. Since p′ is
controlled and Y is finite-dimensional, Y ′′ is supported on some Z-thickening of A.
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Note that we do not claim that Y ′′ is finitely dominated. Let j : Y ′′ ↪→ Y be the
inclusion. Denote by p the map p′, regarded as a map Y→ Y ′′. Then Y p

−→ Y ′′ j
−→ Y

is homotopic to the identity. Proposition 4.10 provides us with an h-equivalence
T ( j) : Tel( jp) ∼−→ Y . In particular, [Tel( jp)] = [Y ] ∈ K0(RG

fd(W,Z), h), and
hence both lie in K0(RG

f (W,Z), h). Observe that Tel( jp) is also supported on a
Z-thickening of A.

Pick now a finite domination Y i
−→ D d

−→ Y of Y in RG(W,Z). Let D′ be the
smallest subcomplex of D which contains the image of i ◦ T ( j). Since i ◦ T ( j)
is a controlled map and Tel( jp) is supported on a Z-thickening of A, the complex
D′ is also supported on some Z-thickening of A. The composition of the maps
Tel( jp) i◦T ( j)

−−−→ D′ and d ′ : D′ ↪→ D d
−→ Y → Tel( jp) is homotopic to the identity.

Redefining the retraction of D′ to be d ′ composed with the retraction of Tel( jp),
the latter map becomes a morphism. Hence, Tel( jp) ∈RG

fd(W,Z〈A〉).
Another application of the mapping cylinder argument (Lemma 4.1) to the di-

agram Y0
f
−→ Y T ( j)

←−− Tel( jp) yields the approximation property, and hence the
second assertion.

There is a map of homotopy fiber sequences

hS•RG
f (W,Z)

h A
hS•RG

f (W,Z) h A S•RG
f (W,Z)

hS•RG
fd,K (W,Z)

h A
hS•RG

fd,K (W,Z) h A S•RG
fd,K (W,Z)

The middle vertical map is a weak equivalence by Thomason cofinality. Observe
that RG

fd,F ′(W,Z)
h A
=RG

fd,K (W,Z)
h A

. Hence, assertion (1) implies that the left
vertical map is a weak equivalence. Therefore, the right vertical map is a weak
equivalence, too. Composing the weak equivalence

hS•RG
fd,F (W,Z〈A〉)

∼
−→ hS•RG

fd,F ′(W,Z)
h A

from assertion (2) with the inclusion of the homotopy fiber yields sequence (4.17).
After taking realizations, we can invert the weak equivalence of assertion (1) to

obtain sequence (4.18). �

4.19. Definition (cf. [Bartels et al. 2004, Definition 4.1]). A coarse structure Z is
called G-proper with respect to A if for every C ∈ C and every S ∈ S there are
S′ ∈S, C ′ ∈ C and a G-equivariant function c : AC

∩ S→ A∩ S′ such that

(1) {(c(z), z) | z ∈ AC
∩ S} ⊆ C ′,

(2) for every set B ⊆ AC
∩ S which is locally finite in Z , the image c(B) is locally

finite in Z and c−1(x)∩ B is finite for all x ∈ c(B).

4.20. Proposition. Let A ⊆ Z be a closed, G-invariant subset. Let Z be a coarse
structure which is G-proper with respect to A. Recall the definition of the coarse
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structure Z∩A from Example 3.29. Let F 6 K0(RG
fd(W,Z∩A), h) be the preimage

of K0(RG
f (W,Z), h) under the natural homomorphism K0(RG

fd(W,Z∩ A), h)→
K0(RG

fd(W,Z), h), and define F ′ 6 K0(RG
fd(W,Z〈A〉), h) analogously.

Then the exact inclusion functor

RG
fd,F (W,Z∩ A) ↪→RG

fd,F ′(W,Z〈A〉)

is an equivalence of Waldhausen categories.

Proof. It suffices to show that the inclusion functor is essentially surjective. So let
Y ∈RG

fd,F ′(W,Z〈A〉). For each k ∈ N, pick Sk ∈S such that κ(�kY )⊆ ACk ∩ Sk .
Since Z is G-proper with respect to A, there is a G-equivariant function

ck : ACk ∩ Sk→ A∩ S′k

as in Definition 4.19. The collection {ck ◦ κ|�kY }k defines a G-equivariant function
κA : �Y → A such that κ(�kY ) ⊆ A ∩ S′k . By construction, the identity map is
a controlled isomorphism between (Y, κ) and (Y, κA), where the latter complex
is now supported on A. The modification we make to the control map κ also
preserves finiteness, and hence finite dominations. Note that [(Y, κ)] = [(Y, κA)]

is in K0(RG
fd(W,Z), h), i.e., [(Y, κA)] ∈ F . This finishes the proof. �

4C. The coarse Mayer–Vietoris theorem. The main application of the homotopy
fiber sequence established in the previous subsection is the excision result we prove
next. Let Z= (Z ,C,S) be a coarse structure.

4.21. Definition [Bartels et al. 2004, Proposition 4.3]. A pair (A, B) of G-invariant
subspaces in Z is called coarsely excisive if for all C ∈ C there is C ′ ∈ C such that
AC
∩ BC

⊆ (A∩ B)C
′

.
A coarsely excisive triple is a coarse structure Z together with two closed, G-

invariant subspaces A1, A2 ⊆ Z such that A1 ∪ A2 = Z and the pair (A1, A2) is
coarsely excisive.

We require a little more notation. For a closed, G-invariant subspace A ⊆ Z we
define Z|A := (Z ,C,Se A). Observe that RG(W,Z|A)∼=RG(W,Z∩ A).

4.22. Lemma. Suppose that (A, B) is a coarsely excisive pair. Then

h A∩B S•RG
f (W,Z|A)= hB S•RG

f (W,Z|A).

Proof. Let (Y, κ) be an object in RG
f (W,Z|A). Note that the image of κ is contained

in A. It suffices to show that a subcomplex Y ′ ⊆ Y is cofinal away from A∩ B if
and only if it is cofinal away from B. Since A ∩ B ⊆ B, it is obvious that every
subcomplex which is cofinal away from A∩ B is also cofinal away from B.
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Now suppose that Y ′ ⊆ Y is cofinal away from B. Let k ∈ N. Then there is
C ∈ C such that κ−1(Z \ BC)∩�kY ⊆ �kY ′. By assumption, we can find C ′ ∈ C
such that AC

∩ BC
⊆ (A∩ B)C

′

. Then we have

κ−1(Z \ (A∩ B)C
′

)∩�kY ⊆ κ−1(Z \ (AC
∩ BC))∩�kY

= κ−1(Z \ AC
∪ Z \ BC)∩�kY

= (κ−1(Z \ AC)∩�kY )∪ (κ−1(Z \ BC)∩�kY )

= κ−1(Z \ BC)∩�kY

⊆ �kY ′.

This shows that Y ′ ⊆ Y is cofinal away from A∩ B, and we are done. �

4.23. Theorem (coarse Mayer–Vietoris, connective version). Let (Z, A1, A2) be
a coarsely excisive triple, and assume that Z is G-proper with respect to A1, A2

and A1∩ A2. Let F be the preimage of K := K0(RG
f (W,Z), h) under the canonical

homomorphism K0(RG
fd(W,Z∩ A2), h)→ K0(RG

fd(W,Z), h), and let F ′ be the
preimage of K ′ := K0(RG

f (W,Z ∩ A1), h) under the canonical homomorphism
K0(RG

fd(W,Z∩ (A1 ∩ A2)), h)→ K0(RG
fd(W,Z∩ A1), h).

Then the natural inclusion maps induce a homotopy pullback square

hS•RG
fd,F ′(W,Z∩ (A1 ∩ A2)) hS•RG

fd,K ′(W,Z∩ A1)

hS•RG
fd,F (W,Z∩ A2) hS•RG

fd,K (W,Z)

Proof. Using Theorem 4.16 and Proposition 4.20, we have a map of homotopy
fiber sequences

hS•RG
fd,F ′(W,Z∩(A1∩ A2)) hS•RG

fd,K ′(W,Z∩ A1) h A1∩A2S•RG
fd,K ′(W,Z∩ A1)

hS•RG
fd,F (W,Z∩ A2) hS•RG

fd,K (W,Z) h A2 S•RG
fd,K (W,Z)

Hence, it suffices to show that the right vertical map is a weak equivalence. We may
replace RG

fd,K ′(W,Z∩ A1) and RG
fd,K (W,Z) by RG

f (W,Z∩ A1) and RG
f (W,Z),

respectively. Using Lemma 4.22, we can therefore identify the right vertical map
as the natural inclusion map

h A1∩A2 S•RG
f (W,Z∩ A1)∼= h A1∩A2 S•RG

f (W,Z|A1)= h A2 S•RG
f (W,Z|A1)

→ h A2 S•RG
f (W,Z).

Our claim is that the approximation theorem applies to show that this is an equiv-
alence. We need only check the second part of the approximation property. So let
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f : Y1→ Y2 be a morphism in RG
f (W,Z) such that Y1 is an object in RG

f (W,Z|A1).
Define Y ′2 as the smallest subcomplex of Y2 which contains both the image of f
and all cells which are labeled with points in A1. Then Y ′2 is supported on a Z-
thickening of A1. Since κ−1(Z \ A2)⊆ κ

−1(A1)⊆ �Y ′2, the subcomplex Y ′2 ⊆ Y2

is cofinal away from A2. This implies that the inclusion map Y ′2 ↪→ Y2 is an h A2-
equivalence. As in the proof of Proposition 4.20, Z being G-proper with respect
to A1 implies that Y ′2 is isomorphic to an object Y3 with support in A1. Then f
factors over Y3, which shows the approximation property. �

4D. A vanishing result. To conclude this section, we also record a criterion which
guarantees the vanishing of the K-theory of a category of controlled retractive
spaces.

4.24. Proposition (Eilenberg swindles). Let C be a small Waldhausen category.
Let ∨ be a functorial coproduct on C. Suppose that there is an exact endofunctor
sw on C and a natural isomorphism id∨ sw∼= sw.

Then there is a contraction Hsw of K (C) which is natural in the following sense:
Let C1 and C2 be small Waldhausen categories, equipped with functorial coproducts
∨i , i = 1, 2. Let F : C1 → C2 be an exact functor which strictly preserves the
coproduct, i.e., F ◦∨1=∨2 ◦(F×F). Let swi be exact endofunctors on Ci together
with natural isomorphisms ηi : idCi ∨ swi ∼= swi , i =1, 2, such that sw2 ◦F = F◦sw1

and F ◦ η1,A = η2,FA. Then

Hsw2 ◦ (K (F)×[0, 1])= K (F) ◦ Hsw1 .

Proof. Recall that K (C)=�|wS•C|, so concatenation of loops defines an H -space
structure “+” on K (C). Subject to the choice of an orientation-preserving homeo-
morphism [0, 1] ∼= [0, 2], the H -space product is naturally homotopy associative.
Similarly, any choice of orientation-reversing homeomorphism [0, 1] ∼= [0, 1], say
t 7→ 1− t , induces a homotopy inverse inv such that id+ inv is nullhomotopic. This
nullhomotopy depends on a choice of contraction of [0, 1] to the point 0. Fixing,
once and for all, suitable homeomorphisms [0, 1] ∼= [0, 2] and [0, 1] ∼= [0, 1] and
a contraction of [0, 1], all these homotopies become natural with respect to maps
induced by exact functors.

The functorial coproduct ∨ : C× C→ C induces another H -space structure “∨”
on K (C). Since + and ∨ satisfy the interchange law, the Eckmann–Hilton argument
shows that there is a natural homotopy ∨ '+. By abuse of notation, we use in the
sequel the same name for functors and the maps they induce on K-theory. Let 0
denote the constant functor mapping everything to the zero object. Then we have

id' id+0' id+(sw+(inv ◦ sw))' (id+ sw)+ (inv ◦ sw)

' (id∨ sw)+ (inv ◦ sw)' sw+ inv ◦ sw' 0.
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The fifth homotopy is induced by the natural isomorphism η. Hence, the concate-
nation of these homotopies defines a contraction of K (C), and it is straightforward
to check that this contraction is natural in the desired sense. �

4.25. Proposition. Let Z be a coarse structure and let A⊆ Z be a G-invariant sub-
set. Suppose that there is a sequence of G-equivariant functions (sn : Z→ Z)n∈N

which satisfies the following properties:

(1) s0 = idZ .

(2) For every C ∈ C and S ∈S there is some C ′ ∈ C such that⋃
n>0

(sn × sn)(C ∩ (S× S))⊆ C ′.

(3) For every S ∈S there is some S′ ∈S such that
⋃

n sn(S)⊆ S′.

(4) For every S ∈S and every B ⊆ S which is locally finite in Z , each image sn(B)
is locally finite in Z and s−1

n (x)∩ B is finite for all x ∈ sn(B). Furthermore,
there are for every z ∈ Z some n0 and an open neighborhood U of z such that
s−1

n (U )=∅ for all n > n0.

(5) For every C ∈ C there exists C ′ ∈ C such that⋃
n>0

sn(AC)⊆ AC ′ .

(6) For every S ∈S there is some C ∈ C such that⋃
n>0

{(sn+1(x), sn(x)) | x ∈ S} ⊆ C.

Then there is an exact endofunctor on (RG
f (W,Z), h A) as in Proposition 4.24. This

swindle is natural in the following sense: Let z : Z1→ Z2 be a morphism of coarse
structures. If (si

n : Zi→ Zi )n , i = 1, 2, are as above such that z◦s1
n = s2

n ◦z for all n,
then the induced exact functor R(z) satisfies the assumptions of Proposition 4.24.

The same holds with (RG
fd(W,Z), h A) instead of (RG

f (W,Z), h A).

Proof. Define a functor S :RG
f (W,Z)→RG

f (W,Z) as follows. Given a controlled
retractive space (Y, κ) over W , consider the infinite coproduct Y∞ :=

∨
n>0 Y . So

�Y∞ =
∐

n>0 �Y . Define a control map κ∞ : �Y∞→ Z by κ∞(e) := (sn ◦κ)(e) if
e is a cell in the n-th copy of Y . Then conditions (2) and (3) ensure that (Y∞, κ∞)
is a controlled retractive space over W . If f : Y1→ Y2 is a controlled morphism,
then

∨
n>0 f : Y∞1 → Y∞2 is again a controlled morphism. Moreover, condition (4)

guarantees that Y∞ is finite if Y is finite.
Define S(Y ) := (Y∞, κ∞). We claim that this functor preserves h A-equivalences.

It suffices to check that for any subcomplex Y ′ ⊆ Y which is cofinal away from A,
the subcomplex S(Y ′)⊆ S(Y ) is also cofinal away from A.
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For the next paragraph, denote the n-th copy of Y by Yn , and use Y ′n in the same
way. Let k ∈ N. Then there is some C ∈ C such that κ−1(Z \ AC)∩�kY ⊆ �kY ′.
Let e ∈ (κ∞)−1(Z \ sn(AC))∩�kYn , and let e′ be the corresponding k-cell in the
original copy of Y . Since sn(κ(e′)) = κ∞(e) /∈ sn(AC), it follows that e′ ∈ �kY ′.
Consequently, e∈�kY ′n , and we have shown that (κ∞)−1(Z \sn(AC))∩�kYn⊆�kY ′n .
Choosing C ′ ∈ C as in (5), we have

(κ∞)−1(Z \ AC ′)
∩�kY∞ ⊆ (κ∞)−1

(
Z \

⋃
n

sn(AC)
)
∩�kY∞

⊆

⋃
m>0

(
(κ∞)−1

(
Z \

⋃
n

sn(AC)
)
∩�kYm

)
⊆

⋃
m>0

(
(κ∞)−1(Z \ sm(AC))∩�kYm

)
⊆

⋃
m>0

�kY ′m = �k(Y ′)∞.

So S(Y ′) ⊆ S(Y ) is also cofinal away from A, and it follows that S is an exact
functor with respect to the h A-equivalences.

The map Y ∨Y∞→ Y∞ which maps Yn identically to Yn+1 and Y to Y0 is a con-
trolled isomorphism by condition (6). It induces a natural isomorphism id∨S ∼= S.

Checking the naturality statement is straightforward. �

4.26. Remark. Note that the conditions of Proposition 4.25 hold for A =∅ when-
ever they are satisfied for some A⊆ Z . Hence, the K-theory space�|hS•RG

f (W,Z)|
is also contractible.

Most of the time, the sequence of maps (sn)n is induced by an infinite shift map,
i.e., a G-equivariant function s : Z→ Z with the following properties:

(1) For every C ∈ C and S ∈S there is some C ′ ∈ C such that⋃
n

(s× s)n(C ∩ (S× S))⊆ C ′.

(2) For every S ∈S there is some S′ ∈S such that
⋃

n sn(S)⊆ S′.

(3) For every S ∈S and every B ⊆ S which is locally finite in Z , the image s(B)
is locally finite in Z and s−1(x)∩ B is finite for all x ∈ s(B). Furthermore,
there are for every z ∈ Z some n0 and an open neighborhood U of z such that
(sn)−1(U )=∅ for all n > n0.

(4) For every C ∈ C there exists C ′ ∈ C such that⋃
n>0

sn(AC)⊆ AC ′ .
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(5) For every S ∈S there is some C ∈ C such that{
(s(x), x)

∣∣ x ∈
⋃

n

sn(S)
}
⊆ C.

In this case, the proposition applies with sn := sn , and the corresponding naturality
statement applies whenever we have two infinite shift maps s1 and s2 as well as a
morphism of coarse structures z such that z ◦ s1 = s2 ◦ z.

5. Nonconnective A-theory spectra

We are now ready to put the results of the previous sections to use. Namely, we
define (potentially) nonconnective deloopings of the K-theory spaces of controlled
retractive spaces. The resulting spectra are insensitive to specific choices of finite-
ness conditions, and the main results of Section 4 simplify accordingly.

For linear K-theory, such deloopings have been defined previously by Pedersen
and Weibel [1985]. Vogell [1990] adopted this approach to define a nonconnective
delooping of A(X).

5.1. Definition. Suppose that Z = Z1× Z2, and that (Z1,C,S) is a coarse struc-
ture. Let p : Z → Z1 be the projection map. Then we define a coarse structure
(Z , p∗C, p∗S) by setting

p∗C := {(p× p)−1(C) | C ∈ C} and p∗S := {p−1(S) | S ∈S}.

