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We construct algebraic unoriented and oriented cobordism, named MGLO and
MSLO, respectively. MGLO is defined and its homotopy groups are explicitly
computed, giving an answer to a question of Jack Morava. MSLO is also defined
and its coefficients are explicitly computed after completing at a prime p. Sim-
ilarly to MSO, the homotopy type of MSLO depends on whether the prime p is
even or odd. Finally, a computation of a localization of the homotopy groups of
MGLR is given.
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1. Introduction

Motivic homotopy theory on smooth schemes over a field was introduced by Morel
and Voevodsky [1999] with the purpose of proving the Bloch–Kato conjecture,
which was accomplished by Voevodsky [2003a]. Motivic analogues of well known
spectra of algebraic topology carry additional deep algebraic information. For
example, motivic “ordinary” homology computes Bloch’s higher Chow groups,
motivic K-theory is algebraic K-theory, and motivic cobordism has a geometric
interpretation as algebraic cobordism [Levine and Morel 2007].

In [Hu et al. 2011], Hu, Kriz, and Ormsby (following notes of Deligne [2009])
introduced equivariant stable motivic homotopy theory, and motivic real K-theory
(an analogue of Atiyah’s KR) to solve Thomason’s homotopy limit problem on
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algebraic Hermitian K-theory. A follow-up paper [Berrick et al. 2015] generalized
their result.

The authors of [Hu et al. 2011] introduced a motivic analogue of MR, which
they denote by MGLR. The computation of the coefficients of MGLR remains a
difficult problem.

In this paper we introduce a nonequivariant motivic spectrum MGLO which is
related to MGLR and analogous to unoriented (topological) cobordism MO. We
prove MGLO is a wedge of suspensions of ordinary motivic homology with coef-
ficients in C2. Although our result is similar to the analogous result for MO, the
pattern of suspensions in MGLO is more subtle due to the Tate twist. Our result is
stated in Theorem 3.12. This answers a question of Jack Morava.

An important subtlety arises in the construction of MGLO, and a new concept is
developed in the process. The point is that in topology MO can be obtained from
MR by a construction called geometric fixed points [Lewis et al. 1986, Chapter 2,
Definition 9.7]. In more detail, let EC2 be a free contractible C2-equivariant CW
complex. Then we have a cofiber sequence

EC2+→ S0
→ ẼC2.

For a C2-equivariant topological spectrum E, we define the geometric fixed points
of E as

8C2(E)= (ẼC2 ∧E)
C2 .

In particular,
MO=8C2(MR),

and this is the spectrum we compute with. A similar point is also relevant in
[Hill et al. 2016]. There is also a motivic geometric fixed point functor 8C2

ét (see
Section 6). Applying this functor to MGLR gives

MGLO=8C2
ét (MGLR).

Extending this construction, we also define a motivic analogue of oriented cobor-
dism MSO, which we denote by MSLO. In Theorem 4.12 we compute the coef-
ficients of MSLO completed at an odd prime, and in Theorems 4.25 and 4.23 we
show that the 2-completion of MSLO splits as a wedge sum of copies of motivic
homology.

We would like to point out that the spectrum MSLO is not the same as the
spectrum MSL defined by Panin and Walter [2010]. The topological realization of
MSL is MSU, the special unitary cobordism spectrum. The topological counterparts
of MSLO and MSL (i.e., MSO and MSU, respectively) are discussed in [Pengelley
1982]. Furthermore, using almost the same construction used to form MGLR [Hu
et al. 2011], one can form a spectrum MSLR, which we call special hermitian
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algebraic cobordism. The underlying nonequivariant spectrum of MSLR is MSL,
and the underlying geometric fixed points spectrum of MSL is MSLO.

In Sections 5 and 6 we use our computation of MGLO to obtain some results on
the coefficients of MGLR. In particular, we compute the coefficients of 2-completed
MGLR localized at two elements θ and λ in Theorem 6.6. In Theorem 5.5 and
Corollary 5.6 we show that MGLR is not motivically real-oriented, solving a ques-
tion asked in [Hu et al. 2011].

