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G-theory of root stacks and equivariant K-theory

Ajneet Dhillon and Ivan Kobyzev

Using the description of the category of quasicoherent sheaves on a root stack,
we compute the G-theory of root stacks via localization methods. We apply our
results to the study of equivariant K-theory of algebraic varieties under certain
conditions.

A list of notations and conventions can be found on page 182.

1. Introduction

Let X be an algebraic variety equipped with an action of a finite group G. One
would like to compute the equivariant K-theory KG(X). A first answer was given
in the paper [Ellingsrud and Lønsted 1984] in the case when X is a smooth curve.
Let us briefly describe it. We set Y to be the quotient X/G, φ : X→ Y the quotient
map, and B the branch locus. Then B is a finite union of G orbits B1, . . . , Bn .
Choosing a point Pi ∈ Bi for each i , denote the inertia group of Pi by Hi . Note
that it is a cyclic group. Using some basic properties of equivariant sheaves and the
Borel construction, it was proved that there is a decomposition of abelian groups

KG(X)= K (Y )⊕
n⊕

i=1

R′k(Hi ),

where R′k(H) is the subgroup of a representation ring without invariants, that is,
x ∈ R′k(H) if x ∈ Rk(H) and 〈x, 1H 〉 = 0. From here we can guess a flavor of the
result in the general case: there should be some kind of a decomposition of KG(X)
onto K (Y ) and the terms coming from ramification.

To generalize this to higher dimensions, there are two routes one may take. One
may enter the realm of algebraic stacks. For example, Vistoli and Vezzosi [Vistoli
1991; Vezzosi and Vistoli 2002] proved the decomposition formula for KG(X) of
a scheme X using (implicitly) a top-down description of the stack [X/G].

Another route would be to enter the realm of logarithmic geometry; see [Nizioł
2008; Hagihara 2003]. These two papers study the K-theory of the Kummer étale
site on a logarithmic scheme. Note that, using the correspondence between sheaves
on an infinite root stack and sheaves on the Kummer étale site [Talpo and Vistoli
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2018, §6], one can deduce the structure results of [Hagihara 2003, §4] and [Nizioł
2008, Theorem 1.1] from our Theorem 3.32 and Corollary 3.34.

We first discuss the general philosophy of our approach encompassing both of
these routes. In algebraic geometry one frequently needs to consider equivariant ob-
jects on a scheme X with respect to the action of G. These objects correspond to ob-
jects over the quotient stack [X/G]. However, it can happen that [X/G] ∼= [X ′/G ′]
for seemingly unrelated X and X ′. In such situation, it is useful to have a canonical
description of the quotient stack [X/G], perhaps in terms of its coarse moduli space
Y . This may not always be possible but sometimes it is. In this paper we describe
a situation in which this occurs (see Theorem 4.10). When our hypotheses are
satisfied, the quotient stack becomes a root stack over its coarse moduli space Y .

The root stack construction goes back to [Olsson 2007]. If a quotient stack
is “a tool” to take quotients, similarly a root stack can be used to “extract roots”
from line bundles on a scheme. It turns out that this construction is quite useful, for
example, in Gromov–Witten theory of a Deligne–Mumford stack; see [Abramovich
et al. 2008; Cadman 2007; Olsson 2007]. The moduli stack of stable maps from a
curve to a stack does not have nice properties, and instead one needs to consider
so-called twisted stable maps from a twisted curve. As was shown in [Abramovich
et al. 2008], one can replace a twisted curve by a root stack.

Another application of root stacks is the parabolic orbifold correspondence. In
a nutshell, this correspondence describes sheaves and vector bundles on a root
stack in terms of sheaves and vector bundles on the base with extra data. Parabolic
bundles on a Riemann surface were defined in [Mehta and Seshadri 1980], and
were shown to be related to a unitary representation of a homotopy group. Borne
[2007] proved the equivalence of parabolic bundles and locally free sheaves on a
root stack. Finally, Borne and Vistoli [2012] generalized it to the equivalence of
quasicoherent sheaves on a root stack and parabolic sheaves.

The results of [Borne and Vistoli 2012] are the foundation of this work. Using
their description of coherent sheaves on a root stack, we compute the algebraic
G-theory of a root stack. See Theorem 3.32 for the statement of our first main
result. The tool necessary for its proof is localization sequences associated with a
quotient category. This method can be thought of as an algebraic analog of Segal’s
localization theorem [1968, Proposition 4.1] for equivariant topological K-theory.

The second result of this work is Theorem 4.10. It says that under certain as-
sumptions a quotient stack is a root stack over its coarse moduli space. The main
tool used in the proof is a generalization of Abhyankar’s lemma; see [SGA 1 1971,
Exposé XIII, Appendice I].

Combining these results gives an immediate application to equivariant K-theory
of schemes. This is how we obtain a generalization of the aforementioned decom-
position of [Ellingsrud and Lønsted 1984]. We formulate it as Theorem 5.1. If a
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finite group G acts on a scheme X , then, under some assumptions, we have the
decomposition of KG(X) into the direct sum of groups K (X/G) and G-theory of
ramification divisors and their intersections. Note that our assumptions are always
satisfied for tame actions of groups on smooth projective curves.

Let us give an outline of the paper for the convenience of the reader. In a short
preliminary Section 2 we recall some necessary categorical techniques. We start
by studying the G-theory of a root stack in Section 3. First, the description of the
category of quasicoherent sheaves on a root stack by [Borne and Vistoli 2012] in
Section 3A is recalled. After that we exploit localization methods to decompose the
G-theory of parabolic sheaves. Finally, in Section 3D we combine all intermediate
results and formulate Theorem 3.32, giving the G-theory of a root stack over a
noetherian scheme. We finish the section with the observation in Corollary 3.34
that under some assumptions, the algebraic G-theory of a root stack coincides with
its Waldhausen K-theory in the sense of [Joshua 2005].

In Section 4 we address the issue of when a quotient stack is a root stack. First
we show that under our assumptions (tameness of the action and ramification di-
visor is normal crossing), the inertia group is generated in codimension one (see
Theorem 4.9). We use Abhyankar’s theorem [Grothendieck and Murre 1971, The-
orem 2.3.2] in the proof. Then under the same hypothesis, we show that a quotient
stack is a root stack (see Theorem 4.10).

The paper ends with Section 5, where we study equivariant K-theory of a scheme
by combining the results of the previous two sections. As an example we compute
the equivariant K-theory of the affine line and the Burniat surface.

2. Localization via Serre subcategories

2A. Serre subcategories. Let A be an abelian category. Recall that a Serre sub-
category S of A is a nonempty full subcategory that is closed under extensions,
subobjects and quotients. When A is well-powered the quotient category A/S
exists; see [Swan 1968, p. 44, Theorem 2.1].

We need the following result to identify quotient categories.

Theorem 2.1. Let F : A→ B be an exact functor between abelian categories.
Denote by S the full subcategory whose objects are x with F(x)∼= 0. Then S is a
Serre subcategory and we have a factorization

A

B

A/S

F

Proof. See [Swan 1968, p. 114] �
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Definition 2.2. The category S is called the kernel of the functor F and is denoted
by ker(F).
Theorem 2.3. In the situation of the previous theorem suppose the following hold:

(1) for every object y ∈ B there is x ∈ A such that F(x) is isomorphic to y, and

(2) for every morphism f : F(x)→ F(x ′) there is x ′′ ∈ A with h : x ′′→ x and
g : x ′′ → x ′ such that F(h) is an isomorphism and the following diagram
commutes:

F(x ′′)

F(x) F(x ′)

F(h)
F(g)

f

Then there is an equivalence of categories A/S ∼= B.

Proof. See [Swan 1968, p. 114, Theorem 5.11]. �

2B. Some functor categories. Consider n-tuples of integers Er = (r1, r2, . . . , rn)

and Es = (s1, s2, . . . , sn). We denote by [Er , Es] the poset of n-tuples (x1, . . . , xn)

with
xi ∈ Z and ri ≤ xi ≤ si .

We make use of the shorthand notation

r I = [0, r ] and Er I n
= [0, Er ].

These intervals are naturally posets with

(x1, x2, . . . , xn)≤ (y1, y2, . . . , yn) if and only if xi ≤ yi for all i.

This poset structure allows us to view them as categories in the usual way.
Fix an abelian category A and consider the functor category

Func(Er I n, A).

