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For X a product of Severi–Brauer varieties, we conjecture that if the Chow ring
of X is generated by Chern classes, then the canonical epimorphism from the
Chow ring of X to the graded ring associated to the coniveau filtration of the
Grothendieck ring of X is an isomorphism. We show this conjecture is equiva-
lent to the condition that if G is a split semisimple algebraic group of type AC,
B is a Borel subgroup of G and E is a standard generic G-torsor, then the canon-
ical epimorphism from the Chow ring of E/B to the graded ring associated with
the coniveau filtration of the Grothendieck ring of E/B is an isomorphism. In
certain cases we verify this conjecture.

Notation and Conventions. We fix a field k throughout. All of our objects are
defined over k unless stated otherwise. Sometimes we use k as an index when no
confusion will occur.

For any field F , we fix an algebraic closure F .
A variety X is a separated scheme of finite type over a field.
Let X = X1× · · ·× Xr be a product of varieties with projections πi : X→ X i .

Let F1, . . . ,Fr be sheaves of modules on X1, . . . , Xr . We use F1 � · · ·�Fr for
the external product π∗1F1⊗ · · ·⊗π

∗
r Fr .

For a ring R with a Z-indexed descending filtration F •ν (e.g., ν = γ or τ as
in Section 2), we write gri

νR for the corresponding quotient F i
ν/F i+1

ν . We write
grνR =

⊕
i∈Z gri

νR for the associated graded ring.
A semisimple algebraic group G is of type AC if its Dynkin diagram is a union

of diagrams of type A and type C . Similarly a semisimple group G is of type AA
if its Dynkin diagram is a union of diagrams of type A.

For elements i, j of an index set I, we write δi j for the function which is 0 when
i 6= j and 1 if i = j .

This work has been supported by a Discovery Grant from the National Science and Engineering
Board of Canada.
MSC2010: 14C25, 20G15.
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Given two r-tuples of integers, say I, J , we write I < J if the i-th component
of I is less than the i-th component of J for any 1≤ i ≤ r .

1. Introduction

For any smooth variety X , the coniveau spectral sequence for algebraic K-theory
induces a canonical epimorphism CH(X)→ grτG(X) from the Chow ring of X
to the associated graded ring of the coniveau filtration on the Grothendieck ring
of X (for notation related to Grothendieck rings see Section 2). The kernel of
this epimorphism is torsion, as can be seen using the Grothendieck–Riemann–
Roch without denominators. In general this can’t be refined: there are examples
of smooth varieties where the kernel of the K-theory coniveau epimorphism is
nontrivial. With this in mind, a particularly difficult problem has been finding
families of varieties where this epimorphism is, or fails to be, an isomorphism. In
this direction we propose the following:

Conjecture 1.1. Let X be a product of Severi–Brauer varieties. If the Chow
ring CH(X) of X is generated by Chern classes, then the canonical epimorphism
CH(X)→ grτG(X) is an isomorphism.

Since the ring grτG(X) is computable for such X (see Section 2 for recollections
on the Grothendieck rings of Severi–Brauer varieties and their products), a positive
answer to Conjecture 1.1 could then be interpreted as a method for computing the
Chow ring of such varieties. This is carried out, for instance, in [Karpenko 2017b,
Theorem 3.1], where Karpenko shows a special case of Conjecture 1.1 and, using
this, is able to compute the Chow ring of certain generic Severi–Brauer varieties.

In Section 3, we give some evidence that a positive answer to Conjecture 1.1 is a
likely one. The main result of this section, Theorem 3.3, shows that Conjecture 1.1
is equivalent to a particular case of an older conjecture of Karpenko:1

Conjecture 1.2. Let G be a split semisimple algebraic group, E a standard generic
G-torsor, and P a special parabolic subgroup of G. Then the canonical epimor-
phism CH(E/P)→ grτG(E/P) is an isomorphism.

The proof uses an analysis of the products of Severi–Brauer varieties one obtains
from a standard generic G-torsor for algebraic groups of type AA along with various
specialization maps.

In Appendix A, we introduce the notion of the level of a central simple algebra.
We show how the level gives a useful description of the Grothendieck ring of a

1In its original formulation [Karpenko 2017a, Conjecture 1.1], Conjecture 1.2 only asserts there
is an isomorphism in the case P is a Borel subgroup. However, to prove Conjecture 1.2 for all special
parabolic subgroups of G it suffices to check that the result holds for a particular choice of special
parabolic subgroup P . These two forms of Conjecture 1.2 are then equivalent since a Borel subgroup
is special.
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Severi–Brauer variety and use this description in the main result of this section,
Theorem A.15, where we prove Conjecture 1.1 for a single Severi–Brauer variety
associated to a central simple algebra of level 1. This generalizes the previously
known results obtained in [Karpenko 2017b, Theorem 3.1].

2. Grothendieck rings of Severi–Brauer varieties

By K(X), we mean the Grothendieck ring of locally free sheaves (equivalently
vector bundles) on a variety X ; by G(X) we mean the Grothendieck group of
coherent sheaves on X . The i-th term of the γ -filtration on K(X) is denoted F i

γ (X);
the i-th term of the coniveau filtration on G(X) is denoted F i

τ (X).
There’s a canonical map ϕX : K(X)→ G(X) taking the class [L] ∈ K(X) of

a locally free sheaf L to the class [L] ∈ G(X). When X is smooth, ϕX is an
isomorphism giving G(X) the structure of a ring. The coniveau filtration is com-
patible with the ring structure on G(X), and ϕX (F i

γ (X)) ⊂ F i
τ (X). Moreover, if

the Chow ring CH(X) is generated by Chern classes, then ϕX (F i
γ (X)) = F i

τ (X);
see [Karpenko 1998, proof of Theorem 3.7].

We will often be working with the rings K(X) for X a Severi–Brauer variety
and for X a product of Severi–Brauer varieties.

In the case X is a Severi–Brauer variety, K(X) has been determined by Quillen.
To state this result, recall that X is the variety of right ideals of dimension deg(A)
in the central simple algebra A associated with X . The tautological vector bundle
ζX on X is a right A-module.

For any central simple algebra B, let us define K(B) as the Grothendieck group
of the category of finitely generated left B-modules. The group K(B) is infinite
cyclic with a canonical generator given by the class of a (unique up to isomorphism)
simple B-module.

Theorem 2.1 [Quillen 1973, §8, Theorem 4.1]. Let X be the Severi–Brauer variety
of a central simple algebra A. The group homomorphism

deg(A)−1⊕
i=0

K(A⊗i )→ K(X),

mapping the class of a left A⊗i -module M to the class of ζ⊗i
X ⊗A⊗i M , is an isomor-

phism.

Note that if F is a field over k, the pullback K(X)→ K(X F ) respects the de-
composition of Theorem 2.1, is injective, and the image

K(A⊗i )⊂ K(A⊗i
F )= Z

is generated by ind(A⊗i )/ind(A⊗i
F ). For i ≥ 0, let us write ζX (i) for the tensor

product (over A⊗i ) of ζ⊗i
X by a simple A⊗i -module. This is a vector bundle of
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rank ind(A⊗i ), and ζ⊗i
X decomposes into a direct sum of deg(A⊗i )/ind(A⊗i ) copies

of ζX (i).
A similar description is afforded to the rings K(X) for products X = X1×· · ·×Xr

of Severi–Brauer varieties:

Theorem 2.2 [Peyre 1995, Corollary 3.2]. Let X = X1 × · · · × Xr be a product
of Severi–Brauer varieties X1, . . . , Xr corresponding to central simple algebras
A1, . . . , Ar , respectively. Then the group homomorphism⊕

I<(deg(A1),...,deg(Ar ))

K(A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )→ K(X),

as I = (i1, . . . , ir ) ranges over r-tuples of nonnegative integers, is an isomor-
phism. Here the class of a left A⊗i1

1 ⊗ · · · ⊗ A⊗ir
r -module M is sent to the class

ζ
⊗i1
X1

� · · ·� ζ⊗ir
Xr
⊗

A
⊗i1
1 ⊗···⊗A⊗ir

r
M.

Similarly, if F is a field over k, the pullback K(X) → K(X F ) respects this
decomposition, is injective, and the image

K(A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )⊂ K((A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )F )= Z

is generated by ind(A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )/ind((A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )F ).
Given two products X = X1×· · ·× Xr and Y = Y1×· · ·×Yr of Severi–Brauer

varieties, over possibly different fields F1 and F2 with dim(X i )= dim(Yi ) for every
1≤ i ≤ r , let us identify K(X F1

) with K(YF2
) via the isomorphism of Theorem 2.2.