Notation and conventions. Throughout the paper, k is a field of characteristic 0.
The stable motivic homotopy category of Morel and Voevodsky, as constructed
in [Morel and Voevodsky 1999], is denoted by SH(k). An important feature of
motivic homotopy theory is that we have two circles. These we denote as S1 and
Sα, as opposed to the other common notation of S1,0 and S1,1, respectively. The
topological circle S1 is formed in the usual way as 11/∂11, which we point at 1.
The geometric sphere Sα is Gm ' Spec(k[z, z−1

]) pointed at 1.
For a finite group G, let GSm/k denote the category of smooth schemes of

finite type over k with left G actions and equivariant maps. The construction of
the stable G-equivariant motivic homotopy category SHG(k) can be found in [Hu
et al. 2011]. We write [ – , – ]G for maps in SHG(k). An important feature of the
C2-equivariant motivic homotopy category SHC2(k) is that we have four circles.
These are denoted S1, Sα, Sσ , and Sσα. The topological sphere S1 is the usual
simplicial sphere and Sσ the simplicial sphere with action z→−z. The geometric
sphere Sα is the pointed scheme (Gm, 1) equipped with trivial action and Sσα is
the pointed scheme (Gm, 1) equipped with the inversion action z 7→ z−1. For this
reason we often use the notation G

1/z
m instead of Sσα.

We adopt the convention that ∗ refers to an integer grading of homotopy or
(co)homology groups while ? refers to multidimensional grading. In more detail,
? grading refers to either Z2 grading in the cases of SH(k) and the classical stable
C2-equivariant category, or to Z4 grading in the case of SHC2(k).

2. A motivic analogue of MO

In this section, we give a detailed account of how to construct a motivic analogue of
the unoriented cobordism spectrum MO. In Section 3, we give a full computation
of the coefficients of this spectrum, which we call MGLO, up to knowledge of
the coefficients of motivic HZ/2. In particular, one can compute the coefficients
explicitly for the fields R and C. Moreover, the topological realization of MGLO

over the field C is MO.

The construction of MGLO. The idea behind our definition of MGLO is that, just
as the geometric fixed points of MO is MR, the geometric fixed points of MGLR
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should be MGLO. The definition presented in this paper is different from the def-
inition given in [Hu et al. 2011]. Using simplicial EC2, the authors of [Hu et al.
2011] define MGLO as

(ẼC2 ∧MGLR)C2 . (2.1)

However, the functor
(ẼC2 ∧ ( – ))C2

in (2.1) fails to satisfy a crucial property for general motivic spectra. Topologically,
given a G-equivariant spectrum E, the functor

8G( – ) := (ẼG ∧ ( – ))G

applied to E produces a nonequivariant spectrum 8G(E), which is equivalent to
forgetting E to the prespectrum level and then simultaneously taking G-fixed points
of the spaces making up the prespectrum of E and the connecting maps to form a
nonequivariant prespectrum. One can then promote this to a nonequivariant spec-
trum in the usual way. Similarly, in our definition, MGLO is defined by forgetting
MGLR to the level of prespectra and then taking C2-fixed points of the spaces
and connecting maps to form a nonequivariant prespectrum. Promoting this to a
spectrum defines MGLO.

We suspect this alternative definition of MGLO to be different than (2.1), the
reason being that simplicial ẼC2 is a model for S∞σ . This only takes into account
the σ grading. However, we need to also take into account the σα grading. In
other words, our ẼC2 should really be a model of S∞σ+∞σα . It turns out that there
is an alternative version of ẼC2, whose definition was originally given in [Morel
and Voevodsky 1999, Chapter 4.2], and which we redefine in Section 6. We refer
to this alternative as the geometric model. Our primary definition for MGLO is
Definition 2.19. By Theorem 6.1 our primary definition of MGLO is equivalent to

(MGLR∧ S∞σ+∞σα)C2 . (2.2)

While we do not have a proof that (2.2) and (2.1) are different spectra, the nonequiv-
alence of the geometric and simplicial classifying spaces for C2 imply a general
nonequivalence of (2.2) and (2.1) whenever MGLR is replaced by a general C2-
equivariant motivic spectrum E. For this reason, we do not assume an equivalence
between (2.2) and (2.1) in this paper. For more detail, see Section 6.