Let Z= (Z,C,S) be a coarse structure. Let pn :R
n
×Z→Rn and pZ :R

n
×Z→Z

denote the respective projection maps. Consider the bounded coarse structure
B(Rn)= (Rn,Cbdd(R

n),Striv(R
n)) from Example 2.2.

5.2. Definition. For n ∈N define the coarse structure Z(n)= (Rn
×Z ,C(n),S(n))

by letting a set C ⊆ (Rn
× Z)2 be in C(n) if and only if

(1) C is symmetric, G-invariant and contains the diagonal.

(2) There is a C ′ ∈ p∗nCbdd(R
n) such that C ⊆ C ′.

(3) For all K ⊆ Rn compact, there is a C ′′ ∈ p∗ZC such that

C ∩ ((K × Z)× (K × Z))⊆ C ′′.

Set S(n) := p∗ZS.

Consider for all n also the restricted coarse structures

Z(n+ 1)+ := Z(n+ 1)∩ (Rn
×R>0× Z),

Z(n+ 1)− := Z(n+ 1)∩ (Rn
×R60× Z).

Note that Z(n+ 1)∩ (Rn
×{0}× Z)= Z(n).
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Let A ⊆ Z be a G-invariant subset. The obvious inclusion maps give rise to a
commutative square

h A S•RG
f (W,Z(n)) h A S•RG

f (W,Z(n+ 1)+)

h A S•RG
f (W,Z(n+ 1)−) h A S•RG

f (W,Z(n+ 1))

(5.3)

Using the results of Section 4D, the top right and bottom left corners of this square
are contractible since they admit infinite shift maps (Ex, xn+1, z) 7→ (Ex, xn+1±1, z).
This provides us with structure maps for a spectrum

K−∞(RG
f (W,Z), h A) :=

{
K (RG

f (W,Z(n)), h A)
}

n.

These are the algebraic K-theory spectra we use for our main results. It follows
from Propositions 3.28, 4.24 and 4.25 that the construction of this spectrum is
natural in Z.

5.4. Remark. Definition 5.2 is more involved than one might expect. The coarse
structure

Z[n] := (Rn
× Z , p∗nCbdd(R

n)e p∗ZC, p∗ZS)

might appear to be a more intuitive choice. There is a canonical inclusion func-
tor RG

f (W,Z[n])→ RG
f (W,Z(n)) which induces an isomorphism on homotopy

groups in sufficiently high degrees, using Z[0] = Z(0) and Proposition 5.5 below.
We conjecture that this map is in fact a weak equivalence.

The difference between the coarse structures Z(n) and Z[n] is analogous to the
linear situation (cf. [Pedersen and Weibel 1989]). Take, for example, categories
CX (R) of bounded morphisms over a metric space. Then Z[n] corresponds to the
category CRn×X (R), while Z(n) corresponds to CRn (CX (R)). The inclusion functor
CRn×X (R)→ CRn (CX (R)) always induces an equivalence of algebraic K-theory
spectra: apply nonconnective algebraic K-theory to the inclusion map and prove
that both sides are equivalent to the spectrum �nK−∞(CX (R)).

5.5. Proposition. (1) The structure maps of the spectrum K−∞(RG
f (W,Z), h)

induce isomorphisms on πi for i > 1.

(2) The structure maps of the spectrum K−∞(RG
f (W,Z), h A) induce isomorphisms

on πi for i > 2.

Proof. By Theorem 4.23, there is a homotopy pullback square

hS•RG
fd,F ′(W,Z(n)) hS•RG

fd,K ′(W,Z(n+ 1)+)

hS•RG
fd,F (W,Z(n+ 1)−) hS•RG

fd,K (W,Z(n+ 1))

(5.6)
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There is a transformation from square (5.3) to (5.6) induced by inclusion func-
tors. By Thomason cofinality, this transformation is a weak equivalence on the top
right and bottom right corners. Therefore, hS•RG

fd,K ′(W,Z(n + 1)+) is weakly
contractible. In particular, its K0 is trivial, so RG

fd,F ′(W,Z(n))=RG
fd(W,Z(n)).

We claim that K0(RG
f (W,Z(n+ 1)), h)= 0. Since we can filter any object by

its skeleta, and suspension corresponds to taking inverses in K0, the class of any
object in RG

f (W,Z(n+1)) equals its K-theoretic Euler characteristic, i.e., it equals
an alternating sum of classes of 0-dimensional objects. The same argument as in
the linear case [Pedersen and Weibel 1985, Corollary 1.3.1] now shows that the
K0-class of every 0-dimensional object is trivial.

From K0(RG
f (W,Z(n+ 1)), h)= 0 it follows that

RG
fd,F (W,Z(n+ 1)−)=RG

fd(W,Z(n+ 1)−).

Since Z(n + 1)− admits an infinite shift map, hS•RG
fd(W,Z(n + 1)−) is weakly

contractible by Section 4D. We already know that hS•RG
f (W,Z(n+1)−) is weakly

contractible, so the transformation from (5.3) to (5.6) is also a weak equivalence
on the bottom left corner.

As the square (5.6) is a homotopy pullback in which the bottom left and top
right corners are weakly contractible, we get a weak equivalence

|hS•RG
fd(W,Z(n))|

∼
−→�|hS•RG

fd,K (W,Z(n+ 1))|. (5.7)

By Proposition 4.8, the map |hS•RG
f (W,Z(n))| → |hS•RG

fd(W,Z(n))| induces an
isomorphism on πi for i > 2. Hence, the structure map

K (RG
f (W,Z(n)), h)→�K (RG

f (W,Z(n+ 1)), h)

is an isomorphism on πi for i > 1.
The structure map K (RG

f (W,Z(n)), h A)→�K (RG
f (W,Z(n+1)), h A) sits in a

map of homotopy fiber sequences arising from Theorem 4.16. The second assertion
of the proposition follows from the first assertion and a five-lemma argument. �

5.8. Remark. We can also define a nonconnective spectrum K−∞(RG
fd(W,Z), h A)

using the finitely dominated objects. The natural maps

K (RG
f (W,Z(n)), h A)→ K (RG

fd(W,Z(n)), h A)

are isomorphisms on πi for i > 1; hence, the induced map

K−∞(RG
f (W,Z), h A)→ K−∞(RG

fd(W,Z), h A)

is a stable equivalence of spectra by Proposition 5.5.

For convenience, we record the nonconnective versions of the main results of
the previous section.
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5.9. Theorem. Let Z be a coarse structure and let A ⊆ Z be a closed, G-invariant
subset such that Z is G-proper with respect to A. Then the inclusion functors
induce a homotopy fiber sequence

K−∞(RG
f (W,Z∩ A), h)→ K−∞(RG

f (W,Z), h)→ K−∞(RG
f (W,Z), h A).

Proof. This is Theorem 4.16 together with Proposition 4.20 and Remark 5.8. �

5.10. Theorem (coarse Mayer–Vietoris theorem). Let (Z, A1, A2) be a coarsely
excisive triple, and assume that Z is G-proper with respect to A1, A2 and A1 ∩ A2.
Then the obvious inclusion maps give rise to a homotopy pullback square of spectra

K−∞(RG
f (W,Z∩ (A1 ∩ A2)), h) K−∞(RG

f (W,Z∩ A1), h)

K−∞(RG
f (W,Z∩ A2), h) K−∞(RG

f (W,Z), h)

Proof. This is Theorem 4.23 together with Remark 5.8. �

5.11. Theorem (Eilenberg swindle). Let Z be a coarse structure and let A ⊆ Z
be a G-invariant subset. Suppose that there is a sequence of G-equivariant func-
tions (sn : Z→ Z)n as in Proposition 4.25. Then K−∞(RG

f (W,Z), h A) is weakly
contractible.

Proof. This follows from Section 4D. �

6. The Davis–Lück assembly map

We can now translate the model of the assembly map given in [Bartels et al. 2004]
to A-theory. Assume from now on that G is a countable discrete group.

6.1. Definition. Let X be a G-CW-complex and M a metric space with free, iso-
metric G-action.

Define the coarse structure J(M, X)= (M × X ×[1,∞[,C(M, X),S(M, X))
as follows. Let pM , pM×X , pX×[1,∞[ and p[1,∞[ denote the projection maps from
M × X ×[1,∞[ to the factor indicated by the index of p. Set

C(M, X) := p∗MB(M)e p∗X×[1,∞[CG-cc(X),

S(M, X) := p∗M×XSG-cpt(M × X).

The bounded coarse structure, G-compact support condition and G-continuous
control condition have been defined in Example 2.2.

One particular instance of this definition is the case where M = G, equipped
with a left invariant and proper metric, “proper” meaning that every ball of finite
radius is finite. Such metrics exist [Dranishnikov and Smith 2006, Proposition 1.3];
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if G is finitely generated, we can pick a word metric. Whenever d and d ′ are
two left invariant, proper metrics on G, the identity map id : (G, d)→ (G, d ′)
is a coarse equivalence by [Dranishnikov and Smith 2006, Proposition 1.1]. In
particular, every R-ball with respect to d is contained in some R′-ball with respect
to d ′, and vice versa. Hence, the bounded control condition on G is independent
of the choice of left invariant, proper metric, and we can suppress the metric in our
notation.

6.2. Definition. We abbreviate J(X) := J(G, X).

When considering RG
f (W, J(M, X)), we denote the class of weak equivalences

hM×X×{1} by h∞. Observe also that for a G-invariant subcomplex A⊆ X , we have
J(M, X)∩(M×A×[1,∞[)=J(M, A). Finally, we note that J(M, X) is G-proper
with respect to subspaces of the form M × A× [1,∞[ for A ⊆ X a G-invariant
subcomplex.

6.3. Definition. Let us introduce the following shorthands:

T(G,W, X) := K−∞
(
RG

f (W, J(X)∩ (G× X ×{1})), h
)
,

F(G,W, X) := K−∞
(
RG

f (W, J(X)), h
)
,

D(G,W, X) := K−∞
(
RG

f (W, J(X)), h∞
)
.

As a consequence of Theorem 5.9, these spectra fit into a natural homotopy fiber
sequence

T(G,W, X)→ F(G,W, X)→ D(G,W, X). (6.4)

6.5. Definition. An (unreduced) G-homology theory is a functor H from the cate-
gory of G-CW-complexes to the category of spectra such that the following hold:

(1) Every G-equivariant homotopy equivalence f : X1
∼
−→ X2 induces a weak

equivalence H( f ) : H(X1)→ H(X2).

(2) Every homotopy pushout square of G-CW-complexes induces a homotopy
pullback square of spectra upon application of H( – ).

(3) If X=colimi X i is a directed colimit, the natural map hocolimi H(X i )→H(X)
is a weak equivalence.

6.6. Remark. Observe that any unreduced G-homology theory in the sense of
Definition 6.5 automatically respects finite coproducts because

∅ X1

X2 X1q X2

is a homotopy pushout square. From the direct limit axiom Definition 6.5(3), con-
clude that any unreduced G-homology theory commutes with arbitrary coproducts.
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6.7. Theorem. (1) The projection X→ G/G induces a weak equivalence

T(G,W, X) ∼−→ T(G,W,G/G)

for every G-CW-complex X.

(2) The assignment X 7→D(G,W, X) is an unreduced G-equivariant homology
theory.

(3) The connecting map �D(G,W,G/G)→ T(G,W,G/G) is a weak equiva-
lence.

Proof. For part (1), consider the functor

p :RG
f (W, J(X)(n)∩(G×X×{1})(n))→RG

f (W, J(G/G)∩(G×G/G×{1})(n))

induced by the projection map X → G/G; it is well-defined because of the G-
compact support condition on G × X . Let (Y � W, κ) be any object from the
category on the right-hand side. Then any choice of a point x ∈ X induces a
control map

κ̃ : �Y → Rn
×G× X, e 7→ (κRn (e), κG(e), κG(e) · x)

which turns Y into an object Ỹ of the left-hand side. This construction provides an
inverse to p, showing that p is an exact equivalence of Waldhausen categories.

For the second part of the theorem, observe first that X 7→ RG
f (W, J(X)) is

indeed a functor on G-CW-complexes; this follows from Proposition 3.28 using
Lemma 3.3 from [Bartels et al. 2004] and the G-compact support condition. Also,
due to the G-compact support condition, in conjunction with the fact that algebraic
K-theory commutes with directed colimits, we immediately obtain the direct limit
axiom (3). Hence, it suffices to consider only cocompact G-CW-complexes. The
remainder of the proof is formally the same as in [Bartels et al. 2004, §5]; note
that in the proof of the property Definition 6.5(2), the special case of a coproduct
is missing in [Bartels et al. 2004] and has to be treated separately. For more details,
see also [Ullmann 2010, Section 7.2].

For the last part of the theorem, consider RG
f (W, J(G/G)). The map

s : G×G/G×[1,∞[, (g,G, t) 7→ (g,G, t + 1)

is an infinite shift map, so F(G,W,G/G) is weakly contractible by Theorem 5.11.
The claim follows. �

Let Or(G) denote the orbit category of G, i.e., the category of left G-sets G/H
and G-equivariant maps between them.

Let V be a topological space. Then R f (V ), the category of finite retractive
spaces over V , is isomorphic to the category R{1}f (V,T(∗)), where T(∗) is the
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trivial coarse structure over a point from Example 2.2. The results of Section 5
provide us with a spectrum

A−∞(V ) := K−∞(R{1}f (V,T(∗)), h)

which is a (potentially nonconnective) delooping of A(V ). We call this the non-
connective algebraic K-theory spectrum of V . Given any G-space W , we may
therefore define an Or(G)-spectrum A−∞W by setting

A−∞W (G/H) := A−∞(W op
×G G/H)∼= A−∞(H\W ),

where W op denotes the space W equipped with the right action of G induced by
the original left action via w · g := g−1w.

6.8. Theorem. Let W be a free G-CW-complex. Then there is a zig-zag of equiva-
lences of Or(G)-spectra

�D(G,W, – )' A−∞W ( – ).

With the exception of Corollary 6.17 below, the proof of this theorem occu-
pies the rest of this section. Both the strategy of proof and the method to use
Theorem 6.8 to relate the connecting map �D(G,W, X)→ T(G,W, X) to the
Davis–Lück assembly map go back to work of Hambleton and Pedersen [2004,
Sections 7 and 8].

Consider D(G,W,G/H) for some G/H ∈ Or(G). Define a coarse structure

Jdis(G/H)= (G×G/H ×[1,∞[,Cdis(G,G/H),S(G,G/H)),

where Cdis(G,G/H) is the collection of all C ∈ C(G,G/H) such that γ H = γ ′H
for all ((g, γ H, t), (g′, γ ′H, t ′)) ∈ C .

6.9. Lemma. For all n, the natural inclusion functor

RG
f (W, Jdis(G/H)(n)) ↪→RG

f (W, J(G/H)(n))

induces an equivalence in K-theory with respect to the h∞-equivalences.

Proof. Let f : Y1→ Y2 be an arbitrary morphism in RG
f (W, J(G/H)(n)). Let C

be a control condition witnessing that f is a controlled map. For each closed ball
BR ⊆ Rn , C ∩ (BR ×G×G/H ×[1,∞[)2 satisfies the continuous control condi-
tion. Therefore, there is some t0 > 1 such that ((x, g, γ H, t), (x ′, g′, γ ′H, t ′)) ∈ C
implies γ H = γ ′H whenever x, x ′ ∈ BR and t, t ′ > t0. Since we require bounded
control over Rn , and since the G-continuous control condition includes bounded
control over [1,∞[ , there exists some cofinal subcomplex Y ′1 ⊆ Y1 away from
Rn
×G×G/H ×{1} such that f |Y ′1 satisfies a control condition in Cdis(G,G/H).
We want to prove the approximation property. For the first part, consider a

morphism f : Y1 → Y2 in RG
f (W, Jdis(G/H)(n)) which is an h∞-equivalence
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in RG
f (W, J(G/H)(n)). If g is an h∞-inverse to f , we can restrict it to a suit-

able cofinal subcomplex such that its restriction satisfies a control condition in
Cdis(G,G/H) by the previous paragraph. The same works for homotopies. This
shows the first part of the approximation property.

For the second part, let f : Y1→ Y2 be a morphism in RG
f (W, J(G/H)), where

Y1 is an object in RG
f (W, Jdis(G/H)). Again by the first paragraph, there is some

cofinal subcomplex Y ′2 ⊆ Y2 which satisfies a control condition in Cdis(G,G/H).
Then there exists a cofinal subcomplex Y ′1 ⊆ Y1 such that f |Y ′1 maps into Y ′2. Let
Y be the pushout of

Y1� Y ′1
f |Y ′1−−→ Y ′2.

Then Y is an object in RG
f (W, Jdis(G/H)(n)) and the canonical morphism Y ′2� Y

is an h∞-equivalence. Hence, the morphism Y → Y2 induced by the universal
property of the pushout is also an h∞-equivalence by saturation. This proves the
second part of the approximation property. �

Defining D′(G,W,G/H) :=K−∞(RG
f (W, Jdis(G/H)), h∞), Lemma 6.9 states

that the natural map D′(G,W,G/H)→ D(G,W,G/H) is a weak equivalence.
Observe that, by considering Jdis(G/H), we have effectively eliminated the G-
continuous control condition. It has been replaced by bounded control over [1,∞[
together with discrete control over G/H .

6.10. Lemma. For all n > 1, there is a zig-zag of exact functors(
RG

f (W, Jdis(G/H)(n− 1)), h∞
)
→

· · · ←
(
RG

f (W, (J
dis(G/H)∩ (G×G/H ×{1}))(n), h)

)
which induces equivalences in K-theory and which is natural in G/H.

Proof. Recall the temporary notation Z[n] we introduced in Remark 5.4. We only
need to use

Z[1] := (R× Z , p∗RCbdd(R)e p∗ZC, p∗ZS).

In analogy to the delooping construction we discussed in Section 5, we also use
coarse structures Z[1]+ and Z[1]−.

For the purpose of this proof, define

Jdis(G/H)1 := Jdis(G/H)∩ (G×G/H ×{1}).