Let us also identify K(X) and K(Y ) with their images in K(X F1
)= K(YF2

). Note
that we have K(X)= K(Y ) if and only if

ind(A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )= ind(B⊗i1
1 ⊗ · · ·⊗ B⊗ir

r )

for all integers i1, . . . , ir , where A1, . . . ,Ar are the algebras associated to X1, . . . , Xr

and B1, . . . , Br are the algebras associated to Y1, . . . , Yr .
The following statement shows that (unlike the coniveau filtration) the γ -filtration

on K(X) is completely determined by K(X).

Theorem 2.3 [Izhboldin and Karpenko 1999, Theorem 1.1 and Corollary 1.2]. If
K(X)= K(Y ), then F i

γ (X)= F i
γ (Y ) for all i ≥ 0.

3. Equivalence of the two conjectures

Let G be an affine algebraic group, let U be a nonempty open G-invariant subset of
a G-representation V. If the fppf quotient U/G is representable by a scheme, and
if U is a G-torsor over U/G, then U has the property that for any G-torsor H over
an infinite field F ⊃ k, there is an F-point x of U/G such that H is isomorphic
to the fiber of the morphism U →U/G over x ; see [Serre 2003, §5]. The generic
fiber E of the quotient map U →U/G is called a standard generic G-torsor.
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Example 3.1. If G = SLn , then G acts on V = End(kn) with GLn ⊂ V an open, G-
invariant subset. The generic fiber E=SLn,k(Gm) of the quotient GLn→GLn/G=Gm

is a standard generic G-torsor.
A standard generic G-torsor E exists for any affine algebraic group G: one can

take E to be the generic fiber of the quotient morphism GLn → GLn/G for any
embedding G ↪→ GLn .

Now assume G is a split semisimple algebraic group, with P a special parabolic
subgroup of G, and E a standard generic G-torsor. Recall an algebraic group H
over a field k is special if every H -torsor over any field extension of k is trivial.
The quotient E/P is a generic flag variety, which is moreover generically split,
meaning that E becomes trivial after scalar extension to the function field k(E/P);
see [Karpenko 2018, Lemma 7.1].

Example 3.2. Let G = SLn/µm , where m is a divisor of n. Then G acts on
X = Pn−1 and, if P is the stabilizer of a rational point in X , the quotient G/P is
isomorphic to X . The parabolic P is special: its conjugacy class is given by the
subset of the Dynkin diagram of G corresponding to removing the first vertex; see
[Karpenko 2018, §8].

If E is a standard generic G-torsor given as the generic fiber of a quotient map
U → U/G, then our identification of G/P ∼= X above shows that the generic
flag variety E/P is a Severi–Brauer variety over the function field k(U/G). The
central simple k(U/G)-algebra associated to E/P is called a generic central simple
algebra of degree n and exponent m. The index of such an algebra is equal to r ,
where n = rs is a factorization of n with r having the same prime factors as m and
with s prime to m.

In [Karpenko 2017b], Conjecture 1.1 is proved for the Severi–Brauer variety of
a generic central simple algebra of degree n and exponent m and, as a corollary
obtained by analysis similar to Example 3.2 above, Conjecture 1.2 is proved for
split semisimple almost-simple algebraic groups of type A and C . In this section
we prove an equivalence between Conjecture 1.1 and Conjecture 1.2 for algebraic
groups of type AC similar to that obtained in [Karpenko 2017b] for a single Severi–
Brauer variety and for a split semisimple almost-simple group of type A or C .

Theorem 3.3. The following statements are equivalent:

(1) Conjecture 1.1 holds for all X.

(2) Conjecture 1.2 holds for all G of type AC and P given by removing the first
vertex from each of the connected components of the Dynkin diagram of G.

(3) Conjecture 1.2 holds for all G of type AC and arbitrary P.

(4) Conjecture 1.2 holds for all G of type AA and arbitrary P.
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The proof is given below Lemma 3.6, after some preparation. It proceeds by
showing (1) implies (2) implies (3) implies (4) implies (1). The most difficult part
of the proof is in showing (4) implies (1). To do this, one realizes a product of
Severi–Brauer varieties X = X1 × · · · × Xr as a specialization of a generic flag
variety E/P for a certain choice of split semisimple algebraic group G of type AA,
standard generic G-torsor E , and special parabolic P . With mild hypotheses, one
can show that this proves the following claim:

Lemma 3.4. Let G be a split semisimple algebraic group of type AA, E a standard
generic G-torsor, and P a special parabolic subgroup of G. Let X be a product
of Severi–Brauer varieties such that X is a specialization of E/P. Assume the
following conditions hold:

(1) CH(X) is generated by Chern classes.

(2) The canonical surjection CH(E/P)→ grτG(E/P) is an isomorphism.

(3) The specialization K(E/P)→ K(X) is an isomorphism.

Then the canonical surjection CH(X)→ grτG(X) is an isomorphism.

Proof. Since X is a specialization of E/P , there is a commutative diagram

CH(E/P) grτG(E/P)

CH(X) grτG(X)

(D)

where the downward-pointing vertical arrows are specializations and the horizontal
arrows are the canonical surjections.

In the diagram (D) above, the map CH(E/P)→ grτG(E/P) is an isomorphism
by assumption and CH(X) is generated by Chern classes by assumption. Note that
CH(E/P) is also generated by Chern classes, by [Karpenko 2018, Corollary 7.2
and Theorem 7.3]. Since the specialization K(E/P)→ K(X) is an isomorphism
it follows the specialization CH(E/P)→ CH(X) is surjective.

The specialization grτG(E/P)→ grτG(X) is an isomorphism: it fits into the
commutative square

grγK(E/P) grτG(E/P)

grγK(X) grτG(X)

∼

∼

∼

with the vertical arrows being specializations and the horizontal arrows being the
canonical maps. The horizontal arrows are isomorphisms since the Chow rings
CH(E/P) and CH(X) are generated by Chern classes [Karpenko 1998, proof of
Theorem 3.7]; the left-vertical arrow is an isomorphism since by Theorem 2.3 the
isomorphism K(E/P)→ K(X) induces a bijection F i

γ (E/P)∼= F i
γ (X) for all i .



THE CONIVEAU EPIMORPHISM FOR PRODUCTS OF SEVERI–BRAUER VARIETIES 323

Hence the specialization CH(E/P)→ CH(X) is also an injection and therefore
an isomorphism. It follows that the canonical surjection CH(X)→ grτG(X) is an
isomorphism as well, completing the proof. �

The problem is to find the correct G, P , and E that satisfy the conditions of
Lemma 3.4. The naïve method, taking E/P = E1/P1×· · ·×Er/Pr to be a product
of generic flag varieties with each Ei/Pi having X i as a specialization fails in at
least one regard: the algebras associated to such an E/P are usually too unrelated.
That is to say, the specialization in (3) of Lemma 3.4 is typically not a surjection.

The following result of Nguyen, giving a description to the central simple alge-
bras obtained from a G-torsor for split semisimple algebraic groups G of type AA,
provides at least one resolution to this problem.

Theorem 3.5 [Nguyen 2015, Theorem A.1]. Let 0 = GLn1 × · · · × GLnr be a
product of r general linear groups for some integers n1, . . . , nr . Let C be a central
subgroup of 0, and write G = 0/C. Let π : G→ 0/Z(0) be the natural projec-
tion. Then, for every field extension F of k, π∗ identifies H 1(F,G) with the set of
isomorphism classes of r-tuples (A1, . . . , Ar ) of central simple F-algebras such
that the degree of each Ai is deg(Ai )= ni , and A⊗m1

1 ⊗ · · ·⊗ A⊗mr
r is split over F

for every r-tuple of

X ∗(Z(0)/C)= {(m1, . . . ,mr ) ∈ Zr
| τ

m1
1 · · · τ

mr
r = 1 for all (τ1, . . . , τr ) ∈ C}.

To apply the theorem above to get the same description for the algebras associ-
ated to a G-torsor for a split semisimple algebraic group G of type AA, one notes
that such a G is isomorphic to a quotient of a product Gsc = SLn1×· · ·×SLnr by a
central subgroup C of Gsc. One can then use the quotient G ′=Gred/C of the reduc-
tive group Gred

=GLn1×· · ·×GLnr and the canonical inclusion ι :G→G ′, taking
into account that the induced map on cohomology ι∗ : H 1(F,G)→ H 1(F,G ′) is
a surjection (with trivial kernel).

