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G-theory of root stacks and equivariant K-theory

Ajneet Dhillon and Ivan Kobyzev

Using the description of the category of quasicoherent sheaves on a root stack,
we compute the G-theory of root stacks via localization methods. We apply our
results to the study of equivariant K-theory of algebraic varieties under certain
conditions.

A list of notations and conventions can be found on page 182.

1. Introduction

Let X be an algebraic variety equipped with an action of a finite group G. One
would like to compute the equivariant K-theory KG(X). A first answer was given
in the paper [Ellingsrud and Lønsted 1984] in the case when X is a smooth curve.
Let us briefly describe it. We set Y to be the quotient X/G, φ : X→ Y the quotient
map, and B the branch locus. Then B is a finite union of G orbits B1, . . . , Bn .
Choosing a point Pi ∈ Bi for each i , denote the inertia group of Pi by Hi . Note
that it is a cyclic group. Using some basic properties of equivariant sheaves and the
Borel construction, it was proved that there is a decomposition of abelian groups

KG(X)= K (Y )⊕
n⊕

i=1

R′k(Hi ),

where R′k(H) is the subgroup of a representation ring without invariants, that is,
x ∈ R′k(H) if x ∈ Rk(H) and 〈x, 1H 〉 = 0. From here we can guess a flavor of the
result in the general case: there should be some kind of a decomposition of KG(X)
onto K (Y ) and the terms coming from ramification.

To generalize this to higher dimensions, there are two routes one may take. One
may enter the realm of algebraic stacks. For example, Vistoli and Vezzosi [Vistoli
1991; Vezzosi and Vistoli 2002] proved the decomposition formula for KG(X) of
a scheme X using (implicitly) a top-down description of the stack [X/G].

Another route would be to enter the realm of logarithmic geometry; see [Nizioł
2008; Hagihara 2003]. These two papers study the K-theory of the Kummer étale
site on a logarithmic scheme. Note that, using the correspondence between sheaves
on an infinite root stack and sheaves on the Kummer étale site [Talpo and Vistoli

MSC2010: 14A20, 14L30, 19D10, 19E08.
Keywords: root stack, quotient stack, equivariant K-theory, parabolic sheaves.
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152 AJNEET DHILLON AND IVAN KOBYZEV

2018, §6], one can deduce the structure results of [Hagihara 2003, §4] and [Nizioł
2008, Theorem 1.1] from our Theorem 3.32 and Corollary 3.34.

We first discuss the general philosophy of our approach encompassing both of
these routes. In algebraic geometry one frequently needs to consider equivariant ob-
jects on a scheme X with respect to the action of G. These objects correspond to ob-
jects over the quotient stack [X/G]. However, it can happen that [X/G] ∼= [X ′/G ′]
for seemingly unrelated X and X ′. In such situation, it is useful to have a canonical
description of the quotient stack [X/G], perhaps in terms of its coarse moduli space
Y . This may not always be possible but sometimes it is. In this paper we describe
a situation in which this occurs (see Theorem 4.10). When our hypotheses are
satisfied, the quotient stack becomes a root stack over its coarse moduli space Y .

The root stack construction goes back to [Olsson 2007]. If a quotient stack
is “a tool” to take quotients, similarly a root stack can be used to “extract roots”
from line bundles on a scheme. It turns out that this construction is quite useful, for
example, in Gromov–Witten theory of a Deligne–Mumford stack; see [Abramovich
et al. 2008; Cadman 2007; Olsson 2007]. The moduli stack of stable maps from a
curve to a stack does not have nice properties, and instead one needs to consider
so-called twisted stable maps from a twisted curve. As was shown in [Abramovich
et al. 2008], one can replace a twisted curve by a root stack.

Another application of root stacks is the parabolic orbifold correspondence. In
a nutshell, this correspondence describes sheaves and vector bundles on a root
stack in terms of sheaves and vector bundles on the base with extra data. Parabolic
bundles on a Riemann surface were defined in [Mehta and Seshadri 1980], and
were shown to be related to a unitary representation of a homotopy group. Borne
[2007] proved the equivalence of parabolic bundles and locally free sheaves on a
root stack. Finally, Borne and Vistoli [2012] generalized it to the equivalence of
quasicoherent sheaves on a root stack and parabolic sheaves.

The results of [Borne and Vistoli 2012] are the foundation of this work. Using
their description of coherent sheaves on a root stack, we compute the algebraic
G-theory of a root stack. See Theorem 3.32 for the statement of our first main
result. The tool necessary for its proof is localization sequences associated with a
quotient category. This method can be thought of as an algebraic analog of Segal’s
localization theorem [1968, Proposition 4.1] for equivariant topological K-theory.

The second result of this work is Theorem 4.10. It says that under certain as-
sumptions a quotient stack is a root stack over its coarse moduli space. The main
tool used in the proof is a generalization of Abhyankar’s lemma; see [SGA 1 1971,
Exposé XIII, Appendice I].

Combining these results gives an immediate application to equivariant K-theory
of schemes. This is how we obtain a generalization of the aforementioned decom-
position of [Ellingsrud and Lønsted 1984]. We formulate it as Theorem 5.1. If a
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finite group G acts on a scheme X , then, under some assumptions, we have the
decomposition of KG(X) into the direct sum of groups K (X/G) and G-theory of
ramification divisors and their intersections. Note that our assumptions are always
satisfied for tame actions of groups on smooth projective curves.

Let us give an outline of the paper for the convenience of the reader. In a short
preliminary Section 2 we recall some necessary categorical techniques. We start
by studying the G-theory of a root stack in Section 3. First, the description of the
category of quasicoherent sheaves on a root stack by [Borne and Vistoli 2012] in
Section 3A is recalled. After that we exploit localization methods to decompose the
G-theory of parabolic sheaves. Finally, in Section 3D we combine all intermediate
results and formulate Theorem 3.32, giving the G-theory of a root stack over a
noetherian scheme. We finish the section with the observation in Corollary 3.34
that under some assumptions, the algebraic G-theory of a root stack coincides with
its Waldhausen K-theory in the sense of [Joshua 2005].

In Section 4 we address the issue of when a quotient stack is a root stack. First
we show that under our assumptions (tameness of the action and ramification di-
visor is normal crossing), the inertia group is generated in codimension one (see
Theorem 4.9). We use Abhyankar’s theorem [Grothendieck and Murre 1971, The-
orem 2.3.2] in the proof. Then under the same hypothesis, we show that a quotient
stack is a root stack (see Theorem 4.10).

The paper ends with Section 5, where we study equivariant K-theory of a scheme
by combining the results of the previous two sections. As an example we compute
the equivariant K-theory of the affine line and the Burniat surface.

2. Localization via Serre subcategories

2A. Serre subcategories. Let A be an abelian category. Recall that a Serre sub-
category S of A is a nonempty full subcategory that is closed under extensions,
subobjects and quotients. When A is well-powered the quotient category A/S
exists; see [Swan 1968, p. 44, Theorem 2.1].

We need the following result to identify quotient categories.

Theorem 2.1. Let F : A→ B be an exact functor between abelian categories.
Denote by S the full subcategory whose objects are x with F(x)∼= 0. Then S is a
Serre subcategory and we have a factorization

A

B

A/S

F

Proof. See [Swan 1968, p. 114] �
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Definition 2.2. The category S is called the kernel of the functor F and is denoted
by ker(F).
Theorem 2.3. In the situation of the previous theorem suppose the following hold:

(1) for every object y ∈ B there is x ∈ A such that F(x) is isomorphic to y, and

(2) for every morphism f : F(x)→ F(x ′) there is x ′′ ∈ A with h : x ′′→ x and
g : x ′′ → x ′ such that F(h) is an isomorphism and the following diagram
commutes:

F(x ′′)

F(x) F(x ′)

F(h)
F(g)

f

Then there is an equivalence of categories A/S ∼= B.

Proof. See [Swan 1968, p. 114, Theorem 5.11]. �

2B. Some functor categories. Consider n-tuples of integers Er = (r1, r2, . . . , rn)

and Es = (s1, s2, . . . , sn). We denote by [Er , Es] the poset of n-tuples (x1, . . . , xn)

with
xi ∈ Z and ri ≤ xi ≤ si .

We make use of the shorthand notation

r I = [0, r ] and Er I n
= [0, Er ].

These intervals are naturally posets with

(x1, x2, . . . , xn)≤ (y1, y2, . . . , yn) if and only if xi ≤ yi for all i.

This poset structure allows us to view them as categories in the usual way.
Fix an abelian category A and consider the functor category

Func(Er I n, A).

This category is abelian with kernels and cokernels formed pointwise. We are in-
terested in the K-theory of such categories. In this subsection we try to understand
some of their quotient categories. Given an object F in this category and an object
u of Er I n , we denote by Fu ∈ A the value of the functor F on this object, and if
u ≤ v, the arrow from Fu to Fv is denoted by

F+(v−u) : Fu→ Fv.

In particular, we take ei = (0, 0, . . . , 1, 0, . . . , 0) to be a standard basis vector, so
that we have a morphism

F+ei : F(u1,...,un)→ Fu1,...,ui−1,ui+1,ui+1,...,un .
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Lemma 2.4. Giving an object F of Func(Er I n, A) is the same as providing the
following data:

(D1) objects F(u1,u2,...,un) ∈ A,

(D2) arrows
F+ei : Fu→ Fu+ei

such that all diagrams of the form

Fu Fu+e j

Fu+ei Fu+ei+e j

commute.

Proof. The hypotheses ensure that if u ≤ v in Er I n then there is a well-defined map
Fu→ Fv which produces our functor. �

Proposition 2.5. (i) Let trn−1(Er)= (r1, r2, . . . , rn−1). There is an exact functor

π : Func(Er I n, A)→ Func(trn−1(Er)I n−1, A)

defined on objects by

π(G)(u1,u2,...,un−1) = (G)(u1,...,un−1,0).

(ii) The functor π has a left adjoint, denoted π∗. We have π ◦π∗ ' 1.

(iii) The functor π∗ is fully faithful.

Proof. (i) There is an inclusion functor trn−1(Er)I n−1 ↪→ Er I n defined by

(x1, x2, . . . , xn−1) 7→ (x1, x2, . . . , xn−1, 0).

The functor π is just the restriction along this inclusion. The exactness follows from
the fact that in functor categories, limits and colimits are computed pointwise.

(ii) Given a functor F ∈ Func(trn−1(Er)I n−1, A), we need to construct an object
π∗(F) ∈ Func(Er I n, A). We set

π∗(F)(u1,u2,...,un) = F(u1,u2,...,un−1).

To produce a functor, we need maps

λi
(u1,...,un)

: π∗(F)(u1,...,ui ,...,un)→ π∗(F)(u1,...,ui+1,...,un).

We define

λi
(u1,...,un)

=

{
F(u1,...,ui ,...,un−1)→ F(u1,...,ui+1,...,un−1) if i < n,
identity if i = n.
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One checks that the hypotheses of Lemma 2.4 are satisfied. Observe that π ◦π∗= 1.
This produces a natural map

Hom(π∗(F),G)→ Hom(F, π(G)).

To see that this is a bijection, suppose that we are given a morphism β : F→π(G).
There is a diagram, where the dashed arrow is defined to be the composition,

π∗(F)(u1,...,un) G(u1,...,un)

F(u1,...,un−1) G(u1,...,un−1,0)
β

This produces a natural morphism

Hom(π∗(F),G)← Hom(F, π(G))

and we check that it is inverse to the previous map.

(iii) We have

Hom(π∗(F), π∗(F ′))= Hom(F, ππ∗(F ′))= Hom(F, F ′). �

Theorem 2.6. (1) The functor

π : Func(Er I n, A)→ Func(trn−1(Er)I n−1, A)

satisfies the hypothesis of Theorem 2.3.

(2) Let Es = (r1, r2, . . . , rn−1, rn − 1). If rn > 0 then the kernel of this functor is
equivalent to Func(Es I n, A).

(3) If rn = 0 then there is an equivalence of categories

Func(Er I n, A)∼= Func(trn−1(Er)I n−1, A).

Proof. (1) The functor π is exact so it remains to check the two conditions of the
theorem. The first condition follows from the fact that π ◦π∗ is the identity. Now
suppose that we have a morphism π(F)→ π(F ′). By adjointness we obtain a
diagram

π∗π(F)

F F ′

Applying π to this picture shows that the second condition holds.

(2) The functor π was defined by the rule π(G)(u1,u2,...,un−1) = (G)(u1,...,un−1,0).
So it is clear that if πG ∼= 0 then (G)(u1,...,un−1,0)

∼= 0 and giving an object G of
kerπ is the same (up to isomorphism) as giving the objects (G)(u1,...,un) ∈ A for
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all u ∈ Er I n, un 6= 0. And according to Lemma 2.4 it is the same as providing an
object of the category Func(Es I n, A).

(3) If rn = 0 then we have an equivalence of categories trn−1(Er)∼= Er . �

3. Coherent sheaves on root stacks

3A. Preliminary results. Recall that if M is a commutative monoid then M̂ =
Hom(M,Gm) is its dual.

In this subsection we recall the main constructions and theorems from [Borne
and Vistoli 2012], to which we refer the reader for further details. Let’s start by
defining a root stack.

Let X be a scheme. Denote by Div X the groupoid of line bundles over X with
sections. It has the structure of a symmetric monoidal category with tensor product
given by

(L , s)⊗ (L ′, s ′)= (L ⊗ L ′, s⊗ s ′).

Choosing n objects (L1, s1), . . . , (Ln, sn) of Div X allows us to define a sym-
metric monoidal functor (see [Borne and Vistoli 2012, Definition 2.1])

L : Nn
→Div X, (k1, . . . , kn) 7→ (L1, s1)

⊗k1 ⊗ · · ·⊗ (Ln, sn)
⊗kn .

Such functors arise from morphisms X→ [Spec Z[Nn
]/N̂n]. Let us recall how.

Proposition 3.1. (i) Let A be the groupoid whose objects are quasicoherent OX -
algebras A with a Zn

=
̂̂Nn-grading A=

⊕
u∈Zn Au such that each summand

Au is an invertible sheaf. The morphisms are graded algebra isomorphisms.
Then there is an equivalence of categories between Aop and the groupoid of
N̂n-torsors P→ X.

(ii) Let B be the groupoid whose objects are pairs (A, α), where A is a sheaf of
algebras satisfying the conditions in (i) and

α :OX [N
n
] →A

is a morphism respecting the grading. The morphisms in the category B are
graded algebra morphisms commuting with the structure maps. Then there
is an equivalence of categories between Bop and the groupoid of morphisms
X→ [Spec Z[Nn

]/N̂n].

Proof. This proposition is a summary of the discussion in [Borne and Vistoli 2012,
p. 1343–1344], in particular the proof of Proposition 3.25. The detailed proof can
be found there. Here we just illustrate the main idea behind the proof.

(i) The torsor π : P→ X is determined by the sheaf of algebras π∗(OP), which
has a N̂n-action, and hence a weight grading. As the torsor is locally trivial, the
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condition about the summands being invertible follows by considering the algebra
associated with the trivial torsor.

(ii) This follows from the standard description of the groupoid of X -points of a
quotient stack. Finally, in [Borne and Vistoli 2012], the fppf topology is needed
but in the present work it is not. The setting in [loc. cit.] is more general and the
monoids in question may have torsion, so that the torsor P is a torsor over µn . Such
a torsor may not be trivial in the Zariski topology, unlike a Gm-torsor. Hence a finer
topology is needed. See the proof of [Borne and Vistoli 2012, Lemma 3.26]. �

Corollary 3.2. There is an equivalence of categories between the groupoid of sym-
metric monoidal functors

Nn
→Div X

and the groupoid of X-points of [Spec Z[Nn
]/N̂n].

Proof. For details see [Borne and Vistoli 2012, Proposition 3.25]. In essence,
the symmetric monoidal functor determined by (L1, s1), . . . , (Ln, sn) produces the
graded sheaf of algebras

A=
⊕
Eu∈Zn

Lu1
1 ⊗ · · ·⊗ Lun

n .

The sections produce an algebra map

OX [N
n
] →A. �

Definition 3.3. Let Er = (r1, r2, . . . , rn) be a collection of positive natural numbers.
We denote by ri N the monoid {vri | v ∈ N}. We denote by ErNn the monoid

ErNn
= r1N× r2N× · · ·× rnN.

We view our symmetric monoidal functor above as a functor

L : ErNn
→Div X, (r1α1, r2α2, . . . , rnαn) 7→ (L1, s1)

⊗α1 ⊗ · · ·⊗ (Ln, sn)
⊗αn .

Consider the natural inclusion of monoids jEr : ErNn ↪→ Nn . The category of Er-th
roots of L , denoted by (L)Er , is defined as follows.

Its objects are pairs (M, α), where M : Nn
→Div X is a symmetric monoidal

functor, and α : L→ M ◦ j is an isomorphism of symmetric monoidal functors.
An arrow from (M, α) to (M ′, α′) is an isomorphism h : M→ M ′ of symmetric

monoidal functors Nn
→Div X , such that the diagram

L

M ◦ j M ′ ◦ j

α α′

h ◦ j

commutes.
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This category is in fact a groupoid, as a morphism φ in Div X , whose tensor
power φ⊗k is an isomorphism, must be an isomorphism to begin with.

Given a morphism of schemes t : T → X there is pullback functor

t∗ :Div X→Div T .

Hence we can form the category of roots (t∗◦L)Er . This construction pastes together
to produce a pseudofunctor DivX , where

DivX → Sch/X

is the symmetric monoidal stack described in [Borne and Vistoli 2012, p. 1335].

Definition 3.4. In the above situation, the fibered category associated with this
pseudofunctor is called the stack of roots associated with L and Er . It is denoted
by X L ,Er .

We often denote the stack of roots by

X L ,Er = X(L1,s1,r1),...,(Ln,sn,rn).

There are also two equivalent definitions of the stack X L ,Er , and the equivalence
is proved in [Borne and Vistoli 2012, Proposition 4.13 and Remark 4.14]. Let’s
recall the description of this stack as a fibered product.

Proposition 3.5. The stack X L ,Er is isomorphic to the fibered product

X ×Spec Z[ErNn] [Spec Z[Nn
]/N̂n].

According to (a slightly modified version of) Corollary 3.2, a symmetric monoidal
functor L : ErNn

→Div X corresponds to a morphism

X→ [Spec Z[ErNn
]/ÊrNn],

which in turn corresponds to an ÊrNn-torsor π : P → X and an ÊrNn-equivariant
morphism P→ Spec Z[ErNn

]. This gives the next proposition.

Proposition 3.6. The stack X L ,Er is isomorphic to the quotient stack

[P ×Spec Z[ErNn] Spec Z[Nn
]/N̂n],

where the action on the first factor is defined through the dual of the inclusion
jEr : ErNn ↪→ Nn .

Proof. See [Borne and Vistoli 2012, p. 1350]. �

We recall the definition of parabolic sheaf; see [Borne and Vistoli 2012, Defini-
tion 5.6].
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Definition 3.7. Consider a scheme X , an inclusion ErZn
⊆ Zn and a symmetric

monoidal functor L : ErZn
→Div X , defined by

Lu = L(u)= Lα1
1 ⊗ · · ·⊗ Lαn

n ,

where u = (r1α1, . . . , rnαn) and each αi ∈ Z. A parabolic sheaf (E, ρ) on (X, L)
with denominators Er consists of the following data:

(a) A functor E : Zn
→QCoh X , denoted by v 7→ Ev on objects and b 7→ Eb on

arrows.

(b) For any u ∈ ErZn and v ∈ Zn , an isomorphism

ρE
u,v : Eu+v ' Lu ⊗OX Ev

of OX -modules. This map is called the pseudoperiod isomorphism.

These data are required to satisfy the following conditions. Take u, u′ ∈ ErZn ,
a= (r1α1, . . . , rnαn)∈ ErNn, b∈Nn, v ∈Zn . Then the following diagrams commute:

(i) Ev

OX ⊗ Ev

Ea+v

La ⊗ Ev

Ea

'

σ L
a ⊗ idEv

ρE
a,v

where σa = σ
α1 ⊗ · · ·⊗ σ αn ∈ H0(X, La).

(ii) Eu+v

Eu+b+v

Lu ⊗ Ev

Lu ⊗ Eb+v

ρE
u,v

Eb

ρE
u,b+v

id⊗Eb

(iii) Eu+u′+v

L(u)⊗ Eu′+v

Lu+u′ ⊗ Ev

Lu ⊗ Lu′ ⊗ Ev

ρE
u+u′,v

ρE
u,u′+v

id⊗ρE
u′,v

µ⊗ id

(iv) The map

Ev = E0+v OX ⊗ Ev
ρE

0,v

is the natural isomorphism.
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Definition 3.8. A parabolic sheaf (E, ρ) is said to be coherent if for each v ∈ Zn

the sheaf Ev is a coherent sheaf on X .

Theorem 3.9 (Borne, Vistoli). Let X be a scheme and L a monoidal functor de-
fined as in the beginning of this section. Then there is a canonical tensor equiva-
lence of abelian categories between the category QCoh X L ,Er and the category of
parabolic sheaves on X , associated with L.

Proof. See [Borne and Vistoli 2012, Proposition 5.10, Theorem 6.1] for details.
The proof relies on the description of the stack as a quotient as in Proposition 3.6.
From this description, sheaves on the stack are equivariant sheaves on

P ×Spec Z[ErNn]×Spec Z[Nn
].

As remarked in the proof of Proposition 3.1, the torsor P is obtained from a sheaf
of algebras on X . The sheaf of algebras A is constructed from the functor L by
taking a direct sum construction; it has a natural grading. It follows that the scheme

P ×Spec Z[ErNn] Spec Z[Nn
] = Spec(A⊗Z[ErNn] Z[N

n
]).

The algebra on the right has a natural Z[Nn
]-grading; see the corollary below for a

local description. It follows that the equivariant sheaves on the scheme in question
are just graded modules over this algebra. The proof follows by reinterpreting the
graded modules in terms of the symmetric monoidal functor L . �

Actually we can add the finiteness condition to the previous theorem and get the
following:

Corollary 3.10. Let X be a locally noetherian scheme. There is a canonical tensor
equivalence of abelian categories between the category Coh X L ,Er and the category
of coherent parabolic sheaves on X , associated with L.

Proof. We make use of the identifications in the above proof. The question is local
on X , so we may assume that X is in fact an affine scheme Spec(R). By further
restrictions we can assume that all the line bundles L i are in fact trivial, and we
identify them with R. In this situation the symmetric monoidal functor corresponds
to a graded homomorphism

Z[X1, X2, . . . , Xn] → R[t±1
1 , t±1

2 , . . . , t±1
n ]

sending X i to xi ti with xi ∈ R. Further, the morphism

Spec(Z[Nn
])→ Spec Z[ErNn

]

comes from an integral extension of algebras

Z[X1, X2, . . . , Xn][Y1, . . . , Yn]/(Y
r1
1 − X1, . . . , Y rn

n − Xn).
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Then taking tensor products yields a Zn-graded algebra

A = R[t±1
1 , t±1

2 , . . . , t±1
n ][s1, . . . , sn]/(s

r1
1 − x1t1, . . . , srn

n − xntn),

where si has degree (0, . . . , 0, 1, 0 . . . , 0)= ei . Now consider a finitely generated
graded A-module M . We can assume that the generators of M are in fact homoge-
neous and hence there is an epimorphism

p⊕
i=1

A(ni )→ M.

The graded pieces of the module on the left are free of rank p and hence the graded
pieces of M are finitely generated. It follows that a finitely generated A-module
gives rise to a parabolic sheaf with values in the category of finitely generated
R-modules — in other words, coherent sheaves on X .

Conversely, suppose that we have a graded A-module M with each graded piece
a finitely generated R-module. We can find finitely many elements of M , let’s say
{α1, α2, . . . , αp} of degrees

deg(αi )= (λi1, λi2, . . . , λin) ∈ Zn

with 0≤ λi j ≤ r j , such that the associated morphism

φ :

p⊕
i=1

A(deg(αi ))→ M

is an epimorphism in degrees

(µ1, µ2, . . . , µn) ∈ Zn

whenever 0≤ µi ≤ ri . It follows that φ is an epimorphism and multiplication by
ti induces an isomorphism Mv

∼
−→ Mv+ei . �

3B. An extension lemma. The goal of this subsection is to slightly simplify the
formulation of parabolic sheaves in the present context using the pseudoperiodicity
condition. This will be needed to study K-theory in the next section. We let

ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nn,

where the 1 is in the i-th spot.

Definition 3.11. Let X be a scheme and L a symmetric monoidal functor

L : ErZn
→DivX ,

determined by n divisors (L i , si ). An extendable pair (F, ρ) on (X, L) consists of
the following data:
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(a) A functor F• : Er I n
→QCoh(X).

(b) For any α ∈ Er I n such that αi = ri , an isomorphism of OX -modules

ρα,α−ri ei : Fα
∼
−→ L i ⊗ Fα−ri ei .

We frequently drop the subscripts from the notation involving ρ, when they
are clear from the context.

This data is required to satisfy the following three conditions:

(EX1) For all i ∈ {1, . . . , n} and α ∈ Er I n , the diagram

Fα Fα+(ri−αi )ei

L i ⊗ Fα L i ⊗ Fα−αi ei

F+(ri−αi )ei

ρσi

L i ⊗ F+αi ei

commutes, where σi is multiplication by the section si .

(EX2) For all i 6= j and α with αi = ri , the diagram

Fα L i ⊗ Fα−ri ei

Fα+e j L i ⊗ Fα+e j−ri ei

F Ee j F Ee j

ρ

ρ

commutes.

(EX3) For all i and j and α ∈ Er I n with αi = ri and α j = r j , the diagram

Fα L i ⊗ Fα−ri ei

L j ⊗ Fα−r j e j L i ⊗ L j ⊗ Fα−ri ei−r j e j

ρ ρ

ρ

ρ

commutes.

Definition 3.12. An extendable pair (F, ρ) is called coherent if for each v ∈ Er I n ,
the sheaf Fv is a coherent sheaf on X .

Proposition 3.13. Let X be a scheme and L a symmetric monoidal functor as in
Definition 3.7. Let (E, ρ) be a parabolic sheaf on (X, L) with denominators Er .
Then the restricted functor E |Er I n produces an extendable pair on (X, L).
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Proof. Note that the restricted functor has all the required data for an extendable
pair by restricting the collection ρα,β . We need to check that the axioms of an
extendable pair are satisfied.

(EX1) We have that the composition

Eα+(ri−αi )ei

ρ
−→ Eα−αi ei ⊗ L i → Eα ⊗ L i

ρ−1

−−→ Eα+ri ei

is just the morphism E+αi ei using axiom (ii) of parabolic sheaves. Precomposing
with the map

E+(ri−αi )ei : Eα→ Eα+(ri−αi )ei

gives the morphism E+ri ei . The result now follows from axiom (i).

(EX2) This follows directly from axiom (ii).

(EX3) This follows directly from axiom (iii). �

Proposition 3.14. Let X be a scheme and L a symmetric monoidal functor as in
Definition 3.7. Given an extendable pair (F, ρ) on (X, L) we can extend it to
a parabolic sheaf (F̂, ρ) on X, L and the extension is unique up to a canonical
isomorphism. A coherent extendable pair extends to a coherent parabolic sheaf.

Proof. For v ∈ Zn we need to define its extension F̂v. We can write vi = ri ui + qi

with 0≤ qi < ri and ui ∈Z. As before we let Lu =
⊗n

i=1 L⊗ui and q = (q1, . . . , qn).
Set F̂v = Lu ⊗ Fq .

We need to construct maps

F̂+ei : F̂v→ F̂v+ei .

If qi < ri − 1 then the map is obtained by tensoring the map Fqi → Fqi+ei with Lu .
If qi = ri − 1 then the map is defined by

F̂v = Lu ⊗ Fq F̂v+ei = Lu ⊗ L i ⊗ Fq ′

Lu ⊗ Fq+ei

F̂ei

1⊗ FEei 1⊗ ρ

where q ′j = q j for all j 6= i and q ′i = 0.
In order to show that the construction above indeed produces a functor, we need

to show that all diagrams of Lemma 2.4 commute. If both qi < ri−1 and q j < r j−1,
then this is straightforward. If qi = ri − 1 and q j < r j − 1, then this follows from
(EX2). This leaves the case qi = ri − 1 and q j = r j − 1. We have a diagram
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Lu ⊗ Fq Lu ⊗ Fq+ei Lu ⊗ L i ⊗ Fq−qi ei

Lu ⊗ Fq+e j Lu ⊗ Fq+ei+e j Lu ⊗ L i ⊗ Fq−qi ei+e j

Lu ⊗ L j ⊗ Fq−q j e j Lu ⊗ L j ⊗ Fq−q j e j+ei Lu ⊗ L i ⊗ L j ⊗ Fq−qi ei−q j e j

The top left square commutes using the fact that F is a functor. The top right
and bottom left squares commute using axiom (EX2). The bottom right square
commutes using axiom (EX3). So indeed F̂• is a functor.

Note that we have canonical isomorphisms Lu⊗Lv ∼= Lu+v for u, v ∈ ErZ. These
isomorphisms induce our pseudoperiod isomorphisms.

Finally, we need to check the conditions (i)–(iv) of a parabolic sheaf.

(i): For Erα, Erα′ ∈ ErNn the diagram

F̂v F̂v+Erα F̂v+Erα+Erα′

Lα ⊗ F̂v Lα ⊗ Lα′ ⊗ F̂v

F̂+Erα F̂+Erα′

commutes. This follows by the definition of the functor F̂• and the symmetric
monoidal structure of L .

This allows us to make the following reduction: in order to check axiom (i), it
suffices to check that the diagram

F̂v F̂v+ri ei

L i ⊗ F̂v

ρσi

commutes. And this follows directly from (EX1).

(ii): Once again we reduce to showing that

F̂v+ri ei L i ⊗ F̂v

F̂v+b+ri ei L i ⊗ F̂v+b

L i ⊗ F̂+bF̂+b
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commutes. If we write v = Eru+ q then this diagram becomes

Lu+ei ⊗ Fq L i ⊗ (Lu ⊗ Fq)

Lu+ei ⊗ F̂q+b L i ⊗ (Lu ⊗ F̂q+b)

L i ⊗ Lu ⊗ F̂+bLu+ei ⊗ F̂+b

We can use the symmetric monoidal structure of L to show that this diagram indeed
commutes.

(iii): We reduce to showing the commutativity of the diagram

F̂v+ri ei+r j e j L i ⊗ F̂v+r j e j

L j ⊗ F̂v+ri ei L i ⊗ L j ⊗ F̂v

which follows from the monoidal structure of L .

Condition (iv) is by definition.

Finally, let E• be another extension of F•. Again we can again write vi = ri ui+qi

with 0≤ qi < ri and ui ∈ Z. By pseudoperiodicity, Ev ' L(u)⊗ Eq , and Fq = Eq

because E• is an extension. So, Ev ∼= F̂v for any v ∈ Zn .
It is clear from the construction that the finite generation condition is preserved

under extension. �

Corollary 3.15. Let X be a scheme and L a symmetric monoidal functor as in
Definition 3.7. The category of parabolic sheaves (resp. coherent parabolic sheaves)
on (X, L) is equivalent to the category of extendable pairs (resp. coherent extend-
able pairs) on (X, L).

Proof. There is a pair of functors between these categories. The truncation functor
sends a parabolic sheaf (E, ρ) to an extendable pair by forgetting all Ev when
v /∈ Er I n . And the extension functor from extendable pairs to parabolic sheaves was
defined in the previous proposition on objects by F• 7→ F̂•. It is easy to see that
these functors are mutually inverse and preserve the finite generation condition. �

Remark 3.16. Let X be a scheme and L a symmetric monoidal functor as in
Definition 3.7. We denote the category of coherent extendable pairs on (X, L)
by EP(X, L , Er). When X is locally noetherian this category is abelian.

3C. The localization sequence. In this subsection we localize the category of
finitely generated extendable pairs so that it will be glued from simpler parts.
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For this section X is a locally noetherian scheme and L a symmetric monoidal
functor as in Definition 3.7.

First let us consider the functor π L ,Er
∗
: EP(X, L , Er)→ Coh X , given by F• 7→ F0

on objects. It is an exact functor because exact sequences in diagram categories
are defined pointwise.

Lemma 3.17. The functor π L ,Er
∗

has a left adjoint, denoted π∗L ,Er , and there is a
natural isomorphism π L ,Er

∗
◦π∗L ,Er ' 1.

Proof. In what follows, we omit the superscripts and subscripts L and Er in the nota-
tion for the appropriate functors. For 0≤ i ≤ n, consider functions εi : Er I →{0, 1},
defined by εi (u)= 1 if ui = ri and zero otherwise. We define the functor π∗ on a
sheaf F ∈ Coh X by the rule

(π∗(F))u =
( n⊗

i=1

Lεi (u)
i

)
⊗ F.

This forms a functor via the maps

(π∗(F))u→ (π∗(F))u+ei =

{
identity if ui ∈ [0, ri − 2],
σi if ui = ri − 1,

where σi is the multiplication by the section si .
Define ρ to be the identity map. It is easy to see that all axioms of extendable

pairs are satisfied.
Now let’s take a coherent sheaf F and an extendable pair E• and consider a map

HomCoh X (F, π∗E)→ HomEP(π
∗F, E)

given by sending φ ∈ HomCoh X (F, π∗E) to precomposition of the structure maps
of the extendable pair E with φ. It’s obviously an injection. Surjectivity follows
from commutativity of the squares in HomEP(π

∗F, E) and because all structure
maps in π∗F are identity. �

Proposition 3.18. Suppose that X is a locally noetherian scheme. The functor
π L ,Er
∗
: EP(X, L , Er)→ Coh X satisfies the hypothesis of Theorem 2.3.

Proof. The only thing which is not completely obvious is the second condition.
Consider two extendable pairs E• and F•. Suppose that we have a morphism
π∗(E•)→ π∗(F•). By adjointness we obtain a diagram

π∗π∗(E•)

E• F•

Applying π to this picture shows that the second condition holds. �
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Using Theorem 2.3 we obtain the following:

Corollary 3.19. Let X be a locally noetherian scheme. There is an equivalence of
abelian categories

EP(X, L , Er)
/

ker(π L ,Er
∗
)→ Coh X.

In the rest of this subsection we would like to give a description of the category
ker(π L ,Er

∗
). Let us study the objects first. Let F• be an extendable pair. Then

π∗(F•)= F0, and if F• ∈ ker(π L ,Er
∗
) then F0 ∼= 0. The pseudoperiod isomorphism

implies in turn that Fu ∼= 0 if all ui ∈ {0, ri }.
Let us consider the sheaves Fu such that u j ∈ {0, r j } for j 6= i (we can imagine

them as sheaves on the edges of the cubical diagram F• ∈ Func(Er I n, A)). Using
the axiom (EX1) we get that the multiplication by section map si : Fu→ L i ⊗ Fu

must factor through Fu+(ri−ui )ei , which is a zero sheaf if F• ∈ ker(π L ,Er
∗
). This

implies the following lemma:

Lemma 3.20. If F• ∈ ker(π L ,Er
∗
) and u ∈ Er I n is such that u j ∈ {0, r j } for all j 6= i ,

then supp(Fu) is contained in the divisor of zeroes of the section si ∈ H 0(L i ).
If si = 0 for some i , we say that div(si )= X.

We apply the localization method (Theorem 2.3), to this partial description of
the kernel. Let’s fix some notation. Let

Sn(k)= {T ⊂ {1, . . . , n} | |T | = k}.

We often abuse notation and write S(k) for Sn(k) when it is clear from the context
what n is. We view each interval [0, ri ] as a pointed set, pointed at 0. It follows
that we have order preserving inclusions

ιT :
∏
i∈T

[0, ri ] →

n∏
i=1

[0, ri ] := Er I n.

Ignoring the pointed structure produces order preserving (≤) projection maps

πT : Er I n
→

∏
i∈T

[0, ri ].

Definition 3.21. As we agreed above, L : ErZn
→Div X is the symmetric monoidal

functor as in Definition 3.7.
If 1 ≤ k ≤ n and T ∈ S(k), then we define a symmetric monoidal functor

LT : ErZk
→Div X as a composition

ErZk
ErZn Div X.

ιT L

We say that LT is obtained from L by the restriction along ιT .
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Now for T ∈ S(k), let’s consider the functor

ι∗T : EP(X, L , Er)→ EP(X, LT , πT (Er)),

which is the restriction of an extendable pair F• along the inclusion ιT . The pseudo-
period isomorphism is just obtained by restriction.

Definition 3.22. For any 1≤ k ≤ n we define functors

Facek
:=

∏
T∈S(k)

ι∗T : EP(X, L , Er)→
∏

T∈S(k)

EP(X, LT , πT (Er)).

Definition 3.23. For 1≤ k ≤ n, we write kerk
= ker(Facek) and ker0

= ker(π∗).

Lemma 3.24. For any 1 ≤ k ≤ n, any F• ∈ kerk−1 and any T ∈ S(k) we can
consider (ι∗T (F•))• as an element of

Func
(∏

i∈T

[1, ri − 1],Coh
(⋂

i∈T

div(si )

))
.

In other words, the images of these functors are supported on the indicated sub-
schemes. As in Lemma 3.20, we say that if si = 0, then div(si )= X.

Proof. If k= 1 then the result is proved in Lemma 3.20 and the observation before it.
Let’s take any 2≤ k ≤ n and an extendable pair F• ∈ kerk−1. If we consider an

extendable pair (ι∗T (F•))• ∈ EP(X, LT , πT (Er)) then for any v ∈
∏

i∈T [0, ri ], we
have isomorphisms of sheaves: (ι∗T (F•))v ∼= 0, whenever vi = 0 for some i ∈ T .
Because of the pseudoperiodicity isomorphism we also have that (ιT (F•))v ∼= 0,
whenever vi = ri for some i ∈ T .

The last step is an application of the axiom (EX1) to the extendable pair (ι∗T (F•))•.
Because (ι∗T (F•))v ∼= 0 if vi = ri for some i ∈ T , that implies that for any

w ∈
∏
i∈T

[1, ri − 1]

the multiplication of the sheaf (ι∗T (F•))w by the sections si ∈ H 0(X, L i ) for all
i ∈ T must factor through zero. So the support of the sheaf (ι∗T (F•))w is contained
in
⋂

i∈T div(si ). �

Lemma 3.25. If we restrict the domain of the functor Facek to the full subcategory
kerk−1 for any 1≤ k ≤ n, then we obtain functors

Facek
|kerk−1 : kerk−1

→

∏
T∈S(k)

Func
(∏

i∈T

[1, ri − 1],
(⋂

i∈T

div(si )

))
.

There is an equivalence of categories between kerk and ker
(
Facek

|kerk−1
)
.
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Proof. The first part follows directly from the lemma before. The proof of the sec-
ond part is straightforward and follows from the fact that kerk is a full subcategory
of kerk−1. �

Remark 3.26. In order to apply the localization procedure to the category kerk−1

we need to show that the functor Facek
|kerk−1 has a left adjoint. The existence of a

left adjoint follows from the special adjoint functor theorem. But for the purpose
of splitting of the corresponding short exact sequence of K-groups (see Section 3D
for details), we need the unit of the adjunction to be the natural isomorphism. This
doesn’t follow from the abstract nonsense, so we need an explicit construction of
a left adjoint functor. It is given in the proof of the following theorem.

Theorem 3.27. Let X be a locally noetherian scheme and consider a symmetric
monoidal functor L : ErZn

→Div X.

(i) For any 1≤ k ≤ n there is an exact functor

Facek
|kerk−1 : kerk−1

→

∏
T∈S(k)

Func
(∏

i∈T

[1, ri − 1],Coh
(⋂

i∈T

div(si )

))
,

where kerk is a kernel of the functor Facek and ker0
:= ker(π L ,Er

∗
).

(ii) The functors Facek
|kerk−1 have left adjoints Dk such that

Facek
|kerk−1 ◦ Dk

' 1.

(iii) Facek
|kerk−1 satisfies the condition of Theorem 2.3

(iv) The functor

Facen
|kern−1 : kern−1

→ Func
( n∏

i=1

[1, ri − 1],Coh
( n⋂

i=1

div(si )

))
is an equivalence of categories.

Proof. (i) These functors are obtained by restricting domains. As kernels and
cokernels are computed pointwise, this is exact.

(ii) Given a functor GT
•
∈ Func

(∏
i∈T [1, ri − 1], Coh

(⋂
i∈T div(si )

))
for each

T ∈ S(k), we denote the corresponding object by

(GT
•
)T∈S(k) ∈

∏
T∈S(k)

Func
(∏

i∈T

[1, ri − 1],Coh
(⋂

i∈T

div(si )

))
.

Further, we view GT
•

as a functor
∏

i∈T [0, ri ] → Coh
(⋂

i∈T div(si )
)

by taking
GT

u = 0 if for some i ∈ T we have ui ∈ {0, ri }, where 0 is some fixed zero object
in Coh(X). Also, for i ∈ {1, . . . , k} if ui ∈ {0, ri − 1} we define the morphisms
GT
+ei
: GT

u → GT
u+ei

as the initial and terminal map correspondingly.
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Let us remind the reader of the definition of ε from Lemma 3.17. For any
0 ≤ i ≤ n we have functions εi : Er I → {0, 1} such that for any u ∈ Er I n , we have
εi (u)= 1 if ui = ri and εi (u)= 0 otherwise.

We define the functor Dk on objects as follows:

(Dk((GT
•
)T∈S(k)))u =

( n⊗
i=1

Lεi (u)
i

)
⊗

( ⊕
T∈S(k)

GT
πT (u)

)
.

Let’s denote (Dk((GT
•
)T∈S(k)))• by Dk

•
for the simplicity of notations. First of

all we want to view it as a functor Er I n
→ Coh(X). For that we have to define the

morphisms
Dk
+ei
: Dk

u→ Dk
u+ei

.

If 0≤ ui < ri−1, then this map is induced by
⊕

T∈S(k), i∈T GT
+1. If ui = ri−1, then

it is induced by the terminal maps
⊕

T∈S(k), i∈T GT
+1 and also by multiplication by

the section si .
The pseudoperiod isomorphisms ρ are defined by the symmetric monoidal struc-

ture of the functor L . The proof of the axioms (EX2) and (EX3) is automatic, and
the proof of (EX1) follows from the commutativity of the diagram

Du Du+(ri−ui )ei

L i ⊗ Du L i ⊗ Du−ui ei .

D+(ri−ui )ei

ρσi

L i ⊗ D+ui ei

This diagram commutes because of the definition of D+(ri−αi ) Eei and because
supp(GT

u )⊆
⋂

i∈T div(si ) for any u ∈
∏

i∈T [0, ri ].
So we have shown that Dk

•
is an extendable pair. If k = 1 then it’s clear that D1

•

is in ker0, because D1
0
∼= 0.

If 2≤ k ≤ n, we want to see that Dk
•

is in kerk−1. For that we have to see that for
any W ∈ S(k− 1) and any v ∈

∏
i∈W [0, ri ], the sheaf (ι∗W (D

k
•
))v is isomorphic to

zero. But this is true because for any T ∈ S(k) we have that GT
u = 0 if ui ∈ {0, ri }

for some i ∈ T .
Clearly, Facek

|kerk−1 ◦ Dk
= 1.

Next we would like to show that Dk is indeed a left adjoint. Suppose that we
have a morphism

(GT
•
)T∈S(k)→ Facek(F•).

Such a morphism consists of an
(n

k

)
-tuple of morphisms

φT : GT
•
→ ι∗T (F•).
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We wish to describe the adjoint map

φ̃ : Dk
•
→ F• .

Using the universal property of coproduct, this morphism is determined by maps

φ̃(u)T :
n⊗

i=1

Lε(u)i ⊗GT
πT (u)→ Fu .

If u is such that εi (u)= 0 for all 1≤ i ≤ n, then these maps are just the compositions
of φT with the morphisms F+α . If there is l such that ul = rl , then φ̃(u)T is induced
by the composition of φT with ρ−1

F and with F+α.
We want to check that the map φ̃ is indeed a natural transformation of functors.

It’s enough to check that the diagram

Du Fu

Du+ei Fu+Eei

φ̃(u)

F+eiD+ei

φ̃(u+ ei )

commutes. If εk(u) = 0 for all 1 ≤ k ≤ n and also ui < ri − 1, then it commutes
directly from the construction of the maps φ̃(u). Otherwise the commutativity
follows from (EX1), (EX2) and (EX3) for F•.

Finally, we have the map

Hom((GT
•
)T∈S(k),Facek(F•))→ Hom(Dk((GT

•
)T∈S(k)), F•).

It’s easy to see that this map is bijective, because the right Hom is uniquely defined
by the restriction to k-faces.

(iii) This follows from (ii).

(iv) Because for S(n) there is only one element, the set {1, . . . , n} itself, we have
that ι{1,...,n} = id and π{1,...,n} = id. So Face|nkern−1 and Dn are identity functors. �

3D. G-theory and K-theory of a root stack. In this subsection we finally describe
the G-theory of a root stack X L ,Er .

Lemma 3.28. If X is a locally noetherian scheme and L a symmetric monoidal
functor as in Definition 3.7, there is an equivalence of categories

Coh X L ,Er ' EP(X, L , Er ).

Proof. This follows by combining Corollaries 3.10 and 3.15. �
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So we have
G(X L ,Er )∼= K (EP(X, L , Er )),

and we reduced the problem to describing the K-theory of the (abelian) category
of coherent extendable pairs EP(X, L , Er ).

We are going to use several splittings of the category of coherent extendable
pairs to simplify the latter K-theory. The first step is this:

Lemma 3.29. If X is a locally noetherian scheme, then in the notation of Section 3C
one has

Ki (EP(X, L , Er ))∼= Gi (X)⊕ Ki (ker(π L ,Er
∗
)) for any i ∈ Z+.

Proof. Using Corollary 3.19 and the localization property of K-theory (see for
example [Quillen 1973]) we have the long exact sequence of groups

· · · → Ki (ker(π L ,Er
∗
))→ Ki (EP(X, L , Er ))→ Gi (X)→ · · · .

But this sequence splits because of the property π L ,Er
∗
◦ π∗L ,Er ' 1 proved in

Lemma 3.17. �

Lemma 3.30. If A is an abelian category then

Ki (Func(Er I n, A))∼= Ki (A)⊕
∏n

j=1 r j .

Proof. The proof follows from the iterated application of Theorem 2.6 and local-
ization property of the K-theory. �

Now we want to proceed with K•(ker(π L ,Er
∗
)), exploiting the same ideas as in

the previous lemmas.

Lemma 3.31. Let X be a locally noetherian scheme, L a symmetric monoidal
functor as in Definition 3.7 and sk ∈ H 0(Lk) for k = 0, . . . , n. Then for any i ∈ Z+,

Ki (ker(π L ,Er
∗
))∼=

n⊕
k=1

⊕
T∈S(k)

Gi

(⋂
l∈T

div(sl)

)⊕∏l∈T (rl−1)

,

where S(k)= {T ⊂ {1, . . . , n} | |T | = k}.

Proof. This follows from application of the localization property of K-theory,
Theorem 3.27 and the previous technical lemma. �

Combining Lemmas 3.28, 3.29 and 3.31 yields the main result of the section:

Theorem 3.32. Let X be a locally noetherian scheme. Let (L i , si ) be objects of
Div X for i = 1, . . . , n and Er ∈ Nn . Then G-theory of a root stack X L ,Er is given by
the formula

Gi (X L ,Er )∼= Gi (X)⊕
( n⊕

k=1

⊕
T∈S(k)

Gi

(⋂
l∈T

div(sl)

)⊕∏l∈T (rl−1))
for any i ∈ Z+, where S(k)= {T ⊂ {1, . . . , n} | |T | = k}.
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To finish the section we want to give sufficient conditions for a root stack to be
smooth.

Proposition 3.33. Let X be a smooth scheme over a field k. Let D =
∑n

i=1 Di be
a normal crossing divisor. Assume that Er is an n-tuple of natural numbers, such
that each ri is coprime to the characteristic of k. Then a root stack X D,Er is smooth.

Proof. By definition a stack is smooth if its presentation is a smooth scheme. The
question is local, so we can assume that X = Spec(R) and a divisor D is a strict
normal crossing divisor. If we localize further, we can assume that R is a regular
local ring, Di = ( fi ) and { fi } forms a part of a regular sequence of parameters.

By [Cadman 2007, Example 2.4.1], the presentation of a root stack X D,Er is an
affine scheme A = R[t1, . . . , tn]/(t

r1
1 − f1, . . . , trn

n − fn). By [Grothendieck and
Murre 1971, Lemma 1.8.6], this scheme is smooth. �

Corollary 3.34. Under the hypotheses of Proposition 3.33, G(X D,Er )= K (X D,Er ),
where the latter means the Waldhausen K-theory of perfect complexes on the stack
as defined in [Joshua 2005].

Proof. Indeed, if a stack is regular, its Waldhausen K-theory is the same as G-
theory. See [Joshua 2005]. �

4. Quotient stacks as root stacks

4A. Generation of inertia groups. Let X be a scheme with an action of a finite
group G. We always assume that this action is admissible. Let us recall, following
[SGA 1 1971, V.1, Definition 1.7], that an action is called admissible if there exists
an affine morphism φ : X → Y such that OY ∼= φ∗(OX )

G . This implies that the
quotient X/G exists and is isomorphic to Y .

If x ∈ X is a point (not necessarily closed), the subgroup of G stabilizing x is
called the decomposition group and we denote it by D(x,G). The subgroup of the
decomposition group acting trivially on the residue field of x is called the inertia
group of x and we denote it by I (x,G).

Note that there is an induced action of D(x,G) on the closure of the point x
and I (x,G) acts trivially on this closure. Hence if x ∈ ȳ then there is an inclusion
I (y,G) ↪→ I (x,G). We say that the inertia groups are generated in codimension
one if for each point x ∈ X we have that

I (x,G)=
∏
x∈ȳ

I (y,G),

where the product is over all points of codimension one containing x and the identi-
fication is via the inclusions above. For a group acting on a smooth curve, all inertia
groups are generated in codimension one. We will see under certain assumptions
that this is also true in higher dimensions (see Theorem 4.9).
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4B. Main theorem. In this subsection we provide sufficient conditions for a quo-
tient stack to be a root stack. To illustrate the procedure we start with an example.

Example 4.1. Let O be a discrete valuation ring with an action of µr such that
gcd(r, char(O))= 1. Then the fixed ring Oµr is also a discrete valuation ring. We
assume that O contains a field so that its completion Ô is a power series ring in one
variable over the residue field. Note that µr must preserve the maximal ideal of O.
If we further assume that the action is generically free and inertial, i.e., µr acts
trivially on the residue field, then if s is a local parameter for O we can conclude
that t = sr is a local parameter for R =Oµr .

We set Y = Spec(R) and consider the root stack

Y= YR,t,r → Y.

The parameter s induces a µr -equivariant morphism

X→Y

corresponding to the triple (O, s,m), where m is the canonical isomorphism Or
→O.

We show in Proposition 4.6 that this morphism is in fact étale. Using the two out
of three property for étale maps we get that the natural morphism

X ×µr → X ×Y X

is étale. To show that [X/µr ] ∼=Y it suffices to show that this morphism is radicial
(universally injective) and surjective. In other words we need to show that it is a
bijection on K-points for each field K .

Given a pair of K-points a and b of X that give a K-point of X×Y X , the fiber of

X ×Y X→ X ×Y X

over this point consists of the space of isomorphisms between a∗(O, s,m) and
b∗(O, s,m) in Y. If the support of the K-points is the generic point of O this is
just a singleton and if the support is the closed point then the space is a bitorsor
over µr . At any rate the morphism above is seen to be an isomorphism. Hence in
this case we have

[X/µr ] ∼=Y.

Remark 4.2. A µr -bundle P on a scheme Z is equivalent to the data of an invert-
ible sheaf K and an isomorphism φ : Kr

→OZ . To construct P explicitly consider
the sheaf of algebras Sym•K−1. There is a distinguished global section T ∈ K−r

given by (φ⊗ 1K−r (1)). Then

P = Spec(Sym•K−1/(T − 1)).

Remark 4.3. Suppose that there is on Y an invertible sheaf N and an isomorphism
N r
→ L. Then YL,s,r is a global quotient stack; see [Cadman 2007, Lemma 2.3.1
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and Example 2.4.1; Borne 2007, §3.4]. We need this below, so let’s recall some of
the details. The coherent sheaf

A=OY ⊕N−1
⊕ · · ·⊕N−(r−1)

can be given the structure of an OY -algebra via the composition

N−r ∼
−→ L−1 s

−→OZ .

There is an action of µr on this sheaf via the action of µr on N−1 given by scalar
multiplication. Then YL,s,r = [Spec(A)/µr ]. We need the explicit morphism

YL,s,r → [Spec(A)/µr ]

below so let’s describe it. Consider a morphism a : X→Y . A morphism X→YL,s,r ,
lifting a, is a triple (M, t, φ). As per the previous remark the sheaf M−1

⊗N−1

gives a µr -torsor. The torsor comes from the algebra

B = Sym•M⊗ a∗N−1/(T − 1).

To produce an X -point of [Spec(A)/µr ] we need to describe a µr -equivariant map

a∗A→ B.

This map comes from the section t via

t ∈ Hom(O,M)= Hom(a∗N ,M⊗ a∗N−1).

This construction generalizes in the obvious way to a finite list of invertible sheaves
with section.

Assumption 4.4. We assume X and Y are regular, separated, noetherian schemes
over a field k. Let G be a finite group with cardinality coprime to the character-
istic of k. We assume that G acts admissibly and generically freely on X with
quotient φ : X→ Y . Note that by [Görtz and Wedhorn 2010, Theorem 14.126] our
hypotheses imply that the quotient map X→ Y is flat.