The underlying space of the coarse structure Jdis(G/H)(n − 1) is the product
Rn−1

× G × G/H × [1,∞[ . The obvious isometry [1,∞[ ∼= [0,∞[ induces a
homeomorphism Rn−1

×G×G/H ×[1,∞[ ∼= Rn−1
×[0,∞[×G×G/H . This

homeomorphism gives rise to an isomorphism of Waldhausen categories

RG
f (W, Jdis(G/H)(n− 1))∼=RG

f (W, Jdis(G/H)1[1]+(n− 1)). (6.11)
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Under this isomorphism, the class of h∞-equivalences corresponds to the homo-
topy equivalences h0 away from Rn−1

×{0}×G×G/H ×{1}. As in the proof of
Theorem 4.23, we obtain a weak equivalence

h0S•RG
f (W, Jdis(G/H)1[1]+(n− 1))

∼
−→ h−S•RG

f (W, Jdis(G/H)1[1](n− 1)), (6.12)

where in the second term h− refers to the class of homotopy equivalences away
from Rn−1

×R60×G×G/H ×{1}.
There is a natural, exact inclusion functor

RG
f (W, Jdis(G/H)1[1](n− 1)) ↪→RG

f (W, Jdis(G/H)1(1)(n− 1)).

Analogous to (5.7) in the proof of Proposition 5.5, there are weak equivalences

|hS•RG
fd(W, Jdis(G/H)1(n− 1))| ∼−→�|hS•RG

f (W, Jdis(G/H)1[1](n− 1))|,

|hS•RG
fd(W, Jdis(G/H)1(n− 1))| ∼−→�|hS•RG

f (W, Jdis(G/H)1(1)(n− 1))|.

Since the inclusion maps

hS•RG
f (W, Jdis(G/H)1[1](n− 1))→ h−S•RG

f (W, Jdis(G/H)1[1](n− 1)),

hS•RG
f (W, Jdis(G/H)1(1)(n− 1))→ h−S•RG

f (W, Jdis(G/H)1(1)(n− 1))

are weak equivalences, too, we conclude that the map

h−S•RG
f (W,J

dis(G/H)1[1](n−1))→h−S•RG
f (W,J

dis(G/H)1(1)(n−1)) (6.13)

is also a weak equivalence. There is another exact inclusion functor

RG
f (W, Jdis(G/H)1(n)) ↪→RG

f (W, Jdis(G/H)1(1)(n− 1)), (6.14)

which induces an equivalence on K-theory with respect to the h−-equivalences for
similar reasons. The desired zig-zag is then formed by the equivalences arising
from (6.11), (6.12), (6.13) and (6.14). �

Since there is a weak equivalence from the shifted spectrum {D′(G,W,G/H)n−1}n ,
where we set D′(G,W,G/H)−1 = ∗, to �D′(G,W,G/H), Lemma 6.10 provides
us with a zig-zag of natural weak equivalences

�D′(G,W,G/H)' K−∞
(
RG

f (W, Jdis(G/H)∩ (G×G/H ×{1})), h
)
. (6.15)

In order to prove Theorem 6.8, it is therefore sufficient to identify the latter Or(G)-
spectrum.

6.16. Lemma. There is a zig-zag of weak equivalences of Or(G)-spectra

K−∞
(
RG

f (W, Jdis( – )∩ (G× – ×{1})), h
)
' A−∞W ( – ).
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Proof. Let R̂⊆RG
f

(
W, (Jdis(G/H)∩ (G×G/H ×{1}))

)
be the full Waldhausen

subcategory of those objects (Y, κ) for which the set of cells κ−1({1G}×{H}×{1})
intersects every G-orbit of cells.

We claim that the inclusion functor R̂↪→RG
f

(
W,(Jdis(G/H)∩(G×G/H×{1}))

)
is an exact equivalence. What we need to show is that every object is isomorphic
to some object in R̂. Let (Y, κ) ∈RG

f

(
W, (Jdis(G/H)∩ (G×G/H ×{1}))

)
. Due

to the G-compact support condition, we can find a set of representatives R for
the G-cells of Y such that κ(R) ⊆ F1 × F2 × {1} for some finite sets F1 ⊆ G,
F2 ⊆ G/H . Multiplying by appropriate group elements, we can assume without
loss of generality that κ(R) ⊆ F × {H} × {1} for some finite set F ⊆ G. Let
c : F → {1G} be the unique function. By requiring G-equivariance, c induces a
G-equivariant function κc : �Y → G ×G/H × {1}. Since there are only finitely
many equivariant cells in Y , the labeled G-CW-complex (Y, κc) satisfies bounded
control over G. By construction, (Y, κc) is an object of R̂. The identity map on Y
defines an isomorphism (Y, κ)∼= (Y, κc). This proves that the inclusion functor is
an equivalence.

Next, we define an exact functor Q :R̂→R f (W op
×G G/H,T(∗)). Let (Y, κ)∈ R̂.

Define YH ⊆ Y to be the H -invariant subcomplex given by κ−1(H ×{H}× {1}).
Then H\YH is naturally a retractive space over H\ resG

H W ∼=W op
×G G/H . Set

Q(Y ) := H\YH .
We claim that this functor is also an equivalence of Waldhausen categories. The

following argument is similar to [Waldhausen 1985, Lemma 2.1.3].
Let (X, κ) ∈ R f (W op

×G G/H,T(∗)). Let π : W × G/H → W op
×G G/H

denote the G-equivariant map sending (w, gH) to (g−1w, H). By pulling back
along π , we obtain a retractive space X̃ relative W ×G/H . Define 8(X) as the
pushout

W ×G/H X̃

W 8(X)
8(s)

The retraction of X̃ induces a retraction 8(r) on 8(X). Note that there is a canoni-
cal bijection �8(X) ∼−→�X̃ . The projection map X̃→W ×G/H→ G/H induces
a G-equivariant function κ̃ : �X̃→ G/H with the property that, if e, e′ are cells in
X̃ such that e′ ⊆ 〈e〉, then κ̃(e)= κ̃(e′).

Choose a set of representatives S for the G-orbits of cells in 8(X) such that
κ̃(e)= H for all e ∈ S. Define the G-equivariant function

8(κ) : �8(X)→ G×G/H ×{1}

by 8(κ)(e) := (1G, H, 1) for all e ∈ S and extending G-equivariantly. This turns
8(X) into an object (8(X),8(κ))∈ R̂. As W is a free G-CW complex, 8(Q(Y ))
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is canonically isomorphic to Y . Since Q(8(X)) is canonically isomorphic to X ,
this shows that Q is essentially surjective and fully faithful. This finishes the proof
of the lemma. �

Combining Lemmas 6.9 and 6.16 with the zig-zag (6.15), we obtain the zig-zag
of weak equivalences of Or(G)-spectra

�D(G,W, – )'�D(G,W, – )

' K−∞
(
RG

f (W, Jdis( – )∩ (G× – ×{1})), h
)

' A−∞W ( – ),

whose existence we claimed in Theorem 6.8.
As explained in [Davis and Lück 1998], any Or(G)-spectrum E gives rise to a

G-homology theory HG( – ; E). By considering the map induced by the projection
X→ G/G, one obtains for every G-CW-complex X a Davis–Lück assembly map

αX : H
G(X; E)→ E(G/G).

The upshot of our discussion is that we have constructed a model for the assembly
map associated to the Or(G)-spectrum A−∞W :

6.17. Corollary. Let W be a free G-CW-complex. Then the following holds:

(1) The connecting map �D(G,W, X)→ T(G,W, X) is equivalent to the equi-
variant A-theory assembly map

αX,W : H
G(X;A−∞W )→ A−∞W (G/G)' A−∞(G\W ).

(2) The assembly map αX,W is a weak equivalence if and only if F(G,W, X) is
weakly contractible.

Proof. The first claim follows from Theorem 6.8 by the argument given in [Bartels
et al. 2004, Section 6.2]. The second part of the corollary is then evident from the
homotopy fiber sequence T(G,W, X)→ F(G,W, X)→ D(G,W, X). �

7. The isomorphism conjecture for Dress–Farrell–Hsiang groups

Recall (e.g., from [Lück and Reich 2005, Conjecture 113]) the statement of the
isomorphism conjecture for A-theory:

7.1. Conjecture (A-theoretic fibered isomorphism conjecture). Let F be a family
of groups and let G be a countable discrete group. Then for every free G-CW-
complex W the assembly map

αF,W : H
G(EFG;A−∞W )→ HG(G/G;A−∞W )∼= A−∞(G\W )

is a weak equivalence, where EFG is the classifying space of G for the family F .
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Whenever Conjecture 7.1 holds for some group G, we say that G satisfies the
A-theoretic fibered isomorphism conjecture with respect to F . For the special case
that F = VCyc is the family of virtually cyclic groups, we also say that G satisfies
the A-theoretic fibered Farrell–Jones conjecture.

Due to Corollary 6.17, the fibered isomorphism conjecture is equivalent to the
weak contractibility of the spectra F(G,W, EFG) introduced in the previous sec-
tion. Thus, the A-theoretic isomorphism conjecture becomes accessible via the
methods employed in [Bartels et al. 2008b; Bartels and Lück 2012a; 2012b] for
the algebraic K-theory and L-theory of group rings. Our goal is to establish an
analog of the main result of [Bartels and Lück 2012b].

Let us recall the definition of Dress–Farrell–Hsiang groups.

7.2. Definition. Let D be a finite group. We call D a Dress group if there are
primes p and q and subgroups P EC E D such that P is a p-group, C/P is cyclic
and D/C is a q-group.

Recall the definition of the `1-metric on a simplicial complex. If X is a simplicial
complex and ξ =

∑
x ξx · x , η =

∑
x ηx · x are points in X , this metric is given by

d`
1
(ξ, η)=

∑
x

|ξx − ηx |.

All simplicial complexes we consider are equipped with this metric.
We call a generating set S of a group G symmetric if s ∈ S implies s−1

∈ S.

7.3. Definition. Let G be a group and S be a symmetric, finite generating set of G.
Let F be a family of subgroups of G.

Call (G, S) a Dress–Farrell–Hsiang group with respect to F if there exists
N ∈ N such that for every ε > 0 there is an epimorphism π : G � F onto a
finite group F such that the following holds: for every Dress group D 6 F , there
are a D := π−1(D)-simplicial complex ED of dimension at most N whose isotropy
groups lie in F , and a D-equivariant map ϕD : G→ ED such that

d`
1
(ϕD(g), ϕD(g′))6 ε

whenever g−1g′ ∈ S.

A slightly stricter version of this definition appeared previously in [Winges 2015,
Definition 3.1]. The notion of Dress–Farrell–Hsiang groups generalizes that of
Farrell–Hsiang groups from [Bartels and Lück 2012b, Definition 1.1; 2014a, Defi-
nition 2.14]. For examples, we refer to Section 11 and [Winges 2015].

7.4. Theorem. Let G be a discrete group. Suppose that there are a symmetric,
finite generating set S ⊆ G and a family of subgroups F of G such that (G, S)
is a Dress–Farrell–Hsiang group with respect to F . Then G satisfies the fibered
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isomorphism conjecture in A-theory, Conjecture 7.1, with respect to F , i.e., the
assembly map

HG(EFG;A−∞W )→ A−∞(G\W )

is a weak equivalence for every free G-CW-complex W .

Choosing W to be the universal cover of a given connected CW-complex whose
fundamental group is G, Theorem 7.4 implies Theorem 1.5.

Before we can turn to the proof of Theorem 7.4, we need to extend the defini-
tion of the obstruction category RG

f (W, J(X)). Recall the definition of the coarse
structure J(M, X)= (M × X × [1,∞[,C(M, X),S(M, X)) from Definition 6.1.
Let (Mk)k∈N be a sequence of metric spaces with a free, isometric G-action, and
suppose that X is a G-CW-complex. Equip G with a proper, left invariant metric.
Then we define a coarse structure

J((Mk)k, X)=
(∐

k∈N

Mk × X ×[1,∞[,C((Mk)k, X),S((Mk)k, X)
)

as follows:

(1) A set C lies in C((Mk)k, X) if it is of the form C =
∐

k Ck with Ck ∈C(Mk, X),
and it additionally satisfies the following uniform metric control condition:
there is some R > 0 such that for all pairs ((m, x, t), (m′, x ′, t ′)) ∈ C we have
d(m,m′) < R (i.e., the bound does not depend on k).

(2) A set S lies in S((Mk)k, X) if it is of the form S=
∐

k Sk with Sk ∈S(Mk, X).

We consider the Waldhausen category RG
f (W, J((Mk)k, X)). Note that this is a

subcategory of
∏

k∈N RG
f (W, J(Mk, X)) in a natural way, and that we therefore

typically write objects and morphisms as sequences (Yk)k and ( fk)k . Moreover,
the category∏fin

RG
f (W, J(Mk, X)) := coliml

l∏
k=1

RG
f (W, J(Mk, X))

of eventually trivial sequences is a full subcategory of RG
f (W, J((Mk)k, X)) and

inherits a Waldhausen structure. With this additional notation at our disposal, the
proof of Theorem 7.4 proceeds as follows.

Suppose that (G, S) is a Dress–Farrell–Hsiang group with respect to F . Pick N
to be as in Definition 7.3, so that for every k > 1, there are a finite group Fk , an
epimorphism πk : G� Fk and a family of maps (ϕD : G→ ED)D∈Dk such that

(1) the space ED is a D := π−1
k (D)-simplicial complex of dimension at most N

whose stabilizers lie in F ,

(2) the map ϕD is D-equivariant and d`
1
(ϕD(g), ϕD(g′))61/k whenever g−1g′∈ S,
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where Dk denotes the family of Dress subgroups of Fk . Then the proof is organized
around a sequence of diagrams, indexed over j ∈ N, of the form∏fin

RG
f (W, J(Ek ×G, EFG))

RG
f (W, J((Tk ×G)k, EFG)) RG

f (W, J((Ek ×G)k, EFG))

RG
f (W, J(G, EFG))

((ϕk)k)∗

Pj Q j

tr

Define Tk :=
∐

D∈Dk
G/D, equipped with the discrete metric which assigns dis-

tance∞ to any two points which are not equal. Define Ek :=
∐

D∈Dk
G×D ED,

equipped with the diagonal G-action. Consider the metric k · d`1 on Ek . Equip G
with the word metric given by S. The products Tk ×G and Ek ×G become metric
spaces by summing up the metrics on the two factors.

Define Pj to be the projection functor which takes the inclusion into the full
product category, projects onto the j-th component, and then applies the functor
induced by the projection T j ×G× EFG×[1,∞[→ G× EFG×[1,∞[. Define
Q j analogously, and let the unlabeled arrow be the canonical inclusion functor.

To show that the K-theory of the obstruction category RG
f (W, J(G, EFG)) is

trivial, the following input is required:

(1) There is a sequence of G-equivariant maps ϕk : Tk ×G→ Ek ×G inducing
the functor ((ϕk)k)∗ such that Q j ◦ ((ϕk)k)∗ = Pj for all j . This is Lemma 7.5.

(2) For each n, there is a transfer functor

tr :RG
f (W, J(G, EFG)(n))→RG

f (W, J((Tk ×G)k, EFG)(n))

(the dashed arrow in the above diagram) such that Pj ◦ tr induces the identity in
K-theory for all j ; in fact, there is even an appropriate map on nonconnective
K-theory, but we do not need to know that. This is covered in Section 9; see
Corollary 9.6 in particular.

(3) The canonical inclusion functor∏fin
RG

f (W, J(Ek ×G, EFG))→RG
f (W, J((Ek ×G)k, EFG))

induces a weak equivalence in nonconnective K-theory. This follows from
Theorem 10.1.

Using the fact that K−n
(
RG

f (W, J(X))
)
∼=K1

(
RG

f (W, J(X)(n+1))
)

for any G-CW-
complex X (Proposition 5.5), a diagram chase shows that Kn

(
RG

f (W, J(X))
)
= 0
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for all n ∈ Z under these assumptions; see [Bartels and Lück 2012b, Section 4]. We
remark that the only part of the proof which uses the presence of the classifying
space EFG is (3); the other two parts still work if we replace EFG with an arbitrary
G-CW-complex.

7.5. Lemma (cf. [Bartels and Lück 2012b, Section 7]). Let X be a G-CW-complex.
For each D, the D-equivariant map ϕD gives rise to a G-equivariant map

ϕ̃D : G/D×G→ G×D ED,

(γ D, g) 7→ (γ, ϕD(γ
−1g)).

Then the equivariant maps

ϕk : Tk ×G× X ×[1,∞[→ Ek ×G× X ×[1,∞[,

(γ D, g, x, t) 7→ (ϕ̃D(γ D, g), g, x, t)
induce an exact functor

((ϕk)k)∗ :RG
f (W, J((Tk ×G)k, X))→RG

f (W, J((Ek ×G)k, X))

such that Q j ◦ ((ϕk)k)∗ = Pj for all j .

Proof. If the given maps induce a well-defined functor, this functor has the re-
quired property. So we have to check that composing with the maps ϕk pre-
serves the uniform metric control condition. Let k be arbitrary. Suppose that
dTk×G((γ D, g), (γ ′D′, g′)) < R. Then dG(g, g′) < R and dTk (γ D, γ ′D′) < R,
which implies that γ D = γ ′D′. Hence, D = D′ and there is some δ ∈ D such that
γ ′= γ δ. Moreover, we can find m < R and s1, . . . , sm ∈ S such that g′= gs1 · · · sm .
It follows that

d`
1

G×D ED

(
(γ, ϕD(γ

−1g)), (γ ′, ϕD(γ
′−1g′))

)
= d`

1

G×D ED

(
(γ, ϕD(γ

−1g)), (γ δ, ϕD(δ
−1γ−1g′))

)
= d`

1

G×D ED

(
(γ, ϕD(γ

−1g)), (γ, ϕD(γ
−1g′))

)
= d`

1

ED
(ϕD(γ

−1g), ϕD(γ
−1g′))

6 m
k
<

R
k

due to the S-equivariance of ϕD up to 1/k. We conclude that

dEk×G
(
(ϕ̃D(γ D, g), g), (ϕ̃D(γ

′D′, g′), g′)
)

= dEk×G
(
(ϕ̃D(γ D, g), g), (ϕ̃D(γ D, g′), g′)

)
< dG(g, g′)+ k · R

k
< 2R,

so uniform metric control is preserved. �
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8. The A-theoretic Swan group

In the linear setting, the transfer functors mentioned in the previous section are
defined via the action of the Swan group of G on the K-theory of the obstruction
category. This group arises as the Grothendieck group of the category of integral,
finite-rank G-representations, and the action is induced by tensoring such a repre-
sentation with geometric modules. See [Bartels and Lück 2012b, Section 5].