It turns out, with the description given in Theorem 3.5, one has sufficient control
to ensure the conditions of Lemma 3.4 hold (up to introducing some additional
factors, which won’t matter in the end).

Lemma 3.6. Let X1, . . . , Xr be a finite number of Severi–Brauer varieties corre-
sponding to central simple k-algebras A1, . . . , Ar and let X = X1× · · · × Xr be
their product. Let ni = deg(Ai ) for all 1≤ i ≤ r . For every r-tuple of nonnegative
integers I = (i1, . . . , ir ), write DI for the underlying division algebra of the product

A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r

and write YI = SB(DI ) for the associated Severi–Brauer variety. Let

Z = X ×
∏

I<(n1,...,nr )

YI .
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In this setting, there exists a split semisimple algebraic group G of type AA and
a special parabolic P of G so that for any standard generic G-torsor E , the variety
Z is a specialization of E/P and the specialization map K(E/P)→ K(Z) is an
isomorphism.

Proof. For every such r -tuple I = (i1, . . . , ir ) we set m I := ind(DI ) to be the index
of DI . The group

Gsc =

r∏
j=1

SLn j ×

∏
I<(n1,...,nr )

SLm I

is split, semisimple, and simply connected of type AA. We consider the quotient
G := Gsc/S, where S is the subgroup of the center of Gsc consisting of those
elements

(x1, . . . , xr , x(0,...,0), . . . , x(n1−1,...,nr−1))

satisfying the relation x(i1,...,ir ) = x i1
1 · · · x

ir
r (when identified with elements of Gm).

Let E be a standard generic G-torsor. We let

σ : G→ Gad , πi : Gad→ PGLni , πI : Gad→ PGLm I

be the canonical isogeny, projection to the i-th factor for i ≤ r , and projection to
the factor corresponding to the r -tuple I , respectively.

Let Gred be the reductive group

Gred
=

r∏
j=1

GLn j ×

∏
I<(n1,...,nr )

GLm I

and set G ′ = Gred/S. Let T be the kernel of the quotient Gred
→ Gad. We fix the

isomorphism of the character group X ∗(T ) = Hom(T,Gm) ∼= Zn that identifies
the character with weights (i1, . . . , in) with the element (i1, . . . , in). The subgroup
S above is defined so that the inclusion X ∗(T/S)→X ∗(T ) identifies X ∗(T/S)
with the sublattice generated by those elements

(i1, . . . , ir ,−δI (0,...,0), . . . ,−δI (n1−1,...,nr−1)),

where I = (i1, . . . , ir ) < (n1, . . . , nr ) is an r -tuple. For any field extension F of k,
σ∗ : H 1(F,G)→ H 1(F,Gad) factors through the map H 1(F,G)→ H 1(F,G ′), in-
duced by the inclusion of G into G ′. This puts us in position to apply the description
in Theorem 3.5 of the algebras Bi := (πi ◦σ)∗(E), C I := (πI ◦σ)∗(E). In particular,
our choice of S implies B⊗i1

1 ⊗ · · ·⊗ B⊗ir
r is Brauer equivalent with C(i1,...,ir ).

Again by Theorem 3.5, each of the algebras Ai are specializations of the algebras
Bi and, additionally, for every r -tuple I = (i1, . . . , ir ) we have an equality

m I = ind(A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )= ind(B⊗i1
1 ⊗ · · ·⊗ B⊗ir

r ),
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since the underlying division algebra DI of A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r is a specialization
of C I . The first claim then results from the fact that the variety

r∏
i=1

SB(Bi )×
∏

I<(n1,...,nr )

SB(C I )

is isomorphic with E/P , which has Z as a specialization. The second claim results
from the description of the rings K(E/P) and K(Z) given in Theorem 2.2. �

And now for the proof.

Proof of Theorem 3.3. We show (1) implies (2). To start, let G be a group of type
AC and E be a standard generic G-torsor over a field extension F of our base k.
Let Gad be the adjoint group of G; it is isomorphic to a product

Gad =

n∏
i=1

Gi

with each Gi a simple adjoint group of type A or type C . We write σ : G→ Gad

for the canonical isogeny from G to its adjoint and πi :Gad→Gi for the projection
to the i-th factor of Gad.

From the n maps πi ◦ σ with varying i , we obtain n central simple F-algebras
given by the images of E under the pushforwards on Galois cohomology

(πi ◦ σ)∗(E) ∈ im(H 1(F,G)→ H 1(F,Gi )).

Let X be the product of the Severi–Brauer varieties associated to the n algebras
(πi ◦ σ)∗(E). Then X is isomorphic to E/P , where P is a parabolic subgroup
of G whose conjugacy class is given by the subset of the set of vertices of the
Dynkin diagram of G obtained by excluding the first vertex of each of its connected
components. That the parabolic P obtained in this way is special is a consequence
of Lemma 3.8 below since, by [Karpenko 2018, §8], the group σ(P) is special. The
claim now follows from [Karpenko 2018, Corollary 7.2 and Theorem 7.3], which
shows CH(X) is generated by Chern classes, allowing us to apply (1) to X ∼= E/P .

Next note that (2) implies (3) is a consequence of [Karpenko 2017b, Lemma 4.2],
and that (3) implies (4) is obvious.

We finish by showing (4) implies (1). Let X1, . . . , Xr be Severi–Brauer varieties
over a field k corresponding to central simple algebras A1, . . . , Ar , respectively,
and let X = X1× · · ·× Xr be their product. Let ni = deg(Ai ) be the degree of the
algebra Ai . For every r -tuple of nonnegative integers I = (i1, . . . , ir ) we write DI

for the underlying division algebra of the tensor product A⊗i1
1 ⊗· · ·⊗A⊗ir

r . We write
YI :=SB(DI ) for the associated Severi–Brauer variety and Z = X×

∏
I<(n1,...,nr )

YI

for the product of these varieties.
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Let G be an algebraic group of type AA and P its special parabolic subgroup,
obtained from Z as in Lemma 3.6. Let E be a standard generic G-torsor. By
Lemma 3.7 below, to show the epimorphism CH(X)→ grτG(X) is an isomorphism,
it’s sufficient to show CH(Z)→ grτG(Z) is an isomorphism since the projection
Z→ X factors

Z→ X ×
∏

I<(n1,...,nr−1,nr−1)

YI → · · · → X × Y(0,...,0)→ X

with each arrow a projective bundle. Finally, the arrow CH(Z)→ grτG(Z) is an
isomorphism by Lemma 3.4: CH(Z) is generated by Chern classes by repeated
applications of the projective bundle formula and the assumption that CH(X) is
generated by Chern classes, the map CH(E/P)→ grτG(E/P) is an isomorphism
by assumption, and the specialization K(E/P)→ K(Z) is an isomorphism. �

Lemma 3.7. Assume Z is a projective bundle over a variety X. Then the canonical
epimorphism CH(Z)→ grτG(Z) is an isomorphism if and only if the canonical
epimorphism CH(X)→ grτG(X) is an isomorphism.

Proof. The pullback along the projection Z→ X gives a commuting diagram

CH(Z) grτG(Z)

CH(X) grτG(X)

with both vertical arrows injections. It follows if the top-horizontal arrow is an
isomorphism, then the bottom-horizontal arrow is an isomorphism.

The converse follows from the projective bundle formula: the groups CH(Z) and
grτG(Z) are direct sums of copies of the groups CH(X) and grτG(X), respectively,
and the coniveau epimorphism respects this direct sum decomposition. �

Lemma 3.8. Let G be a split semisimple algebraic group over a field F , and let
σ : G → Gad be the canonical isogeny with kernel C , the center of G. If P is a
parabolic subgroup of G such that the image σ(P) is special, then P is special.

Proof. Let L be a Levi subgroup of P . By [Karpenko 2018, §3], P is special if and
only if L is special. Since G is a split reductive group, P is also a split reductive
group so that, by [Karpenko 2018, Theorem 2.1], L is special if and only if the
semisimple commutator L ′ ⊂ L is special. Similarly, σ(P) is special if and only if
σ(L)′ is special. Thus the proof of the lemma can be reduced to the statement that
if L ′ is a split semisimple algebraic group and L ′→ σ(L)′ is an isogeny with σ(L)′

split, semisimple, and special, then L ′ is special. The result then follows from the
fact a split semisimple algebraic group is special if and only if it is a product of
special linear or symplectic groups and all such groups are simply connected. �
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We conclude this section with some remarks on, and special cases of, Conjec-
tures 1.1 and 1.2.