This category is abelian with kernels and cokernels formed pointwise. We are in-
terested in the K-theory of such categories. In this subsection we try to understand
some of their quotient categories. Given an object F in this category and an object
u of Er I n , we denote by Fu ∈ A the value of the functor F on this object, and if
u ≤ v, the arrow from Fu to Fv is denoted by

F+(v−u) : Fu→ Fv.

In particular, we take ei = (0, 0, . . . , 1, 0, . . . , 0) to be a standard basis vector, so
that we have a morphism

F+ei : F(u1,...,un)→ Fu1,...,ui−1,ui+1,ui+1,...,un .
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Lemma 2.4. Giving an object F of Func(Er I n, A) is the same as providing the
following data:

(D1) objects F(u1,u2,...,un) ∈ A,

(D2) arrows
F+ei : Fu→ Fu+ei

such that all diagrams of the form

Fu Fu+e j

Fu+ei Fu+ei+e j

commute.

Proof. The hypotheses ensure that if u ≤ v in Er I n then there is a well-defined map
Fu→ Fv which produces our functor. �

Proposition 2.5. (i) Let trn−1(Er)= (r1, r2, . . . , rn−1). There is an exact functor

π : Func(Er I n, A)→ Func(trn−1(Er)I n−1, A)

defined on objects by

π(G)(u1,u2,...,un−1) = (G)(u1,...,un−1,0).

(ii) The functor π has a left adjoint, denoted π∗. We have π ◦π∗ ' 1.

(iii) The functor π∗ is fully faithful.

Proof. (i) There is an inclusion functor trn−1(Er)I n−1 ↪→ Er I n defined by

(x1, x2, . . . , xn−1) 7→ (x1, x2, . . . , xn−1, 0).

The functor π is just the restriction along this inclusion. The exactness follows from
the fact that in functor categories, limits and colimits are computed pointwise.

(ii) Given a functor F ∈ Func(trn−1(Er)I n−1, A), we need to construct an object
π∗(F) ∈ Func(Er I n, A). We set

π∗(F)(u1,u2,...,un) = F(u1,u2,...,un−1).

To produce a functor, we need maps

λi
(u1,...,un)

: π∗(F)(u1,...,ui ,...,un)→ π∗(F)(u1,...,ui+1,...,un).

We define

λi
(u1,...,un)

=

{
F(u1,...,ui ,...,un−1)→ F(u1,...,ui+1,...,un−1) if i < n,
identity if i = n.
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One checks that the hypotheses of Lemma 2.4 are satisfied. Observe that π ◦π∗= 1.
This produces a natural map

Hom(π∗(F),G)→ Hom(F, π(G)).

To see that this is a bijection, suppose that we are given a morphism β : F→π(G).
There is a diagram, where the dashed arrow is defined to be the composition,

π∗(F)(u1,...,un) G(u1,...,un)

F(u1,...,un−1) G(u1,...,un−1,0)
β

This produces a natural morphism

Hom(π∗(F),G)← Hom(F, π(G))

and we check that it is inverse to the previous map.

(iii) We have

Hom(π∗(F), π∗(F ′))= Hom(F, ππ∗(F ′))= Hom(F, F ′). �

Theorem 2.6. (1) The functor

π : Func(Er I n, A)→ Func(trn−1(Er)I n−1, A)

satisfies the hypothesis of Theorem 2.3.

(2) Let Es = (r1, r2, . . . , rn−1, rn − 1). If rn > 0 then the kernel of this functor is
equivalent to Func(Es I n, A).

(3) If rn = 0 then there is an equivalence of categories

Func(Er I n, A)∼= Func(trn−1(Er)I n−1, A).

Proof. (1) The functor π is exact so it remains to check the two conditions of the
theorem. The first condition follows from the fact that π ◦π∗ is the identity. Now
suppose that we have a morphism π(F)→ π(F ′). By adjointness we obtain a
diagram

π∗π(F)

F F ′

Applying π to this picture shows that the second condition holds.

(2) The functor π was defined by the rule π(G)(u1,u2,...,un−1) = (G)(u1,...,un−1,0).
So it is clear that if πG ∼= 0 then (G)(u1,...,un−1,0)

∼= 0 and giving an object G of
kerπ is the same (up to isomorphism) as giving the objects (G)(u1,...,un) ∈ A for
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all u ∈ Er I n, un 6= 0. And according to Lemma 2.4 it is the same as providing an
object of the category Func(Es I n, A).

(3) If rn = 0 then we have an equivalence of categories trn−1(Er)∼= Er . �

3. Coherent sheaves on root stacks

3A. Preliminary results. Recall that if M is a commutative monoid then M̂ =
Hom(M,Gm) is its dual.

In this subsection we recall the main constructions and theorems from [Borne
and Vistoli 2012], to which we refer the reader for further details. Let’s start by
defining a root stack.

Let X be a scheme. Denote by Div X the groupoid of line bundles over X with
sections. It has the structure of a symmetric monoidal category with tensor product
given by

(L , s)⊗ (L ′, s ′)= (L ⊗ L ′, s⊗ s ′).

Choosing n objects (L1, s1), . . . , (Ln, sn) of Div X allows us to define a sym-
metric monoidal functor (see [Borne and Vistoli 2012, Definition 2.1])

L : Nn
→Div X, (k1, . . . , kn) 7→ (L1, s1)

⊗k1 ⊗ · · ·⊗ (Ln, sn)
⊗kn .

Such functors arise from morphisms X→ [Spec Z[Nn
]/N̂n]. Let us recall how.

Proposition 3.1. (i) Let A be the groupoid whose objects are quasicoherent OX -
algebras A with a Zn

=
̂̂Nn-grading A=

⊕
u∈Zn Au such that each summand

Au is an invertible sheaf. The morphisms are graded algebra isomorphisms.
Then there is an equivalence of categories between Aop and the groupoid of
N̂n-torsors P→ X.

(ii) Let B be the groupoid whose objects are pairs (A, α), where A is a sheaf of
algebras satisfying the conditions in (i) and

α :OX [N
n
] →A

is a morphism respecting the grading. The morphisms in the category B are
graded algebra morphisms commuting with the structure maps. Then there
is an equivalence of categories between Bop and the groupoid of morphisms
X→ [Spec Z[Nn

]/N̂n].

Proof. This proposition is a summary of the discussion in [Borne and Vistoli 2012,
p. 1343–1344], in particular the proof of Proposition 3.25. The detailed proof can
be found there. Here we just illustrate the main idea behind the proof.

(i) The torsor π : P→ X is determined by the sheaf of algebras π∗(OP), which
has a N̂n-action, and hence a weight grading. As the torsor is locally trivial, the
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condition about the summands being invertible follows by considering the algebra
associated with the trivial torsor.

(ii) This follows from the standard description of the groupoid of X -points of a
quotient stack. Finally, in [Borne and Vistoli 2012], the fppf topology is needed
but in the present work it is not. The setting in [loc. cit.] is more general and the
monoids in question may have torsion, so that the torsor P is a torsor over µn . Such
a torsor may not be trivial in the Zariski topology, unlike a Gm-torsor. Hence a finer
topology is needed. See the proof of [Borne and Vistoli 2012, Lemma 3.26]. �

Corollary 3.2. There is an equivalence of categories between the groupoid of sym-
metric monoidal functors

Nn
→Div X

and the groupoid of X-points of [Spec Z[Nn
]/N̂n].

Proof. For details see [Borne and Vistoli 2012, Proposition 3.25]. In essence,
the symmetric monoidal functor determined by (L1, s1), . . . , (Ln, sn) produces the
graded sheaf of algebras

A=
⊕
Eu∈Zn

Lu1
1 ⊗ · · ·⊗ Lun

n .

The sections produce an algebra map

OX [N
n
] →A. �

Definition 3.3. Let Er = (r1, r2, . . . , rn) be a collection of positive natural numbers.
We denote by ri N the monoid {vri | v ∈ N}. We denote by ErNn the monoid

ErNn
= r1N× r2N× · · ·× rnN.

We view our symmetric monoidal functor above as a functor

L : ErNn
→Div X, (r1α1, r2α2, . . . , rnαn) 7→ (L1, s1)

⊗α1 ⊗ · · ·⊗ (Ln, sn)
⊗αn .

Consider the natural inclusion of monoids jEr : ErNn ↪→ Nn . The category of Er-th
roots of L , denoted by (L)Er , is defined as follows.