Consider the map φ : X→ Y , which is faithfully flat and finite. Recall that the set
of points of X where φ is ramified is called the branch locus. It has a natural closed
subscheme structure defined by supp(�X/Y ). Because the conditions of the purity
theorem [Altman and Kleiman 1970, Chapter VI, Theorem 6.8] are satisfied, in
our situation this closed subscheme gives rise to an effective Cartier divisor, which
is called the branch divisor. We can write this divisor as

R =
n∑

i=1

(ri − 1)
(∑

g∈G

g∗Di

)
,

where each Di is a prime divisor. As G acts generically freely, passing to generic
points of our regular variety produces a Galois extension with Galois group G. We
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can view the Di as points of the scheme X . The multiplicities ri are related to the
inertia groups of Di via

ri = |I (Di ,G)|;

see [Neukirch 1999, Chapter I, §9].
We let Ei be the image of Di under φ. It is called the ramification divisor. We

form the root stack
Y= Y((E1,r1),...,(En,rn)).

Note that we have assumed that the characteristic of our ground field is coprime to
G and hence to each ri . It follows, via a local calculation along the ring extension
OX,Di /OY,Ei , that we have φ∗(Ei ) = ri

(∑
g∈G g∗Di

)
. This allows us to lift φ to

produce a diagram
X

Y Y

φ
ψ

π

The morphism ψ is equivariant in the sense that precomposition with g ∈ G pro-
duces a two-commuting diagram. This gives us a morphism

[X/G] →Y

that we would like to show is an isomorphism under our Assumption 4.4 and the
extra condition that the ramification divisor is normal crossing.

For the proof of Proposition 4.6 we need the following lemma.

Proposition 4.5 (Abhyankar’s lemma). Let Y = Spec(A) be a regular local scheme
and D =

∑
1≤i≤r div( fi ) a divisor with normal crossings, so that the fi form part

of a regular system of parameters for Y . Set Y = Supp(D) and let U = Y \ Y .
Consider V → U , an étale cover that is tamely ramified over D. If yi are the
generic points of supp(div( fi )) then OY,yi is a discrete valuation ring. If we let Ki

be its field of fractions then, as V ramifies tamely, we have that

V |Ki = Spec
(∏

j∈Ji

L j i

)
,

where the L j i are finite separable extensions of Ki . We let n j i be the order of the
inertia group of the Galois extension generated by L j i and let

ni = lcm j∈Ji n j i ,

and set

A′ = A[T1, . . . , Tr ]/(T
n1

1 − f1, . . . , T nr
r − fr ), Y ′ = Spec(A′).

Then the étale cover V ′ = V ×X X ′ of U ×X X ′ extends uniquely up to isomorphism
to an étale cover of X ′.
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Proof. This is [SGA 1 1971, Expose XIII, Proposition 5.2]. The proof given shows
how to construct the extension of V ′, which we need below. The extension can be
constructed as the normalization of X ′ in the generic point of V ×X X ′. �

Proposition 4.6. Under Assumption 4.4, suppose that φ : X→ Y is ramified along
a simple normal crossings divisor E. The morphism ψ : X→Y constructed above
is étale.

Proof. Étale maps are local on the source so we can assume that Y = Spec(S), and
all Ei are trivial line bundles so that si ∈ S. Further, by shrinking X we can assume
that the morphism X → Y is defined be trivial bundles on X . Because the map
φ is finite we can write X = Spec(T ). Here T and S are local regular Noetherian
k-algebras, T is a finite S-module, si is part of a regular system of parameters and
there are elements ti ∈ T , such that tri

i = si .
We may check étaleness after a faithfully flat base extension of the base field

and hence may assume that the ground field k contains ri -th roots of unity for
all 1≤ i ≤ n.

Using Remark 4.3, we see that the stack Y is isomorphic to the quotient stack

[Spec(S′)/µr1 × · · ·×µrn ],

where S′ = S[y1, . . . , yn]/(y
r1
1 − s1, . . . , yrn

n − sn).
We want to show that the map Spec(T )→ [Spec(S′)/µr1 × · · · ×µrn ] is étale.

Denote by T ′ the ring T [x1, . . . , xn]/(xr1 − 1, . . . , xrn − 1). Using Remark 4.3
again we obtain a Cartesian diagram

Spec(T ′) Spec(S′)

Spec(T )
[
Spec(S′)/µr1 × · · ·×µrn

]
Because Spec(S′) is a presentation of a quotient stack it is enough to show that the
map S′→ T ′ given by yi 7→ ti xi is étale.

The morphism Ss1...sn → Tt1...tn is flat and unramified by assumption, and hence
it is étale. By Abhyankar’s lemma (Proposition 4.5), this morphism extends after
base change to an étale cover of S′. By the proof of Abhyankar’s lemma it suffices
to show that T ′ is normal and the map S′→ T ′ is integral. Both of these facts are
easily checked and the result follows. �

For a point p ∈ Y we define

I (p, Y )=
∏

p∈supp(Ei )

µri .
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Proposition 4.7. Let Assumption 4.4 hold. Let K be a field and consider the mor-
phism of K-points

πK : X ×Y X (K )→ X ×Y X (K ).

The fiber π−1
K (x1, x2) over a K-point (x1, x2) is a bitorsor under the inertia group

I (φ(x1), Y ).

Proof. In what follows, we use the shorthand G∗ when we mean
∑

g∈G g∗. Recall
that the morphism ψ is defined by (O(G∗Ei ), sG∗Ei , αi ), where αi are isomor-
phisms, coming from the fact that

ri G∗Ei = riφ
∗(Di ).

The fiber over (x1, x2) is exactly the set of isomorphism from x∗1O(G
∗Ei ) to

x∗2O(G
∗Ei ) as i varies. As in Example 4.1, this depends on whether the section

x∗1 sG∗Ei vanishes or not. The vanishing condition precisely depends on φ(x1), and
the result follows. �

The final ingredient we need to finish the proof is that under our assumptions
the inertia group of X is generated in codimension one. For that let us recall the
following:

Proposition 4.8 (Abhyankar’s theorem; see [Grothendieck and Murre 1971, Theo-
rem 2.3.2]). Let Y be a locally noetherian normal scheme, D a divisor with normal
crossing, Ŷ = supp(D) and U = Y \ Ŷ . Assume that X → Y is a finite morphism
and G is a finite group operating on X such that X | U is a G-torsor. Then the
following are equivalent:

(i) X is tamely ramified relative to D.

(ii) For every y ∈ Y there exists an étale neighborhood Y ′ of y in Y , and a scheme
S =OY [(Ti )i∈I ′]/((T

r ′i
i − f ′i ))i∈I ′ , where DY ′ =

∑
i∈I ′ D′i and div( f ′i ) = D′i ,

such that there is an isomorphism of couples

(X ′,G)' (G×H S,G),

where X ′ = X ×Y Y ′ and H =
∏

i∈I ′ µr ′i . Let us recall that G ×H S is the
quotient (G× S)/H , where H acts “by the formula” h · (g, s)= (gh−1, hs).

Let us apply this fact to describe the inertia group.

Theorem 4.9. Under Assumption 4.4, suppose that φ : X→ Y is ramified along a
simple normal crossings divisor. Then the inertia groups of (X,G) are generated
in codimension one.

Proof. Firstly observe that condition (i) of Abhyankar’s theorem (Proposition 4.8)
is satisfied. Inertia is a local notion and also, clearly, the inertia group of (S, H) is
generated in codimension one.
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There is an isomorphism of quotient stacks [(G×H S)/G] ∼= [S/H ]. So inertia
groups of G ×H S under the action of G and of S under the action of H are
isomorphic for the corresponding points. This finishes the proof. �

Finally, we are ready to prove the main theorem of this section.

Theorem 4.10. If Assumption 4.4 is satisfied and if also the ramification divisor is
a normal crossing divisor, then we have the isomorphism of stacks [X/G] ∼=Y.

Proof. To prove this all we need to show is that the map

χ : X ×G→ X ×Y X, (x, g) 7→ (x, gx)

is an isomorphism.
By Proposition 4.6, the map ψ : X→Y is étale, and so the map X ×Y X→ X

is étale as a pullback. Clearly two maps X × G → X given by (x, g) 7→ x and
(x, g) 7→ gx are étale and so the map χ must be étale.

We are going to show that the map

χ(K ) : X (K )×G→ X ×Y X (K )

is bijective for any field extension of the ground field k ⊂ K . The points of the
scheme on the left is a pair (x, g), where g ∈ G and x : Spec(K )→ X a K-point.

Consider the morphism 9 : X ×G→ X ×Y X . This morphism is surjective as
we have a geometric quotient; see [Mumford et al. 1994, Definition 0.4]. Consider
a K-point (x1, x2) ∈ X ×Y X (K ). Using the properties of geometric quotients we
have that x2 = gx1 for some g ∈ G. Using this we see the fiber 9−1(x1, x2) is a
torsor over the inertia group I (supp(x1),G). By Theorem 4.9 our inertia groups
are generated in codimension one, so we see that we have an identification

I (supp(x1),G)= µri1
× · · ·×µril

as in Proposition 4.7. It follows that the morphism χ is étale and universally injec-
tive (radical). This implies that it is an open immersion. As it is also surjective, it
is an isomorphism and the result follows. �

5. An application of root stacks to the equivariant K-theory of schemes

As an application of the theorems proved in Sections 3 and 4, we can formulate a
result about equivariant K-theory.

Theorem 5.1. Let X be a regular, separated, noetherian scheme over the field k
with a generically free admissible action of a finite group G, such that the order
of G is coprime to the characteristic of k. Let X/G = Y and assume that all the
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conditions of Assumption 4.4 are satisfied. Also assume that X → Y is ramified
along a simple normal crossing divisor E. Then there is an isomorphism of groups

K •G(X)∼= K •(Y )⊕
( n⊕

i=1

( ⊕
T∈S(i)

G•
(⋂

l∈T

El

)⊕∏l∈T (rl−1)))
,

where rl are orders of inertia groups (see Section 4 for notation), and

S(i)= {T ⊂ {1, . . . , n} | |T | = i}.

Proof. By assumption X is a regular scheme and the group G is finite, so for any
G-equivariant sheaf we can always construct an equivariant locally free resolution
by averaging the usual locally free resolution. This simple argument shows that
the equivariant K-theory of X is the same as the equivariant G-theory.

The category of G-equivariant sheaves on X is equivalent to the category of
sheaves on the quotient stack [X/G], so we can see that

KG(X)∼= G([X/G]).

In Theorem 4.10 we proved under our assumptions that there is an isomorphism
of stacks [X/G] ∼=Y, so we have an isomorphism of their G-theories

G([X/G])∼= G(Y).

Finally the application of Theorem 3.32 gives the desired formula. �

Let us give some examples.

Example 5.2. Let’s consider A1 over a field k with an action of µ3 (it acts by
multiplication). Assume that char(k) 6= 3. Then A1/µ3 ∼= A1 and ramification
divisor is div(0). The inertia group is µ3. So by Theorem 5.1,

K •µ3
(A1)∼= K •(A1)⊕ K •(k)⊕ K •(k)∼= K •(k)⊕3.

Example 5.3. This example was inspired by the paper [Alexeev and Orlov 2013].
The Burniat surface X with K 2

X = 6 is a Galois G := C2×C2-cover of Bl3 P2 (a
del Pezzo surface of degree 6). Let’s assume that the ground field k is algebraically
closed and char(k) 6= 2. The ramification divisor is given in [loc. cit., Figure 1]: it
is denoted by Al, Bl,Cl , where 0 ≤ l ≤ 4. The inertia group of each component
is C2, and the inertia group of an intersection point of any two components is G.
The intersection of three components is empty. Also, Al ∼= Bl ∼= Cl ∼= P1 for all
l = 0, . . . , 3.

Applying Theorem 5.1, one gets

K •G(X)∼= K •(Bl3 P2)⊕

( 2⊕
i=1

Z•i

)
, Z•1 = K •(P1)⊕12, Z•2 = K •(k)⊕30.
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Notations and conventions

k our base field
ker the kernel of a functor (Definition 2.2)
Er an n-tuple (r1, . . . , rn) of real numbers
Er I n the poset of integer points in

∏n
i=1[0, ri ]

Func(A,B) the functor category between two abelian categories
M̂ the dual Hom(M,Gm) of the monoid M

Div X the symmetric monoidal category of line bundles with section
(Section 3A)

X L ,Er a stack of roots over the scheme X (Definition 3.4)
Coh X category of coherent sheaves on X

EP(X, L , Er) category of coherent extendable pairs (Remark 3.16)
Sn(k)= S(k) The set of subsets of {1, 2, . . . , n} of cardinality k

(We often drop the subscript n when it is clear from context.)
Facek The k-th face functor (Definition 3.22)
kerk The kernel of the face functor (Definition 3.23)
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Orbital integrals and K-theory classes

Peter Hochs and Hang Wang

Let G be a semisimple Lie group with discrete series. We use maps K0(C∗r G)→C

defined by orbital integrals to recover group theoretic information about G, in-
cluding information contained in K-theory classes not associated to the discrete
series. An important tool is a fixed point formula for equivariant indices obtained
by the authors in an earlier paper. Applications include a tool to distinguish
classes in K0(C∗r G), the (known) injectivity of Dirac induction, versions of Sel-
berg’s principle in K-theory and for matrix coefficients of the discrete series, a
Tannaka-type duality, and a way to extract characters of representations from
K-theory. Finally, we obtain a continuity property near the identity element of
G of families of maps K0(C∗r G)→ C, parametrised by semisimple elements
of G, defined by stable orbital integrals. This implies a continuity property for
L-packets of discrete series characters, which in turn can be used to deduce a
(well-known) expression for formal degrees of discrete series representations
from Harish-Chandra’s character formula.

1. Introduction

Let G be a real semisimple Lie group. Its reduced C∗-algebra C∗r G is the closure
in B(L2(G)) of the algebra of convolution operators by functions in L1(G). It
represents the tempered dual of G as a “noncommutative space” in the sense of
noncommutative geometry, and encodes all tempered representations of G. Its
K-theory K∗(C∗r G) is a natural invariant to consider. This K-theory is described
explicitly in terms of equivariant indices of Dirac operators on G/K , for a max-
imal compact subgroup K < G, in the Connes–Kasparov conjecture. This was
proved in various cases by Penington and Plymen [1983], Wassermann [1987],
Lafforgue [2002b] and finally in general by Chabert, Echterhoff and Nest [Chabert
et al. 2003].

Despite this explicit knowledge about the structure of K∗(C∗r G), it remains a
challenge to extract explicit representation theoretic information from this K-theory
group. There has been a good amount of success in this direction for classes

MSC2010: primary 19K56; secondary 22E46, 46L80, 58J20.
Keywords: K-theory of group C∗-algebras, orbital integral, equivariant index, semisimple Lie
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in K∗(C∗r G) corresponding to discrete series representations, for groups having
such representations. For example, Lafforgue [2002a] used K-theory to recover
Harish-Chandra’s criterion rank(G)= rank(K ) for the existence of discrete series
representations.

The von Neumann trace τe on C∗r G, defined by τe( f )= f (e) for f in a dense
subalgebra, induces a map on K0(C∗r G). On classes corresponding to the discrete
series, this gives the formal degrees of such representations. But this trace maps
all other classes to zero (see Proposition 7.3 in [Connes and Moscovici 1982]).
It has recently become clear that a natural generalisation of the von Neumann
trace involving orbital integrals can be used to extract much more information
from K0(C∗r G). For a semisimple element g ∈ G, the orbital integral τg( f ) of a
function f on G is the integral of f over the conjugacy class of g. This integral
converges for f in Harish-Chandra’s Schwartz algebra, which has the same K-
theory as C∗r G. That leads to maps

τg : K0(C∗r G)→ C. (1.1)

If D is an elliptic operator on a Z2-graded vector bundle over a manifold M , G-
equivariant for a proper, cocompact action by G on M , then one has the equivariant
index

indexG(D) ∈ K0(C∗r G).

In [Hochs and Wang 2018a], the authors proved a fixed point formula for the num-
bers

τg(indexG(D)). (1.2)

They showed that Harish-Chandra’s character formula for the discrete series is a
special case of this fixed point formula, much as Weyl’s character formula is a
special case of the Atiyah–Segal–Singer [Atiyah and Segal 1968] or Atiyah–Bott
[Atiyah and Bott 1967] fixed point formulas, as proved in [Atiyah and Bott 1968].
Also, Shelstad’s character identities for L-packets of representations follows from
a K-theoretic argument involving τg, in the case of discrete series representations
[Hochs and Wang 2018c].

Another approach to index theory involving orbital integrals is the work of Bis-
mut on hypoelliptic Laplacians; see for example [Bismut 2011] or the survey [Ma
2017].

For discrete groups, orbital integrals (now sums over conjugacy classes) are also
useful tools in K-theory. The main result in [Wang and Wang 2016] is a fixed point
theorem for (1.2) in the discrete group case, which has consequences to orbifold
geometry, positive scalar curvature metrics, and trace formulas. Gong [2015] and
Samurkaş [2017] used such maps on the K-theory of maximal group C∗-algebras to
deduce information about rigidity of manifolds. Lott [1999] used orbital integrals
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for discrete groups to construct secondary invariants. Xie and Yu [2018] expressed
Lott’s delocalised η-invariant in terms of a K-theoretic ρ-invariant.

For semisimple Lie groups G, the results in [Hochs and Wang 2018a; 2018c;
Lafforgue 2002b] mentioned above show that classes in K0(C∗r G) corresponding
to the discrete series contain a great deal of information about those representa-
tions. But it was long unclear what (representation theoretic) information can be
recovered from other classes. That question was important motivation for this
paper. As a concrete example, it was not known what information the generator of
K0(C∗r SL(2,R)) corresponding to the limits of discrete series (or to the nonspher-
ical principal series) contains.

In the present paper, we investigate further properties and applications of the
maps (1.1) for semisimple Lie groups, many of them related to the fixed point
formula for (1.2). This starts with an explicit expression for τg applied to K-theory
generators defined via Dirac induction (Theorem 3.2). That result shows that τg is
the zero map on K-theory if rank(G) 6= rank(K ), but it has interesting consequences
if rank(G)= rank(K ). These include

• a way to use the maps τg to distinguish elements of K0(C∗r G) (Corollary 4.1);

• an embedding of K0(C∗r G) into the spaces of distributions on Greg or G
(Corollary 4.2);

• an induction formula from K-equivariant indices to G-equivariant indices
(Corollary 4.8);

• versions of Selberg’s vanishing principle for classes in K0(C∗r G) (Corollary 4.9)
and matrix coefficients of the discrete series (Corollary 4.10);

• a Tannaka-type duality result (Corollary 4.11);

• a result relating the value of τg on K-theory generators to characters of repre-
sentations (Corollary 5.3).

Furthermore, Dirac induction is known to be injective (indeed, bijective), but we
recover this injectivity independently as well.

In the last bullet point above, Corollary 5.3 explicitly states that τg maps a K-
theory class to the value at g of the character of one of the irreducible direct sum-
mands of the representation it corresponds to naturally. The values at g of these
characters are equal up to a sign, and they add up to zero if that representation is
reducible. So the value at g of one of these characters is the most relevant infor-
mation one could have expected to obtain by applying τg. This, to a large extent,
answers the question if and what representation theoretic information is contained
in classes in K0(C∗r G) if rank(G)= rank(K ), even those not corresponding to the
discrete series. In particular, the generator of K0(C∗r SL(2,R)) corresponding to
the limits of discrete series determines the characters of these representations on K .
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In work in preparation, Higson, Song and Tang compute the values of τg on
generators of K0(C∗r G) independently, without using index theory. This is part of
their proof of the Connes–Kasparov conjecture, which states that Dirac induction
is bijective.

For a fixed element x ∈ K0(C∗r G), we will see that τg(x) does not depend con-
tinuously on g, for example at the identity element e. Theorem 6.2 states that a
modified version of τg, related to L-packets of representations in the Langlands
program, has better continuity properties at e. That implies continuity of certain
finite sums of discrete series characters (Corollary 6.3). And that can be used to
take the limit as g→ e in Harish-Chandra’s character formula for the discrete series
to obtain expressions for formal degrees of discrete series representations.

We hope that the various applications of orbital integrals to K-theory of group
C∗-algebras in this paper help to demonstrate the relevance of orbital integrals as
a tool to study such K-theory groups. In future work, we hope to generalise the
results and their applications in this paper to more general groups.

2. Preliminaries

Throughout this paper, let G be a connected semisimple Lie group with finite centre.
Let K < G be a maximal compact subgroup. For any Lie group, we denote its Lie
algebra by the corresponding gothic letter. Fix a K-invariant inner product on g,
and let p⊂ g be the orthogonal complement to k. Then g= k⊕ p.

2A. Dirac induction. The map Ad : K → SO(p) lifts to Ãd : K̃ → Spin(p), for
a double cover K̃ of K . Let 1p be the standard representation of Spin(p), seen as
a representation of K̃ via Ãd. Let K̂Spin be the set of irreducible representations
V of K̃ such that 1p⊗ V descends to a representation of K . Let RSpin(K ) be the
free abelian group generated by K̂Spin.

Let V ∈ K̂Spin. Then we have the G-equivariant vector bundle

EV := G×K (1p⊗ V )→ G/K .

Let {X1, . . . , Xdim(G/K )} be an orthonormal basis of p. Let cp : p→ End(1p) be
the Clifford action. Let L : g→ End(C∞(G)) be the infinitesimal left regular
representation. Consider the Dirac operator

DV :=

dim(G/K )∑
j=1

L(X j )⊗ cp(X j )⊗ 1V

on
0∞(EV )= (C∞(G)⊗1p⊗ V )K .

If G/K has a G-invariant Spin-structure (which is the case precisely if 1p de-
scends to K ), then DV is the Spin-Dirac operator on G/K coupled to the bundle
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G×K V → G/K ; see Proposition 1.1 in [Parthasarathy 1972]. In any case, DV is
a G-equivariant elliptic differential operator, and has an index

indexG(DV ) ∈ K∗(C∗r G).

Here C∗r G is the reduced group C∗-algebra of G, and indexG is the analytic assem-
bly map [Baum et al. 1994]. If dim(G/K ) is even, then 1p, and hence EV , has a
natural Z2-grading with respect to which DV is odd. Then indexG(DV )∈ K0(C∗r G).
If dim(G/K ) is odd, then there is no such grading, and indexG(DV ) ∈ K1(C∗r G).
So in general, we have

indexG(DV ) ∈ Kdim(G/K )(C∗r G).

Dirac induction is the map

D-IndG
K : RSpin(K )→ Kdim(G/K )(C∗r G)

given by
D-IndG

K [V ] = indexG(DV ),

with V as above. By the Connes–Kasparov conjecture, proved in [Chabert et al.
2003; Lafforgue 2002b; Wassermann 1987], this map is an isomorphism of abelian
groups.

From now on, we suppose that G/K is even-dimensional, since the K-theory
group K0(C∗r G) we study is zero otherwise.

2B. Orbital integrals and a fixed point formula. Let g ∈ G be a semisimple ele-
ment. Let ZG(g)<G be its centraliser. Let d(h ZG(g)) be the left invariant measure
on G/ZG(g) determined by a Haar measure dg on G. The orbital integral with
respect to g of a measurable function f on G is

τg( f ) :=
∫

G/ZG(g)
f (hgh−1) d(h ZG(g)),

if the integral converges. Harish-Chandra [1966, Theorem 6] proved that the inte-
gral converges for f in the Harish-Chandra Schwartz algebra C(G). The subalgebra
C(G)⊂ C∗r G is dense and closed under holomorphic functional calculus [Hochs
and Wang 2018a, Theorem 2.3]. Hence we obtain a map

τg : K0(C∗r G)= K0(C(G))→ C.

Note that τe is the usual von Neumann trace.
Let M be a Riemannian manifold with a proper, isometric, cocompact action

by G. Let E→ M be a G-equivariant, Hermitian, Z2-graded vector bundle. Let
D be an odd, self-adjoint, G-equivariant, elliptic differential operator on E . Then
we have

indexG(D) ∈ K0(C∗r G).
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In [Hochs and Wang 2018a], the authors proved a fixed-point formula for the num-
ber τg(indexG(D)), for almost all g ∈ G. Consequences include Harish-Chandra’s
character formula for the discrete series [Harish-Chandra 1966, Theorem 16] (see
[Hochs and Wang 2018a, Corollary 2.6]) and Shelstad’s character identities in
the case of discrete series representations [Shelstad 1979] (see [Hochs and Wang
2018c, Theorem 2.5]). In this paper, we explore further consequences.

To state the fixed point formula in [Hochs and Wang 2018a], let N → Mg be
the normal bundle to the fixed point set Mg of g in M . Let σD be the principal
symbol of D. Let cg

∈ Cc(Mg) be nonnegative, and such that for all m ∈ Mg,∫
ZG(g)

cg(hm) dh = 1,

for a fixed Haar measure dh on ZG(g) compatible with dg and d(h ZG(g)). If G/K
is odd-dimensional, then K0(C∗r G)= 0, so τg(indexG(D))= 0.

Theorem 2.1. If G/K is even-dimensional, then for almost all semisimple g ∈ G,
we have τg(indexG(D)) = 0 if g is not contained in any compact subgroup of G,
and

τg(indexG(D))=
∫

TMg
cg ch

(
[σD|supp(cg)](g)

)
Todd(TMg

⊗C)

ch
([∧

N ⊗C
]
(g)
) (2.2)

if it is.

Here
ch : K 0(supp(cg))→ H∗(supp(cg)),

ch : K 0(TMg
|supp(cg))→ H∗(TMg

|supp(cg))

are Chern characters, and Todd denotes the Todd class.

Remark 2.3. Explicitly, Theorem 2.1 holds for the semisimple g ∈ G with finite
Gaussian orbital integral (FGOI) [Hochs and Wang 2018a, Definition 7]. That
condition means that the integral∫

G/ZG(g)
e−d(e,hgh−1)2 d(h ZG(g))

converges, where d is the G-invariant Riemannian distance on G. It was shown in
[Hochs and Wang 2018a, Proposition 4.2] that almost every element of G has FGOI.

In this paper, whenever a result is stated for almost all g, what is meant is that
it holds for semisimple elements with FGOI, and possibly also with dense powers
in a maximal torus.
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3. A fixed point formula on G/K

Let T < K be a maximal torus. Let T̃ < K̃ be its inverse image in K̃ . Fix a set
R+c of positive roots of (kC, tC). Let ρc be half the sum of the elements of R+c . Let
V ∈ K̂Spin. Let λ ∈ it∗ be its highest weight with respect to R+c .

For any finite-dimensional (actual or virtual) representation W of K or K̃ , we
denote its character by χW . For any function ϕ on K̃ that descends to a function
on K , we use the same notation ϕ for both the function on K̃ and K . For example,
we have χ1pχV ∈ C∞(K ).

In the case where T is a Cartan subgroup of G, i.e., rank(G)= rank(K ), fix a
set of positive noncompact roots R+n of (gC, tC) such that the character χ1p of the
graded representation 1p of K̃ satisfies

χ1p |T̃ =
∏
α∈R+n

(eα/2− e−α/2). (3.1)

Such a choice of positive noncompact roots can always be made; see, for example,
[Atiyah and Schmid 1977, pp. 17–18; Parthasarathy 1972, Remark 2.2; Atiyah and
Singer 1968, (5.1)]. In the equal-rank case, we write R+ := R+c ∪ R+n . We denote
half the sums of the elements of R+ and R+n by ρ and ρn , respectively.

Let WK := NK (T )/T be the Weyl group of (K , T ).

Theorem 3.2. (a) If rank(G)= rank(K ), then for almost all g ∈ T ,

τg(D-IndG
K [V ])= (−1)dim(G/K )/2 χV

χ1p

(g)

= (−1)dim(G/K )/2

∑
w∈WK

ε(w)ew(λ+ρc)∏
α∈R+(eα/2− e−α/2)

(g).

(In particular, the right-hand sides are well-defined.)

(b) If rank(G) 6= rank(K ), then for almost all g ∈ T ,

τg(D-IndG
K [V ])= 0.

Let a ⊂ p be an abelian subspace such that Zg(t) = t⊕ a. Let c ∈ Cc(a) be a
function whose integral over a is 1. Let σDV be the principal symbol of DV .

Lemma 3.3. For almost all g ∈ T ,

τg(D-IndG
K [V ])=

∫
T a

c
ch
(
[σDV |supp(c)](g)

)
ch
([
a×

∧
p/a⊗C

]
(g)
) .

Proof. Let g ∈ T be such that its powers are dense in T , and with FGOI (see
Remark 2.3). By Proposition 4.2 in [Hochs and Wang 2018a], almost all elements
of T have these two properties.
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We have G/K ∼= p as K-spaces, and hence in particular as T -spaces. Therefore,

(G/K )g = (G/K )T = pAd(T )
= a.

Set A := exp(a); this is the centraliser of g in exp(p). We have p = a ⊕ p/a

as representations of T . So the normal bundle in G/K = p to (G/K )g = a is
a× p/a→ a. The Todd class of the trivial bundle T (G/K )g⊗C→ (G/K )g is 1.
Hence the claim follows from Theorem 2.1. �

Let us compute [σDV |supp(c)]. Let βa ∈ K 0(a) be the Bott generator. (Note
that a is even-dimensional since G/K is.) Let π : Ta→ a be the tangent bundle
projection, and π |supp(c) : supp(c)× a→ supp(c) its restriction. Note that

1p
∼=1a⊗1p/a

as graded representations of T̃ . These descend to T after tensoring with V .

Lemma 3.4. Under the isomorphism

K T
0 (supp(c)× a)∼= K0(supp(c)× a)⊗ R(T ),

we have
[σDV |supp(c)] 7→ π |∗supp(c)βa⊗[1p/a⊗ V ].

Proof. Let ca : a→ End(1a) be the Clifford action. The class

π |∗supp(c)βa ∈ K 0(supp(c)× a)

is defined by1 the vector bundle homomorphism

A : supp(c)×1+a → supp(c)×1−a
given by

AY = ca(Y )
for all Y ∈ supp(c).

We have
(G×K (1

±

p ⊗ V ))|a ∼= a×1±p ⊗ V

as T -vector bundles. So

π |∗supp(c)
(
(G×K (1

±

p ⊗ V ))|supp(c)
)
= (supp(c)× a)×1±p ⊗ V .

Let X, Y ∈ a, so that, using the above identification, we get

σDV (X, Y )= cp(Y )⊗ 1V :1
+

p ⊗ V →1−p ⊗ V . (3.5)

Since Y ∈ a, the map (3.5) equals the odd endomorphism

ca(Y )⊗ 11p/a⊗V ∈ End(1a⊗1p/a⊗ V ).

Together with the above form of the class π |∗supp(c)βa, this implies the claim. �

1We absorb a possible sign in the definition of βa; see [Connes and Moscovici 1982, Lemma 4.1].
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Lemma 3.6. Suppose that rank(G)= rank(K ). Then∧
p⊗C= (−1)dim(G/K )/21p⊗1p

as graded representations of T .

Proof. The set of positive noncompact roots R+n determines a complex structure
on p such that p1,0 is the sum of the positive noncompact root systems. As graded
representations of T , we have∧

p⊗C=
∧

p1,0
⊗
∧

p0,1
=
∧

Cp⊗ (
∧

Cp)
∗.

The element ρn ∈ it∗ is integral for T̃ , and 1p⊗Cρn descends to a representation
of T . We have ∧

Cp= (−1)dim(G/K )/21p⊗Cρn

as graded representations of T ; see, for example, the proof of Lemma 5.5 in [Hochs
and Wang 2018a]. Since 1∗p ∼= (−1)dim(G/K )/21p, we conclude that∧

p⊗C=1p⊗1
∗
p = (−1)dim(G/K )/21p⊗1p.

The nontrivial element of the kernel of the covering map K̃→ K acts on 1p as ±1;
therefore, 1p⊗1p descends to a representation of T . �

Lemma 3.7. Let c be a nonnegative, compactly supported, continuous function on
R2n with integral 1. Let β ∈ K 0(R2n) be the Bott class, and consider

π |supp(c) : supp(c)×R2n
→ supp(c),

where π : T R2n
→ R2n is the natural projection. Then∫

R2n×R2n
c ch(π |∗supp(c)β)= 0. (3.8)

Proof. By Proposition 6.11 in [Wang 2014], the integral (3.8) equals the L2-index
of the Spin-Dirac operator on R2n . That index is zero because the L2-kernel of this
Dirac operator is zero. Indeed, the Spin-Dirac operator on R2n only has continuous
spectrum; see, for example, Theorem 7.2.1 in [Ginoux 2009]. �

Proof of Theorem 3.2. Lemma 3.4 implies that

ch
(
[σDV |supp(c)](g)

)
= ch(π |∗supp(c)βa)(χ1p/aχV )(g).

Furthermore,
ch
([
a×

∧
p/a⊗C

]
(g)
)
= χ∧ p/a⊗C(g)

in the graded sense. So by Lemma 3.3,

τg(D-IndG
K [V ])=

χ1p/aχV

χ∧ p/a⊗C

(g)
∫

Ta
c ch(π |∗supp(c)βa).
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If rank(G) 6= rank(K ), then a is nonzero, and the claim follows from Lemma 3.7.
If rank(G)= rank(K ), then Lemma 3.6 implies that

τg(D-IndG
K [V ])= (−1)dim(G/K )/2 χV

χ1p

(g);

in particular, the right-hand side is well-defined. The claim now follows from
Weyl’s character formula and (3.1). (Note that (K̃ , T̃ ) and (K , T ) have the same
Weyl group WK , since they have the same root system.) �

Remark 3.9. If g = e, then τe(D-IndG
K [V ]) is the L2-index of DV by Proposi-

tion 4.4 in [Wang 2014]. That index is zero if the kernel of DV is zero. Theorem 3.2
shows that, in the equal-rank case, the more general trace τg yields nonzero infor-
mation even in cases where the kernel of DV is zero (see also Section 5B).

4. Consequences

Suppose from now on that rank(G)= rank(K ).

4A. Distinguishing K-theory classes. As a consequence of Theorem 3.2, the traces
τg “separate points” on K0(C∗r G), or distinguish all elements of K0(C∗r G), in the
following sense.

Corollary 4.1. Let x ∈ K0(C∗r G). If τg(x) = 0 for all g in a dense subset of T ,
then x = 0.

Proof. Let x ∈ K0(C∗r G). By surjectivity of Dirac induction, we can write

x =
∑

V∈K̂Spin

mV D-IndG
K [V ],

for mV ∈ Z, finitely many nonzero. By Theorem 3.2, we have for almost all g ∈ T ,

τg(x)= (−1)dim(G/K )/2
∑

V∈K̂Spin

mV
χV

χ1p

(g).

So if τg(x)= 0 for all g in a dense subset of T , then by continuity and conjugation
invariance of the characters χV , we find that∑

V∈K̂Spin

mVχV = 0.

So mV = 0 for all V , i.e., x = 0. �

4B. K-theory and distributions. Let Greg
⊂ G be the subset of regular elements.

Corollary 4.2. The map

τ : K0(C∗r G)→ D′(Greg)
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defined by
〈τ(x), f 〉 =

∫
Greg

τg(x) f (g) dg

for x ∈ K0(C∗r G) and f ∈ C∞c (G
reg), is a well-defined, injective group homomor-

phism.

Proof. Let x ∈ K0(C∗r G). By the surjectivity of Dirac induction, we can write
x = D-IndG

K [y], for some y ∈ RSpin(K ). Theorem 3.2 implies that the function
g 7→ τg(x) equals an analytic function almost everywhere on the set of elliptic
elements of G. Theorem 2.1 implies that this function equals zero almost every-
where on the set of nonelliptic elements of G. So g 7→ τg(x) equals an analytic
function almost everywhere on G. Furthermore, that analytic function is bounded
on compact subsets of Greg. This implies that τ(x) is a well-defined distribution
on Greg.

If τ(x)= 0, then τg(x)= 0 for almost all g ∈ Greg, in particular for almost all
elements of T . Hence Corollary 4.1 implies that x = 0. �

Remark 4.3. As noted in the proof of Corollary 4.2, the first part of Theorem 2.1
implies that τ(x) is zero outside the set of regular elliptic elements of G.

Remark 4.4. We describe the map τ in Corollary 4.2 explicitly in terms of charac-
ters of representations in Section 5. There we see that τ(x) equals the character of
a tempered representation of G almost everywhere on the set of regular elliptic ele-
ments, and zero almost everywhere outside the set of elliptic elements. Therefore,
it extends to a distribution on all of G by Harish-Chandra’s regularity theorem.

4C. Injectivity of Dirac induction. We have used the surjectivity of Dirac induc-
tion in the proof of Corollary 4.1 (which is justified because the Connes–Kasparov
conjecture has been proved). Theorem 3.2 implies injectivity of Dirac induction.

Corollary 4.5. Dirac induction is injective.

Proof. Let y ∈ RSpin(K ), and suppose that D-IndG
K (y)= 0. Then τg(D-IndG

K (y))= 0
for all g ∈ T . Theorem 3.2 implies that for almost all g ∈ T ,

χy

χ1p

(g)= 0.

So χy = 0, i.e., y = 0. �

4D. An induction formula. Let M be an even-dimensional Riemannian manifold
with a G-equivariant Spinc-structure. Let E→ M be a G-equivariant, Hermitian
vector bundle. Let DE

M be the Spinc-Dirac operator on M twisted by E . By Abels’
theorem [1974], there is a K-invariant submanifold N ⊂ M such that M ∼= G×N N
via the action map G × N → M . Furthermore, N has a K-equivariant Spinc-
structure on N compatible with the one on M ; see Proposition 3.10 in [Hochs
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and Mathai 2017]. The Spinc-Dirac operator DE
N on N , twisted by E |N , has the

property that
D-IndG

K (indexK (DE
N ))= indexG(DG

M) ∈ K0(C∗r G). (4.6)

See Theorem 5.2 in [Hochs and Wang 2018a] and Proposition 4.7 in [Hochs 2009].
Theorem 3.2 and surjectivity of Dirac induction imply that the following dia-

gram commutes for all g in the dense subset of T in Theorem 3.2:

K0(C∗r G)
τg

,,

RSpin(K )

D-IndG
K

OO

(−1)dim(G/K )/2 evg /χ1p (g)
// C

(4.7)

Here evg denotes evaluation of characters of representations at g; note that the
bottom arrow is well-defined.

The equality (4.6) and commutativity of (4.7) imply the following formula for
induction from slices.

Corollary 4.8. We have, for almost all g ∈ T ,

τg(indexG(DE
M))= (−1)dim(G/K )/2 indexK (DE

N )(g)/χ1p(g).

Note that the right-hand side can be computed via the Atiyah–Segal–Singer fixed
point formula [Atiyah and Segal 1968].

Induction formulas like Corollary 4.8 we used in various settings to deduce
results about G-equivariant indices from results about K-equivariant indices [Guo
et al. 2018; Hochs 2009; Hochs and Mathai 2016; Hochs and Mathai 2017; Hochs
and Wang 2018a]. The case g = e is not covered by Corollary 4.8; that case is
Corollary 53 in [Guo et al. 2018].

4E. Selberg’s principle. The Selberg principle is a vanishing result for orbital in-
tegrals of certain convolution idempotents on G. See [Blanc and Brylinski 1992;
Julg and Valette 1986; 1987] for approaches to this principle in the spirit of non-
commutative geometry. Theorem 2.1 implies a version of this principle.

Corollary 4.9 (K-theoretic Selberg principle). For almost all g not contained in
compact subgroups of G, the map

τg : K0(C∗r G)→ C

is zero.

Proof. Theorem 2.1 implies that for almost all g not contained in compact sub-
groups of G, and all V ∈ RSpin(K ), we have

τg(D-IndG
K [V ])= 0.

So surjectivity of Dirac induction implies the claim. �
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Corollary 4.9 has a purely representation theoretic consequence.

Corollary 4.10 (Selberg principle for matrix coefficients of the discrete series).
Let π be a discrete series representation of G. Let v be a K-finite vector in the
representation space of π , and mv,v the corresponding matrix coefficient. For all
g not contained in compact subgroups of G, we have

τg(mv,v)= 0.

Proof. Let dπ be the formal degree of π . By rescaling, we may assume that v
has norm 1. Then dπmv,v is an idempotent in C∗r G. Let [π ] ∈ K0(C∗r G) be its
K-theory class. Since v is K-finite, the function mv,v lies in Harish-Chandra’s
Schwartz algebra C(G). Therefore, for all semisimple g ∈ G,

τg(mv,v)=
1

dπ
τg([π ]).

By Corollary 4.9, the number is zero for almost all g not contained in compact
subgroups. The claim therefore follows by continuity of mv,v. �

4F. A Tannaka-type duality. We now suppose that the representation 1p of K̃
descends to K . This is true if we replace G by a double cover if necessary. Then
Dirac induction is defined on R(K ).

The K-theory group K0(C∗r G) and its elements contain nontrivial information
about G and its representations; see, e.g., [Hochs and Wang 2018a; 2018c; Laf-
forgue 2002b]. But just the isomorphism class of K0(C∗r G) as an abelian group con-
tains no information about G whatsoever: this group is always free, with countably
infinitely many generators. It turns out, however, that the combination of the iso-
morphism class of K0(C∗r G), the topological space T and the maps τg:K0(C∗r G)→C,
for g in a dense subset of T , together determine the Cartan motion group K np and
vice versa. The tempered representation theory of K n p is closely related to that
of G; this is the Mackey analogy [Afgoustidis 2015; Higson 2008; 2011; Mackey
1975; Tan et al. 2017; Yu 2017]. Also, the analytic assembly map for G can be
defined in terms of a continuous deformation from K n p to G; see pp. 23–24 of
[Baum et al. 1994] and [Higson 2008].

This is vaguely analogous to the fact that the irrational rotation algebras Aλ, for
irrational λ in

[
0, 1

2

]
, have the same K-theory Z⊕ Z, but are determined up to

isomorphism by the pair (K0(Aλ), τ ), where τ is a natural trace. This is because
the image of τ is Z+ λZ.

Corollary 4.11. The

• abelian group K0(C∗r G) up to isomorphism,

• pointed topological space (T, {e}) up to homeomorphism, and
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• family of group homomorphisms τg : K0(C∗r G)→ C, for g in a dense sub-
set of T ,

together determine the Cartan motion group K n p, and vice versa.

Proof. Write
K0(C∗r G)=

⊕
j∈Z

Z

and let e j be a generator of the j-th copy of Z. Let S be the intersection of the
dense subset of T in the third point in the corollary and the set of g ∈ T for which
the formula in Theorem 3.2 holds. Then S is dense in T .

Consider the function χ j : S→ R given by χ j (g) = τg(e j ). By Theorem 3.2,
there is a function ψ ∈ C∞(T ), not unique but independent of j , and there are
uniquely determined integers d j such that for all j ,

lim
g→e

ψ(g)χ j (g)= d j ,

where at least one of the integers d j equals 1. (Indeed, take ψ = χ1p |S and d j plus
or minus the dimensions of the irreducible representations of K .) By replacing e j

by −e j where necessary, we can make sure that all integers d j are positive.
Fix j0 ∈ Z such that d j0 = 1. Then, again by Theorem 3.2,∣∣χ1p |S

∣∣= |χ j0 |
−1.

And χ1p =−χ1p , so χ1p is imaginary-valued. Hence

χ1p |S =±i |χ j0 |
−1.

We cannot resolve the sign ambiguity with the data we have, but we do not need to.
The characters of irreducible representations V j of K are continuous and conju-

gation invariant, so they are determined by

χV j |S = (χ1p |S)χ j =±i |χ j0 |
−1χ j ,

with the sign chosen such that ±i |χ j0 |
−1χ j > 0 near the identity element. This de-

termines the representations V j of K , and their tensor products and the underlying
vector spaces. By Tannaka duality [Tannaka 1938], this determines K .

To recover p as a K-representation, set ψ := i |χ j0 |
−1, extended continuously

to T . Then
ψ =±χ1p |T =±

∏
α∈R+n

(eα/2− e−α/2).

This implies that for all X, Y ∈ t,

d
dt

∣∣∣
t=0
ψ(X + tY )= ψ(exp(X))

∑
α∈R+n

〈α, Y 〉
2

coth(〈α, X〉/2).
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The term on the right-hand side corresponding to α equals the same term with
α replaced by −α. But otherwise this expression determines the weights α up
to signs. In this way, we recover the set Rn of t-weights of p⊗C as a complex
representation of T , and hence p as a real representation of T , and therefore as a
representation of K . This determines K n p.

Conversely, the Cartan motion group K n p determines its maximal compact
subgroup K and the quotient p = (K n p)/K as a representation of K . And K
determines the pair (T, {e}) up to conjugacy. The K-theory group K0(C∗r G) is
isomorphic to R(K ) via Dirac induction. Furthermore, K and p determine the
characters χV , for V ∈ K̂ and χ1p , and the dimension dim(G/K )= dim(p). Hence,
by Theorem 3.2, this determines the maps τg : K0(C∗r G)∼= R(K )→ C, for g in a
dense subset of T . �

Remark 4.12. In Corollary 4.11, one only needs the neighbourhoods of the iden-
tity element, not all of its topology. And as stated in the corollary, one does not
need the group structure of T .

Remark 4.13. If G = K is compact, then the triple

(K0(C∗r G), (T, {e}), (τg)g∈T )

determines the ring R(G) of characters of G. That in turn determines the tensor
products of representations of G, and forgetful maps to finite-dimensional com-
plex vector spaces. So in this case, Corollary 4.11 reduces to Tannaka duality for
compact groups [Tannaka 1938] (which was used in the proof of Corollary 4.11).

Remark 4.14. If the representation 1p of K̃ does not descend to K , then we only
recover the ring RSpin(K ) in the proof of Corollary 4.11 and cannot directly apply
Tannaka duality.

5. Characters

Again, we suppose that the representation 1p of K̃ descends to K . We may need
to replace G by a double cover for this assumption to hold. This assumption is
now not essential; see Remark 5.4.

5A. Characters and τg . The structure of the C∗-algebra C∗r G and its K-theory
was described by Wassermann [1987] and Clare, Crisp and Higson [Clare et al.
2016]. We can use this to relate values of τg on K-theory classes to values of
characters of representations.

Let P = MAN < G be a cuspidal parabolic and σ in the set M̂ds of discrete
series representations of M . Consider the bundle of Hilbert spaces EP,σ → Â
whose fibre at ν ∈ Â is IndG

P (σ ⊗ ν⊗ 1N ). (This can be topologised by viewing it
as a trivial bundle in the compact picture of induced representations.) Let IndG

P (σ )



200 PETER HOCHS AND HANG WANG

be the Hilbert C0( Â)-module of continuous sections of EP,σ vanishing at infinity.
The group

Wσ := {w ∈ NK (a)/Z K (a);wσ = σ }

acts on K(IndG
P (σ )) via Knapp–Stein intertwiners; see Theorem 6.1 in [Clare et al.

2016]. Let K(IndG
P (σ ))

Wσ be the fixed point algebra of this action. Then

C∗r G ∼=
⊕
P,σ

K(IndG
P (σ ))

Wσ ,

where the sum runs over a set of cuspidal parabolics P =MAN and σ ∈ M̂ds. This
is [Clare et al. 2016, Theorem 6.8]. See also Theorem 8 in [Wassermann 1987].

Now let P and σ be such that

K0(K(IndG
P (σ ))

Wσ )

is nonzero, hence infinite cyclic. (This is equivalent to the condition that Wσ equals
the R-group Rσ ; see Lemma 10 in [Wassermann 1987].) Let b(P, σ ) ∈ K0(C∗r G)
be the generator of this summand of K0(C∗r G) in the image under Dirac induction
of the Z≥1-span of K̂ inside R(K ).

Let η ∈ it∗M be the Harish-Chandra parameter of σ , and η̃ ∈ it∗ its extension by
zero on the orthogonal complement of tM in t. For any positive root system R̃+

of (gC, tC) for which η̃ is dominant, let πG(η̃, R̃+) be the corresponding (limit of)
discrete series representation of G. We need the following version of Schmid’s
character identities. This is Lemma 12 in [Wassermann 1987] in the equal rank
case, but with information included about the infinitesimal characters of the limits
of discrete series representations that occur.

Proposition 5.1. There are 2dim(A) choices of positive roots R+1 , . . . , R+2dim(A) ⊂ R,
obtained from R+ by the application of all combinations of dim(A) commuting
reflections in simple noncompact roots, such that

IndG
P (σ ⊗ 1A⊗ 1N )=

2dim(A)⊕
j=1

πG(η̃, R+j ).

Proof. This is a special case of Theorem 13.3 in [Knapp and Zuckerman 1982] for
the maximal parabolic G in the equal-rank group G. �

As before, let ρc be half the sum of the compact positive roots. By Lemma 15(i)
in [Wassermann 1987], the element η̃−ρc is dominant for K . It is integral because
1p descends to K ; this implies that ρn and hence η̃− ρ+ ρn is integral.

Proposition 5.2 (Wassermann). Let Vη̃−ρc ∈ K̂ have highest weight η̃− ρc. Then

D-IndG
K [Vη̃−ρc ] = b(P, σ ).
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Proof. See the last page of [Wassermann 1987]. This uses Proposition 5.1. �

Proposition 5.1 and Harish-Chandra’s character formula for (limits of) discrete
series representations imply that the character of the representation IndG

P(σ⊗1A⊗1N)

naturally associated to the K-theory generator b(P, σ ) is zero on T , if this repre-
sentation is reducible. (See Section 5B for an example.) Therefore, it is a useful
property of the map τg that it maps b(P, σ ) to the possibly nonzero value of an
irreducible summand of that representation.

Corollary 5.3. For almost all g ∈ T , τg(b(P, σ )) equals the value at g of the
character of one of the irreducible summands of IndG

P (σ ⊗ 1A⊗ 1N ). The values
at g of the characters of these summands at g are all equal up to a sign.

Proof. Proposition 5.2 and Theorem 3.2 imply that

τg(b(P, σ ))= τg(D-IndG
K [Vη̃−ρc ])= (−1)dim(G/K )/2

∑
w∈WK

ε(w)ewη̃∏
α∈R+(eα/2− e−α/2)

(g).

By Harish-Chandra’s character formula (extended coherently to the limits of dis-
crete series), the right-hand side is the value at g of the character of πG(η̃, R+).
That formula also shows that on T , the character of πG(η̃, R+) equals the character
of πG(η̃, R+j ) modulo a sign, for j = 1, . . . , 2dim(A). Hence the claim follows from
Proposition 5.1. �

Remark 5.4. If the representation 1p does not descend to K , then the analogue of
Corollary 5.3 relates τg(b(P, σ )) to characters of the corresponding representations
of a double cover of G.

5B. Nonspherical principal series and limits of discrete series of SL(2,R). Con-
sider the case where G = SL(2,R), K = T = SO(2), and P =MAN < SL(2,R)

is the minimal parabolic of upper triangular matrices, where M = {±I }. Then
M̂ds = {σ+, σ−}, where σ+ is the trivial representation of M in C and σ− is the
nontrivial one. Now we have Morita equivalences

K(IndG
P (σ+))

Wσ+ ∼ C0([0,∞)),

K(IndG
P (σ−))

Wσ− ∼ C0(R)oZ2.

See Example 6.11 in [Clare et al. 2016]. So the pair (P, σ+) does not contribute
to K0(C∗r (SL(2,R))), whereas (P, σ−) contributes a summand Z, generated by

b(P, σ−)= D-IndG
K [C0].

Let α ∈ it∗ be the root mapping
( 0

1
−1

0

)
to 2i . Set R+ := {α}. Let

g =
(

cosϕ − sinϕ
sinϕ cosϕ

)
∈ T,
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where ϕ ∈ R \ 2πQ. Theorem 3.2 now yields

τg(b(P, σ−))=
1

2i sinϕ
.

This is the value at g of the character of the limit of discrete series representation
πG(0, R+), and minus the value at g of the character of the limit of discrete series
representation πG(0,−R+). The direct sum of these two representations is the
nonspherical principal series representation IndG

P (σ−⊗ 1A⊗ 1N ). The character of
that representation is zero at g.

Some authors, including the authors of this paper, have wondered if the K-theory
generator b(P, σ−) can be detected by suitable maps out of K0(C∗r (SL(2,R))),
and if representation theoretic information can be recovered from it. This example
shows that the answer to both questions is yes.

6. Stable orbital integrals and continuity at the group identity

This section is independent of the rest of this paper. In particular, it does not depend
on Theorem 3.2.

It follows from Theorem 3.2 that, for a fixed x ∈ K0(C∗r G), the function

g 7→ τg(x)

on the set of semisimple elements g of G is not continuous if G is noncompact. In
particular, it is not continuous at the identity element. Theorem 3.2 does imply that
this function is continuous almost everywhere. Already in the compact case, it is a
nontrivial question if the right-hand side of the fixed point formula (2.2) depends
continuously on g, for example as g→ e (as pointed out in Section 8.1 in [Berline
et al. 2004]). It turns out that a version of τg involving stable orbital integrals has
better continuity properties near the identity element. (This comes at the cost of
mapping more elements to zero, however. See Section 5B, where the stable orbital
integral of the class in K0(C∗r SL(2,R)) associated to the limits of discrete series
is shown to be zero.)

6A. Continuity at e. Let GC be a complex semisimple Lie group, and G < GC a
real form of GC. Let g be a semisimple element of G.

Definition 6.1. The stable conjugacy class of g in G is

(g)s := {hgh−1
∈ G : h ∈ GC},

the intersection of the conjugacy class (g)GC
of g in GC with G.

For every f in the Harish-Chandra Schwartz algebra C(G), the stable orbital
integral of f with respect to g is

τ s
g ( f ) :=

∑
g′
τg′( f )=

∑
g′

∫
G/ZG(g′)

f (hg′h−1) dh(ZG(g′)),
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where the sum is over representatives g′ of G-conjugacy classes in (g)s , i.e., (g)s =⊔
g′(g
′).

Stable conjugacy classes are relevant to the notion of an L-packet of represen-
tations and Shelstad’s character identities. See [Shelstad 1979].

The map τ s
g : K0(C∗r G) = K0(C(G))→ C induced by τ s

g has better continuity
properties in g than τg. Let S ⊂ G be the set of elements g for which Theorem 2.1
holds (see Remark 2.3). Then G \ S has measure zero, so in particular S is dense.

Theorem 6.2. For all x ∈ K0(C∗r G),

lim
g→e;g∈S

τ s
g (x)= τe(x).

(Note that τe = τ
s
e .)

Let K < G be maximal compact. If rank(G) 6= rank(K ), then Theorem 6.2
follows from Theorem 3.2(b) and the fact that τe is identically zero on K0(C∗r G).
So assume from now on that rank(G)= rank(K ).