Remark 3.9. One can construct a large class of products X of Severi–Brauer vari-
eties which satisfy the condition that CH(X) is generated by Chern classes. To do
so, let G = PGLn1 × · · · × PGLnr for some n1, . . . , nr ≥ 2; let A1, . . . , Ar be the
central simple algebras associated to a standard generic G-torsor; let X be the prod-
uct of the associated Severi–Brauer varieties. By [Karpenko 2018, Theorem 7.3],
CH(X) has the desired property.

One can extend this class by base change: it’s possible to lower the index of
any tensor product A = A⊗i1

1 ⊗ · · · ⊗ A⊗ir
r by extending the base to the function

field of any generalized Severi–Brauer variety of A. The new variety X obtained
from these algebras also has the property that CH(X) is generated by Chern classes
[Karpenko 1998, Theorem 3.7]. This procedure can be repeated indefinitely.

In fact, to prove Conjecture 1.1 for all products of Severi–Brauer varieties, it
suffices to prove Conjecture 1.1 for the varieties obtained by the above procedure
(one can even restrict to the class whose construction involves the function field of
usual Severi–Brauer varieties only); to go from the above case to the general case,
one can use the specialization argument as in Theorem 3.3.

Example 3.10 (A1×A1 and A1×A1×A1). In small rank cases, one can check
Conjecture 1.2 for G of type AA by hand.

For G as in Conjecture 1.2 of type A1 × A1, observe that for any projective
homogeneous variety X of dimension less than or equal to 2, the epimorphism
CH(X)→ grτG(X) is an isomorphism [Chernousov and Merkurjev 2006, Propo-
sition 4.4].

For G as in Conjecture 1.2 of type A1×A1×A1, one can proceed by cases. If
G is a product of groups of smaller rank, then [Karpenko 2017a, Proposition 4.1]
proves the claim. Otherwise, G is a quotient of SL2× SL2× SL2 by the diagonal
of the center µ2×µ2×µ2 or by the subgroup generated by the partial 2-diagonals.
In the first case, the corresponding generic flag variety is a product C × C × C
of a fixed conic C and the claim follows. In the second case, the corresponding
generic flag variety is a product X = C1×C2×C3, where each Ci is the conic of a
quaternion algebra Qi ; here the sum of the classes [Q1] + [Q2] + [Q3] is trivial in
the Brauer group. Since X is a projective bundle over any two of the factors, this
proves the result by Lemma 3.7.

Example 3.11. Conjecture 1.2 holds for G = SLn/µm by [Karpenko 2017b, The-
orem 1.1] and for products of such groups by [Karpenko 2017a, Proposition 4.1].
From this, one can show that Conjecture 1.1 holds for products X = X1×· · ·× Xr

satisfying the following conditions:
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(1) For each 1≤ i ≤ r there is a prime pi so that the algebra Ai associated to the
variety X i has index pni

i and exponent pmi
i for some integers ni ≥ mi ≥ 1.

(2) The algebras Ai satisfy

ind
(

A
⊗p

mi−1
i

i

)
= ind(Ai )/pmi−1

i .

(3) The algebras Ai are disjoint in the sense that there are equalities

ind
(

A⊗ir
1 ⊗ · · ·⊗ Air

r
)
= ind

(
A⊗i1

1

)
· · · ind

(
A⊗ir

r
)

for all integers i1, . . . , ir .

To see this, one may assume that all Ai are division algebras and use Lemma 3.4.
Property (2) allows one to realize such an X as a specialization of E/P , where
E is a standard generic G =

∏
1≤i≤r SLp

ni
i
/µp

mi
i

-torsor and P ⊂ G is a special
parabolic subgroup whose conjugacy class can be obtained by removing the first
vertex from each of the connected components of the Dynkin diagram of G. The
canonical map CH(E/P)→ grτG(E/P) for this E/P is an isomorphism, as ex-
plained above. Now property (3), [Karpenko 2017a, Lemma 4.3], and Theorem 2.3
show the specialization K(E/P)→ K(X) is an isomorphism.

Appendix A: Algebras with level 1

In this appendix we introduce the level of a central simple k-algebra. The level is
a nonnegative integer that measures, roughly speaking, how far away the algebra
is from having its index equal to its exponent. It’s related to, and depends on, the
reduced behavior of the primary components of the algebra as defined in [Karpenko
1998]. The same concept was considered in [Baek 2015], there as the length of a
reduced sequence obtained from the reduced behavior of a p-primary algebra for
a prime p; the length of this reduced sequence as defined by Baek is equal to the
level of the p-primary algebra as defined here.

It turns out the level of a central simple algebra A can be used to obtain detailed
information on λ-ring generators for the Grothendieck ring of the Severi–Brauer
variety X of A; see Lemma A.6. A particular consequence of this is that the subring
of CH(X) which is generated by Chern classes has an explicit and small set of
generators that can be helpful for computational purposes. Using this more refined
information based on the level, we’re able to generalize the results of [Karpenko
2017b] to prove the main result, Theorem A.15, that the K-theory coniveau epimor-
phism is an isomorphism for Severi–Brauer varieties whose Chow ring is generated
by Chern classes and whose associated central simple algebra has level 1.

Throughout this appendix we work with a fixed prime p and we continue to
work over the fixed but arbitrary field k. We write vp( – ) for the p-adic valuation.
We’ve relegated some computations needed in this section to Appendix B.
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Recall, the reduced behavior of an algebra A with index ind(A)= pn and expo-
nent exp(A)= pm , 0< m ≤ n, is defined to be the following sequence of p-adic
orders of increasing p-primary tensor powers of A:

rBeh(A)=
(
vp(ind(A⊗pi

))
)m

i=0

=
(
vp(ind(A)), vp(ind(A⊗p)), . . . , vp(ind(A⊗pm

))
)
.

The reduced behavior of A is strictly decreasing; it starts with vp(ind(A))= n and
ends with vp(ind(A⊗pm

))= 0.

Definition A.1. A is said to have level l, abbreviated lev(A) = l, if there exist
exactly l distinct integers i1, . . . , il ≥ 1 with vp(ind(A⊗pik

))< vp(ind(A⊗pik−1
))−1

for every 1≤ k ≤ l. If no such integers exist, A is said to have level 0. An arbitrary
central simple algebra B, not necessarily p-primary, is said to have level l if l is
the maximum

l = max
q prime

{lev(Bq)}

of the levels of the q-primary components Bq of B.

Example A.2. A central simple algebra A has level 0, i.e., lev(A)= 0, if and only
if the index and exponent of A coincide: ind(A)= exp(A).

Example A.3. If A is a generic algebra of degree pn and exponent pm with m < n,
in the sense of Example 3.2, then the level of A is 1, i.e., lev(A)= 1. The reduced
behavior for this algebra is

rBeh(A)=
(
vp(ind(A)), vp(ind(A⊗p)), . . . , vp(ind(A⊗pm

))
)

= (n, n− 1, . . . , n−m+ 1, 0).

To see this, note that with a large enough field extension F of k one may find a
central division F-algebra B with index pn , exponent pm , and reduced behavior
rBeh(B)= (n, n− 1, . . . , n−m+ 1, 0) [Karpenko 1998, Lemma 3.10]. Since B
is a specialization of A it follows that

pn−i
≥ ind(A⊗pi

)≥ ind(B⊗pi
)= pn−i

for i = 0, . . . ,m− 1, so that equalities hold throughout.

We make the following definition for notational convenience.

Definition A.4. The Chern subring of a smooth variety X , denoted CS(X), is the
subring of CH(X) which is generated by all Chern classes of elements of K(X).

Proposition A.5. Let X be the Severi–Brauer variety of a central simple algebra
A with ind(A) = pn and lev(A) = r . Then CS(X) is generated, as a ring, by the
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Chern classes of r + 1 sheaves on X. Namely, the sheaves whose Chern classes
generate CS(X) are

ζX (1), ζX (pi1), . . . , ζX (pir ),

where 1≤ i1 < · · ·< ir are the r distinct integers with

vp(ind(A⊗pik
)) < vp(ind(A⊗pik−1

))− 1.

Proof. It suffices to show that K(X) is generated by the classes of

ζX (1), ζX (pi1), . . . , ζX (pir )

as a λ-ring; this is because Chern classes of λ-operations of an element of K(X)
are certain universal polynomials in the Chern classes of this element. This is done
in the next lemma. �

Lemma A.6. Let X be the Severi–Brauer variety of a central simple algebra A
with ind(A) = pn and lev(A) = r . Then K(X) is generated, as a λ-ring, by r + 1
elements. Namely, the sheaves whose classes generate K(X) are

ζX (1), ζX (pi1), . . . , ζX (pir ),

where 1≤ i1 < · · ·< ir are the r distinct integers with

vp(ind(A⊗pik
)) < vp(ind(A⊗pik−1

))− 1.