Its objects are pairs (M, α), where M : Nn
→Div X is a symmetric monoidal

functor, and α : L→ M ◦ j is an isomorphism of symmetric monoidal functors.
An arrow from (M, α) to (M ′, α′) is an isomorphism h : M→ M ′ of symmetric

monoidal functors Nn
→Div X , such that the diagram

L

M ◦ j M ′ ◦ j

α α′

h ◦ j

commutes.
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This category is in fact a groupoid, as a morphism φ in Div X , whose tensor
power φ⊗k is an isomorphism, must be an isomorphism to begin with.

Given a morphism of schemes t : T → X there is pullback functor

t∗ :Div X→Div T .

Hence we can form the category of roots (t∗◦L)Er . This construction pastes together
to produce a pseudofunctor DivX , where

DivX → Sch/X

is the symmetric monoidal stack described in [Borne and Vistoli 2012, p. 1335].

Definition 3.4. In the above situation, the fibered category associated with this
pseudofunctor is called the stack of roots associated with L and Er . It is denoted
by X L ,Er .

We often denote the stack of roots by

X L ,Er = X(L1,s1,r1),...,(Ln,sn,rn).

There are also two equivalent definitions of the stack X L ,Er , and the equivalence
is proved in [Borne and Vistoli 2012, Proposition 4.13 and Remark 4.14]. Let’s
recall the description of this stack as a fibered product.

Proposition 3.5. The stack X L ,Er is isomorphic to the fibered product

X ×Spec Z[ErNn] [Spec Z[Nn
]/N̂n].

According to (a slightly modified version of) Corollary 3.2, a symmetric monoidal
functor L : ErNn

→Div X corresponds to a morphism

X→ [Spec Z[ErNn
]/ÊrNn],

which in turn corresponds to an ÊrNn-torsor π : P → X and an ÊrNn-equivariant
morphism P→ Spec Z[ErNn

]. This gives the next proposition.

Proposition 3.6. The stack X L ,Er is isomorphic to the quotient stack

[P ×Spec Z[ErNn] Spec Z[Nn
]/N̂n],

where the action on the first factor is defined through the dual of the inclusion
jEr : ErNn ↪→ Nn .

Proof. See [Borne and Vistoli 2012, p. 1350]. �

We recall the definition of parabolic sheaf; see [Borne and Vistoli 2012, Defini-
tion 5.6].
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Definition 3.7. Consider a scheme X , an inclusion ErZn
⊆ Zn and a symmetric

monoidal functor L : ErZn
→Div X , defined by

Lu = L(u)= Lα1
1 ⊗ · · ·⊗ Lαn

n ,

where u = (r1α1, . . . , rnαn) and each αi ∈ Z. A parabolic sheaf (E, ρ) on (X, L)
with denominators Er consists of the following data:

(a) A functor E : Zn
→QCoh X , denoted by v 7→ Ev on objects and b 7→ Eb on

arrows.

(b) For any u ∈ ErZn and v ∈ Zn , an isomorphism

ρE
u,v : Eu+v ' Lu ⊗OX Ev

of OX -modules. This map is called the pseudoperiod isomorphism.

These data are required to satisfy the following conditions. Take u, u′ ∈ ErZn ,
a= (r1α1, . . . , rnαn)∈ ErNn, b∈Nn, v ∈Zn . Then the following diagrams commute:

(i) Ev

OX ⊗ Ev

Ea+v

La ⊗ Ev

Ea

'

σ L
a ⊗ idEv

ρE
a,v

where σa = σ
α1 ⊗ · · ·⊗ σ αn ∈ H0(X, La).

(ii) Eu+v

Eu+b+v

Lu ⊗ Ev

Lu ⊗ Eb+v

ρE
u,v

Eb

ρE
u,b+v

id⊗Eb

(iii) Eu+u′+v

L(u)⊗ Eu′+v

Lu+u′ ⊗ Ev

Lu ⊗ Lu′ ⊗ Ev

ρE
u+u′,v

ρE
u,u′+v

id⊗ρE
u′,v

µ⊗ id

(iv) The map

Ev = E0+v OX ⊗ Ev
ρE

0,v

is the natural isomorphism.
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Definition 3.8. A parabolic sheaf (E, ρ) is said to be coherent if for each v ∈ Zn

the sheaf Ev is a coherent sheaf on X .

Theorem 3.9 (Borne, Vistoli). Let X be a scheme and L a monoidal functor de-
fined as in the beginning of this section. Then there is a canonical tensor equiva-
lence of abelian categories between the category QCoh X L ,Er and the category of
parabolic sheaves on X , associated with L.

Proof. See [Borne and Vistoli 2012, Proposition 5.10, Theorem 6.1] for details.
The proof relies on the description of the stack as a quotient as in Proposition 3.6.
From this description, sheaves on the stack are equivariant sheaves on

P ×Spec Z[ErNn]×Spec Z[Nn
].

As remarked in the proof of Proposition 3.1, the torsor P is obtained from a sheaf
of algebras on X . The sheaf of algebras A is constructed from the functor L by
taking a direct sum construction; it has a natural grading. It follows that the scheme

P ×Spec Z[ErNn] Spec Z[Nn
] = Spec(A⊗Z[ErNn] Z[N

n
]).

The algebra on the right has a natural Z[Nn
]-grading; see the corollary below for a

local description. It follows that the equivariant sheaves on the scheme in question
are just graded modules over this algebra. The proof follows by reinterpreting the
graded modules in terms of the symmetric monoidal functor L . �

Actually we can add the finiteness condition to the previous theorem and get the
following:

Corollary 3.10. Let X be a locally noetherian scheme. There is a canonical tensor
equivalence of abelian categories between the category Coh X L ,Er and the category
of coherent parabolic sheaves on X , associated with L.

Proof. We make use of the identifications in the above proof. The question is local
on X , so we may assume that X is in fact an affine scheme Spec(R). By further
restrictions we can assume that all the line bundles L i are in fact trivial, and we
identify them with R. In this situation the symmetric monoidal functor corresponds
to a graded homomorphism

Z[X1, X2, . . . , Xn] → R[t±1
1 , t±1

2 , . . . , t±1
n ]

sending X i to xi ti with xi ∈ R. Further, the morphism

Spec(Z[Nn
])→ Spec Z[ErNn

]

comes from an integral extension of algebras

Z[X1, X2, . . . , Xn][Y1, . . . , Yn]/(Y
r1
1 − X1, . . . , Y rn

n − Xn).
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Then taking tensor products yields a Zn-graded algebra

A = R[t±1
1 , t±1

2 , . . . , t±1
n ][s1, . . . , sn]/(s

r1
1 − x1t1, . . . , srn

n − xntn),

where si has degree (0, . . . , 0, 1, 0 . . . , 0)= ei . Now consider a finitely generated
graded A-module M . We can assume that the generators of M are in fact homoge-
neous and hence there is an epimorphism

p⊕
i=1

A(ni )→ M.

The graded pieces of the module on the left are free of rank p and hence the graded
pieces of M are finitely generated. It follows that a finitely generated A-module
gives rise to a parabolic sheaf with values in the category of finitely generated
R-modules — in other words, coherent sheaves on X .

Conversely, suppose that we have a graded A-module M with each graded piece
a finitely generated R-module. We can find finitely many elements of M , let’s say
{α1, α2, . . . , αp} of degrees

deg(αi )= (λi1, λi2, . . . , λin) ∈ Zn

with 0≤ λi j ≤ r j , such that the associated morphism

φ :

p⊕
i=1

A(deg(αi ))→ M

is an epimorphism in degrees

(µ1, µ2, . . . , µn) ∈ Zn

whenever 0≤ µi ≤ ri . It follows that φ is an epimorphism and multiplication by
ti induces an isomorphism Mv

∼
−→ Mv+ei . �

3B. An extension lemma. The goal of this subsection is to slightly simplify the
formulation of parabolic sheaves in the present context using the pseudoperiodicity
condition. This will be needed to study K-theory in the next section. We let

ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nn,

where the 1 is in the i-th spot.

Definition 3.11. Let X be a scheme and L a symmetric monoidal functor

L : ErZn
→DivX ,

determined by n divisors (L i , si ). An extendable pair (F, ρ) on (X, L) consists of
the following data:
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(a) A functor F• : Er I n
→QCoh(X).

(b) For any α ∈ Er I n such that αi = ri , an isomorphism of OX -modules

ρα,α−ri ei : Fα
∼
−→ L i ⊗ Fα−ri ei .

We frequently drop the subscripts from the notation involving ρ, when they
are clear from the context.

This data is required to satisfy the following three conditions:

(EX1) For all i ∈ {1, . . . , n} and α ∈ Er I n , the diagram

Fα Fα+(ri−αi )ei

L i ⊗ Fα L i ⊗ Fα−αi ei

F+(ri−αi )ei

ρσi

L i ⊗ F+αi ei

commutes, where σi is multiplication by the section si .