Quadratic forms. The classical Milnor spectrum MO has as its prespectrum the
Thom spaces, defined as the quotient BOn /BOn−1 induced by inclusion into the
zero section. This is well defined because of the well known equivalence of the
geometric realization of the two-sided bar construction

|B(∗, On, Sn−1)| ' |B(∗, On−1, ∗)| ' BOn−1 .
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In other words, a key ingredient in the construction of MO is the orthogonal groups
On along with their associated transitive action on an appropriate model of a sphere.
It is well known that the classical orthogonal group On is a special case of a gener-
alized class of orthogonal groups which are defined in terms of symmetric bilinear
forms. In more detail, given a symmetric bilinear form b : kn

× kn
→ k, we can

define the transpose of a matrix A ∈ GLn(k) to be the unique matrix ATb such that

b(Ax, y)= b(x, ATb y) ∀x, y ∈ kn.

Using this, we can then define the group of orthogonal matrices by

Ob
n := {A ∈ GLn(k) | AATb = I }.

We often suppress b in our notation whenever the underlying symmetric bilinear
form b is understood from context.

While MGLO is supposed to be a motivic version of MO, it is also supposed to
be the geometric fixed points of the C2-motivic spectrum MGLR, which in turn is a
motivic version of the C2-equivariant spectrum MR. The C2 action on MR comes
from an action on the group GLn(C) given by complex conjugation,

A↔ A.

However, complex conjugation is trivial over fields which do not contain
√
−1.

This motivates the discussion which follows.
Following [Hu et al. 2011, Section 6.1], we instead consider the hyperbolic

quadratic form on k2n:

q(x1, . . . , x2n)= x1x2+ · · ·+ x2n−1x2n.

The associated symmetric bilinear form is

b((x1, . . . , x2n), (y1, . . . , y2n))=

n∑
i=1

x2i y2i−1+ x2i−1 y2i .

The b-adjoint of a matrix A = (ai, j )
2n
i, j=0 is a 2n×2n matrix ATb such that

b(Ax, y)= b(x, ATb y). (2.3)

Explicitly, putting ATb = (b2n
i, j=1), one has

b2i,2 j = a2 j−1,2i−1, b2i,2 j−1 = a2 j,2i−1,

b2i−1,2 j−1 = a2 j,2i , b2i−1,2 j = a2 j−1,2i .

Notice that there is a C2 action on the quadric

Qn := V(x, y | b(x, y)= 1)
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given by
x↔ y,

where V(xi | E) (sometimes abbreviated to V(E)) denotes the locus of the equa-
tions E in the variables xi .

Taking C2 fixed points of the quadric under this action, we have

(Qn)
C2 = V(x, y | b(x, y)= 1, x = y)

= V

( n∑
i=1

x2i y2i−1+ x2i−1 y2i − 1, x = y
)
. (2.4)

The projection from (2.4) onto the x coordinate scaled by a factor of 2 gives an
equivalence to Q2n−1 := V(x ∈ k2n

| x1x2+ x3x4+ · · ·+ x2n−1x2n − 1). But the
projection from (2.4) onto the x-axis gives the same thing as projecting Qn onto
the x-axis. So long as x 6= 0 there exists a y such that b(x, y) = 1. But this
means that the image of the projection map is A2n r 0. It is a standard result that
A2n r 0 has the homotopy type of S2n−1,n

= Sn−1+nα. Using (2.3) we can define
the even-dimensional orthogonal groups by

O2n := {A ∈ GL2n(k) | AATb = I }.

The group O2n acts on the quadric Q2n−1 in a natural way. We can write Q2n−1 as

V
( 1

2 b(x, x)− 1
)
.

The action on Q2n−1 is given elementwise by A · x = Ax . Notice that

b(Ax, Ax)= b(x, ATb Ax)= b(x, x).

Therefore we have defined an O2n action on Q2n−1. We define O2n−1 to be

O2n−1 := {A ∈ O2n | A(1, 1, 0, . . . , 0)= (1, 1, 0, . . . , 0)}.