Proof. Since the pullback π∗ :K(X)→K(X L) to a splitting field L of A is injective,
we can work, instead of K(X) itself, with its image in K(X L). We’ll write ξ to
denote the class of O(−1) in K(X L). By the comments under Theorem 2.1 we
have π∗(ζX (i))= ind(A⊗i )ξ i . It follows that the elements ind(A⊗i )ξ i with i ≥ 0
generate K(X) as an abelian group.

The λ-operations of any multiple of ξ i are easy to compute:

λ j (dξ i )=

(
d
j

)
ξ i j for any i, j, d ≥ 0.

Let us first show that the elements ind(A⊗p j
)ξ p j

( j ≥ 0) generate K(X) as
a λ-ring. Since the λ-subring generated by these elements contains powers of
ind(A)ξ = pnξ , we only need to check that, for every i ≥ 1, this subring contains an
integer multiple of ξ i whose coefficient has p-adic valuation equal to vp(ind(A⊗i )).
For this, given any i ≥ 1, we write i = p j s with j ≥ 0 and s prime to p. We set
pv := ind(A⊗i ) = ind(A⊗p j

). Write further s = s0 pv + s1 with 0 ≤ s1 < pv

and s0 ≥ 0. Then we have λpv (pvξ p j
) = ξ p j pv and λs1(pvξ p j

) is a multiple of
ξ p j s1 with p-adic valuation of the (binomial) coefficient of this multiple equal to v;
see [Karpenko 1998, Lemma 3.5]. The claim we are checking follows.
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It remains to show if vp(ind(A⊗p j
)) ≥ vp(ind(A⊗p j−1

))− 1 for some j ≥ 1,
then the generator ind(A⊗p j

)ξ p j
can be omitted. Let us set pv := ind(A⊗p j−1

). If
v = 0, then we get ξ p j

as a p-th power of ξ p j−1
= ind(A⊗p j−1

)ξ p j−1
. For v > 0,

we consider the λ-operation λp(pvξ p j−1
) which is a multiple of ξ p j

with p-adic
valuation of its coefficient equal to v− 1≤ vp(ind(A⊗p j

)). �

To systematically study the relations between the Chern classes of the sheaves
appearing in Proposition A.5, we introduce the following notation.

Definition A.7. Let A be a central simple algebra and X the Severi–Brauer variety
of A. We write CT(i1, . . . , ir ; X) for the graded subring of CS(X) ⊂ CH(X)
generated by the Chern classes of the sheaves ζX (i1), . . . , ζX (ir ).

Proposition A.8. Let X be the Severi–Brauer variety of a central simple algebra A.
Then, for any i > 0, CT(i; X) ⊗ Z(p) is a free Z(p)-module. Furthermore, for
0≤ j < deg(A) the group CT j (i; X)⊗Z(p) is additively generated by

τi ( j) := cpv (ζX (i))s0cs1(ζX (i)),

where pv is the largest power of p dividing ind(A⊗i ) and j = pvs0 + s1 with
0≤ s1 < pv.

Proof. By first extending to a prime-to-p extension (which is an injection when
CH(X)⊗Z(p) has Z(p)-coefficients) that splits the prime-to-p components of A,
we can assume A is p-primary. We continue by reducing to the case i = 1.

Lemma A.9. Let X be the Severi–Brauer variety of a central simple algebra A,
and let Y be the Severi–Brauer variety of A⊗i . Then there is a functorial surjection

CT(1; Y )� CT(i; X).

Proof. Let
X→ X×i

→ Y

be the composition of the diagonal embedding and the twisted Segre embedding.
The corresponding maps on Grothendieck groups can be determined by moving to
a splitting field L of X . There is a commutative diagram

K(YL) K(X×i
L ) K(X L)

K(Y ) K(X×i ) K(X)

defined so that under the top-horizontal maps we have

OYL (−1) 7→OX L (−1)� · · ·�OX L (−1) 7→OX L (−i).

Thus, the class of ζY (1) on Y is mapped to the class of ζX (i) on X .
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So, under the composition of the diagonal X → X×i and the twisted Segre
embedding X×i

→ Y , there is a surjection CT(1; Y )� CT(i; X) induced by the
pullback CH(Y )→ CH(X). �

Next we reduce to the case our algebra is division. Let D be the underlying
division algebra of A, and Y the Severi–Brauer variety of D. Fix an embedding
Y → X so that, over a splitting field of both, the inclusion is as a linear subvariety.
The pullback

CH(X)⊗Z(p)→ CH(Y )⊗Z(p)

is an isomorphism in degrees where both groups are nonzero. If the claim is true
for CH(Y )⊗Z(p) then, since the pullback is functorial for Chern classes, we find
CT j (1; X) ⊗ Z(p) is a free Z(p)-module of rank 1 in degrees 0 ≤ j < deg(D).
That this holds is due to [Karpenko 2017b, Proposition 3.3], where it’s shown that
CT(1; X) is free if A is division. This serves as the base case for an induction proof.

In an arbitrary degree j with deg(D)≤ j < deg(A), we assume the claim is true
for all degrees 0≤ k < j . It suffices to show the map

CT j−pv (1; X)⊗Z(p)→ CT j (1; X)⊗Z(p)

defined by multiplication by τ1(pv)= cpv (ζX (1)) is surjective and, by Nakayama’s
lemma, we can do this modulo p. Any element of CT j (1; X) is a sum of monomials
of the form τ1( j− pv)cn1

i1
· · · cnr

ir
with ci = ci (ζX (1)). We claim any such monomial

which is not τ1( j)= τ1( j − pv)τ1(pv) is congruent to 0 modulo p.
Indeed, if such a monomial was divisible by ci1, ci2 then without loss of gener-

ality we can assume vp(i2) ≤ vp(i1) < v. By [Karpenko 2017b, Proposition 3.5]
there is a field F finite over the base so that vp ind(AF )= vp(i1), and ci1 = π∗(x)
for an element x of CH(X F )⊗Z(p) and where π : X F→ X is the projection. Using
the projection formula we find

ci1ci2 = π∗(x)ci2 = π∗(xπ
∗(ci2)).

By Lemma A.10 below, it follows π∗(ci2) is divisible by p, which proves the claim.
To see the generators are as claimed for i = 1, one can compute the degrees of

the images of the Chern classes of ζX (1) over an algebraic closure; for the other i ,
one can use Lemma A.9. �

Lemma A.10. Let X be the Severi–Brauer variety of a central simple algebra A
with ind(A) = pv. Let F be a field with pv−s

= ind(AF ) < ind(A) = pv and let
π : X F → X be the projection. Then

π∗(c j (ζX (1)))= 0 (mod p)

for all j not divisible by pv.
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Proof. We have π∗(ζX (1))= ζX F (1)
⊕ps

with ps
= ind(A)/ind(AF ). By functori-

ality we have
π∗(c j (ζX (1)))= c j (ζX F (1)

⊕ps
).

We’re going to compute the total Chern polynomial of ζX F (1)
⊕ps

modulo p. If F
splits A then ct(ζX F (1)

⊕ps
) = (1− h)ps

= 1± h ps
(mod p), where h is the class

of a hyperplane in CH(X F ). Otherwise v 6= s and we have

ct(ζX F (1)
⊕ps
)= ct(ζX F (1))

ps
= (1+ c1t + · · ·+ cpv−s t pv−s

)ps

with ci = ci (ζX F (1)). Using the multinomial formula, the latter expression can be
rewritten

(1+ c1t + · · ·+ cpv−s t pv−s
)ps

= 1+
pv∑

j=1

( ∑
|I |=ps

i1+2i2+···+pv−s i pv−s= j

( ps

i0, i1, . . . , i pv−s

)
ci1

1 · · · c
i pv−s

pv−s

)
t j .

Here the notation means ( n
a0, . . . , ai

)
=

n!
a0! · · · ai !

and I = (i0, . . . , i pv−s ) is a tuple of nonnegative integers with |I | = i0+· · ·+ i pv−s .
By Lemma B.3, p divides all of the coefficients( ps

i0, . . . , i pv−s

)
except when ps divides one of i0, . . . , i pv−s . We are left to show cps

ik
= 0 modulo p

for any k = 0, . . . , pv−s
−1. Using [Karpenko 2017b, Proposition 3.5], we can find

a finite field extension E/F lowering the index of AF and such that cik = ρ∗(x)
for some x in CH(X E)⊗Z(p) and for ρ : X E → X F the projection. The projection
formula then gives

cps

ik
= ρ∗(x(ρ∗ρ∗(x))ps

−1)= 0 (mod p)

since ρ∗ρ∗ = [E : F]. �

Corollary A.11. Let A be a central simple algebra and X its associated Severi–
Brauer variety. The classes τi ( j) of CH(X)⊗Z(p) satisfy the following relations:

(1) For all i ≥ 1, we have τi (0)= 1.