(EX2) For all i 6= j and α with αi = ri , the diagram

Fα L i ⊗ Fα−ri ei

Fα+e j L i ⊗ Fα+e j−ri ei

F Ee j F Ee j

ρ

ρ

commutes.

(EX3) For all i and j and α ∈ Er I n with αi = ri and α j = r j , the diagram

Fα L i ⊗ Fα−ri ei

L j ⊗ Fα−r j e j L i ⊗ L j ⊗ Fα−ri ei−r j e j

ρ ρ

ρ

ρ

commutes.

Definition 3.12. An extendable pair (F, ρ) is called coherent if for each v ∈ Er I n ,
the sheaf Fv is a coherent sheaf on X .

Proposition 3.13. Let X be a scheme and L a symmetric monoidal functor as in
Definition 3.7. Let (E, ρ) be a parabolic sheaf on (X, L) with denominators Er .
Then the restricted functor E |Er I n produces an extendable pair on (X, L).
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Proof. Note that the restricted functor has all the required data for an extendable
pair by restricting the collection ρα,β . We need to check that the axioms of an
extendable pair are satisfied.

(EX1) We have that the composition

Eα+(ri−αi )ei

ρ
−→ Eα−αi ei ⊗ L i → Eα ⊗ L i

ρ−1

−−→ Eα+ri ei

is just the morphism E+αi ei using axiom (ii) of parabolic sheaves. Precomposing
with the map

E+(ri−αi )ei : Eα→ Eα+(ri−αi )ei

gives the morphism E+ri ei . The result now follows from axiom (i).

(EX2) This follows directly from axiom (ii).

(EX3) This follows directly from axiom (iii). �

Proposition 3.14. Let X be a scheme and L a symmetric monoidal functor as in
Definition 3.7. Given an extendable pair (F, ρ) on (X, L) we can extend it to
a parabolic sheaf (F̂, ρ) on X, L and the extension is unique up to a canonical
isomorphism. A coherent extendable pair extends to a coherent parabolic sheaf.

Proof. For v ∈ Zn we need to define its extension F̂v. We can write vi = ri ui + qi

with 0≤ qi < ri and ui ∈Z. As before we let Lu =
⊗n

i=1 L⊗ui and q = (q1, . . . , qn).
Set F̂v = Lu ⊗ Fq .

We need to construct maps

F̂+ei : F̂v→ F̂v+ei .

If qi < ri − 1 then the map is obtained by tensoring the map Fqi → Fqi+ei with Lu .
If qi = ri − 1 then the map is defined by

F̂v = Lu ⊗ Fq F̂v+ei = Lu ⊗ L i ⊗ Fq ′

Lu ⊗ Fq+ei

F̂ei

1⊗ FEei 1⊗ ρ

where q ′j = q j for all j 6= i and q ′i = 0.
In order to show that the construction above indeed produces a functor, we need

to show that all diagrams of Lemma 2.4 commute. If both qi < ri−1 and q j < r j−1,
then this is straightforward. If qi = ri − 1 and q j < r j − 1, then this follows from
(EX2). This leaves the case qi = ri − 1 and q j = r j − 1. We have a diagram
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Lu ⊗ Fq Lu ⊗ Fq+ei Lu ⊗ L i ⊗ Fq−qi ei

Lu ⊗ Fq+e j Lu ⊗ Fq+ei+e j Lu ⊗ L i ⊗ Fq−qi ei+e j

Lu ⊗ L j ⊗ Fq−q j e j Lu ⊗ L j ⊗ Fq−q j e j+ei Lu ⊗ L i ⊗ L j ⊗ Fq−qi ei−q j e j

The top left square commutes using the fact that F is a functor. The top right
and bottom left squares commute using axiom (EX2). The bottom right square
commutes using axiom (EX3). So indeed F̂• is a functor.

Note that we have canonical isomorphisms Lu⊗Lv ∼= Lu+v for u, v ∈ ErZ. These
isomorphisms induce our pseudoperiod isomorphisms.

Finally, we need to check the conditions (i)–(iv) of a parabolic sheaf.

(i): For Erα, Erα′ ∈ ErNn the diagram

F̂v F̂v+Erα F̂v+Erα+Erα′

Lα ⊗ F̂v Lα ⊗ Lα′ ⊗ F̂v

F̂+Erα F̂+Erα′

commutes. This follows by the definition of the functor F̂• and the symmetric
monoidal structure of L .

This allows us to make the following reduction: in order to check axiom (i), it
suffices to check that the diagram

F̂v F̂v+ri ei

L i ⊗ F̂v

ρσi

commutes. And this follows directly from (EX1).

(ii): Once again we reduce to showing that

F̂v+ri ei L i ⊗ F̂v

F̂v+b+ri ei L i ⊗ F̂v+b

L i ⊗ F̂+bF̂+b
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commutes. If we write v = Eru+ q then this diagram becomes

Lu+ei ⊗ Fq L i ⊗ (Lu ⊗ Fq)

Lu+ei ⊗ F̂q+b L i ⊗ (Lu ⊗ F̂q+b)

L i ⊗ Lu ⊗ F̂+bLu+ei ⊗ F̂+b

We can use the symmetric monoidal structure of L to show that this diagram indeed
commutes.

(iii): We reduce to showing the commutativity of the diagram

F̂v+ri ei+r j e j L i ⊗ F̂v+r j e j

L j ⊗ F̂v+ri ei L i ⊗ L j ⊗ F̂v

which follows from the monoidal structure of L .

Condition (iv) is by definition.

Finally, let E• be another extension of F•. Again we can again write vi = ri ui+qi

with 0≤ qi < ri and ui ∈ Z. By pseudoperiodicity, Ev ' L(u)⊗ Eq , and Fq = Eq

because E• is an extension. So, Ev ∼= F̂v for any v ∈ Zn .
It is clear from the construction that the finite generation condition is preserved

under extension. �

Corollary 3.15. Let X be a scheme and L a symmetric monoidal functor as in
Definition 3.7. The category of parabolic sheaves (resp. coherent parabolic sheaves)
on (X, L) is equivalent to the category of extendable pairs (resp. coherent extend-
able pairs) on (X, L).

Proof. There is a pair of functors between these categories. The truncation functor
sends a parabolic sheaf (E, ρ) to an extendable pair by forgetting all Ev when
v /∈ Er I n . And the extension functor from extendable pairs to parabolic sheaves was
defined in the previous proposition on objects by F• 7→ F̂•. It is easy to see that
these functors are mutually inverse and preserve the finite generation condition. �

Remark 3.16. Let X be a scheme and L a symmetric monoidal functor as in
Definition 3.7. We denote the category of coherent extendable pairs on (X, L)
by EP(X, L , Er). When X is locally noetherian this category is abelian.

3C. The localization sequence. In this subsection we localize the category of
finitely generated extendable pairs so that it will be glued from simpler parts.
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For this section X is a locally noetherian scheme and L a symmetric monoidal
functor as in Definition 3.7.

First let us consider the functor π L ,Er
∗
: EP(X, L , Er)→ Coh X , given by F• 7→ F0

on objects. It is an exact functor because exact sequences in diagram categories
are defined pointwise.

Lemma 3.17. The functor π L ,Er
∗

has a left adjoint, denoted π∗L ,Er , and there is a
natural isomorphism π L ,Er

∗
◦π∗L ,Er ' 1.

Proof. In what follows, we omit the superscripts and subscripts L and Er in the nota-
tion for the appropriate functors. For 0≤ i ≤ n, consider functions εi : Er I →{0, 1},
defined by εi (u)= 1 if ui = ri and zero otherwise. We define the functor π∗ on a
sheaf F ∈ Coh X by the rule

(π∗(F))u =
( n⊗

i=1

Lεi (u)
i

)
⊗ F.

This forms a functor via the maps

(π∗(F))u→ (π∗(F))u+ei =

{
identity if ui ∈ [0, ri − 2],
σi if ui = ri − 1,

where σi is the multiplication by the section si .
Define ρ to be the identity map. It is easy to see that all axioms of extendable

pairs are satisfied.
Now let’s take a coherent sheaf F and an extendable pair E• and consider a map

HomCoh X (F, π∗E)→ HomEP(π
∗F, E)

given by sending φ ∈ HomCoh X (F, π∗E) to precomposition of the structure maps
of the extendable pair E with φ. It’s obviously an injection. Surjectivity follows
from commutativity of the squares in HomEP(π

∗F, E) and because all structure
maps in π∗F are identity. �

Proposition 3.18. Suppose that X is a locally noetherian scheme. The functor
π L ,Er
∗
: EP(X, L , Er)→ Coh X satisfies the hypothesis of Theorem 2.3.