To establish the existence of a transfer functor, we need a nonlinear analog of
this action. For this purpose, recall the notion of biexact functor from [Waldhausen
1985, page 342]: If C1, C2 and C3 are Waldhausen categories, a biexact functor is a
functor

∧ : C1× C2→ C3

with the following properties:

(E1) The functor is exact in the first variable, i.e., for all A2 ∈ C2 the functor
– ∧ A2 : C1→ C3 is exact.

(E2) The functor is exact in the second variable, i.e., for all A1 ∈ C1 the functor
A1 ∧ – : C2→ C3 is exact.

(TC) The functor satisfies the “more technical condition” that for every pair of
cofibrations A1 � A′1 in C1 and A2 � A′2 in C2, the canonical morphism
(A1 ∧ A′2)∪A1∧A2 (A

′

1 ∧ A2)→ A′1 ∧ A′2 is a cofibration in C3.

As explained in [loc. cit.], such a functor induces pairings on homotopy groups

Ki (C1)× K j (C2)→ Ki+ j (C3)

for all i, j ∈ N.
Define Rep(G) to be the category of pointed (right) G-CW-complexes whose

underlying CW-complex is finite; the morphisms of this category are those maps
which are pointed, equivariant and cellular. This category can be equipped with
a Waldhausen structure in which the cofibrations are the morphisms isomorphic
to a cellular inclusion, and the weak equivalences are the morphisms which are
homotopy equivalences in the nonequivariant sense. We denote the subcategory
of these weak equivalences by hRep(G).

8.1. Definition. Define the A-theoretic Swan group SwA(G) to be

SwA(G) := K0(Rep(G), h).

Explicitly, SwA(G) is generated by h-equivalence classes of objects in Rep(G),
subject to the condition that [D0] + [D2] = [D1] whenever there is a cofibration
sequence D0�D1�D2 in Rep(G). As−[D]=[6D], every element s ∈SwA(G)
can be written as s = [D] for some object D ∈Rep(G).
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We can extend the abelian group structure on SwA(G) to a ring structure using
the smash product. The proof of the following proposition amounts to a number
of well-known facts about the smash product of CW-complexes.

8.2. Proposition. The functor

∧ :Rep(G)×Rep(G)→Rep(G), (D, D′) 7→ D∧ D′

is biexact. The functors – ∧ S0 and S0
∧ – are naturally equivalent to the identity

functor, and the square

Rep(G)×Rep(G)×Rep(G) Rep(G)×Rep(G)

Rep(G)×Rep(G) Rep(G)

id×∧

∧× id ∧

∧

commutes up to natural isomorphism.

Thus, SwA(G) becomes a ring under the product [D] · [D′] := [D ∧ D′]. The
main point about SwA(G) is that it admits an action on A-theory. Suppose that
(Y � W, κ) is a labeled G-CW-complex and retractive space relative W ; let
s :W → Y be the structural inclusion and r : Y →W be the structural retraction.
Then we can form the pushout

(∗× Y )∪ (D×W ) W

D× Y D∧W Y

r ∪ prW

inc∪(id×s) D∧W s

to obtain a G-CW-complex under W . We equip the product D×Y with the diagonal
action g · (d, y) := (dg−1, gy). By the universal property of the pushout, every map
of retractive spaces f : Y1→ Y2 induces a map D∧W f : D∧W Y1→ D∧W Y2. In
particular, we can equip D∧W Y with a structural retraction

D∧W r : D∧W Y → D∧W W ∼=W.

Regarding D as a G-CW-complex relative to the basepoint, we let �D denote the
set of relative cells in D. Then D∧W Y becomes a labeled G-CW-complex via the
control map

D∧W κ : �(D∧W Y )∼= �D×�Y pr
−→�Y κ

−→ Z .

Our goal is to show that this pairing defines a biexact functor. To do this, we need
the controlled version of a well-known statement about homotopy equivalences of
free G-CW-complexes.
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Let Z be a coarse structure and consider the category of controlled retractive
spaces RG(W,Z). Observe that we have a notion of control for nonequivariant
maps between labeled G-CW-complexes.

8.3. Lemma. Let Y1 and Y2 be objects in RG(W,Z). Suppose f : Y1 → Y2 is
a morphism in RG(W,Z) such that there are a nonequivariant controlled map
ḡ : Y2→ Y1 as well as nonequivariant controlled homotopies H : idY1 'Z ḡ f and
K : idY2 'Z f ḡ.

Then f is an h-equivalence, i.e., there are a G-equivariant, controlled inverse g
and G-equivariant, controlled homotopies g f ' idY1 and fg ' idY2 .

Proof. The proof works as in the uncontrolled case; cf. [tom Dieck 1987, Proposi-
tion II.2.7]. �

8.4. Proposition. The smash product ∧W over W induces a biexact functor

∧W :Rep(G)×RG(W,Z)→RG(W,Z),

(D, (Y �W, κ)) 7→ (D∧W Y �W, D∧W κ)

which preserves the property of being finite.
The functor S0

∧W − is naturally equivalent to the identity functor, and the
diagram

Rep(G)×Rep(G)×RG(W,Z) Rep(G)×RG(W,Z)

Rep(G)×RG(W,Z) RG(W,Z)

∧× id

id×∧W ∧W

∧W

commutes up to natural isomorphism.

Proof. Observe that D ∧W Y contains only free G-cells because Y is assumed to
be free (relative W ). Every cell (eD, eY ) of D∧W Y is labeled by the same point
in Z as eY , so it is immediate that the support and control conditions are preserved
by ∧W . Moreover, for any subset A⊆ Z we have (D∧W κ)

−1(A)=�D×κ−1(A);
since D is finite, D∧W Y lies in RG

f (W,Z) whenever Y is an object in RG
f (W,Z).

Let us turn to exactness in the first variable. Fix Y ∈ RG(W,Z). We have
∗∧W Y =W . Let i : D� D′ be a cofibration in Rep(G). Then

i ∧W Y : D∧W Y → D′ ∧W Y

is also a cofibration, because the same holds for cellular inclusions.
Suppose that D is the pushout of D2← D0� D1 in Rep(G). Then D× Y is

also the pushout of (D2← D0� D1)× Y , and similarly for (∗× Y )∪ (D×W ).
Since pushouts commute with each other, we see that D∧W Y is also the pushout
of (D2 ∧W Y )← (D0 ∧W Y )� (D1 ∧W Y ).
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The interesting part of the argument is to show that – ∧W Y preserves h-
equivalences. Suppose that δ : D ∼

−→ D′ is a weak equivalence, i.e., there is a
nonequivariant map δ̄ : D′ → D such that δδ̄ and δ̄δ are (nonequivariantly) ho-
motopic to the identity map. Taking smash products with idY and the constant
homotopy on Y , we observe that δ ∧W Y is a morphism in RG(W,Z) which is
an h-equivalence in R(W,Z), i.e., upon forgetting all G-actions. By Lemma 8.3,
δ∧W Y is an h-equivalence in RG(W,Z).

Exactness in the second variable is similar, but easier. To show condition (TC),
one has to show that for D′ ∈Rep(G), Y ′ ∈RG(W,Z) and subcomplexes D ⊆ D′

and Y ⊆ Y ′, the complex (D ∧W Y ′) ∪ (D′ ∧W Y ) is naturally a subcomplex of
D′ ∧W Y ′, which is the case.

Finally, S0
∧W Y ∼= Y , and associativity of the pairing follows again from the

fact that pushouts commute with each other. �

As explained at the beginning of this section, the biexact functor – ∧W –
from Proposition 8.4 turns Ki (RG

f (W,Z), h) and Ki (RG
fd(W,Z), h) into SwA(G)-

modules for all i ∈ Z (using that K−i (RG
f (W,Z), h) := K1

(
RG

f (W,Z(i + 1), h)
)

for i > 0).

8.5. Remark. Let us digress for a moment to outline the connection between the
pairing induced by the biexact functor ∧W and bivariant A-theory [Williams 2000,
Section 4] (see also [Raptis and Steimle 2014, Section 3]). For the purpose of this
remark, we relax the definition of retractive spaces to allow for spaces which are
not CW-complexes.

Let p : V1 → V2 be a fibration. Then the category R(p) consists of those
retractive spaces (Y, r, s) over V1 such that the composition p ◦ r is a fibration, and
for every v ∈ V2 the (homotopy) fiber Fv(p ◦ r) of p ◦ r at v is finitely dominated
in R(Fv(p)). Note that R(V →∗) is simply the category of (finitely dominated)
retractive spaces over V .

For two composable fibrations p : V1→ V2 and q : V2→ V3, there is defined an
exact functor

R(q)×R(p)→R(q ◦ p)

given on objects by first pulling back along p, then taking the external smash
product and finally pulling back once more along the diagonal map 1:V1→V1×V1.

Let W be a free G-CW-complex (or more generally, a principal G-bundle). Let
V := ∗×G W = G\W denote the quotient. Taking quotients with respect to the
G-action defines a functor RG

fd(W )→ R fd(V ) = R(V → ∗) which induces an
equivalence in K-theory [Waldhausen 1985, Lemma 2.1.3].

Moreover, there exists an exact functor F :Rep(G)→R(V id
−→V ) sending D to

D×G W ; since D comes equipped with a base point, there is an induced section
to the canonical retraction map D×G W →∗×G W = V .
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Combining these functors, we obtain a diagram

Rep(G)×RG(W ) RG(W )

R(idV )×R(∗×G W →∗) R(V →∗)

∧W

commutative up to natural isomorphism, which relates the action of SwA(G) on
A-theory to the bivariant theory.

In fact, Malkiewich and Merling [2016, Proposition 3.7] have shown that the
functor F induces an equivalence in K-theory for W = EG; they have the standing
assumption that the group G is finite, but this specific part of the argument works
for arbitrary discrete groups. Hence, the action of SwA(G) on A(BG) coincides
with that of the “upside-down-A-theory” of BG.

This ends the digression.

We need to consider functoriality of SwA in G to some extent. For any group
homomorphism ϕ : H → G, restriction defines an exact functor

resϕ :Rep(G)→Rep(H), D 7→ resϕ D.

If H is a subgroup of G and [G : H ]<∞, we can also define an exact induction
functor

indG
H :Rep(H)→Rep(G), D 7→ D∧H (G+).

Note that this does not preserve the unit object S0; in fact, indG
H S0
= (H\G)+.

We also consider the case of A-theory. Abbreviate the category RG(W,B(G)(n))
by RG(W, n). There we have for an arbitrary subgroup H 6G an induction functor

indG
H :R

H (resH
G W, n)→RG(W, n), (Y, κ) 7→ (indG

H Y, indG
H κ),

where indG
H Y is defined as the pushout

G×H (resH
G W ) W

G×H Y indG
H Y

(g, w) 7→ g ·w

G×H s indG
H s

and the control map indG
H κ is given by

indG
H κ : �(indG

H Y )= G×H (�Y )→ G×H (R
n
× H)∼= Rn

×G,

(g, e) 7→ (κ(e), g).

Suppose [G : H ] <∞. Choose a set-theoretic section σ to the projection map
G → H\G which satisfies σ(H) = 1. Then σ induces an H -equivariant map
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pσ : G → H , g 7→ gσ(Hg)−1 which defines a morphism of coarse structures
B(G)(n)→ B(H)(n); we retain bounded control because H\G is finite. Then
define an exact functor

resH
G :R

G(W, n)→RH (resH
G W, n), (Y, κ) 7→ (resH

G Y, (Rn
× pσ ) ◦ κ).

Note that this functor also preserves finiteness. The functor resH
G depends on the

choice of σ , but a different choice of σ yields a naturally isomorphic functor.
Hence, we suppress σ in what follows.

The restriction and induction functors are related in the expected way:

8.6. Lemma (Frobenius reciprocity). Let G be a group and let H 6 G be a sub-
group of finite index. Then we have

indG
H (s) · t = indG

H (s · resH
G t),

indG
H (s) · a = indG

H (s · resH
G a)

for all s ∈ SwA(H), t ∈ SwA(G) and a ∈ Ki (RG
f (W, n)). More precisely, there are

natural equivalences

∧◦ (indG
H × id) ∼−→ indG

H ◦∧ ◦(id× resH
G ) :Rep(H)×Rep(G)→Rep(G)

and

∧W ◦(indG
H × id) ∼−→ indG

H ◦∧W ◦(id× resH
G ) :Rep(H)×RG(W,Z)→RG(W,Z).

Proof. Let D ∈ Rep(H) and D′ ∈ Rep(G). Then the first equivalence is imple-
mented by the G-equivariant homeomorphism

(D∧H G+)∧ D′
∼=
−→ (D∧ resH

G D′)∧H G+, ((d, g), d ′) 7→ ((d, d ′g−1), g).

For D ∈Rep(H) and Y ∈RG(W,Z), the G-equivariant homeomorphism

(D∧H G+)∧W Y
∼=
−→ indG

H
(
D∧resH

G W resH
G Y

)
, ((d, g), y) 7→ (g−1, (d, gy))

yields the second equivalence. �

8.7. Theorem. Let G be a finite group. The homomorphism∑
H

indG
H :

⊕
H6G Dress

SwA(H)→ SwA(G)

is a surjection.

Proof. By Frobenius reciprocity, it suffices to show that 1G = [S0
] lies in the

image of the homomorphism. Since we can filter D ∈Rep(G) by its skeleta and
suspension of objects corresponds to taking inverses in K0, the class of D equals
its (equivariant) Euler characteristic. Hence, if [S0

] = [D+] for some finite G-CW-
complex D which has no G-fixed-point, then [S0

] is a sum of elements which are
induced from proper subgroups.
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If G is not a Dress group, then G acts on a finite, contractible CW-complex
D without G-fixed points by a theorem of Oliver [1975]. Then [D+] = [S0

] in
SwA(G). The claim follows by induction. �

8.8. Remark. For the sake of completeness, note that Oliver’s theorem [1975] even
says that a finite group acts without a global fixed-point on a finite, contractible
CW-complex if and only if the group is not Dress.

One can do slightly better than the induction argument in the proof of Theorem 8.7.
As shown in [Winges 2015, Corollary 2.10], Oliver’s theorem implies the existence
of a finite, contractible G-CW-complex, all of whose stabilizers are Dress groups.

8.9. Corollary. Let G be a finite group, and let W be a G-CW-complex. Then the
homomorphism∑

H

indG
H :

⊕
H6G Dress

Ki (RH
f (resH

G W, n))→ Ki (RG
f (W, n))

is surjective for all i ∈ Z.

Proof. Immediate from Lemma 8.6 and Theorem 8.7. �

We are also able to describe the kernel of the surjection in Corollary 8.9 once we
have proven Theorem 7.4 (see Theorem 11.1). As a second application, we obtain
a variant of Swan’s induction theorem [1960, Corollary 4.2]. Recall that the Swan
group Sw(G) is the Grothendieck group of integral, finite-rank G-representations.

8.10. Corollary. Let G be a finite group. Then the unit element 1G = [Z] ∈ Sw(G)
can be written as a sum of permutation modules

1G =

k∑
i=1

ni ·
[
Z[G/Hi ]

]
,

where each Hi is a Dress group and ni ∈ Z.

Proof. We define a linearization homomorphism

SwA(G)→ Sw(G), [D] 7→
∞∑

k=0

(−1)k[C̃k(D)],

where C̃∗ denotes the reduced cellular chain complex. This is a well-defined ring
homomorphism. Then the claim follows from the proof of Theorem 8.7. �

Corollary 8.10 differs from Swan’s theorem [1960, Corollary 4.2] in that we
obtain a description of 1G in terms of permutation modules instead of arbitrary
representations, at the expense of considering a larger family of subgroups.
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9. The transfer functor

We proceed to construct the transfer functors tr from Section 7. This uses the
action of SwA induced by “∧W ” on A-theory from the previous section. The proof
proceeds as in [Bartels and Lück 2012b, Section 6].

Let G be a countable discrete group and X a G-CW-complex. Let π : G→ Q
be a surjective group homomorphism, and let H 6 Q be a subgroup of finite index.
Then we define a biexact functor

Tπ,H :Rep(H)×RG
f (W, J(X))→RG

f (W, J(X)),

(D, (Y, κ)) 7→ resπ (indQ
H D)∧W (Y, κ).

Recall the coarse structure J(X)= J(G, X) from Definition 6.1. Let H := π−1(H),
and equip G/H ×G with the metric

dG,H ((γ1 H , g1), (γ2 H , g2)) :=

{
dG(g1, g2), γ1 H = γ2 H ,
∞, otherwise.

Next, we define another functor

T̂π,H :Rep(H)×RG
f (W, J(G, X))→RG

f (W, J(G/H ×G, X))

which lifts Tπ,H along the projection functor induced by G/H ×G→ G. To do
so, we equip resπ (indQ

H D)∧W Y with a different control map whose definition we
give next.

The unique map �D→ H\H induces a Q-equivariant function �(indQ
H D) =

(�D)×H Q→ H\Q. Restricting the Q-actions along π , we obtain a G-equivariant
function c′D : �(resπ indQ

H D)→ H\G. Regarding source and target as left G-sets
by letting g act via g−1 on the right, we obtain a map of left G-sets. Moreover,
we can identify H\G with its left G-action with G/H . Then we regard c′D as a
G-equivariant function of left G-sets

cD : �(resπ indQ
H D)→ G/H .

For D ∈Rep(H) and (Y, κ) ∈RG
f (W, J(G, X)), define

T̂π,H (Y ) := resπ (indQ
H D)∧W Y

and its control map

T̂π,H (κ) : �T̂π,H (Y )∼= �(resπ indQ
H D)×�Y cD×κ

−−−→ G/H ×G× X ×[1,∞[.

On morphisms, we set T̂π,H (δ, f ) := resπ (indQ
H δ)∧W f .

9.1. Remark. In this section and the next, we need to pay special attention to the
behavior of morphisms over the metric space M appearing in the control space
M × X ×[1,∞[ underlying J(M, X). We call a morphism f R-controlled if there
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exists a morphism control condition C such that f is C-controlled and dM(m,m′)6R
for all ((m, x, t), (m′, x ′, t ′)) ∈ C .

9.2. Lemma. This defines a biexact functor

T̂π,H :Rep(H)×RG
f (W, J(G, X))→RG

f (W, J(G/H ×G, X))

with the following properties:

(1) If f is a morphism in RG
f (W, J(G, X)) which is R-controlled over G and δ is

any morphism in Rep(H), then T̂π,H (δ, f ) is R-controlled over G/H ×G.

(2) Let P :RG
f (W, J(G/H ×G, X))→RG

f (W, J(G, X)) denote the canonical
projection functor. Then P ◦ T̂π,H = Tπ,H .