(2) For any j ≥ 0, we have τi (pv)τi ( j)= τi (pv j), where v = vp(ind(A⊗i )).

(3) For any integers a1, . . . , apv ≥ 0, there is a relation

τi (1)a1 · · · τi (pv)apv = ατi (a1+ 2a2+ · · ·+ pvapv )
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for some α in Z(p) with

vp(α)=


0 if v = 0,∑pv

k=1(v− vp(k))ak if v > 0 and j = 0 (mod pv),
vp(r)− v+

∑pv

k=1(v− vp(k))ak if v > 0 and j 6= 0 (mod pv),

where we write j = a1+ 2a2+ · · · + pvapv and 0≤ r < pv is the remainder
in the division of j by pv.

Proof. We remark that the definition of the classes τi ( j) makes sense for any integer
j ≥ 0, but when j > deg(A), these classes are 0. For simplifications below, we
don’t put any upper bound on the value j may have.

The relation (1) is obvious from the definition. The relation (2) is also clear
from the definition. So we’re left proving the complicated relation (3). To do this,
we pullback, to a splitting field L , the left and right side of the equation in (3)
and compare p-adic valuations of their coefficients on the element h j , where h is
the class of a hyperplane over L . Some immediate observations for the following:
we can assume j isn’t larger than the dimension of X and we can assume v > 0;
otherwise the claim is trivial.

The pullback of τi (1)a1 · · · τi (pv)apv can be written βh j , where

vp(β)=

pv∑
k=1

(v− vp(k)+ vp(i)k)ak .

Similarly, the pullback of τi (a1+ · · ·+ pvapv ) can be written γ h j with

vp(γ )=

{
vp(i)pvs0 if j = 0 (mod pv),
vp(i)pvs0+ v− vp(s1)+ vp(i)s1 if j 6= 0 (mod pv),

where j = s0 pv + s1 and 0 ≤ s1 < pv. Since vp(γ ) ≥ vp(β) by Proposition A.8,
the result follows by subtracting. �

Lemma A.12. Let A be a central simple algebra with ind(A)= pn and rBeh(A)=
(n0, . . . , nm). Let X be the Severi–Brauer variety of A. Then, for any pair of
integers i, j with 0≤ i ≤ j ≤ m, the total Chern polynomial

ct(ζX (p j ))pni−n j−( j−i)
= 1+

pni−( j−i)∑
k=1

βkτp j (k)tk

is a polynomial with coefficients in CT(pi
; X)⊗Z(p).

Moreover, the p-adic valuation of the coefficient βk equals

vp(βk)=

{
ni − n j − ( j − i)− vp(k/pn j ) if k = 0 (mod pn j ),

ni − n j − ( j − i) if k 6= 0 (mod pn j ).
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Proof. We identify K(X) with its image in K(X L) for a splitting field L of X . We
write ξ for the class of O(−1) in K(X L). Then the class of ζX (pi ) is identified
with pni ξ pi

and the class of ζX (p j ) is identified with pn j ξ p j
. We have

λp j−i
(pni ξ pi

)=
( pni

p j−i

)
ξ p j
.

It follows that

ct(pni−( j−i)ξ p j
)= ct(pni−( j−i)−n j (pn j ξ p j

))

= ct(ζX (p j ))pni−n j−( j−i)

= (1+ τp j (1)t + · · ·+ τp j (pn j )t pn j
)pni−n j−( j−i)

is a polynomial with coefficients contained in CT(pi
; X)⊗Z(p). This proves the

first claim.
To prove the second claim, we write

(1+ τp j (1)t + · · ·+ τp j (pn j )t pn j
)pni−n j−( j−i)

= 1+
pni−( j−i)∑

k=1

βkτp j (k)tk

using Proposition A.8. Explicitly there are equalities

βkτp j (k)=
∑

I

( pni−( j−i)−n j

I

)
τ I

p j ,

where the sum runs over tuples I = (a0, . . . , apn j ) such that a0 + · · · + apn j =

pni−( j−i)−n j and a1+ 2a2+ · · ·+ pn j apn j = k; here we’re using the notation( pni−( j−i)−n j

I

)
=

( pni−( j−i)−n j

a0, . . . , apn j

)
=

pni−( j−i)−n j !

a0! · · · apn j !

and
τ I

p j = τp j (0)a0τp j (1)a1 · · · τp j (pn j )
ap

n j

for a tuple I = (a0, . . . , apn j ). Thus

vp(βk)= vp

(∑
I

( pni−( j−i)−n j

I

)
αI

)
≥min

{
vp

(( pni−( j−i)−n j

I

)
αI

)}
,

where αI is the coefficient in τ I
p j =αI τp j (k) from Corollary A.11. In fact, the above

inequality is an equality if there is a unique minimum over the given tuples I . The
p-adic valuation of any coefficient( pni−( j−i)−n j

I

)
αI
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can be found using Corollary A.11 and Lemma B.2; the p-adic valuation of any
such coefficient can also be bounded below using Corollary A.11 and Lemma B.3.
With this bound, one can show there is a unique minimum among the p-adic valu-
ation of these coefficients: set s = ni − ( j − i) and r = n j in Lemma B.4. Finally,
using Lemma B.2 to compute the valuation explicitly and using Lemma B.5, setting
s = ni − ( j − i) and r = n j , shows the p-adic valuation of βk is as claimed. �

The lemma above provides numbers βk such that βkCTk(p j
; X)⊂ CTk(1; X).

Using a technique developed in [Karpenko 2017b], we can reduce the size of the
β j further. We assume A is a division algebra in the following as this is the only
case we need.

Corollary A.13. Let A be a division algebra with ind(A) = pn and rBeh(A) =
(n0, . . . , nm). Let X be the Severi–Brauer variety of A. Pick an integer 0≤ j ≤ m,
and let 0≤ i ≤ pn

− 1 be a second integer.
There exists a number αi in Z(p) so that αiτp j (i) is contained in CT(1; X)⊗Z(p).

Moreover, the p-adic valuation of the αi we find equals

vp(αi )=


n− j − n j if 1≤ i ≤ pn j ,

n− j − n j −blogp(i/pn j )c if pn j < i ≤ pn− j ,

0 otherwise.

Proof. Let L be a maximal subfield of A, of degree pn over the base, and let N
be the image of the pushforward π∗ : CH(X L)⊗Z(p)→ CH(X)⊗Z(p) along the
projection π : X L → X . By [Karpenko 2017b, Proposition 3.5], the image N is
contained in CT(1; X)⊗ Z(p). Recall also that the pullback π∗ followed by the
pushforward π∗ is multiplication by pn , the degree of L over the base. The proof
of the corollary mimics that of [Karpenko 2017b, Proposition 3.12]; the idea of the
proof is to use the explicit bounds of Lemma A.12 and the projection formula to
get the result for any i . Note that the claim is trivial for j = 0 (or we can just set
αi = 1 in this case) so, throughout the proof, it’s safe to assume j > 0.

We first show, for each i ≤ pn− j and using βi for the coefficient such that
βi CTi (p j

; X)⊂CTi (1; X) found in Lemma A.12, that pvp(βi )τp j (i) is in the image
of the map π∗. Write i = s0 pn j + s1 with 0 ≤ s1 < pn j . The image of τp j (i) in
CH(X L)⊗Z(p) is equal, up to prime-to-p parts, to

π∗(τp j (i))=
{

pi j hi if s1 = 0,
pi j+n j−vp(s1)hi if s1 > 0.

By Lemma A.12, the multiple βiτp j (i) has image, up to prime-to-p parts,

π∗(βiτp j (i))= pn+(i−1) j−vp(i)hi
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regardless of s1. Thus,

pvp(βi )τp j (i)= 1
pn π∗π

∗(pvp(βi )τp j (i))

= π∗

( 1
pn

(
π∗(pvp(βi )τp j (i))

))
= π∗(p(i−1) j−vp(i)hi ).