Theorem 6.2 implies a continuity property of characters of L-packets of discrete
series representations.

As before, let T < K be a maximal torus, and set WK := NK (T )/T . Let WG be
the Weyl group of the root system of (gC, tC). Fix representatives w ∈WG of all
classes [w] ∈WG/WK . For any discrete series representation with Harish-Chandra
parameter λ, we denote its global character by 2λ.

Corollary 6.3. Let π be a discrete series representation of G with Harish-Chandra
parameter λ ∈ it∗. Then

lim
g→e;g∈T reg

∑
[w]∈WG/WK

2wλ(g)= dπ ,

where dπ is the formal degree of π .

This corollary will be proved after we prove Theorem 6.2. As a consequence,
one can take the limit as g→ e in Harish-Chandra’s character formula to obtain
an expression for dπ ; see, e.g., page 25 of [Atiyah and Schmid 1977]. See also
Proposition 50 in [Guo et al. 2018].

6B. A K-theoretic character identity. Let Gc be a compact inner form of G, which
exists because rank(G)= rank(K ). Inner forms are defined for example in Chapter
2 of [Adams et al. 1992], but the only properties we need are that Gc is a real form
of GC, and T identifies with a Cartan subgroup of Gc. So pairs (G, T ) and (Gc, T )
have the same root system. The positive root system R+ determines a G-invariant
complex structure on Gc/T . For any integral ν ∈ it∗, consider the holomorphic
line bundles

LG
ν := G×T Cν→ G/T,

LGc
ν := Gc×T Cν→ Gc/T .
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Let ∂̄LG
ν

and ∂̄LGc
ν

be the Dolbeault operators on G/T and Gc/T , respectively,
coupled to these line bundles.

In [Hochs and Wang 2018c], the authors prove a K-theoretic analogue of Shel-
stad’s character identities [Shelstad 1979], and deduce Shelstad’s character identity
in the case of the discrete series.

Theorem 6.4. For all integral ν ∈ it∗ and all g ∈ S,

τg
(
indexGc

(
∂̄LGc

ν
+ ∂̄∗

LGc
ν

))
=

∑
[w]∈WG/WK

τg
(
indexG

(
∂̄LG

w−1ν
+ ∂̄∗LG

w−1ν

))
.

Proof. This is (3.6) in [Hochs and Wang 2018c]. There, ν is regular but that
property is not used in the proof of the above equality. �

6C. Dolbeault operators. We will use some properties of the Dolbeault–Dirac op-
erators in Theorem 6.4 to deduce Theorem 6.2.

First of all, every element of K0(C∗r G) is the index of a Dolbeault–Dirac operator
on G/T . Indeed, let V ∈ K̂Spin, and let λ ∈ it∗ be its highest weight with respect
to the positive compact roots chosen earlier. Then λ− ρn is a weight of 1p⊗ V ,
so it is integral for T . Consider the holomorphic, G-equivariant line bundle

LG
λ−ρn
:= G×T Cλ−ρn → G/T .

Let ∂̄LG
λ−ρn

be the Dolbeault operator on G/T coupled to LG
λ−ρn

.

Proposition 6.5. We have

D-IndG
K [Vλ] = (−1)dim(G/K ) indexG

(
∂̄LG

λ−ρn
+ ∂̄∗LG

λ−ρn

)
.

Proof. This is proved in Section 5 of [Hochs and Wang 2018b] in the case where
λ+ ρc is regular for G, but that assumption is not necessary for the arguments. �

Lemma 6.6. We have, for all w ∈WG and all g ∈ S,

τwgw−1
(
indexG

(
∂̄LG

λ−ρ
+ ∂̄∗LG

λ−ρ

))
= τg

(
indexG

(
∂̄LG

w−1(λ−ρ)
+ ∂̄∗LG

w−1(λ−ρ)

))
.

Proof. In the case of Dolbeault operators twisted by holomorphic vector bundles,
and finite fixed point sets, the fixed point formula in Theorem 2.1 simplifies con-
siderably; see Corollary 6.3 in [Hochs and Wang 2018b]. For any h ∈ T with dense
powers, and any integral ν ∈ it∗, this yields

τh
(
indexG

(
∂̄LG

ν
+ ∂̄∗LG

ν

))
=

∑
xT∈(G/T )h

tr(g|(LG
ν )xT )

detC(1− g−1|TxT G/T )
. (6.7)

Now, forw∈WG , we have (G/T )wgw−1
=(G/T )T =NK (T )/T , and for x ∈NK (T ),

(LG
ν )xT = CAd∗(x)ν, TxT G/T =

⊕
α∈R+

CAd∗(x)α
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as complex representations of T , where we use the complex structure on G/T
defined by R+. So

τwgw−1
(
indexG

(
∂̄LG

λ−ρ
+ ∂̄∗LG

λ−ρ

))
=

∑
xT∈NK (T )/T

tr(wgw−1
|CAd∗(x)(λ−ρ))

detC(1−wg−1w−1|⊕
α∈R+ CAd∗(x)α )

=

∑
xT∈NK (T )/T

tr(g|CAd∗(w−1x)(λ−ρ)
)

detC(1− g−1|⊕
α∈R+ CAd∗(w−1x)α

)

=

∑
yT∈w−1 NK (T )w/T

tr(g|CAd∗(yw−1)(λ−ρ)
)

detC(1− g−1|⊕
α∈R+ CAd∗(yw−1)α

)
. (6.8)

(In the last step, we substituted y = w−1xw.)
Finally, w−1 NK (T )w = NK (T ), and⊕

α∈R+
CAd∗(yw−1)α = TyT G/T

as complex representations of T , with respect to the complex structure defined by
the positive root system w−1 R+ with respect to which w−1(λ−ρ) is dominant. So
by (6.7), the expression (6.8) equals

τg
(
indexG

(
∂̄LG

w−1(λ−ρ)
+ ∂̄∗LG

w−1(λ−ρ)

))
. �

Lemma 6.9. We have, for all integral ν ∈ it∗,

τe
(
indexGc

(
∂̄LGc

ν
+ ∂̄∗

LGc
ν

))
= τe

(
indexG

(
∂̄LG

ν
+ ∂̄∗LG

ν

))
.

Proof. By Connes and Moscovici’s L2-index formula [1982, Theorem 5.2], we
have

τe
(
indexG

(
∂̄LG

ν
+ ∂̄∗LG

ν

))
= ε

(
ch
(∧

Cg/t⊗Cν
)

Â(g, T )
)
[g/t],

τe
(
indexGc

(
∂̄LGc

ν
+ ∂̄∗

LGc
ν

))
= ε

(
ch
(∧

Cgc/t⊗Cν
)

Â(gc, T )
)
[gc/t],

for the same sign ε ∈ {±1}. Here ch : R(T )→ H∗(g, T,R) is the relative Chern
character, and the characteristic classes Â in H∗(g, T,R) are defined in Section 4
of [Connes and Moscovici 1982]. The right-hand side of the first line only depends
on the representations

∧
Cg/t⊗Cν and g/t of T , and similarly for the right-hand

side of the second line. Since g/t and gc/t are both equal to the sum of the positive
root spaces as complex representations of T , we find that the two expressions
are equal. �
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6D. Proofs of Theorem 6.2 and Corollary 6.3. To finish the proof of Theorem 6.2,
we need a final lemma.

Lemma 6.10 (Arthur). We have, for all g ∈ T reg,

τ s
g =

∑
[w]∈WG/WK

τwgw−1 .

Proof. In Section 27 (p. 194) of [Arthur 2005], it is pointed out that two elements
g, g′ ∈ T reg are conjugate if and only if g = wK g′w−1

K for some wK ∈ WK , and
stably conjugate if and only if g = wG g′w−1

G for some wG ∈WG . �

Proof of Theorem 6.2. By surjectivity of Dirac induction and Proposition 6.5, every
x ∈ K0(C∗r G) is represented by the equivariant index

x = indexG
(
∂̄LG

ν
+ ∂̄∗LG

ν

)
for an integral element ν ∈ it∗.

Let g ∈ S. By Theorem 6.4 and Lemmas 6.6 and 6.10, we have

τ s
g (x)= τ

s
g
(
indexG

(
∂̄LG

ν
+ ∂̄∗LG

ν

))
= τg

(
indexGc

(
∂̄LGc

ν
+ ∂̄∗

LGc
ν

))
.

Since Gc is compact, this expression is continuous in g. And by Lemma 6.9,

τe
(
indexGc

(
∂̄LGc

ν
+ ∂̄∗

LGc
ν

))
= τe

(
indexG

(
∂̄LG

ν
+ ∂̄∗LG

ν

))
= τe(x). �

Proof of Corollary 6.3. For w ∈WG , let [πwλ] ∈ K0(C∗r G) be the class defined by
the discrete series representation with Harish-Chandra parameter wλ. By Proposi-
tions 5.1 and 5.2 in [Hochs and Wang 2018a], we have for all g ∈ T reg,∑
[w]∈WG/WK

2wλ(g)=
∑

[w]∈WG/WK

τg([πwλ])

= (−1)dim(G/K )/2
∑

[w]∈WG/WK

τg
(
indexG

(
∂̄LG

w(λ−ρ)
+ ∂̄∗LG

w(λ−ρ)

))
.

Lemmas 6.6 and 6.10 imply that the right-hand side equals

(−1)dim(G/K )/2τ s
g
(
indexG

(
∂̄LG

λ−ρ
+ ∂̄∗LG

λ−ρ

))
.

As g→ e through the set S in Theorem 6.2, that result implies that the limit of the
above expression is

(−1)dim(G/K )/2τe
(
indexG

(
∂̄LG

λ−ρ
+ ∂̄∗LG

λ−ρ

))
= τe([πλ])= dπ .

The claim now follows from continuity of characters on the regular set. �
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On derived categories of arithmetic toric varieties

Matthew Ballard, Alexander Duncan and Patrick McFaddin

We begin a systematic investigation of derived categories of smooth projective
toric varieties defined over an arbitrary base field. We show that, in many cases,
toric varieties admit full exceptional collections, making it possible to give con-
crete descriptions of their derived categories. Examples include all toric sur-
faces, all toric Fano 3-folds, some toric Fano 4-folds, the generalized del Pezzo
varieties of Voskresenskiı̆ and Klyachko, and toric varieties associated to Weyl
fans of type A. Our main technical tool is a completely general Galois descent
result for exceptional collections of objects on (possibly nontoric) varieties over
nonclosed fields.

1. Introduction

Recently, several intriguing threads relating derived categories and arithmetic ge-
ometry have emerged and motivated general structure questions for k-linear tri-
angulated categories for arbitrary fields k. Such exploration has yielded many
nice applications as well as further enticing problems; see as a sampling [Antieau
et al. 2017; Ananyevskiy et al. 2013; Ascher et al. 2017; Hassett and Tschinkel
2017; Honigs 2015; Lieblich et al. 2014]. Meanwhile, over C, structural results
for derived categories seem to have deep implications for the underlying birational
geometry, e.g., [Addington and Thomas 2014; Auel et al. 2014; Bernardara and
Bolognesi 2013; Bernardara et al. 2012; Kuznetsov 2010; Vial 2017]. Taking these
together, derived categories become an important invariant for studying birational
geometry over a general field [Auel and Bernardara 2018]. A further benefit of
this noncommutative approach is direct utility for solving problems in algebraic
K-theory, for example [Merkurjev and Panin 1997].

With such tantalizing ties, one would like a fertile testing ground for questions.
In this paper, we begin a systematic study of one such area: derived categories
of arithmetic toric varieties. Recall that if k is an arbitrary field with separable
closure ks , a k-torus is an algebraic group T over k such that extending scalars to
ks gives Tks ' Gn

m . An arithmetic toric variety is a normal k-variety with a faithful

MSC2010: primary 14F05, 14M25; secondary 14G27, 19E08.
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action of a k-torus which has a dense open orbit. This area has the following nice
features:
• rationality issues are deep in general but tractable in examples,

• robust tools already exist to investigate derived categories over the separable
closure, and

• specific questions are often amenable to computational experimentation.

One of the best tools for understanding the structure of a derived category is an
exceptional collection consisting of exceptional objects. As originally conceived
in [Beı̆linson 1978], an exceptional object of a k-linear triangulated category (e.g.,
Db(X)) is one whose endomorphism algebra is isomorphic to the base field k.
When k is not algebraically closed, this definition is too restrictive and instead
we use the existing notion: an object of Db(X) is exceptional if its endomorphism
algebra is a division algebra (concentrated in homological degree zero). An ex-
ceptional collection is then given by a totally ordered set E = {E1, . . . , Es} of
exceptional objects in Db(X) satisfying Extn(Ei , E j )= 0 for all integers n when-
ever i > j . An exceptional collection is full if it generates Db(X), i.e., the smallest
thick subcategory of Db(X) containing E is all of Db(X). Details are discussed in
Section 2 below.

We illustrate this more general notion for two arithmetic toric varieties. The real
conic X = {x2

+ y2
+ z2
= 0} ⊂ P2

R has an exceptional collection {O,F}, where
End(F) is isomorphic to the quaternion algebra H. Over C, we have XC ' P1

C

and F ⊗R C'O(1)⊕2. As another example, consider the Weil restriction Y of P1
C

over R (“P1(C) viewed as an R-variety”). Here Y has an exceptional collection
{O,G,H}, where End(G)'C and End(H)'R. Over C, we have Y⊗R C'P1

×P1

with G⊗R C'O(1, 0)⊕O(0, 1) and H⊗R C'O(1, 1), where

O(i, j)= π∗1O(i)⊗π
∗

2O( j).

A central question for derived categories of arithmetic toric varieties is the fol-
lowing:

Question 1.1. Let X be a smooth projective toric variety over an arbitrary field.
Does X admit a full exceptional collection? If so, does X possess a full exceptional
collection of sheaves?

Over an algebraically closed field of characteristic zero, there is always a full
exceptional collection of objects [Kawamata 2006; 2013] while the question of
a full exceptional collection of sheaves is due to Orlov. Making allowances for
different language, the question is also known to have a positive answer for Severi–
Brauer varieties [Auel and Bernardara 2018; Bernardara 2009], minimal toric sur-
faces [Blunk et al. 2011], and smooth projective toric varieties with absolute Picard
rank at most 2 [Yan 2014].
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In this article, we provide further evidence for a positive answer to Question 1.1,
treating cases with low dimension or a high degree of symmetry.

Theorem 1.2. The following possess full exceptional collections of sheaves:

• smooth toric surfaces (Proposition 4.7),

• smooth toric Fano 3-folds (Proposition 4.11),

• all forms of 43 of the 124 smooth split toric Fano 4-folds (Section 4C),

• all forms of centrally symmetric toric Fano varieties (Corollary 4.13), and

• all forms in characteristic zero of toric varieties corresponding to Weyl fans
of root systems of type A (Proposition 4.21).

Our results leverage extant work in the algebraically closed case such as [Ue-
hara 2014] for 3-folds and[Prabhu-Naik 2017] for 4-folds. We use Castravet and
Tevelev’s recently discovered exceptional collection for X (An) [2017]. For the
centrally symmetric toric Fano varieties (which are products of “generalized del
Pezzo varieties” and projective lines [Voskresenskiı̆ and Klyachko 1984]), we use
an explicit exceptional collection (see also [Ballard et al. 2018]) closely related
to the one found in [Castravet and Tevelev 2017]. Up to a twist by a line bundle,
the authors had independently discovered the exact same collection! This suggests
that symmetry imposes strong conditions on the possible exceptional collections,
which paradoxically makes them easier to find.

To study arithmetic exceptional collections, we establish an effective Galois
descent result for general exceptional collections. This applies to general varieties,
not just toric ones.

Theorem 1.3 (Theorem 2.17, Lemma 2.20). Let X be a k-scheme and L/k a G-
Galois extension. Then X L admits a full (resp. strong) G-stable exceptional collec-
tion of objects of Db(X L) (resp. sheaves, vector bundles) if and only if X admits a
full (resp. strong) exceptional collection of objects of Db(X) (resp. sheaves, vector
bundles).

We highlight one corollary of a positive answer to Question 1.1. Arithmetic
toric varieties are also studied in [Merkurjev and Panin 1997], which focused on
computing their algebraic K-groups via decompositions in a certain noncommuta-
tive motivic category of K0-correspondences. They showed that for an arithmetic
toric k-variety X with G = Gal(ks/k), the group K0(Xks ) is a direct summand of
a permutation G-module (there exists a Z-basis permuted by G).

Question 1.4 [Merkurjev and Panin 1997]. Let X be an arithmetic toric variety
over k and G = Gal(ks/k). Is K0(Xks ) always a permutation G-module?

Question 1.1 can be viewed as a categorification of Question 1.4 as any such
exceptional collection over k immediately gives a permutation basis.
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In order to show that every toric variety has a full exceptional collection over
C, the main tool used in [Kawamata 2006; 2013] was the minimal model program
(MMP) in birational geometry. The basic building blocks are toric stacks with
Picard rank one, which always have full strong exceptional collections of line bun-
dles. Indeed, runs of the MMP can be leveraged to effectively produce exceptional
collections [Ballard et al. 2019].

Over a nonclosed field, one hopes to use the Galois-equivariant MMP, but the
situation is more complicated. The most basic building blocks in this framework
are those varieties X which have ρG

= rank(Pic(X)G) = 1. Based on the results
above and the hope of using the MMP in the arithmetic situation, we ask the fol-
lowing question in the vein of [King 1997; Borisov and Hua 2009; Costa and
Miró-Roig 2010]:

Question 1.5. Let X be a smooth toric k-variety and L/k a G-Galois splitting
field. If Pic(X L)

G is of rank 1, does X L possess a full strong G-stable exceptional
collection consisting of line bundles?

Organization. Section 2 treats Galois descent of exceptional collections consisting
of objects on (possibly nontoric) varieties. In Section 3, we recall appropriate def-
initions of arithmetic toric varieties and establish additional descent results which
are specific to toric varieties. In Section 4, we consider a range of examples. We
begin by treating toric surfaces, followed by toric Fano 3-folds. For toric Fano
4-folds, we give partial results. We conclude by investigating the class of centrally
symmetric toric Fano varieties, including the generalized del Pezzo varieties, and
handling toric varieties associated to root systems of type A.

Notation. Throughout, k denotes an arbitrary field and ks a separable closure. A
variety is a geometrically integral separated scheme of finite type over k. All
our schemes are quasicompact and quasiseparated. For a k-scheme X and field
extension L/k, we write X L := X ×Spec k Spec L . If A is a k-algebra, we write
AL = A⊗k L . We use Db(X) to denote the bounded derived category Db(Coh(X)).
For an OX -algebra A, we write Db(A) for the bounded derived category of com-
plexes of A-modules which are coherent OX -modules.

2. Galois descent and exceptional collections

In this section we develop Galois descent for exceptional collections (in a gener-
alized sense). We begin by recalling some definitions and conventions concerning
structure theory of derived categories of schemes. We then give our main descent
results for G-stable exceptional collections (Theorem 2.17). We complete the sec-
tion by collecting a few useful consequences to be used in the sequel.
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2A. Exceptional collections. We give some conventions for semiorthogonal de-
compositions of derived categories and in particular exceptional collections. Such
collections have been widely studied over algebraically closed fields but have re-
cently been treated in more generality [Ananyevskiy et al. 2013; Auel and Bernar-
dara 2018; Auel et al. 2014; Bernardara 2009; Blunk et al. 2011; Elagin 2009; Xie
2017; Yan 2014]. We refer the reader to Remarks 2.15 and 2.19 for added details
on some of these results.

For a triangulated category T, we use the standard notation

ExtnT(A, B)= HomT(A, B[n]).

For objects A, B of Db(X), we use EndX (A) and ExtnX (A, B) to denote EndDb(X)(A)
and Extn

Db(X)(A, B), respectively.

Definition 2.1 (see [Bondal and Kapranov 1989]). Let T be a triangulated category.
A full triangulated subcategory of T is admissible if its inclusion functor admits
left and right adjoints. A semiorthogonal decomposition of T is a sequence of
admissible subcategories C1, . . . ,Cs such that

(1) HomT(Ai , A j )= 0 for all Ai ∈ Ob(Ci ), A j ∈ Ob(C j ) whenever i > j ;

(2) for each object T of T, there is a sequence of morphisms

0= Ts→ · · · → T0 = T

such that the cone of Ti → Ti−1 is an object of Ci for all i = 1, . . . , s.

We use T= 〈C1, . . . ,Cs〉 to denote such a decomposition.

Particularly nice examples of semiorthogonal decompositions are given by ex-
ceptional collections, the study of which goes back to [Beı̆linson 1978].

Definition 2.2. Let T be a k-linear triangulated category. An object E in T is
exceptional if the following conditions hold:

(1) EndT(E) is a division k-algebra.

(2) ExtnT(E, E)= 0 for n 6= 0.

A totally ordered set E = {E1, . . . , Es} of exceptional objects is an exceptional
collection if ExtnT(Ei , E j )= 0 for all integers n whenever i > j . An exceptional
collection is full if it generates T, i.e., the smallest thick subcategory of T containing
E is all of T. An exceptional collection is strong if ExtnT(Ei , E j ) = 0 whenever
n 6= 0. An exceptional block is an exceptional collection E = {E1, . . . , Es} such
that ExtnT(Ei , E j )= 0 for every n whenever i 6= j . Given an exceptional collection
E= {E1, . . . , Es}, we denote by 〈E〉 the category generated by the objects Ei .
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Remark 2.3. Our notion of exceptional object generalizes the classical one, where
Definition 2.2(1) is replaced by EndT(E)= k [Bondal 1989, §2]. Over algebraically
or separably closed fields, these definitions agree. Over nonclosed fields, the clas-
sical definition is too restrictive to allow for the use of interesting arithmetic invari-
ants in the study of exceptional collections on twisted forms, e.g., Brauer classes.

Proposition 2.4 [Bondal 1989, Theorem 3.2]. Let X be a k-scheme with excep-
tional collection {E1, . . . , Es}. If Ei is the category generated by Ei , there is a
semiorthogonal decomposition Db(X) = 〈E1, . . . , Es,A〉, where A is the full sub-
category with objects A such that HomX (A, Ei )= 0 for all i .

Remark 2.5. Bondal assumes smoothness and projectivity but the conclusion is
independent of this. Note further that if X admits a full exceptional collection then
it is automatically smooth and proper by [Orlov 2016, Propositions 3.30 and 3.31].

The existence of an exceptional collection on a scheme X provides a means
of studying derived geometry of X in purely algebraic terms. Indeed, in such a
situation, one may identify an “underlying” k-algebra which is derived equivalent
to X . For exceptional blocks, one obtains a similar but slightly stronger fact.

Proposition 2.6 [Bondal 1989, Theorem 6.2]. Let X be a smooth projective k-
scheme and let {E1, . . . , En} be a full strong exceptional collection on Db(X). Let
E =

⊕
Ei and A=End(E). Then RHomDb(X)(E, – ) :Db(X)→Db(A) is a k-linear

equivalence.

Proposition 2.7. If E= {E1, . . . , Es} is an exceptional block with End(Ei )= Di ,
there is a k-algebra isomorphism End

(⊕
Ei
)
' D1×· · ·×Ds , and hence a k-linear

equivalence 〈E〉 ' Db(D1× · · ·× Dn).

The object E =
⊕

Ei of Proposition 2.6 is usually called a tilting object. If each
Ei is a sheaf (resp. vector bundle), then E is called a tilting sheaf (resp. tilting
bundle). Until recently, the theory of tilting objects has served as the main tool
for extending the study of exceptional collections to nonclosed fields. The results
above show that any exceptional collection gives rise to both a tilting object and
a semiorthogonal decomposition, and thus the admission of such a collection is a
particularly special property of a given triangulated category. Our aim in the fol-
lowing subsection is to extend descent results for semiorthogonal decompositions
and tilting objects to (our more general notion of) exceptional collections. We give
a formal definition of tilting object for completeness.

Definition 2.8. A tilting object for a k-scheme X is an object E of Db(X) which
satisfies the following conditions:

(1) ExtnX (E, E)= 0 for n > 0.

(2) E generates Db(X).
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Remark 2.9 (K-theory and motivic decompositions). Exceptional collections have
a particularly interesting manifestation in the realm of noncommutative motives.
Indeed, an exceptional collection {E1, . . . , Es} on a smooth projective variety X
yields a decomposition U (X) '

⊕
i U (Di ) of its corresponding universal addi-

tive invariant [Tabuada 2015, §2.3], where Di = End(Ei ). This defines a motivic
decomposition by viewing X as an object in the Merkurjev–Panin category of K-
motives [Merkurjev and Panin 1997] or Kontsevich’s category of noncommutative
Chow motives [Tabuada 2014, Theorem 6.10] via its associated dg-category of
perfect complexes.

One nice consequence is that this decomposition is detected by algebraic K-
groups [Auel and Bernardara 2018, Proposition 1.10] in addition to a slew of
other additive invariants in the sense of [Tabuada 2015, §2.2]. Such invariants
include algebraic K-theory with coefficients, homotopy K-theory, étale K-theory,
(topological) Hochschild homology, and (topological) cyclic homology.

2B. Galois descent. We develop Galois descent for exceptional collections con-
sisting of objects in the derived category Db(X) of a (smooth projective) vari-
ety X . Throughout this section, pushforward and pullback functors are understood
to be derived. For a k-scheme X and finite Galois extension L/k, any element
g ∈ Gal(L/k) defines a morphism of k-schemes g : X L → X L which in turn
defines the functor g∗ : Db(X L)→ Db(X L).

Definition 2.10. Let X be a scheme with an action of a group G. A G-stable
exceptional collection on X is an exceptional collection E={E1, . . . , Es} of objects
in Db(X) such that for all g ∈G and 1≤ i ≤ s there exists E ∈E such that g∗Ei ' E .
We say a G-stable exceptional collection E is a G-orbit if, for every pair of objects
E, E ′ ∈ E, there exists a g ∈ G such that g∗E ' E ′.

Remark 2.11. A simple example of a G-stable exceptional collection is a G-
invariant exceptional collection, i.e., an exceptional collection {E1, . . . , Es} such
that g∗Ei ' Ei for all 1 ≤ i ≤ s. It is often the case that toric varieties admit
exceptional collections consisting of line bundles. If it is also the case that a group
G acts trivially on Pic(X), such a collection is automatically G-invariant, and hence
G-stable (see Lemma 2.21).

Lemma 2.12. Any G-stable exceptional collection may be written as a collection
of G-stable exceptional blocks (possibly after reordering).

Proof. The decomposition of a G-stable exceptional collection into its G-orbits
gives the desired exceptional blocks. Let E be a G-stable exceptional collection
and for elements E, E ′ ∈ E, we write E  E ′ if Extn(E, E ′) 6= 0 for some n.

Let A ⊂ E be a G-orbit. To see that A is an exceptional block, suppose that
E  E ′ for E, E ′ ∈ A. Since A is a G-orbit, E ′ ' g∗E for some g ∈ G. Thus,
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E  g∗E , and acting again by g, we have g∗E  (g2)∗E . Since A is finite, we
have E  g∗E  · · · (gs)∗E  E for some positive integer s. Thus, there is
no ordering of the elements of A such that they form a subset of an exceptional
collection — a contradiction.

If B is another G-orbit (distinct from A), we would like to see that these blocks
can be ordered to form an exceptional collection. We claim that for any E ∈ A and
F ∈B, one has E F only if A precedes B in the collection E (i.e., Extn(B, A)= 0
for all n and all A ∈ A, B ∈ B). To see this, assume that E  F and F  E ′ for
some E ′ ∈ A. As A is a G-orbit, E ′ ' g∗E for some g ∈ G. Hence, just as above,
we have a sequence E  F  g∗E  g∗F  · · · (gs)∗F  E . Thus, there
is no ordering of the elements of A and B which forms an exceptional collection,
contradicting the exceptionality of E. �

Lemma 2.13. Let X be a Noetherian k-scheme, L/k a finite Galois extension with
group G, and π : X L→ X the natural projection map. For any object M in Db(X L)

there is a natural isomorphism π∗π∗(M)'
⊕

g∈G g∗M.

Proof. As π is flat and affine, every coherent sheaf on X is acyclic for π∗ and
every coherent sheaf on X L is acyclic for π∗. Hence, the derived functors coincide
with the application of π∗ or π∗ componentwise to a complex. Thus, it suffices to
establish a natural isomorphism at the level of coherent sheaves.

For any object M of Coh(X L), we have π∗M ' π∗g∗M , and adjunction yields
a natural transformation π∗π∗→ g∗. Summing over all g ∈ G provides the trans-
formation α : π∗π∗→

⊕
g∗. We show this is an isomorphism.

It suffices to check that α is an isomorphism on any affine patch Spec R of X .
Passing to modules, we abuse notation and let M be a finitely generated module
over RL = R⊗k L . Choose a presentation

R⊕m
L → R⊕n

L → M→ 0

of M and evaluate α on the sequence to get the commutative diagram

R⊕m
⊗k (L ⊗k L)

R⊕m
⊗k
(⊕

g 0g(L)
)

R⊕n
⊗k (L ⊗k L)

R⊕m
⊗k
(⊕

g 0g(L)
)

M ⊗R RL

⊕
g g∗M

0

0

αR⊕m αR⊕n αM

where 0g(L) denotes the graph of g in L ⊗k L . The left and middle maps are
isomorphisms, so the right map must also be an isomorphism. �

Proposition 2.14 (descent for orbits). Let X be a k-scheme, L/k a finite G-Galois
extension, and π : X L → X the natural projection map. If E = {E1, . . . , Es} is
a G-orbit forming an exceptional collection on X L , and if E is any element of E,
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then there is an exceptional object F in Db(X) such that π∗E ' F⊕m and π∗F
generates the category 〈E〉.

Proof. By Lemma 2.12, exceptional G-orbits are completely orthogonal (and by
definition carry a transitive action of G), which is used throughout the proof. Fix
an element E ∈ E, so that E = Ei for some i . Lemma 2.13 gives

π∗π∗E '
⊕
g∈G

g∗E .

We claim that End(π∗E) is a matrix algebra over a division algebra, and prove this
by first showing that it is semisimple. Indeed, using EndX (M)⊗k L'EndX L (π

∗M)
for any M ∈ Db(X) [Auel and Bernardara 2018, Remark 2.1], we have

EndX (π∗E)⊗k L ' EndX L (π
∗π∗E)' EndX L

(⊕
g∈G

g∗E
)
.

Each g∗E is exceptional, so that EndX L (g
∗E) =: Dg is a division algebra for

each element g ∈ G. Let H ≤ G be the subgroup consisting of elements h sat-
isfying h∗E ' E . For any system of coset representatives g ∈ G/H , we have
EndX (π∗E)L '

∏
g∈G/H Mm(Dg), where m= |H |. This product of matrix algebras

over division algebras is semisimple, i.e., the Jacobson radical rad(EndX (π∗E)L)=0.
We then have 0= rad(EndX (π∗E)L)= rad(EndX (π∗E))L by [Amitsur 1957, The-
orem 1], and hence rad(EndX (π∗E)) = 0. Thus, EndX (π∗E) is semisimple and
so must also be a product of matrix algebras over division algebras by the Artin–
Wedderburn theorem.

Let Z be the center of EndX (π∗E) and ZL the center of EndX (π∗E)L . Note that
Z is an étale k-algebra, and to show that End(π∗E) is a matrix algebra, it suffices
to show that Z has no zero divisors, and is thus a field. There is an embedding
Z ↪→ ZL =

∏
g∈G/H Lg, where Lg is the center of the division algebra Dg. The

transitive action of G on {E1, . . . , Es} implies that G acts transitively on a basis
of ZL , so that Z = (ZL)

G has no zero divisors.
We produce the object F using the identification EndX (π∗E)' Mn(D), where

D is a division algebra. Let ei = ei i denote the usual idempotent matrices, so that
{ei } is a complete set of primitive orthogonal idempotents. Notice that Fi := Im(ei )

is a simple EndX (π∗E)-submodule of π∗E for each i , and hence Fi ' F j for each
i, j , and EndX (Fi )' D. Define F = Im(e1)⊂ π∗E , included as a direct summand.
We note that π∗E '

⊕
Fi ' F⊕n .

We now show that F is an exceptional object on X . As stated above, EndX (F)
is a division algebra, so it suffices to show that ExtnX (F, F)= 0 for n 6= 0. Using
Lemma 2.13 and (π∗, π∗)-adjunction, we have

ExtnX (π∗E, π∗E)=
⊕
g∈G

ExtnX L
(g∗E, E).
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For n 6= 0, each summand of the right-hand side is 0, which follows from the mutual
orthogonality of the exceptional block E (when g∗E 6' E) and from exceptionality
of E (when g∗E ' E). Since F is a direct summand of π∗E , it follows that
ExtnX (F, F) is a summand of ExtnX (π∗E, π∗E)= 0.

Lastly, we show that π∗F generates the category 〈E〉. Since F⊕m
' π∗E , ex-

tending scalars to L gives (π∗F)⊕m
= π∗(F⊕m)' π∗π∗E '

⊕
g∗E . Thus,

〈π∗F〉 = 〈(π∗F)⊕m
〉 =

〈⊕
g∗E

〉
= 〈g∗E〉g∈G = 〈E〉. �

Remark 2.15. Proposition 2.14 provides a very specific case of descent for trian-
gulated categories, the main advantage of which is that it allows one to identify
a specific exceptional object that base extends to the given orbit. Moreover, a G-
orbit which forms an exceptional collection consisting of vector bundles or (resp.
sheaves) descends to an exceptional collection consisting of vector bundles (resp.
sheaves). Compare to the following descent result for semiorthogonal decomposi-
tions, which generalizes [Toën 2012, Corollary 2.15]. Although this result is useful
for descending semiorthogonal decompositions, it does not identify exceptional
objects.

Proposition 2.16 [Auel and Bernardara 2018, Proposition 2.12]. Let T be a k-
linear triangulated category such that Tks is ks-equivalent to Db(ks, (ks)n). Then
there exists an étale algebra K of degree n over k, an Azumaya algebra A over K ,
and a k-linear equivalence T' Db(K/k, A).

Let X , E, and F be as in Proposition 2.14, and note that taking T = 〈F〉, we
have Tks = 〈π∗F〉ks = 〈E〉ks . Since E= {g∗E}g∈G is a full exceptional collection
for 〈E〉, the bundle E :=

⊕
(g∗E)ks is a tilting object for 〈E〉ks . This defines an

equivalence
Tks ' 〈E〉ks ' Db(ks,End(E))= Db(ks, (ks)n).

Proposition 2.16 yields an étale extension K/k, an Azumaya K-algebra A, and an
equivalence T'Db(K/k, A). In this case, since T=〈F〉, we see that A=EndX (F)
is an Azumaya algebra over its center Z (using the notation found in the proof of
Proposition 2.14), which is simply a field extension of k.

Theorem 2.17 (descent for stable collections). Let X be a k-scheme, L/k a finite
G-Galois extension, and π : X L → X the natural projection map. If X L admits a
full G-stable exceptional collection E of objects of Db(X L), then X admits a full
exceptional collection F of objects of Db(X). If E is strong, so is F. If the elements
of E are vector bundles (resp. sheaves), the elements of F are vector bundles (resp.
sheaves).

Proof. By Lemma 2.12, we may write E= {E1, . . . ,Es
} as a collection of G-stable

blocks, where each block is given by a G-orbit. Proposition 2.14 then associates to
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each block Ei an exceptional object Fi on X , and we show that F= {F1, . . . , Fs}

is a full exceptional collection on X . We first show that ExtnX (Fi , F j ) = 0 for
all n whenever i > j . Let E i and E j be elements of the collections Ei and E j ,
respectively. We then have

ExtnX (π∗E
i , π∗E j )'

⊕
g∈G

ExtnX L
(g∗E i , E j ). (2.18)

Since E i and E j are elements of the exceptional collection E and i < j , each
summand is 0 for all n, so that

ExtnX (π∗E
i , π∗E j )= 0 for all n.

The objects Fi and F j are direct summands of π∗E i and π∗E j , respectively, and
it follows that ExtnX (Fi , F j )= 0 for all n.

By Proposition 2.4, the exceptional collection {F1, . . . , Fs} yields a semiorthog-
onal decomposition

Db(X)= 〈F1, . . . ,Fs,A〉,

where Fi=〈Fi 〉 and A is the full subcategory of objects A with HomDb(X)(A, Fi )=0
for all i . In particular, the subcategories Fi are admissible. Extending scalars to L ,
we have (Fi )L = 〈E

i
〉, as both categories are generated by π∗F by Proposition 2.14.

The exceptional collection E={E1, . . . ,Es
} is full, and hence we have a semiorthog-

onal decomposition
Db(X L)= 〈(F1)L , . . . , (Fs)L〉.

Since our admissible subcategories Fi base extend to a semiorthogonal decom-
position, [Auel et al. 2014, Lemma 2.9] gives a semiorthogonal decomposition
Db(X)= 〈F1, . . . ,Fs〉. In particular, the collection {F1, . . . , Fs} generates Db(X),
so this collection is full.

If E is strong, the right side of (2.18) vanishes for i 6= j (and any n). It follows
exactly as above that ExtnX (Fi , F j )= 0 for all n when i 6= j , so that F is strong. �

Remark 2.19. Similar descent results for collections of sheaves are given by Ela-
gin [2009] in the algebraically closed case (i.e., k = k̄) using the framework of
equivariant exceptional collections in equivariant derived categories. Indeed, for a
variety X with an action of a finite group G and a G-invariant exceptional collection
(see Remark 2.11) consisting of sheaves, this descent result is given in terms of α-
twisted representations of G; see [Elagin 2009, Theorem 2.2]. For a G-stable ex-
ceptional collection consisting of sheaves, results are in terms of coinduced twisted
representations of G; see [loc. cit., Theorem 2.3].

Lemma 2.20. Let X be a k-scheme and L/k a finite G-Galois extension. If X
admits an exceptional collection, then X L admits a G-stable exceptional collection.
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Proof. Let E1, . . . , Es be the given exceptional collection on X , and consider
π∗E1, . . . , π

∗Es on X L . To compute morphisms, we note that

HomX L (π
∗Ei , π

∗E j )= HomX (Ei , π∗π
∗E j )

= HomX (Ei , E j ⊗k L)= HomX (Ei , E j )⊗k L .

This vanishes if j > i . Let Ai =HomX (Ei , Ei ). We can split Ai ⊗k L as a product
of matrix algebras over division algebras Ai, j = MNi, j (Di, j ) and correspondingly
decompose

π∗Ei =
⊕

F Ni, j
i, j

with
HomX L (Fi, j , Fi, j )= Di, j .

Note that Fi, j and Fi, j ′ are orthogonal for j 6= j ′. Thus, we have an exceptional
collection. �

Lemma 2.21. Let X be a k-scheme and L/k a finite extension with Galois group G.
If G acts trivially on Pic(X L) and X L admits an exceptional collection of line
bundles, then X admits an exceptional collection of vector bundles.

Proof. The collection on X L is automatically G-stable pointwise. Hence we can
apply Theorem 2.17. �

Remark 2.22. Note that while we may start with a collection of line bundles, the
descended collection may not consist only of line bundles. An example of this is
the real conic discussed in the introduction.

Lemma 2.23. Let X be a smooth k-variety and L/k a G-Galois extension. Let
Y1, . . . , Ys be a G-orbit of smooth transversal subvarieties of X L . Let YI =

⋂
i∈I Yi

and let HI be the normalizer of YI . If each YI admits a full HI -stable excep-
tional collection, then X̃ admits an exceptional collection, where X̃ L is the iterated
blowup of X L at the Yi (in any order).

Proof. This is an iterated application of Orlov’s theorem; see [Castravet and Tevelev
2017, Lemma 7.2]. �

3. Arithmetic toric varieties

We introduce toric varieties over arbitrary fields. Such varieties, also known as
arithmetic toric varieties, have been treated in [Duncan 2016; Elizondo et al. 2014;
Merkurjev and Panin 1997; Voskresenskiı̆ and Klyachko 1984].

Definition 3.1. A torus (over k) is an algebraic group T (over k) such that Tks 'Gn
m .

A torus is split if T ' Gn
m . A field extension L/k satisfying TL ' Gn

m is called a
splitting field of the torus T . Any torus admits a finite Galois splitting field.
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Definition 3.2. Given a torus T , a toric T-variety is a normal variety with a faithful
T-action and a dense open T-orbit. A toric T-variety is split if T is a split torus.
A splitting field of a toric T-variety is a splitting field of T . A variety is a toric
variety if it is a toric T-variety for some torus T .

Definition 3.3. Let X be a toric T-variety whose dense open T-orbit contains a
k-rational point. Then we say X is neutral [Duncan 2016] (or a toric T-model
[Merkurjev and Panin 1997]). An orbit of a split torus always has a k-point, so a
split toric variety is neutral, but the converse is not true in general.

Remark 3.4. In what follows, we use the term toric variety to mean toric T-variety
for some fixed torus T , even though such a variety may have a toric structure
for various tori. In fact, the choice of torus does not affect our analysis of toric
varieties given below, and we refer interested readers to [Duncan 2016] for such
considerations.

Recall that a k-form of a k-variety X is a k-variety X ′ such that X L ' X ′L for some
field extension L/k. Any k-form of a toric variety is a toric variety [Duncan 2016].

3A. The split case. Let us begin by recalling some facts concerning toric varieties
with T ' Gn

m (e.g., when k = C or k = ks), which are studied in terms of combi-
natorial data, e.g., lattices, cones, fans. Good references for toric varieties over C

include [Fulton 1993; Cox et al. 2011], and many results hold generally in the split
case.

Let N be a finitely generated free abelian group of rank n and M = Hom(N ,Z).
A subsemigroup σ ⊂ NR is a cone if (σ∨)∨ = σ , where

σ∨ = {u ∈ M | u(v)≥ 0 for all v ∈ σ }.

A subsemigroup τ is a face of σ if it is of the form τ ={v∈σ |u(v)=0 for all u∈ S}
for some S ⊆ σ∨. A cone σ is pointed if 0 is a face of σ , and in this case σ∨ gener-
ates MR. Given a pointed cone σ , we associate the affine k-scheme Uσ=Speck[σ∨],
and for any face τ ⊂ σ the induced map Uτ ↪→Uσ is an open embedding.

A fan 6 ⊂ NR is a finite collection of pointed cones such that

(1) any face of a cone in 6 is a cone in 6 and

(2) the intersection of any two cones in 6 is a face of each.

To any fan 6 we associate a k-variety X6 which is obtained by gluing the affine
schemes Uσ along common subschemes Uτ corresponding to faces.

On the other hand, beginning with a split torus T ' Gn
m and toric T-variety X

with fixed embedding T ↪→ X , we recover M as the character lattice Hom(T,Gm)

of T and N as the cocharacter lattice Hom(Gm, T ). The association 6 7→ X6
defines a bijective correspondence between fans 6 ⊂ NR and toric T-varieties X
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(we remind the reader that here we assume T is a split torus; in general, fans 6
admitting an action by Gal(ks/k) are in bijection with neutral toric T-varieties).

Let 6(`) denote the collection of cones in 6 of dimension `. Let DivT (X)
denote the free abelian group generated by the rays of 6, i.e., elements of 6(1).
By the orbit-cone correspondence [Cox et al. 2011, Theorem 3.2.6], DivT (X) is
isomorphic to the group of T-invariant Weil divisors of X . For X a (split) smooth
projective toric variety, we have natural identifications

Pic(X)= Pic(Xks )= Cl(Xks )= Cl(X),

which yield an exact sequence

0→ M→ DivT (X)→ Pic(X)→ 0.

In particular, if X is of dimension n and m is the number of rays in 6, the Picard
rank of X is ρ = m− n.

Definition 3.5. A variety X is Fano (resp. weak Fano) if its anticanonical class
−K X is ample (resp. nef and big). If X is a normal variety, a Cartier D divisor on
X is nef (“numerically effective” or “numerically eventually free”) if D ·C ≥ 0 for
every irreducible curve C ⊂ X . A divisor D is very ample if D is base point free
and ϕD : X→ P(0(X,OX (D))∨) is an embedding. A divisor D is ample if `D is
very ample for some ` ∈ Z+. A line bundle OX (D) is nef or (very) ample if the
corresponding divisor D is nef or (very) ample. A Cartier divisor is numerically
trivial if D ·C = 0 for every irreducible complete curve C ⊂ X . Let N 1(X) be the
quotient group of Cartier divisors by the subgroup of numerically trivial divisors.
The nef cone Nef(X) is the cone in N 1(X) generated by the nef divisors, and the
anti-nef cone is the cone −Nef(X)⊂ N 1(X). A line bundle OX (D) is nef (ample)
if D is nef (ample).

Proposition 3.6. A Cartier divisor D on a split proper toric variety X is nef (resp.
ample) if and only if D ·C ≥ 0 (resp. D ·C > 0) for all torus-invariant integral
curves C ⊂ X.

Proof. When k is algebraically closed, this is [Mustaţă 2002, Theorems 3.1 and 3.2].
One can see that the arguments remain valid in the split case more generally. �

3B. The not necessarily split case. Here we provide a “black box” for producing
exceptional collections on arbitrary forms of toric varieties by identifying certain
special exceptional collections on a split toric variety. This reduces an arithmetic
question to a completely geometric question.

We begin by reviewing how to obtain arbitrary forms of toric varieties from the
split case; see, for example, [Voskresenskiı̆ 1982; Elizondo et al. 2014]. Let T be
the split torus of a split smooth projective toric variety X with fan 6 in the space
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N ⊗R associated to the lattice N . Let Aut(6) denote the subgroup of elements
g ∈ GL(N ) such that g(σ ) ∈6 for every cone σ ∈6. There is a natural inclusion
of T oAut(6) into Aut(X) as the subgroup leaving the open orbit T-invariant.

Let ks be the separable closure of k. The Galois cohomology set

H 1(ks/k,Aut(X)(ks))

is in bijective correspondence with the k-forms of X . The natural map

H 1(ks/k, T (ks)oAut(6))→ H 1(ks/k,Aut(X)(L))

in Galois cohomology is surjective; the failure of this map to be a bijection amounts
to the fact that there may be several nonisomorphic toric variety structures on the
same variety; see [Duncan 2016] for more details.

Suppose that X ′ = γX is a twisted form of a split toric variety for a cocycle
γ representing a class in H 1(ks/k, T (ks)o Aut(6)). There is a “factorization”
X ′ = α(βX), where β represents a class in H 1(ks/k,Aut(6)) and α represents a
class in H 1(ks/k, (βT )(ks)). Informally, β changes the torus that acts on X , while
α changes the torsor of the open orbit in X .

Suppose X is a toric T-variety. We say that an object E ∈Db(X) is T-equivariant
if E is in the image of the forgetful functor from Db(CohT (X)); see [Ballard et al.
2014, §2]. In particular, this implies that t∗E ' E for all t ∈ T (k).

Proposition 3.7. Let X be a split toric T-variety over a field k and let 6 be the
associated fan. Suppose that X admits an Aut(6)-stable full exceptional collection
E such that each object is T-equivariant. Then any k-form X ′ of X admits a full
exceptional collection E′. Moreover, E′ is strong (resp. consists of vector bundles,
consists of sheaves) as soon as E is strong (resp. consists of vector bundles, consists
of sheaves).

Proof. By Lemma 2.20, there exists a G-stable exceptional collection F on X L .
From the proof of that lemma, the objects F of F are direct summands of π∗E
for each object E ∈ E, where each isomorphism class of a simple direct summand
is represented by exactly one F . Since E is Aut(6)-stable and each object is T-
equivariant, we may conclude that F is (T (L)oAut(6))oG-stable.

Let X ′ be a k-form of X ; there exists a finite Galois extension L/k with Galois
group G such that X ′L ' X L . From Theorem 5.1 of [Duncan 2016], the natural
map

H 1(L/k, T (L)oAut(6))→ H 1(L/k,Aut(X)(L))

in Galois cohomology is surjective. Thus, we may assume that X ′ = cX is the twist
by a cocycle c : G → T (L)o Aut(6). Recall that the cocycle condition is that
c(gh) = c(g)gc(h) for all g, h ∈ G, where gc(h) denotes the Galois action of g
on T (L)oAut(6).
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Identifying X L = X ′L , twisting gives σ ′(g) = c(g)σ (g), where σ is the action
of G induced from X and σ ′ is induced from X ′. The punchline is that the action
σ ′ factors through the image of (T (L)oAut(6))oG described above. Thus the
exceptional collection F is G-stable for the X ′ action as well. The proposition now
follows by Theorem 2.17. �

Corollary 3.8. Let X be a split toric T-variety over a field k and let 6 be the
associated fan. If X admits an Aut(6)-stable full (strong) exceptional collection
of line bundles, then every k-form of X admits a full (strong) exceptional collection
of vector bundles.

Proof. Recall that every line bundle is isomorphic to a T-equivariant line bundle by
standard results on toric varieties. The claim now follows by Proposition 3.7. �

Lemma 3.9. Let X and Y be smooth projective toric varieties over k, and let
G = Gal(ks/k). Assume we have a K-positive toric flip X 99K Y such that over ks

the flipping loci Fi are disjoint and permuted by G. Let Hi be the normalizer of Fi .
If X L admits a full G-stable exceptional collection and Yi admits a full Hi -stable
exceptional collection, then Y admits a full exceptional collection.

Proof. Passing to ks , we are free to use [Ballard et al. 2019] giving semiorthogonal
decompositions for the flip over each Yi . Since the Yi are disjoint, we can concate-
nate these collections to get a G-stable collection. �

3C. Products of toric varieties. Recall that, given groups G, H along with a homo-
morphism ρ : H ↪→ Sn , the wreath product G o H is the group Gn o H , where
H acts on Gn by permuting the copies of G. We say a toric variety X is inde-
composable if it cannot be written as a product X1 × X2, where X1 and X2 are
positive-dimensional toric varieties.

Lemma 3.10. Suppose Z = Xn1
1 × · · · × Xnr

r is a product of proper split toric
varieties X1, . . . , Xr , where X i 6' X j for i 6= j and each X i is indecomposable.
Then

Aut(6)' (Aut(61) o Sn1)× · · ·× (Aut(6r ) o Snr ),

where 6 is the fan of Z and 61, . . . , 6r are the fans of X1, . . . , Xr .

Proof. First, consider Z = X1× X2, where X1, X2 are proper split toric varieties.
Let N (resp. N1, N2) be the cocharacter lattice and 6 (resp. 61, 62) be the fan of
Z (resp. X1, X2). Here N = N1⊕ N2 and 6 is the set of cones of the form σ1×σ2,
where σ1 ∈61 and σ2 ∈62. The faces of a cone σ1× σ2 are precisely the cones of
the form σ ′1× σ

′

2, where σ ′1 is a face of σ1 and σ ′2 is a face of σ2. The fan 61 can
be canonically identified with the subfan of 6 via the bijection σ 7→ σ ×{0}.

Now, suppose also that Z = Y ×W is a product of proper split toric varieties
with Y indecomposable. Let 6Y be the fan of Y , which we can canonically identify
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with a subfan of 6Z . Every cone of Y is of the form σ1× σ2, where σ1 ∈61 and
σ2 ∈62. Since fans are closed under taking faces, σ1×{0} and {0}× σ2 are also
cones in 6Y . Thus every cone in 6Y is a product of cones in the intersections
6Y ∩61 and 6Y ∩62.

In particular, since X is proper, we have that the space NY ⊗ R is the direct
sum of (NY ⊗R)∩ (N1 ⊗R) and (NY ⊗R)∩ (N2 ⊗R), and 6Y is a product of
the fans 6Y ∩61 and 6Y ∩62. Since Y is indecomposable, one of these fans is
indecomposable and 6Y must be a subfan of either 61 or 62.

Returning to the general case, we conclude that the decomposition of 6 as
6

n1
1 × · · · ×6

nr
r is unique up to ordering. The description of the automorphism

group is immediate. �

Lemma 3.11. Let Z be a proper toric k-variety with splitting field L/k. Suppose
ZL =

∏n
i=1 X i , where each X i is an indecomposable split proper toric L-variety ad-

mitting a full (strong) Aut(6i )-stable exceptional collection of line bundles, where
6i is the fan of X i . Then Z has a full (strong) exceptional collection of vector
bundles.

Proof. It is well known that the exterior product collection is an exceptional collec-
tion. For each isomorphism class among the X i , fix a full (strong) Aut(6X i )-stable
exceptional collection of line bundles. This ensures that the exterior product col-
lection is stable under the action of (Aut(6X1) o Sa1)×· · ·× (Aut(6Xr ) o Sar ). Since
this group is Aut(6) by Lemma 3.10, the exterior product collection descends by
Corollary 3.8. �

4. Low dimension or high symmetry

We provide exceptional collections for smooth toric surfaces, Fano 3-folds, some
Fano 4-folds, centrally symmetric toric varieties, and toric varieties corresponding
to root systems of type A.

4A. Surfaces. Here we prove that every toric surface has a full exceptional col-
lection. We begin by recalling the (classical) minimal model program for surfaces
over nonclosed fields.

Suppose f : X → X ′ is a birational morphism of smooth projective surfaces
over a field k. If k is separably closed, then by Proposition 5 of [Coombes 1988]
the morphism factors into a sequence

X = X0→ X1→ · · · → Xr = X ′,

where each morphism X i → X i+1 is the blowup of a point on X i+1. Over a non-
closed field k, we can factor f : X → X ′ into a sequence where each morphism
X i → X i+1 is defined over k and is a blowup of a (necessarily finite) Galois orbit
of ks-points on X i+1.



228 MATTHEW BALLARD, ALEXANDER DUNCAN AND PATRICK MCFADDIN

Blowing up a point produces an exceptional curve: a smooth rational curve with
self-intersection −1. By Castelnuovo’s contractibility criterion, such a curve can
always be obtained as the result of a blow-up. If one finds a skew Galois orbit of
such curves on X , then there exists a birational morphism f : X→ X ′ contracting
these curves. Repetition of this procedure eventually terminates.

Definition 4.1. A minimal surface X is a smooth projective surface over a field k
such that every birational morphism X→ X ′ to a smooth projective surface X ′ is
an isomorphism.