Proof. Let δ : D→ D′ be an arbitrary morphism in Rep(H). Then the induced
morphism indG

H δ = δ ∧H Q+ has the property that any cell (e, q) ∈ �D×H Q is
mapped to D ∧H (Hq)+ ⊆ D ∧H Q+. It follows that T̂π,H (δ, f ) is 0-controlled
over G/H . Since the control map of T̂π,H (D, Y ) is defined as a product, T̂π,H (δ, f )
is R-controlled if f is R-controlled. In particular, T̂π,H is well-defined.

The equality P ◦ T̂π,H = Tπ,H is obvious. �

9.3. Proposition. Let G be a countable discrete group and let π : G → F be a
surjective group homomorphism onto a finite group F. Suppose that G is equipped
with a proper, left invariant metric. Let D denote the family of Dress subgroups
of F. Define M :=

∐
H∈D G/H ×G; we equip G/H ×G with the metric in which

different summands are infinitely far apart, and where each summand carries the
metric dG,H .

Then there is an exact functor trπ :RG
f (W, J(X))→RG

f (W, J(M, X)) with the
following properties:

(1) If f is a morphism which is R-controlled over G, then trπ ( f ) is R-controlled
over M.

(2) Let P :RG
f (W, J(M, X))→RG

f (W, J(X)) denote the functor induced by the
projection map M→ G. Then P ◦ trπ induces the identity map on K-groups.

Proof. Using Theorem 8.7, we can find a sequence (DH )H∈D with DH ∈Rep(H)
such that ∑

H∈D

[indF
H DH ] = 1F ∈ SwA(F). (9.4)

Define the transfer by

trπ (Y, κ) :=
∨

H∈D

T̂π,H (DH , (Y, κ)),

where we regard T̂π,H (DH , (Y, κ)) as an object over M × X × [1,∞[ via the
natural inclusion G/H × G × X × [1,∞[ ⊆ M × X × [1,∞[ . Similarly, we
set trπ ( f ) :=

∨
H T̂π,H (idDH , f ) for morphisms.
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As a consequence of Lemma 9.2(1), this functor preserves R-controlled mor-
phisms. Moreover, we have

P ◦ trπ = P ◦
( ∨

H∈D

T̂π,H (DH , – )
)
∼=

∨
H∈D

P ◦ T̂π,H (DH , – )=
∨

H∈D

Tπ,H (DH , – ).

Using the action of SwA(G) on Ki (RG
f (W, J(X)) and the identity (9.4), we con-

clude that for a ∈ Ki (RG
f (W, J(X)),

Ki (P ◦ trπ )(a)=
∑
H∈D

[resπ (indF
H DH )] · a =

(∑
H∈D

[resπ (indF
H DH )]

)
· a

= resπ

(∑
H∈D

[indF
H DH ]

)
· a = resπ (1F ) · a

= 1G · a = a,

so P ◦ trπ induces the identity map as claimed. �

9.5. Corollary. Let G be a countable discrete group. For every k∈N, let πk :G�Fk

be an epimorphism onto a finite group. Let Dk be the family of Dress subgroups
of Fk , and define Tk :=

∐
H∈Dk

G/H × G. Recall the definition of the coarse
structure J((Tk)k, X) from Section 7.

Then there is an exact functor

tr :RG
f (W, J(X))→RG

f (W, J((Tk)k, X))

such that each composition Pk ◦ tr of tr with the functor

Pk :RG
f (W, J((Tk)k, X))→RG

f (W, J(X))

from Section 7 induces the identity on K-groups.

Proof. Define tr := (trπk )k∈N and use Proposition 9.3. �

9.6. Corollary. Assume we are in the same situation as in Corollary 9.5. For every
n ∈ N, there is an exact functor

tr :RG
f (W, J(X)(n))→RG

f (W, J((Tk)k, X)(n))

such that each composition Pk ◦ tr of tr with the functor

Pk :RG
f (W, J((Tk)k, X)(n))→RG

f (W, J(X)(n))

from Section 7 induces the identity on K-groups.

Proof. The definitions above generalize to RG
f (W, J(X)(n)). The statements fol-

low from the case n = 0 because the Rn-coordinate remains untouched. �
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Corollary 9.6 even provides us with a sequence of functors which induces a map
on nonconnective algebraic K-theory spectra. This map splits the map induced by
each functor Pk up to homotopy.

10. The “squeezing” theorem

The main result of this section is the following analog of [Bartels et al. 2008b,
Theorem 7.2], which is the final ingredient for the proof of Theorem 7.4. We
freely use the notation from Section 7. Recall also Remark 9.1.

10.1. Theorem (squeezing theorem). Let G be a countable discrete group, and
let F be a family of subgroups of G. Let (Ek)k be a sequence of G-simplicial
complexes whose isotropy lies in F . Suppose that there is some N such that the
dimension of Ek is at most N for all k. Equip Ek with the metric k · d`

1
. Then the

inclusion functor induces a weak equivalence

K−∞
(∏fin

RG
f (W, J(Ek ×G, EFG))

)
∼
−→ K−∞

(
RG

f (W, J((Ek ×G)k, EFG))
)
.

For the purposes of this section, abbreviate

Bfin((Mk)k) :=
∏fin

RG
f (W, J(Mk, EFG)),

B((Mk)k) :=RG
f (W, J((Mk)k, EFG))

for any sequence (Mk)k of metric spaces with free, isometric G-action (in our case
Mk = Ek ×G). Observe that Bfin((Mk)k) can be described as the full subcategory
of objects in B((Mk)k) with support on a finite disjoint union.

Let Y = (Yk)k be an object in B((Mk)k). For K ∈ N, define (Yk)k>K to be the
sequence (Xk)k with Xk =∗ for k6 K and Xk =Yk for k> K . Define hfinB((Mk)k)

to be the category of those morphisms f = ( fk)k : (Y 1
k )k→ (Y 2

k )k for which there
is some K > 0 such that the induced morphism ( fk)k>K : (Y 1

k )k>K → (Y 2
k )k>K is

an h-equivalence in B((Mk)k). Note that this is a stronger condition than requiring
fk to be a controlled homotopy equivalence for all k > K . Using the modified
fibration theorem (Proposition 4.14), there is a homotopy fiber sequence

hS•B((Mk)k)
hfin
→ hS•B((Mk)k)→ hfinS•B((Mk)k).

It is straightforward to check that this homotopy fiber sequence can be delooped, and
that the approximation theorem applies to the inclusion Bfin((Mk)k) ↪→B((Mk)k)

hfin
.

We conclude that there is a homotopy fiber sequence

K−∞
(
Bfin((Mk)k), h

)
→ K−∞

(
B((Mk)k), h

)
→ K−∞

(
B((Mk)k), hfin). (10.2)

Consequently, it suffices to show that K−∞
(
B((Ek × G)k), hfin

)
is weakly con-

tractible in order to prove Theorem 10.1. As in [Bartels et al. 2008b], the proof is
by induction on N .
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10.3. Remark. Before we start with the actual proof, let us provide some intuition
why Theorem 10.1 holds true. We consider in Lemma 10.4 the case that each
Ek is a disjoint union of equivariant simplices in which different simplices are
infinitely far apart. In this case, the desired vanishing result is easily obtained since
we can define an Eilenberg swindle by contracting each simplex to a point. This
provides almost the start of the induction. However, in the situation considered
in Theorem 10.1 different simplices in Ek are only distance 2k apart from each
other. The basic observation is that this is ultimately the same as considering
different simplices to have distance∞: since the notion of hfin-equivalence allows
us to ignore finitely many Ek and each morphism has a uniform control bound,
morphisms cannot propagate between different simplices for sufficiently large k.
Similarly, objects are forced to decompose over the various simplices provided k is
large enough. This observation is formalized in an application of the approximation
theorem; see Corollary 10.5.

To perform the induction step, we need to show that (B((Ek)k), hfin) is suffi-
ciently excisive after taking K-theory; see Lemma 10.7. The proof of Lemma 10.7
involves technicalities similar to the ones encountered in showing Corollary 10.5.
Morally, excision is accomplished since bounded neighborhoods of the N -skeleton
in the (N + 1)-skeleton become arbitrarily small as k grows, due to the fact that
we blow up the `1-metric as k becomes larger, and since we are allowed to ignore
finitely many components. Consequently, cells which are labeled by points suffi-
ciently “deep” in a simplex can only be attached to cells which are based on the
same simplex; i.e., ignoring finitely many of the Ek and modulo neighborhoods of
the N -skeleton, each object decomposes disjointly over the (N + 1)-simplices.

We turn now to the actual proof of Theorem 10.1.

10.4. Lemma. Suppose that (1k)k is a sequence of G-simplicial complexes of the
form

1k =
∐
i∈Ik

G/Hi ×1
N

such that Hi ∈ F for all i . Equip 1k with the metric which assigns distance∞
to points in different path components, and equals k · d`

1
for points on the same

simplex. Then

K−∞(Bfin((1k×G)k), h), K−∞(B((1k×G)k), h), K−∞(B((1k×G)k), hfin)

are all weakly contractible.

Proof. It is shown in [Bartels et al. 2008b, proof of Proposition 7.4] that there
is a sequence of maps on the underlying control spaces such that Theorem 5.11
applies. �

10.5. Corollary. Theorem 10.1 holds for N = 0.
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Proof. Since each Ek is 0-dimensional, it is a disjoint union of transitive G-sets,
Ek =

∐
i∈Ik

G/Hi with Hi ∈ F . Define 1k to be the simplicial complex Ek ,
equipped with the metric from Lemma 10.4. There is an exact functor

F : B((1k ×G)k)→ B((Ek ×G)k).

We claim that this functor induces a weak equivalence

K−∞(F) : K−∞
(
B((1k ×G)k), hfin) ∼

−→ K−∞
(
B((Ek ×G)k), hfin).

Obviously, F maps hfin-equivalences to hfin-equivalences. We claim that F satisfies
the approximation property.

Let f : (Y 1
k )k → (Y 2

k )k be a morphism in B((1k)k) such that F( f ) is an hfin-
equivalence. Since we require uniform metric control, there is some K > 0 such
that ( fk)k>K is an h-equivalence which is 0-controlled over (Ek)k . We can assume
that ( fk)k>K has an inverse which is 0-controlled over (Ek)k , and that we can find
homotopies between the compositions which are 0-controlled over (Ek)k as well.
Hence, f is also an hfin-equivalence in B((1k ×G)k).

For the second part of the approximation property, let Y 1
= (Y 1

k )k ∈B((1k×G)k),
Y 2
= (Y 2

k )k ∈ B((Ek×G)k), and let f = ( fk)k : F((Y 1
k )k)→ (Y 2

k )k be a morphism
in B((Ek ×G)k). Then there is some K > 0 such that (Y 2

k )k>K and ( fk)k>K are
0-controlled over (Ek)k . Define Y = (Yk)k via Yk := Y 1

k for k 6 K and Yk := Y 2
k

for k > K . Then f factors canonically as Y 1
→ Y → Y 2, where the first morphism

is 0-controlled over (Ek)k and the latter morphism is an hfin-equivalence. Since Y
is also 0-controlled over (Ek)k , this proves the approximation property.

Hence, K−∞(F) is a weak equivalence by the approximation theorem. The
claim follows from Lemma 10.4. �

Suppose now that Theorem 10.1 holds for N , and let (Ek)k be a sequence of G-
simplicial complexes of dimension at most N + 1. Consider for each k the pushout
diagram ∐

i∈I N
k

G/Hi × ∂1
N+1 skN Ek

∐
i∈I N

k
G/Hi ×1

N+1 Ek

(10.6)

describing the attachment of the (N + 1)-simplices of Ek .

10.7. Lemma. Let N > 0. The commutative square of nonconnective K-theory
spectra

K−∞
(
B
((∐

i∈I N
k

G/Hi × ∂1
N+1
×G

)
k

)
, hfin

)
K−∞

(
B((skN Ek ×G)k), hfin

)
K−∞

(
B
((∐

i∈I N
k

G/Hi ×1
N+1
×G

)
k

)
, hfin

)
K−∞

(
B((Ek ×G)k), hfin

)
induced by diagram (10.6) is a homotopy pullback square of spectra.
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Lemma 10.7 provides the induction step: The top left and top right corners of
the square from Lemma 10.7 are weakly contractible by the induction hypothesis.
The bottom left corner is weakly contractible by Lemma 10.4. Hence, the bottom
right corner is also weakly contractible, and Theorem 10.1 follows.

In the rest of this section, we prove Lemma 10.7.

10.8. Lemma. Let (Mk)k be a sequence of metric spaces with free, isometric G-
action, and let Xk ⊆ Mk be G-invariant, closed subspaces.

Define X :=
∐

k Xk ×G× EFG×[1,∞[ . Let h XB((Mk)k) be the subcategory
of controlled homotopy equivalences away from X. Let h X,finB((Mk)k) denote
the subcategory of those morphisms f : (Y 1

k )k → (Y 2
k )k for which there is some

K ∈ N such that the induced morphism ( fk)k>K : (Y 1
k )k>K → (Y 2

k )k>K is an h X -
equivalence.

Then there is a homotopy fiber sequence

K−∞
(
B((Xk)k), hfin)

→ K−∞
(
B((Mk)k), hfin)

→ K−∞
(
B((Mk)k), h X,fin).

Proof. Consider the commutative diagram

K−∞
(
Bfin((Xk)k), h

)
K−∞

(
B((Xk)k), h

)
K−∞

(
B((Xk)k), hfin

)
K−∞

(
Bfin((Mk)k), h

)
K−∞

(
B((Mk)k), h

)
K−∞

(
B((Mk)k), hfin

)
K−∞

(
Bfin((Mk)k), h X

)
K−∞

(
B((Mk)k), h X

)
K−∞

(
B((Mk)k), h X,fin

)
in which all maps are induced by the appropriate inclusion functors. The left and
middle columns are homotopy fiber sequences by Theorem 5.9. The top and middle
rows are instances of the homotopy fiber sequence (10.2). By a straightforward
modification of the argument for (10.2), the bottom row is also a homotopy fiber
sequence. Hence, the right column is a homotopy fiber sequence as claimed. �

Proof of Lemma 10.7. Let 1k :=
∐

i∈I N
k

G/Hi ×1
N+1, equipped with the metric

from Lemma 10.4, and ∂1k :=
∐

i∈I N
k

G/Hi × ∂1
N+1. The inclusion of metric

spaces ∂1k×G⊆1k×G gives rise to a class of weak equivalences h∂,finB((1k×G)k)
and to a corresponding homotopy fiber sequence as in Lemma 10.8. Similarly,
skN Ek×G ⊆ Ek×G gives rise to a class of weak equivalences hN ,finB((Ek×G)k)
and a corresponding homotopy fiber sequence.

Diagram (10.6) induces a map between these homotopy fiber sequences. To
prove the lemma, it suffices to show that the induced map on the homotopy cofibers

K−∞
(
B((1k ×G)k), h∂,fin)

→ K−∞
(
B((Ek ×G)k), hN ,fin)
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is a weak equivalence. Note that this map is induced by an exact functor F , namely
the one induced by the characteristic maps of the (N + 1)-simplices. The claim is
that the approximation theorem applies again, but as for Corollary 10.5, we have
to prove both parts of the approximation property.

We start with a preliminary observation. Let (Y 1, κ1) and (Y 2, κ2) be objects in
B((Ek×G)k), and let f : Y 1

→ Y 2 be a morphism. Suppose that f is R-controlled,
and let e be a cell in Y 1

k such that the Ek-component x of κ1(e) is a point in an
(N + 1)-simplex σ . Let e′ be a cell in Y 2

k with e′ ⊆ 〈 f (e)〉, and suppose that the
Ek-component y of κ2(e′) does not lie in σ . Then kd`

1
(x, y)6 R. According to

[Bartels et al. 2008b, Lemma 7.15], there is a point z on the boundary of σ such
that kd`

1
(x, z) 6 2R. Hence, if the distance of x to the boundary of σ is greater

than 2R, then for every cell e′ in Y 2
k with e′ ⊆ 〈 f (e)〉, the Ek-component of κ2(e′)

also lies in σ .
Let us now turn to the first part of the approximation property. Let f : Y 1

→ Y 2

be a morphism in B((1k ×G)k) such that F( f ) is an hN ,fin-equivalence. Choose
R> 0 such that Y 1, Y 2 and f are all R-controlled, and further, such that F( f ) has a
(partially defined) homotopy inverse and homotopies which are also R-controlled.
Let Y 1

k (6R) be the subobject of Y 1
k spanned by those cells e ∈ �Y 1

k such that the
1k-component of κ1(e) has distance at least 6R to ∂1k . If e is any cell in Y 1

k , the
Ek-component of κ1(e) has distance at least 5R to the boundary of the (N + 1)-
simplex in which it lies; to see this, combine the preliminary observation with the
fact that Y 1 is R-controlled. Since Y 1(6R) := (Y 1

k (6R))k ⊆ Y 1 is cofinal away from∐
k ∂1k ×G× EFG×[1,∞[ , the inclusion is an h∂ -equivalence. In particular, it

is an h∂,fin-equivalence. We can similarly define a subcomplex Y 2(4R)⊆ Y 2, and
this inclusion is also an h∂,fin-equivalence.

Since f is R-controlled, there is an induced morphism f ′ : Y 1(6R)→ Y 2(4R).
The morphism F( f ′) is still an hN ,fin-equivalence; the inverse and homotopies
arise by restricting the inverse and homotopies of F( f ) to appropriate cofinal sub-
complexes. Hence, they are still R-controlled. It follows that they do not cross the
boundaries of simplices, so they lift to B((1k × G)k). This shows that f ′ is an
h∂,fin-equivalence.

For the second part of the approximation property, let Y 1
∈ B((1k × G)k),

Y 2
∈ B((Ek × G)k), and let f : F(Y 1)→ Y 2 be a morphism in B((Ek × G)k).

The argument is similar to the first part. Again, choose R > 0 such that Y1, Y2 and
f are all R-controlled. Then Y 1(6R), defined as before, is a subcomplex of Y 1

which is cofinal away from
∐

k ∂1k ×G× EFG×[1,∞[; similarly, Y 2(4R) is a
subcomplex of Y 2 which is cofinal away from

∐
k skN Ek ×G × EFG × [1,∞[ .