Since (i − 1) j − vp(i)≥ 0, we find pvp(βi )τp j (i) is in N as claimed.
Now let i be an integer with 1≤ i ≤ pn

− 1 and set `= blogp(i/pn j )c. To get
the bounds on the p-adic valuation in the corollary statement, we work in cases.
We first assume ` ≥ n − j − n j , or equivalently, i ≥ pn− j . By the above and
Lemma A.12, we can find an element x of CH(X L) with

π∗(x)= τp j (pn− j ).

Set k = i − pn− j . Then, using (2) and (3) of Corollary A.11,

τp j (i)= τp j (pn j )n− j−n j τp j (k)= τp j (pn− j )τp j (k)

= π∗(x)τp j (k)= π∗(xπ∗(τp j (k))).

It follows from [Karpenko 2017b, Proposition 3.5] that τp j (i) is contained in
N ⊂ CT(1; X)⊗Z(p) for all i ≥ pn− j .

For the other i , we act similarly. If pn j < i ≤ pn− j , then set k = i− pn j+`. Then
there is a (different) element x with π∗(x)= prτp j (p`+n j ), where r = vp(βp`+n j ).
Then

prτp j (i)= prτp j (pn j )`τp j (k)= prτp j (p`+n j )τp j (k)

= π∗(x)τp j (k)= π∗(xπ∗(τp j (k)))

and the claim follows as before.
For the remaining i , when i ≤ pn j , the claim actually follows immediately from

Lemma A.12. �

We can do better still if we multiply the classes τ1(i) and τp j (k) for some integers
i, k ≥ 0.

Corollary A.14. Let A be a division algebra with ind(A) = pn and rBeh(A) =
(n0, . . . , nm). Let X be the Severi–Brauer variety of A. Pick an integer 0≤ j ≤ m,
and let 1≤ i, k ≤ pn

− 1 be two integers with i + k ≤ pn
− 1.

There exists a number βi,k in Z(p) such that βi,kτ1(i)τp j (k) is contained in
CT(1; X)⊗Z(p). Moreover, the p-adic valuation of the βi,k we find equals

vp(βi,k)=


max{vp(i)− j − n j , 0} if 1≤ k ≤ pn j ,

max{vp(i)− j − n j −blogp(k/pn j )c, 0} if pn j < k ≤ pn− j ,

0 otherwise.
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Proof. The proof is the same as Corollary A.13 except that we use the equality

π∗(βkτ1(i)τp j (k))= pn+(k−1) j−vp(k)+n−vp(i)hi+k,

up to prime-to-p parts, to find pvp(βi,k)τ1(i)τp j (k) is contained in N . �

As an application, the above corollary can be used to settle the particular case of
Conjecture 1.1 when X is the Severi–Brauer variety of an algebra A with level 1:

Theorem A.15. Let A be a central simple k-algebra of level 1 and let X be the
Severi–Brauer variety of A. Assume CH(X) is generated by Chern classes. Then
the K-theory coniveau epimorphism CH(X)→ grτG(X) is an isomorphism.

Proof. It’s sufficient to show the claim when A is a division algebra of index pn . In
this case the kernel of the epimorphism CH(X)→ grτG(X) is p-primary-torsion
so we can work with Z(p) coefficients throughout the proof. Let L be a splitting
field for A. Since CT(1; X)⊗Z(p) is p-torsion free, the composition

CT(1; X)⊗Z(p)→ CH(X)⊗Z(p)→ grτG(X)⊗Z(p)

is injective; we denote by C the image of this composition. We have an inequality

[CH(X)⊗Z(p) : CT(1; X)⊗Z(p)] ≥ [grτG(X)⊗Z(p) : C]. (in)

We’re going to use the bounds from Corollary A.14 to get an upper bound on the
left of (in). We’ll also bound the right of (in), by computing

[grτG(X)⊗Z(p) : C] =
[grτG(X L) : C]
[K(X L) : K(X)]

precisely; the equality of the ratio of these indices can be found in [Karpenko
2017b, proof of Theorem 3.1]. The proof will be completed once we show these
two bounds are equal.

To get an upper bound on the left of (in), we sum the maximums of the p-adic
valuations occurring in Corollaries A.13 and A.14. Plainly said, we compute an
upper bound on p-adic valuations of the orders of the elements τ1(i)τpr (k), where
r is the (unique since A has level 1) smallest positive integer with

vp(ind(A⊗pr
)) < vp(ind(A⊗pr−1

))− 1,

in the group CH(X)/CT(1; X). Note that by Proposition A.5 and Proposition A.8,
the elements τ1(i)τpr (k) are exactly the generators of this quotient group, so that
by computing an upper bound on their orders and raising p to this upper bound,
we also compute an upper bound on the index in the left of (in). Once we have
this upper bound, we’ll move on to give a lower bound for the right-hand side of
(in). These two bounds turn out to be equal, showing that our upper bound on the
orders were in fact their precise order.
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Set nr = vp(ind(A⊗pr
)) and `=n−r−nr . When i = 0, we sum the contributions

from Corollary A.13,

pnr−1∑
a=1

n− r − nr +

pn−r
−1∑

a=pnr

n− r − nr −blogp(a/pnr )c

= (pnr − 1)`+
`−1∑
b=0

ϕ(pnr+b+1)(`− b),

where ϕ is the Euler totient function (we use this function to combine those terms
a that have the same value of blogp(a/pnr )c; there are exactly ϕ(pnr+b+1) =

pnr+b+1
− pnr+b such terms with value b, i.e., pnr+b, . . . , pnr+b+1

− 1). When
i > 0, we only need to account for the terms with vp(i) > n− ` (note if `= 1 then
r + nr = n− 1 and there are no terms of this kind):

pnr−1∑
b=1

vp(i)− r − nr +

pvp (i)−r
−1∑

b=pnr

vp(i)− r − nr −blogp(b/pnr )c

= (pnr − 1)(vp(i)− r − nr )+

vp(i)−r−nr−1∑
b=0

ϕ(pnr+b+1)(vp(i)− r − nr − b).

Of the integers i satisfying 1≤ i < pn , there are ϕ(p`−1) integers i with vp(i)=
n− `+ 1, there are ϕ(p`−2) integers i with vp(i)= n− `+ 2, and so on to ϕ(p)
integers i with vp(i)= n−`+ (`−1). Summing over all such i with vp(i) > n−`,
we get

`−1∑
a=1

ϕ(p`−a)

(
(pnr − 1)a+

a∑
b=0

ϕ(pnr+b+1)(a− b)
)
.

Combining both the i = 0 and i > 0 contributions gives a definitive upper bound
of

S =
∑̀
a=1

ϕ(p`−a)

(
(pnr − 1)a+

a∑
b=0

ϕ(pnr+b+1)(a− b)
)
.

To get a lower bound on the right of (in), we calculate [grτG(X)⊗ Z(p) : C]
precisely. Since this index equals

[grτG(X L) : C]
[K(X L) : K(X)]

,

it’s sufficient to calculate the numerator and denominator of this fraction. The
numerator depends only on the dimension of X and equals

pn∏
i=1

(pn−vp(i))=

n−1∏
j=1

(pn− j )ϕ(p
n− j ).
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The denominator depends on the reduced behavior of A and equals

pn
−1∏

i=0

ind(A⊗i )=

( r−1∏
j=0

(pn− j )ϕ(p
n− j )

)(nr+r∏
j=r

(pnr+r− j )ϕ(p
n− j )

)
.

Dividing the two gives

P =
(nr+r∏

i=r

(p`)ϕ(p
n−i )

)( n∏
i=nr+r+1

(pn−i )ϕ(p
n−i )

)
.

What remains to be shown is the equality logp(P)= S. A computation of the
logarithm gives

logp(P)= logp

(nr+r∏
i=r

(p`)ϕ(p
n−i )

n∏
i=nr+r+1

(pn−i )ϕ(p
n−i )

)

=

nr+r∑
i=r

`ϕ(pn−i )+

n∑
i=nr+r+1

(n− i)ϕ(pn−i )

= `(pn−r
− p`−1)+

n−r−nr−1∑
i=1

iϕ(pi )

= `(pn−r
− p`−1)+

(`− 1)p`− `p`−1
+ 1

p− 1

= `pn−r
−

p`− 1
p− 1

.