Any smooth projective surface can be obtained by iteratively blowing up Ga-
lois orbits of separable points starting from a minimal model. A toric variety is
geometrically rational. Minimal geometrically rational surfaces were classified by
Manin [1966] and Iskovskikh [1979]. One checks that the toric surfaces in their
collection are the following (see also a direct proof in [Xie 2017]):

Lemma 4.2. A minimal smooth projective toric surface is a ks/k-form of one of
the following:

(1) P2, Aut(6)= S3.

(2) P1
×P1, Aut(6)= D8.

(3) Fa = Proj(OP1 ⊕OP1(a)), a ≥ 2, Aut(6)= C2.

(4) dP6 = del Pezzo surface of degree 6, Aut(6)= D12.

Proof. A minimal geometrically rational surface is either a del Pezzo surface or
has a conic bundle structure [Manin 1966; Iskovskikh 1979]. Over the separable
closure, a del Pezzo surface is either P1

×P1 or a blowup of P2 at up to 8 points
in general position. Blowing up only one or two points never results in a minimal
surface, and no more than three points can be simultaneously torus invariant and
in general position. Thus every del Pezzo surface is a ks/k-form of P2, P1

×P1,
or dP6. Over the separable closure, a conic bundle structure has at most 2 singular
fibers since their images must be torus invariant points on the base P1. A minimal
conic bundle with at most two singular fibers over the separable closure must be
either a del Pezzo surface or a minimal ruled surface. �

Here we exhibit full strong exceptional collections consisting of G-stable blocks
for each minimal toric surface exhibited above (none of these collections are orig-
inal). The fans associated to the split forms of these surfaces are given in Figure 1.
In each case, we fix a torus T which gives X the structure of a toric T-surface. As
remarked above, this gives a homomorphism G → Aut(6) as well as an action
of G on Pic(X L), where L is a splitting field of T , G = Gal(L/k), and 6 is the
fan corresponding to the split toric surface X L . We produce G-stable exceptional
collections in each case by exhibiting Aut(6)-stable collections.
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P2 P1
×P1

Fa dP6

Figure 1. Fans for minimal toric surfaces.

Example 4.3. Let X be a toric T-surface whose split form is P2 with Aut(6)= S3.
The S3-action on Pic(P2)= Z is clearly trivial, so that the exceptional collection
{O,O(1),O(2)} given in [Beı̆linson 1978] yields a full strong Aut(6)-stable excep-
tional collection. By Corollary 3.8, X admits a full strong exceptional collection.

Example 4.4. Let X be a toric surface whose split form is P1
×P1 with Aut(6)=D8,

and consider the natural projections p1, p2 : P
1
×P1

→ P1. Let

O(p, q)= p∗1O(p)⊗ p∗2O(q).

By [Kvichansky and Nogin 1990], the collection {O,O(1, 0),O(0, 1),O(1, 1)}
on P1

× P1 is exceptional since {O,O(1)} is an exceptional collection for P1.
The D8-action preserves this collection, with orbits given by the blocks E0

= {O},
E1
={O(1, 0),O(0, 1)}, and E2

={O(1, 1)}. In particular, this collection is Aut(6)-
stable, and Corollary 3.8 yields an exceptional collection on X .

Example 4.5. Let X be a toric surface whose split form is the Hirzebruch surface
Fa; here Aut(6)=C2. Let e1, e2 be the standard basis for Z2. As in [Cox et al. 2011,
Example 4.1.8], let u1=−e1+ae2, u2= e2, u3= e1, and u4=−e2 be the generators
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of 6(1) with corresponding toric divisors Di . The Picard group of Fa is freely
generated by {D1, D2} and D1 is linearly equivalent to D3. The only nontrivial fan
automorphism σ takes e1 7→−e1+ae2 and e2 7→ e2. Thus σ leaves D2, D4 fixed and
interchanges D1 and D3. We conclude that the action of C2 on Pic(Fa) is trivial, and
thus, any exceptional collection is necessarily G-stable (see Lemma 2.21). An ex-
ceptional collection for Fa is given by {O,O(D3),O(D4),O(D3+ D4)} [Kvichan-
sky and Nogin 1990]. Corollary 3.8 then gives an exceptional collection on X .

Example 4.6. Let X be a toric surface whose split form is dP6; here Aut(6)= D12.
Viewing dP6 as the blowup of P2 at 3 noncolinear points, let H be the pullback
of the hyperplane divisor on P2 and Ei the exceptional divisors, i = 1, 2, 3. As
shown in [King 1997, Proposition 6.2(ii)], the collection

{O,O(H − E1),O(H − E2),O(H − E3),O(H),O(2H − (E1+ E2+ E3))}

gives an exceptional collection for dP6 which is Aut(6)-stable.
Let us rephrase this in the notation of [Blunk et al. 2011]. There are two mor-

phisms dP6→ P2 realizing dP2 as a blowup of P2, and we denote the collection of
all six exceptional divisors by L i and Mi , with i = 1, 2, 3. Let H and H ′ denote the
pullbacks of the hyperplane divisors on P2 under the maps contracting Mi and L i ,
respectively, where we identify H with the divisor given in King’s collection above
(and thus we also identify Ei with Mi ). Then H = L1+M2+M3, and using the
relation L i +M j = L j +Mi it follows that

2H − (E1+ E2+ E3)= L1+ L2+M3 = H ′.

Furthermore, one checks that H − E1 = L2 + M3, H − E2 = L1 + M3, and
H − E3 = L1 + M2. As described in [Blunk et al. 2011, §2], the element σ
in S3 × C2 = D12 which cyclically permutes the six lines L i ,Mi also satisfies
σ(H) = H ′ and σ 2(H) = H . We arrange the exceptional collection above into
blocks

E0
= {O},

E1
= {O(H − E1),O(H − E2),O(H − E3)},

E2
= {O(H),O(2H − (E1+ E2+ E3))}.

In particular, the exceptional collection given above is Aut(6)-stable, and so by
Corollary 3.8 we have an exceptional collection on X .

Proposition 4.7. Every toric surface admits a full exceptional collection of sheaves.

Proof. There is a sequence of blowups X = X0→ · · · → Xs = X ′, where X ′ is
minimal and so must be one of the varieties given in Lemma 4.2. By Examples 4.3–
4.6, X ′ admits a full strong exceptional collection of vector bundles, and thus X ′L
admits a G-stable exceptional collection. By Lemma 2.23, X L admits a G-stable
exceptional collection. �
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Remark 4.8. We would like to thank F. Xie for pointing out a mistake in the
statement of a previous version of Proposition 4.7. Xie also discusses exceptional
collections of toric surfaces in [Xie 2017], although her definition of exceptional
object is not the same as ours. In the second arXiv version of that paper, Xie
sketched in Remark 8.8 how one might construct an exceptional collection for toric
surfaces. After the authors posted a preliminary version of this paper to the arXiv,
Xie updated her preprint with Corollary 8.8, which proves the analog of the above
proposition for collections of vector bundles but using her notion of exceptional
collection.

4B. The toric Frobenius and toric Fano 3-folds. In Table 1 we present the clas-
sification of smooth toric Fano 3-folds given in [Batyrev 1999; Watanabe and
Watanabe 1982], adopting Batyrev’s enumeration. For each X = X6 , we record
the following invariants:

• σ(1)= |6(1)| is the number of rays of 6 [Bernardi and Tirabassi 2009].

• k0 is the rank of the Grothendieck group K0(X), which coincides with the
number of maximal cones in the fan 6 [Bernardi and Tirabassi 2009].

• Aut(6) is the automorphism group of the (lattice N which preserves the) fan
6 corresponding to X .

• ρ is the Picard rank of X [Watanabe and Watanabe 1982].

• ρG is the Aut(6)-invariant Picard rank of X , i.e., the rank of Pic(X)Aut(6).

• fr= |Frob(X)| is the number of isomorphism classes of line bundles produced
by the push forward of the structure sheaf under the Frobenius morphism
[Bernardi and Tirabassi 2009; Uehara 2014].

• fr− = |Frob(X) ∩ −Nef(X)| is the number of isomorphism classes of line
bundles in Frob(X) which lie in the anti-nef cone of X [Uehara 2014].

Toric Frobenius. Let X be a split toric variety of dimension n with fixed torus
embedding T ↪→ X and take ` ∈ Z+. Define the `-th Frobenius map on T = Gn

m
to be (x1, . . . , xn) 7→ (x`1, . . . , x`n). The unique extension to X is denoted F` and
called the `-th Frobenius morphism. Alternatively, if 6 ⊂ N is the fan associated
to X , define a lattice N ′= 1

`
N . The inclusion N ⊂ N ′, which sends a cone in NR to

the cone with the same support in N ′R, induces a finite surjective morphism which
is precisely the `-th Frobenius morphism F` : X→ X .

The sheaf (F`)∗(OX ) splits into line bundles and [Thomsen 2000] provides an
algorithm for computing its direct summands. We let Frob(X) denote the union of
all isomorphism classes of line bundles arising as direct summands of (F`)∗(OX )

as ` varies over Z+. Note that Frob(X) is a finite set.
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Toric Fano 3-fold X σ(1) k0 Aut(6) ρ ρG fr fr−

1. P3 4 4 S4 1 1 4 4
2. PP2(O⊕O(2)) 5 6 S3 2 2 7 6
3. PP2(O⊕O(1)) 5 6 S3 2 2 6 6
4. PP1(O⊕O⊕O(1)) 5 6 C2×C2 2 2 6 6
5. P2

×P1 5 6 D12 2 2 6 6
6. PP1×P1(O⊕O(1, 1)) 6 8 D8 3 2 8 8
7. PdP8(O⊕O(l)), l2

= 1 on dP8 6 8 D8 3 3 8 8
8. P1

×P1
×P1 6 8 C2×S4 3 1 8 8

9. dP8×P1 6 8 C2×C2 3 3 8 8
10. PP1×P1(O⊗O(1,−1)) 6 8 D8 3 2 8 8
11. BlP1(PP2(O⊕O(1))) 6 8 C2 3 3 9 8
12. BlP1(P2

×P1) 6 8 C2 3 3 8 8
13. dP7-bundle over P1 7 10 C2 4 4 10 10
14. dP7-bundle over P1 7 10 C2×C2 4 3 10 10
15. dP7×P1 7 10 C2×C2 4 3 10 10
16. dP7-bundle over P1 7 10 C2 4 4 10 10
17. dP6×P1 8 12 C2×C2×S3 5 2 12 12
18. dP6-bundle over P1 8 12 C2×C2 5 4 12 12

Table 1. Toric Fano 3-folds.

Conjecture 4.9 [Bondal 2006]. If X is a smooth proper toric variety then the col-
lection Frob(X) generates Db(X).

For a toric variety X in which Bondal’s Conjecture is true, we say that the
Frobenius generates the derived category of X . In [loc. cit.], Bondal proves that
if all summands of Frob(X) are nef, one actually gets a full strong exceptional
collection, so that Conjecture 4.9 is true in this case. He also notes his arguments
work for all but two (isomorphism classes of) toric Fano threefolds. To cover all
toric Fano threefolds, Uehara noticed that discarding line bundles which do not lie
in the set −Nef(X) yields a full strong exceptional collection [Uehara 2014].

Lemma 4.10. Let X be a toric variety over k with splitting field L. Suppose E

is a full (strong) exceptional collection for Db(X L) where either E= Frob(X L) or
E= Frob(X L)∩−Nef(X L). Then there exists a full (strong) exceptional collection
for Db(X).

Proof. Both Frob(X L) and Nef(X L) are canonical constructions and thus are
Aut(X L)-stable. In particular, E is Aut(6)-stable and so Corollary 3.8 applies. �

Proposition 4.11. Let X be a smooth projective toric Fano 3-fold over a field k.
Then X admits a full strong exceptional collection consisting of vector bundles.
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Proof. Let X L be the associated split toric Fano 3-fold. The main result of [Ue-
hara 2014] guarantees that the set E= Frob(X L)∩−Nef(X L) defines a full strong
exceptional collection on X . Lemma 4.10 completes the proof. �

4C. Toric Fano 4-folds. There are 124 split smooth toric Fano 4-folds, which
were first classified in [Batyrev 1999] (a missing case was added in [Sato 2000]).
Full strong exceptional collections for all 124 of these 4-folds were exhibited in
[Prabhu-Naik 2017]. However, it is not clear that these collections are Aut(6)-
stable, so they do not necessarily lead to full strong exceptional collections in the
arithmetic case.

All collections obtained using Method 1 of [Prabhu-Naik 2017] produce Aut(6)-
stable collections (note that this is precisely the method used in [Uehara 2014] for
toric Fano 3-folds, and we refer to this as the Bondal–Uehara method). Together
with Lemmas 3.11 and 4.10, this gives stable exceptional collections for 43 of the
124 smooth toric Fano 4-folds. However, there are examples where the Bondal–
Uehara method fails to produce an exceptional collection. In this case, all is not
lost (see Section 4D).

More precisely, the varieties (61), (62), (63), (64), (77), (105), (107), (108),
(110), (122), and (123) of [Prabhu-Naik 2017] are shown to have exceptional collec-
tions using the Bondal–Uehara method. Hence, they admit exceptional collections
which are Aut(6)-stable and thus provide exceptional collections for the arithmetic
forms. Secondly, for the varieties (109), (114), and (115), the set Frob(X) is a full
exceptional collection, which is G-stable by Lemma 4.10. Lastly, Lemma 3.11
guarantees the existence of exceptional collections on products. Hence, the follow-
ing varieties also admit stable exceptional collections: (0), (4), (9), (17), (24), (25),
(26), (27), (45), (52), (53), (54), (55), (56), (58), (67), (73), (88), (90), (92), (93),
(97), (103), (111), (112), (113), (118), (119), (120).

4D. Centrally symmetric toric Fano varieties. Polytopes with the highest degree
of symmetry are the centrally symmetric polytopes, i.e., −P = P . The smooth split
toric varieties X whose anticanonical polytope is full-dimensional and centrally
symmetric were classified in [Voskresenskiı̆ and Klyachko 1984]. It was shown
that any such variety (which we refer to as a centrally symmetric toric Fano variety)
is isomorphic to a product of projective lines and generalized del Pezzo varieties
Vn of dimension n = 2m. Note that V2 = dP6 and V4 is the missing (116) from the
list in Section 4C (this is (118) in the enumeration found in [Batyrev 1999]). The
goal of this section is to exhibit full stable exceptional collections on Vn , which
in turn yields stable exceptional collections for any centrally symmetric toric Fano
variety, in light of Lemma 3.11.

Castravet and Tevelev [2017, Theorem 6.6] found Aut(6)-stable full strong ex-
ceptional collections for the varieties Vn . The present authors had independently
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discovered the same exceptional collection (up to a twist by a line bundle). Nev-
ertheless, the perspective here may be of independent interest, so we sketch the
argument. A more detailed analysis is given in [Ballard et al. 2018].

The variety Vn with n = 2m has rays given by

e1 = (1, 0, . . . , 0), ē1 = (−1, 0, . . . , 0),

e2 = (0, 1, . . . , 0), ē2 = (0,−1, . . . , 0)
...

...

en = (0, 0, . . . , 1), ēn = (0, 0, . . . ,−1),

en+1 = (−1,−1, . . . ,−1), ēn+1 = (1, 1, . . . , 1),

and maximal cones given as follows. From the rays e1, . . . , en+1, omit a single ei .
From the remaining n= 2m rays, choose n

2 of them and take their antipodes [Voskre-
senskiı̆ and Klyachko 1984, proof of Theorem 5]. Note that V2 = dP6 (whose fan
is given in Figure 1). The number of maximal cones c(n) of Vn is given by

c(n)=
(n+ 1)!( n

2

)
!2
=
(2m+ 1)!

m!2
.

There’s a natural action of Sn+1 × C2, where Sn+1 permutes e1, . . . , en+1 and
ē1, . . . , ēn+1 in the obvious way. The C2-action is simply the antipodal map on
the cocharacter lattice — we refer to it as “the involution”. Clearly, the involution
interchanges ei and ēi .

The variety Vn is of importance in birational geometry due to its appearance in
the factorization of the standard Cremona transformation of Pn . In fact, as is well
known, Vn can be explicitly obtained from Pn as follows. First blow up the torus
fixed points, then flip the (strict transforms) of the lines through these points, then
flip the (strict transforms) of planes through these points, . . . , up until, and not
including, the half-dimensional linear subspaces. The resulting variety is Vn . For
more, see [Casagrande 2003].

Since Vn and the blowup of Pn at its torus fixed points are isomorphic in codi-
mension 1, they have isomorphic Picard groups. We use a basis

{H, E1, . . . , En+1}

for Pic(Vn), which corresponds to the hyperplane section and the exceptional divi-
sors of the blown up Pn . We have

[ei ] = Ei , [ēi ] =

(
H −

n+1∑
j=1

E j

)
+ E j ,

where Sn+1 permutes the Ei leaving H fixed, and the involution is represented by
the following matrix:
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n 1 1 · · · 1

1− n 0 −1 · · · −1
1− n −1 0 · · · −1
...

...
...
. . .

...

1− n −1 −1 · · · 0

 .
For each c ∈ Z and J ⊂ {1, . . . , n+ 1}, define

Fc,J := c
( n+1∑

i=1

Ei − H
)
−

∑
j∈J

E j .

Note that the involution takes Fc,J to F|J |−c,J .

Proposition 4.12. The set of Fc,J with

(1) |J | − n
4
≤ c ≤ n

4
or

(2) n+2
4
≤ c ≤ |J | − n+2

4
forms a full strong (Sn+1×C2)-stable exceptional collection on Vn under any or-
dering of the blocks such that |J | is (nonstrictly) decreasing.

Proof sketch. This collection is the same as that of [Castravet and Tevelev 2017,
Theorem 6.6] up to a twist by a line bundle. Thus, we only sketch an argument here,
expanded in [Ballard et al. 2018]. One checks that the description of “forbidden
cones” given in [Borisov and Hua 2009] shows that relevant cohomology groups
vanish — this shows that it is a strong exceptional collection. To prove generation,
one considers the series of flips required to reach Pn blown up at n+1 points. Using
the description of the semiorthogonal decompositions in [Ballard et al. 2019], the
line bundles can be shown to generate the necessary admissible subcategories of
each intermediate birational model. �

Since any centrally symmetric toric Fano variety is a product of projective lines
and the varieties Vn , Lemma 3.11 yields the following:

Corollary 4.13. Any form of a centrally symmetric toric Fano variety admits a full
strong exceptional collection consisting of vector bundles.

4E. Toric varieties from the Weyl fans of type A. One method for identifying toric
varieties with large symmetry groups is to start with root systems. Let R be a root
system in a Euclidean space E . The Z-lattice generated by R is denoted M(R),
while its dual in E∨ is denoted by N (R). For every set S of simple roots in E , we
have the dual cone corresponding to a closed Weyl chamber

σS := { f ∈ E∨ | 〈 f, α〉 ≥ 0, ∀α ∈ S}.
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The cones σS are the maximal cones for a fan 6R in E∨. We denote the associated
toric variety by X (R). Recall that an automorphism of R is an element of GL(E)
preserving R. Let W (R) be the Weyl group and 0(R) the symmetry group of the
Dynkin diagram of R. It is well known that

Aut(R)'W (R)o0(R).

Any automorphism of R induces an action on the fan 6(R), which yields a homo-
morphism φ : Aut(R)→ Aut(6(R)).

Lemma 4.14. The map φ : Aut(R)→ Aut(6(R)) is an isomorphism.

Proof. First note that the set R can be reconstructed from 6(R) by taking the union
of the extremal rays generating the dual cones σ∨S for all σS . Thus any symmetry
of the fan induces a symmetry of R. This gives the inverse map to φ. �

Here we focus on the case R = An . In [Losev and Manin 2000], the authors
showed that X (An) is a moduli space of rational curves with (n+1) marked points
and 2 poles. Another useful proof appeared in [Batyrev and Blume 2011].

Using this perspective, [Castravet and Tevelev 2017] exhibited an exceptional
collection on X (An) that is stable under the action of permuting the marked points
and flipping the poles, i.e., an (Sn+1 o C2)-stable collection. Here we demon-
strate that Castravet and Tevelev’s exceptional collection satisfies the conditions of
Proposition 3.7 and hence descends to an exceptional collection on any form of
X (An) (in characteristic 0).

To do this requires a bit of translating divisors and actions from the moduli-
theoretic language to the toric language. We recall the moduli-theoretic language.

Definition 4.15. Let N be a set of order n. A chain of polar P1’s is a ({0,∞}∪N )-
marked linear nodal chain of P1’s with 0 on the left tail and∞ on the right tail. A
chain of polar P1’s is stable if

(1) marked points do not coincide with nodes,

(2) only N -marked points are allowed to coincide,

(3) each component of the chain has at least three special points (nodes or marked
points).

We write LMN for the corresponding moduli space. We also use LMn depending
on the context. Note that the universal curve over LMn is isomorphic to LMn+1.

Theorem 4.16. The toric variety X (An−1) is isomorphic to LMn . Moreover, if we
fix an embedding An−1→ An , the corresponding map X (An)→ X (An−1) is the
universal curve. Moreover, X (An)→ X (An−1) is a toric morphism.
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Proof. This is [Losev and Manin 2000, Theorem 2.6.3]. See also [Batyrev and
Blume 2011, Theorem 3.19]. The map is consequently toric by [Batyrev and Blume
2011, Proposition 1.4]. �

Under this isomorphism, the closures of the torus orbits on X (An) have the
following moduli-theoretic description. Fix a partition N1 t N2 = N and let δN1

denote the divisor parametrizing polar chains of length exactly 2 having the first
marked by N1 and the last marked by N2. For a partition with more parts

N1 t N2 t · · · t Nt = N ,

one has the locus Z N1,...,Nt parametrizing polar chains of length exactly t , where
the i-th P1 is marked by Ni . These loci are precisely the proper torus orbit closures
on X (An).

Note that each locus is a complete intersection

Z N1,...,Nt := δN1 ∩ δN1∪N2 ∩ · · · ∩ δN1∪···∪Nt−1 .

Moreover, we have an isomorphism

Z N1,...,Nt ' LMN1 × LMN2 × · · ·× LMNt ,

where the left node of each P1 is marked with 0 and the right node is marked
with∞. Thus, we have toric morphisms

iN1,...,Nt : LMN1 × LMN2 × · · ·× LMNt → LMN .

Also, for each subset K ⊂ N , we get a forgetful map πK : LMN → LMK , which
is a toric morphism since it is a composition of maps from Theorem 4.16.

Recall there is a set of line bundles GN on LMN [Castravet and Tevelev 2017,
Definition 1.5], and one generates a larger set HN of sheaves via

HN :=
{
(iN1,...,Nt )∗(Gl1 � · · ·�Glt ) | ∀N1 ∪ · · · ∪ Nt = N , Gl j ∈ GN j

}
,

where iN1,...,Nt : Z N1,...,Nt ↪→ LMN is the inclusion.

Theorem 4.17. There is an ordering on the set

CTN := HN ∪

( ⋃
K(N

{π∗K E | E ∈ HK }

)
∪ {O}

making it into an (SN oC2)-stable exceptional collection under permutations of
the two sets of markings.

Proof. This is [Castravet and Tevelev 2017, Proposition 1.5]. �

Proposition 4.18. The action of Sn+1 o C2 given by permuting the two sets of
marked points corresponds to the action of Aut(An) on X (An).
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Proof. We use the standard presentation of the root system for An as ei − e j

for 1 ≤ i < j ≤ n + 1 and follow [Batyrev and Blume 2011, Construction 3.6].
The embedding An ↪→ An+1 gives the universal curve X (An+1)→ X (An). For
i ∈ {1, . . . , n}, we take the (n + 1) projections An+1 → An , whose kernels are
generated by ei−en+1 for 1≤ i ≤ n+1. These give sections si : X (An)→ X (An+1).
Finally, for the polar sections, we have the dual vector vn+2. The vectors vn+2 and
−vn+2 give toric invariant divisors which are isomorphic to X (An) [Batyrev and
Blume 2011, Proposition 1.9]. The isomorphisms give the other sections s0 and s∞.

The Weyl group is the permutation group of the ei , and hence of the ei − en+2.
In particular, it permutes the si . The outer involution acts on the fan by negation
and thus exchanges the cone corresponding to vn+2 with the cone corresponding
to −vn+2. �

Corollary 4.19. The set CTN is Aut(6(An))-stable.

Proof. This is an immediate corollary of Lemma 4.14 and Proposition 4.18. �

Proposition 4.20. Each object in the collection CTN is torus-equivariant.

Proof. Line bundles are always isomorphic to torus-equivariant line bundles, so
all objects in GN are torus-equivariant. There is a canonical equivariant structure
on tensor products and on pullbacks by equivariant morphisms (see [Ballard et al.
2014, §2]); thus each object G1� · · ·�Gn is torus-equivariant for Gl j ∈ GN j . Let
i : Z→ X be shorthand for some map iN1,...,Nt . There is a splitting of tori T = S×S′

where Z is an S-toric variety and S′ acts trivially on i(Z). Let ψ : T → S denote
the projection. We have a composition of functors

Db(CohS Z)→ Db(CohT Z)→ Db(CohT X),

where the first map is the functor Resψ [Ballard et al. 2014, §2.9] and the second
map is the T-equivariant pushforward [Ballard et al. 2014, §2.5]. This composition
reduces to the ordinary pushforward i∗ : Db(Z)→ Db(X) when the equivariant
structure is forgotten. We conclude that each object of HK is torus-equivariant,
and the result follows. �

We now prove the main result of this section.

Proposition 4.21. Let k be a field of characteristic zero and X a form of X (An)

over k. Then X admits a full exceptional collection of sheaves.

Proof. Combining Theorem 4.17, Corollary 4.19, and Proposition 4.20 allows us
to appeal to Proposition 3.7 and conclude that CTN descends to an exceptional
collection of sheaves on X . �

Remark 4.22. To remove the characteristic zero assumption one needs to extend
generation results of [Castravet and Tevelev 2017] to nonzero characteristic. This
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could conceivably be done by reversing the flow of reasoning in [Castravet and
Tevelev 2017], using the fact that we know the collections for Vn in any character-
istic. We do not pursue this.
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K-theory of Hermitian Mackey functors,
real traces, and assembly

Emanuele Dotto and Crichton Ogle

We define a Z/2-equivariant real algebraic K-theory spectrum KR(A), for every
Z/2-equivariant spectrum A equipped with a compatible multiplicative structure.
This construction extends the real algebraic K-theory of Hesselholt and Madsen
for discrete rings, and the Hermitian K-theory of Burghelea and Fiedorowicz for
simplicial rings. It supports a trace map of Z/2-spectra tr : KR(A)→ THR(A)
to the real topological Hochschild homology spectrum, which extends the K-
theoretic trace of Bökstedt, Hsiang and Madsen.

We show that the trace provides a splitting of the real K-theory of the spheri-
cal group-ring. We use the splitting induced on the geometric fixed points of KR,
which we regard as an L-theory of Z/2-equivariant ring spectra, to give a purely
homotopy theoretic reformulation of the Novikov conjecture on the homotopy in-
variance of the higher signatures, in terms of the module structure of the rational
L-theory of the “Burnside group-ring”.
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Introduction

In [Hesselholt and Madsen 2015], a Z/2-equivariant spectrum KR(C ) is constructed
from an exact category with duality C , whose underlying spectrum is the K-theory
spectrum K(C ) of [Quillen 1973] and whose fixed-points spectrum is the con-
nective Hermitian K-theory spectrum, or Grothendieck–Witt spectrum, GW(C )
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of [Schlichting 2010]. The associated bigraded cohomology theory is an alge-
braic analogue of Atiyah’s KR-theory [1966], in the same way as algebraic K-
theory is analogous to topological K-theory. Specified to the category of free
modules over a discrete ring with anti-involution R, this construction provides a
Z/2-equivariant spectrum KR(R) whose fixed points are the connective Hermitian
K-theory GW(R) of [Karoubi 1973] (when 1

2 ∈ R) and [Burghelea and Fiedorowicz
1985]. In the latter paper, the construction of GW(R) is extended from discrete
rings to simplicial rings, and the homotopy type of GW(R) depends both on the
homotopy types of R and of the fixed-points space RZ/2.

In this paper we propose a further extension of the real K-theory functor KR to
the category of ring spectra with anti-involution. These are genuine Z/2-equivariant
spectra A with a suitably compatible multiplication (see Section 2.2). We model
the homotopy theory of genuine Z/2-equivariant spectra using orthogonal spectra
with a strict Z/2-action, with the weak equivalences defined from a complete Z/2-
universe, as developed in [Schwede 2013; Hill et al. 2016]. Thus, when referring
to a genuine Z/2-spectrum, we always mean an orthogonal spectrum with a strict
involution. The output of our theory KR(A) is also a genuine Z/2-equivariant spec-
trum, whose derived fixed-points spectrum and geometric fixed-points spectrum

GW(A) := KR(A)Z/2 and Lg(A) :=8Z/2 KR(A) := (KR(A)∧ S∞σ )Z/2

behave, respectively, as a Hermitian K-theory and L-theory for ring spectra with
anti-involution, by Propositions 2.6.3 and 2.6.7 (the model of [Schwede 2013] for
the derived fixed-points is recalled in Section 2.2, and S∞σ is the one-point com-
pactification of the infinite countable sum of sign representations σ ). They depend
on the genuine equivariant homotopy type of A, that is, on the underlying spectrum
of A and on the derived fixed-points spectrum AZ/2, and therefore differ from other
constructions in the literature (e.g., from the Hermitian K-theory of [Spitzweck
2016] and from the quadratic or symmetric L-theory of [Lurie 2011], which are
invariant for the morphisms which are equivalences of underlying nonequivariant
spectra). The main application of this paper uses a trace map tr : KR→ THR to
real topological Hochschild homology to reformulate the Novikov conjecture in
terms of the monoidal structure of Lg.

There is an algebraic case of particular interest lying between discrete rings and
ring spectra: the ring spectra with anti-involution whose underlying Z/2-spectrum
is the Eilenberg–Mac Lane spectrum HM of a Z/2-Mackey functor M . In this case
the multiplicative structure on HM specifies to a ring structure on the underlying
abelian group π0HM and a multiplicative action of π0HM on π0(HM)Z/2, suitably
compatible with the restriction and the transfer maps. We call such an object a
Hermitian Mackey functor. In the case where the restriction map is injective, these
are form rings in the sense of [Bak 1981, §1.B]. A class of examples comes from
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Tambara functors, where the underlying ring acts on the fixed-points datum via the
multiplicative transfer. We start our paper by constructing the Hermitian K-theory
of a Hermitian Mackey functor in Section 1, as the group completion of a certain
symmetric monoidal category of Hermitian forms HermM over M

GW(M) :=�B(Bi HermM ,⊕).

The key idea for the definition of HermM is that the fixed-points datum of the
Mackey functor specifies a refinement of the notion of “symmetry” used in the
classical definition of Hermitian forms over a ring. In Section 2 we extend these
ideas to ring spectra and we give the full construction of the functor KR.

The main feature of this real K-theory construction is that it comes equipped
with a natural trace map to the real topological Hochschild homology spectrum
THR(A) of [Hesselholt and Madsen 2015]; see also [Dotto 2012; Høgenhaven
2016; Dotto et al. 2017]. The following is in Section 3.2.

Theorem 1. Let A be a connective ring spectrum with anti-involution. There is a
natural transformation of Z/2-spectra

tr : KR(A)→ THR(A)

which agrees on nonequivariant infinite loop spaces with the Bökstedt–Hsiang–
Madsen trace map K(A)→ THH(A) from [Bökstedt et al. 1993].

In the case of a discrete ring with anti-involution R the trace provides a map of
spectra GW(R)→ THR(R)Z/2 which is a refinement of earlier constructions of
the Chern character from Hermitian K-theory to dihedral homology appearing in
[Cortiñas 1993]. In Section 2.7 we define, for any topological group π and ring
spectrum with anti-involution A, an assembly map

KR(A)∧ Bσπ+→ KR(A[π ]),

where A[π ] := A∧ π+ is the group-ring with the anti-involution induced by the
inversion of π , and Bσπ is a delooping of π with respect to the sign-representation.
We define a map

Q : KR(S[π ]) tr
−→ THR(S[π ])' S∧ Bdiπ+→ S∧ Bσπ+,

where Bdiπ→ Bσπ is the projection from the dihedral nerve of π , and the equiv-
alence is from [Høgenhaven 2016]. The following is proved in Section 3.3.

Theorem 2. The map Q defines a natural retraction in the homotopy category of
Z/2-spectra for the restricted assembly map

S∧ Bσπ+
η∧id
−−→ KR(S)∧ Bσπ+→ KR(S[π ]),
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where η : S→ KR(S) is the unit map. Thus the real K-theory of the spherical
group-ring splits off a copy of the equivariant suspension spectrum S∧ Bσπ+. If
π is discrete, the Hermitian K-theory spectrum GW(S[π ]) := KR(S[π ])Z/2 splits
off a copy of

(S∧ Bσπ+)Z/2 ' S∧ ((Bπ ×RP∞)q
∐

{[g] | g2=1}

B Zπ 〈g〉)+,

where the disjoint union runs through the conjugacy classes of the order two ele-
ments of π , and Zπ 〈g〉 is the centralizer of g in π .

Nonequivariantly this is the splitting of [Waldhausen et al. 2013], and the cofiber
of the restricted assembly map is the Whitehead spectrum. It is unclear at the mo-
ment if the equivariant homotopy type of this cofiber directly relates to a geometric
object. It was brought to our attention by Kristian Moi and Thomas Nikolaus
that the fixed-points spectrum GW(S[π ]) might relate to the spectrum VLA• from
[Weiss and Williams 2014].

The geometric application that we propose uses the rationalization of KR(S[π ])
to reformulate the Novikov conjecture. This conjecture, from [Novikov 1968], for
a discrete group π is equivalent to the injectivity of the assembly map

AZ[π ] : Lq(Z)∧ Bπ+→ Lq(Z[π ])

on rational homotopy groups, where Lq denotes the quadratic L-theory spectrum
and Z[π ] is the integral group-ring with the anti-involution induced by the inversion
in π ; see, e.g., [Kreck and Lück 2005]. Relying on Karoubi’s periodicity theorem
[Karoubi 1980], Burghelea and Fiedorowicz [1985] show that there is a rational
decomposition

GW∗(R)⊗Q∼= (Lq
∗(R)⊗Q)⊕ (K∗(R)⊗Q)Z/2

for every discrete ring with anti-involution R, where K∗(R) are the algebraic K-
theory groups. In Proposition 2.6.7 we reinterpret this result in terms of the splitting
of the isotropy separation sequence of the rational KR spectrum, thus identifying
rationally the connective L-theory spectrum with the geometric fixed-points spec-
trum 8Z/2 KR(R); see [Schlichting 2017, Theorem 7.6] for a similar result. This
justifies our definition of

Lg(A) :=8Z/2 KR(A),

the “genuine” L-theory spectrum of the ring spectrum with anti-involution A. The
trace then induces a map on the rationalized geometric fixed-points spectra

tr : Lq(Z[π ])⊗Q' Lg(Z[π ])⊗Q→8Z/2(THR(Z[π ]))⊗Q,

which one could try to exploit to detect the injectivity of the L-theoretic assembly.
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The rational geometric fixed points 8Z/2 THR(R)⊗Q have however been com-
puted to be contractible in [Dotto et al. 2017], as long as R is a discrete ring. This
is in line with the results of [Cortiñas 1993], where the Chern character to dihedral
homology factors through algebraic K-theory via the forgetful map, and therefore
vanishes on the L-theory summand.

The rational geometric fixed points 8Z/2 THR(A)⊗Q are generally nontrivial
when the input A is not the Eilenberg–Mac Lane spectrum of a discrete ring. The
starting point of our analysis is to replace the ring of integers with the Burnside
Mackey functor, much in the same way one replaces the integers with the sphere
spectrum in the proof of the K-theoretic Novikov conjecture of [Bökstedt et al.
1989]. We define a Hermitian Mackey functor

A1/2[π ] := π
Z/2
0 (S∧π+)

[ 1
2

]
,

the “Burnside group-ring” of a discrete group π (see Definition 1.1.7) with 2 in-
verted. There is a restriction map d : A1/2[π ] → Z1/2[π ] coming from the augmen-
tation of the Burnside ring, where Z1/2[π ] is the Mackey functor associated to the
integral group-ring Z[π ] with 2 inverted. The following is proved in Section 4.

Theorem 3. Let π be a discrete group. There is a lift AZ[π ] of the L-theoretic
connective assembly map of the integral group-ring

Lg
∗(A1/2[π ])⊗Q

d
��

Q[β]⊗ H∗(Bπ;Q) AZ[π ]

//

AZ[π ]

22

Lq
∗≥0(Z[π ])⊗Q∼=Lg

∗(Z1/2[π ])⊗Q

For every polynomial x ∈Q[β]⊗ H∗(Bπ;Q) with nonzero constant term, we have
AZ[π ](x) 6= 0. It follows that the Novikov conjecture holds for π if and only if the
image of AZ[π ] intersects the kernel of d trivially.

We prove this theorem by detecting AZ[π ](x) using the trace map. We define a
map

T : Lg
∗(A1/2[π ])⊗Q

tr
−→8Z/2 THR∗(A1/2[π ])⊗Q∼= H∗((Bdiπ)Z/2;Q)

p
−→ H∗(Bπ;Q),

where Bdiπ is the dihedral nerve of π , and p : (Bdiπ)Z/2 → Bπ is a certain
projection map. The image of the constant term TAZ[π ](1⊗ xn) of a polynomial

x = 1⊗ xn +β⊗ xn−4+ · · ·+β
k
⊗ xn−4k ∈ (Q[β]⊗ H∗(Bπ;Q))n

of total degree n, with xn 6= 0, is nonzero essentially by Theorem 2. A natural-
ity argument then shows that TAZ[π ] vanishes on the positive powers of β, and
therefore that AZ[π ](x) is not zero. By the periodicity of Lq

∗(Z[π ]), if AZ[π ] does
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not annihilate the polynomials with nonzero constant term, it must be injective
(see Remark 4.1). Thus the Novikov conjecture holds precisely when d does not
kill AZ[π ](x).

We further reduce the Novikov conjecture to an algebraic property of Lg
∗(A1/2[π ])

as an Lg
0(A1/2)-module. The rank map d above admits a natural splitting sπ which

includes Lq
∗≥0(Z[π ])⊗Q as a summand of Lg

∗(A1/2[π ])⊗Q. In particular, the unit
of Lq

∗≥0(Z)⊗Q∼=Q[β] defines an idempotent element a in the ring Lg
0(A1/2)⊗Q.

Corollary 4. There is an idempotent a ∈ Lg
0(A1/2)⊗Q such that every element

x ∈Q[β]⊗ H∗(Bπ;Q) satisfies the identity

sπAZ[π ](x)= a ·AZ[π ](x) ∈ Lg
∗(A1/2[π ])⊗Q,

where sπ is injective and AZ[π ](x) is nonzero when x has nonzero constant term.
It follows that the Novikov conjecture holds for π if and only if the multiplication
map

a · ( – ) : Lg
∗(A1/2[π ])→ Lg

∗(A1/2[π ])

is injective on the image of AZ[π ].

The element a is sent to zero by the trace

tr : Lg
∗(A1/2[π ])→8Z/2 THR∗(A1/2[π ]),

and therefore a ·AZ[π ](x) cannot be detected by the trace map to THR. In future
work we hope to be able to show that

tr(a ·AZ[π ](x))= tr(a) ·ATCR(tr(x))

is nonzero in8Z/2 TCR∗(A1/2[π ])⊗Q by direct calculation, where tr :KR→TCR
is a lift of the trace map to the real topological cyclic homology spectrum, and ATCR

is the corresponding assembly map.

A brief outline of the paper follows. In Section 1 we define Hermitian Mackey
functors, we construct some examples, and we define their Hermitian K-theory. In
Section 2 we construct the real K-theory of a ring spectrum with anti-involution.
We prove that its fixed points recover the connective Hermitian K-theory of sim-
plicial rings of [Burghelea and Fiedorowicz 1985] and the Hermitian K-theory of
Hermitian Mackey functors of Section 1, and we prove that its geometric fixed
points are rationally equivalent to the connective L-theory of discrete rings. Under
these equivalences we recover the L-theoretic and Hermitian assembly maps from
the KR assembly. In Section 3 we recollect some of the basics on real topological
Hochschild homology. We then construct the real trace map and the splitting of
the real K-theory of the spherical group-ring. Finally in Section 4 we relate the
trace map to the Novikov conjecture.
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Notation and conventions. A space always means a compactly generated weak
Hausdorff topological space. These form a category, which we denote by Top. We
let TopG be its category of G-objects, where G is a finite group, usually G = Z/2.
An equivalence of G-spaces is a continuous G-equivariant map which induces a
weak equivalence on H -fixed-points, for every subgroup H of G.

By a spectrum, we always mean an orthogonal spectrum. A G-spectrum is a
G-object in the category of orthogonal spectra, and an equivalence of G-spectra is
a stable equivalence with respect to a complete G-universe, as in [Schwede 2013].

1. Hermitian Mackey functors and their K-theory

1.1. Hermitian Mackey functors. The standard input of Hermitian K-theory is a
ring R with an anti-involution w : Rop

→ R, or in other words an abelian group R
with a Z/2-action and a ring structure

R⊗Z R→ R

which is equivariant with respect to the Z/2-action on the tensor product that swaps
the two factors and acts on both variables. In equivariant homotopy theory abelian
groups with Z/2-actions are replaced by the more refined notion of Z/2-Mackey
functors. In what follows, we define a suitable multiplicative structure on a Mackey
functor which extends the notion of a ring with anti-involution.

We recall that a Z/2-Mackey functor L consists of two abelian groups L(Z/2)
and L(∗), a Z/2-action w on L(Z/2), and Z/2-equivariant maps

R : L(∗)→ L(Z/2), T : L(Z/2)→ L(∗)

(with respect to the trivial action on L(∗)), respectively called the restriction and
the transfer, subject to the relation

RT (a)= a+w(a)

for every a ∈ L(Z/2).

Definition 1.1.1. A Hermitian Mackey functor is a Z/2-Mackey functor L , to-
gether with a multiplication on L(Z/2) that makes it into a ring, and a multiplica-
tive left action of L(Z/2) on the abelian group L(∗) which satisfy the following
conditions:

(i) w(aa′)= w(a′)w(a) for all a, a′ ∈ L(Z/2), and w(1)= 1,

(ii) R(a · b)= a R(b)w(a) for all a ∈ L(Z/2) and b ∈ L(∗),

(iii) a · T (c)= T (acw(a)) for all a, c ∈ L(Z/2),

(iv) (a+a′) ·b= a ·b+a′ ·b+T (a R(b)w(a′)) for all a, a′ ∈ L(Z/2) and b ∈ L(∗),
and 0 · b = 0.



250 EMANUELE DOTTO AND CRICHTON OGLE

Example 1.1.2. Let R be a ring with anti-involution w : Rop
→ R. The Mackey

functor R associated to R has values R(Z/2)= R and R(∗)= RZ/2, the abelian sub-
group of fixed points. The restriction map is the inclusion of fixed points RZ/2

→ R,
and the transfer is T (a)= a+w(a). The multiplication on R defines an action of
R on RZ/2 by

a · b = abw(a)

for a ∈ R and b ∈ RZ/2. This gives R the structure of a Hermitian Mackey functor.

Example 1.1.3. Let A be the Burnside Z/2-Mackey functor. The abelian group
A(Z/2) is the group completion of the monoid of isomorphism classes of finite sets,
and it has the trivial involution. The abelian group A(∗) is the group completion
of the monoid of isomorphism classes of finite Z/2-sets. The restriction forgets
the Z/2-action, and the transfer sends a set A to the free Z/2-set A× Z/2. The
underlying abelian group A(Z/2) has a multiplication induced by the cartesian
product, and it acts on A(∗) by

A · B =
(∏

Z/2

A
)
× B.

Explicitly, A(Z/2) is isomorphic to Z as a ring, A(∗) is isomorphic to Z⊕Z with
generators the trivial Z/2-set with one element and the free Z/2-set Z/2. The
restriction is the identity on the first summand and multiplication by 2 on the second
summand, and the transfer sends the generator of Z to the generator of the second
Z-summand. The underlying ring Z then acts on Z⊕Z by

a · (b, c)=
(
ab, 1

2 ba(a− 1)+ a2c
)
.

The Hermitian structure on the Burnside Mackey functor is a special case of the
following construction. If the multiplication of a ring R is commutative, then an
anti-involution on R is simply an action of Z/2 by ring maps. The Mackey version
of a commutative ring is a Tambara functor, and we show that there is indeed a
forgetful functor from Z/2-Tambara functors to Hermitian Mackey functors. We
recall that a Z/2-Tambara functor is a Mackey functor where both L(Z/2) and L(∗)
are commutative rings, and with an additional equivariant multiplicative transfer

N : L(Z/2)→ L(∗),

called the norm, which satisfies the properties

(i) T (a)b = T (a R(b)) for all a ∈ L(Z/2) and b ∈ L(∗),

(ii) RN (a)= aw(a) for all a ∈ L(Z/2),

(iii) N (a+a′)= N (a)+N (a′)+T (aw(a′)) for all a, a′ ∈ L(Z/2), and N (0)= 0;

see [Tambara 1993; Strickland 2012].
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Example 1.1.4. A Tambara functor L has the structure of a Hermitian Mackey
functor by defining the L(Z/2)-action on L(∗) as

a · b = N (a)b,

where the right-hand product is the multiplication in L(∗), and then forgetting the
multiplication of L(∗) and the norm.

Let us verify the axioms of a Hermitian Mackey functor. The first axiom is
satisfied because the multiplication is commutative and equivariant. The second
axiom is

R(a · b)= R(N (a)b)= R(N (a))R(b)= aw(a)R(b)= a R(b)w(a)

and the third is

a · T (c)= N (a)T (c)= T (R(N (a))c)= T (aw(a)c)= T (acw(a)).

The last axiom is clear from the third condition of a Tambara functor.

We conclude the section by extending to Hermitian Mackey functors two stan-
dard constructions of rings with anti-involution: the matrix ring and the group-ring.

If R is a ring with anti-involution and n is a positive integer, the ring Mn(R)
of n× n-matrices has a natural anti-involution defined by conjugate transposition
w(A)i j := w(A j i ). A fixed point in Mn(R) is a matrix whose diagonal entries
belong to RZ/2, and where the entries Ai> j are determined by the entries Ai< j , by
Ai> j = w(A j<i ). Inspired by this example, we give the following definition.

Definition 1.1.5. Let L be a Hermitian Mackey functor. The Hermitian Mackey
functor Mn(L) of n× n-matrices in L is defined by the abelian groups

Mn(L)(Z/2)= Mn(L(Z/2)),

Mn(L)(∗)=
( ⊕

1≤i< j≤n

L(Z/2)
)
⊕

( ⊕
1≤i= j≤n

L(∗)
)
.

The anti-involution on Mn(L)(Z/2) is the anti-involution of L(Z/2) applied entry-
wise followed by matrix transposition. The restriction of an element B of Mn(L)(∗)
has entries

R(B)i j =


Bi j if i < j,
w(B j i ) if i > j,
R(Bi i ) if i = j.

The transfer of an n× n-matrix A with coefficients in L(Z/2) has components

T (A)i j =
{

Ai j +w(A j i ) if i < j,
T (Ai i ) if i = j.



252 EMANUELE DOTTO AND CRICHTON OGLE

The multiplication on Mn(L)(Z/2) is the standard matrix multiplication. The ac-
tion of Mn(L)(Z/2) on Mn(L)(∗) is defined by

(A · B)i j =


(AR(B)w(A))i j if i < j,

T
( ∑

1≤k<l≤n

Aik Bklw(Ail)

)
+

∑
1≤k≤n

Aik · Bkk if i = j,

that is, by the conjugation action on the off-diagonal entries, and through the Her-
mitian structure on the diagonal entries.

Lemma 1.1.6. The object Mn(L) defined above is a Hermitian Mackey functor,
and if R is a ring with anti-involution then Mn(R)∼= Mn(R).

Proof. It is clearly a well-defined Mackey functor, since

RT (A)i j =


T (A)i j = Ai j +w(A j i ) if i < j,

w(T (A) j i )= w(A j i +w(Ai j ))= w(A j i )+ Ai j if i > j,

R(T (A)i i )= R(T (Ai i ))= Ai i +w(Ai i ) if i = j

is equal to (A + w(A))i j . Let us verify that the formula above indeed defines
a monoid action. This is immediate for the components i < j . For the diagonal
components let us first verify that the identity matrix I acts trivially. This is because

(I · B)i i = T
( ∑

1≤k<l≤n

Iik Bklw(Iil)

)
+

∑
1≤k≤n

Iik · Bkk = 0+ Bkk .

In order to show associativity we calculate the diagonal components of (AC) · B
for matrices A,C ∈ Mn(L(Z/2)) and B ∈ Mn(L)(∗). These are

((AC) · B)i i = T
(∑

p<q

(AC)i p Bpqw((AC)iq)
)
+

∑
t

(AC)i t · Bt t

= T
(∑

p<q

∑
k,l

AikCkp Bpqw(AilClq)

)
+

∑
t

(∑
u

AiuCut

)
· Bt t .

An easy induction argument on the fourth axiom of a Hermitian functor shows that( ∑
1≤h≤n

ah

)
· b =

∑
1≤h≤n

(ah · b)+
∑

1≤k<l≤n

T (ak R(b)w(al)),

and the expression above becomes

((AC) · B)i i = T
(∑

p<q

∑
k,l

AikCkp Bpqw(AilClq)

)
+

∑
t

∑
u

(AiuCut · Bt t)

+

∑
t

∑
k<l

T (AikCkt R(Bt t)w(AilClt)).
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On the other hand the diagonal components of (A · (C · B))i i are

T
(∑

k<l

Aik(C · B)klw(Ail)

)
+

∑
u

Aiu · (C · B)uu

= T
(∑

k<l

∑
p,q

AikCkp R(B)pqw(AilClq)

)
+

∑
u

Aiu ·

(
T
(∑

p<q

Cup Bpqw(Cuq)

)
+

∑
t

Cut · Bt t

)

= T
(∑

k<l

∑
p,q

AikCkp R(B)pqw(AilClq)

)

+ T
(∑

u

∑
p<q

AiuCup Bpqw(AiuCuq)

)
+

∑
u

∑
t

Aiu ·Cut · Bt t

= T
(∑

k<l

∑
p<q

AikCkp(Bpq +w(Bpq))w(AilClq)

)

+ T
(∑

k<l

∑
t

AikCkt R(Bt t)w(AilClt)

)
+T

(∑
u

∑
p<q

AiuCup Bpqw(AiuCuq)

)
+

∑
u

∑
t

Aiu ·Cut ·Bt t .

We see that the second and the fourth term of this expression cancel with the third
and second term, respectively, of the expression of (AC) · B. Finally, by using that
the transfer is equivariant we rewrite the sum of the first and third terms as

T
(∑

k<l

∑
p<q

AikCkp(Bpq+w(Bpq))w(AilClq)

)
+T

(∑
u

∑
p<q

AiuCup Bpqw(AiuCuq)

)

= T
(∑

k<l

∑
p<q

AikCkp Bpqw(AilClq)

)
+ T

(∑
k<l

∑
p<q

AilClq Bpqw(AikCkp)

)

+ T
(∑

u

∑
p<q

AiuCup Bpqw(AiuCuq)

)

= T
(∑

k<l

∑
p<q

AikCkp Bpqw(AilClq)

)
+ T

(∑
k>l

∑
p<q

AikCkq Bpqw(AilClp)

)

+ T
(∑

u

∑
p<q

AiuCup Bpqw(AiuCuq)

)

= T
(∑

k,l

∑
p<q

AikCkp Bpqw(AilClq)

)
.
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Let us now verify the other axioms of a Hermitian Mackey functor. The com-
patibility between the action and the restriction holds since

R(A · B)i j

=


(A · B)i j if i < j,
w((A · B) j i )= w((AR(B)w(A)) j i ) if i > j,
R((A · B)i i )=

∑
1≤k<l≤n

RT (Aik Bklw(Ail))+
∑

1≤k≤n
R(Aik · Bkk) if i = j

=


(AR(B)w(A))i j if i 6= j,∑
1≤k<l≤n

(Aik Bklw(Ail)+ Ailw(Bkl)w(Aik))

+
∑

1≤k≤n
Aik R(Bkk)w(Aik)

if i = j,

which is equal to (AR(B)w(A))i j . The compatibility between the action and the
transfer is

(A · T (C))i j

=

(AR(T (C))w(A))i j = (A(C +w(C))w(A))i j if i < j,

T
( ∑

1≤k<l≤n
Aik T (C)klw(Ail)

)
+
∑

1≤k≤n
Aik · T (C)kk if i = j

=

(ACw(A)+w(ACw(A)))i j = T (ACw(A))i j if i < j,

T
( ∑

1≤k<l≤n
Aik(Ckl +w(Clk))w(Ail)

)
+
∑

1≤k≤n
Aik · T (Ckk) if i = j

=


T (ACw(A))i j if i < j,

T
( ∑

1≤k<l≤n
AikCklw(Ail)+ Aikw(Clk)w(Ail)

)
+
∑

1≤k≤n
T (AikCkkw(Aik))

if i = j,

and this is by definition T (ACw(A))i j . The distributivity of the action over the
sum in Mn(L)(∗) is easy to verify for the components i < j . In the diagonal
components we have that

((A+ A′) · B)i i = T
( ∑

1≤k<l≤n

(A+ A′)ik Bklw((A+ A′)il)
)
+

∑
1≤k≤n

(A+ A′)ik · Bkk

= T
( ∑

1≤k<l≤n

Aik Bklw(Ail)

)
+ T

( ∑
1≤k<l≤n

A′ik Bklw(A′il)
)

+ T
( ∑

1≤k<l≤n

Aik Bklw(A′il)
)
+ T

( ∑
1≤k<l≤n

A′ik Bklw(Ail)

)
+

∑
1≤k≤n

Aik · Bkk +
∑

1≤k≤n

A′ik · Bkk +
∑

1≤k≤n

T(Aik R(Bkk)w(A′ik))
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= (A · B)i i + (A′ · B)i i + T
( ∑

1≤k<l≤n

Aik Bklw(A′il)
)

+ T
( ∑

1≤k<l≤n

A′ik Bklw(Ail)

)
+

∑
1≤k≤n

T (Aik R(Bkk)w(A′ik)).