Lemma 2.5. For each positive integer n, the even-dimensional orthogonal group
O2n acts transitively on the motivic sphere Q2n−1.

Proof. The quadratic form

q(x)=
n∑

i=1

x2i−1x2i

is uniquely defined by a 2n×2n symmetric matrix A consisting of all zeros, except
for n copies of the 2×2 matrix [

0 1
1 0

]
(2.6)
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along its diagonal. The matrix A is in turn congruent to the matrix B consisting of
all zeros except for n copies of the matrix[

1 0
0 −1

]
(2.7)

along its diagonal. Therefore, the claim about transitivity is equivalent to prov-
ing transitivity with respect to the orthogonal group and sphere induced from the
symmetric bilinear form induced by the matrix B. The symmetric bilinear form
represented by B is given by,

n∑
i=1

x2i−1 y2i−1− x2i y2i .

Under this symmetric bilinear form bB , orthogonal matrices consist of a set of
vectors B = {bi }

2n
i=1 such that

bB(bi , b j )=

{
±1 if i = j,

0 otherwise.

Under our equivalent symmetric bilinear form bB , our sphere is given by

Q B
2n−1 := V

(
x ∈ k2n

∣∣∣−1+
n∑

i=1

(x2
2i−1− x2

2i )

)
.

Now, to prove our claim about transitivity, let {ei }
2n
i=1 denote the standard basis

for k2n . Proving transitivity is equivalent to proving that for any point p ∈ Q B
2n−1

there exists a matrix M such that Me1= p. Under this assumption, the set of vectors
A= {p}∪ {p+ ei }

2n−1
i=1 are linearly independent. Using the Gram–Schmidt process

with respect to the inner product induced by bB , we can form an orthonormal set
of vectors with respect to the basis A= {p} ∪ {p+ ei }

2n−1
i=1 . The basis will become

the rows of M , and our claim will be proven. However, we need to show that the
points obtained from the Gram–Schmidt process still live inside of k2n , rather than
some potentially bigger field k′ ⊃ k. To this end, note that

proja(a+ ei )= a−
b(a+ ei , a)

b(a, a)
a = (1− b(ei , a))a.

Therefore,

bB(proja(a+ ei ), proja(a+ ei ))= (1− b(ei , a))2 · bB(a, a)= (1− b(ei , a))2.

This proves the claim. �

Definition 2.8. The odd-dimensional orthogonal groups O2n−1 are defined to be
the stabilizer of the point (1, 1, 0, . . . , 0).
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Next we define the even-dimensional quadrics as

Q2n−2 := V(x ∈ k2n
| b(x, x0), b(x, x)+ 1)

= {x ∈ k2n
| x1x2+ · · ·+ x2n−1x2n + 1= x1+ x2 = 0}.

We would like to make analogous statements to Lemma 2.5 for O2n−1 and Q2n−2,
but first we show that Q2n−2 is homotopy equivalent to a familiar space.

Lemma 2.9. The motivic space Q2n−2 is homotopy equivalent to the motivic sphere
Sn−1+(n−1)α.

Proof. We have that

Q2n−2 = V(x ∈ k2n
| x1x2+ · · ·+ x2n−1x2n + 1, x1+ x2).

We note that this space is homotopy equivalent to

V((y, x3, x4, . . . , x2n) ∈ k
2n−1
| −y2

+ x3x4+ · · ·+ x2n−1x2n + 1).

But this is easily seen to be equivalent to

Spec(k[y, x3, x4, . . . , x2n−1, x2n]/((1− y)(1+ y)+ x3x4+ · · ·+ x2n−1x2n)).

Now, by [Asok et al. 2017, Theorem 2], we notice that

Sn−1+(n−1)α
'Spec(k[z, a3, a4, . . . , a2n−1, a2n]/(a3a4+· · ·+a2n−1a2n−z(1+z)).