And by simplifying the sum S we find

S =
∑̀
a=1

ϕ(p`−a)

(
(pnr − 1)a+

a∑
b=0

ϕ(pnr+b+1)(a− b)
)

=

∑̀
a=1

ϕ(p`−a)(pnr − 1)a+
∑̀
a=1

ϕ(p`−a)

a∑
b=0

ϕ(pnr+b+1)(a− b)

=
pn−r
− pnr

p− 1
−

p`− 1
p− 1

+

∑̀
a=1

ϕ(p`−a)

(
pnr (pa+1

− (a+ 1)p+ a)
p− 1

)

=
pn−r
− pnr

p− 1
−

p`− 1
p− 1

+
`pn−r+1

− (`+ 1)pn−r
+ pnr

p− 1

= `pn−r
−

p`− 1
p− 1

,

as desired. �
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Appendix B: p-adic valuations

Fix a prime p to be used throughout this appendix. For any integer n ≥ 0, let Sp(n)
denote the sum of the base-p digits of n. In other words, if n= a0+a1 p+· · ·+ar pr

with 0≤ a0, . . . , ar ≤ p−1 then Sp(n)= a0+a1+· · ·+ar . This appendix proves
some simple results on the function Sp and on p-adic valuations involving this
function. The proof for the next lemma is elementary and we omit it.

Lemma B.1. Let n ≥ 0 be an integer.

(1) Sp(pn)= 1.

(2) Sp(pna)= Sp(a) for any integer a ≥ 0.

(3) Sp(pn
− 1)= n(p− 1).

(4) If 0≤ k ≤ n then Sp(pn
− pk)= (n− k)(p− 1).

(5) If 0≤ a ≤ pn then Sp(pn
− a)+ Sp(a)= (n− vp(a))(p− 1)+ 1.

(6) If 0≤ a ≤ pn
− 1 then Sp(pn

− 1− a)+ Sp(a)= n(p− 1).

We use the notation ( n
a0, . . . , ar

)
=

n!
a0! · · · ar !

.

If a0+ · · ·+ ar = n then we have the following:

Lemma B.2. Let n = a0+ · · ·+ ar with n, a0, . . . , ar ≥ 0. Then

vp

(( n
a0, . . . , ar

))
=

1
p−1

(( r∑
i=0

Sp(ai )

)
− Sp(n)

)
.

Proof. See, for example, [Merkurjev 2003, Lemma 11.2]. �

Lemma B.3. Let a0, . . . , ar ≥ 0 and n > 0 be integers with a0+· · ·+ar = n. Then

vp

(( n
a0, . . . , ar

))
≥ vp(n)− min

0≤i≤r
{vp(ai )}.

Proof. See, for example, [Merkurjev 2003, Lemma 11.3]. �

Lemma B.4. Let 0≤r≤s be integers. Fix an integer 0< j≤ ps . Let a0, . . . , apr ≥0
be integers with a0 + · · · + apr = ps−r and a1 + 2a2 + · · · + pr apr = j . Write
j = s0 pr

+ s1 with 0≤ s1 < pr . Then if s1 = 0, there is an inequality

s− r − min
0≤k≤pr

{vp(ak)}+

pr∑
i=1

(r − vp(i))ai ≥ s− r − vp(s0),

and if s1 > 0, there is an inequality

s− r − min
0≤k≤pr

{vp(ak)}− (r − vp(s1))+

pr∑
i=1

(r − vp(i))ai ≥ s− r.
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If s1 = 0, then equality holds if and only if a0 = ps−r
− s0 and apr = s0. If s1 > 0,

then equality holds if and only if a0 = ps−r
− s0− 1, as1 = 1, and apr = s0.

Proof. We first assume s1 = 0. If `=min{vp(ak)} is 0, then the inequality clearly
holds since r − vp(i) ≥ 0 for all 1 ≤ i ≤ pr . If ` > 0 and r = 0, then j = a1 and
j = s0. So ` is either vp(a0) = vp(ps

− j) or vp(a1) = vp( j) = vp(s0). Since
j ≤ ps , it follows ` = vp(s0) and the claim follows with equality in this case. If
`=min{vp(ak)}> 0, then since r−vp(i)≥ 0 for all 1≤ i ≤ pr , the inequality also
holds if r 6= 0 and if there is a nonzero ai with i 6= 0, pr as (r − vp(i))ai − `≥ 0.

Thus, to prove that the inequality holds in general (for s1 = 0), it suffices to
assume ` > 0, r > 0, and ai = 0 unless i = 0 or i = pr . Assuming this is the case,
it follows from the assumption pr apr = j that apr = s0 and from the assumption
a0+apr = ps−r that a0 = ps−r

−s0. Since s0 ≤ ps−r , we also have vp(apr )≤ s−r
so that vp(a0) = vp(apr ) unless apr = ps−r (in which case vp(a0) = ∞ and the
claim is clear). Thus `= vp(s0), the inequality holds, and it is even an equality in
this case.

To see that a0 = ps−r
− s0 and apr = s0 is the only case the inequality is an

equality, one can work through the same cases. If `= 0 and there is equality, then
vp(s0)= 0 and the large summation must equal 0. Hence pr apr = j and the claim
follows. If ` > 0, then either r = 0 or r > 0. If r = 0, the claim follows from the
first paragraph. If r > 0, then either all ai with i 6= 0, pr vanish or there is at least
one 0< i < pr with ai 6= 0. We can assume the latter case where the inequality is
a strict inequality since (r − vp(i))ai − `≥ ai − ` > 0.

To show the claim when s1 > 0, we work through cases similar to before. Note
now r > 0 holds always, as otherwise we’d have s1 = 0. If ` = min{vp(ak)} = 0
then since r − vp(i)≥ 0, we’re left to show that the summation

pr∑
i=1

(r − vp(i))ai

is greater than or equal to r − vp(s1)≤ r . Since s1 > 0, there is a smallest integer k
with 0≤ k ≤ r − 1, abpk 6= 0, and b relatively prime to p. It follows that pk divides
s1 and −(r − vp(s1)) ≥−r + k. Since (r − vp(bpk))abpk = (r − k)abpk ≥ (r − k),
we find that the inequality holds by summing

(r − vp(bpk))abpk − (r − vp(s1))≥ (r − k)− (r − k)= 0.

Thus to prove the inequality holds in general, it suffices to assume ` > 0. Under
our assumptions ` > 0, r > 0, and j 6= pr apr , we have that there exists at least one
i with i 6= 0, pr such that ai 6= 0. Let k be the smallest integer between 0≤ k < r
such that abpk 6= 0 for some b relatively prime to p. It follows pk divides s1, and
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hence −(r − vp(s1))≥−r + k. Now

(r − vp(bpk))abpk − r + vp(s1)− `≥ (r − k)p`− r + vp(s1)− `

= (r − k)(p`− 1)− `+ vp(s1)

≥ (p`− 1− `)+ vp(s1)

≥ 0.

We end by showing that equality holds, assuming s1 > 0, only in the specified
case (it’s clear equality holds in this case). We first assume `= 0. For equality to
hold, we must have

pr∑
i=1

(r − vp(i))ai = r − vp(s1).

Again there is a minimal 0≤ k < r with abpk 6= 0 for some b relatively prime to p.
We also get that pk divides s1. It follows that

(r − vp(bpk))abpk = (r − k)abpk ≥ (r − k)≥ r − vp(s1)

must be an equality. Hence abpk = 1 and we are in the specified case.
We next assume ` > 0 and show our inequality is strict. Let k with 0 ≤ k < r

be minimal with abpk 6= 0 for some b relatively prime to p. Then
pr∑

i=1

(r − vp(i))ai ≥ (r − k)p`.

Since `+r −vp(s1)≤ `+r − k it suffices to check (r − k)p` > `+r − k holds for
all (r − k), ` > 0 in order to show this is a strict inequality in this case. But this
is true since dividing by r − k yields p` > `/(r − k)+ 1; making another estimate
we can show p` > `+ 1 for all ` and this is always true for ` > 0 and p ≥ 2. �

Lemma B.5. Let 0 ≤ r ≤ s be integers. Fix an integer 1 ≤ j ≤ ps and write
j = s0 pr

+ s1 with 0≤ s1 < pr .
If s1 = 0, let I = (a0, . . . , apr ) be the tuple with a0 = ps−r

− s0, apr = s0 and
ai = 0 for all other i . Then

vp

(( ps−r

I

))
=

1
p−1

(Sp(a0)+ Sp(apr )− Sp(ps−r ))= s− r − vp(s0).

If s1 > 0, let I = (a0, . . . , apr ) be the tuple with a0 = ps−r
− s0 − 1, as1 = 1,

apr = s0 and ai = 0 for all other i . Then

vp

(( ps−r

I

))
=

1
p−1

(Sp(a0)+ Sp(as1)+ Sp(apr )− Sp(ps−r ))= s− r.

Proof. The first equality follows from Lemma B.2 and Lemma B.1 (1) and (5).
The second equality follows from Lemma B.2 and Lemma B.1 (1) and (6). �
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