Moreover, Y 2(4R) is supported on the interiors of the (N + 1)-simplices, and if
e is a cell in Y 2(4R), the subcomplex 〈e〉 spanned by e is based on the same
simplex as e by the preliminary observation. Since the characteristic maps of the
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(N + 1)-simplices are homeomorphisms on the interiors (and restrict to isometries
on individual simplices), we can lift Y 2(4R) to an object in B((1k ×G)k). Now
define Y to be the pushout of Y 1 � Y 1(6R)

f |Y 1(6R)−−−−→ Y 2(4R) in B((1k × G)k).
Since the inclusion Y 1(6R)� Y 1 is an h∂,fin-equivalence, the canonical inclusion
Y 2(4R)� Y is also an h∂,fin-equivalence. Since F is exact, F(Y ) is the pushout
of F(Y 1)� F(Y 1(6R))→ F(Y 2(4R)). Let g : F(Y )→ Y 2 be the map induced
by the universal property of the pushout. Since

Y 2(4R) Y 2

F(Y )

∼

∼ g

commutes, g is an hN ,fin-equivalence by the saturation axiom. We conclude that

F(Y 1) Y 2

F(Y )

f

g

is the required factorization. Therefore, the approximation property holds, and we
are done. �

11. Applications

To conclude, we turn to some applications of Theorem 7.4. As an immediate
corollary, we obtain Theorem 1.3, which gives a description of the A-theory of
spaces with finite fundamental group.

11.1. Theorem. Let V be a connected CW-complex with finite fundamental group G.
Let Ṽ be the universal cover of V . Denote by D the family of Dress subgroups of G.
Then the Davis–Lück assembly map

HG(EDG;A−∞
Ṽ
)→ A−∞(V )

is a weak equivalence.

Proof. The group G is Dress–Farrell–Hsiang with respect to D: for every ε > 0,
choose π = idG and let fD be the projection onto a point for all D ∈D. Now apply
Theorem 7.4 with W = Ṽ . �

Our ultimate goal is the proof of Theorem 1.2. Formally, everything we do is
very close to the treatment in [Bartels et al. 2014a]. This involves a rather intri-
cate induction process which relies on a number of inheritance properties of the
isomorphism conjecture. These will be established along the way. The reader is
encouraged to refer to [loc. cit.] for definitions.
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11.2. Proposition (transitivity principle). Let F0 ⊆ F1 be two families of sub-
groups of G. Suppose that G satisfies the fibered isomorphism conjecture in A-
theory with respect to F1, and that every H ∈ F1 satisfies the fibered isomorphism
conjecture in A-theory with respect to F0|H := {H ∩ K | K ∈ F0}.

Then G satisfies the fibered isomorphism conjecture in A-theory with respect
to F0.

Proof. The proof is analogous to the linear case. However, the published proofs
(e.g., [Bartels and Lück 2006, Theorem 2.4; Bartels et al. 2008a, Theorem 3.3]) all
rely on the formalism of equivariant homology theories. Since we want to avoid
discussing to what extent the homology theories associated to A-theory spectra
form equivariant homology theories, we give a proof using the language of Or(G)-
spectra.

Let E be an arbitrary Or(G)-spectrum, and let E be a G-CW-complex. Ob-
serve that G/H× E is naturally G-homeomorphic to indG

H resH
G E = G×H resH

G E .
Induction defines a functor indG

H : Or(H) → Or(G), so we obtain an Or(H)-
spectrum E ◦ indG

H . The same arguments as in the proof of Proposition 157 of
[Lück and Reich 2005] show that there is a natural isomorphism

HH (resH
G E; E ◦ indG

H )
∼= HG(indG

H resH
G E; E).

Now let A−∞W be the Or(G)-spectrum from Section 6 associated to a free G-CW-
complex W . Since W ×G (indG

H H/L)∼= resH
G W ×H H/L , we have

HG(G/H × E;A−∞W )∼= HH (resH
G E;A−∞

resH
G W

)
.

In particular, the map HG(G/H × EF0 G;A−∞W )→ HG(G/H ;A−∞W ) induced by
the projection map is weakly equivalent to the map

HH (resH
G EF0 G;A−∞

resH
G W

)
→ HH (H/H ;A−∞

resH
G W

)
= A−∞(resH

G W/H).

Since resH
G W is a free H -CW-complex and resH

G EF0 G = EF0|H H , this map is an
equivalence for all H ∈ F1 by assumption. It follows that the maps

HG
(∐

i

EF0 G×G/Hi × Dn
;A−∞W

)
→ HG

(∐
i

G/Hi × Dn
;A−∞W

)
are weak equivalences whenever Hi lies in F1 for all i because G/Hi × Dn is
G-homotopy equivalent to G/Hi and the homology theory under consideration
commutes with coproducts. By an induction along the skeleta, it follows that the
projection map EF0 G× X→ X induces an equivalence in HG( – ,A−∞W ) for every
finite-dimensional G-CW-complex X whose isotropy groups lie in F1. Since ho-
mology commutes with filtered colimits, the same holds for all G-CW-complexes
X whose isotropy groups lie in F1.
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In particular, we can pick X = EF1 G. Then EF0 G × EF1 G is G-homotopy
equivalent to EF0 G, so we conclude that the G-map EF0 G → EF1 G (which is
unique up to G-homotopy) induces a weak equivalence. This implies the claim. �

11.3. Proposition. Let ϕ : K → G be a group homomorphism. Suppose that G
satisfies the fibered isomorphism conjecture in A-theory with respect to the family
F of subgroups of G.

Then K satisfies the fibered isomorphism conjecture in A-theory with respect to
the family of subgroups

ϕ∗F := {ϕ−1(H) | H ∈ F}.

Proof. Let Ẽ be a functor from the category of K-sets to the category of spectra;
let E denote its restriction to Or(K ). It has been shown in the proof of [Bartels
and Reich 2007, Proposition 4.2] that there is for every G-CW-complex X a weak
equivalence

HK(resϕ X; E)∼=mapG( – , X)+ ∧Or(G) mapK (?, resϕ – )+ ∧Or(K ) Ẽ(?) (11.4)

which is natural in X . Let G/H ∈ Or(G), and let K\G/H denote the orbit space
of resϕ G/H . Subject to a choice of (set-theoretic) section σ : K\G/H → G of
the obvious projection map, there is an isomorphism

resϕ G/H ∼=
∐

KgH∈K\G/H

Tσ (KgH),

where Tσ (KgH) := K/(K ∩ σ(KgH)Hσ(KgH)−1).

This isomorphism gives rise to a commutative diagram(∨
KgH∈K\G/H mapK (?, Tσ (KgH))+

)
∧Or(K ) E(?) mapK(?, resϕ G/H)+∧Or(K ) E(?)

∨
KgH∈K\G/H E(Tσ (KgH)) Ẽ(resϕ G/H)

∼=

in which the vertical maps are induced by evaluating Ẽ. The right vertical map
is natural in G/H . The left vertical map is easily seen to be a weak equivalence.
Whenever Ẽ commutes with coproducts, the lower horizontal map is a weak equiva-
lence. In this case, the right vertical map is also a weak equivalence, and we obtain
a weak equivalence of Or(G)-spectra

mapK (?, resϕ – )+ ∧Or(K ) E(?)' Ẽ ◦ resϕ . (11.5)

The weak equivalences (11.4) and (11.5) combine to a weak equivalence, natural
in X ,

HK(resϕ X; E)' HG(X; Ẽ ◦ resϕ).
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Let W be a free K-CW-complex. Since A−∞W extends to a functor on all K-sets and
commutes with coproducts (see Lemma 11.6 below), we obtain a natural equiva-
lence

HK(resϕ EFG;A−∞W )' HG(EFG;A−∞W ◦ resϕ).

Since indϕ W =W ×K resϕ G is a free G-CW-complex and

W ×K resϕ G/H ∼= indϕ W ×G G/H,

we have a natural weak equivalence of Or(G)-spectra A−∞W ◦ resϕ ' A−∞indϕ W . Hence,
there is a natural weak equivalence

HK(resϕ EFG;A−∞W )' HG(EFG;A−∞indϕ W ).

Observe that resϕ EFG = Eϕ∗F K . We conclude that the assembly map

HK(Eϕ∗F K ;A−∞W )→ HK(K/K ;A−∞W )

is weakly equivalent to the assembly map

HG(EFG;A−∞indϕ W )→ HG(G/G;A−∞indϕ W ).

The latter map is assumed to be a weak equivalence, so we are done. �

11.6. Lemma. Let W be a CW-complex, and let W =
∐

i∈I Wi be a decomposition
of W into subspaces. Then the natural map∨

i∈I

A−∞(Wi )→ A−∞(W )

is a weak equivalence.

Proof. Let Y be a CW-complex relative W together with a retraction r : Y → W.
Then the partition W =

∐
i Wi induces a partition of Y into subcomplexes Y =

∐
i Yi ,

where Yi := r−1(Wi ). Similarly, every morphism of retractive spaces f : Y 1
→ Y 2

over W decomposes into a coproduct f =
∐

i fi since f is compatible with the
retractions. Restricting to finite objects, this shows that there is an isomorphism

colimJ⊆I finite
∏
i∈J

R f (Wi ,T(∗)(n))
∼=
−→R f (W,T(∗)(n)).

Here we have used the fact that the image of the retraction of a finite object inter-
sects only finitely many path components of W . It follows that the map of spectra∨

i∈I A−∞(Wi )→ A−∞(W ) is a levelwise equivalence. �

11.7. Corollary. Let G be a discrete group and H 6 G a subgroup. If G satisfies
the fibered isomorphism conjecture in A-theory with respect to the family F , then
H satisfies the fibered isomorphism conjecture in A-theory with respect to F |H .

Proof. Apply Proposition 11.3 to the inclusion H ↪→ G. �
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11.8. Corollary. Let π : G→ Q be a surjective group homomorphism. Suppose
that Q satisfies the fibered Farrell–Jones conjecture in A-theory, and that for every
virtually cyclic subgroup V 6 Q, the preimage π−1(V ) satisfies the fibered Farrell–
Jones conjecture in A-theory. Then G satisfies the fibered Farrell–Jones conjecture
in A-theory.

Proof. Note that π∗VCyc={π−1(V ) | V 6 Q virtually cyclic}. Thus, the claim is a
combination of Proposition 11.3 and the transitivity principle, Proposition 11.2. �

11.9. Corollary. Let π : G→ Q be a surjective group homomorphism with finite
kernel. If Q satisfies the fibered Farrell–Jones conjecture in A-theory, then so
does G.

Proof. If V 6 Q is virtually cyclic, then π−1(V ) is also virtually cyclic, and thus
G satisfies the conjecture by Corollary 11.8. �

The next two statements and their proofs are analogous to [Bartels et al. 2014a,
Sections 3.2 and 3.3]. We only sketch their proofs and refer to [loc. cit.] for details.

11.10. Lemma (cf. [Bartels et al. 2014a, Lemma 3.15]). Let 0 be a crystallo-
graphic group of virtual cohomological dimension 2 which possesses a normal,
infinite cyclic subgroup. Then 0 satisfies the fibered Farrell–Jones conjecture in
A-theory.

Proof. Do an induction on the order of the smallest finite group F such that there
is a short exact sequence 1→ Z2

→ 0→ F→ 1. Using Theorem 7.4, the claim
follows from [Winges 2015, Lemma 5.2 and Proposition 5.3] in conjunction with
the induction hypothesis and the transitivity principle, Proposition 11.2. �

11.11. Proposition (cf. [Bartels et al. 2014a, Section 3.3]). Let 0 be a virtually
finitely generated abelian group. Then 0 satisfies the fibered Farrell–Jones conjec-
ture in A-theory.

Proof. We do an induction on the virtual cohomological dimension of 0. If
vcd(0)6 1, the group 0 is virtually cyclic and there is nothing to show. So assume
vcd(0)> 2. Then do a subinduction on the cardinality of the smallest finite group F
such that 0 admits an epimorphism onto F whose kernel is isomorphic to Zvcd(0).

Since 0 admits a surjection with finite kernel onto a crystallographic group
[Quinn 2012, Lemma 4.2.1], we may assume by Corollary 11.9 that 0 is crystal-
lographic of the same virtual cohomological dimension. Now fix an epimorphism
p : 0� F onto a finite group F such that the kernel of p is isomorphic to Zvcd(0)

and such that the cardinality of F is minimal among all finite groups which admit
such an epimorphism. By induction and the transitivity principle, Proposition 11.2,
it suffices to show that 0 satisfies the fibered isomorphism conjecture with respect
to the family of all virtually finitely generated abelian subgroups A of 0 which
satisfy either of the following:
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• vcd(A) < vcd(0) or

• vcd(A) = vcd(0) and A admits an epimorphism p′ : A→ F ′ onto a finite
group F ′ such that |F ′|< |F | and the kernel of p′ is isomorphic to Zvcd(0).

Suppose that 0 possesses a normal, infinite cyclic subgroup C E0. We want to
apply Corollary 11.8. Since vcd(0/C) < vcd(0), the quotient 0/C satisfies the
fibered Farrell–Jones conjecture. Let π : 0→ 0/C be the projection. For every
virtually cyclic subgroup V 6 G/C , the preimage π−1(V ) has virtual cohomo-
logical dimension 2. Again, π−1(V ) admits a surjection with finite kernel onto
a crystallographic group K [Quinn 2012, Lemma 4.2.1], so we may assume that
π−1(V ) is crystallographic by Corollary 11.9. Since vcd(π−1(V ))= 2 and there
exists a normal, infinite cyclic subgroup, it follows from Lemma 11.10 that π−1(V )
satisfies the fibered Farrell–Jones conjecture. So Corollary 11.8 applies.

Suppose that there is no normal, infinite cyclic subgroup in 0. Then 0 is a Dress–
Farrell–Hsiang group with respect to a family containing only groups to which the
induction hypothesis applies [Winges 2015, Proposition 5.4]. Theorem 7.4 and
Proposition 11.2 imply that 0 satisfies the fibered Farrell–Jones conjecture. �

Proposition 11.11 is the stepping stone to proving an even slightly stronger ver-
sion of Theorem 1.2; see Theorem 11.19 below. Recall that the (unrestricted)
wreath product G1 o G2 of a group G1 with another group G2 is the semidirect
product

(∏
G2

G1
)
oG2, where G2 acts on the left factor by left translations.

11.12. Definition. Let F be a family of groups and let G be a discrete group. We
say that G satisfies the fibered isomorphism conjecture with wreath products in
A-theory with respect to F if for every finite group F , the wreath product G o F
satisfies the fibered isomorphism conjecture in A-theory with respect to F .

If F is the family of virtually cyclic groups, we say that G satisfies the fibered
Farrell–Jones conjecture with wreath products in A-theory.

11.13. Corollary. Every virtually finitely generated abelian group satisfies the
fibered Farrell–Jones conjecture with wreath products in A-theory.

Proof. This is an immediate consequence of Proposition 11.11 since the wreath
product of a virtually finitely generated abelian group with a finite group is again
virtually finitely generated abelian. �

Let us record some additional inheritance properties of the fibered isomorphism
conjecture with wreath products. The following results have been worked out in
[Kühl 2008]; we collect them here for reference and the convenience of the reader.

11.14. Lemma. Let G, G1, G2 be discrete groups, and let F be a family of groups.

(1) Let H 6 G be a subgroup. If G satisfies the fibered isomorphism conjecture
with wreath products with respect to F , then so does H.
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(2) Let H 6G be a subgroup of finite index. If H satisfies the fibered isomorphism
conjecture with wreath products with respect to F , so does G.

(3) If G1 and G2 satisfy the fibered Farrell–Jones conjecture with wreath products,
so does G1×G2.

(4) Suppose G satisfies the fibered isomorphism conjecture with wreath products
with respect to F , and that every subgroup H 6 G which lies in F satisfies the
fibered Farrell–Jones conjecture with wreath products. If F is closed under
taking quotients, then G satisfies the fibered Farrell–Jones conjecture with
wreath products.

(5) Let π : G � Q be a surjective homomorphism. Suppose that Q satisfies
the fibered Farrell–Jones conjecture with wreath products, and that for every
virtually cyclic subgroup V 6 Q the preimage π−1(V ) satisfies the fibered
Farrell–Jones conjecture with wreath products. Then G satisfies the fibered
Farrell–Jones conjecture with wreath products.

(6) Let π : G� Q be a surjective homomorphism with finite kernel. If Q satisfies
the fibered Farrell–Jones conjecture with wreath products, so does G.

Proof. Claim (1) is a consequence of Corollary 11.7 since H o F is a subgroup of
G o F for every group F .

For (2), assume first that H is normal in G. Set F := G/H . Choose a set-
theoretic section s : F → G of the projection map π : G � F . For g ∈ G and
f ∈ F define

h(g, f ) := s( f )−1gs(π(g)−1 f ).

Then g 7→ ((h(g, f )) f , π(g)) defines a monomorphism G ↪→ H o F . Thus, for
every finite group F ′, the wreath product G o F ′ is a subgroup of (H o F) o F ′. Since
(H o F) o F ′ itself embeds into H o (F o F ′) [Kühl 2008, Lemma 1.21], the claim
follows from (1). If H is not normal, (1) allows us to replace H by

⋂
g∈G gHg−1.

For (3), observe that (G1×G2) o F is a subgroup of (G1 o F)× (G2 o F) =: 0.
By (1), it suffices to check that the latter group satisfies the fibered Farrell–Jones
conjecture. Consider the projection map p1 : 0 → G1 o F . We want to apply
Corollary 11.8, so we need to check that V × (G2 o F) satisfies the fibered Farrell–
Jones conjecture for every virtually cyclic subgroup V of G1 o F . This can be
done by another application of Corollary 11.8. The target of the projection map
p2 : V ×(G2 oF)→G2 oF satisfies the fibered Farrell–Jones conjecture, so the only
thing left to verify is that every product V×V ′ of virtually cyclic groups satisfies the
fibered Farrell–Jones conjecture. Since the product of two virtually cyclic groups
is virtually finitely generated abelian, this is true by Proposition 11.11.

Let us turn to (4). Consider a wreath product G o F , where F is finite. Our
goal is to apply the transitivity principle, so we need to check that every subgroup
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H 6 G o F which lies in F satisfies the fibered Farrell–Jones conjecture. Let H be
such a subgroup. Since H ′ := H ∩

(∏
F G

)
is normal in H and has finite index, it

suffices to show that H ′ satisfies the fibered Farrell–Jones conjecture with wreath
products by (2). Observe that H ′ ∈ F . Let H f denote the image of H ′ under the
projection map

(∏
F G

)
→ G onto the factor indexed by f ∈ F . Then H ′ embeds

into
∏

f ∈F H f . Since F is closed under quotients, H f satisfies the fibered Farrell–
Jones conjecture with wreath products, and so does the product

∏
f ∈F H f by (3).