By using that the transfer is equivariant and by reindexing the sum we rewrite the
fourth summand as

T
( ∑

1≤k<l≤n

A′ik Bklw(Ail)

)
= T

( ∑
1≤k>l≤n

A′il Blkw(Aik)

)
= T

( ∑
1≤k>l≤n

Aikw(Blk)w(A′il)
)
.

Thus the expression above is equal to

(A · B)i i + (A′ · B)i i + T
( ∑

1≤k,l≤n

Aik R(B)klw(A′il)
)

= (A · B)i i + (A′ · B)i i + T (AR(B)w(A′))i i .

Finally, by inspection, we see that Mn(R)∼= Mn(R). �

Let π be a discrete group with an anti-involution τ : πop
→ π (for example

inversion). If R is a ring with anti-involution, the group-ring R[π ] =
⊕

π R inherits
an anti-involution

w

(∑
g∈π

agg
)
=

∑
g∈π

w(aτg)g.

A choice of section s of the quotient map π→π/(Z/2) determines an isomorphism

(R[π ])Z/2 ∼= RZ/2
[πZ/2

]⊕ R[π free/(Z/2)],

where π free
= π−πZ/2 is the subset of π on which Z/2 acts freely. It is defined on

the RZ/2
[πZ/2

] summand by the inclusion, and on the second summand by sending
cx to cs(x)+w(c)τ (s(x)).

Definition 1.1.7 (group-Mackey functor). Let L be a Hermitian Mackey functor
and π a discrete group with anti-involution τ : πop

→ π . The associated group-
Mackey functor is the Hermitian Mackey functor L[π ] defined by the abelian
groups

L[π ](Z/2)= L(Z/2)[π ], L[π ](∗)= L(∗)[πZ/2
]⊕ L(Z/2)[π free/Z/2].

The anti-involution on L(Z/2)[π ] is the standard anti-involution on the group-ring.
The restriction is induced by the restriction map R : L(∗)→ L(Z/2) and by the
inclusion of the fixed points of π on the first summand, and by the map

R(cx)= cs(x)+w(c)τ (s(x))
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on the second summand. The transfer is defined by

T (ag)=


T (a)g if g ∈ πZ/2,

a[g] if g ∈ π free and g = s[g],
w(a)[g] if g ∈ π free and g = τ s[g].

The multiplication on L[π ](Z/2) is that of the group-ring L(Z/2)[π ]. The action
of a generator ag ∈ L[π ](Z/2) on L[π ](∗) is extended linearly from

ag · bh = (a · b)(ghτ(g))

for bh ∈ L(∗)[πZ/2
], and

ag · cx =
{

acw(a)[gs(x)τ (g)] if gs(x)τ (g)= s[gs(x)τ (g)],
aw(c)w(a)[gs(x)τ (g)] if gs(x)τ (g)= τ s[gs(x)τ (g)],

for cx ∈ L(Z/2)[π free/(Z/2)]. It is then extended to the whole group-ring L[π ](Z/2)
by enforcing condition (iv) of Definition 1.1.1, namely by defining(∑

g∈π

agg
)
· ξ =

∑
g∈π

(agg · ξ)+
∑
g<g′

T (aggR(ξ)w(ag′)τ (g′))

for some choice of total order on the finite subset of π on which ag 6= 0.
When L = A is the Burnside Mackey functor, we call A[π ] the Burnside group-

ring.

Remark 1.1.8. The definition of L[π ] depends on the choice of section up to
isomorphism, and it is therefore not strictly functorial in π . However, it is indepen-
dent of such choice for the Mackey functors that have trivial action w. This is the
case, for example, for the Burnside Mackey functor A. This construction is always
functorial in L .

Lemma 1.1.9. The functor L[π ] is a well-defined Hermitian Mackey functor, and
if R is a ring with anti-involution R[π ] ∼= R[π ].

Proof. We see that L[π ] is a Mackey functor, since

RT (ag)=


R(T (a)g)= (RT (a))g = (a+w(a))g if g ∈ πZ/2,

R(a[g])= ag+w(a)τ (g) if g ∈ π free and g = s[g],
R(w(a))[g] = w(a)τ (g)+ ag if g ∈ π free and g = τ s[g]

is equal to ag +w(a)τ (g). A calculation analogous to the one of Lemma 1.1.6
shows that the action of L[π ](Z/2) on L[π ](∗) is indeed associative (this also
follows from Remark 2.7.1 if L is a Tambara functor, since it can be realized as the
π0 of a commutative Z/2-equivariant ring spectrum). The compatibility between
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the action and the restriction is

R(ag · bh)= R
(
(a · b)(ghτ(g))

)
= R(a · b)(ghτ(g))

= a R(b)w(a)(ghτ(g))= (ag)R(bh)w(a)τ (g)

for the action on the first summand. On the second summand, this is

R(ag · cx)=
{

R(acw(a)[gs(x)τ (g)]) if gs(x)τ (g)= s[gs(x)τ (g)],
R(aw(c)w(a)[gs(x)τ (g)]) if gs(x)τ (g)= τ s[gs(x)τ (g)]

=


acw(a)gs(x)τ (g)
+w(acw(a))τ (gs(x)τ (g)) if gs(x)τ (g)= s[gs(x)τ (g)],

aw(c)w(a)τ (gs(x)τ (g))
+w(aw(c)w(a))gs(x)τ (g) if gs(x)τ (g)= τ s[gs(x)τ (g)],

which is equal to (ag)R(cx)(w(a)τ (g)). Let us verify the compatibility between
the action and the transfer. We have that

ag · T (bh)=



(ag) · (T (b)h)
= T (abw(a))ghτ(g) if h ∈ πZ/2,

(ag) · (b[h])
= abw(a)[ghτ(g)]

if h ∈ π free, h = s[h],
ghτ(g)=s[ghτ(g)],

(ag) · (b[h])
= aw(b)w(a)[ghτ(g)]

if h ∈ π free, h = s[h],
ghτ(g)=τ s[ghτ(g)],

(ag) · (w(b)[h])
= aw(b)w(a)[gτ(h)τ (g)]

if h ∈ π free, h = τ s[h],
gτ(h)τ (g)=s[gτ(h)τ (g)],

(ag) · (w(b)[h])
= aw2(b)w(a)[gτ(h)τ (g)]

if h ∈ π free, h = τ s[h],
gτ(h)τ (g)= τ s[gτ(h)τ (g)]

=


T (abw(a))ghτ(g) if ghτ(g) ∈ πZ/2,

abw(a)[ghτ(g)] if h ∈ π free and ghτ(g)= s[ghτ(g)],
aw(b)w(a)[ghτ(g)] if h ∈ π free and ghτ(g)= τ s[ghτ(g)]

= T (abw(a)ghτ(g)).

The last axiom is satisfied by construction. By inspection we see R[π ] ∼= R[π ]. �

1.2. The Hermitian K-theory of a Hermitian Mackey functor. Let L be a Hermit-
ian Mackey functor. We use the Hermitian Mackey functors of matrices constructed
in Definition 1.1.5 to define a symmetric monoidal category of Hermitian forms
whose group completion is the Hermitian K-theory of L .

Definition 1.2.1. Let L be a Hermitian Mackey functor. An n-dimensional Her-
mitian form on L is an element of Mn(L)(∗) which restricts to an element of
GLn(L(Z/2)) under the restriction map

R : Mn(L)(∗)→ Mn(L)(Z/2)= Mn(L(Z/2)).
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We write GLn(L)(∗) for the set of n-dimensional Hermitian forms. A morphism
B→ B ′ of Hermitian forms is a matrix λ in Mn(L(Z/2)) which satisfies

B = w(λ) · B ′,

where the operation is the action of Mn(L)(Z/2) on Mn(L)(∗). The multiplication
of matrices defines a category of Hermitian forms, which we denote by HermL .

Remark 1.2.2. Let R be a ring with anti-involution. An n-dimensional Hermitian
form on the associated Hermitian Mackey functor R is an invertible matrix with
entries in R which is fixed by the involution w(A)i j = w(A j i ). This is the same
as the datum of an antisymmetric nondegenerate bilinear pairing R⊕n

⊗ R⊕n
→ R,

that is, a Hermitian form on R⊕n . Since the action of Mn(R)(Z/2) on Mn(R)(∗)
is by conjugation, a morphism of Hermitian forms in the sense of Definition 1.2.1
corresponds to the classical notion of isometry.

The block-sum of matrices on objects and morphisms defines the structure of
a permutative category on HermL . The symmetry isomorphism from B ⊕ B ′ to
B ′⊕B, where B is n-dimensional and B ′ is m-dimensional, is given by the standard
permutation matrix of GLn+m(L(Z/2)) with blocks

τn,m :=

(
Omn In

Im Onm

)
.

Here Onm is the null n ×m-matrix, where the diagonal zeros are those of L(∗)
and the off-diagonal ones are in L(Z/2). The matrix In is the n × n-identity
matrix of L(Z/2). The classifying space Bi HermL of the category of invertible
morphisms is therefore an E∞-monoid.

Definition 1.2.3. Let L be a Hermitian Mackey functor. The Hermitian K-theory
space of L is the group completion

GW(L) :=�B(Bi HermL ,⊕).

Segal’s 0-space construction for the symmetric monoidal category (i HermL ,⊕)

provides a spectrum whose infinite loop space is equivalent to GW(L), that we
also denote by GW(L).

Remark 1.2.4. If λ : B→ B ′ is a morphism of Hermitian forms, the form B is
determined by B ′ and the matrix λ. Thus a string of composable morphisms

B0
λ0
−→ B1

λ1
−→ . . .

λn
−→ Bn

is determined by the sequence of matrices λ1, . . . , λn , and by the form Bn . This
gives an isomorphism

Bi HermL ∼=
∐
n≥0

B(∗,GLn(L(Z/2)),GLn(L)(∗)),
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where B
(
∗,GLn(L(Z/2)),GLn(L)(∗)

)
is the Bar construction of the right action

of the group GLn(L(Z/2)) on the set of n-dimensional Hermitian forms w(λ) · B,
given by the Hermitian structure of the Mackey functor Mn(L). The action in-
deed restricts to an action on GLn(L)(∗) because if λ is in GLn(L(Z/2)) and the
restriction of B ∈ Mn(L)(∗) is invertible, then

R(w(λ) · B)= w(λ)R(B)λ

is also invertible. For rings with anti-involution this is [Burghelea and Fiedorowicz
1985, Remark 1.3].

Remark 1.2.5. Since the notion of Hermitian forms on Hermitian Mackey functors
extends that of Hermitian forms on rings with anti-involution, it follows that our
definition of Hermitian K-theory extends the Hermitian K-theory construction of
[Burghelea and Fiedorowicz 1985] of the category of free modules over a discrete
ring with anti-involution.

We now make our Hermitian K-theory construction functorial.

Definition 1.2.6. A morphism of Hermitian Mackey functors is a map of Mackey
functors f : L→ N such that fZ/2 : L(Z/2)→ N (Z/2) is a ring map, and such that
f∗ : L(∗)→ N (∗) is L(Z/2)-equivariant, where N (∗) is an L(Z/2)-set via fZ/2.

Clearly a map of Hermitian Mackey functors f : L→ N induces a symmetric
monoidal functor f∗ : HermL → HermN , by applying fZ/2 and f∗ to the matrices
entrywise. Thus it induces a continuous map f∗ :GW(L)→GW(N ), and a map of
spectra f∗ :GW(L)→GW(N ). We are mostly interested in the following example.

Example 1.2.7. Let Z be the ring of integers with the trivial anti-involution, and Z

the corresponding Hermitian Mackey functor. There is a morphism of Hermitian
Mackey functors

d : A→ Z

from the Burnside Mackey functor. The map dZ/2 is the identity of Z, and the map

d∗ : Z⊕Z→ Z

is the identity on the first summand and multiplication by 2 on the second. In
terms of finite Z/2-sets, it sends a set to its cardinality. This is in fact a morphism
of Tambara functors for the standard multiplicative structures on A and Z, and
since the Hermitian structures are defined via the multiplicative norms it follows
that d is a map of Hermitian Mackey functors.

If moreover π is a discrete group with anti-involution, the map d induces a mor-
phism on the associated group-Mackey functors d : A[π ] → Z[π ]. The underlying
map dZ/2 is again the identity on Z[π ], and the map

d∗ :A[π ](∗)= (Z⊕Z)[π ]⊕Z[π free/(Z/2)]→ (Z[π ])Z/2=Z[π ]⊕Z[π free/(Z/2)]
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is d[π ] on the first summand and the identity on the second summand. This map
therefore induces a map on Hermitian K-theory spectra

d : GW(A[π ])→ GW(Z[π ])= GW(Z[π ]).

1.3. Multiplicative structures. We saw in Example 1.1.4 that Z/2-Tambara func-
tors provide a supply of Hermitian Mackey functors. In this section we show that
the Hermitian K-theory spectrum of a Tambara functor is in fact a ring spectrum.
We generalize this construction when the input is a commutative Z/2-equivariant
ring spectrum in Section 2.5, but the construction for Tambara functors gives us
slightly more functoriality that will be useful in Section 4.

Let L be a Tambara functor. We define a pairing of categories

⊗ : HermL ×HermL → HermL

by means of an extension of the standard tensor product of matrices. On objects,
we define the tensor product of two Hermitian forms B and B ′ on L of dimen-
sions n and m, respectively, to be the nm-dimensional form B⊗ B ′ with diagonal
components

(B⊗ B ′)i i = Bkk · B ′uu, where k =
⌊ i−1

n

⌋
+ 1, u = i − n

⌊ i−1
n

⌋
,

where the multiplication denotes the multiplication in the commutative ring L(∗).
The off-diagonal term 1≤ i < j ≤ nm of B⊗ B ′ is defined by

(B⊗ B ′)i j = R(B)kl · R(B ′)uv, where k =
⌊ i−1

n

⌋
+ 1, l =

⌊ j−1
n

⌋
+ 1,

u = i − n
⌊ i−1

n

⌋
, v = j − n

⌊ j−1
n

⌋
,

and R : Mn(L(Z/2)) → Mn(L)(∗) is the restriction of the Mackey functor of
matrices of Definition 1.1.5. This is the standard formula of the Kronecker product
of matrices, where the diagonal elements are lifted to the fixed-points ring L(∗).

Example 1.3.1. In the case m = n = 2, the product above is given by the matrix

(
B11 B12

B22

)
⊗

(
B ′11 B ′12

B ′22

)
=


B11 B ′11 R(B11)B ′12 B12 R(B ′11) B12 B ′12

B11 B ′22 B12w(B ′12) B12 R(B ′22)

B22 B ′11 R(B22)B ′12
B22 B ′22

 ,
where the products appearing on the diagonal are taken in the ring L(∗), and the
products of the off-diagonal terms are in the underlying ring L(Z/2).

Since the restriction map R : L(∗)→ L(Z/2) is a ring map this operation lifts
the standard Kronecker product of matrices, in the sense that

R(B⊗ B ′)= R(B)⊗ R(B ′)
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as nm × nm-matrices with coefficients in L(Z/2). We define the pairing ⊗ on
morphisms by the standard Kronecker product of matrices with entries in L(Z/2).

Lemma 1.3.2. The pairing ⊗:HermL×HermL→HermL is a well-defined functor.

Proof. A tedious but straightforward verification shows that for every pair of ma-
trices A ∈ Mn(L(Z/2)) and A′ ∈ Mm(L(Z/2)), and forms B ∈ Mn(L)(∗) and
B ′ ∈ Mm(L)(∗) we have that

(A · B)⊗ (A′ · B ′)= (A⊗ A′) · (B⊗ B ′),

where the dot is the action of the Hermitian structure of the Mackey functor Mn(L).
This uses the identities T (a)b = T (a R(b)) and RN (a) = aw(a) of the Tambara
structure.

Thus if λ : B→C and λ′ : B ′→C ′ are morphisms of Hermitian forms, we have
that

w(λ⊗λ′)·(C⊗C ′)= (w(λ)⊗w(λ′))·(C⊗C ′)= (w(λ)·C)⊗(w(λ′)·C ′)= B⊗B ′,

which shows that λ⊗ λ′ : B ⊗ B ′ → C ⊗ C ′ is a well-defined morphism. The
composition of morphisms happens in the matrix rings Mn(L(Z/2)), and therefore
it is respected by ⊗. Similarly, ⊗ preserves the identity morphisms. �

It is moreover immediate to verify that the standard compatibility conditions
between ⊗ and the direct sum are satisfied for forms:

(i) (B⊕ B ′)⊗ B ′′ = (B⊗ B ′′)⊕ (B ′⊗ B ′′),

(ii) B⊗ (B ′⊕ B ′′)= σ(B⊗ B ′)⊕ (B⊗ B ′′)σ−1, where σ is a permutation matrix,

(iii) 0⊗ B = 0 and B⊗ 0= 0,

(iv) 1⊗ B = B⊗1= B, where 1 is the 1-form with entry the unit of the ring L(∗).

By property (ii) the permutation σ defines an isomorphism of forms

B⊗ (B ′⊕ B ′′)∼= (B⊗ B ′)⊕ (B⊗ B ′′),

and one can easily verify that this isomorphism satisfies the higher coherences
required to give the following.

Proposition 1.3.3. The pairing HermL ×HermL → HermL is a pairing of permu-
tative categories, thus inducing a morphism of spectra

⊗ : GW(L)∧GW(L)→ GW(L)

which exhibits GW(L) as a ring spectrum. �

The morphism f : HermL → HermN induced by a morphism of Tambara func-
tors f : L→ N clearly commutes with the monoidal structure ⊗, thus inducing a
morphism of ring spectra f : GW(L)→ GW(N ).
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Remark 1.3.4. Let L and N be Tambara functors, and suppose that f : L→N is a
morphism of Hermitian Mackey functors such that f∗ : L(∗)→ N (∗) is multiplica-
tive, but not necessarily unital. Then the induced functor f : HermL → HermN

preserves the tensor product, but not its unit, and the map f : GW(L)→ GW(N )
is a morphism of nonunital ring spectra. The example we will be interested in is
the morphism T

2 : Z
[ 1

2

]
→ A

[ 1
2

]
, defined by the identity map on underlying rings,

and by half the transfer
(
0, 1

2

)
: Z
[ 1

2

]
→ Z

[1
2

]
⊕Z

[ 1
2

]
on fixed points.

2. Real K-theory

The aim of this section is to construct the free real K-theory Z/2-spectrum of a ring
spectrum with anti-involution and its assembly map, and to relate these objects to
the classical constructions when the input ring spectrum is the Eilenberg–Mac Lane
spectrum of a discrete ring.

2.1. Real semisimplicial spaces and the real and dihedral Bar constructions. In
this section we investigate the Bar construction and the cyclic Bar construction
associated to a monoid with an anti-involution. This is essentially a recollection
of materials from [Loday 1987; Burghelea and Fiedorowicz 1985, §1; Hesselholt
and Madsen 2015], but we need a context without degeneracies, which requires
particular care.

We let 1+ be the subcategory of 1 of all objects and injective morphisms. The
category 1 has an involution that fixes the objects and that sends a morphism
α : [n] → [k] to ᾱ(i) = k − α(n − i). This involution restricts to 1+. We recall
from [Hesselholt and Madsen 2015] that a real simplicial space is a simplicial space
X together with levelwise involutionsw : Xn→ Xn which satisfyw◦α∗= ᾱ∗◦w for
every morphism α ∈1. This can be conveniently reformulated as a Z/2-diagram
X :1op

→ Top, in the sense of [Dotto and Moi 2016, Definition 1.1]. Similarly,
we define a real semisimplicial space to be a Z/2-diagram X :1op

+ → Top.
We are mostly concerned with the following two examples. By a nonunital

topological monoid we mean a possibly nonunital monoid in the monoidal category
of spaces with respect to the cartesian product. Let M be a nonunital topological
monoid which is equipped with an anti-involution, that is, a continuous map of
monoids w : Mop

→ M that satisfies w2
= id.

Example 2.1.1. The real nerve of M is the semisimplicial space NM , the nerve
of M , with n-simplices Nn M = M×n , and with the levelwise involution

(m1, . . . ,mn) 7→ (w(mn), . . . , w(m1)).

The resulting real semisimplicial space is denoted Nσ M ; compare [Burghelea and
Fiedorowicz 1985, Definition 1.12].
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Example 2.1.2. The dihedral nerve of M is the cyclic nerve N cy M , with n-simplices
N cy

n M = M×n+1, and with the involution defined degreewise by

(m0,m1, . . . ,mn) 7→ (w(m0), w(mn), . . . , w(m1)).

The resulting real semisimplicial space is denoted N di M . This involution combined
with the semicyclic structure define a semidihedral object.

Segal’s edgewise subdivision functor sde from [Segal 1973] turns a real semisim-
plicial space X into a semisimplicial Z/2-space. It is defined by precomposing a
real semisimplicial space X :1op

+ → Top with the endofunctor of 1+ that sends
[n] = {0, . . . , n} to [2n+ 1] = [n] q [n]op, and a morphism α : [n] → [k] to αq ᾱ.
Since sde(Xop) = sde X , the levelwise involution on X defines a semisimplicial
involution on sde X . Thus the thick geometric realization ‖ sde X‖ inherits a Z/2-
action.

Definition 2.1.3. The real Bar construction of a nonunital topological monoid with
anti-involution M is the Z/2-space Bσ M defined as the geometric realization of
the semisimplicial space

Bσ M := ‖ sde Nσ M‖

with the involution induced by the semisimplicial involution of sde Nσ M . Simi-
larly, the dihedral Bar construction of M is the Z/2-space Bdi M defined as the
geometric realization of the semisimplicial space

Bdi M := ‖ sde N di M‖.

We note that in contrast to the usual cyclic Bar construction |N cy M |, which is
defined using the thin geometric realization, Bdi M does not have a circle action,
nor does the unsubdivided ‖N di M‖.

Example 2.1.4. Let π be a discrete group with the anti-involution defined by inver-
sion w= ( – )−1

: πop
→ π . The Z/2-space Bσπ is a classifying space for principal

π-bundles of Z/2-spaces. A model for such a universal bundle is constructed in
[May 1990] as the map

Map(EZ/2, Eπ)→Map(EZ/2, Bπ),

where Eπ denotes the free and contractible π -space. The base space is equivalent
to the nerve of the functor category Cat(EZ/2, π) where EZ/2 is the translation
category of the left Z/2-set Z/2 (whose nerve is the classical model for EZ/2);
see [Guillou et al. 2017]. It is easy to see that the nerve of Cat(EZ/2, π) and the
edgewise subdivision of Nσπ are equivariantly isomorphic.

Remark 2.1.5. In contrast with the simplicial case, the geometric realization of
a semisimplicial space is in general not equivalent to the geometric realization of
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its subdivision. However, this is the case if the semisimplicial space X admits a
(levelwise) weak equivalence X ∼

−→ Y , where Y is a semisimplicial space which
is the restriction of a proper simplicial space. This is because of the commutative
diagram

‖ sde X‖

��

∼
// ‖ sde Y‖

��

∼
// | sde Y |

∼=
��

‖X‖
∼

// ‖Y‖
∼

// |Y |

where | – | denotes the thin geometric realization. For the nerve and the cyclic nerve
this condition holds if the monoid M is weakly equivalent to a unital monoid. In
the examples of interest in this paper we are always in this situation. Thus the
underlying nonequivariant homotopy types of Bσ M and Bdi M are those of the
Bar construction BM and the cyclic Bar construction Bcy M , respectively.

If X is a real semisimplicial space, ‖X‖ also inherits an involution, by the for-
mula

[x ∈ Xn, (t0, . . . , tn) ∈1n
] 7→ [w(x) ∈ Xn, (tn, . . . , t0) ∈1n

].

The map γ : ‖ sde X‖→ ‖X‖ that sends

[x, (t0, . . . , tn)] 7→
[
x, 1

2(t0, . . . , tn, tn, . . . , t0)
]

is equivariant. If X admits a levelwise equivariant equivalence X ∼
−→ Y , where Y is

the restriction of a proper real simplicial space, then γ is an equivariant equivalence.
This is again because of the above diagram, since in the presence of degeneracies
the map γ descends to an equivariant homeomorphism | sde Y | ∼= |Y |. In general
these two actions do not agree, and we choose to work with the subdivided version
because it gives us control over the fixed points. We give a weaker condition that
guarantees that these actions are equivalent for nerves of monoids in Lemma 2.1.11.

We now proceed by analyzing the fixed points of Bσ M and Bdi M . The fixed
points of Bσ M are modeled not by a monoid, but by a category. Let us define a
topological category Sym M (without identities) as follows. Its space of objects is
the fixed-points space MZ/2, and the morphisms m→ n consist of the subspace
of elements l ∈ M with m = w(l)nl. Composition is defined by l ◦ k = l · k. The
following is analogous to [Burghelea and Fiedorowicz 1985, Proposition 1.13].

Proposition 2.1.6. Let M be a nonunital topological monoid with anti-involution.
The Z/2-fixed points of Bσ M are naturally homeomorphic to the classifying space
of Sym M , whose nerve is the Bar construction

N Sym M ∼= N (M;MZ/2)

of the right action of M on MZ/2 given by n · l = w(l)nl.
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Proof. The geometric realization of semisimplicial sets commutes with fixed points
of finite groups. This can be easily proved by induction on the skeleton filtration,
since fixed points commute with pushouts along closed inclusions and with filtered
colimits along closed inclusions. Thus the fixed-points space (Bσ M)Z/2 is home-
omorphic to the geometric realization of the semisimplicial space (sde Nσ M)Z/2.

There is an equivariant isomorphism sde NM ∼= N sde M of semisimplicial Z/2-
spaces, where sde M is the edgewise subdivision of the category M (also known
as the twisted arrow category). This is the topological category with Z/2-action
whose space of objects is M , and where the space of morphisms m → n is the
subspace of M ×M of pairs (l, k) such that n = lmk. Composition is defined by

(l, k) ◦ (l ′, k ′)= (l ′l, kk ′).

The involution on sde M sends an object m to w(m), and a morphism (l, k) to
(w(k), w(l)). Since the nerve functor commute with fixed points, the fixed points
of N sde M are isomorphic to the nerve of the fixed-points category of sde M . Its ob-
jects are the fixed objects MZ/2, and its morphisms the pairs (l, k) where k = w(l).
This is isomorphic to the category Sym M . �

A similar argument shows that the fixed points of the subdivided dihedral nerve
of M are isomorphic to the two-sided Bar construction

(N di
2n+1 M)Z/2 ∼= Nn(MZ/2

;M;MZ/2)

of the left action of M on MZ/2 defined by m · n := mnw(m) and the right action
n ·m := w(m)nm. Thus the semisimplicial space (sde N di M)Z/2 is isomorphic to
the nerve of a category Symcy M . Its objects are the pairs (n0, n1) of fixed points
of MZ/2. A morphism m : (n0, n1)→ (n′0, n′1) is an element m ∈ M such that
n′0 = m · n0 and n1 = n′1 ·m. We then obtain the following.

Proposition 2.1.7. Let M be a nonunital topological monoid with anti-involution.
The Z/2-fixed points of Bdi M are naturally homeomorphic to the classifying space
of Symcy M , whose nerve is the two-sided Bar construction

N Symcy M ∼= N (MZ/2
;M;MZ/2). �

We are now able to determine the homotopy invariance property of Bσ and Bdi.
Here and throughout the paper, we call a Z/2-equivariant map of Z/2-spaces
f : X → Y a weak equivalence if both f and its restriction on fixed points
f : XZ/2

→ Y Z/2 induce isomorphisms on all homotopy groups.

Lemma 2.1.8. Let f : M→ M ′ be a map of nonunital topological monoids with
anti-involutions, and suppose that f is a weak equivalence of Z/2-spaces. Then

Bσ f : Bσ M→ Bσ M ′ and Bdi f : Bdi M→ Bdi M ′

are Z/2-equivalences of spaces.
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Proof. Nonequivariantly B f is an equivalence, since realizations of semisimplicial
spaces preserve levelwise equivalences. Since realizations commute with fixed
points it remains to show that (sde NM)Z/2→ (sde NM ′)Z/2 is a levelwise equiva-
lence. By Proposition 2.1.6 this is the map

f ×n
× f Z/2

: M×n
×MZ/2

→ (M ′)×n
× (M ′)Z/2,

which is an equivalence by assumption. A similar argument applies to Bdi f . �

We further analyze the functors Bσ and Bdi. The following property is crucial
in the definition of the L-theoretic assembly map of Section 2.7.

Lemma 2.1.9. Let π be a well-pointed topological group with the anti-involution
w = ( – )−1 given by inversion. There is an equivariant map λ : Bπ→ Bσπ , where
Bπ has the trivial involution, which is nonequivariantly homotopic to the identity.
On fixed points, the composite

Bπ λ
−→ (Bσπ)Z/2 ι

−→ Bπ

with the fixed points inclusion ι : (Bσπ)Z/2→ Bπ is homotopic to the identity. This
exhibits Bπ as a retract of (Bσπ)Z/2. If moreover π is discrete, there is a further
splitting

(Bσπ)Z/2 '
∐

{[g] | g2=1}

B Zπ 〈g〉,

where the coproduct runs through the conjugacy classes of the elements of π of
order 2, and Zπ 〈g〉 is the centralizer of g in π . Then λ corresponds to the inclusion
of the summand g = 1.

Proof. By Remark 2.1.5 we may work with the thin realization of the nerve of π .
We define a map λ : Npπ→ (sde Nσπ)p = Nσ

2p+1π degreewise by

λ(g1, . . . , gp)= (g1, . . . , gp, 1, g−1
p , . . . , g−1

1 ).

This map is clearly simplicial and equivariant, and it induces an equivariant map
λ : |Nπ | → | sde Nσπ | ∼= |Nσπ | on realizations. This map sends

[(g1, . . . , gp); (t0, . . . , tp)]

7→
[
(g1, . . . , gp, 1, g−1

p , . . . , g−1
1 ); 1

2(t0, . . . , tp, tp, . . . , t0)
]
.

There is a homotopy 1
2(t, t) ' (t, 0) that keeps the sum of the two components

constant. This induces a homotopy between λ and

[(g1, . . . , gp, 1, g−1
p , . . . , g−1

1 ); (t0, . . . , tp, 0, . . . , 0)]
= [(g1, . . . , gp); (t0, . . . , tp)] = id .

The same homotopy defines a homotopy between ι ◦ λ and the identity.
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Now let us assume that π is discrete. The fixed-points space (Bσπ)Z/2 is the
classifying space of the category Symπ of Proposition 2.1.6. The objects of this
category are the elements of π of order two. A morphism g→ g′ is an element h
of π such that g = h−1g′h. Each component of Symπ is then represented by the
conjugacy class of an element g of order two, and the automorphism group of g is
precisely Zπ 〈g〉. �

In the same way as the cyclic nerve of a group-like monoid G is a model for
the free loop-space, the dihedral nerve is a Z/2-equivariant model for the free
loop space 3σ BσG, where 3σ =Map(Sσ , – ) is the free loop space of the sign-
representation sphere Sσ . Establishing this equivalence becomes delicate when G
does not have a strict unit. Classically the map BcyG→3BG is constructed from
the S1-action on BcyG induced by the cyclic structure, but this S1-action is not
well-defined on the thick realization. Let M be a nonunital topological monoid
with anti-involution, and let M+ denote M with a formally adjoined unit which is
fixed by the anti-involution. Let us consider the diagram

Bdi M = ‖ sde N di M‖ // ‖ sde N di(M+)‖
∼
// | sde N di(M+)|

∼=
// |N di(M+)|

��

3σ Bσ M =3σ‖ sde Nσ M‖ // 3σ‖Nσ M‖ 3σ |Nσ (M+)|
∼=
oo

The first map is induced by the inclusion M → M+. The second map is the
canonical map to the thin geometric realization, which is an equivalence since
the inclusion of the disjoint unit is a cofibration. The third map is the canonical
homeomorphism γ from Remark 2.1.5. The vertical map is adjoint to the compos-
ite Sσ × |N di(M+)| → |N di(M+)| → |Nσ (M+)| of the circle action induced by
the cyclic structure and the canonical projection. The next map is the isomorphism
between N (M+) and the free simplicial space E(NM) on the semisimplicial space
NM , followed by the isomorphism |E(NM)| ∼= ‖NM‖; see [Ebert and Randal-
Williams 2017, Lemma 1.8]. The last map is again the map γ from Remark 2.1.5.

Definition 2.1.10. We say that a nonunital topological monoid with anti-involution
M is quasiunital if

(i) there is a unital well-pointed topological monoid A and a map of nonunital
monoids f : M ∼

−→ A which is an equivalence on underlying spaces,

(ii) there is a right A-space B and a map of M-spaces φ : MZ/2 ∼
−→ B which is an

equivalence on underlying spaces, where M acts on B via f ,

(iii) there is a point e ∈ B such that e · f (m)= φ(w(m)m) for every m ∈ M , and
B is well-pointed at e.

We say that M is group-like if π0 M is a group.
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When M is unital, one can of course set f and φ to be the identity map. The
element e plays the role of the unit as an element in the fixed-points space MZ/2.
The next two results play a role in the construction of the trace of Section 3.2.

Lemma 2.1.11. Let M be a nonunital topological monoid with anti-involution
which is quasiunital. Then the map

γ : Bσ M = ‖ sde Nσ M‖ ∼−→ ‖Nσ M‖

is a Z/2-equivariant weak equivalence.

Proof. Nonequivariantly, γ is an equivalence by Remark 2.1.5, since NM ∼
−→ NA

is an equivalence and NA is a proper simplicial space. In order to show that γ is
an equivalence on fixed points, we factor it as

‖ sde Nσ M‖ ∼= |E(sde Nσ M)| → | sde(Nσ M+)|
γ
∼= |Nσ M+| ∼= ‖Nσ M‖,

where the arrow is induced by the inclusion M→M+. We claim that this map is an
equivalence on fixed points. By Proposition 2.1.6 this is the geometric realization
of the map of simplicial spaces

|E(sd Nσ M)|Z/2 ∼= |N (Sym M)+| → |N Sym(M+)| ∼= | sde(Nσ M+)|Z/2,

where (Sym M)+ is the category Sym M with freely adjoined identities. We ob-
serve that the category Sym(M+) also has freely added identities. Thus, denot-
ing by Sym+ M the category Sym(M+) with the identities removed, we see that
Sym+ M is a well-defined category and that Sym(M+)= (Sym+ M)+. Moreover,
Sym M is the full subcategory of Sym+ M on the objects in

MZ/2
⊂ MZ/2

q 1= Ob Sym+ M.

Therefore we need to show that the map

‖N (Sym M)‖ ∼= |N (Sym M)+| → |N Sym(M+)| ∼= ‖N (Sym+ M)‖

induced by the inclusion of nonunital topological categories ι : Sym M→ Sym+ M
is a weak equivalence. The nerve of Sym+ M is the Bar construction of the right
action of M on the fixed-points space with a disjoint basepoint MZ/2

+ , where M
acts on MZ/2 as usual by n · l =w(l)nl, and on the added basepoint by +· l =w(l)l.
The nerve of the map ι identifies under the isomorphism of Proposition 2.1.6 with
the canonical map

N (M;MZ/2)→ N (M;MZ/2
+ )

induced by the M-equivariant inclusion MZ/2
→ MZ/2

+ . Since M is quasiunital,
the realization of this map is weakly equivalent to the thick realization of the map
ι : N (A; B)→ N (A; B+) induced by the inclusion B→ B+, where A acts on +
by + · a = e · a. The last condition of Definition 2.1.10 guarantees that the map
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( f, φ) : N (M;MZ/2
+ )→ N (A; B+) is compatible with the last face map. Thus it is

sufficient to show that ι : N (A; B)→ N (A; B+) is an equivalence. Since A is unital
and well-pointed these semisimplicial spaces admit degeneracies, and the thick
realization of this map is weakly equivalent to its thin realization. Therefore we
can exhibit a simplicial retraction r : N (A; B+)→ N (A; B) for ι, and a simplicial
homotopy between ι ◦ r and the identity. The map r is induced by the map of
A-spaces B+→ B which is the identity on B and that sends + to e. The homotopy
is induced by the morphism (e, e) : e→+ in the topological category Sym(B+)
whose nerve is N (A; B+). �

Lemma 2.1.12. Let M be a nonunital topological monoid with anti-involution
which is quasiunital and group-like. Then the map

Bdi M = ‖ sde N di M‖ ∼−→3σ‖Nσ M‖

is a Z/2-equivariant weak equivalence.

Proof. This map is the middle vertical map of a commutative diagram

M //

∼

��

‖ sde N di M‖
p
//

��

‖ sde Nσ M‖

∼γ
��

�σ‖Nσ M‖ // 3σ‖Nσ M‖ ev0
// ‖Nσ M‖

where ev0 is the evaluation map, which is a fibration, and p projects off the first
coordinate in each simplicial level. The left vertical map is an equivalence by an
equivariant version of the group-completion theorem of [Moi 2013]; see also [Dotto
2012, §6.2; Stiennon 2013, Theorem 4.0.5]. We claim that when M is group-like,
the top row is a fiber sequence of Z/2-spaces, and this will end the proof.

We start by observing that since M is quasiunital and group-like, the maps

( – ) ·m,m · ( – ) : M→ M and w(m)( – )m : MZ/2
→ MZ/2

are weak equivalences. Indeed if we let m−1 denote an element of M whose class
in π0 M is an inverse for the class of m, we see that the composites of m · ( – ) with
m−1
· ( – ) : M→ M are homotopic to multiplication with an element 1 ∈ M whose

component is the unit of π0 M . Since M is quasiunital, there is a square

M ∼
//

1·( – )
��

A
1·( – )=id
��

M
∼
// A

that commutes up to homotopy. Thus 1 · ( – ) is a weak equivalence, and so is
m ·( – ). A similar argument shows that ( – ) ·m is a weak equivalence. Similarly, the
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compositions of w(m)( – )m with w(m−1)( – )m−1
: MZ/2

→ MZ/2 are homotopic
to w(1)( – )1, and this is an equivalence since it compares to the action of the unit
of A under the equivalence MZ/2

→ B.
In order to show that M is the homotopy fiber of p : ‖ sde N di M‖→‖ sde Nσ M‖

we use a criterion of Segal, as stated in [Ebert and Randal-Williams 2017, Theo-
rem 2.12]. The diagrams of Z/2-spaces

M ×M×2n+1

p
��

dn
// M ×M×2n−1

p
��

M×2n+1
dn

// M×2n−1

M ×M×3

p
��

d0
// M ×M

p
��

M×3
d0

// M

are homotopy cartesian. The left-hand square is a strict pull-back and the map
p is a fibration. For the right-hand square, we see that the strict pull-back P is
isomorphic to M × M×3, but under this isomorphism the map from the top left
corner

M ×M×3
→ M ×M×3 ∼= P

sends (m0,m1,m2,m3) to (m3m0m1,m1,m2,m3). Since left and right multiplica-
tions in M are weak equivalences, this map is a nonequivariant equivalence. On
fixed points, this is isomorphic to the map

MZ/2
×M ×MZ/2

→ MZ/2
×M ×MZ/2

that sends (m0,m1,m2) to (w(m1)m0m1,m1,m2), and this is an equivalence since
by the argument above, w(m1)( – )m1 : MZ/2

→ MZ/2 is an equivalence. It follows
by [Ebert and Randal-Williams 2017, Lemma 2.11, Theorem 2.12] that the square

M ×M = (sde N di M)0
p
��

// ‖ sde N di M‖
p
��

M = (sde Nσ M)0 // ‖ sde Nσ M‖

is homotopy cartesian. Therefore, the homotopy fibers of the vertical maps are
equivalent. �

The constructions Nσ and N di extend to categories with duality. We use this
generalization occasionally, mostly in Section 2.4.

Remark 2.1.13. We recall that a category with strict duality is a category (possibly
without identities) C equipped with a functor D : C op

→ C such that D2
= id. If

C has one object this is the same as a monoid with anti-involution. There is a
levelwise involution on the nerve NC which is defined by(

c0
f1
−→ c1→ · · ·

fn
−→ cn

)
7→
(
Dcn

D fn
−−→ Dcn−1→ · · ·

D f1
−−→ c0

)
.
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We define BσC := ‖ sde NσC ‖. There is a category Sym C whose objects are the
morphisms f : c→ Dc such that D f = f , and the morphisms f → f ′ are the
maps γ : c→ c′ such that f = D(γ ) f ′γ . The considerations of Proposition 2.1.6
extend to give an isomorphism

sde NσC ∼= N Sym C .

Similarly, there is a construction of the dihedral nerve of a category with strict du-
ality. An n-simplex of the cyclic nerve N cyC is a string of composable morphisms

cn
f0
−→ c0

f1
−→ c1

f2
−→ c2→ · · · → cn−1

fn
−→ cn,

and the levelwise involution of the dihedral nerve sends this string to

Dc0
D f0
−−→ Dcn

D fn
−−→ Dcn−1

D fn−1
−−−→ Dcn−2→ · · · → Dc1

D f1
−−→ Dc0.

We define BdiC := ‖ sde N diC ‖.

2.2. Ring spectra with anti-involution and their Hermitian forms. Let A be an
orthogonal ring spectrum, that is, a (strictly associative) monoid in the symmet-
ric monoidal category of orthogonal spectra with the smash product. An anti-
involution on A is a map of ring spectra w : Aop

→ A such that w ◦w = id. Here
Aop is the opposite ring spectrum, with underlying spectrum A and multiplication

A∧ A τ
−→ A∧ A µ

−→ A,

where τ is the symmetry isomorphism, and µ is the multiplication of A. Since the
map w is a strict involution, it gives the underlying orthogonal spectrum of A the
structure of an orthogonal Z/2-spectrum; see [Schwede 2013]. We recall that the
(genuine, or derived) fixed-points spectrum AZ/2 is the spectrum defined by the
sequence of spaces

(AZ/2)n := (�
nσ Anρ)

Z/2,

where σ and ρ are the sign and the regular representation of Z/2, respectively, and
for every d-dimensional real Z/2-representation V the pointed Z/2-space AV is the
space Ad where g ∈Z/2 acts by (g, σV (g))∈Z/2×O(d), where σV :Z/2→ O(d)
is the group homomorphism defined by the representation V . This is an invariant
for the weak equivalences on orthogonal Z/2-spectra defined by a complete Z/2-
universe, and the constructions of our paper depend on its homotopy type.

We remark that in general AZ/2 is no longer a ring spectrum, except in the case
when A is commutative (this is completely analogous to the case of discrete rings).
In this section we explain how such an object generalizes the Hermitian Mackey
functors of Section 1.1 (see Proposition 2.2.6), and we define a spectral version of
the category of Hermitian forms over A (Definition 2.2.4).
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Example 2.2.1. The examples of ring spectra with anti-involution we are con-
cerned with are the following.

(i) Let R be a simplicial ring with anti-involution. The usual Eilenberg–Mac Lane
spectrum HR, defined as the sequence of Dold–Thom constructions

(HR)n = R(Sn)=

{ k∑
i=1

ri xi

∣∣∣ ri ∈ R, xi ∈ Sn
}/

0x ∼ r∗

with the involution induced by the functoriality in R, is a ring spectrum with
anti-involution.

(ii) The equivariant sphere spectrum S, defined by the sequence of trivial Z/2-
spaces Sn and its usual multiplication, is a ring spectrum with anti-involution.
More generally any commutative Z/2-equivariant ring spectrum defines a ring
spectrum with anti-involution.

(iii) If G is a topological monoid with an anti-involution ι : Gop
→ G (e.g., a

group with inversion), the suspension spectrum S[G] := S ∧ G+ is a ring
spectrum with anti-involution. The multiplication is the usual one of the spher-
ical group-ring, induced by the monoid structure of G, and the involution is
id∧ι : (S[G])op

= S[Gop
] → S[G].

We let I be Bökstedt’s category of finite sets and injective maps. Its objects
are the natural numbers (zero included), and a morphism i → j is an injective
map {1, . . . , i} → {1, . . . , j}. We recall that the spectrum A induces a diagram
�•A : I → Top (see, e.g., [Schlichtkrull 2004, §2.3]) by sending an integer i to the
i-fold loop space �i A. We denote its homotopy colimit by

�∞I A := hocolim
I

�•A.

On the one hand the multiplication of A endows �∞I A with the structure of a
topological monoid; see [Schlichtkrull 2004, §2.2, 2.3]. On the other hand, the
category I has an involution which is trivial on objects and that sends a morphism
α : i→ j to

ᾱ(s)= j + 1−α(i + 1− s).

The diagram �•A has a Z/2-structure in the sense of [Dotto and Moi 2016, Defi-
nition 1.1], defined by the maps

�i A �iw
// �i A

�iχi
// �i A

( – )◦χi
// �i A.

Here χi ∈6i is the permutation that reverses the order {1, . . . , i}, applied both to
the sphere Si and through the orthogonal spectrum structure of A. This induces
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a Z/2-action on the space �∞I A. These two structures make �∞I A into a topo-
logical monoid with anti-involution. In case A is nonunital, �∞I A is a nonunital
topological monoid with anti-involution. We refer to [Dotto et al. 2017, §1.2] for
the details.

Remark 2.2.2. Throughout the paper, we make extensive use of the fact that, as a
Z/2-space, �∞I A is equivalent to the genuine equivariant infinite loop space of A.
There is a comparison map

ι∗ : hocolim
n∈N

�nρ+1 Anρ+1→�∞I A,

where ρ is the regular representation of Z/2 and AV = Iso(Rd , V )+ ∧O(d) Ad is
the value of A at a d-dimensional Z/2-representation V . This map is induced by
the inclusion ι : N→ I that sends n to 2n+ 1 and the unique morphism n ≤ m to
the equivariant injection

ι(n ≤ m)(k) := k+m− n.

The failure of ι∗ to be a nonequivariant equivalence is measured by the action of
the monoid of self-injections of N, and this action is homotopically trivial since A
is an orthogonal spectrum; see [Sagave and Schlichtkrull 2013, §2.5]. A similar
comparison exists equivariantly, and the comparison map is an equivariant equiva-
lence since A is an orthogonal Z/2-spectrum. The details can be found in [Dotto
et al. 2017, §1.2].

Since �∞I A is a topological monoid with anti-involution, there is an action

�∞I A× (�∞I A)Z/2→ (�∞I A)Z/2

defined by a · b := abw(a), where w denotes the anti-involution of �∞I A. We use
this action to define a category of Hermitian forms over A in a way analogous to
the category of Hermitian forms over a Hermitian Mackey functor of Section 1.2.

Definition 2.2.3. We let M∨n (A) be the (nonunital) ring spectrum

M∨n (A)=
∨
n×n

A,

where the multiplication is defined by the maps M∨n (Ai )∧M∨n (A j )→ M∨n (Ai+ j )

that send ((k, l), a)∧ ((k ′, l ′), a′), where (k, l), (k ′, l ′) ∈ n× n indicate the wedge
component, to ((k, l ′), a · a′) if l = k ′, and to the basepoint otherwise.

The anti-involution w : Aop
→ A induces an anti-involution on M∨n (A), defined

as the composite

M∨n (A)
op
=

(∨
n×n

A
)op

τ
//
∨
n×n

Aop ∨w //
∨
n×n

A = M∨n (A),
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where τ is the automorphism of n× n which swaps the product factors. We now
let M̂∨n (A) be the nonunital topological monoid with anti-involution

M̂∨n (A) :=�
∞

I M∨n (A).

We let ĜL∨n (A) be the subspace of invertible components, defined as the pull-back
of nonunital topological monoids with anti-involution

ĜL∨n (A) //

��

M̂∨n (A)

��

GLn(π0 A) // Mn(π0 A)

Here π0 A is the ring of components of A with the induced anti-involution, Mn(π0 A)
is its ring of (n× n)-matrices, and GLn(π0 A) is the subgroup of invertible matri-
ces. The involutions on Mn(π0 A) and GLn(π0 A) are by entrywise involution and
transposition. The right vertical map is the composite

�∞I M∨n (A)
∼
−→�∞I

(∏
n×n

A
)
� π0�

∞

I

(∏
n×n

A
)
∼= Mn(π0 A),

which is both equivariant and multiplicative.

Definition 2.2.4. An n-dimensional Hermitian form on A is an element of the fixed-
points space ĜL∨n(A)

Z/2. These form a category Sym ĜL∨n(A) as in Proposition 2.1.6,
and we define

HermA :=
∐
n≥0

Sym ĜL∨n (A).

Remark 2.2.5. The anti-involution of A induces a functor D :M op
A →MA on the

category MA of right A-module spectra. It is defined by the spectrum of module
maps

D(P)= HomA(P, Aw),

where Aw is the spectrum A equipped with the right A-module structure

A∧ A id∧w
−−−→ A∧ Aop τ

−→ Aop
∧ A µ
−→ A,

where τ is the symmetry isomorphism and µ is the multiplication of A. The ring
spectrum of (n×n)-matrices on A is usually defined as the endomorphism spectrum
End

(∨
n A
)

of the sum of n copies of A. Since HomA(A, P) is canonically isomor-
phic to P , there is an isomorphism of ring spectra End

(∨
n A
)
∼=
∏

n
∨

n A. The
module

∨
n A is homotopically self-dual, as the inclusion of wedges into products∨

n

A ∼
−→

∏
n

A ∼= D
(∨

n

A
)
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is a natural equivalence. The functor D then defines a homotopy coherent involu-
tion on End

(∨
n A
)
, and one could define Hermitian forms as the homotopy fixed

points of this action; this is essentially the approach of [Spitzweck 2016].
The point of our construction is to refine this homotopy coherent action to a

genuine equivariant homotopy type that incorporates the fixed-points spectrum of
A which, morally speaking, determines the notion of “symmetry” for the associated
Hermitian forms. The inclusion M∨n (A)→ End

(∨
n A
)

is a weak equivalence, it
is coherently equivariant, and M∨n (A) has a strict involution which defines such a
genuine homotopy type. The price we pay is that M∨n (A) is nonunital and it has
only partially defined block sums (see Section 2.3), but it gives rise to small and
manageable models for the real K-theory spectrum. A different such model for the
matrix ring has been provided in [Kro 2005].

Since �∞I A is a monoid with anti-involution, there is an action

�∞I A× (�∞I A)Z/2→ (�∞I A)Z/2

defined by a · x := axw(a). On components this induces an action of the multiplica-
tive monoid π0 A ∼= π0�

∞

I A on the group of components π0 AZ/2 ∼= π0(�
∞

I A)Z/2

of the fixed-points spectrum. We recall that for every Z/2-spectrum A, the abelian
groups π0 A and π0 AZ/2 form a Z/2-Mackey functor π0 A.

Proposition 2.2.6. Let A be a ring spectrum with anti-involution. The action
of �∞I A on (�∞I A)Z/2 defines the structure of a Hermitian Mackey functor on
the Z/2-Mackey functor π0 A. Moreover, there is an isomorphism of Hermitian
Mackey functors

π0 M∨n A ∼= Mn(π0 A),

where Mn(π0 A) is the Mackey functor of matrices of Definition 1.1.5.

Proof. The multiplication of π0 A clearly anticommutes with the involution, since
it does so for �∞I A. Similarly, the relation between the restriction and the action is
satisfied, because the restriction R : π0 AZ/2

→ π0 A corresponds to the fixed-points
inclusion of �∞I A. In order to verify the other conditions we describe the action
of π0 A.

Let us represent an element of π0 A by a map f : Sn
→ An , and an element of

π0 AZ/2 by an equivariant map x : Smρ
→ Amρ . We recall that there is a canonical

isomorphism Snρ ∼= Sn
∧ Sn , where the action on Sn

∧ Sn swaps the two smash
factors. The action is then the homotopy class of the map

f ·x : S(n+m)ρ ∼= Sn
∧ Smρ

∧ Sn f∧x∧(w◦ f )
−−−−−−−→ An∧ Amρ∧ An

µ
−→ An+mρ+n ∼= A(n+m)ρ,

where the involution on Sn
∧ Smρ

∧ Sn swaps the two Sn smash factors and acts
on Smρ , and on An∧ Amρ∧ An it acts componentwise and swaps the two An factors.
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The last map is the multiplication of A, and it is equivariant since the diagram

An ∧ Amρ ∧ An

µ
��

τ3
// An ∧ Amρ ∧ An

w∧w∧w
// An ∧ Amρ ∧ An

µ
��

An+mρ+n w
// An+mρ+n χn,n

// An+mρ+n

commutes by the definition of a ring spectrum with anti-involution, where τ3 ∈63

reverses the order and χn,n ∈6n+2m+n is the permutation that swaps the first and
last blocks of size n. The bottom map is by definition the action of A(n+m)ρ .

The transfer of the class of a map g : S2m
→ A2m is defined as the class of

the map
T (g) : Smρ p

−→ S2m
∨ S2m g∨(w◦g)

−−−−−→ Amρ ∨ Amρ
∇
−→ Amρ,

where the first map collapses the fixed points Sm
⊂ Smρ , the last map is the fold,

and the involutions act on, and permute, the wedge summands. The relations

f · T (g)= T ( f gw( f )) and ( f + f ′) · x = f · x + f ′ · x + T ( f R(x)w( f ′))

for f, f ′, g in π0 A and x in π0 AZ/2 are now an immediate consequence of the
naturality of the fold map, and of the distributivity of the smash product of pointed
spaces over the wedge sum.

Let us now consider the Mackey functor π0 M∨n (A). Even though M∨n (A) is
not unital, the map M∨n (A) →

∏
n
∨

n A is an equivalence, and consequently
π0 M∨n (A)∼= Mn(π0 A) is a unital ring. Moreover, the inclusion of indexed wedges
into indexed products gives an equivalence

(�∞I M∨n (A))
Z/2

∼
−→

(
�∞I

(∏
n×n

A
))Z/2

∼=

(∏
n×n

�∞I A
)Z/2
∼=

(∏
n

(�∞I A)Z/2
)
×

∏
1≤i< j≤n

(�∞I A).