Proof. The only thing which is not completely obvious is the second condition.
Consider two extendable pairs E• and F•. Suppose that we have a morphism
π∗(E•)→ π∗(F•). By adjointness we obtain a diagram

π∗π∗(E•)

E• F•

Applying π to this picture shows that the second condition holds. �
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Using Theorem 2.3 we obtain the following:

Corollary 3.19. Let X be a locally noetherian scheme. There is an equivalence of
abelian categories

EP(X, L , Er)
/

ker(π L ,Er
∗
)→ Coh X.

In the rest of this subsection we would like to give a description of the category
ker(π L ,Er

∗
). Let us study the objects first. Let F• be an extendable pair. Then

π∗(F•)= F0, and if F• ∈ ker(π L ,Er
∗
) then F0 ∼= 0. The pseudoperiod isomorphism

implies in turn that Fu ∼= 0 if all ui ∈ {0, ri }.
Let us consider the sheaves Fu such that u j ∈ {0, r j } for j 6= i (we can imagine

them as sheaves on the edges of the cubical diagram F• ∈ Func(Er I n, A)). Using
the axiom (EX1) we get that the multiplication by section map si : Fu→ L i ⊗ Fu

must factor through Fu+(ri−ui )ei , which is a zero sheaf if F• ∈ ker(π L ,Er
∗
). This

implies the following lemma:

Lemma 3.20. If F• ∈ ker(π L ,Er
∗
) and u ∈ Er I n is such that u j ∈ {0, r j } for all j 6= i ,

then supp(Fu) is contained in the divisor of zeroes of the section si ∈ H 0(L i ).
If si = 0 for some i , we say that div(si )= X.

We apply the localization method (Theorem 2.3), to this partial description of
the kernel. Let’s fix some notation. Let

Sn(k)= {T ⊂ {1, . . . , n} | |T | = k}.

We often abuse notation and write S(k) for Sn(k) when it is clear from the context
what n is. We view each interval [0, ri ] as a pointed set, pointed at 0. It follows
that we have order preserving inclusions

ιT :
∏
i∈T

[0, ri ] →

n∏
i=1

[0, ri ] := Er I n.

Ignoring the pointed structure produces order preserving (≤) projection maps

πT : Er I n
→

∏
i∈T

[0, ri ].

Definition 3.21. As we agreed above, L : ErZn
→Div X is the symmetric monoidal

functor as in Definition 3.7.
If 1 ≤ k ≤ n and T ∈ S(k), then we define a symmetric monoidal functor

LT : ErZk
→Div X as a composition

ErZk
ErZn Div X.

ιT L

We say that LT is obtained from L by the restriction along ιT .
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Now for T ∈ S(k), let’s consider the functor

ι∗T : EP(X, L , Er)→ EP(X, LT , πT (Er)),

which is the restriction of an extendable pair F• along the inclusion ιT . The pseudo-
period isomorphism is just obtained by restriction.

Definition 3.22. For any 1≤ k ≤ n we define functors

Facek
:=

∏
T∈S(k)

ι∗T : EP(X, L , Er)→
∏

T∈S(k)

EP(X, LT , πT (Er)).

Definition 3.23. For 1≤ k ≤ n, we write kerk
= ker(Facek) and ker0

= ker(π∗).

Lemma 3.24. For any 1 ≤ k ≤ n, any F• ∈ kerk−1 and any T ∈ S(k) we can
consider (ι∗T (F•))• as an element of

Func
(∏

i∈T

[1, ri − 1],Coh
(⋂

i∈T

div(si )

))
.

In other words, the images of these functors are supported on the indicated sub-
schemes. As in Lemma 3.20, we say that if si = 0, then div(si )= X.

Proof. If k= 1 then the result is proved in Lemma 3.20 and the observation before it.
Let’s take any 2≤ k ≤ n and an extendable pair F• ∈ kerk−1. If we consider an

extendable pair (ι∗T (F•))• ∈ EP(X, LT , πT (Er)) then for any v ∈
∏

i∈T [0, ri ], we
have isomorphisms of sheaves: (ι∗T (F•))v ∼= 0, whenever vi = 0 for some i ∈ T .
Because of the pseudoperiodicity isomorphism we also have that (ιT (F•))v ∼= 0,
whenever vi = ri for some i ∈ T .

The last step is an application of the axiom (EX1) to the extendable pair (ι∗T (F•))•.
Because (ι∗T (F•))v ∼= 0 if vi = ri for some i ∈ T , that implies that for any

w ∈
∏
i∈T

[1, ri − 1]

the multiplication of the sheaf (ι∗T (F•))w by the sections si ∈ H 0(X, L i ) for all
i ∈ T must factor through zero. So the support of the sheaf (ι∗T (F•))w is contained
in
⋂

i∈T div(si ). �

Lemma 3.25. If we restrict the domain of the functor Facek to the full subcategory
kerk−1 for any 1≤ k ≤ n, then we obtain functors

Facek
|kerk−1 : kerk−1

→

∏
T∈S(k)

Func
(∏

i∈T

[1, ri − 1],
(⋂

i∈T

div(si )

))
.

There is an equivalence of categories between kerk and ker
(
Facek

|kerk−1
)
.
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Proof. The first part follows directly from the lemma before. The proof of the sec-
ond part is straightforward and follows from the fact that kerk is a full subcategory
of kerk−1. �

Remark 3.26. In order to apply the localization procedure to the category kerk−1

we need to show that the functor Facek
|kerk−1 has a left adjoint. The existence of a

left adjoint follows from the special adjoint functor theorem. But for the purpose
of splitting of the corresponding short exact sequence of K-groups (see Section 3D
for details), we need the unit of the adjunction to be the natural isomorphism. This
doesn’t follow from the abstract nonsense, so we need an explicit construction of
a left adjoint functor. It is given in the proof of the following theorem.

Theorem 3.27. Let X be a locally noetherian scheme and consider a symmetric
monoidal functor L : ErZn

→Div X.

(i) For any 1≤ k ≤ n there is an exact functor

Facek
|kerk−1 : kerk−1

→

∏
T∈S(k)

Func
(∏

i∈T

[1, ri − 1],Coh
(⋂

i∈T

div(si )

))
,

where kerk is a kernel of the functor Facek and ker0
:= ker(π L ,Er

∗
).

(ii) The functors Facek
|kerk−1 have left adjoints Dk such that

Facek
|kerk−1 ◦ Dk

' 1.

(iii) Facek
|kerk−1 satisfies the condition of Theorem 2.3

(iv) The functor

Facen
|kern−1 : kern−1

→ Func
( n∏

i=1

[1, ri − 1],Coh
( n⋂

i=1

div(si )

))
is an equivalence of categories.

Proof. (i) These functors are obtained by restricting domains. As kernels and
cokernels are computed pointwise, this is exact.

(ii) Given a functor GT
•
∈ Func

(∏
i∈T [1, ri − 1], Coh

(⋂
i∈T div(si )

))
for each

T ∈ S(k), we denote the corresponding object by

(GT
•
)T∈S(k) ∈

∏
T∈S(k)

Func
(∏

i∈T

[1, ri − 1],Coh
(⋂

i∈T

div(si )

))
.

Further, we view GT
•

as a functor
∏

i∈T [0, ri ] → Coh
(⋂

i∈T div(si )
)

by taking
GT

u = 0 if for some i ∈ T we have ui ∈ {0, ri }, where 0 is some fixed zero object
in Coh(X). Also, for i ∈ {1, . . . , k} if ui ∈ {0, ri − 1} we define the morphisms
GT
+ei
: GT

u → GT
u+ei

as the initial and terminal map correspondingly.
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Let us remind the reader of the definition of ε from Lemma 3.17. For any
0 ≤ i ≤ n we have functions εi : Er I → {0, 1} such that for any u ∈ Er I n , we have
εi (u)= 1 if ui = ri and εi (u)= 0 otherwise.

We define the functor Dk on objects as follows:

(Dk((GT
•
)T∈S(k)))u =

( n⊗
i=1

Lεi (u)
i

)
⊗

( ⊕
T∈S(k)

GT
πT (u)

)
.