Now (1) implies that H ′ satisfies the fibered Farrell–Jones conjecture with wreath
products, and we are done.

For (5), observe that π induces a surjective homomorphism πF : G o F � Q o F
for every finite group F . The quotient Q o F satisfies the fibered Farrell–Jones
conjecture by assumption. We want to apply Corollary 11.8. So let V 6 Q o F
be virtually cyclic. In order to show that π−1

F (V ) satisfies the fibered Farrell–
Jones conjecture, it suffices to show that Ṽ := π−1

F (V ) ∩
(∏

F G
)

satisfies the
fibered Farrell–Jones conjecture with wreath products. Denote by V f the image
of V ∩

(∏
F Q

)
under the projection

∏
F Q→ Q onto the factor indexed by f ∈ F .

Then Ṽ embeds into
∏

f ∈F π
−1(V f ). Since V f is a virtually cyclic subgroup of Q,

the preimage π−1(V f ) satisfies the fibered Farrell–Jones conjecture with wreath
products by assumption, and hence so does

∏
f ∈F π

−1(V f ) by (3). Then Ṽ satisfies
the fibered Farrell–Jones conjecture with wreath products by (1).

The last part of the lemma follows from (5) because the preimage of each vir-
tually cyclic subgroup of Q is again virtually cyclic (and these satisfy the fibered
Farrell–Jones conjecture with wreath products by Corollary 11.13). �

In analogy to [Wegner 2015, Proposition 2.19], we are going to show next that
the Dress–Farrell–Hsiang condition (Definition 7.3) is well-behaved with respect
to wreath products with finite groups. Let G be a group, F a family of subgroups
and 8 a finite group. Denote by F o8 the family of subgroups of G o8 consisting of
those groups which contain a finite-index subgroup of the form

∏
ψ∈8 Hψ , where

each Hψ lies in F .
Recall the following construction of the product of simplicial complexes. Let

E1, . . . , Ek be (abstract) ordered simplicial complexes. Then define E1⊗ · · ·⊗ Ek

to be the simplicial complex whose r -simplices are ascending chains (e0
1, . . . , e0

k) <

· · ·< (er
1, . . . , er

k) with respect to the lexicographic ordering such that {e0
i , . . . , er

i }

is a simplex in Ei for all i . The map |E1⊗ · · ·⊗ Ek | → |E1| × · · · × |Ek | induced
by the obvious projections E1⊗· · ·⊗ Ek→ Ei is a homeomorphism (with respect
to the topologies induced by the `1-metric).

11.15. Proposition. Let G be a discrete group and let F be a family of subgroups.
Let S be a finite, symmetric generating set such that (G, S) is a Dress–Farrell–
Hsiang group with respect to F .
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Then there is for every finite group 8 a generating set S o8 of G o8 such that
(G o8, S o8) is a Dress–Farrell–Hsiang group with respect to F o8.

Proof. We start with a preliminary observation. Let 8 be a finite group, and let
π : G� F be an epimorphism onto some finite group F . Then π induces a surjec-
tive homomorphism π o8 : G o8� F o8 given by ((gψ)ψ , ϕ) 7→ ((π(gψ))ψ , ϕ).

Let H 6 F o8 be a Dress group. Let 8H be the image of H under the canonical
projection F o8�8, and let Hξ denote the image of H ∩

(∏
8 F

)
under the map

pξ :
(∏

8 F
)
→ F given by projection onto the ξ -th component. Since the class

of Dress groups is closed under quotients, each Hξ is a Dress group. For each
ϕ ∈8H , pick a preimage κϕ = ((κϕψ)ψ , ϕ) ∈ H . Choose a section s :8H\8→8

of the obvious projection map such that s(8H )= 1. Now define

κ :=
((
κ

s(8Hψ)ψ
−1

s(8Hψ)

)
ψ
, 1
)
∈ F o8,

and let Ĥ denote the group( ∏
8Hψ∈8H\8

( ∏
ψ ′∈8Hψ

Hs(8Hψ)

))
o8H ,

where 8H acts on the left-hand side by permuting the index set of every factor∏
8Hψ

Hs(8Hψ). Observe that Ĥ is naturally a subgroup of F o8. We claim that κ
subconjugates H into Ĥ .

To see this, compute first, for an arbitrary element ((αψ)ψ , ϕ) ∈ H ,

κ((αψ)ψ , ϕ)κ
−1
=
((
κ

s(8Hψ)ψ
−1

s(8Hψ)

)
ψ
, 1
)
((αψ)ψ , ϕ)

(([
κ

s(8Hψ)ψ
−1

s(8Hψ)

]−1)
ψ
, 1
)

=
((
κ

s(8Hψ)ψ
−1

s(8Hψ)
αψ
[
κ

s(8Hϕ
−1ψ)ψ−1ϕ

s(8Hϕ−1ψ)

]−1)
ψ
, ϕ
)

=
((
κ

s(8Hψ)ψ
−1

s(8Hψ)
αψ
[
κ

s(8Hψ)ψ
−1ϕ

s(8Hψ)

]−1)
ψ
, ϕ
)
.

In order to show that this element lies in Ĥ , we need to check that for every ξ ∈8,
κ

s(8H ξ)ξ
−1

s(8H ξ)
αξ
[
κ

s(8H ξ)ξ
−1ϕ

s(8H ξ)

]−1 lies in Hs(8H ξ). Indeed,

κs(8H ξ)ξ
−1
((αψ)ψ , ϕ)(κ

s(8H ξ)ξ
−1ϕ)−1

=
(
(κ

s(8H ξ)ξ
−1

ψ 1)ψ , s(8Hξ)ξ
−1)((αψ)ψ , ϕ)(([κs(8H ξ)ξ

−1ϕ

s(8H ξ)ξ−1ϕψ

]−1)
ψ
, ϕ−1ξs(8Hξ)

−1)
=
((
κ

s(8H ξ)ξ
−1

ψ αξs(8H ξ)−1ψ

[
κ

s(8H ξ)ξ
−1ϕ

ψ

]−1)
ψ
, 1
)
.

Since this is an element in H ∩
(∏

8 F
)
, we obtain

κ
s(8H ξ)ξ

−1

s(8H ξ)
αξ
[
κ

s(8H ξ)ξ
−1ϕ

s(8H ξ)

]−1

= ps(8H ξ)

(
κs(8H ξ)ξ

−1
((αψ)ψ , ϕ)[κ

s(8H ξ)ξ
−1ϕ
]
−1)
∈ Hs(8H ξ).

Hence, κHκ−1
⊆ Ĥ .
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Since (G, S) is Dress–Farrell–Hsiang, there is some N as in Definition 7.3. Let
ε′ > 0. Let π = πε′ : G � F be some epimorphism satisfying the conditions in
Definition 7.3. Define π o8 as above. According to our preliminary observation, it
suffices to consider subgroups of F o8 which have the form

H =
( ∏
8Hψ∈8H\8

( ∏
ψ ′∈8Hψ

H8Hψ

))
o8H ,

where 8H is some subgroup of 8 and each H8Hψ is a Dress subgroup of F . Define
a generating set S o8 of G o8 by

S o8 := {((gψ)ψ , ϕ) | gψ ∈ S for all ψ, ϕ ∈8}.

For each8Hψ ∈8H\8, choose a π−1(H8Hψ)-equivariant map f8Hψ :G→ E8Hψ

to a π−1(H8Hψ)-simplicial complex of dimension at most N whose stabilizers lie
in F , and such that d( f8Hψ(g), f8Hψ(g

′))6 ε′ whenever g−1g′ ∈ S. Define

fH : G o8→
∏

8Hψ∈8H\8

∏
ψ ′∈8Hψ

E8Hψ =: EH ,

((gψ)ψ , ϕ) 7→
(
( f8Hψ(gψ ′))ψ ′∈8Hψ

)
8Hψ∈8H\8

.

We regard EH as a simplicial complex via the product construction described pre-
viously. Let H act on EH by

((hψ ′)ψ ′∈8Hψ)8Hψ , ϕ) · ((xψ ′)ψ ′∈8Hψ)8Hψ := ((hψ ′xϕ−1ψ ′)ψ ′∈8Hψ)8Hψ .

This induces a (π o8)−1(H)-action on EH by restriction, and fH is (π o8)−1(H)-
equivariant with respect to this action. Observe that the dimension of EH is
bounded by |8|N , and that this number only depends on 8.

Consider a point x := ((xψ ′)ψ ′∈8Hψ)8Hψ in EH , and the stabilizer (π o8)−1(H)x .
The intersection (π o8)−1(H)x∩

(∏
8 G

)
is a finite-index subgroup of (π o8)−1(H)x ,

and is equal to
∏
8Hψ∈8H\8

∏
ψ ′∈8Hψ

Hxψ ′ . Since each Hxψ ′ lies in F , this shows
that the stabilizer of x lies in F o8.

What is left to show is that the map fH has the desired contracting property. So
let g = ((gψ)ψ , ϕ) and g′ = ((g′ψ)ψ , ϕ

′) be elements in G o8 such that g−1g′ ∈ S o8;
equivalently, g−1

ψ g′ψ ∈ S for all ψ ∈8. For each 8Hψ ∈8H\8 and ψ ′ ∈8Hψ ,
we have

d`
1

E8Hψ
( f8Hψ(gψ ′), f8Hψ(g

′

ψ ′))6 ε
′.

Let ε > 0. By Lemma 11.16 below, d`
1

EH
( fH (g), fH (g′)) 6 ε as long as ε′ was

initially chosen to be small enough. �

11.16. Lemma. Let N , K ∈ N. For every ε > 0 there is some ε′ > 0 such that
for every sequence E1, . . . , EK of (abstract) ordered simplicial complexes, each of
which has dimension at most N , the following holds:
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Let E := E1 ⊗ · · · ⊗ EK . For x ∈ |E |, let (x1, . . . , xK ) denote the image of x
under the canonical map |E | → |E1| × · · · × |EK |. Denote by di the `1-metric
on |Ei |, and let d be the `1-metric on |E |.

Then for all x, x ′ ∈ |E |, we have d(x, x ′)6 ε whenever di (xi , x ′i )6 ε
′.

Proof. The argument is very similar to the one employed in the proof of [Bartels
et al. 2014b, Lemma 5.5]. Since distances with respect to the `1-metric are inde-
pendent of the ambient complex, we may assume that Ei =1

2N+1. Consider the
composition∏

16i6K

|12N+1
| = |E1| × · · · × |EK |

∼=
−→ |E | ⊆ |1(2N+2)K

−1
|

of the inverse of the canonical homeomorphism with the inclusion into the full
simplex. Consider the domain of this map as a metric space by taking the metric
d6 :=

∑
i di and equip the target with its natural `1-metric d1. This map is uni-

formly continuous since the source is compact; hence, there is some ε′′ > 0 such
that d1(x, x ′)6 ε whenever d6((x1, . . . , xK ), (x ′1, . . . , x ′K ))6 ε

′′. Thus, the claim
holds for ε′ := ε′′/K . �

11.17. Corollary. Let G be a discrete group and let F be a family of groups
such that all groups in F satisfy the fibered Farrell–Jones conjecture with wreath
products in A-theory. If there is a finite, symmetric generating set S of G such
that (G, S) is a Dress–Farrell–Hsiang group with respect to F , then G satisfies the
fibered Farrell–Jones conjecture with wreath products in A-theory.

Proof. Let 8 be a finite group. By Proposition 11.15, the wreath product G o8 is a
Dress–Farrell–Hsiang group with respect to F o8, so G o8 satisfies the fibered iso-
morphism conjecture with respect to F o8. Since all groups in F satisfy the fibered
Farrell–Jones conjecture with wreath products, parts (3) and (2) of Lemma 11.14
imply that all groups in F o8 satisfy the fibered Farrell–Jones conjecture. Hence,
G o8 satisfies the fibered Farrell–Jones conjecture by the transitivity principle,
Proposition 11.2. �

11.18. Theorem. Let 0 be an irreducible special affine group. Then 0 satisfies
the fibered Farrell–Jones conjecture with wreath products in A-theory.

Proof. By [Winges 2015, Theorem 6.1], 0 is a Dress–Farrell–Hsiang group with
respect to the family of virtually finitely generated abelian groups. Since we have
already shown that all virtually finitely generated abelian groups satisfy the fibered
Farrell–Jones conjecture with wreath products in Corollary 11.13, the theorem is
an immediate consequence of Corollary 11.17. �

11.19. Theorem (cf. [Bartels et al. 2014a, Section 5]). Let G be a virtually poly-Z-
group. Then G satisfies the fibered Farrell–Jones conjecture with wreath products
in A-theory.
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Proof. Repeat the argument on page 377 of [Bartels et al. 2014a], which relies only
on the inheritance properties of the conjecture. �

Theorem 1.2 from the introduction follows as a special case.
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Almost complex structures
on connected sums of complex projective spaces

Oliver Goertsches and Panagiotis Konstantis

We show that the m-fold connected sum m#CP2n admits an almost complex
structure if and only if m is odd.

1. Introduction

A complex structure on a real vector bundle F over a connected CW complex X
is a complex vector bundle E over X such that its underlying real vector bundle
ER is isomorphic to F . A stable complex structure on F is a complex structure
on F ⊕ εd , where εd is the d-dimensional trivial real vector bundle over X . For
X a manifold we say that X has an almost complex structure if its tangent bundle
admits a complex structure, and a stable almost complex structure if its tangent
bundle admits a stable complex structure. Motivated by the question in [Miller
2015] we consider in this paper the m-fold connected sum of complex projective
spaces m#CP2n .

As shown by Hirzebruch [1987, Kommentare, p. 777], a necessary condition for
the existence of an almost complex structure on a 4n-dimensional compact mani-
fold M is the congruence χ(M) ≡ (−1)nσ(M) mod 4, where χ(M) is the Euler
characteristic and σ(M) is the signature of M . Thus, for even m, the connected
sums above cannot carry an almost complex structure. We show that for odd m
they do admit almost complex structures, thus showing the following:

Theorem 1.1. The m-fold connected sum m#CP2n admits an almost complex struc-
ture if and only if m is odd.

In odd complex dimensions, the connected sums m#CP2n+1 are Kähler: CP2n+1

admits an orientation reversing diffeomorphism, and therefore m#CP2n+1 is dif-
feomorphic to CP2n+1#(m − 1)CP2n+1, which is a blow–up of CP2n+1 in m − 1
points. Furthermore Theorem 1.1 is known for n = 1 and n = 2; see [Audin 1991]
and [Müller and Geiges 2000], respectively. In both cases the authors use general

MSC2010: 19L64, 53C15, 57R20.
Keywords: almost complex structures, stable almost complex structure, K-theory, Chern classes,

connected sum, projective spaces.
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results on the existence of almost complex structures on manifolds of dimension 4
and 8, respectively.

In [Sutherland 1965, Theorem 1.1] or [Thomas 1967, Theorem 1.7] the authors
showed the following.

Theorem 1.2. Let M be a closed smooth 2d-dimensional manifold. Then TM
admits an almost complex structure if and only if it admits a stable almost complex
structure E such that cd(E) = e(M), where cd is the d-th Chern class of E and
e(M) is the Euler class of M.

In Section 2 we describe the full set of stable almost complex structures in the
reduced K-theory of m#CP2n . In Section 3 we give, for odd m, an explicit example
of a stable almost complex structure to which Theorem 1.2 applies, thus completing
the proof of Theorem 1.1.

2. Stable almost complex structures on m#CP2n

For a CW complex X let K(X) and KO(X) denote the complex and real K-groups,
respectively. Moreover we denote by K̃(X) and K̃O(X) the reduced groups. Let
r : K(X)→ KO(X) denote the real reduction map, which can be restricted to a
map K̃(X)→ K̃O(X). We denote the restricted map again with r . A real vector
bundle F over X has a stable almost complex structure if there is a an element
y ∈ K̃(X) such that r(y)= F − dim F . Since r is a group homomorphism, the set
of all stable complex vector bundles such that the underlying real vector bundle is
stably isomorphic to F is given by

y+ ker r ⊂ K̃(X),

where y is such that r(y) = F − dim F . Let c : KO(X) → K(X) denote the
complexification map and t : K(X)→ K(X) the map which is induced by complex
conjugation of complex vector bundles. The maps t and c are ring homomorphisms,
but r preserves only the group structure. The identities

c ◦ r = 1+ t : K(X)→ K(X), r ◦ c = 2 : KO(X)→ KO(X),

involving the maps r , c and t are well known. We write ȳ = t (y) for an element
y ∈ K(X).

For two oriented manifolds M and N of the same dimension d, we denote by
M#N the connected sum of M with N , which inherits an orientation from M and N .
First, let us characterize the stable tangent bundle of M#N .

Lemma 2.1. Let pM : M#N → M and pN : M#N → N be collapsing maps to
each factor of M#N. Then we have

p∗M(M)⊕ p∗N (N )∼= T (M#N )⊕ εd .
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Proof. Let DM ⊂M and DN ⊂ N be embedded closed disks and WM and WN collar
neighborhoods of ∂(M \ D̊M) and ∂(N \ D̊N ), respectively, where D̊ denotes the
interior of D. Thus WM ∼= Sd−1

×[−2, 0] and WN ∼= Sd−1
×[0, 2]. The manifold

M#N is obtained by identifying Sd−1
× 0 ⊂ WM with Sd−1

× 0 ⊂ WN by the
identity map. Set W :=WM ∪WN ⊂ M#N and note that V1 := p∗M(M)⊕ p∗N (N )
as well as V2 := T (M#N )⊕ εn are trivial over W . Moreover let UM ⊂ M#N be
the open set diffeomorphic to (M \WM)∪ (Sd−1

×[−2,−1[), and analogously for
UN ⊂ M#N .