Under this equivalence the action of �∞I M∨n (A) on (�∞I M∨n (A))
Z/2 corresponds

to the action of �∞I M∨n (A) on
(
�∞I

∏
n×n A

)Z/2 given by abw(a), where the mul-
tiplications are the infinite loop spaces of the left and right actions

M∨n (A)∧
(∏

n×n

A
)
→

∏
n×n

A,
(∏

n×n

A
)
∧M∨n (A)→

∏
n×n

A

defined by the standard matrix multiplication rules. This agrees with the action of
Definition 1.1.5. �

2.3. The real algebraic K-theory Z/2-space of a ring spectrum with anti-involu-
tion. The goal of this section is to define a Z/2-action on the K-theory space of
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a ring spectrum A with anti-involution w : Aop
→ A. We define this action by

adapting the group-completion construction of the free K-theory space

K (A)=�B
∐

n

BĜLn(A),

where
∐

n BĜLn(A) is group-completed with respect to block-sum, to the model
for the equivariant matrix ring constructed in the previous section.

We recall from Definition 2.1.3 that the classifying space of a nonunital monoid
with anti-involution M inherits a natural Z/2-action, and that we denote the corre-
sponding Z/2-space by Bσ M . Thus the anti-involution on ĜL∨n (A) gives rise to a
Z/2-space Bσ ĜL∨n (A). The space

∐
n Bσ ĜL∨n (A) does not have a strict monoid

structure, since the standard block-sum of matrices does not restrict to the matrix
rings M∨n (A). We can however define a Bar construction using a technique similar
to Segal’s group completion of partial monoids. The block-sum operation on the
ring spectra M∨n (A) is a collection of maps

⊕ : M∨n (A)∨M∨k (A)→ M∨n+k(A)

induced by the inclusions n→ n+k and k→ n+k. We observe that this map com-
mutes with the anti-involutions. There is a simplicial Z/2-space with p-simplices∐

n1,...,n p

Bσ�∞I (M
∨

n1
(A)∨ · · · ∨M∨n p

(A)).

The face maps are induced by the block-sum maps, and the degeneracies are the
summand inclusions. This results in a well-defined simplicial object since Bσ�∞I
is functorial with respect to maps of ring spectra with anti-involution. This simpli-
cial structure restricts to the Z/2-spaces∐

n1,...,n p

Bσ ĜL∨n1,...,n p
(A),

where ĜL∨n1,...,n p
(A) is defined as the pull-back of nonunital monoids with anti-

involution

ĜL∨n1,...,n p
(A) //

��

�∞I (M
∨
n1
(A)∨ · · · ∨M∨n p

(A))

��

(GLn1(π0 A)× · · ·×GLn p(π0 A)) �
�

// (Mn1(π0 A)× · · ·×Mn p(π0 A))

Definition 2.3.1. The free real K-theory space of a ring spectrum with anti-involu-
tion A is the Z/2-space defined as the loop space of the thick geometric realization

KR(A) :=�
∥∥∥∥ ∐

n1,...,n•

Bσ ĜL∨n1,...,n•(A)
∥∥∥∥.
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We observe that all of our constructions are homotopy invariant, and therefore
the functor KR sends maps of ring spectra with anti-involution which are stable
equivalences of underlying Z/2-spectra to equivalences of Z/2-spaces. We con-
clude this section by verifying that the underlying space of KR(A) has the right
homotopy type.

Proposition 2.3.2. Let A be a ring spectrum with anti-involution, and let us denote
by A|1 the underlying ring spectrum of A and by KR(A)|1 the underlying space
of KR(A). There is a weak equivalence

KR(A)|1
∼
−→ K (A|1).

Proof. For convenience, we drop the restriction notation. The inclusion of wedges
into products defines an equivalence of ring spectra

M∨n (A)→ Mn(A) :=
∏

n

∨
n

A,

and therefore an equivalence of monoids M̂∨n (A)→ M̂n(A) on infinite loop spaces.
This induces an equivalence of spaces∐

n

BM̂∨n (A)→
∐

n

BM̂n(A)

after taking the thick realization. The block-sum maps of M∨n (A) and Mn(A) are
compatible, in the sense that the diagram

M∨n (A)∨M∨k (A)

∼

��

⊕
// M∨n+k(A)

∼

��

Mn(A)×Mk(A)
⊕

// Mn+k(A)

commutes. It follows that the levelwise equivalences on the Bar constructions∐
n1,...,n p

B�∞I (M
∨

n1
(A)∨ · · · ∨M∨n p

(A))
∼
−→

∐
n1,...,n p

(B�∞I Mn1(A))× · · ·× (B�
∞

I Mn p(A))

commute with the face maps. After restricting to invertible components and taking
thick geometric realizations this gives the equivalence KR(A)|1 ' K (A|1). �

In the construction of the trace map we need to compare the dihedral nerve
Bdi M and the free loop space 3σ Bσ M for M = ĜL∨n1,...,n p

(A). In order to apply
Lemma 2.1.12 we need the following.

Proposition 2.3.3. Suppose that A is levelwise well-pointed, and that the unit map
S0
→ A0 is an h-cofibration. Then the monoid with anti-involution ĜL∨n1,...,n p

(A)
is quasiunital and group-like (see Definition 2.1.10).
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Proof. By definition ĜL∨n1,...,n p
(A) is the monoid of invertible components of

M̂∨n1,...,n p
(A) :=�∞I (M

∨

n1
(A)∨ · · · ∨M∨n p

(A)),

and it is therefore group-like. We show that M̂∨n (A) is quasiunital, which implies
that ĜL∨n (A) is quasiunital by restricting to the invertible components. The proof
for general p is similar. The inclusion of wedges into products induces an equiva-
lence of nonunital ring spectra

f : M∨n (A)
∼
−→ Mn(A) :=

∏
n

∨
n

A,

where the multiplication on Mn A is defined by representing an element in a given
spectral degree by a matrix with at most one nonzero entry in each column, and ap-
plying the standard matrix multiplication. This induces an equivalence of nonunital
topological monoids

M̂∨n (A)=�
∞

I M∨n (A)
∼
−→�∞I Mn(A),

where �∞I Mn(A) is unital and well-pointed.
The spectrum

∏
n×n A has a Z/2-action, defined by applying the anti-involution

entrywise and by composing with the involution of n× n that switches the factors.
The inclusion of indexed wedges into indexed products induces an equivalence of
equivariant spectra

φ : M∨n (A)=
∨
n×n

A ∼
−→

∏
n×n

A,

and therefore an equivalence on fixed points (�∞I M∨n (A))
Z/2 ∼
−→

(
�∞I

∏
n×n A

)Z/2.
The monoid

∏
n
∨

n A acts on the right on the spectrum
∏

n×n A by right matrix
multiplication. Precisely, the action is determined by the maps(∏

n×n

Al

)
∧

(∏
n

∨
n

Ak

)
→

∏
n×n

Al+k

that send an element {bi j ∈ Al}∧(1≤ h1, . . . , hn ≤ n, a1, . . . , an ∈ Ak) to the matrix
with (i, j)-entry µ(bih j , a j ) ∈ Al+k , where µ is the multiplication of A. There is
a second right-action which is defined by left matrix multiplication via the conju-
gate transposed, namely by sending {bi j } ∧ (1≤ i1, . . . , in ≤ n, a1, . . . , an) to the
matrix with (i, j)-entry µ(w(ai ), bhi j ). These induce two commuting right actions
of �∞I Mn(A) on �∞I

(∏
n×n A

)
, which we denote respectively by xm := x ·1 m

and w(m)x := x ·2 m. A straightforward argument shows that these actions satisfy
w(xm)=w(m)w(x), where w denotes the involution on �∞I

(∏
n×n A

)
. We regard

�∞I
(∏

n×n A
)

as a right �∞I Mn(A)-space via the action

x ·m := w(m)xm.
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We observe that this action restricts to the fixed points space
(
�∞I

∏
n×n A

)Z/2, and
that the equivalence

(�∞I M∨n (A))
Z/2
→

(
�∞I

∏
n×n

A
)Z/2

is a map of �∞I M∨n (A)-modules.
Finally, the unit of �∞I Mn(A) is mapped to a fixed point under the nonequivari-

ant map �∞I Mn(A)→�∞I
∏

n×n A that includes wedges into products. We denote
its image by e. Since f and φ are inclusions of wedges into products, the relation

e · f (m) := w( f (m))e f (m)= φ(w(m)m)

is satisfied for every m ∈ M . �

2.4. Connective equivariant deloopings of real algebraic K-theory. We show that
the real K-theory space of a ring spectrum with anti-involution defined in Section 2.3
is the equivariant infinite loop space of a (special) Z/2-equivariant 0-space. Our
construction of these deloopings is an adaptation of Segal’s construction [Segal
1974; Shimada and Shimakawa 1979] for spectrally enriched symmetric monoidal
categories, to a set-up where the symmetric monoidal structure is partially defined.

We start with an explicit definition of the Z/2-0-space in question, and we relate
it to Segal’s construction in the proof of Proposition 2.4.2. Recall from [Shimakawa
1991] that a G-0-space, where G is a finite group, is a functor X : 0op

→ TopG
∗

from the category 0op which is a skeleton for the category of pointed finite sets
and pointed maps, to the category of pointed G-spaces. This induces a symmetric
G-spectrum whose n-th space is the value at the n-sphere of the left Kan-extension
of X to the category of finite pointed simplicial sets.

For every natural number n and sequence of nonnegative integers a= (a1, . . . , an)

we consider the collections of permutations α =
{
αS,T ∈ S∑

i∈SqT ai

}
, where the

indices S, T run through the pairs of disjoint subsets Sq T ⊂ {1, . . . , n}, and Sk

denotes the symmetric group. We require that these permutations satisfy the stan-
dard conditions of Segal’s construction; see, e.g., [Dundas et al. 2013, Definition
2.3.1.1]. We denote by 〈a〉 the set of such collections α for the n-tuple a.

Given a ring spectrum with anti-involution A we let KR(A) : 0op
→ TopZ/2

∗ be
the functor that sends the pointed set n+ = {+, 1, . . . , n} to

KR(A)n :=
∐

a=(a1,...,an)

Bσ
(
〈̃a〉× ĜL∨a (A)

)
,

where ĜL∨a (A) := ĜL∨a1,...,an
(A) is defined in Section 2.3, and 〈̃a〉 is the category

with objects set 〈a〉, and with a unique morphism between any pair of objects. The
category 〈̃a〉 has a duality that is the identity on objects, and that sends the unique
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morphism α→ β to the unique morphism β→ α. Thus 〈̃a〉× ĜL∨a1,...,an
(A) is a

nonunital topological category with duality, and Bσ is the functor of Remark 2.1.13.

Remark 2.4.1. Since every object in 〈̃a〉 is both initial and final, the projection
map

〈̃a〉× ĜL∨a (A)→ ĜL∨a (A)

is an equivalence of topological categories. Moreover, by the uniqueness of the
morphisms of 〈̃a〉 we see that Sym 〈̃a〉 = 〈̃a〉. Thus the projection map

Sym
(
〈̃a〉× ĜL∨a (A)

)
∼= Sym 〈̃a〉×Sym ĜL∨a (A)→ Sym ĜL∨a (A)

is also an equivalence of categories, and Bσ
(
〈̃a〉 × ĜL∨a (A)

)
and Bσ ĜL∨a (A) are

equivariantly equivalent.

The extra 〈̃a〉-coordinate is used for the definition of KR(A) on morphisms.
Given a pointed map f : n+→ k+ and α ∈ 〈a〉 we let f∗a ∈ N×k and f∗α ∈ 〈 f∗a〉
respectively denote

( f∗a)i :=
∑

j∈ f −1(i)

a j and ( f∗α)S,T := α f −1 S, f −1T ,

for every 1≤ i ≤ k and Sq T ⊂ {1, . . . , k}. We define f∗ :KRn(A)→KRk(A) by
mapping the a-summand to the f∗a-summand by a map which is Bσ of the functor

〈̃a〉× ĜL∨a (A)→ 〈̃ f∗a〉× ĜL∨f∗a(A)

defined as follows. The first component is just the composite of the projection map
with the map that takes α to f∗α:

〈̃a〉× ĜL∨a (A)→ 〈̃a〉
f∗
−→ 〈̃ f∗a〉.

The second component is defined as follows. A pair of permutations α, β ∈ 〈a〉
gives rise to a morphism of monoids with anti-involution

(α, β)∗ : ĜL∨a (A)→ ĜL∨f∗a(A).

It is induced by the map of ring spectra with anti-involution obtained by wedging
over i ∈ {1, . . . , k} the maps

(α, β) j :
∨

j∈ f −1(i)

M∨a j
(A)→ M∨( f∗a)i (A)

defined by sending x ∈M∨a j
(A) to (α, β) j (x) := β( f −1i)\ j, j (0⊕ x)α−1

( f −1i)\ j, j , where
0⊕ x is the value at x of the block-sum map

⊕ : M∨( f∗a)i−a j
(A)∨M∨a j

(A)→ M∨( f∗a)i (A)
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and α and β are considered as permutation matrices. Explicitly, an element of
M∨a j

(A) in spectrum level l consists of a pair (c, d) ∈ a j × a j and a point x ∈ Al .
This is sent to

(α, β) j (c, d, x)= (β( f −1i)\ j, j (ιc), α( f −1i)\ j, j (ιd), x),

where ι : a j → ( f∗a) j is the inclusion. The second component of the map KR( f )
is then induced by the functor

〈̃a〉× ĜL∨a (A)→ ĜL∨f∗a(A)

that sends a morphism (α, β, x) in 〈̃a〉× ĜL∨a (A) to (α, β)∗x . Given a Z/2-0-
space X , we let X S1 be the first space of the associated Z/2-spectrum, defined as
the geometric realization X S1 = |n 7→ X S1

n
|, where S1

n is the set of n-simplices of
the simplicial circle S1

•
=11/∂ .

Proposition 2.4.2. Let A be a ring spectrum with anti-involution. The functor
KR(A) is a special Z/2-0-space in the sense of [Shimakawa 1989]. The Z/2-
space KR(A)S1 is equivalent to the real K-theory Z/2-space of Definition 2.3.1.
The underlying 0-space of KR(A) is equivalent the K-theory 0-space of A.

Proof. Let FA be the spectrally enriched category whose objects are the non-
negative integers and where the endomorphisms of k consist of the matrix ring∏

k
∨

k A. We recall that the Segal construction on FA is the 0-category enriched
in symmetric spectra defined by sending n+ to the category FA[n]. Its objects are
the pairs 〈a, α〉 where a = (a1, . . . , an) is a collection of nonnegative integers and
α is a collection of isomorphisms α =

{
αS,T :

∑
s∈S as +

∑
t∈T at →

∑
i∈SqT ai

}
in the underlying category of FA satisfying the conditions of [Dundas et al. 2013,
Definition 2.3.1.1]. The spectrum of morphisms 〈a, α〉 → 〈b, β〉 is nontrivial only
if a = b, and it is defined by the collection of elements

{
fS ∈ M∑

s∈S as (A)
}

S⊂n
which satisfy βS,T ( fS ⊕ fT )= fSqTαS,T .

There is an equivalence of spectral categories F×n
A → FA[n] that sends the tuple

a = (a1, . . . , an) to 〈a, α〉, where αS,T is the permutation matrix of the permutation
of SqT that sends the order on SqT induced by the disjoint union of the orders of
S and T to the order of Sq T as a subset of n (the point is that FA[n] is functorial
in n with respect to all maps of pointed sets, whereas F×n

A is only functorial for
order-preserving maps).

Now let F∨A be the equivalent subcategory (without identities) of FA with all the
objects, but where the endomorphisms of a are the ring spectra M∨a (A)=

∨
n×n A.

The space KR(A)n is roughly the invertible components of the classifying space of
the image of (F∨A )

∨n inside FA[n]. More precisely, there is a commutative square
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of spectrally enriched categories

(F∨A )
∨n

∼
��

// F∨A [n]

��

F×n
A ∼

// FA[n]

where F∨A [n] is defined as the subcategory of FA[n] on the objects 〈a, α〉, where
αS,T is a permutation representation, and where the morphisms { fS}S⊂n are such
that there is a j ∈ n such that fS = 0 if j /∈ S. The top horizontal arrow is simply
the restriction of the bottom horizontal one.

The spectral category F∨A [n] has a strict duality, which is the identity on objects
and the anti-involution on the matrix ring M∨a (A) on morphisms. We observe that
a morphism { fS}S⊂n in F∨A [n] is determined by the value f j , since for every S ⊂ n
containing j we have that

fS = f(S\ j)q j = βS\ j, j (0S\ j ⊕ f j )α
−1
S\ j, j .

Moreover, this equation determines the relation βS,T ( fS ⊕ fT )= fSqTαS,T , and it
follows that the value at n+ of the corresponding Z/2-0-space is∐

a

Bσ
(
〈̃a〉×�∞I (M

∨

a1
(A)∨ · · · ∨M∨an

(A))
)
.

Its invertible components are then by definition KRn(A) and the functoriality in 0op

induced by the ambient category FA[n] is the one described above. In particular
KRn(A) is functorial in n. The fact that fS := βS\ j, j (0S\ j ⊕ f j )α

−1
S\ j, j determines

a well-defined morphism 〈a, α〉 → 〈a, β〉 follows from the following calculation:

βS,T ( fS ⊕ 0T )α
−1
S,T

= βS,T ((βS\ j, j (0S\ j ⊕ f j )α
−1
S\ j, j )⊕ 0T )α

−1
S,T

= βS,T (βS\ j, j q idT )(0S\ j ⊕ f j ⊕ 0T )(α
−1
S\ j, j q idT )α

−1
S,T

= β j,SqT \ j (id j qβS\ j,T )(τS\ j, j q idT )(0S\ j ⊕ f j ⊕ 0T )(α
−1
S\ j, j q idT )α

−1
S,T

= β j,SqT \ j (id j qβS\ j,T )(τS\ j, j q idT )(0S\ j ⊕ f j ⊕ 0T )

◦ (τ j,S\ j q idT )(id j qα
−1
S\ j,T )α

−1
j,SqT \ j

= β j,SqT \ j (id j qβS\ j,T )( f j ⊕ 0SqT \ j )(id j qα
−1
S\ j,T )α

−1
j,SqT \ j

= β j,SqT \ j ( f j ⊕ 0SqT \ j )α
−1
j,SqT \ j

= βSqT \ j, jτ j,SqT \ j ( f j ⊕ 0SqT \ j )τ j,SqT \ jα
−1
SqT \ j, j

= βSqT \ j, j (0SqT \ j ⊕ f j )α
−1
SqT \ j, j

= fSqT ,
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where τS,T :
∑

s∈S as+
∑

t∈T at→
∑

t∈T at+
∑

s∈S as is the symmetry isomorphism
of the symmetric monoidal structure. From this description of the morphisms of
F∨A [n] one can easily see that the top horizontal map of the square above, and
hence all of its maps, are equivalences of categories. Thus the 0-space underlying
KR(A) is equivalent to the K-theory of A.

We show that KR is a special Z/2-0-space. For every group homomorphism
σ : Z/2→6n we need to show that the map

F∨A [n] → (F∨A [1])
×n,

whose j-component is induced by the map n+→ 1+ that sends j to 1 and the rest
to the basepoint, is a Z/2-equivariant equivalence. Here the involution is induced
by σ : Z/2→ 6n through the functoriality in n. The square above provides an
equivalence of spectrally enriched categories F∨A → F∨A [1]. This functor is in fact
an isomorphism on mapping spectra, and it is therefore an equivariant equivalence.
We show that the top horizontal arrow of

(F∨A )
∨n //

∼
��

F∨A [n]

��

(F∨A )
×n

∼
// (F∨A [1])

×n

defined as the restriction of F×n
A → FA[n] is an equivariant equivalence, which

finishes the proof. It has an equivariant inverse F∨A [n] → (F∨A )
∨n that sends an

object 〈a, α〉 to a and a morphism { fS} to f{ j}. �

2.5. Pairings in real algebraic K-theory. Let A and B be ring spectra with anti-
involution. Their smash product A ∧ B is a ring spectrum with anti-involution,
where the multiplication is defined componentwise and the anti-involution is diag-
onal. The aim of this section is to define a pairing in the homotopy category of
Z/2-spectra

KR(A)∧KR(B)→ KR(A∧ B),

which extends Loday’s pairing of K-theory spectra of discrete rings [Loday 1976,
Chapitre II]. The point-set construction of this pairing does not quite lift to the
category of Z/2-spectra because of the failure of thick realizations to commute
with products strictly, but this is the only obstruction.

The standard formula for the Kronecker product of matrices restricts to an iso-
morphism

⊗ : M∨n (X)∧M∨k (Y )∼=
∨

n×n×k×k

(X ∧ Y )→
∨

nk×nk

(X ∧ Y )= M∨nk(X ∧ Y ),

where X and Y are either pointed spaces or spectra, which is determined by the
isomorphism n×n×k×k∼=nk×nk sending (i, j,m, l) to ((i−1)n+m, ( j−1)n+l).
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This isomorphism is moreover Z/2-equivariant with respect to the transposition of
matrices.

Given a = (a1, . . . , an), we define

M̂∨a (A) :=�
∞

I (M
∨

a1
(A)∨ · · · ∨M∨an

(A)),

which is a topological monoid with anti-involution. Given a = (a1, . . . , an) and
b = (b1, . . . , bk), we let a · b be the nk-sequence of nonnegative integers

a · b := (a1b1, a1b2, . . . , a1bk, a2b1, . . . , a2bk, . . . , anb1, . . . , anbk).

Using the Kronecker pairing above we define Z/2-equivariant maps

Bσ
(
〈̃a〉×M̂∨a (A)

)
×Bσ

(
〈̃b〉×M̂∨b (B)

)

��

Bσ
(
〈̃a〉×〈̃b〉×M̂∨a (A)×M̂∨b (B)

)∼
oo

��

Bσ
(
〈̃a〉×〈̃b〉×hocolim

I×I
�i+ j (M∨a (Ai )∧M∨b (B j ))

)
∼=

��

Bσ
(

˜〈a〉×〈b〉×hocolim
I×I

�i+ j
( ∨
(h,l)∈n×k

(M∨ah
(Ai )∧M∨bl

(B j ))

))
∼= ⊗

��

Bσ
(

˜〈a〉×〈b〉×hocolim
I×I

�i+ j
( ∨
(h,l)∈n×k

(M∨ahbl
(Ai∧B j ))

))
⊗×ι

��

Bσ
( ˜〈a·b〉×M̂∨a·b(A∧B)

)
Bσ
(˜〈a·b〉×hocolim

I×I
�i+ j

( ∨
(h,l)∈n×k

(M∨ahbl
((A∧B)i+ j ))

))
+∗
oo

where ⊗× ι is induced by the product of the map ⊗ : 〈a〉×〈b〉→ 〈a ·b〉 defined by
taking the Kronecker product of permutations (i.e., the Kronecker product of the
associated permutation matrices), and of the canonical map ι : Ai∧B j→ (A∧B)i+ j .
By restricting to the invertible components of M̂∨a (A) and M̂∨b (A) this gives Z/2-
equivariant maps

KR(A)n ∧KR(B)k
∼
←− Zn,k→ KR(A∧ B)nk,

where Zn,k =
∐

a,b Bσ
(
〈̃a〉 × 〈̃b〉 × ĜL∨a (A)× ĜL∨b (B)

)
. This zig-zag is natural

in both variables n, k ∈ 0op, and it therefore induces a pairing in the homotopy
category of Z/2-spectra

⊗ : KR(A)∧KR(B)→ KR(A∧ B).
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By taking fixed points and geometric fixed points, we respectively obtain pairings

⊗ : KR(A)Z/2 ∧KR(B)Z/2→ (KR(A)∧KR(B))Z/2→ KR(A∧ B)Z/2,

⊗ :8Z/2 KR(A)∧8Z/2 KR(B)→8Z/2 KR(A∧ B)

in the homotopy category of spectra. Let A be a ring spectrum with anti-involution
and π a well-pointed topological group. The corresponding group-algebra is the
ring spectrum

A[π ] := A∧π+

with the anti-involution defined diagonally from the anti-involution of A and the
inversion map of π . This is an A-algebra via the map

A∧ A[π ] = A∧ A∧π+
µ∧id
−−−→ A∧π+ = A[π ],

where µ denotes the multiplication of A. If moreover A is a commutative ring spec-
trum with anti-involution, that is, a commutative Z/2-equivariant orthogonal ring
spectrum, then the map µ∧ id is a morphism of ring spectra with anti-involution.
Thus one can compose the pairings above for B = A[π ] with the induced map
KR(A∧ A[π ])→ KR(A[π ]). The associativity of the Kronecker product of matri-
ces then gives the following.

Proposition 2.5.1. Let A be a commutative Z/2-equivariant orthogonal ring spec-
trum and π a topological group. The graded abelian groups π∗(KR(A)Z/2) and
π∗8

Z/2 KR(A) are graded rings. The graded abelian group π∗(KR(A[π ])Z/2) is a
graded π∗(KR(A)Z/2)-module, and π∗8Z/2 KR(A[π ]) is a graded π∗8Z/2 KR(A)-
module. �

2.6. The Hermitian K-theory and genuine L-theory of a ring spectrum with anti-
involution. In this section we relate the fixed-points and geometric fixed-points
spectra of KR of Eilenberg–Mac Lane spectra with the classical constructions of
Hermitian K-theory and L-theory.

Definition 2.6.1. The free Hermitian K-theory space of a ring spectrum with anti-
involution A is the fixed-points space

GW(A) := KR(A)Z/2 ∼=�B
(∐

n

(
Bσ ĜL∨n (A)

)Z/2
)
.

The free Hermitian K-theory spectrum of A is the spectrum GW(A) associated to
the fixed-points 0-space

GW(A)n := KR(A)Z/2n
∼=

∐
a=(a1,...,an)

(
Bσ
(
〈̃a〉× ĜL∨a (A)

))Z/2
.

Remark 2.6.2. The spectrum associated to the 0-space GW(A) is the naïve fixed-
points spectrum of the Z/2-spectrum associated to the Z/2-0-space KR(A). Since
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KR(A) is special as an equivariant 0-space (see Proposition 2.4.2), the canonical
map of spectra GW(A)→ KR(A)Z/2 is a stable equivalence, where KR(A)Z/2 is
the genuine fixed-points spectrum of KR(A).

We recall the terminology from [Schwede 2013] (although our notation devi-
ates slightly). If X is an orthogonal G-spectrum for a finite group G, the naïve
fixed points of X is a spectrum with underlying sequence of spaces X G

n . The
genuine fixed points are obtained by deriving the naïve fixed points with respect to
the model structure on orthogonal G-spectra associated to a complete G-universe.
Concretely, these can be defined as a spectrum whose n-th space is (�nρ̄Xnρ)

G ,
where ρ is the regular representation of G with reduced regular representation ρ̄,
and for every d-dimensional real G-representation V the pointed G-space XV is
the space Xd , where g ∈ G acts by (g, σV (g)) ∈ G×O(d) for σV : G→ O(d) the
group homomorphism defined by the representation V .

We now analyze the 0-space GW(A) and interpret it as the Segal construc-
tion of a symmetric monoidal category of Hermitian forms on A. We recall from
Proposition 2.1.6 that the fixed-points space of Bσ ĜL∨a (A) is the classifying space
of a topological category Sym ĜL∨a (A). Its space of objects is the space of invert-
ible components of the fixed-points space

M̂∨a (A)
Z/2
:=
(
�∞I (M

∨

a1
(A)∨ · · · ∨M∨an

(A))
)Z/2

,

which is equivalent to the infinite loop space of the fixed-points spectrum

M∨a1
(A)Z/2× · · ·×M∨a1

(A)Z/2

(see Remark 2.2.2). A morphism l :m→n of Sym ĜL∨a (A) is a homotopy invertible
element of M̂∨a (A) which satisfies m = w(l)nl, where w denotes the involution
on M̂∨a (A). Thus we think of GW(A) as the Segal construction of a symmetric
monoidal category

HermA =
∐

n

Sym ĜL∨n (A)

of spectral Hermitian forms on A.

Proposition 2.6.3. Suppose R is a simplicial ring with anti-involution w : Rop
→ R.

There is a weak equivalence between GW(HR) and the connective cover of the
Hermitian K-theory spectrum GW(R) := 1 L̃(R) of [Burghelea and Fiedorowicz
1985]. In particular if R is discrete this is equivalent to the connective Hermitian
K-theory of free R-modules of [Karoubi 1973], when 2 ∈ R is invertible.

If R is commutative, this equivalence induces a ring isomorphism on homotopy
groups, where GW(HR) is equipped with the multiplication of Proposition 2.5.1.
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Proof. The inclusion of wedges into products defines a map of ring spectra with
anti-involution

M∨n (HR)=
∨
n×n

HR→
∏
n×n

HR ∼= HMn(R),

where Mn(R) =
⊕

n×n R is the ring of n × n-matrices with entries in R. On
the underlying Z/2-spectra, this is an inclusion of indexed wedges into indexed
products and it is therefore a stable equivalence. On the level of 0-categories this
shows that the composite

F∨HR[n] → FHR[n] → HFR[n]

is an equivalence, where FR[n] is Segal’s construction of the symmetric monoidal
category of free R-modules (FR,⊕), with the duality induced by conjugate trans-
position of matrices (we observe that the middle term FHR[n] does not have a
duality). At the level of 0-spaces this induces an equivalence

(Bσ�∞HF∨HR[n])
Z/2 ∼
−→ (Bσ�∞HFR[n])

Z/2 ∼
←− (BσFR[n])

Z/2∼= B Sym(FR[n]),

which restricted to invertible components gives an equivalence

GWn(R)' B Sym(iFR[n]).

Moreover, there is a functor of 0-categories (Sym iFR)[n] → Sym(iFR[n]), and
since both categories are equivalent to Sym iF×n

R it is an equivalence. Finally,
Sym iFR is the category of Hermitian forms over the simplicial ring R of [Burghe-
lea and Fiedorowicz 1985].

When R is commutative, both ring structures on GW(R) and GW(HR) are de-
fined from the Kronecker product of matrices, and by inspection the equivalence
above is multiplicative. �

The previous proposition extends to the Hermitian K-theory of Mackey functors
defined in Section 1.2, as we now show. We say that a ring spectrum with anti-
involution A is Eilenberg–Mac Lane if πn A = 0= πn(AZ/2) for all n 6= 0. In this
case we write A = HL , where L denotes the Hermitian Mackey functor L = π0 A
of Proposition 2.2.6.

Proposition 2.6.4. Let HL be an Eilenberg–Mac Lane ring spectrum with anti-
involution. There is a stable equivalence of 0-spaces

GW(HL) ∼−→ GW(L)

induced by the projection maps �∞I HL → L(Z/2) and (�∞I HL)Z/2 → L(∗)
onto π0. If moreover HL is commutative, this equivalence is multiplicative with
respect to the ring structures of Proposition 1.3.3 and Proposition 2.5.1.



K-THEORY OF HERMITIAN MACKEY FUNCTORS, REAL TRACES, AND ASSEMBLY 289

Proof. We recall that since �∞I HL is a topological monoid with anti-involution,
there is an action

�∞I HL × (�∞I HL)Z/2→ (�∞I HL)Z/2

defined by sending (m, n) to mnw(m), where w is the involution on �∞I HL . The
Hermitian structure on π0 HL is defined by taking π0 of this map. We also recall
from Proposition 2.2.6 that M∨n (HL) is a model for the Eilenberg–Mac Lane spec-
trum of the Hermitian Mackey functor of matrices Mn(L) of Definition 1.1.5. Thus
the projections onto π0 define an equivalence of topological categories∐

n

Sym ĜL∨n (HL) ∼−→ i HermL

onto the category of Hermitian forms on M and isomorphisms. At the level of
0-spaces this gives an equivalence

GW(HL)n ∼=
∐

a

B
(
〈a〉×Sym ĜL∨a (HL)

)
∼
−→ i HermM [n]

onto the Segal 0-category associated to (i HermL ,⊕), by the same argument of
Proposition 2.6.3. �

Remark 2.6.5. We do not know if every Hermitian Mackey functor can be real-
ized as the Mackey functor of components of a nonunital ring spectrum with anti-
involution (the nonunitality condition comes from the fact that an equivariant unit
map S→ A induces a map A = π0(S

Z/2)→ π0(AZ/2), and therefore a preferred
element 1 ∈ π0(AZ/2)). If there was an Eilenberg–Mac Lane spectrum functor H
from Hermitian Mackey functors to nonunital ring spectra with anti-involution,
Proposition 2.6.4 would in fact show that GW(L)' KR(HL)Z/2 for every Hermit-
ian Mackey functor L , allowing us to refine GW(L) to the fixed points of a genuine
equivariant spectrum KR(HL).

For discrete rings with anti-involution R the Eilenberg–Mac Lane spectrum HR
of Example 2.2.1 serves this purpose, and the Hermitian Mackey functor of com-
ponents π0 HR is the Hermitian Mackey functor defined by R as in Example 1.1.2.
Thus Propositions 2.6.3 and 2.6.4 tell us that GW(HR)' GW(R), where GW(R)
is by definition the group-completion of the category of Hermitian forms of free
R-modules, which is denoted by 1 L̃(R) in [Burghelea and Fiedorowicz 1985].

Definition 2.6.6. The free genuine L-theory spectrum of a ring spectrum with anti-
involution A is the geometric fixed-points spectrum

Lg(A) :=8Z/2 KR(A).

When R is a discrete ring with anti-involution, we define Lg(R) := Lg(HR).
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Here the term “genuine” and the superscript of Lg refer to the fact that Lg(A)
depends on the genuine equivariant homotopy type of the input ring spectrum A.

Proposition 2.6.7. Let R be a discrete ring with anti-involution. There is a natural
isomorphism

Lg
∗(R)

[1
2

]
∼= Lq

∗≥0(R)
[1

2

]
after inverting 2, where Lq

∗≥0 are the quadratic L-groups. This isomorphism agrees
with the restriction to the appropriate summands of the splittings(

K∗(R)
[1

2

])Z/2
⊕Lg
∗(R)

[ 1
2

]
∼= GW∗(R)

[ 1
2

]
∼=
(
K∗(R)

[ 1
2

])Z/2
⊕Lq
∗≥0(R)

[ 1
2

]
of the isotropy separation sequence away from 2 and of the splitting of [Burghelea
and Fiedorowicz 1985, Proposition 6.2], respectively.

Proof. The isotropy separation sequence for the Z/2-spectrum KR(R) (see, e.g.,
[Hesselholt and Madsen 1997, Proposition 2.1]) is a fiber sequence of spectra

KR(R)hZ/2
tran
−−→ KR(R)Z/2 φ

−→ Lg(R),

where the left map induces the transfer map

π∗KR(R)→ π∗KR(R)hZ/2→ π∗KR(R)Z/2

of the Mackey structure of π∗KR(R) on homotopy groups. Let us first identify
the homotopy groups of the cofiber Lg(R) of the transfer with the cokernel of the
hyperbolic map, after inverting 2.

The composite N : KR(R)hZ/2
tran
−−→ KR(R)Z/2 → KR(R)hZ/2 of the transfer

and the canonical map to the homotopy fixed points is the norm map, which is an
equivalence if 2 is inverted in KR(R); this follows from the Tate spectral sequence
of [Greenlees and May 1995, Theorem 10.5]. Thus the composite(

KR(R)
[1

2

])Z/2
→
(
KR(R)

[ 1
2

])hZ/2
'
(
KR(R)

[1
2

])
hZ/2

of the canonical map and the inverse of the norm defines a natural splitting of the
transfer on homotopy groups, giving naturally split short-exact sequences

0→ πn(KR(R)hZ/2)
[ 1

2

] tran
−−→ πn(KR(R)Z/2)

[1
2

] φ
−→ Lg

n(R)
[ 1

2

]
→ 0

for every n ≥ 0. After inverting 2, the E2-page of the Bousfield–Kan spectral
sequence for the homotopy orbits spectrum

(
KR(R)

[ 1
2

])
hZ/2 is concentrated on

the 0-th horizontal line, and the homotopy groups

π∗
((

KR(R)
[1

2

])
hZ/2

)
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are then isomorphic to the coinvariants of the involution on K∗(R)
[1

2

]
. We then

obtain short exact sequences

0→
(
(Kn(R))

[1
2

])
Z/2

tran
−−→ πn(KR(R)Z/2)

[ 1
2

] φ
−→ Lg

n(R)
[ 1

2

]
→ 0,

where the transfer is induced on coinvariants by the transfer Kn(R)→πn(KR(R)Z/2)
of the Mackey functor πn KR(R). The double coset formula tells us that

res tran= id+w,

where res : πn(KR(R)Z/2)→Kn(R) is the restriction induced by the canonical map
from the fixed points to the underline spectrum, and w is the involution induced
by the Z/2-action of KR(R). Therefore the left-hand transfer of the short exact
sequence above is a section for the map

q : πn(KR(R)Z/2)
[ 1

2

] res /2
−−−→ (Kn(R))

[ 1
2

]
�
(
(Kn(R))

[ 1
2

])
Z/2.

In particular, the cokernel Lg
n(R)

[ 1
2

]
of the transfer is naturally isomorphic to the

kernel of q. Under the identification KR(R)Z/2 ' GW(R) of Proposition 2.6.3
the restriction map res : πn(KR(R)Z/2)→ Kn(R) corresponds to the map induced
by the functor F that sends a Hermitian form to its underlying free R-module
(this is immediate from the definitions, and the fact that under the isomorphism of
Proposition 2.1.6 the inclusion (Bσ M)Z/2 ↪→ BM corresponds to the realization of
the map N (M;MZ/2)→ N (M; ∗) that collapses MZ/2). The hyperbolic functor
induces a map

H : Kn(R)→ πn GW(R),

which also satisfies FH = id+w, and it follows that H also defines a section of q ,
and thus that the cokernel of H is also isomorphic to the kernel of q. Combining
these isomorphisms we obtain a natural isomorphism

Lg
n(R)

[1
2

]
∼= coker(tran)∼= ker(q)∼= coker(H)=:Wn(R)

[ 1
2

]
,

where the cokernel of H is by definition the Witt-group Wn(R)
[ 1

2

]
. This agrees

with the L-group Lq
n(R) after inverting 2; see, e.g., [Loday 1976, Théorème 3.2.6],

or combine [Ranicki 2001, §9] and [Schlichting 2010, Lemma 4.10], at least when
n > 0. For n = 0 one needs to make sure that the 0-th Witt group defined using
finitely generated projective modules agrees with the 0-th Witt group defined using
finitely generated free modules, away from 2. By performing algebraic surgery
with the respective decorations, these are respectively isomorphic to the 0-th qua-
dratic L-groups of bounded chain complexes of finitely generated projective and
free modules; see [Ranicki 1980, §9, p. 180]. These agree after inverting 2 since
the relative term provided by the Rothenberg sequence is 2-torsion.
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Burghelea and Fiedorowicz [1985, Proposition 6.2] show that there is a natural
isomorphism

GW∗(R)
[ 1

2

]
=
(
GW∗(R)

[ 1
2

])s
⊕
(
GW∗(R)

[ 1
2

])a ∼= (K∗(R)[ 1
2

])Z/2
⊕W∗≥0(R)

[ 1
2

]
,

where the superscripts s and a on GW∗ denote, respectively, the 1- and (−1)-
eigenspaces of the Z/2-action σ on GW defined by taking the opposite sign of the
entries of the matrix of a Hermitian form. Here

(
K∗(R)

[ 1
2

])Z/2 is the fixed points
of the involution on homotopy groups induced by the involution on KR. This is
stated only for ∗ ≥ 1, but the case ∗ = 0 follows again by the argument above. The
first splitting is the canonical decomposition into symmetric and antisymmetric
part that sends x to ((x + σ x)⊕ (x − σ x))/2. The second splitting is the direct
sum of two isomorphisms, the first of which is induced by the forgetful functor
F :

(
GW∗(R)

[ 1
2

])s
→
(
K∗(R)

[ 1
2

])Z/2. Its inverse is the restriction on invariants of
half the hyperbolic map

H/2 :
(
K∗(R)

[ 1
2

])Z/2
→
(
GW∗(R)

[ 1
2

])s
.

In other words, this is induced by the split short exact sequence

0→
(
(Kn(R))

[ 1
2

])Z/2 H/2
−−→ πn GW(R)

[ 1
2

] π
−→Wn(R)

[1
2

]
→ 0.

Under the isomorphism N :
(
(Kn(R))

[ 1
2

])
Z/2→

(
(Kn(R))

[1
2

])Z/2 that sends the
orbit of x to x+w(x), half the hyperbolic corresponds to the hyperbolic map H , that
is, the splitting of [Burghelea and Fiedorowicz 1985, Proposition 6.2] is induced
by the split short exact sequence

0→
(
(Kn(R))

[ 1
2

])
Z/2

H
−→ πn GW(R)

[ 1
2

] π
−→Wn(R)

[1
2

]
→ 0.

Now the fact that H and tran have a common retraction q provides the desired
comparison. �

2.7. The assembly map of real algebraic K-theory. We define an assembly map
for the real K-theory functor in the same spirit as Loday’s definition [1976], using
the multiplicative pairing of Section 2.5. We then relate this to the classical as-
semblies of Hermitian K-theory and L-theory in the case of Eilenberg–Mac Lane
spectra.

Let A be a ring spectrum with anti-involution and π a well-pointed topological
group. The corresponding group-algebra is the ring spectrum

A[π ] := A∧π+

with the anti-involution defined diagonally from the anti-involution of A and the
inversion map of π .
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Remark 2.7.1. Suppose that R is a discrete ring with anti-involution w and that
π is discrete. Then the inclusion of indexed wedges into indexed products defines
an equivalence of ring spectra with anti-involution

(HR)[π ] = HR ∧π+ =
∨
π

HR ∼
−→

⊕
π

HR ∼= H(R[π ]),

where the anti-involution on the group-ring R[π ] sends r · g to w(r) · g−1, for all
r ∈ R and g ∈ π . More generally, the fixed-points spectrum of A[π ] decomposes
as

(A[π ])Z/2 ∼−→
(⊕

π

A
)Z/2
∼=

(⊕
πZ/2

AZ/2
)
×

( ⊕
π free/Z/2

A
)
,

and an argument analogous to Proposition 2.2.6 shows that the Mackey functor
of components π0(A[π ]) is isomorphic to the group-Mackey functor (π0 A)[π ] of
Definition 1.1.7.

There is a morphism of Z/2-0-spaces γ : S∧ Bσπ+→ KR(S[π ]), which is
adjoint to the map of Z/2-spaces

Bσπ ↪→ Bσ ĜL∨1 (S[π ]) ↪→
∐

n

Bσ ĜL∨n (S[π ])= KR(S[π ])1,

where the first map is induced by the canonical map π → hocolimI �
i (Si
∧π+)

which includes at the object i = 0.

Definition 2.7.2. Let A be a ring spectrum with anti-involution, and π a topological
group. The assembly map of the real K-theory of A[π ] is the map in the homotopy
category of Z/2-spectra

KR(A)∧ Bσπ+
id∧γ
−−−→ KR(A)∧KR(S[π ]) ⊗−→ KR(A∧S[π ])∼= KR(A[π ]),

where ⊗ is the pairing of Section 2.5. If A is commutative, this is a map of KR(A)-
modules for the module structures of Proposition 2.5.1.

We now explain how to extract from this map an assembly map for Hermitian K-
theory and L-theory by taking fixed-points spectra. We recall that there are natural
transformations

XZ/2
∧ K Z/2

→ (X ∧ K )Z/2 and (8Z/2 X)∧ K Z/2 ∼
−→8Z/2(X ∧ K )

for any Z/2-spectrum X and pointed Z/2-space K , where the first map is generally
not an equivalence. Thus by applying fixed points and geometric fixed points to
the KR-assembly we obtain maps

GW(A)∧ (Bσπ)Z/2+ → (KR(A)∧ Bσπ+)Z/2→ GW(A[π ]),

Lg(A)∧ (Bσπ)Z/2+
∼
−→8Z/2(KR(A)∧ Bσπ+)→ Lg(A[π ]).
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We recall from Lemma 2.1.9 that there is an equivariant map Bπ→ Bσπ , which
induces a summand inclusion Bπ→ (Bσπ)Z/2 on fixed points. By precomposing
with this map we obtain the following.

Definition 2.7.3. The assembly map in Hermitian K-theory and genuine L-theory
of A[π ] are the maps

GW(A)∧ Bπ+→ GW(A)∧ (Bσπ)Z/2+ → GW(A[π ]),

Lg(A)∧ Bπ+→ Lg(A)∧ (Bσπ)Z/2+ → Lg(A[π ]),

respectively. If A is commutative, these are maps of GW(A)-modules and Lg(A)-
modules, respectively.

Proposition 2.7.4. Let R be a discrete ring with anti-involution. Then the as-
sembly map for the Hermitian K-theory of (HR)[π ] described above agrees with
the connective assembly for the Hermitian K-theory of R[π ] of [Burghelea and
Fiedorowicz 1985, §7], under the equivalence of Proposition 2.6.3 and the equiv-
alence (HR)[π ] → H(R[π ]) of Remark 2.7.1. It follows that the rationalized
assembly map of Lg(R[π ]) agrees with the rationalized assembly of Lq(R[π ]) of
[Ranicki 1992, Appendix B].

Proof. By inspection, one sees that the pairing of Section 2.5 agrees with the pairing
of [Burghelea and Fiedorowicz 1985, §6] under the equivalences of Proposition 2.6.3
and Remark 2.7.1, as do the maps S∧Bπ+→GW(S[π ]) and S∧Bπ+→GW(Z[π ]).
More precisely, the diagram

GW(HR)∧ Bπ+
id∧γ
//

∼
��

GW(HR)∧GW(S[π ])
⊗
//

��

GW(HR ∧S[π ])
∼=
//

��

GW((HR)[π ])
∼
��

GW(R)∧ Bπ+
id∧γZ
// GW(R)∧GW(Z[π ])

⊗Z
// GW(R⊗Z Z[π ])

∼=
// GW(R[π ])

commutes in the homotopy category of spectra, where γZ and ⊗Z are the maps
whose composite is the assembly of [Burghelea and Fiedorowicz 1985, §7]. The
top row is precisely the restriction of the assembly of Definition 2.7.2 to the 0-space
of fixed points, which compares to the assembly of Definition 2.7.3 by the diagram

GW(HR)∧ Bπ+
∼
��

GW(HR)∧ Bπ+ //

��

GW(HR[π ])
∼
��

KR(HR)Z/2 ∧ Bπ+ //

��

(KR(HR)∧ Bπ+)Z/2 //

��

KR(HR[π ])Z/2

KR(HR)Z/2 ∧ (Bσπ)Z/2+ // (KR(HR)∧ Bσπ+)Z/2

44

The map from the first to the second row is the transformation from naïve to genuine
fixed-points spectra, and therefore the upper rectangle commutes. The bottom left
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square commutes by naturality of the transformation XZ/2
∧ K Z/2

→ (X ∧ K )Z/2.
This shows that the assemblies in Hermitian K-theory agree.

By the naturality of the isotropy separation sequence, the assembly map of
8Z/2 KR(A) is the cofiber of the assembly maps for K(A)hZ/2 and GW(A) un-
der the transfer map. The assembly map for the Witt groups is by definition the
cokernel of the assembly maps of K and GW by the hyperbolic map, or equiv-
alently the kernel of these assemblies by the forgetful functor. It follows from
Proposition 2.6.7 that these assemblies agree after inverting 2. It is widely believed
by the experts that the assembly maps in Witt theory and quadratic L-theory agree
away from 2, but we were unfortunately unable to track down a reference; see, e.g.,
[Burghelea and Fiedorowicz 1985, 8.2, diagram (5) and footnote 8]. We prove that
the assemblies agree rationally, at least for the ring of integers. Our argument is
far from optimal, but is sufficient for our applications.

By periodicity, the Witt groups and the quadratic L-groups are rationally mod-
ules over the Laurent polynomial algebra Q[β, β−1

], where β is of degree 4; see
[Karoubi 1973, 4.10] and [Ranicki 1992, Appendix B], respectively. Let us choose
isomorphisms of Q[β]-modules φ : Lq

∗≥0(Z)⊗Q ∼= Q[β] ∼= W∗≥0(Z)⊗Q. Then
any choice of isomorphisms

φπi : L
q
i (Z[π ])⊗Q∼=Wi (Z[π ])⊗Q for i = 0, 1, 2, 3,

determines an isomorphism of Q[β]-modules

φπ : Lq
∗≥0(Z[π ])⊗Q

∼=
−→W∗≥0(Z[π ])⊗Q,

which is given in degree i = 4k+ l, for k > 0 and l = 0, 1, 2, 3, by φπi = β
kφπl β

−k .
Since this is an isomorphism of Q[β]-modules the right square of the diagram

Lq
∗≥0(Z)⊗ H∗(Bπ;Q)

∼=⊗γL
//

φ⊗id
��

Q[β]⊗Lq
∗≥0(Z[π ])

//

id⊗φπ

��

Lq
∗≥0(Z[π ])⊗Q

φπ

��

W∗≥0(Z)⊗ H∗(Bπ;Q)
∼=⊗γW

// Q[β]⊗W∗≥0(Z[π ]) // W∗≥0(Z[π ])⊗Q

defining the assemblies commutes. It is therefore sufficient to show φπγL = γW .
The map γW is the composite S∧ Bπ+→ GW(Z[π ])→ W (Z[π ]), and the map
γL : S∧ Bπ+→ L(Z[π ]) is the “preassembly” of [Ranicki 1992, Appendix B].
Since π is discrete, these maps are determined by the corresponding group homo-
morphisms δL : π → L1(Z[π ]) and δW : π → W1(Z[π ]). By the comparison
of [Ranicki 2001, 9.11], one can see that the isomorphism φπ1 can be chosen so
that φπ1 δL = δW . Since the homotopy category of rational spectra is equivalent to
graded Q-vector spaces, the isomorphism φπ can be realized as a zig-zag of maps
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of rational spectra. Since φπ1 δL = δW , the diagram

Bπ+ //

**

�∞(Lq(Z[π ])⊗Q)

�∞φπ

��

�∞(W (Z[π ])⊗Q)

commutes in the homotopy category of spaces. It follows that (φπ ⊗Q)γL = γW

commutes in the homotopy category of spectra, which concludes the proof. �

The unit of the ring spectrum with anti-involution A induces a map of Z/2-
spectra

η : S→ KR(A).

It is adjoint to the map of Z/2-spaces S0
→

∐
k≥0 Bσ ĜL∨k (A) that sends the

basepoint of S0 to the unique point in the component k = 0, and the nonbase-
point of S0 to the point in the component k = 1 determined by the 0-simplex of
(sde Nσ ĜL∨1 (A))0 = ĜL∨1 (A) defined by the unit map S0

→ A0 of A.

Definition 2.7.5. The restricted assembly map of the real K-theory of A[π ] is the
map of Z/2-spectra

S∧ Bσπ+
η∧id
−−→ KR(A)∧ Bσπ+→ KR(A[π ]).

The geometric fixed points of the map η : S→ KR(A) provide a map

S∼=8
Z/2S→8Z/2 KR(A)= Lg(A),

which immediately leads to the corresponding restricted assembly in genuine L-
theory. In Hermitian K-theory, however, the tom Dieck splitting provides a map

S∨S→ S∨ShZ/2
∼
−→ SZ/2

→ GW(A)

from two summands of the sphere spectrum, where the first map is the wedge of
the identity and the canonical map to the homotopy orbits.

Definition 2.7.6. The restricted assembly maps of the Hermitian K-theory and
genuine L-theory of A[π ] are respectively the maps of spectra

(S∨S)∧ Bπ+→ GW(A)∧ Bπ+→ GW(A[π ]),

S∧ Bπ+→ Lg(A)∧ Bπ+→ Lg(A[π ]).

The restricted assembly map of the Hermitian K-theory of Z is usually defined
on homotopy groups by the composite

A0
Z[π ] : GW0(Z)⊗π∗(S∧ Bπ+) ↪→ GW∗(Z)⊗π∗(S∧ Bπ+)

→ π∗(GW(Z)∧ Bπ+)
AZ[π ]
−−−→ GW∗(Z[π ]),



K-THEORY OF HERMITIAN MACKEY FUNCTORS, REAL TRACES, AND ASSEMBLY 297

where the first map includes GW0(Z) into GW∗(Z) as the degree zero summand.
Both π0(S∨S) and GW0(Z) are isomorphic to Z⊕Z, and the unit map η:S→KR(Z)
provides such an isomorphism. The following compares the resulting assemblies.

Proposition 2.7.7. The map S∨S→ GW(Z) sends the two generators in π0 to
the hyperbolic form

( 0
1

1
0

)
and to the unit form 〈1〉, respectively. It follows that the

restricted assembly
(S∨S)∧ Bπ+→ GW(Z[π ])

agrees on homotopy groups with the restricted assembly A0
Z[π ] upon identifying

π0(S∨S) and GW0(Z) by the isomorphism

π0(S∨S)
η
−→ GW0(Z)

(
1 1
0 1

)
−−−→ GW0(Z).

Proof. The isotropy separation sequences for the Z/2-spectra S and KR(Z) give a
commutative diagram

0 // π0ShZ/2 //

∼=
��

π0SZ/2 //

��

π08
Z/2S∼= π0S //

∼=
��

tt

0

· · · // π0 KR(Z)hZ/2 // π0 GW(Z) // π08
Z/2 KR(Z)∼=W0(Z) // 0

with exact rows. The outer vertical maps are the units of the ring structures on
K(Z) and W (Z), respectively. The splitting of the upper sequence is the tom Dieck
splitting. It follows that the bottom sequence splits as well, and that the middle
map is an isomorphism. The diagram

π0S

��

∼=
// π0ShZ/2 //

∼=
��

π0SZ/2

∼=
��

π0 K(Z)
∼=

// π0 KR(Z)hZ/2 // π0 GW(Z)

commutes, and the composite of the two lower maps takes the isomorphism class
of a free Z-module to its hyperbolic form. Moreover, the composite

π0S→ π0SZ/2
→ π0 GW(Z)

is the unit of the ring structure of π0 GW(Z), and it takes the generator to 〈1〉. The
identification of the restricted assemblies now follows from Proposition 2.7.4. �

3. The real trace map

3.1. Real topological Hochschild homology. We recollect some results on real
topological Hochschild homology from [Hesselholt and Madsen 2015; Dotto 2012;
Høgenhaven 2016; Dotto et al. 2017]. The real topological Hochschild homology
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of a ring spectrum with anti-involution A is a genuine Z/2-spectrum THR(A). It is
determined by a strict Z/2-action on the Bökstedt model for topological Hochschild
homology THH(A) of the underlying ring spectrum. We start by recalling its con-
struction from [Hesselholt and Madsen 2015].