Let’s denote (Dk((GT
•
)T∈S(k)))• by Dk

•
for the simplicity of notations. First of

all we want to view it as a functor Er I n
→ Coh(X). For that we have to define the

morphisms
Dk
+ei
: Dk

u→ Dk
u+ei

.

If 0≤ ui < ri−1, then this map is induced by
⊕

T∈S(k), i∈T GT
+1. If ui = ri−1, then

it is induced by the terminal maps
⊕

T∈S(k), i∈T GT
+1 and also by multiplication by

the section si .
The pseudoperiod isomorphisms ρ are defined by the symmetric monoidal struc-

ture of the functor L . The proof of the axioms (EX2) and (EX3) is automatic, and
the proof of (EX1) follows from the commutativity of the diagram

Du Du+(ri−ui )ei

L i ⊗ Du L i ⊗ Du−ui ei .

D+(ri−ui )ei

ρσi

L i ⊗ D+ui ei

This diagram commutes because of the definition of D+(ri−αi ) Eei and because
supp(GT

u )⊆
⋂

i∈T div(si ) for any u ∈
∏

i∈T [0, ri ].
So we have shown that Dk

•
is an extendable pair. If k = 1 then it’s clear that D1

•

is in ker0, because D1
0
∼= 0.

If 2≤ k ≤ n, we want to see that Dk
•

is in kerk−1. For that we have to see that for
any W ∈ S(k− 1) and any v ∈

∏
i∈W [0, ri ], the sheaf (ι∗W (D

k
•
))v is isomorphic to

zero. But this is true because for any T ∈ S(k) we have that GT
u = 0 if ui ∈ {0, ri }

for some i ∈ T .
Clearly, Facek

|kerk−1 ◦ Dk
= 1.

Next we would like to show that Dk is indeed a left adjoint. Suppose that we
have a morphism

(GT
•
)T∈S(k)→ Facek(F•).

Such a morphism consists of an
(n

k

)
-tuple of morphisms

φT : GT
•
→ ι∗T (F•).
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We wish to describe the adjoint map

φ̃ : Dk
•
→ F• .

Using the universal property of coproduct, this morphism is determined by maps

φ̃(u)T :
n⊗

i=1

Lε(u)i ⊗GT
πT (u)→ Fu .

If u is such that εi (u)= 0 for all 1≤ i ≤ n, then these maps are just the compositions
of φT with the morphisms F+α . If there is l such that ul = rl , then φ̃(u)T is induced
by the composition of φT with ρ−1

F and with F+α.
We want to check that the map φ̃ is indeed a natural transformation of functors.

It’s enough to check that the diagram

Du Fu

Du+ei Fu+Eei

φ̃(u)

F+eiD+ei

φ̃(u+ ei )

commutes. If εk(u) = 0 for all 1 ≤ k ≤ n and also ui < ri − 1, then it commutes
directly from the construction of the maps φ̃(u). Otherwise the commutativity
follows from (EX1), (EX2) and (EX3) for F•.

Finally, we have the map

Hom((GT
•
)T∈S(k),Facek(F•))→ Hom(Dk((GT

•
)T∈S(k)), F•).

It’s easy to see that this map is bijective, because the right Hom is uniquely defined
by the restriction to k-faces.

(iii) This follows from (ii).

(iv) Because for S(n) there is only one element, the set {1, . . . , n} itself, we have
that ι{1,...,n} = id and π{1,...,n} = id. So Face|nkern−1 and Dn are identity functors. �

3D. G-theory and K-theory of a root stack. In this subsection we finally describe
the G-theory of a root stack X L ,Er .

Lemma 3.28. If X is a locally noetherian scheme and L a symmetric monoidal
functor as in Definition 3.7, there is an equivalence of categories

Coh X L ,Er ' EP(X, L , Er ).

Proof. This follows by combining Corollaries 3.10 and 3.15. �
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So we have
G(X L ,Er )∼= K (EP(X, L , Er )),

and we reduced the problem to describing the K-theory of the (abelian) category
of coherent extendable pairs EP(X, L , Er ).

We are going to use several splittings of the category of coherent extendable
pairs to simplify the latter K-theory. The first step is this:

Lemma 3.29. If X is a locally noetherian scheme, then in the notation of Section 3C
one has

Ki (EP(X, L , Er ))∼= Gi (X)⊕ Ki (ker(π L ,Er
∗
)) for any i ∈ Z+.

Proof. Using Corollary 3.19 and the localization property of K-theory (see for
example [Quillen 1973]) we have the long exact sequence of groups

· · · → Ki (ker(π L ,Er
∗
))→ Ki (EP(X, L , Er ))→ Gi (X)→ · · · .

But this sequence splits because of the property π L ,Er
∗
◦ π∗L ,Er ' 1 proved in

Lemma 3.17. �

Lemma 3.30. If A is an abelian category then

Ki (Func(Er I n, A))∼= Ki (A)⊕
∏n

j=1 r j .

Proof. The proof follows from the iterated application of Theorem 2.6 and local-
ization property of the K-theory. �

Now we want to proceed with K•(ker(π L ,Er
∗
)), exploiting the same ideas as in

the previous lemmas.

Lemma 3.31. Let X be a locally noetherian scheme, L a symmetric monoidal
functor as in Definition 3.7 and sk ∈ H 0(Lk) for k = 0, . . . , n. Then for any i ∈ Z+,

Ki (ker(π L ,Er
∗
))∼=

n⊕
k=1

⊕
T∈S(k)

Gi

(⋂
l∈T

div(sl)

)⊕∏l∈T (rl−1)

,

where S(k)= {T ⊂ {1, . . . , n} | |T | = k}.

Proof. This follows from application of the localization property of K-theory,
Theorem 3.27 and the previous technical lemma. �

Combining Lemmas 3.28, 3.29 and 3.31 yields the main result of the section:

Theorem 3.32. Let X be a locally noetherian scheme. Let (L i , si ) be objects of
Div X for i = 1, . . . , n and Er ∈ Nn . Then G-theory of a root stack X L ,Er is given by
the formula

Gi (X L ,Er )∼= Gi (X)⊕
( n⊕

k=1

⊕
T∈S(k)

Gi

(⋂
l∈T

div(sl)

)⊕∏l∈T (rl−1))
for any i ∈ Z+, where S(k)= {T ⊂ {1, . . . , n} | |T | = k}.
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To finish the section we want to give sufficient conditions for a root stack to be
smooth.

Proposition 3.33. Let X be a smooth scheme over a field k. Let D =
∑n

i=1 Di be
a normal crossing divisor. Assume that Er is an n-tuple of natural numbers, such
that each ri is coprime to the characteristic of k. Then a root stack X D,Er is smooth.

Proof. By definition a stack is smooth if its presentation is a smooth scheme. The
question is local, so we can assume that X = Spec(R) and a divisor D is a strict
normal crossing divisor. If we localize further, we can assume that R is a regular
local ring, Di = ( fi ) and { fi } forms a part of a regular sequence of parameters.

By [Cadman 2007, Example 2.4.1], the presentation of a root stack X D,Er is an
affine scheme A = R[t1, . . . , tn]/(t

r1
1 − f1, . . . , trn

n − fn). By [Grothendieck and
Murre 1971, Lemma 1.8.6], this scheme is smooth. �

Corollary 3.34. Under the hypotheses of Proposition 3.33, G(X D,Er )= K (X D,Er ),
where the latter means the Waldhausen K-theory of perfect complexes on the stack
as defined in [Joshua 2005].

Proof. Indeed, if a stack is regular, its Waldhausen K-theory is the same as G-
theory. See [Joshua 2005]. �

4. Quotient stacks as root stacks

4A. Generation of inertia groups. Let X be a scheme with an action of a finite
group G. We always assume that this action is admissible. Let us recall, following
[SGA 1 1971, V.1, Definition 1.7], that an action is called admissible if there exists
an affine morphism φ : X → Y such that OY ∼= φ∗(OX )

G . This implies that the
quotient X/G exists and is isomorphic to Y .

If x ∈ X is a point (not necessarily closed), the subgroup of G stabilizing x is
called the decomposition group and we denote it by D(x,G). The subgroup of the
decomposition group acting trivially on the residue field of x is called the inertia
group of x and we denote it by I (x,G).