Now, since V1|UM
∼= p∗M(TM)⊕ εd and p∗M(TM)|UM = T (M#N )|UM , we have

an isomorphism given by 8M : V2|UM → V1|UM , (ξ, w) 7→ ((pM)∗(ξ), w). For
8N : V2|UN → V1|UN , we set 8N (η,w)= (w,−(pN )∗(η)). Moreover, both vector
bundles V1 and V2 are trivial over W and it is possible to choose trivializations of
V1 and V2 over W such that 8M is given by (v,w) 7→ (v,w) over WM and such
that 8N is represented by (v,w) 7→ (w,−v) over WN . Over Sd−1

× [−1, 1] we
can interpolate these isomorphisms by(

v

w

)
7→

(
cos
(
π
4 (t + 1)

)
sin
(
π
4 (t + 1)

)
− sin

(
π
4 (t + 1)

)
cos
(
π
4 (t + 1)

))(v
w

)
for t ∈ [−1, 1]. Using this interpolation we can glue 8M and 8N to a global
isomorphism V2→ V1. �

Hence, T (M#N )−d= TM+TN−2d in K̃O(M#N ), where TM and TN denote
the elements in K̃O(M#N ) induced by p∗M(TM) and p∗N (TN ), respectively. This
shows that if M and N admit stable almost complex structures so does M#N ; see
[Kahn 1969]. For M = N = CP2n we consider the natural orientation induced by
the complex structure of CP2n .

We proceed with recalling some basic facts on complex projective spaces. Let H
be the tautological line bundle over CPd and let x ∈ H 2(CPd

;Z) be the generator,
such that the total Chern class c(H) is given by 1+ x . The cohomology ring of
CPd is isomorphic to Z[x]/〈xd+1

〉. The K and KO theory of CPd are completely
understood. Let η := H − 1 ∈ K̃(CPd) and ηR := r(η) ∈ K̃O(CPd).

Theorem 2.2 (cf. [Sanderson 1964, Theorem 3.9; Fujii 1966, Lemma 3.5; Milnor
and Stasheff 1974, p. 170; Thomas 1974, Proposition 4.3]).

(a) K(CPd)= Z[η]/〈ηd+1
〉. Letting n be the largest integer ≤ d/2, the following

sets of elements are an integral basis of K(CPd):

(i) 1, η, η(η+ η), . . . , η(η+ η)n−1, (η+ η), . . . , (η+ η)n , and also, in case
d is odd, η2n+1

= η(η+ η)n;
(ii) 1, η, η(η+ η), . . . , η(η+ η)n−1, (η− η)(η+ η), . . . , (η− η)(η+ η)n−1,

and also, in case d is odd, η2n+1.
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(b) (i) If d = 2n then KO(CPd)= Z[ηR]/〈η
n+1
R 〉.

(ii) If d = 4n+ 1 then KO(CPd)= Z[ηR]/〈η
2n+1
R , 2η2n+2

R 〉.
(iii) If d = 4n+ 3 then KO(CPd)= Z[ηR]/〈η

2n+2
R 〉.

(c) The complex stable tangent bundle is given by (2n+ 1)η ∈ K̃(CP2n) and the
real stable tangent bundle is given by r((2n+ 1)η) ∈ K̃O(CP2n).

(d) The kernel of the real reduction map r : K̃(CPd)→ K̃O(CPd) is freely gener-
ated by the elements

(i) η− η, (η− η)(η+ η), . . . , (η− η)(η+ η)(d/2)−1, if d is even,
(ii) η− η, (η− η)(η+ η), . . . , (η− η)(η+ η)2n−1, 2ηd , if d = 4n+ 1,

(iii) η− η, (η− η)(η+ η), . . . , (η− η)(η+ η)2n, ηd , if d = 4n+ 3.

Next we would like to describe the integer cohomology ring of m#CP2n . For
that we introduce the following notation. Let 3 denote either Z or Q. We define an
ideal Rd(X1, . . . , Xm) in 3[X1, . . . , Xm], where X1, . . . , Xm are indeterminants,
as the ideal generated by the following elements

X i · X j , i 6= j, Xd
i − Xd

j , i 6= j, Xd+1
j , j = 1, . . . ,m.

Hence, we have

H∗(m#CPd
;3)∼=3[x1, . . . , xm]/Rd(x1, . . . , xm), (2.3)

where x j = p∗j (x) ∈ H 2(m#CPd
;3), for x ∈ H 2(CPd

;3) defined as above and
p j : m#CPd

→ CPd the projection onto the j-th factor. Note that p j induces an
monomorphism on cohomology.

The stable tangent bundle of m#CP2n in K̃O(m#CP2n) is represented by

(2n+ 1)
m∑

j=1

r(η j ),

where η j := p∗j (η) ∈ K̃(CP2n) and r : K̃(m#CP2n)→ K̃O(m#CP2n) is the real
reduction map. Hence the set of stable almost complex structures on m#CP2n is
given by

(2n+ 1)
m∑

j=1

η j + ker r. (2.4)

For k ∈N and j = 1, . . . ,m, set wk
j = p∗j (H)

k
− p∗j (H)

−k , en−1
j = η j (η j +η j )

n−1

and ω = η2n
1 .

Proposition 2.5. The kernel of r : K̃(m#CP2n)→ K̃O(m#CP2n) is freely generated
by

{wk
j : k = 1, . . . , n−1, j = 1, . . . ,m}∪{en−1

1 −en−1
j : j = 2, . . . ,m}∪{2en−1

1 −ω}
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for n even, and
{wk

j : k = 1, . . . , n, j = 1, . . . ,m}
for n odd.

Proof. Consider the cofiber sequence
m∨

j=1

CP2n−1 i
−→ m#CP2n π

−→ S4n. (2.6)

Note that the line bundle i∗ p∗j (H) is the tautological line bundle over the j-th
summand of

∨m
j=1 CP2n−1 and the trivial bundle on the other summands, since

the first Chern classes are the same. For the reduced groups we have

K̃
( m∨

j=1

CP2n−1
)
∼=

m⊕
j=1

K̃(CP2n−1)

and i∗ p∗j (η) generates the j -th summand of the above sum according to Theorem 2.2.
The long exact sequence in K -theory of the cofibration (2.6) is given by

· · · → K̃−1
( m∨

j=1

CP2n−1
)
→ K̃(S4n)→ K̃(m#CP2n)

→ K̃
( m∨

j=1

CP2n−1
)
→ K̃ 1(S4n)→ · · · . (2.7)

From Theorem 2 in [Fujii 1967], we have that K̃−1(CP2n−1) = 0, and hence
K̃−1

(∨m
j=1 CP2n−1

)
= 0. Then from Bott periodicity we deduce the equality

K̃ 1(S4n)= K̃−1(S4n)= 0. So we obtain a short exact sequence

0−→ K̃(S4n)
π∗

−→ K̃(m#CP2n)
i∗
−→ K̃

( m∨
j=1

CP2n−1
)
−→ 0

which splits, since the groups involved are finitely generated, torsion free abelian
groups. Let ωC be the generator of K̃(S4n). Then the set

{π∗(ωC)} ∪ {η
k
j : j = 1, . . . ,m, k = 1, . . . , 2n− 1}

is an integral basis of K̃(m#CP2n). We claim that η2n
j = π

∗(ωC) for all j . In-
deed, the elements η2n

j lie in the kernel of i∗, and hence there are k j ∈ Z such
that η2n

j = k j · π
∗(ωC). Let c̃h : K̃(X)→ H̃(X;Q) denote the Chern character

for a finite CW complex X , then c̃h is a monomorphism for X = m#CPd (since
H̃∗(m#CPd

;Z) has no torsion [Atiyah and Hirzebruch 1961, Section 2.5, Corol-
lary]) and an isomorphism for X = Sd onto H̃∗(Sd

;Z) embedded in H̃∗(Sd
;Q).

Using the notation of (2.3) we have

c̃h(η2n
j )= (e

x j − 1)2n
= x2n

j
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and using the naturality of c̃h

c̃h(π∗(ωC))= π
∗(c̃h(ωC))=±x2n

j ,

since π∗ is an isomorphism on cohomology in dimension 2n. We can choose ωC

such that c̃h(π∗(ωC))= x2n
j . This shows k j = 1 for all j and K̃(m#CP2n) is freely

generated by

{ηk
j : j = 1, . . . ,m, k = 1, . . . , 2n− 1} ∪ {η2n

1 = · · · = η
2n
m }.

Hence K(m#CP2n) = Z[η1, . . . , ηm]/R2n(η1, . . . , ηm). Since p∗j (H)⊗ p∗j (H) is
the trivial bundle we compute the identity

η j =
−η j

1+ η j
=−η j + η

2
j − · · ·+ η

2n
j .

The ring Z[η1, . . . , ηm]/R2n(η1, . . . , ηm) is isomorphic to( m⊕
j=1

Z[η j ]/〈η
2n+1
j 〉

)/ 〈
η2n

j − η
2n
i : j 6= i

〉
and from Theorem 2.2 the set 0 j which contains the elements

η j , η j (η j + η j ), . . . , η j (η j + η j )
n−1,

η j − η j , (η j − η j )(η j + η j ), . . . , (η j − η j )(η j + η j )
n−1

together with {1} is an integral basis of Z[η j ]/〈η
2n+1
j 〉. Thus the set

01 ∪ · · · ∪0m ⊂ K̃(m#CP2n)

generates the group K̃(m#CP2n). Observe that

(η j + η j )
k
= 2η j (η j + η j )

k−1
− (η j − η j )(η j + η j )

k−1. (2.8)

Thus

η2n
j = (η j + η j )

n
= 2η j (η j + η j )

n−1
− (η j − η j )(η j + η j )

n−1. (2.9)

We set ω := η2n
j for any j = 1, . . . ,m and

ek
j := η j (η j + η j )

k, j = 1, . . . ,m, k = 0, . . . , n− 1,

f k
j := (η j − η j )(η j + η j )

k, j = 1, . . . ,m, k = 0, . . . , n− 1,

and by virtue of relation (2.9) the set

B := {ω} ∪ {ek
j : j = 1, . . . ,m, k = 0, . . . , n− 1}

∪ { f k
j : j = 1, . . . ,m, k = 0, . . . , n− 2}

is an integral basis of K̃(m#CP2n).
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We proceed with the computation of KO(m#CP2n). We have a long exact se-
quence for K̃O-theory like in (2.7). From Theorem 2 in [Fujii 1967] we deduce
K̃O−1

(CP2n)= 0 and therefore K̃O−1(∨m
j=1 CP2n

)
= 0. Moreover,

K̃O1
(S4n)= K̃O−7

(S4n)= K̃O(S4n+7)= 0

by Bott periodicity. Hence we obtain a short exact sequence

0→ K̃O(S4n)→ K̃O(m#CP2n)→ K̃O
( m∨

j=1

CP2n−1
)
→ 0. (2.10)

Now we have to distinguish between the cases where n is even or odd. We first
assume that n= 2l. In that case the ring KO(CP2n−1) is isomorphic to Z[ηR]/〈η

n
R〉;

see Theorem 2.2(b). Hence all groups in (2.10) are torsion free. Therefore the
kernel of r : K̃(m#CP2n)→ K̃O(m#CP2n) is the same as the kernel of

ϕ := c ◦ r = 1+ t : K̃(m#CP2n)→ K̃(m#CP2n)

since r◦c=2, and thus c is a monomorphism of the torsion free part of K̃O(m#CP2n).
Next we compute a basis of kerϕ. Using relation (2.8) we have ϕ(ω) = 2ω,

ϕ(ek
j )= 2ek

j − f k
j and ϕ( f k

j )= 0. Thus if

y = λω+
m∑

j=1

n−1∑
k=0

λk
j e

k
j ,

then

ϕ(y)= 2λω+
m∑

j=1

n−1∑
k=0

λk
j (2ek

j − f k
j )=

(
2λ+

m∑
j=1

λn−1
j

)
ω+

m∑
j=1

n−2∑
k=0

λk
j (2ek

j − f k
j ),

using the fact that f n−1
j = 2en−1

j −ω by (2.9). As ω and 2ek
j − f k

j , j = 1, . . . ,m,
k = 0, . . . , n− 2, are linearly independent, we conclude that ϕ(y)= 0 if and only
if λk

j = 0 for j = 1, . . . ,m, k = 1, . . . , n− 2 and
m∑

j=1

λn−1
j + 2λ= 0.

This implies that the set

{ f k
j : j = 1, . . . ,m, k = 0, . . . , n−2}∪{en−1

1 −en−1
j : j = 2, . . . ,m}∪{2en−1

1 −ω}

is an integral basis of kerϕ. Note that from (2.9) we have

2en−1
1 −ω = (η1− η1)(η1+ η1)

n−1.

By an inductive argument we see that

(η j − η j )(η j + η j )
k
= wk+1

j + linear combinations of w1
j , . . . , w

k
j (2.11)
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and
en−1

1 − en−1
j = η2n−1

1 − η2n−1
j .

Thus an integral basis of the kernel, in case n is even, is given by

{wk
j : j = 1, . . . ,m, k = 1, . . . , n− 1} ∪ {wn

1} ∪ {η
2n−1
1 − η2n−1

j : j = 2, . . . ,m}.

Now let us assume that n = 2l + 1. Consider the commutative diagram

0 K̃(S4n) K̃(m#CP2n) K̃
(∨m

j=1 CP2n−1
)

0

0 K̃O(S4n) K̃O(m#CP2n) K̃O
(∨m

j=1 CP2n−1
)

0

π∗

rS

i∗

r# r∨

π∗ i∗

The map rS : K̃(S8l+4)→ K̃O(S8l+4) is an isomorphism and therefore the map
i∗|ker r# : ker r#→ ker r∨ is an isomorphism. Hence the rank of ker r# is mn. We
see that the set

{ f k
j : j = 1, . . . ,m, k = 0, . . . , n− 2} ∪ {2en−1

j : j = 1, . . . ,m} ∪ {ω}

is an integral basis of (i∗)−1(ker r∨), which follows from en−1
j = η2n−1

j − (n− 1)ω
and the structure of the kernel of r∨; see Theorem 2.2(d)(ii). The elements f k

j for
j = 1, . . . ,m and k = 0, . . . , n− 2 lie in the kernel of r#. Let

y = λω+
m∑

j=1

λn−1
j 2en−1

j

for λ, λn−1
j ∈Z and suppose r#(y)=0. From ϕ(ω)=2ω and ϕ(en−1

j )= (η j+η j )
n
=

η2n
j = ω it follows that

λ+

m∑
j=1

λn−1
j = 0.

Hence ker r# is freely generated by the elements f k
j and 2en−1

j −ω. Observe from
(2.9) that 2en−1

j −ω = (η− η)(η+ η)n−1. Thus in the case that n is odd we deduce
like in (2.11) that the kernel of r# is freely generated by wk

j for j = 1, . . . ,m and
k = 1, . . . , n. �

Hence by (2.4), stable almost complex structures of m#CP2n for n even are
given by elements of the form

y = (2n+ 1)
m∑

i=1

η j +

m∑
j=1

n−1∑
k=1

ak
jw

k
j + an

1w
n
1 +

m∑
j=2

b j (η
2n−1
1 − η2n−1

j ), (2.12)

and for n odd,
y = (2n+ 1)

m∑
i=1

η j +

m∑
j=1

n∑
k=1

ak
jw

k
j (2.13)
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for ak
j , b j ∈ Z. For Theorem 1.2 we have to compute the 2n-th Chern class c2n(E)

of a vector bundle E representing an element of the form (2.12) and (2.13). Let
η2n−1

1 −η2n−1
j denote also a vector bundle over m#CP2n which represents the ele-

ment η2n−1
1 −η2n−1

j in K̃(m#CP2n). The total Chern class of η2n−1
1 −η2n−1

j can be
computed through the Chern character: we have

c̃h(η2n−1
1 − η2n−1

j )= c̃h(η1)
2n−1
− c̃h(η j )

2n−1
= x2n−1

1 − x2n−1
j .

The elements of degree k in the Chern character are given by νk(c1, . . . , ck)/k!,
where νk are the Newton polynomials. The coefficient in front of ck in νk(c1, . . . , ck)

is k (see [Mimura and Toda 1991, p. 195]) and the other terms are products of Chern
classes of lower degree; hence the only nonvanishing Chern class is given by

c2n−1(η
2n−1
1 − η2n−1

j )= (2n− 2)! (x2n−1
1 − x2n−1

j ).

Thus the total Chern class of a vector bundle E representing an element of the form
(2.12) is given by

c(E)= (1− (x1+ · · ·+ xm))
2n+1

·

(1+ nx1

1− nx1

)an
1

m∏
j=2

(1+ (2n− 2)!(x2n−1
1 − x2n−1

j ))b j

m∏
j=1

n−1∏
k=1

(1+ kx j

1− kx j

)ak
j
,

and for (2.13),

c(E)= (1− (x1+ · · ·+ xm))
2n+1

m∏
j=1

n∏
k=1

(1+ kx j

1− kx j

)ak
j
,

where the coefficient in front of x2n
1 = · · · = x2n

m is equal to c2n(E).

Remark 2.14. Note that for m = 1 (and complex projective spaces of arbitrary
dimension) this total Chern class was already computed by Thomas [1974, p. 130].

3. Almost complex structures on m#CP2n

We now describe an explicit stable almost complex structure on m#CP2n , where
m = 2u+ 1, for which the assumptions of Theorem 1.2 are satisfied, thereby pro-
ducing an almost complex structure on m#CP2n . We choose, in the notation of
(2.12) and (2.13), ak

j = 2 for j = 1, . . . , u and k = 1, and all other coefficients 0.
Then the top Chern class is as desired:

Proposition 3.1. Let m = 2u + 1 be an odd number. In the cohomology ring of
m#CP2n , the coefficient c2n of x2n

1 = · · · = x2n
m of the class

c = (1− (x1+ · · ·+ x2u+1))
2n+1

u∏
r=1

(1+ xr

1− xr

)2

is c2n = m(2n− 1)+ 2= χ(m#CP2n).
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Proof. As xi · x j = 0 for i 6= j , we have

(1− (x1+ · · ·+ x2u+1))
2n+1
=

2n+1∑
j0=0

(−1) j0

(
2n+ 1

j0

)
(x j0

1 + · · ·+ x j0
2u+1)

=

2u+1∑
r=1

2n+1∑
j0=0

(−1) j0

(
2n+ 1

j0

)
x j0

r .

Thus,

c =
u∏

r=1

(1− xr )
2n−1(1+ xr )

2
2u+1∏

s=u+1

(1− xs)
2n+1.

The factors (1−xs)
2n+1 contribute 2n+1 to c2n , while the factors (1−xr )

2n−1(1+xr )
2

contribute 2n− 3. Thus,

c2n = u(2n− 3)+ (u+ 1)(2n+ 1)

= (2u+ 1)(2n− 1)+ 2

= χ((2u+ 1)#CP2n). �
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