Let A be a ring spectrum with anti-involution, possibly nonunital, and I the
category of finite sets and injective maps. For any nonnegative integer k there
is a functor �•A : I×k+1

→ Sp to the category of orthogonal spectra that sends
i = (i0, i1, . . . , ik) to the spectrum

�i0+i1+···+ik (S∧ Ai0 ∧ Ai1 ∧ · · · ∧ Aik ).

Its homotopy colimit constitutes the k-simplices of a semisimplicial orthogonal
spectrum

THHk(A) := hocolim
i∈I×k+1

�i0+i1+···+ik (S∧ Ai0 ∧ Ai1 ∧ · · · ∧ Aik );

see, e.g., [Dundas et al. 2013, Definition 4.2.2.1]. The involution on I described in
Section 2.2 induces an involution on I×k+1, sending (i0, i1, . . . , ik) to (i0, ik, . . . , i1)

(it is the k-simplices of the dihedral Bar construction on I with respect to the
disjoint union). The diagram �•A admits a Z/2-structure in the sense of [Dotto
and Moi 2016, Definition 1.1], defined by conjugating a loop with the maps

Si0+i1+···+ik
χi0∧χi1∧···∧χk
−−−−−−−−→ Si0+i1+···+ik

idi0 ∧χk
−−−−→ Si0+ik+···+i1

and

Ai0∧ Ai1∧· · ·∧ Aik

χi0∧χi1∧···∧χk
// Ai0∧ Ai1∧· · ·∧ Aik

idi0 ∧χk
// Ai0∧ Aik∧· · ·∧ Ai1

w∧···∧w
��

Ai0∧ Aik∧· · ·∧ Ai1

where χ j ∈ 6 j is the permutation that reverses the order of {1, . . . , j}. Thus the
homotopy colimit THHk(A) inherits a Z/2-action which induces a semisimplicial
map THH•(A)op

→ THH•(A). This therefore forms a real semisimplicial spectrum
THH•(A).

Definition 3.1.1 [Hesselholt and Madsen 2015]. The real topological Hochschild
homology of A is the Z/2-spectrum THR(A) defined as the thick geometric re-
alization of the semisimplicial Z/2-spectrum sde THH•(A), where sde is Segal’s
edgewise subdivision.

Remark 3.1.2. When A is unital the real semisimplicial spectrum THH•(A) is in
fact simplicial. The map THR(A)→ |THH•(A)| to the thin geometric realization
is a stable equivalence of Z/2-spectra provided that A is levelwise well-pointed
and that the unit S0

→ A0 is an h-cofibration; see [Dotto et al. 2017, §2.3]. In



K-THEORY OF HERMITIAN MACKEY FUNCTORS, REAL TRACES, AND ASSEMBLY 299

order to consider the circle action induced by the cyclic structure, one should work
under these extra assumptions with the thin realization.

We recall that the Z/2-equivariant orthogonal spectrum A can be evaluated at
any d-dimensional Z/2-representation V by setting AV := Iso(Rd , V )+ ∧O(d) Ad .

Lemma 3.1.3. Suppose that for every n ≥ 0 the space An is (n−1)-connected, and
the fixed-points space AZ/2

nρ is (n− 1)-connected, where ρ is the regular represen-
tation of Z/2. Then the Z/2-spectrum THR(A) is an equivariant �-spectrum. In
particular, the map∥∥sde hocolim

i∈I×k+1
�i0+i1+···+ik (Ai0 ∧ Ai1 ∧ · · · ∧ Aik )

∥∥→�∞Z/2 THR(A)

is an equivalence, where �∞Z/2 denotes the genuine equivariant infinite loop space
functor.

Example 3.1.4. (i) Any suspension spectrum satisfies the hypotheses of the above
lemma. Indeed, (S∧X)n= Sn

∧X is (n+conn X)-connected nonequivariantly,
and conn X ≥ −1. Similarly, the fixed points (S∧ X)Z/2nρ = Sn

∧ XZ/2 are
(n+ conn XZ/2)-connected.

(ii) Eilenberg–Mac Lane spectra of abelian groups with Z/2-action satisfy this
condition as well; see, e.g., [Dotto 2016, Proposition A.1.1].

Proof of Lemma 3.1.3. We need to show that for every Z/2-representation V , the
adjoint structure map∥∥hocolim

i∈I×2k+2
�i (SV

∧ Ai0 ∧ Ai1 ∧ · · · ∧ Ai2k+1)
∥∥

σ
−→�ρ

∥∥hocolim
i∈I×2k+2

�i (Sρ ∧ SV
∧ Ai0 ∧ Ai1 ∧ · · · ∧ Ai2k+1)

∥∥
is an equivalence. It is shown in [Dotto et al. 2017, §2.3] using a semistability
argument that there is an equivalence

hocolim
n∈N

�nρ⊗(kρ+2)(Sρ ∧ SV
∧ Anρ ∧ A∧2k+1

nρ )

∼
−→ hocolim

i∈I×2k+2
�i (Sρ ∧ SV

∧ Ai0 ∧ Ai1 ∧ · · · ∧ Ai2k+1),

where the involution on 2k + 1 reverses the order. The source of this map is
equivariantly connected for every k, by our connectivity assumption. Indeed, it
is nonequivariantly

(2+ dim V )+ (2k+ 2)(conn Anρ)+ 2k+ 1− dim(nρ⊗ (kρ+ 2))

= (2+ dim V )+ (2k+ 2)(2n− 1)+ 2k+ 1− 2n(2k+ 2)

= (1+ dim V )+ (2k+ 2)(2n)− 2n(2k+ 2)= (1+ dim V )
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connected, and its connectivity on fixed points is the minimum between 1+ dim V
and

dim(ρ+ V )Z/2+ conn(AZ/2
nρ ∧ A∧k

nρ ∧ AZ/2
nρ )− dim(2nρ+ nkρ⊗ ρ)Z/2

= 1+ dim V Z/2
+ (n− 1)+ k(2n− 1)+ (n− 1)+ k+ 1− (2n+ 2nk)

= dim V Z/2
≥ 0.

By [Hesselholt and Madsen 1997, Lemma 2.4] we can therefore commute real-
ization and loops, and the map σ above is equivalent to the realization of the
semisimplicial map

hocolim
i∈I×2k+2

�i (SV
∧ Ai0 ∧ Ai1 ∧ · · · ∧ Ai2k+1)

σk
−→�ρ hocolim

i∈I×2k+2
�i (Sρ ∧ SV

∧ Ai0 ∧ Ai1 ∧ · · · ∧ Ai2k+1).

We show that σk is an equivariant equivalence for all k ≥ 0. Again by [Dotto et al.
2017, §2.3] this map is equivalent to the map

hocolim
n∈N

�nρ⊗(kρ+2)(SV
∧ Anρ ∧ A∧2k+1

nρ )

→ hocolim
n∈N

�nρ⊗(kρ+2)�ρ(Sρ ∧ SV
∧ Anρ ∧ A∧2k+1

nρ ),

the homotopy colimit of �nρ⊗(kρ+2) applied to the unit ηn : Xn→�ρ(Sρ ∧ Xn) of
the loop-suspension adjunction, where Xn := SV

∧Anρ∧A∧2k+1
nρ . By the equivariant

Freudenthal suspension theorem, ηn is nonequivariantly roughly

2 conn Xn = 2(dim V + (2k+ 2)(2n− 1)+ 2k+ 1)(dim V + 4n(k+ 1)− 1)

connected, and its connectivity on fixed points is roughly the minimum of

conn Xn = dim V + 4n(k+ 1)− 1,

2 conn XZ/2
n = 2(dim V Z/2

+ 2(n− 1)+ k(2n− 1)+ k+ 1).

Thus on fixed points, ηn is roughly (dim V + 4n(k+ 1))-connected. It follows that
�nρ⊗(kρ+2)ηn is nonequivariantly approximately

cn := 2(dim V + 4n(k+ 1))− dim(nρ⊗ (kρ+ 2))

= 2 dim V + 8n(k+ 1)− 2n(2k+ 2)= 2 dim V + 4n(k+ 1)

connected. Its connectivity on fixed points is the minimum of 2 dim V + 4n(k+ 1)
and

(dim V+ 4n(k+1))−dim(nρ⊗(kρ+2))Z/2 = (dim V+ 4n(k+1))−(2n+2nk)

= dim V+2n(k+1),
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which is dn := dim V + 2n(k+ 1). Since both cn and dn diverge with n for every
k ≤ 0, the maps �nρ⊗(kρ+2)ηn induce an equivalence on homotopy colimits. �

Remark 3.1.5. Under the connectivity assumptions of Lemma 3.1.3, the Z/2-
spectrum THR(A) arises as the Z/2-spectrum of a Z/2-0-space whose value at
the pointed set n+ = {+, 1, . . . , n} is the Z/2-space

THR(A)n :=
∥∥sde hocolim

i∈I×k+1
�i0+i1+···+ik (Ai0 ∧ Ai1 ∧ · · · ∧ Aik ∧ n+)

∥∥.
Indeed, the value of the associated spectrum at a sphere Sn is the geometric real-
ization

THR(A)Sn :=
∣∣[p] 7→ THR(A)Sn

p

∣∣
∼=
∥∥sde hocolim

i∈I×k+1
|�i0+i1+···+ik (Ai0 ∧ Ai1 ∧ · · · ∧ Aik ∧ Sn

p)|
∥∥,

and under our connectivity assumptions the canonical map

|�i0+i1+···+ik (Ai0∧Ai1∧· · ·∧Aik∧Sn
p)|
∼
−→�i0+i1+···+ik (Ai0∧Ai1∧· · ·∧Aik∧|S

n
p|)

is an equivariant equivalence with respect to the action of the stabilizer group of
(i0, . . . , ik) ∈ I×k+1; see [Hesselholt and Madsen 1997, Lemma 2.4]. It follows
from [Dotto and Moi 2016, Corollary 2.22] that the map on homotopy colimits is
an equivariant equivalence.

Lemma 3.1.6. The real topological Hochschild homology functor THR commutes
with rationalizations on ring spectra with anti-involution which are levelwise well-
pointed and whose unit S0

→ A0 is an h-cofibration.

Proof. Under these assumptions the spectrum THR(A) is naturally equivalent to
the dihedral Bar construction of a flat replacement A[ of A with respect to the
smash product. This result is a generalization of [Shipley 2000, Theorem 4.2.8;
Patchkoria and Sagave 2016], and a proof can be found in [Dotto et al. 2017, §2.4].

Let SQ be a flat model for the rational Z/2-equivariant sphere spectrum. We
notice that if K+ is any finite pointed Z/2-set, the map

SQ
∼= SQ ∧

∧
K

S
∼
−→

∧
K+

SQ

given by the K-fold smash product of the unit maps of SQ smashed with SQ is
an equivalence. Nonequivariantly this is clear since SQ ' HQ is idempotent. On
geometric fixed points this is the map

8Z/2SQ ∧

∧
[k]∈K/(Z/2)

8(Z/2)k S

∼=8
Z/2SQ ∧

∧
[k]∈K/(Z/2)

S→8Z/2SQ ∧

∧
K/(Z/2)

8(Z/2)k SQ,
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which is the smash of the identity with the K/(Z/2)-fold smash of the unit maps
of 8(Z/2)k SQ, where (Z/2)k is the stabilizer group of k ∈ K .

Since the geometric fixed points 8Z/2SQ are also equivalent to HQ they are
idempotent, and the map is an equivalence. Thus we have constructed natural
equivalences

THR(A)∧SQ '
∣∣(A[)∧•+1

∧SQ

∣∣
∼
−→

∣∣(A[)∧•+1
∧S∧•+1

Q

∣∣
∼=
∣∣((A[)∧SQ)

∧•+1∣∣' THR(A∧SQ),

completing the proof. �

The real topological Hochschild homology spectrum also supports an assembly
map. Given a ring spectrum with anti-involution A and a well-pointed topological
group π , it is a map

THR(A)∧ Bdiπ+→ THR(A[π ]),

which is defined as the geometric realization of the map(
hocolim
i∈I×k+1

�i (Ai0 ∧ · · · ∧ Aik ∧ n+)
)
∧π×k+1
+

→ hocolim
i∈I×k+1

�i (Ai0 ∧π+ ∧ · · · ∧ Aik ∧π+ ∧ n+)

that commutes the smash product with the homotopy colimit and the loops. It is
shown in [Dotto et al. 2017, §5.2] that this map is in fact an equivalence. When
A= S is the sphere, there is a unit map S→ THR(S) which is defined by the map
into the homotopy colimit from the object i = 0.

Proposition 3.1.7 [Høgenhaven 2016]. The composite

S∧ Bdiπ+→ THR(S)∧ Bdiπ+→ THR(S[π ])

is an equivalence.

3.2. The definition of the real trace map. We adapt the construction of the trace
of [Bökstedt et al. 1993] to define a natural map of Z/2-0-spaces

tr : KR(A)→ THR(A)

for every ring spectrum with anti-involution A which is levelwise well-pointed,
whose unit S0

→ A0 is an h-cofibration, and which satisfies the connectivity hy-
pothesis of Lemma 3.1.3. Under these assumptions the Z/2-0-space THR(A) of
Remark 3.1.5 models the real topological Hochschild spectrum of A, and we can
use Proposition 2.3.3. At an object n+ ∈ 0op the trace is defined as the following
composite:
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KR(A)n =
∐

a=(a1,...,an)

Bσ
(
〈̃a〉× ĜL∨a (A)

) c
//
∐

a

3σ
∥∥Nσ

(
〈̃a〉× ĜL∨a (A)

)∥∥
∐

a

Bdi
∧

(
〈̃a〉×�∞I (M

∨

a1
(A)∨ · · · ∨M∨an

(A))
) ∐

a

Bdi(
〈̃a〉× ĜL∨a (A)

)
oo

∼

OO

∐
a

(
Bdi
〈̃a〉
)
×THR(M∨a1

(A)∨ · · · ∨M∨an
(A))

��

// THR(A)n

All the maps except for the last one leave the 〈a〉-coordinate untouched. The first
map c is the composition of the equivalence

Bσ
(
〈̃a〉× ĜL∨a (A)

)
→
∥∥Nσ

(
〈̃a〉× ĜL∨a (A)

)∥∥
of Lemma 2.1.11 and the inclusion of constant loops. Recall that3σ =Map(Sσ , – )
is the free loop space with respect to the sign representation. The second map is the
map of Lemma 2.1.12, and it is an equivalence because ĜL∨a (A) is quasiunital and
group-like, by Proposition 2.3.3. The third map includes the invertible components
and projects the products onto the smash products, where Bdi

∧
denotes the dihedral

Bar construction with respect to the smash product of spaces. The fourth map
commutes the smash products and the loops. The fifth map projects off the 〈̃a〉-
component, and on the THR factor it is induced by the maps of spaces

(M∨a1
(Ai0)∨· · ·∨M∨an

(Ai0))∧· · ·∧(M
∨

a1
(Aik )∨· · ·∨M∨an

(Aik ))→ Ai0∧· · ·∧Aik∧n+

defined as follows. An element of M∨a1
(Ai )∨· · ·∨M∨an

(Ai ) is an integer 1≤ j ≤ n,
a pair (c, d) ∈ a j × a j , and an element x ∈ Ai . The map above is then defined by
the formula

( j0, c0, d0, x0)∧ · · · ∧ ( jk, ck, dk, xk)

7→


x0 ∧ · · · ∧ xk ∧ j0 if j0 = · · · = jk,

d0 = c1, d1 = c2, . . . , dk−1 = ck,

and dk = c0,

∗ otherwise.

This map remembers the entries of a string of matrices when they are composable,
and it sends the remaining ones to the basepoint. The underlying map is analo-
gous to the trace map of [Dundas and McCarthy 1996, §1.6.17], and it is a weak
homotopy inverse for the map induced by the inclusion A→ M∨a (A) into the 1×1-
component. Although we won’t use this here, it is also an equivariant equivalence;
see [Dotto et al. 2017, §4.3].
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Let us denote by trcy the composite

trcy
n : KRcy(A)n :=

∐
a=(a1,...,an)

Bdi(
〈̃a〉× ĜL∨a (A)

)
→ THR(A)n.

All the spaces above extend to Z/2-0-spaces by a construction similar to the def-
inition of the 0-structure on KR. It is immediate to verify that the map c and
the upper-pointing equivalence are maps of Z/2-0-spaces. We verify that trcy is
compatible with the 0-structure.

Proposition 3.2.1. The map trcy
: KRcy(A)→ THR(A) is a well-defined map of

Z/2-0-spaces.

Proof. Let f : n+ → k+ be a pointed map. We need to verify that for every
collection of nonnegative integers a = (a1, . . . , an), the square

Bdi
(
〈̃a〉×ĜL∨a (A)

) trcy
//

f∗
��

∥∥sde hocolim
i∈I×p+1

�i0+i1+···+i p(Ai0∧Ai1∧· · ·∧Ai p∧n+)
∥∥

f∗
��

Bdi
(
〈̃ f∗a〉×ĜL∨f∗a(A)

) trcy
//
∥∥sde hocolim

i∈I×p+1
�i0+i1+···+i p(Ai0∧Ai1∧· · ·∧Ai p∧k+)

∥∥
commutes. We prove that this diagram commutes in simplicial degree p = 1; the
argument for higher p is similar. A 1-simplex of the upper left corner consists of
two pairs of families of permutations (β, α) and (α, β), where α, β ∈ 〈a〉, and a
pair of elements x, y ∈ �∞I (M

∨
a1
(A) ∨ · · · ∨ M∨an

(A)) belonging to an invertible
component. For a fixed pair (α, β), we need to show that the square

(M∨a1
(Ai0)∨ · · · ∨M∨an

(Ai0))∧ (M
∨
a1
(Ai1)∨ · · · ∨M∨an

(Ai1))
//(∨k

j=1(β,α) j

)
∧

(∨k
j=1(α,β) j

)
��

Ai0 ∧ Ai1 ∧ n+

id∧ id∧ f
��

(M∨a1
(Ai0)∨ · · · ∨M∨an

(Ai0))∧ (M
∨
a1
(Ai1)∨ · · · ∨M∨an

(Ai1))
// Ai0 ∧ Ai1 ∧ k+

commutes, where (α, β) j are the maps defined in Section 2.4 and the horizon-
tal maps are defined at the beginning of the section. The upper composite takes
( j0, (c0, d0), x0)∧( j1, (c1, d1), x1), where 1≤ jl ≤ n, (cl, dl)∈ a jl×a jl and x ∈ Ail

for l = 0, 1, to

x0 ∧ x1 ∧ f ( j0) if j0 = j1 and d0 = c1, d1 = c0,

and to the basepoint otherwise. The lower composite takes it to

x0∧x1∧ f ( j0) if f ( j0)= f ( j1) and β f −1 f ( j1)\ j0, j0(ι0d0)= β f −1 f ( j1)\ j1, j1(ι1c1),

α f −1 f ( j1)\ j1, j1(ι1d1)= α f −1 f ( j0)\ j0, j0(ι0c0),
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where ι0 : a j0 →
∐

i∈ f −1 f ( j0) ai is the inclusion, and similarly for ι1. We need to
show that these conditions are equivalent. Clearly the first condition implies the
second one.

Suppose that the second condition holds, and set i := f ( j0) = f ( j1). By con-
struction, the family of permutations α satisfies the condition

α( f −1i)\ j1, j1 ◦ (α j0,( f −1i)\{ j0, j1}q ida j1
)= α( f −1i)\ j0, j0 ◦ (ida j0

qα( f −1i)\{ j0, j1}, j1).

By evaluating this expression at ι0c0 we obtain that

α( f −1i)\ j1, j1◦(α j0,( f −1i)\{ j0, j1}q ida j1
)(ι0c0)=α( f −1i)\ j0, j0(ι0c0)=α( f −1i)\ j1, j1(ι1d1).

Since α( f −1i)\ j1, j1 is invertible we must have that

(α j0,( f −1i)\{ j0, j1}q ida j1
)(ι0c0)= ι1d1,

but since the left-hand map is the identity on a j1 and ι1 includes in a j1 we must
have that j0 = j1 and c0 = d1. A similar argument shows that d0 = c1. �

Let us finally verify that on underlying nonequivariant infinite loop spaces our
trace agrees with the trace of [Bökstedt et al. 1993]. Since the 0-spaces underlying
KR and THR and the K-theory and THH spectra of [Bökstedt et al. 1993] are
special, it is sufficient to compare the maps in spectrum level 1. Under the canonical
equivalence KR(A)S1 ' B

(∐
n BĜLn(A)

)
our trace is induced by the composite

BĜLn(A) // 3BĜLn(A) BcycĜLn(A)
∼
oo // Bcyc M̂n(A)

��

THH(A) THH(M∨n (A))
∼

oo
∼
// THH(Mn(A))

of the inclusion of constant loops, the canonical equivalence between the free loop
space and the cyclic nerve, the inclusion of ĜLn(A) in M̂n(A), the canonical map
that commutes the loops and the Bar construction, and the last two maps which
exhibit Morita invariance. This uses the naturality of the construction with respect
to the inclusion M∨n (A)→Mn(A). This composite is the same as the corresponding
map of [Bökstedt et al. 1993].

3.3. The trace splits the restricted assembly map. Let A be a ring spectrum with
anti-involution and π a well-pointed topological group. We recall that the restricted
assembly map of KR is a map of Z/2-spectra

A0
: S∧ Bσπ+

η∧id
−−→ KR(A)∧ Bσπ+→ KR(A[π ])

(see Definition 2.7.5). We let p : Bdiπ→ Bσπ denote the projection.
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Theorem 3.3.1. The restricted assembly map for the sphere spectrum

A0
: S∧ Bσπ+→ KR(S[π ])

is a split monomorphism in the homotopy category of Z/2-spectra. A natural re-
traction is provided my the map

KR(S[π ]) tr
−→ THR(S[π ]) ∼←− S∧ Bdiπ+

p
−→ S∧ Bσπ+.

Proof. We complete the following commutative diagram of Z/2-0-spaces by defin-
ing the dashed arrows

n+ ∧ Bσπ+
A0

//

c
��

KRn(S[π ])
c
//
∐

a 3
σ
∥∥Nσ

(
〈̃a〉× ĜL∨a (S[π ])

)∥∥
n+ ∧ (3σ‖Nσπ‖)+

22

∐
a Bdi

(
〈̃a〉× ĜL∨a (S[π ])

)∼l
OO

trcy

��

n+ ∧ Bdiπ+ ∼
//

11

∼ l

OO

THRn(S[π ])

Here the bottom map is the equivalence of Proposition 3.1.7, the map l is the
equivalence of Lemma 2.1.12, and the vertical map c is induced by the composite

Bσπ→3σ Bσπ ∼−→3σ‖Nσπ‖

of the inclusion of constant loops and the canonical equivalence of Lemma 2.1.11.
This shows that in the homotopy category the map

KR(S[π ]) tr
−→ THR(S[π ])' S∧ Bdiπ+

equals the composition of c and the inverse of l. Since p = ev ◦ l, where the
evaluation map ev : 3σ‖Nσπ‖ → ‖Nσπ‖ splits c, we have that p splits l−1

◦ c,
and this will conclude the proof.

The lower dashed map is defined as the adjoint of the map of Z/2-spaces

Bdiπ+→
∐
k≥0

BdiĜL∨k (S[π ])

that sends + to zero, and that includes Bdiπ in the k = 1 summand by the dihedral
nerve of the map of monoids with anti-involution π→ ĜL∨1 (S[π ]). The upper
dashed map is adjoint to the map of Z/2-spaces

(3σ‖Nσπ‖)+→
∐
k≥0

3σ‖Nσ ĜL∨k (S[π ])‖,

induced by the same map π→ ĜL∨1 (S[π ]). The bottom right triangle commutes
since the trace map leaves the k = 1 summand essentially untouched. The middle
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rectangle commutes by naturality of the map l. The upper left triangle of the
diagram commutes by construction, since both A0 and the upper dashed map are
induced by π→ ĜL∨1(S[π ]). �

Corollary 3.3.2. Let π be a topological group which is cofibrant as a Z/2-space.
The fixed-points spectrum GW(S[π ]) splits off a copy of

(S∧ Bσπ+)Z/2 ' S∧ ((Bπ ×RP∞)q (Bσπ)Z/2)+.

If π is discrete, the second term decomposes further as

(Bσπ)Z/2 ∼=
∐

{[g] | g2=1}

BZπ 〈g〉

by Lemma 2.1.9.

Proof. The splitting follows immediately from Theorem 3.3.1. By the Segal–tom
Dieck splitting there is a natural decomposition

(S∧ Bσπ+)Z/2 ' S∧ ((Bσπ)hZ/2q (Bσπ)Z/2)+.

We recall by Lemma 2.1.9 that there is an equivariant map Bπ→ Bσπ which is
a nonequivariant equivalence, where Bπ has the trivial involution. This gives an
equivalence

(Bσπ)hZ/2
∼
←− (Bπ)hZ/2 = Bπ ×RP∞. �

Corollary 3.3.3. The restricted assembly maps of the Hermitian K-theory and gen-
uine L-theory of the spherical group-ring of Definition 2.7.6,

S∧ (Bπ q Bπ)+→ GW(S[π ]),

S∧ Bπ+→ Lg(S[π ]),

are naturally split monomorphisms in the homotopy category of spectra.

Proof. We start by proving the claim for L-theory. By Theorem 3.3.1 the second
map in the composite

S∧ Bπ+
λ
// S∧ (Bσπ)Z/2+

∼
// 8Z/2(S∧ Bσπ+) // Lg(S[π ])

xx

splits. Thus it is sufficient to show that the first map splits, and a retraction is
provided by the inclusion of fixed points ι : (BσπZ/2)→ Bπ , by Lemma 2.1.9.
Similarly, the restricted assembly of the Hermitian K-theory is the composite

S∧(BπqBπ)+ // S∧((Bσπ)Z/2q(Bσπ)hZ/2)+
∼
// (S∧Bσπ+)Z/2 // GW(S[π ]),

yy

and it is sufficient to show that the first map is a split monomorphism. The first
summand is again split by the inclusion of fixed points. The second summand is
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split by the projection map

(Bσπ)hZ/2
∼
←− (Bπ)hZ/2 ∼= Bπ ×RP∞→ Bπ. �

We remark that the same argument of the proof of Corollary 3.3.3 shows that
the restricted assembly map of any ring spectrum with anti-involution which is
rationally equivalent to the sphere spectrum splits rationally. We will be particularly
interested in the case where A = HA

[1
2

]
is the Eilenberg–Mac Lane spectrum of

the Burnside Mackey functor A
[1

2

]
with 2 inverted. In particular, for L-theory we

obtain the following.

Corollary 3.3.4. Let A be a ring spectrum with anti-involution which satisfies the
hypotheses of Lemma 3.1.6. Suppose that the unit map S→ A is a rational equiv-
alence of underlying Z/2-spectra. Then the rationalized restricted assembly map
in L-theory

A0
: HQ∧ Bπ+ ' (S∧ Bπ+)⊗Q→ Lg(A[π ])⊗Q

is naturally split by the map

T : Lg(A[π ]) tr
−→8Z/2 THR(A[π ]) ∼Q

←−− S∧ (Bdiπ)
Z/2
+

p
−→ S∧ (Bσπ)Z/2+

2.1.9
−−→ S∧ Bπ+. �

4. Application to the Novikov conjecture

Let π be a discrete group and Lq(Z[π ]) the quadratic L-theory spectrum of the
corresponding integral group-ring. The assembly map of quadratic L-theory is a
map of spectra

AZ[π ] : Lq(Z)∧ Bπ+→ Lq(Z[π ]).

The Novikov conjecture for the discrete group π is equivalent to the injectivity
on rational homotopy groups of the map AZ[π ]. Rationally, Lq(Z) is a Laurent
polynomial algebra on one generator β of degree 4. Thus, on rational homotopy
groups the assembly map above takes the form

AZ[π ] :Q[β, β
−1
]⊗ H∗(Bπ;Q)→ Lq

∗(Z[π ])⊗Q.

Remark 4.1. Since the assembly map is a map of Q[β, β−1
]-modules, it is suffi-

cient to show that AZ[π ] does not annihilate the polynomials with nonzero constant
term

x = 1⊗ xn +β⊗ xn−4+ · · ·+β
k
⊗ xn−4k ∈ (Q[β]⊗ H∗(Bπ;Q))n,

where k ≥ 0 and xn 6= 0 for every n ≥ 0. Indeed, any degree j element y of
Q[β, β−1

]⊗ H∗(Bπ;Q) can be written as y = β−l x , where x is of the form above
and l is the lowest power with nonzero coefficient of y. Then AZ[π ](y)=β−lAZ[π ](x)
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is nonzero if and only if AZ[π ](x) is nonzero. In particular, we can restrict our
attention to the connective cover of the assembly map.

We let A1/2 be the Burnside Tambara functor with 2 inverted, and HA1/2 a
cofibrant strictly commutative orthogonal Z/2-equivariant ring spectrum model
for its Eilenberg–Mac Lane spectrum (for the existence, see, e.g., [Ullman 2013,
Theorem 5.1]). We let d : A1/2[π ] → Z1/2[π ] be the rank map, as defined in
Example 1.2.7.

Theorem 4.2. For any discrete group π , there is a lift AZ[π ] of the assembly map
for the integral group-ring

Lg
∗(A1/2[π ])⊗Q

d
��

Q[β]⊗ H∗(Bπ;Q) AZ[π ]

//

AZ[π ]

22

Lq
∗≥0(Z[π ])⊗Q∼=Lg

∗(Z1/2[π ])⊗Q

which does not annihilate the polynomials with nonzero constant term. Thus the
Novikov conjecture holds for π if and only if the image of AZ[π ] intersects the
kernel of d trivially.

The way the lift AZ[π ] is constructed allows us to further reduce the Novikov
conjecture to a statement about the algebraic structure of Lg

∗(A1/2[π ])⊗Q that
does not involve the map d . After inverting 2 the morphism of Hermitian Mackey
functors d : A1/2→ Z1/2 splits (although not as a Tambara functor). This induces
a map

sπ : Lg(Z1/2[π ])⊗Q→ Lg(A1/2[π ])⊗Q,

which is a section for d (see Lemma 4.4). For the trivial group π = 1 this provides
an additive inclusion s = s1 :Q[β] → Lg

∗(A1/2[π ])⊗Q. In particular, s(1) defines
an element in the ring Lg

0(A1/2) which acts on Lg
∗(A1/2[π ]) by Proposition 2.5.1.

Corollary 4.3. Every element x ∈Q[β]⊗ H∗(Bπ;Q) satisfies the identity

sπAZ[π ](x)= s(1) ·AZ[π ](x) ∈ Lg
∗(A1/2[π ])⊗Q,

where sπ is injective and AZ[π ](x) is nonzero when x has nonzero constant term. It
follows that the Novikov conjecture holds for π if and only if multiplication by s(1)

s(1) : Lg
∗(A1/2[π ])⊗Q→ Lg

∗(A1/2[π ])⊗Q

is injective on the image of AZ[π ].

Proof of Theorem 4.2. We first note that the isomorphism

Lg
∗(Z1/2[π ])⊗Q∼= Lq

∗≥0(Z[π ])⊗Q
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is a consequence of Proposition 2.6.7 and the fact that the map Z[π ] → Z1/2[π ] in-
duces an isomorphism Lq

∗(Z[π ])
[ 1

2

]
∼= Lq

∗(Z1/2[π ])
[ 1

2

]
on the quadratic L-groups.

The latter is an immediate consequence of [Ranicki 1981, Proposition 3.6.4(ii)]
(see also [Loday 1976, Théorème 3.2.6]). It follows from Proposition 2.7.4 that
the assemblies agree under this isomorphism.

The additive section s : Q[β] → Lg
∗(A1/2)⊗Q of Lemma 4.4 prescribes a lift

s(β) of the polynomial generator β. Since Lg
∗(A1/2) is a ring, s(β) defines a mul-

tiplicative section u :Q[β] → Lg
∗(A1/2)⊗Q. We define AZ[π ] to be the composite

AZ[π ] :Q[β]⊗H∗(Bπ;Q)
u⊗id
−−−→ Lg

∗(A1/2)⊗H∗(Bπ;Q)
AA[π ]
−−−→ Lg

∗(A1/2[π ])⊗Q,

where AA[π ] is the assembly of Definition 2.7.3. Since dAA[π ] =AZ[π ](d⊗ id) and
u is a section for d, it follows that dAZ[π ] =AZ[π ].

Now let us show that AZ[π ] does not annihilate the polynomials with nonzero
constant term, that is, that for every

x = 1⊗ xn +β⊗ xn−4+ · · ·+β
k
⊗ xn−4k ∈ (Q[β]⊗ H∗(Bπ;Q))n

with k ≥ 0 and xn 6= 0, we have that AZ[π ](x) is nonzero. We let

T : Lg
∗(A1/2[π ])⊗Q→ H∗(Bπ;Q)

be the map of Corollary 3.3.4, which defines a retraction for the restricted assembly
map A0

A[π ]. In order to show that AZ[π ](x) is nonzero it is sufficient to show that
TAZ[π ](x) is nonzero in H∗(Bπ;Q). We write

TAZ[π ](x)= TAZ[π ](1⊗ xn)+ TAZ[π ](β⊗ xn−4+ · · ·+β
k
⊗ xn−4k).

We remark that since the section u is multiplicative, the restriction of AZ[π ] to the
summand (Q · 1)⊗ H∗(Bπ;Q) agrees with the restricted assembly map A0

A[π ].
Since T splits A0

A[π ] by Corollary 3.3.4, it follows that

TAZ[π ](1⊗ xn)= TA0
A[π ](xn)= xn 6= 0.

It is therefore sufficient to show that TAZ[π ](β⊗ xn−4+ · · ·+β
k
⊗ xn−4k) is zero.

We prove this by invoking the naturality of T and AZ[π ] with respect to group
homomorphisms. By the Kan–Thurston theorem there is a group π〈n−1〉 and a map
Bπ〈n−1〉→ (Bπ)(n−1) to the (n− 1)-skeleton of Bπ which is a homology isomor-
phism. Taking the first homotopy group of the composite Bπ〈n−1〉→(Bπ)(n−1) ↪→Bπ
gives a group homomorphism λ : π〈n−1〉→ π . In order to emphasize the naturality
of our transformations in the group π we add a superscript to our notations. By



K-THEORY OF HERMITIAN MACKEY FUNCTORS, REAL TRACES, AND ASSEMBLY 311

naturality, there is a commutative diagram

(Q[β]⊗H∗(Bπ〈n−1〉;Q))n

AZ[π〈n−1〉]
//

id⊗λ
��

Lg
n(Z[π〈n−1〉])⊗Q

λ
��

Tπ〈n−1〉
// Hn(Bπ〈n−1〉;Q)= 0

λ
��

(Q[β]⊗H∗(Bπ;Q))n
AZ[π ]

// Lg
n(Z[π ])⊗Q

Tπ
// Hn(Bπ;Q)

Since λ :H j ((Bπ)(n−1)
;Q)∼=H j (Bπ〈n−1〉;Q)→H j (Bπ;Q) is surjective for j<n,

we can write

β⊗ xn−4+ · · ·+β
k
⊗ xn−4k = β⊗ λ(yn−4)+ · · ·+β

k
⊗ λ(yn−4k)

for some coefficients y j ∈ H j (Bπ〈n−1〉;Q). By the commutativity of the diagram
above we see that

T πAZ[π ](β⊗ xn−4+ · · ·+β
k
⊗ xn−4k)

= λ T π〈n−1〉AZ[π〈n−1〉](β⊗ yn−4+ · · ·+β
k
⊗ yn−4k)︸ ︷︷ ︸

0
must vanish.

Now suppose that the kernel of d intersects the image of AZ[π ] trivially, and let
x ∈Q[β]⊗ H∗(Bπ;Q) be a polynomial with nonzero constant term. By the previ-
ous argument AZ[π ](x) is nonzero, and therefore it cannot belong to the kernel of d .
So, we have that dAZ[π ](x) = AZ[π ](x) is nonzero. By Remark 4.1 the Novikov
conjecture holds for π . Conversely, if AZ[π ] is injective d must be injective on the
image of AZ[π ]. �

Lemma 4.4. The rank map

d : Lg(A1/2[π ])
[ 1

2

]
→ Lg(Z1/2[π ])

[1
2

]
admits a section sπ in the homotopy category, which is natural in π with re-
spect to group homomorphisms. When π = 1 is the trivial group, this section
s : Lg(Z1/2)

[1
2

]
→ Lg(A1/2)

[ 1
2

]
is multiplicative, but not unital, on rational homo-

topy groups.

Proof. The map of Hermitian Mackey functors d : A1/2→ Z1/2 splits. A section
T
2 : Z1/2→ A1/2 is defined by the identity on the underlying ring, and by the map(

0, 1
2

)
: Z1/2→ Z1/2⊕Z1/2

on fixed points. We remark that T
2 is not a map of Tambara functors, since

(
0, 1

2

)
is

not unital with respect to the ring structure of the Burnside ring Z1/2⊕Z1/2. How-
ever, it is a morphism of Hermitian Mackey functors, and it extends to a morphism
of Hermitian Mackey functors Z1/2[π ] → A1/2[π ]. This induces a section for d in
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Hermitian K-theory

s̄π : GW(Z1/2[π ])→ GW(A1/2[π ]).

Since T
2 is not a map of Tambara functors it is not clear if it can be realized as a

map of Z/2-equivariant commutative ring spectra HZ1/2→ HA1/2, and thus s̄π
does not a priori come from a map of real K-theory spectra. It is therefore not
immediately clear if s̄π induces a map on geometric fixed-points spectra.

The isotropy separation sequences for KR(A1/2[π ]) and KR(Z1/2[π ]) are com-
pared by a commutative diagram

K(Z1/2[π ])hZ/2
tran

// GW(Z1/2[π ])

s̄π
��

φ
// Lg(Z1/2[π ])

sπ
��

K(A1/2[π ])hZ/2
tran

// GW(A1/2[π ])
φ
// Lg(A1/2[π ])

where the rows are cofiber sequences. After inverting 2 the transfer map of a Z/2-
spectrum X is naturally split by the map(

X
[ 1

2

])Z/2 r
−→
(
X
[1

2

])hZ/2
'
(
X
[ 1

2

])
hZ/2,

and therefore the cofiber of the transfer is equivalent to the homotopy fiber of the
restriction map r . For the spectra X = KR the map r is induced by the forgetful
functor that sends a Hermitian form to its underlying module. Since the functor
induced by T

2 on Hermitian forms commutes with the forgetful functor, it induces
a map sπ on the homotopy fibers of the maps r .

When π is trivial, the maps φ are maps of rings, and s̄ is multiplicative by
Remark 1.3.4. On rational homotopy groups (or in fact away from 2) the isotropy
separation sequence gives short exact sequences

πn K(Z1/2)hZ/2⊗Q //
tran

// GWn(Z1/2)⊗Q

s̄n
��

φn
// // Lg

n(Z1/2)⊗Q

sn
��

πn K(A1/2)hZ/2⊗Q //
tran

// GWn(A1/2)⊗Q
φn
// // Lg

n(A1/2)⊗Q

for every n ≥ 0. Then sn is given by sn(x)= φn s̄n(y) for some y ∈GWn(Z1/2)⊗Q

such that φn(y)= x , and it does not depend on such choice. Since φ is multiplica-
tive, if φn(y)= x and φm(y′)= x ′ we have that φn+m(yy′)= xx ′. Thus

sn+m(xx ′)= φn+m s̄n+m(yy′)= (φn s̄n(y))(φm s̄m(y′))= sn(x)sm(x ′),

proving that s is multiplicative on rational homotopy groups. �
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Proof of Corollary 4.3. Let sπ denote the natural section of Lemma 4.4. This fits
into a diagram

Lg
∗(A1/2)⊗ H∗(Bπ;Q)

AA[π ]
// Lg
∗(A1/2[π ])⊗Q

Q[β]⊗ H∗(Bπ;Q) AZ[π ]

//

s⊗id

OO

u⊗id

OO

Lq
∗≥0(Z[π ])⊗Q∼=Lg

∗(Z1/2[π ])⊗Q

sπ

OO

where the right rectangle commutes. We observe that s does not commute with
the unit maps of KR∗(A1/2) and KR∗(Z1/2), and therefore that sπ does not com-
mute with the restricted assembly maps. The map s, however, is multiplicative by
Lemma 4.4, and since u sends by definition β to s(β) we have that s = s(1) · u,
and that s(1) is idempotent. Since AA[π ] is a map of Lg

∗(A1/2)-modules, we have
that for every nonzero x ∈Q[β]⊗ H∗(Bπ;Q),

sπAZ[π ](x)=AA[π ](s⊗ id)(x)=AA[π ]((s(1) · u)⊗ id)(x)

= s(1) · (AA[π ](u⊗ id)(x))= s(1) ·AZ[π ](x).

If the Novikov conjecture holds, the left-hand term must be nonzero since sπ is
injective. Thus s(1) must act injectively on the image of AZ[π ]. Conversely, if
s(1) acts injectively on the image of AZ[π ], the right-hand term must be nonzero
when x is a polynomial with nonzero constant term, since AZ[π ](x) is nonzero by
Theorem 4.2. It follows that AZ[π ](x) is nonzero, and this implies the Novikov
conjecture by Remark 4.1. �
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for products of Severi–Brauer varieties
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For X a product of Severi–Brauer varieties, we conjecture that if the Chow ring
of X is generated by Chern classes, then the canonical epimorphism from the
Chow ring of X to the graded ring associated to the coniveau filtration of the
Grothendieck ring of X is an isomorphism. We show this conjecture is equiva-
lent to the condition that if G is a split semisimple algebraic group of type AC,
B is a Borel subgroup of G and E is a standard generic G-torsor, then the canon-
ical epimorphism from the Chow ring of E/B to the graded ring associated with
the coniveau filtration of the Grothendieck ring of E/B is an isomorphism. In
certain cases we verify this conjecture.

Notation and Conventions. We fix a field k throughout. All of our objects are
defined over k unless stated otherwise. Sometimes we use k as an index when no
confusion will occur.

For any field F , we fix an algebraic closure F .
A variety X is a separated scheme of finite type over a field.
Let X = X1× · · ·× Xr be a product of varieties with projections πi : X→ X i .

Let F1, . . . ,Fr be sheaves of modules on X1, . . . , Xr . We use F1 � · · ·�Fr for
the external product π∗1F1⊗ · · ·⊗π

∗
r Fr .

For a ring R with a Z-indexed descending filtration F •ν (e.g., ν = γ or τ as
in Section 2), we write gri

νR for the corresponding quotient F i
ν/F i+1

ν . We write
grνR =

⊕
i∈Z gri

νR for the associated graded ring.
A semisimple algebraic group G is of type AC if its Dynkin diagram is a union

of diagrams of type A and type C . Similarly a semisimple group G is of type AA
if its Dynkin diagram is a union of diagrams of type A.

For elements i, j of an index set I, we write δi j for the function which is 0 when
i 6= j and 1 if i = j .
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Given two r-tuples of integers, say I, J , we write I < J if the i-th component
of I is less than the i-th component of J for any 1≤ i ≤ r .

1. Introduction

For any smooth variety X , the coniveau spectral sequence for algebraic K-theory
induces a canonical epimorphism CH(X)→ grτG(X) from the Chow ring of X
to the associated graded ring of the coniveau filtration on the Grothendieck ring
of X (for notation related to Grothendieck rings see Section 2). The kernel of
this epimorphism is torsion, as can be seen using the Grothendieck–Riemann–
Roch without denominators. In general this can’t be refined: there are examples
of smooth varieties where the kernel of the K-theory coniveau epimorphism is
nontrivial. With this in mind, a particularly difficult problem has been finding
families of varieties where this epimorphism is, or fails to be, an isomorphism. In
this direction we propose the following:

Conjecture 1.1. Let X be a product of Severi–Brauer varieties. If the Chow
ring CH(X) of X is generated by Chern classes, then the canonical epimorphism
CH(X)→ grτG(X) is an isomorphism.

Since the ring grτG(X) is computable for such X (see Section 2 for recollections
on the Grothendieck rings of Severi–Brauer varieties and their products), a positive
answer to Conjecture 1.1 could then be interpreted as a method for computing the
Chow ring of such varieties. This is carried out, for instance, in [Karpenko 2017b,
Theorem 3.1], where Karpenko shows a special case of Conjecture 1.1 and, using
this, is able to compute the Chow ring of certain generic Severi–Brauer varieties.

In Section 3, we give some evidence that a positive answer to Conjecture 1.1 is a
likely one. The main result of this section, Theorem 3.3, shows that Conjecture 1.1
is equivalent to a particular case of an older conjecture of Karpenko:1

Conjecture 1.2. Let G be a split semisimple algebraic group, E a standard generic
G-torsor, and P a special parabolic subgroup of G. Then the canonical epimor-
phism CH(E/P)→ grτG(E/P) is an isomorphism.

The proof uses an analysis of the products of Severi–Brauer varieties one obtains
from a standard generic G-torsor for algebraic groups of type AA along with various
specialization maps.

In Appendix A, we introduce the notion of the level of a central simple algebra.
We show how the level gives a useful description of the Grothendieck ring of a

1In its original formulation [Karpenko 2017a, Conjecture 1.1], Conjecture 1.2 only asserts there
is an isomorphism in the case P is a Borel subgroup. However, to prove Conjecture 1.2 for all special
parabolic subgroups of G it suffices to check that the result holds for a particular choice of special
parabolic subgroup P . These two forms of Conjecture 1.2 are then equivalent since a Borel subgroup
is special.
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Severi–Brauer variety and use this description in the main result of this section,
Theorem A.15, where we prove Conjecture 1.1 for a single Severi–Brauer variety
associated to a central simple algebra of level 1. This generalizes the previously
known results obtained in [Karpenko 2017b, Theorem 3.1].

2. Grothendieck rings of Severi–Brauer varieties

By K(X), we mean the Grothendieck ring of locally free sheaves (equivalently
vector bundles) on a variety X ; by G(X) we mean the Grothendieck group of
coherent sheaves on X . The i-th term of the γ -filtration on K(X) is denoted F i

γ (X);
the i-th term of the coniveau filtration on G(X) is denoted F i

τ (X).
There’s a canonical map ϕX : K(X)→ G(X) taking the class [L] ∈ K(X) of

a locally free sheaf L to the class [L] ∈ G(X). When X is smooth, ϕX is an
isomorphism giving G(X) the structure of a ring. The coniveau filtration is com-
patible with the ring structure on G(X), and ϕX (F i

γ (X)) ⊂ F i
τ (X). Moreover, if

the Chow ring CH(X) is generated by Chern classes, then ϕX (F i
γ (X)) = F i

τ (X);
see [Karpenko 1998, proof of Theorem 3.7].

We will often be working with the rings K(X) for X a Severi–Brauer variety
and for X a product of Severi–Brauer varieties.

In the case X is a Severi–Brauer variety, K(X) has been determined by Quillen.
To state this result, recall that X is the variety of right ideals of dimension deg(A)
in the central simple algebra A associated with X . The tautological vector bundle
ζX on X is a right A-module.

For any central simple algebra B, let us define K(B) as the Grothendieck group
of the category of finitely generated left B-modules. The group K(B) is infinite
cyclic with a canonical generator given by the class of a (unique up to isomorphism)
simple B-module.

Theorem 2.1 [Quillen 1973, §8, Theorem 4.1]. Let X be the Severi–Brauer variety
of a central simple algebra A. The group homomorphism

deg(A)−1⊕
i=0

K(A⊗i )→ K(X),

mapping the class of a left A⊗i -module M to the class of ζ⊗i
X ⊗A⊗i M , is an isomor-

phism.

Note that if F is a field over k, the pullback K(X)→ K(X F ) respects the de-
composition of Theorem 2.1, is injective, and the image

K(A⊗i )⊂ K(A⊗i
F )= Z

is generated by ind(A⊗i )/ind(A⊗i
F ). For i ≥ 0, let us write ζX (i) for the tensor

product (over A⊗i ) of ζ⊗i
X by a simple A⊗i -module. This is a vector bundle of
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rank ind(A⊗i ), and ζ⊗i
X decomposes into a direct sum of deg(A⊗i )/ind(A⊗i ) copies

of ζX (i).
A similar description is afforded to the rings K(X) for products X = X1×· · ·×Xr

of Severi–Brauer varieties:

Theorem 2.2 [Peyre 1995, Corollary 3.2]. Let X = X1 × · · · × Xr be a product
of Severi–Brauer varieties X1, . . . , Xr corresponding to central simple algebras
A1, . . . , Ar , respectively. Then the group homomorphism⊕

I<(deg(A1),...,deg(Ar ))

K(A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )→ K(X),

as I = (i1, . . . , ir ) ranges over r-tuples of nonnegative integers, is an isomor-
phism. Here the class of a left A⊗i1

1 ⊗ · · · ⊗ A⊗ir
r -module M is sent to the class

ζ
⊗i1
X1

� · · ·� ζ⊗ir
Xr
⊗

A
⊗i1
1 ⊗···⊗A⊗ir

r
M.

Similarly, if F is a field over k, the pullback K(X) → K(X F ) respects this
decomposition, is injective, and the image

K(A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )⊂ K((A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )F )= Z

is generated by ind(A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )/ind((A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )F ).
Given two products X = X1×· · ·× Xr and Y = Y1×· · ·×Yr of Severi–Brauer

varieties, over possibly different fields F1 and F2 with dim(X i )= dim(Yi ) for every
1≤ i ≤ r , let us identify K(X F1

) with K(YF2
) via the isomorphism of Theorem 2.2.

Let us also identify K(X) and K(Y ) with their images in K(X F1
)= K(YF2

). Note
that we have K(X)= K(Y ) if and only if

ind(A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )= ind(B⊗i1
1 ⊗ · · ·⊗ B⊗ir

r )

for all integers i1, . . . , ir , where A1, . . . ,Ar are the algebras associated to X1, . . . , Xr

and B1, . . . , Br are the algebras associated to Y1, . . . , Yr .
The following statement shows that (unlike the coniveau filtration) the γ -filtration

on K(X) is completely determined by K(X).

Theorem 2.3 [Izhboldin and Karpenko 1999, Theorem 1.1 and Corollary 1.2]. If
K(X)= K(Y ), then F i

γ (X)= F i
γ (Y ) for all i ≥ 0.

3. Equivalence of the two conjectures

Let G be an affine algebraic group, let U be a nonempty open G-invariant subset of
a G-representation V. If the fppf quotient U/G is representable by a scheme, and
if U is a G-torsor over U/G, then U has the property that for any G-torsor H over
an infinite field F ⊃ k, there is an F-point x of U/G such that H is isomorphic
to the fiber of the morphism U →U/G over x ; see [Serre 2003, §5]. The generic
fiber E of the quotient map U →U/G is called a standard generic G-torsor.
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Example 3.1. If G = SLn , then G acts on V = End(kn) with GLn ⊂ V an open, G-
invariant subset. The generic fiber E=SLn,k(Gm) of the quotient GLn→GLn/G=Gm

is a standard generic G-torsor.
A standard generic G-torsor E exists for any affine algebraic group G: one can

take E to be the generic fiber of the quotient morphism GLn → GLn/G for any
embedding G ↪→ GLn .

Now assume G is a split semisimple algebraic group, with P a special parabolic
subgroup of G, and E a standard generic G-torsor. Recall an algebraic group H
over a field k is special if every H -torsor over any field extension of k is trivial.
The quotient E/P is a generic flag variety, which is moreover generically split,
meaning that E becomes trivial after scalar extension to the function field k(E/P);
see [Karpenko 2018, Lemma 7.1].

Example 3.2. Let G = SLn/µm , where m is a divisor of n. Then G acts on
X = Pn−1 and, if P is the stabilizer of a rational point in X , the quotient G/P is
isomorphic to X . The parabolic P is special: its conjugacy class is given by the
subset of the Dynkin diagram of G corresponding to removing the first vertex; see
[Karpenko 2018, §8].

If E is a standard generic G-torsor given as the generic fiber of a quotient map
U → U/G, then our identification of G/P ∼= X above shows that the generic
flag variety E/P is a Severi–Brauer variety over the function field k(U/G). The
central simple k(U/G)-algebra associated to E/P is called a generic central simple
algebra of degree n and exponent m. The index of such an algebra is equal to r ,
where n = rs is a factorization of n with r having the same prime factors as m and
with s prime to m.

In [Karpenko 2017b], Conjecture 1.1 is proved for the Severi–Brauer variety of
a generic central simple algebra of degree n and exponent m and, as a corollary
obtained by analysis similar to Example 3.2 above, Conjecture 1.2 is proved for
split semisimple almost-simple algebraic groups of type A and C . In this section
we prove an equivalence between Conjecture 1.1 and Conjecture 1.2 for algebraic
groups of type AC similar to that obtained in [Karpenko 2017b] for a single Severi–
Brauer variety and for a split semisimple almost-simple group of type A or C .

Theorem 3.3. The following statements are equivalent:

(1) Conjecture 1.1 holds for all X.

(2) Conjecture 1.2 holds for all G of type AC and P given by removing the first
vertex from each of the connected components of the Dynkin diagram of G.

(3) Conjecture 1.2 holds for all G of type AC and arbitrary P.

(4) Conjecture 1.2 holds for all G of type AA and arbitrary P.
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The proof is given below Lemma 3.6, after some preparation. It proceeds by
showing (1) implies (2) implies (3) implies (4) implies (1). The most difficult part
of the proof is in showing (4) implies (1). To do this, one realizes a product of
Severi–Brauer varieties X = X1 × · · · × Xr as a specialization of a generic flag
variety E/P for a certain choice of split semisimple algebraic group G of type AA,
standard generic G-torsor E , and special parabolic P . With mild hypotheses, one
can show that this proves the following claim:

Lemma 3.4. Let G be a split semisimple algebraic group of type AA, E a standard
generic G-torsor, and P a special parabolic subgroup of G. Let X be a product
of Severi–Brauer varieties such that X is a specialization of E/P. Assume the
following conditions hold:

(1) CH(X) is generated by Chern classes.