Note that there is an induced action of D(x,G) on the closure of the point x
and I (x,G) acts trivially on this closure. Hence if x ∈ ȳ then there is an inclusion
I (y,G) ↪→ I (x,G). We say that the inertia groups are generated in codimension
one if for each point x ∈ X we have that

I (x,G)=
∏
x∈ȳ

I (y,G),

where the product is over all points of codimension one containing x and the identi-
fication is via the inclusions above. For a group acting on a smooth curve, all inertia
groups are generated in codimension one. We will see under certain assumptions
that this is also true in higher dimensions (see Theorem 4.9).
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4B. Main theorem. In this subsection we provide sufficient conditions for a quo-
tient stack to be a root stack. To illustrate the procedure we start with an example.

Example 4.1. Let O be a discrete valuation ring with an action of µr such that
gcd(r, char(O))= 1. Then the fixed ring Oµr is also a discrete valuation ring. We
assume that O contains a field so that its completion Ô is a power series ring in one
variable over the residue field. Note that µr must preserve the maximal ideal of O.
If we further assume that the action is generically free and inertial, i.e., µr acts
trivially on the residue field, then if s is a local parameter for O we can conclude
that t = sr is a local parameter for R =Oµr .

We set Y = Spec(R) and consider the root stack

Y= YR,t,r → Y.

The parameter s induces a µr -equivariant morphism

X→Y

corresponding to the triple (O, s,m), where m is the canonical isomorphism Or
→O.

We show in Proposition 4.6 that this morphism is in fact étale. Using the two out
of three property for étale maps we get that the natural morphism

X ×µr → X ×Y X

is étale. To show that [X/µr ] ∼=Y it suffices to show that this morphism is radicial
(universally injective) and surjective. In other words we need to show that it is a
bijection on K-points for each field K .

Given a pair of K-points a and b of X that give a K-point of X×Y X , the fiber of

X ×Y X→ X ×Y X

over this point consists of the space of isomorphisms between a∗(O, s,m) and
b∗(O, s,m) in Y. If the support of the K-points is the generic point of O this is
just a singleton and if the support is the closed point then the space is a bitorsor
over µr . At any rate the morphism above is seen to be an isomorphism. Hence in
this case we have

[X/µr ] ∼=Y.

Remark 4.2. A µr -bundle P on a scheme Z is equivalent to the data of an invert-
ible sheaf K and an isomorphism φ : Kr

→OZ . To construct P explicitly consider
the sheaf of algebras Sym•K−1. There is a distinguished global section T ∈ K−r

given by (φ⊗ 1K−r (1)). Then

P = Spec(Sym•K−1/(T − 1)).

Remark 4.3. Suppose that there is on Y an invertible sheaf N and an isomorphism
N r
→ L. Then YL,s,r is a global quotient stack; see [Cadman 2007, Lemma 2.3.1
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and Example 2.4.1; Borne 2007, §3.4]. We need this below, so let’s recall some of
the details. The coherent sheaf

A=OY ⊕N−1
⊕ · · ·⊕N−(r−1)

can be given the structure of an OY -algebra via the composition

N−r ∼
−→ L−1 s

−→OZ .

There is an action of µr on this sheaf via the action of µr on N−1 given by scalar
multiplication. Then YL,s,r = [Spec(A)/µr ]. We need the explicit morphism

YL,s,r → [Spec(A)/µr ]

below so let’s describe it. Consider a morphism a : X→Y . A morphism X→YL,s,r ,
lifting a, is a triple (M, t, φ). As per the previous remark the sheaf M−1

⊗N−1

gives a µr -torsor. The torsor comes from the algebra

B = Sym•M⊗ a∗N−1/(T − 1).

To produce an X -point of [Spec(A)/µr ] we need to describe a µr -equivariant map

a∗A→ B.

This map comes from the section t via

t ∈ Hom(O,M)= Hom(a∗N ,M⊗ a∗N−1).

This construction generalizes in the obvious way to a finite list of invertible sheaves
with section.

Assumption 4.4. We assume X and Y are regular, separated, noetherian schemes
over a field k. Let G be a finite group with cardinality coprime to the character-
istic of k. We assume that G acts admissibly and generically freely on X with
quotient φ : X→ Y . Note that by [Görtz and Wedhorn 2010, Theorem 14.126] our
hypotheses imply that the quotient map X→ Y is flat.

Consider the map φ : X→ Y , which is faithfully flat and finite. Recall that the set
of points of X where φ is ramified is called the branch locus. It has a natural closed
subscheme structure defined by supp(�X/Y ). Because the conditions of the purity
theorem [Altman and Kleiman 1970, Chapter VI, Theorem 6.8] are satisfied, in
our situation this closed subscheme gives rise to an effective Cartier divisor, which
is called the branch divisor. We can write this divisor as

R =
n∑

i=1

(ri − 1)
(∑

g∈G

g∗Di

)
,

where each Di is a prime divisor. As G acts generically freely, passing to generic
points of our regular variety produces a Galois extension with Galois group G. We
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can view the Di as points of the scheme X . The multiplicities ri are related to the
inertia groups of Di via

ri = |I (Di ,G)|;

see [Neukirch 1999, Chapter I, §9].
We let Ei be the image of Di under φ. It is called the ramification divisor. We

form the root stack
Y= Y((E1,r1),...,(En,rn)).

Note that we have assumed that the characteristic of our ground field is coprime to
G and hence to each ri . It follows, via a local calculation along the ring extension
OX,Di /OY,Ei , that we have φ∗(Ei ) = ri

(∑
g∈G g∗Di

)
. This allows us to lift φ to

produce a diagram
X

Y Y

φ
ψ

π

The morphism ψ is equivariant in the sense that precomposition with g ∈ G pro-
duces a two-commuting diagram. This gives us a morphism

[X/G] →Y

that we would like to show is an isomorphism under our Assumption 4.4 and the
extra condition that the ramification divisor is normal crossing.

For the proof of Proposition 4.6 we need the following lemma.

Proposition 4.5 (Abhyankar’s lemma). Let Y = Spec(A) be a regular local scheme
and D =

∑
1≤i≤r div( fi ) a divisor with normal crossings, so that the fi form part

of a regular system of parameters for Y . Set Y = Supp(D) and let U = Y \ Y .
Consider V → U , an étale cover that is tamely ramified over D. If yi are the
generic points of supp(div( fi )) then OY,yi is a discrete valuation ring. If we let Ki

be its field of fractions then, as V ramifies tamely, we have that

V |Ki = Spec
(∏

j∈Ji

L j i

)
,

where the L j i are finite separable extensions of Ki . We let n j i be the order of the
inertia group of the Galois extension generated by L j i and let

ni = lcm j∈Ji n j i ,

and set

A′ = A[T1, . . . , Tr ]/(T
n1

1 − f1, . . . , T nr
r − fr ), Y ′ = Spec(A′).

Then the étale cover V ′ = V ×X X ′ of U ×X X ′ extends uniquely up to isomorphism
to an étale cover of X ′.



178 AJNEET DHILLON AND IVAN KOBYZEV

Proof. This is [SGA 1 1971, Expose XIII, Proposition 5.2]. The proof given shows
how to construct the extension of V ′, which we need below. The extension can be
constructed as the normalization of X ′ in the generic point of V ×X X ′. �

Proposition 4.6. Under Assumption 4.4, suppose that φ : X→ Y is ramified along
a simple normal crossings divisor E. The morphism ψ : X→Y constructed above
is étale.

Proof. Étale maps are local on the source so we can assume that Y = Spec(S), and
all Ei are trivial line bundles so that si ∈ S. Further, by shrinking X we can assume
that the morphism X → Y is defined be trivial bundles on X . Because the map
φ is finite we can write X = Spec(T ). Here T and S are local regular Noetherian
k-algebras, T is a finite S-module, si is part of a regular system of parameters and
there are elements ti ∈ T , such that tri

i = si .
We may check étaleness after a faithfully flat base extension of the base field

and hence may assume that the ground field k contains ri -th roots of unity for
all 1≤ i ≤ n.

Using Remark 4.3, we see that the stack Y is isomorphic to the quotient stack

[Spec(S′)/µr1 × · · ·×µrn ],

where S′ = S[y1, . . . , yn]/(y
r1
1 − s1, . . . , yrn

n − sn).
We want to show that the map Spec(T )→ [Spec(S′)/µr1 × · · · ×µrn ] is étale.

Denote by T ′ the ring T [x1, . . . , xn]/(xr1 − 1, . . . , xrn − 1). Using Remark 4.3
again we obtain a Cartesian diagram

Spec(T ′) Spec(S′)

Spec(T )
[
Spec(S′)/µr1 × · · ·×µrn

]
Because Spec(S′) is a presentation of a quotient stack it is enough to show that the
map S′→ T ′ given by yi 7→ ti xi is étale.

The morphism Ss1...sn → Tt1...tn is flat and unramified by assumption, and hence
it is étale. By Abhyankar’s lemma (Proposition 4.5), this morphism extends after
base change to an étale cover of S′. By the proof of Abhyankar’s lemma it suffices
to show that T ′ is normal and the map S′→ T ′ is integral. Both of these facts are
easily checked and the result follows. �

For a point p ∈ Y we define

I (p, Y )=
∏

p∈supp(Ei )

µri .
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Proposition 4.7. Let Assumption 4.4 hold. Let K be a field and consider the mor-
phism of K-points

πK : X ×Y X (K )→ X ×Y X (K ).

The fiber π−1
K (x1, x2) over a K-point (x1, x2) is a bitorsor under the inertia group

I (φ(x1), Y ).

Proof. In what follows, we use the shorthand G∗ when we mean
∑

g∈G g∗. Recall
that the morphism ψ is defined by (O(G∗Ei ), sG∗Ei , αi ), where αi are isomor-
phisms, coming from the fact that

ri G∗Ei = riφ
∗(Di ).

The fiber over (x1, x2) is exactly the set of isomorphism from x∗1O(G
∗Ei ) to

x∗2O(G
∗Ei ) as i varies. As in Example 4.1, this depends on whether the section

x∗1 sG∗Ei vanishes or not. The vanishing condition precisely depends on φ(x1), and
the result follows. �

The final ingredient we need to finish the proof is that under our assumptions
the inertia group of X is generated in codimension one. For that let us recall the
following:

Proposition 4.8 (Abhyankar’s theorem; see [Grothendieck and Murre 1971, Theo-
rem 2.3.2]). Let Y be a locally noetherian normal scheme, D a divisor with normal
crossing, Ŷ = supp(D) and U = Y \ Ŷ . Assume that X → Y is a finite morphism
and G is a finite group operating on X such that X | U is a G-torsor. Then the
following are equivalent:

(i) X is tamely ramified relative to D.

(ii) For every y ∈ Y there exists an étale neighborhood Y ′ of y in Y , and a scheme
S =OY [(Ti )i∈I ′]/((T

r ′i
i − f ′i ))i∈I ′ , where DY ′ =

∑
i∈I ′ D′i and div( f ′i ) = D′i ,

such that there is an isomorphism of couples

(X ′,G)' (G×H S,G),

where X ′ = X ×Y Y ′ and H =
∏

i∈I ′ µr ′i . Let us recall that G ×H S is the
quotient (G× S)/H , where H acts “by the formula” h · (g, s)= (gh−1, hs).

Let us apply this fact to describe the inertia group.

Theorem 4.9. Under Assumption 4.4, suppose that φ : X→ Y is ramified along a
simple normal crossings divisor. Then the inertia groups of (X,G) are generated
in codimension one.

Proof. Firstly observe that condition (i) of Abhyankar’s theorem (Proposition 4.8)
is satisfied. Inertia is a local notion and also, clearly, the inertia group of (S, H) is
generated in codimension one.
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There is an isomorphism of quotient stacks [(G×H S)/G] ∼= [S/H ]. So inertia
groups of G ×H S under the action of G and of S under the action of H are
isomorphic for the corresponding points. This finishes the proof. �

Finally, we are ready to prove the main theorem of this section.

Theorem 4.10. If Assumption 4.4 is satisfied and if also the ramification divisor is
a normal crossing divisor, then we have the isomorphism of stacks [X/G] ∼=Y.

Proof. To prove this all we need to show is that the map

χ : X ×G→ X ×Y X, (x, g) 7→ (x, gx)

is an isomorphism.
By Proposition 4.6, the map ψ : X→Y is étale, and so the map X ×Y X→ X

is étale as a pullback. Clearly two maps X × G → X given by (x, g) 7→ x and
(x, g) 7→ gx are étale and so the map χ must be étale.

We are going to show that the map

χ(K ) : X (K )×G→ X ×Y X (K )

is bijective for any field extension of the ground field k ⊂ K . The points of the
scheme on the left is a pair (x, g), where g ∈ G and x : Spec(K )→ X a K-point.

Consider the morphism 9 : X ×G→ X ×Y X . This morphism is surjective as
we have a geometric quotient; see [Mumford et al. 1994, Definition 0.4]. Consider
a K-point (x1, x2) ∈ X ×Y X (K ). Using the properties of geometric quotients we
have that x2 = gx1 for some g ∈ G. Using this we see the fiber 9−1(x1, x2) is a
torsor over the inertia group I (supp(x1),G). By Theorem 4.9 our inertia groups
are generated in codimension one, so we see that we have an identification

I (supp(x1),G)= µri1
× · · ·×µril

as in Proposition 4.7. It follows that the morphism χ is étale and universally injec-
tive (radical). This implies that it is an open immersion. As it is also surjective, it
is an isomorphism and the result follows. �

5. An application of root stacks to the equivariant K-theory of schemes

As an application of the theorems proved in Sections 3 and 4, we can formulate a
result about equivariant K-theory.

Theorem 5.1. Let X be a regular, separated, noetherian scheme over the field k
with a generically free admissible action of a finite group G, such that the order
of G is coprime to the characteristic of k. Let X/G = Y and assume that all the
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conditions of Assumption 4.4 are satisfied. Also assume that X → Y is ramified
along a simple normal crossing divisor E. Then there is an isomorphism of groups

K •G(X)∼= K •(Y )⊕
( n⊕

i=1

( ⊕
T∈S(i)

G•
(⋂

l∈T

El

)⊕∏l∈T (rl−1)))
,

where rl are orders of inertia groups (see Section 4 for notation), and

S(i)= {T ⊂ {1, . . . , n} | |T | = i}.

Proof. By assumption X is a regular scheme and the group G is finite, so for any
G-equivariant sheaf we can always construct an equivariant locally free resolution
by averaging the usual locally free resolution. This simple argument shows that
the equivariant K-theory of X is the same as the equivariant G-theory.

The category of G-equivariant sheaves on X is equivalent to the category of
sheaves on the quotient stack [X/G], so we can see that

KG(X)∼= G([X/G]).

In Theorem 4.10 we proved under our assumptions that there is an isomorphism
of stacks [X/G] ∼=Y, so we have an isomorphism of their G-theories

G([X/G])∼= G(Y).

Finally the application of Theorem 3.32 gives the desired formula. �

Let us give some examples.

Example 5.2. Let’s consider A1 over a field k with an action of µ3 (it acts by
multiplication). Assume that char(k) 6= 3. Then A1/µ3 ∼= A1 and ramification
divisor is div(0). The inertia group is µ3. So by Theorem 5.1,

K •µ3
(A1)∼= K •(A1)⊕ K •(k)⊕ K •(k)∼= K •(k)⊕3.

Example 5.3. This example was inspired by the paper [Alexeev and Orlov 2013].
The Burniat surface X with K 2

X = 6 is a Galois G := C2×C2-cover of Bl3 P2 (a
del Pezzo surface of degree 6). Let’s assume that the ground field k is algebraically
closed and char(k) 6= 2. The ramification divisor is given in [loc. cit., Figure 1]: it
is denoted by Al, Bl,Cl , where 0 ≤ l ≤ 4. The inertia group of each component
is C2, and the inertia group of an intersection point of any two components is G.
The intersection of three components is empty. Also, Al ∼= Bl ∼= Cl ∼= P1 for all
l = 0, . . . , 3.

Applying Theorem 5.1, one gets

K •G(X)∼= K •(Bl3 P2)⊕

( 2⊕
i=1

Z•i

)
, Z•1 = K •(P1)⊕12, Z•2 = K •(k)⊕30.
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Notations and conventions

k our base field
ker the kernel of a functor (Definition 2.2)
Er an n-tuple (r1, . . . , rn) of real numbers
Er I n the poset of integer points in

∏n
i=1[0, ri ]

Func(A,B) the functor category between two abelian categories
M̂ the dual Hom(M,Gm) of the monoid M

Div X the symmetric monoidal category of line bundles with section
(Section 3A)

X L ,Er a stack of roots over the scheme X (Definition 3.4)
Coh X category of coherent sheaves on X

EP(X, L , Er) category of coherent extendable pairs (Remark 3.16)
Sn(k)= S(k) The set of subsets of {1, 2, . . . , n} of cardinality k

(We often drop the subscript n when it is clear from context.)
Facek The k-th face functor (Definition 3.22)
kerk The kernel of the face functor (Definition 3.23)
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