(2) The canonical surjection CH(E/P)→ grτG(E/P) is an isomorphism.

(3) The specialization K(E/P)→ K(X) is an isomorphism.

Then the canonical surjection CH(X)→ grτG(X) is an isomorphism.

Proof. Since X is a specialization of E/P , there is a commutative diagram

CH(E/P) grτG(E/P)

CH(X) grτG(X)

(D)

where the downward-pointing vertical arrows are specializations and the horizontal
arrows are the canonical surjections.

In the diagram (D) above, the map CH(E/P)→ grτG(E/P) is an isomorphism
by assumption and CH(X) is generated by Chern classes by assumption. Note that
CH(E/P) is also generated by Chern classes, by [Karpenko 2018, Corollary 7.2
and Theorem 7.3]. Since the specialization K(E/P)→ K(X) is an isomorphism
it follows the specialization CH(E/P)→ CH(X) is surjective.

The specialization grτG(E/P)→ grτG(X) is an isomorphism: it fits into the
commutative square

grγK(E/P) grτG(E/P)

grγK(X) grτG(X)

∼

∼

∼

with the vertical arrows being specializations and the horizontal arrows being the
canonical maps. The horizontal arrows are isomorphisms since the Chow rings
CH(E/P) and CH(X) are generated by Chern classes [Karpenko 1998, proof of
Theorem 3.7]; the left-vertical arrow is an isomorphism since by Theorem 2.3 the
isomorphism K(E/P)→ K(X) induces a bijection F i

γ (E/P)∼= F i
γ (X) for all i .
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Hence the specialization CH(E/P)→ CH(X) is also an injection and therefore
an isomorphism. It follows that the canonical surjection CH(X)→ grτG(X) is an
isomorphism as well, completing the proof. �

The problem is to find the correct G, P , and E that satisfy the conditions of
Lemma 3.4. The naïve method, taking E/P = E1/P1×· · ·×Er/Pr to be a product
of generic flag varieties with each Ei/Pi having X i as a specialization fails in at
least one regard: the algebras associated to such an E/P are usually too unrelated.
That is to say, the specialization in (3) of Lemma 3.4 is typically not a surjection.

The following result of Nguyen, giving a description to the central simple alge-
bras obtained from a G-torsor for split semisimple algebraic groups G of type AA,
provides at least one resolution to this problem.

Theorem 3.5 [Nguyen 2015, Theorem A.1]. Let 0 = GLn1 × · · · × GLnr be a
product of r general linear groups for some integers n1, . . . , nr . Let C be a central
subgroup of 0, and write G = 0/C. Let π : G→ 0/Z(0) be the natural projec-
tion. Then, for every field extension F of k, π∗ identifies H 1(F,G) with the set of
isomorphism classes of r-tuples (A1, . . . , Ar ) of central simple F-algebras such
that the degree of each Ai is deg(Ai )= ni , and A⊗m1

1 ⊗ · · ·⊗ A⊗mr
r is split over F

for every r-tuple of

X ∗(Z(0)/C)= {(m1, . . . ,mr ) ∈ Zr
| τ

m1
1 · · · τ

mr
r = 1 for all (τ1, . . . , τr ) ∈ C}.

To apply the theorem above to get the same description for the algebras associ-
ated to a G-torsor for a split semisimple algebraic group G of type AA, one notes
that such a G is isomorphic to a quotient of a product Gsc = SLn1×· · ·×SLnr by a
central subgroup C of Gsc. One can then use the quotient G ′=Gred/C of the reduc-
tive group Gred

=GLn1×· · ·×GLnr and the canonical inclusion ι :G→G ′, taking
into account that the induced map on cohomology ι∗ : H 1(F,G)→ H 1(F,G ′) is
a surjection (with trivial kernel).

It turns out, with the description given in Theorem 3.5, one has sufficient control
to ensure the conditions of Lemma 3.4 hold (up to introducing some additional
factors, which won’t matter in the end).

Lemma 3.6. Let X1, . . . , Xr be a finite number of Severi–Brauer varieties corre-
sponding to central simple k-algebras A1, . . . , Ar and let X = X1× · · · × Xr be
their product. Let ni = deg(Ai ) for all 1≤ i ≤ r . For every r-tuple of nonnegative
integers I = (i1, . . . , ir ), write DI for the underlying division algebra of the product

A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r

and write YI = SB(DI ) for the associated Severi–Brauer variety. Let

Z = X ×
∏

I<(n1,...,nr )

YI .
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In this setting, there exists a split semisimple algebraic group G of type AA and
a special parabolic P of G so that for any standard generic G-torsor E , the variety
Z is a specialization of E/P and the specialization map K(E/P)→ K(Z) is an
isomorphism.

Proof. For every such r -tuple I = (i1, . . . , ir ) we set m I := ind(DI ) to be the index
of DI . The group

Gsc =

r∏
j=1

SLn j ×

∏
I<(n1,...,nr )

SLm I

is split, semisimple, and simply connected of type AA. We consider the quotient
G := Gsc/S, where S is the subgroup of the center of Gsc consisting of those
elements

(x1, . . . , xr , x(0,...,0), . . . , x(n1−1,...,nr−1))

satisfying the relation x(i1,...,ir ) = x i1
1 · · · x

ir
r (when identified with elements of Gm).

Let E be a standard generic G-torsor. We let

σ : G→ Gad , πi : Gad→ PGLni , πI : Gad→ PGLm I

be the canonical isogeny, projection to the i-th factor for i ≤ r , and projection to
the factor corresponding to the r -tuple I , respectively.

Let Gred be the reductive group

Gred
=

r∏
j=1

GLn j ×

∏
I<(n1,...,nr )

GLm I

and set G ′ = Gred/S. Let T be the kernel of the quotient Gred
→ Gad. We fix the

isomorphism of the character group X ∗(T ) = Hom(T,Gm) ∼= Zn that identifies
the character with weights (i1, . . . , in) with the element (i1, . . . , in). The subgroup
S above is defined so that the inclusion X ∗(T/S)→X ∗(T ) identifies X ∗(T/S)
with the sublattice generated by those elements

(i1, . . . , ir ,−δI (0,...,0), . . . ,−δI (n1−1,...,nr−1)),

where I = (i1, . . . , ir ) < (n1, . . . , nr ) is an r -tuple. For any field extension F of k,
σ∗ : H 1(F,G)→ H 1(F,Gad) factors through the map H 1(F,G)→ H 1(F,G ′), in-
duced by the inclusion of G into G ′. This puts us in position to apply the description
in Theorem 3.5 of the algebras Bi := (πi ◦σ)∗(E), C I := (πI ◦σ)∗(E). In particular,
our choice of S implies B⊗i1

1 ⊗ · · ·⊗ B⊗ir
r is Brauer equivalent with C(i1,...,ir ).

Again by Theorem 3.5, each of the algebras Ai are specializations of the algebras
Bi and, additionally, for every r -tuple I = (i1, . . . , ir ) we have an equality

m I = ind(A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r )= ind(B⊗i1
1 ⊗ · · ·⊗ B⊗ir

r ),
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since the underlying division algebra DI of A⊗i1
1 ⊗ · · ·⊗ A⊗ir

r is a specialization
of C I . The first claim then results from the fact that the variety

r∏
i=1

SB(Bi )×
∏

I<(n1,...,nr )

SB(C I )

is isomorphic with E/P , which has Z as a specialization. The second claim results
from the description of the rings K(E/P) and K(Z) given in Theorem 2.2. �

And now for the proof.

Proof of Theorem 3.3. We show (1) implies (2). To start, let G be a group of type
AC and E be a standard generic G-torsor over a field extension F of our base k.
Let Gad be the adjoint group of G; it is isomorphic to a product

Gad =

n∏
i=1

Gi

with each Gi a simple adjoint group of type A or type C . We write σ : G→ Gad

for the canonical isogeny from G to its adjoint and πi :Gad→Gi for the projection
to the i-th factor of Gad.

From the n maps πi ◦ σ with varying i , we obtain n central simple F-algebras
given by the images of E under the pushforwards on Galois cohomology

(πi ◦ σ)∗(E) ∈ im(H 1(F,G)→ H 1(F,Gi )).

Let X be the product of the Severi–Brauer varieties associated to the n algebras
(πi ◦ σ)∗(E). Then X is isomorphic to E/P , where P is a parabolic subgroup
of G whose conjugacy class is given by the subset of the set of vertices of the
Dynkin diagram of G obtained by excluding the first vertex of each of its connected
components. That the parabolic P obtained in this way is special is a consequence
of Lemma 3.8 below since, by [Karpenko 2018, §8], the group σ(P) is special. The
claim now follows from [Karpenko 2018, Corollary 7.2 and Theorem 7.3], which
shows CH(X) is generated by Chern classes, allowing us to apply (1) to X ∼= E/P .

Next note that (2) implies (3) is a consequence of [Karpenko 2017b, Lemma 4.2],
and that (3) implies (4) is obvious.

We finish by showing (4) implies (1). Let X1, . . . , Xr be Severi–Brauer varieties
over a field k corresponding to central simple algebras A1, . . . , Ar , respectively,
and let X = X1× · · ·× Xr be their product. Let ni = deg(Ai ) be the degree of the
algebra Ai . For every r -tuple of nonnegative integers I = (i1, . . . , ir ) we write DI

for the underlying division algebra of the tensor product A⊗i1
1 ⊗· · ·⊗A⊗ir

r . We write
YI :=SB(DI ) for the associated Severi–Brauer variety and Z = X×

∏
I<(n1,...,nr )

YI

for the product of these varieties.
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Let G be an algebraic group of type AA and P its special parabolic subgroup,
obtained from Z as in Lemma 3.6. Let E be a standard generic G-torsor. By
Lemma 3.7 below, to show the epimorphism CH(X)→ grτG(X) is an isomorphism,
it’s sufficient to show CH(Z)→ grτG(Z) is an isomorphism since the projection
Z→ X factors

Z→ X ×
∏

I<(n1,...,nr−1,nr−1)

YI → · · · → X × Y(0,...,0)→ X

with each arrow a projective bundle. Finally, the arrow CH(Z)→ grτG(Z) is an
isomorphism by Lemma 3.4: CH(Z) is generated by Chern classes by repeated
applications of the projective bundle formula and the assumption that CH(X) is
generated by Chern classes, the map CH(E/P)→ grτG(E/P) is an isomorphism
by assumption, and the specialization K(E/P)→ K(Z) is an isomorphism. �

Lemma 3.7. Assume Z is a projective bundle over a variety X. Then the canonical
epimorphism CH(Z)→ grτG(Z) is an isomorphism if and only if the canonical
epimorphism CH(X)→ grτG(X) is an isomorphism.

Proof. The pullback along the projection Z→ X gives a commuting diagram

CH(Z) grτG(Z)

CH(X) grτG(X)

with both vertical arrows injections. It follows if the top-horizontal arrow is an
isomorphism, then the bottom-horizontal arrow is an isomorphism.

The converse follows from the projective bundle formula: the groups CH(Z) and
grτG(Z) are direct sums of copies of the groups CH(X) and grτG(X), respectively,
and the coniveau epimorphism respects this direct sum decomposition. �

Lemma 3.8. Let G be a split semisimple algebraic group over a field F , and let
σ : G → Gad be the canonical isogeny with kernel C , the center of G. If P is a
parabolic subgroup of G such that the image σ(P) is special, then P is special.

Proof. Let L be a Levi subgroup of P . By [Karpenko 2018, §3], P is special if and
only if L is special. Since G is a split reductive group, P is also a split reductive
group so that, by [Karpenko 2018, Theorem 2.1], L is special if and only if the
semisimple commutator L ′ ⊂ L is special. Similarly, σ(P) is special if and only if
σ(L)′ is special. Thus the proof of the lemma can be reduced to the statement that
if L ′ is a split semisimple algebraic group and L ′→ σ(L)′ is an isogeny with σ(L)′

split, semisimple, and special, then L ′ is special. The result then follows from the
fact a split semisimple algebraic group is special if and only if it is a product of
special linear or symplectic groups and all such groups are simply connected. �
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We conclude this section with some remarks on, and special cases of, Conjec-
tures 1.1 and 1.2.

Remark 3.9. One can construct a large class of products X of Severi–Brauer vari-
eties which satisfy the condition that CH(X) is generated by Chern classes. To do
so, let G = PGLn1 × · · · × PGLnr for some n1, . . . , nr ≥ 2; let A1, . . . , Ar be the
central simple algebras associated to a standard generic G-torsor; let X be the prod-
uct of the associated Severi–Brauer varieties. By [Karpenko 2018, Theorem 7.3],
CH(X) has the desired property.

One can extend this class by base change: it’s possible to lower the index of
any tensor product A = A⊗i1

1 ⊗ · · · ⊗ A⊗ir
r by extending the base to the function

field of any generalized Severi–Brauer variety of A. The new variety X obtained
from these algebras also has the property that CH(X) is generated by Chern classes
[Karpenko 1998, Theorem 3.7]. This procedure can be repeated indefinitely.

In fact, to prove Conjecture 1.1 for all products of Severi–Brauer varieties, it
suffices to prove Conjecture 1.1 for the varieties obtained by the above procedure
(one can even restrict to the class whose construction involves the function field of
usual Severi–Brauer varieties only); to go from the above case to the general case,
one can use the specialization argument as in Theorem 3.3.

Example 3.10 (A1×A1 and A1×A1×A1). In small rank cases, one can check
Conjecture 1.2 for G of type AA by hand.

For G as in Conjecture 1.2 of type A1 × A1, observe that for any projective
homogeneous variety X of dimension less than or equal to 2, the epimorphism
CH(X)→ grτG(X) is an isomorphism [Chernousov and Merkurjev 2006, Propo-
sition 4.4].

For G as in Conjecture 1.2 of type A1×A1×A1, one can proceed by cases. If
G is a product of groups of smaller rank, then [Karpenko 2017a, Proposition 4.1]
proves the claim. Otherwise, G is a quotient of SL2× SL2× SL2 by the diagonal
of the center µ2×µ2×µ2 or by the subgroup generated by the partial 2-diagonals.
In the first case, the corresponding generic flag variety is a product C × C × C
of a fixed conic C and the claim follows. In the second case, the corresponding
generic flag variety is a product X = C1×C2×C3, where each Ci is the conic of a
quaternion algebra Qi ; here the sum of the classes [Q1] + [Q2] + [Q3] is trivial in
the Brauer group. Since X is a projective bundle over any two of the factors, this
proves the result by Lemma 3.7.

Example 3.11. Conjecture 1.2 holds for G = SLn/µm by [Karpenko 2017b, The-
orem 1.1] and for products of such groups by [Karpenko 2017a, Proposition 4.1].
From this, one can show that Conjecture 1.1 holds for products X = X1×· · ·× Xr

satisfying the following conditions:
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(1) For each 1≤ i ≤ r there is a prime pi so that the algebra Ai associated to the
variety X i has index pni

i and exponent pmi
i for some integers ni ≥ mi ≥ 1.

(2) The algebras Ai satisfy

ind
(

A
⊗p

mi−1
i

i

)
= ind(Ai )/pmi−1

i .

(3) The algebras Ai are disjoint in the sense that there are equalities

ind
(

A⊗ir
1 ⊗ · · ·⊗ Air

r
)
= ind

(
A⊗i1

1

)
· · · ind

(
A⊗ir

r
)

for all integers i1, . . . , ir .

To see this, one may assume that all Ai are division algebras and use Lemma 3.4.
Property (2) allows one to realize such an X as a specialization of E/P , where
E is a standard generic G =

∏
1≤i≤r SLp

ni
i
/µp

mi
i

-torsor and P ⊂ G is a special
parabolic subgroup whose conjugacy class can be obtained by removing the first
vertex from each of the connected components of the Dynkin diagram of G. The
canonical map CH(E/P)→ grτG(E/P) for this E/P is an isomorphism, as ex-
plained above. Now property (3), [Karpenko 2017a, Lemma 4.3], and Theorem 2.3
show the specialization K(E/P)→ K(X) is an isomorphism.

Appendix A: Algebras with level 1

In this appendix we introduce the level of a central simple k-algebra. The level is
a nonnegative integer that measures, roughly speaking, how far away the algebra
is from having its index equal to its exponent. It’s related to, and depends on, the
reduced behavior of the primary components of the algebra as defined in [Karpenko
1998]. The same concept was considered in [Baek 2015], there as the length of a
reduced sequence obtained from the reduced behavior of a p-primary algebra for
a prime p; the length of this reduced sequence as defined by Baek is equal to the
level of the p-primary algebra as defined here.

It turns out the level of a central simple algebra A can be used to obtain detailed
information on λ-ring generators for the Grothendieck ring of the Severi–Brauer
variety X of A; see Lemma A.6. A particular consequence of this is that the subring
of CH(X) which is generated by Chern classes has an explicit and small set of
generators that can be helpful for computational purposes. Using this more refined
information based on the level, we’re able to generalize the results of [Karpenko
2017b] to prove the main result, Theorem A.15, that the K-theory coniveau epimor-
phism is an isomorphism for Severi–Brauer varieties whose Chow ring is generated
by Chern classes and whose associated central simple algebra has level 1.

Throughout this appendix we work with a fixed prime p and we continue to
work over the fixed but arbitrary field k. We write vp( – ) for the p-adic valuation.
We’ve relegated some computations needed in this section to Appendix B.
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Recall, the reduced behavior of an algebra A with index ind(A)= pn and expo-
nent exp(A)= pm , 0< m ≤ n, is defined to be the following sequence of p-adic
orders of increasing p-primary tensor powers of A:

rBeh(A)=
(
vp(ind(A⊗pi

))
)m

i=0

=
(
vp(ind(A)), vp(ind(A⊗p)), . . . , vp(ind(A⊗pm

))
)
.

The reduced behavior of A is strictly decreasing; it starts with vp(ind(A))= n and
ends with vp(ind(A⊗pm

))= 0.

Definition A.1. A is said to have level l, abbreviated lev(A) = l, if there exist
exactly l distinct integers i1, . . . , il ≥ 1 with vp(ind(A⊗pik

))< vp(ind(A⊗pik−1
))−1

for every 1≤ k ≤ l. If no such integers exist, A is said to have level 0. An arbitrary
central simple algebra B, not necessarily p-primary, is said to have level l if l is
the maximum

l = max
q prime

{lev(Bq)}

of the levels of the q-primary components Bq of B.

Example A.2. A central simple algebra A has level 0, i.e., lev(A)= 0, if and only
if the index and exponent of A coincide: ind(A)= exp(A).

Example A.3. If A is a generic algebra of degree pn and exponent pm with m < n,
in the sense of Example 3.2, then the level of A is 1, i.e., lev(A)= 1. The reduced
behavior for this algebra is

rBeh(A)=
(
vp(ind(A)), vp(ind(A⊗p)), . . . , vp(ind(A⊗pm

))
)

= (n, n− 1, . . . , n−m+ 1, 0).

To see this, note that with a large enough field extension F of k one may find a
central division F-algebra B with index pn , exponent pm , and reduced behavior
rBeh(B)= (n, n− 1, . . . , n−m+ 1, 0) [Karpenko 1998, Lemma 3.10]. Since B
is a specialization of A it follows that

pn−i
≥ ind(A⊗pi

)≥ ind(B⊗pi
)= pn−i

for i = 0, . . . ,m− 1, so that equalities hold throughout.

We make the following definition for notational convenience.

Definition A.4. The Chern subring of a smooth variety X , denoted CS(X), is the
subring of CH(X) which is generated by all Chern classes of elements of K(X).

Proposition A.5. Let X be the Severi–Brauer variety of a central simple algebra
A with ind(A) = pn and lev(A) = r . Then CS(X) is generated, as a ring, by the
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Chern classes of r + 1 sheaves on X. Namely, the sheaves whose Chern classes
generate CS(X) are

ζX (1), ζX (pi1), . . . , ζX (pir ),

where 1≤ i1 < · · ·< ir are the r distinct integers with

vp(ind(A⊗pik
)) < vp(ind(A⊗pik−1

))− 1.

Proof. It suffices to show that K(X) is generated by the classes of

ζX (1), ζX (pi1), . . . , ζX (pir )

as a λ-ring; this is because Chern classes of λ-operations of an element of K(X)
are certain universal polynomials in the Chern classes of this element. This is done
in the next lemma. �

Lemma A.6. Let X be the Severi–Brauer variety of a central simple algebra A
with ind(A) = pn and lev(A) = r . Then K(X) is generated, as a λ-ring, by r + 1
elements. Namely, the sheaves whose classes generate K(X) are

ζX (1), ζX (pi1), . . . , ζX (pir ),

where 1≤ i1 < · · ·< ir are the r distinct integers with

vp(ind(A⊗pik
)) < vp(ind(A⊗pik−1

))− 1.

Proof. Since the pullback π∗ :K(X)→K(X L) to a splitting field L of A is injective,
we can work, instead of K(X) itself, with its image in K(X L). We’ll write ξ to
denote the class of O(−1) in K(X L). By the comments under Theorem 2.1 we
have π∗(ζX (i))= ind(A⊗i )ξ i . It follows that the elements ind(A⊗i )ξ i with i ≥ 0
generate K(X) as an abelian group.

The λ-operations of any multiple of ξ i are easy to compute:

λ j (dξ i )=

(
d
j

)
ξ i j for any i, j, d ≥ 0.

Let us first show that the elements ind(A⊗p j
)ξ p j

( j ≥ 0) generate K(X) as
a λ-ring. Since the λ-subring generated by these elements contains powers of
ind(A)ξ = pnξ , we only need to check that, for every i ≥ 1, this subring contains an
integer multiple of ξ i whose coefficient has p-adic valuation equal to vp(ind(A⊗i )).
For this, given any i ≥ 1, we write i = p j s with j ≥ 0 and s prime to p. We set
pv := ind(A⊗i ) = ind(A⊗p j

). Write further s = s0 pv + s1 with 0 ≤ s1 < pv

and s0 ≥ 0. Then we have λpv (pvξ p j
) = ξ p j pv and λs1(pvξ p j

) is a multiple of
ξ p j s1 with p-adic valuation of the (binomial) coefficient of this multiple equal to v;
see [Karpenko 1998, Lemma 3.5]. The claim we are checking follows.
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It remains to show if vp(ind(A⊗p j
)) ≥ vp(ind(A⊗p j−1

))− 1 for some j ≥ 1,
then the generator ind(A⊗p j

)ξ p j
can be omitted. Let us set pv := ind(A⊗p j−1

). If
v = 0, then we get ξ p j

as a p-th power of ξ p j−1
= ind(A⊗p j−1

)ξ p j−1
. For v > 0,

we consider the λ-operation λp(pvξ p j−1
) which is a multiple of ξ p j

with p-adic
valuation of its coefficient equal to v− 1≤ vp(ind(A⊗p j

)). �

To systematically study the relations between the Chern classes of the sheaves
appearing in Proposition A.5, we introduce the following notation.

Definition A.7. Let A be a central simple algebra and X the Severi–Brauer variety
of A. We write CT(i1, . . . , ir ; X) for the graded subring of CS(X) ⊂ CH(X)
generated by the Chern classes of the sheaves ζX (i1), . . . , ζX (ir ).

Proposition A.8. Let X be the Severi–Brauer variety of a central simple algebra A.
Then, for any i > 0, CT(i; X) ⊗ Z(p) is a free Z(p)-module. Furthermore, for
0≤ j < deg(A) the group CT j (i; X)⊗Z(p) is additively generated by

τi ( j) := cpv (ζX (i))s0cs1(ζX (i)),

where pv is the largest power of p dividing ind(A⊗i ) and j = pvs0 + s1 with
0≤ s1 < pv.

Proof. By first extending to a prime-to-p extension (which is an injection when
CH(X)⊗Z(p) has Z(p)-coefficients) that splits the prime-to-p components of A,
we can assume A is p-primary. We continue by reducing to the case i = 1.

Lemma A.9. Let X be the Severi–Brauer variety of a central simple algebra A,
and let Y be the Severi–Brauer variety of A⊗i . Then there is a functorial surjection

CT(1; Y )� CT(i; X).

Proof. Let
X→ X×i

→ Y

be the composition of the diagonal embedding and the twisted Segre embedding.
The corresponding maps on Grothendieck groups can be determined by moving to
a splitting field L of X . There is a commutative diagram

K(YL) K(X×i
L ) K(X L)

K(Y ) K(X×i ) K(X)

defined so that under the top-horizontal maps we have

OYL (−1) 7→OX L (−1)� · · ·�OX L (−1) 7→OX L (−i).

Thus, the class of ζY (1) on Y is mapped to the class of ζX (i) on X .
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So, under the composition of the diagonal X → X×i and the twisted Segre
embedding X×i

→ Y , there is a surjection CT(1; Y )� CT(i; X) induced by the
pullback CH(Y )→ CH(X). �

Next we reduce to the case our algebra is division. Let D be the underlying
division algebra of A, and Y the Severi–Brauer variety of D. Fix an embedding
Y → X so that, over a splitting field of both, the inclusion is as a linear subvariety.
The pullback

CH(X)⊗Z(p)→ CH(Y )⊗Z(p)

is an isomorphism in degrees where both groups are nonzero. If the claim is true
for CH(Y )⊗Z(p) then, since the pullback is functorial for Chern classes, we find
CT j (1; X) ⊗ Z(p) is a free Z(p)-module of rank 1 in degrees 0 ≤ j < deg(D).
That this holds is due to [Karpenko 2017b, Proposition 3.3], where it’s shown that
CT(1; X) is free if A is division. This serves as the base case for an induction proof.

In an arbitrary degree j with deg(D)≤ j < deg(A), we assume the claim is true
for all degrees 0≤ k < j . It suffices to show the map

CT j−pv (1; X)⊗Z(p)→ CT j (1; X)⊗Z(p)

defined by multiplication by τ1(pv)= cpv (ζX (1)) is surjective and, by Nakayama’s
lemma, we can do this modulo p. Any element of CT j (1; X) is a sum of monomials
of the form τ1( j− pv)cn1

i1
· · · cnr

ir
with ci = ci (ζX (1)). We claim any such monomial

which is not τ1( j)= τ1( j − pv)τ1(pv) is congruent to 0 modulo p.
Indeed, if such a monomial was divisible by ci1, ci2 then without loss of gener-

ality we can assume vp(i2) ≤ vp(i1) < v. By [Karpenko 2017b, Proposition 3.5]
there is a field F finite over the base so that vp ind(AF )= vp(i1), and ci1 = π∗(x)
for an element x of CH(X F )⊗Z(p) and where π : X F→ X is the projection. Using
the projection formula we find

ci1ci2 = π∗(x)ci2 = π∗(xπ
∗(ci2)).

By Lemma A.10 below, it follows π∗(ci2) is divisible by p, which proves the claim.
To see the generators are as claimed for i = 1, one can compute the degrees of

the images of the Chern classes of ζX (1) over an algebraic closure; for the other i ,
one can use Lemma A.9. �

Lemma A.10. Let X be the Severi–Brauer variety of a central simple algebra A
with ind(A) = pv. Let F be a field with pv−s

= ind(AF ) < ind(A) = pv and let
π : X F → X be the projection. Then

π∗(c j (ζX (1)))= 0 (mod p)

for all j not divisible by pv.
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Proof. We have π∗(ζX (1))= ζX F (1)
⊕ps

with ps
= ind(A)/ind(AF ). By functori-

ality we have
π∗(c j (ζX (1)))= c j (ζX F (1)

⊕ps
).

We’re going to compute the total Chern polynomial of ζX F (1)
⊕ps

modulo p. If F
splits A then ct(ζX F (1)

⊕ps
) = (1− h)ps

= 1± h ps
(mod p), where h is the class

of a hyperplane in CH(X F ). Otherwise v 6= s and we have

ct(ζX F (1)
⊕ps
)= ct(ζX F (1))

ps
= (1+ c1t + · · ·+ cpv−s t pv−s

)ps

with ci = ci (ζX F (1)). Using the multinomial formula, the latter expression can be
rewritten

(1+ c1t + · · ·+ cpv−s t pv−s
)ps

= 1+
pv∑

j=1

( ∑
|I |=ps

i1+2i2+···+pv−s i pv−s= j

( ps

i0, i1, . . . , i pv−s

)
ci1

1 · · · c
i pv−s

pv−s

)
t j .

Here the notation means ( n
a0, . . . , ai

)
=

n!
a0! · · · ai !

and I = (i0, . . . , i pv−s ) is a tuple of nonnegative integers with |I | = i0+· · ·+ i pv−s .
By Lemma B.3, p divides all of the coefficients( ps

i0, . . . , i pv−s

)
except when ps divides one of i0, . . . , i pv−s . We are left to show cps

ik
= 0 modulo p

for any k = 0, . . . , pv−s
−1. Using [Karpenko 2017b, Proposition 3.5], we can find

a finite field extension E/F lowering the index of AF and such that cik = ρ∗(x)
for some x in CH(X E)⊗Z(p) and for ρ : X E → X F the projection. The projection
formula then gives

cps

ik
= ρ∗(x(ρ∗ρ∗(x))ps

−1)= 0 (mod p)

since ρ∗ρ∗ = [E : F]. �

Corollary A.11. Let A be a central simple algebra and X its associated Severi–
Brauer variety. The classes τi ( j) of CH(X)⊗Z(p) satisfy the following relations:

(1) For all i ≥ 1, we have τi (0)= 1.

(2) For any j ≥ 0, we have τi (pv)τi ( j)= τi (pv j), where v = vp(ind(A⊗i )).

(3) For any integers a1, . . . , apv ≥ 0, there is a relation

τi (1)a1 · · · τi (pv)apv = ατi (a1+ 2a2+ · · ·+ pvapv )
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for some α in Z(p) with

vp(α)=


0 if v = 0,∑pv

k=1(v− vp(k))ak if v > 0 and j = 0 (mod pv),
vp(r)− v+

∑pv

k=1(v− vp(k))ak if v > 0 and j 6= 0 (mod pv),

where we write j = a1+ 2a2+ · · · + pvapv and 0≤ r < pv is the remainder
in the division of j by pv.

Proof. We remark that the definition of the classes τi ( j) makes sense for any integer
j ≥ 0, but when j > deg(A), these classes are 0. For simplifications below, we
don’t put any upper bound on the value j may have.

The relation (1) is obvious from the definition. The relation (2) is also clear
from the definition. So we’re left proving the complicated relation (3). To do this,
we pullback, to a splitting field L , the left and right side of the equation in (3)
and compare p-adic valuations of their coefficients on the element h j , where h is
the class of a hyperplane over L . Some immediate observations for the following:
we can assume j isn’t larger than the dimension of X and we can assume v > 0;
otherwise the claim is trivial.

The pullback of τi (1)a1 · · · τi (pv)apv can be written βh j , where

vp(β)=

pv∑
k=1

(v− vp(k)+ vp(i)k)ak .

Similarly, the pullback of τi (a1+ · · ·+ pvapv ) can be written γ h j with

vp(γ )=

{
vp(i)pvs0 if j = 0 (mod pv),
vp(i)pvs0+ v− vp(s1)+ vp(i)s1 if j 6= 0 (mod pv),

where j = s0 pv + s1 and 0 ≤ s1 < pv. Since vp(γ ) ≥ vp(β) by Proposition A.8,
the result follows by subtracting. �

Lemma A.12. Let A be a central simple algebra with ind(A)= pn and rBeh(A)=
(n0, . . . , nm). Let X be the Severi–Brauer variety of A. Then, for any pair of
integers i, j with 0≤ i ≤ j ≤ m, the total Chern polynomial

ct(ζX (p j ))pni−n j−( j−i)
= 1+

pni−( j−i)∑
k=1

βkτp j (k)tk

is a polynomial with coefficients in CT(pi
; X)⊗Z(p).

Moreover, the p-adic valuation of the coefficient βk equals

vp(βk)=

{
ni − n j − ( j − i)− vp(k/pn j ) if k = 0 (mod pn j ),

ni − n j − ( j − i) if k 6= 0 (mod pn j ).
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Proof. We identify K(X) with its image in K(X L) for a splitting field L of X . We
write ξ for the class of O(−1) in K(X L). Then the class of ζX (pi ) is identified
with pni ξ pi

and the class of ζX (p j ) is identified with pn j ξ p j
. We have

λp j−i
(pni ξ pi

)=
( pni

p j−i

)
ξ p j
.

It follows that

ct(pni−( j−i)ξ p j
)= ct(pni−( j−i)−n j (pn j ξ p j

))

= ct(ζX (p j ))pni−n j−( j−i)

= (1+ τp j (1)t + · · ·+ τp j (pn j )t pn j
)pni−n j−( j−i)

is a polynomial with coefficients contained in CT(pi
; X)⊗Z(p). This proves the

first claim.
To prove the second claim, we write

(1+ τp j (1)t + · · ·+ τp j (pn j )t pn j
)pni−n j−( j−i)

= 1+
pni−( j−i)∑

k=1

βkτp j (k)tk

using Proposition A.8. Explicitly there are equalities

βkτp j (k)=
∑

I

( pni−( j−i)−n j

I

)
τ I

p j ,

where the sum runs over tuples I = (a0, . . . , apn j ) such that a0 + · · · + apn j =

pni−( j−i)−n j and a1+ 2a2+ · · ·+ pn j apn j = k; here we’re using the notation( pni−( j−i)−n j

I

)
=

( pni−( j−i)−n j

a0, . . . , apn j

)
=

pni−( j−i)−n j !

a0! · · · apn j !

and
τ I

p j = τp j (0)a0τp j (1)a1 · · · τp j (pn j )
ap

n j

for a tuple I = (a0, . . . , apn j ). Thus

vp(βk)= vp

(∑
I

( pni−( j−i)−n j

I

)
αI

)
≥min

{
vp

(( pni−( j−i)−n j

I

)
αI

)}
,

where αI is the coefficient in τ I
p j =αI τp j (k) from Corollary A.11. In fact, the above

inequality is an equality if there is a unique minimum over the given tuples I . The
p-adic valuation of any coefficient( pni−( j−i)−n j

I

)
αI



336 APPENDIX BY EOIN MACKALL

can be found using Corollary A.11 and Lemma B.2; the p-adic valuation of any
such coefficient can also be bounded below using Corollary A.11 and Lemma B.3.
With this bound, one can show there is a unique minimum among the p-adic valu-
ation of these coefficients: set s = ni − ( j − i) and r = n j in Lemma B.4. Finally,
using Lemma B.2 to compute the valuation explicitly and using Lemma B.5, setting
s = ni − ( j − i) and r = n j , shows the p-adic valuation of βk is as claimed. �

The lemma above provides numbers βk such that βkCTk(p j
; X)⊂ CTk(1; X).

Using a technique developed in [Karpenko 2017b], we can reduce the size of the
β j further. We assume A is a division algebra in the following as this is the only
case we need.

Corollary A.13. Let A be a division algebra with ind(A) = pn and rBeh(A) =
(n0, . . . , nm). Let X be the Severi–Brauer variety of A. Pick an integer 0≤ j ≤ m,
and let 0≤ i ≤ pn

− 1 be a second integer.
There exists a number αi in Z(p) so that αiτp j (i) is contained in CT(1; X)⊗Z(p).

Moreover, the p-adic valuation of the αi we find equals

vp(αi )=


n− j − n j if 1≤ i ≤ pn j ,

n− j − n j −blogp(i/pn j )c if pn j < i ≤ pn− j ,

0 otherwise.

Proof. Let L be a maximal subfield of A, of degree pn over the base, and let N
be the image of the pushforward π∗ : CH(X L)⊗Z(p)→ CH(X)⊗Z(p) along the
projection π : X L → X . By [Karpenko 2017b, Proposition 3.5], the image N is
contained in CT(1; X)⊗ Z(p). Recall also that the pullback π∗ followed by the
pushforward π∗ is multiplication by pn , the degree of L over the base. The proof
of the corollary mimics that of [Karpenko 2017b, Proposition 3.12]; the idea of the
proof is to use the explicit bounds of Lemma A.12 and the projection formula to
get the result for any i . Note that the claim is trivial for j = 0 (or we can just set
αi = 1 in this case) so, throughout the proof, it’s safe to assume j > 0.

We first show, for each i ≤ pn− j and using βi for the coefficient such that
βi CTi (p j

; X)⊂CTi (1; X) found in Lemma A.12, that pvp(βi )τp j (i) is in the image
of the map π∗. Write i = s0 pn j + s1 with 0 ≤ s1 < pn j . The image of τp j (i) in
CH(X L)⊗Z(p) is equal, up to prime-to-p parts, to

π∗(τp j (i))=
{

pi j hi if s1 = 0,
pi j+n j−vp(s1)hi if s1 > 0.

By Lemma A.12, the multiple βiτp j (i) has image, up to prime-to-p parts,

π∗(βiτp j (i))= pn+(i−1) j−vp(i)hi
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regardless of s1. Thus,

pvp(βi )τp j (i)= 1
pn π∗π

∗(pvp(βi )τp j (i))

= π∗

( 1
pn

(
π∗(pvp(βi )τp j (i))

))
= π∗(p(i−1) j−vp(i)hi ).

Since (i − 1) j − vp(i)≥ 0, we find pvp(βi )τp j (i) is in N as claimed.
Now let i be an integer with 1≤ i ≤ pn

− 1 and set `= blogp(i/pn j )c. To get
the bounds on the p-adic valuation in the corollary statement, we work in cases.
We first assume ` ≥ n − j − n j , or equivalently, i ≥ pn− j . By the above and
Lemma A.12, we can find an element x of CH(X L) with

π∗(x)= τp j (pn− j ).

Set k = i − pn− j . Then, using (2) and (3) of Corollary A.11,

τp j (i)= τp j (pn j )n− j−n j τp j (k)= τp j (pn− j )τp j (k)

= π∗(x)τp j (k)= π∗(xπ∗(τp j (k))).

It follows from [Karpenko 2017b, Proposition 3.5] that τp j (i) is contained in
N ⊂ CT(1; X)⊗Z(p) for all i ≥ pn− j .

For the other i , we act similarly. If pn j < i ≤ pn− j , then set k = i− pn j+`. Then
there is a (different) element x with π∗(x)= prτp j (p`+n j ), where r = vp(βp`+n j ).
Then

prτp j (i)= prτp j (pn j )`τp j (k)= prτp j (p`+n j )τp j (k)

= π∗(x)τp j (k)= π∗(xπ∗(τp j (k)))

and the claim follows as before.
For the remaining i , when i ≤ pn j , the claim actually follows immediately from

Lemma A.12. �

We can do better still if we multiply the classes τ1(i) and τp j (k) for some integers
i, k ≥ 0.

Corollary A.14. Let A be a division algebra with ind(A) = pn and rBeh(A) =
(n0, . . . , nm). Let X be the Severi–Brauer variety of A. Pick an integer 0≤ j ≤ m,
and let 1≤ i, k ≤ pn

− 1 be two integers with i + k ≤ pn
− 1.

There exists a number βi,k in Z(p) such that βi,kτ1(i)τp j (k) is contained in
CT(1; X)⊗Z(p). Moreover, the p-adic valuation of the βi,k we find equals

vp(βi,k)=


max{vp(i)− j − n j , 0} if 1≤ k ≤ pn j ,

max{vp(i)− j − n j −blogp(k/pn j )c, 0} if pn j < k ≤ pn− j ,

0 otherwise.
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Proof. The proof is the same as Corollary A.13 except that we use the equality

π∗(βkτ1(i)τp j (k))= pn+(k−1) j−vp(k)+n−vp(i)hi+k,

up to prime-to-p parts, to find pvp(βi,k)τ1(i)τp j (k) is contained in N . �

As an application, the above corollary can be used to settle the particular case of
Conjecture 1.1 when X is the Severi–Brauer variety of an algebra A with level 1:

Theorem A.15. Let A be a central simple k-algebra of level 1 and let X be the
Severi–Brauer variety of A. Assume CH(X) is generated by Chern classes. Then
the K-theory coniveau epimorphism CH(X)→ grτG(X) is an isomorphism.

Proof. It’s sufficient to show the claim when A is a division algebra of index pn . In
this case the kernel of the epimorphism CH(X)→ grτG(X) is p-primary-torsion
so we can work with Z(p) coefficients throughout the proof. Let L be a splitting
field for A. Since CT(1; X)⊗Z(p) is p-torsion free, the composition

CT(1; X)⊗Z(p)→ CH(X)⊗Z(p)→ grτG(X)⊗Z(p)

is injective; we denote by C the image of this composition. We have an inequality

[CH(X)⊗Z(p) : CT(1; X)⊗Z(p)] ≥ [grτG(X)⊗Z(p) : C]. (in)

We’re going to use the bounds from Corollary A.14 to get an upper bound on the
left of (in). We’ll also bound the right of (in), by computing

[grτG(X)⊗Z(p) : C] =
[grτG(X L) : C]
[K(X L) : K(X)]

precisely; the equality of the ratio of these indices can be found in [Karpenko
2017b, proof of Theorem 3.1]. The proof will be completed once we show these
two bounds are equal.

To get an upper bound on the left of (in), we sum the maximums of the p-adic
valuations occurring in Corollaries A.13 and A.14. Plainly said, we compute an
upper bound on p-adic valuations of the orders of the elements τ1(i)τpr (k), where
r is the (unique since A has level 1) smallest positive integer with

vp(ind(A⊗pr
)) < vp(ind(A⊗pr−1

))− 1,

in the group CH(X)/CT(1; X). Note that by Proposition A.5 and Proposition A.8,
the elements τ1(i)τpr (k) are exactly the generators of this quotient group, so that
by computing an upper bound on their orders and raising p to this upper bound,
we also compute an upper bound on the index in the left of (in). Once we have
this upper bound, we’ll move on to give a lower bound for the right-hand side of
(in). These two bounds turn out to be equal, showing that our upper bound on the
orders were in fact their precise order.



THE CONIVEAU EPIMORPHISM FOR PRODUCTS OF SEVERI–BRAUER VARIETIES 339

Set nr = vp(ind(A⊗pr
)) and `=n−r−nr . When i = 0, we sum the contributions

from Corollary A.13,

pnr−1∑
a=1

n− r − nr +

pn−r
−1∑

a=pnr

n− r − nr −blogp(a/pnr )c

= (pnr − 1)`+
`−1∑
b=0

ϕ(pnr+b+1)(`− b),

where ϕ is the Euler totient function (we use this function to combine those terms
a that have the same value of blogp(a/pnr )c; there are exactly ϕ(pnr+b+1) =

pnr+b+1
− pnr+b such terms with value b, i.e., pnr+b, . . . , pnr+b+1

− 1). When
i > 0, we only need to account for the terms with vp(i) > n− ` (note if `= 1 then
r + nr = n− 1 and there are no terms of this kind):

pnr−1∑
b=1

vp(i)− r − nr +

pvp (i)−r
−1∑

b=pnr

vp(i)− r − nr −blogp(b/pnr )c

= (pnr − 1)(vp(i)− r − nr )+

vp(i)−r−nr−1∑
b=0

ϕ(pnr+b+1)(vp(i)− r − nr − b).

Of the integers i satisfying 1≤ i < pn , there are ϕ(p`−1) integers i with vp(i)=
n− `+ 1, there are ϕ(p`−2) integers i with vp(i)= n− `+ 2, and so on to ϕ(p)
integers i with vp(i)= n−`+ (`−1). Summing over all such i with vp(i) > n−`,
we get

`−1∑
a=1

ϕ(p`−a)

(
(pnr − 1)a+

a∑
b=0

ϕ(pnr+b+1)(a− b)
)
.

Combining both the i = 0 and i > 0 contributions gives a definitive upper bound
of

S =
∑̀
a=1

ϕ(p`−a)

(
(pnr − 1)a+

a∑
b=0

ϕ(pnr+b+1)(a− b)
)
.

To get a lower bound on the right of (in), we calculate [grτG(X)⊗ Z(p) : C]
precisely. Since this index equals

[grτG(X L) : C]
[K(X L) : K(X)]

,

it’s sufficient to calculate the numerator and denominator of this fraction. The
numerator depends only on the dimension of X and equals

pn∏
i=1

(pn−vp(i))=

n−1∏
j=1

(pn− j )ϕ(p
n− j ).
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The denominator depends on the reduced behavior of A and equals

pn
−1∏

i=0

ind(A⊗i )=

( r−1∏
j=0

(pn− j )ϕ(p
n− j )

)(nr+r∏
j=r

(pnr+r− j )ϕ(p
n− j )

)
.

Dividing the two gives

P =
(nr+r∏

i=r

(p`)ϕ(p
n−i )

)( n∏
i=nr+r+1

(pn−i )ϕ(p
n−i )

)
.

What remains to be shown is the equality logp(P)= S. A computation of the
logarithm gives

logp(P)= logp

(nr+r∏
i=r

(p`)ϕ(p
n−i )

n∏
i=nr+r+1

(pn−i )ϕ(p
n−i )

)

=

nr+r∑
i=r

`ϕ(pn−i )+

n∑
i=nr+r+1

(n− i)ϕ(pn−i )

= `(pn−r
− p`−1)+

n−r−nr−1∑
i=1

iϕ(pi )

= `(pn−r
− p`−1)+

(`− 1)p`− `p`−1
+ 1

p− 1

= `pn−r
−

p`− 1
p− 1

.

And by simplifying the sum S we find

S =
∑̀
a=1

ϕ(p`−a)

(
(pnr − 1)a+

a∑
b=0

ϕ(pnr+b+1)(a− b)
)

=

∑̀
a=1

ϕ(p`−a)(pnr − 1)a+
∑̀
a=1

ϕ(p`−a)

a∑
b=0

ϕ(pnr+b+1)(a− b)

=
pn−r
− pnr

p− 1
−

p`− 1
p− 1

+

∑̀
a=1

ϕ(p`−a)

(
pnr (pa+1

− (a+ 1)p+ a)
p− 1

)

=
pn−r
− pnr

p− 1
−

p`− 1
p− 1

+
`pn−r+1

− (`+ 1)pn−r
+ pnr

p− 1

= `pn−r
−

p`− 1
p− 1

,

as desired. �
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Appendix B: p-adic valuations

Fix a prime p to be used throughout this appendix. For any integer n ≥ 0, let Sp(n)
denote the sum of the base-p digits of n. In other words, if n= a0+a1 p+· · ·+ar pr

with 0≤ a0, . . . , ar ≤ p−1 then Sp(n)= a0+a1+· · ·+ar . This appendix proves
some simple results on the function Sp and on p-adic valuations involving this
function. The proof for the next lemma is elementary and we omit it.

Lemma B.1. Let n ≥ 0 be an integer.

(1) Sp(pn)= 1.

(2) Sp(pna)= Sp(a) for any integer a ≥ 0.

(3) Sp(pn
− 1)= n(p− 1).

(4) If 0≤ k ≤ n then Sp(pn
− pk)= (n− k)(p− 1).

(5) If 0≤ a ≤ pn then Sp(pn
− a)+ Sp(a)= (n− vp(a))(p− 1)+ 1.

(6) If 0≤ a ≤ pn
− 1 then Sp(pn

− 1− a)+ Sp(a)= n(p− 1).

We use the notation ( n
a0, . . . , ar

)
=

n!
a0! · · · ar !

.

If a0+ · · ·+ ar = n then we have the following:

Lemma B.2. Let n = a0+ · · ·+ ar with n, a0, . . . , ar ≥ 0. Then

vp

(( n
a0, . . . , ar

))
=

1
p−1

(( r∑
i=0

Sp(ai )

)
− Sp(n)

)
.

Proof. See, for example, [Merkurjev 2003, Lemma 11.2]. �

Lemma B.3. Let a0, . . . , ar ≥ 0 and n > 0 be integers with a0+· · ·+ar = n. Then

vp

(( n
a0, . . . , ar

))
≥ vp(n)− min

0≤i≤r
{vp(ai )}.

Proof. See, for example, [Merkurjev 2003, Lemma 11.3]. �

Lemma B.4. Let 0≤r≤s be integers. Fix an integer 0< j≤ ps . Let a0, . . . , apr ≥0
be integers with a0 + · · · + apr = ps−r and a1 + 2a2 + · · · + pr apr = j . Write
j = s0 pr

+ s1 with 0≤ s1 < pr . Then if s1 = 0, there is an inequality

s− r − min
0≤k≤pr

{vp(ak)}+

pr∑
i=1

(r − vp(i))ai ≥ s− r − vp(s0),

and if s1 > 0, there is an inequality

s− r − min
0≤k≤pr

{vp(ak)}− (r − vp(s1))+

pr∑
i=1

(r − vp(i))ai ≥ s− r.
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If s1 = 0, then equality holds if and only if a0 = ps−r
− s0 and apr = s0. If s1 > 0,

then equality holds if and only if a0 = ps−r
− s0− 1, as1 = 1, and apr = s0.

Proof. We first assume s1 = 0. If `=min{vp(ak)} is 0, then the inequality clearly
holds since r − vp(i) ≥ 0 for all 1 ≤ i ≤ pr . If ` > 0 and r = 0, then j = a1 and
j = s0. So ` is either vp(a0) = vp(ps

− j) or vp(a1) = vp( j) = vp(s0). Since
j ≤ ps , it follows ` = vp(s0) and the claim follows with equality in this case. If
`=min{vp(ak)}> 0, then since r−vp(i)≥ 0 for all 1≤ i ≤ pr , the inequality also
holds if r 6= 0 and if there is a nonzero ai with i 6= 0, pr as (r − vp(i))ai − `≥ 0.

Thus, to prove that the inequality holds in general (for s1 = 0), it suffices to
assume ` > 0, r > 0, and ai = 0 unless i = 0 or i = pr . Assuming this is the case,
it follows from the assumption pr apr = j that apr = s0 and from the assumption
a0+apr = ps−r that a0 = ps−r

−s0. Since s0 ≤ ps−r , we also have vp(apr )≤ s−r
so that vp(a0) = vp(apr ) unless apr = ps−r (in which case vp(a0) = ∞ and the
claim is clear). Thus `= vp(s0), the inequality holds, and it is even an equality in
this case.

To see that a0 = ps−r
− s0 and apr = s0 is the only case the inequality is an

equality, one can work through the same cases. If `= 0 and there is equality, then
vp(s0)= 0 and the large summation must equal 0. Hence pr apr = j and the claim
follows. If ` > 0, then either r = 0 or r > 0. If r = 0, the claim follows from the
first paragraph. If r > 0, then either all ai with i 6= 0, pr vanish or there is at least
one 0< i < pr with ai 6= 0. We can assume the latter case where the inequality is
a strict inequality since (r − vp(i))ai − `≥ ai − ` > 0.

To show the claim when s1 > 0, we work through cases similar to before. Note
now r > 0 holds always, as otherwise we’d have s1 = 0. If ` = min{vp(ak)} = 0
then since r − vp(i)≥ 0, we’re left to show that the summation

pr∑
i=1

(r − vp(i))ai

is greater than or equal to r − vp(s1)≤ r . Since s1 > 0, there is a smallest integer k
with 0≤ k ≤ r − 1, abpk 6= 0, and b relatively prime to p. It follows that pk divides
s1 and −(r − vp(s1)) ≥−r + k. Since (r − vp(bpk))abpk = (r − k)abpk ≥ (r − k),
we find that the inequality holds by summing

(r − vp(bpk))abpk − (r − vp(s1))≥ (r − k)− (r − k)= 0.

Thus to prove the inequality holds in general, it suffices to assume ` > 0. Under
our assumptions ` > 0, r > 0, and j 6= pr apr , we have that there exists at least one
i with i 6= 0, pr such that ai 6= 0. Let k be the smallest integer between 0≤ k < r
such that abpk 6= 0 for some b relatively prime to p. It follows pk divides s1, and
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hence −(r − vp(s1))≥−r + k. Now

(r − vp(bpk))abpk − r + vp(s1)− `≥ (r − k)p`− r + vp(s1)− `

= (r − k)(p`− 1)− `+ vp(s1)

≥ (p`− 1− `)+ vp(s1)

≥ 0.

We end by showing that equality holds, assuming s1 > 0, only in the specified
case (it’s clear equality holds in this case). We first assume `= 0. For equality to
hold, we must have

pr∑
i=1

(r − vp(i))ai = r − vp(s1).

Again there is a minimal 0≤ k < r with abpk 6= 0 for some b relatively prime to p.
We also get that pk divides s1. It follows that

(r − vp(bpk))abpk = (r − k)abpk ≥ (r − k)≥ r − vp(s1)

must be an equality. Hence abpk = 1 and we are in the specified case.
We next assume ` > 0 and show our inequality is strict. Let k with 0 ≤ k < r

be minimal with abpk 6= 0 for some b relatively prime to p. Then
pr∑

i=1

(r − vp(i))ai ≥ (r − k)p`.

Since `+r −vp(s1)≤ `+r − k it suffices to check (r − k)p` > `+r − k holds for
all (r − k), ` > 0 in order to show this is a strict inequality in this case. But this
is true since dividing by r − k yields p` > `/(r − k)+ 1; making another estimate
we can show p` > `+ 1 for all ` and this is always true for ` > 0 and p ≥ 2. �

Lemma B.5. Let 0 ≤ r ≤ s be integers. Fix an integer 1 ≤ j ≤ ps and write
j = s0 pr

+ s1 with 0≤ s1 < pr .
If s1 = 0, let I = (a0, . . . , apr ) be the tuple with a0 = ps−r

− s0, apr = s0 and
ai = 0 for all other i . Then

vp

(( ps−r

I

))
=

1
p−1

(Sp(a0)+ Sp(apr )− Sp(ps−r ))= s− r − vp(s0).

If s1 > 0, let I = (a0, . . . , apr ) be the tuple with a0 = ps−r
− s0 − 1, as1 = 1,

apr = s0 and ai = 0 for all other i . Then

vp

(( ps−r

I

))
=

1
p−1

(Sp(a0)+ Sp(as1)+ Sp(apr )− Sp(ps−r ))= s− r.

Proof. The first equality follows from Lemma B.2 and Lemma B.1 (1) and (5).
The second equality follows from Lemma B.2 and Lemma B.1 (1) and (6). �
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