Using the change of variables z 7→ − 1
2(1+ y), ai 7→

1
2 xi , we have that

Spec
(
k[z, a3, a4, . . . , a2n−1, a2n]/(a3a4+ · · ·+ a2n−1a2n − z(1+ z))

)
' Spec

(
k
[
−

1
2(1+ y), 1

2 x3,
1
2 x4, . . . ,

1
2 x2n−1,

1
2 x2n

]
/
(1

4(x3x4+ · · ·+ x2n−1x2n + (1− y)(1+ y))
))

' Spec
(
k[y, x3, x4, . . . , x2n−1, x2n]

/(x3x4+ · · ·+ x2n−1x2n + (1− y)(1+ y))
)
. �

The O2n action on Q2n−1 induces an O2n−1 action on Q2n−2, which we prove
presently. Recall that O2n−1 acts pointwise on the quadric Q2n−2 by A · x 7→ Ax .
Notice that Q2n−2 is induced from the form b2n(x, y), and x ∈ Q2n−2 implies that
1
2 b2n(x, x)=−1. Since

b(Ax, Ax)= b(x, ATb Ax)= b(x, x),

it only remains to show that if x1=−x2 and y= (y1, y2, . . . , y2n) is the image of x ,
then y1=−y2. But notice that for x ∈ Q2n−2 we have that b(x, (1, 1, 0, . . . , 0))= 0.
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Let A ∈ O2n−1 and let y = (y1, y2, . . . , y2n) be the image of x . Then

y1+ y2 = b(y, (1, 1, 0, . . . , 0))= b(Ax, (1, 1, 0, . . . , 0))

= b(x, ATb(1, 1, 0, . . . , 0))= b(x, (1, 1, 0, . . . , 0))= x1+ x2 = 0.

This proves that O2n−1 acts on the quadric Q2n−2.

Lemma 2.10. O2n−1 acts transitively on Q2n−2, and the fixed point subgroup of
y0
= (1,−1, 0, . . . , 0) can be naturally identified with O2n−2.

Proof. We prove the transitivity claim in a similar manner to Lemma 2.5. It is
enough to show that for any x ∈ Q2n−2 there is a matrix A ∈ O2n−1 such that
Ax = y0.

Notice that technically our O2n−1 lives inside of O2n . We choose orthonormal
bases

B1 =

{
x0

‖x0‖
,

y0

‖y0‖
, e3, . . . , e2n

}
,

B2 =

{
x0

‖x0‖
,

x
‖x‖

, v3, . . . , v2n

}
.

Notice there exists a change of basis matrix P from B2 to B1 which sends x0 to x0

and x to y0/‖y0
‖.

This implies that for x ∈ Q2n−2 we have that Px = λy0. We have that

−1= 1
2 b(x, x)= 1

2 b(Px, Px)= 1
2 b(λy0, λy0)= 1

2λ
2b(y0, y0)=−λ2

H⇒ λ=±1.

If λ= 1 then we are done. If λ=−1 then we have that (−P)x = y0. This proves
the transitivity claim.

Now notice that the subgroup of O2n−1 which fixes y0
= (1,−1, 0, . . . , 0) ∈ k2n

is

{A ∈ O2n | Ax0
= x0 and Ay0

= y0
} = {A ∈ O2n−1 | Ae1 = e1 and Ae2 = e2}.

But this is just matrices A ∈ O2n of the form

A =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 x3,3 . . . x3,2n
...
...

...
. . .

...

0 0 x2n,3 . . . x2n,2n

 .

This shows that O2n−2 can be naturally identified with the subgroup of O2n−1,
which fixes the point y0. �
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Cellularity. The following definition is due to [Dugger and Isaksen 2005, Defini-
tion 2.1]. Let M be a pointed model category, and let A be a set of objects in M.

Definition 2.11. The class of A-cellular objects is the smallest class of objects of
M such that

(1) every object of A is A-cellular;

(2) if X is weakly equivalent to an A-cellular object, then X is cellular;

(3) if D : I →M is a diagram such that D is A-cellular, then so is hocolimD.

Choosing M to be the stable motivic homotopy category, and choosing A to be

{Sm+nα
| m, n ∈ Z},

we obtain the cellular stable motivic homotopy category.

Adapting the proof of [Dugger and Isaksen 2005, Proposition 4.1], we prove the
following.

Proposition 2.12. The variety On is stably cellular for every n ≥ 1.

Proof. We first suppose that n = 2k. Let x = (1, 1, 0, . . . , 0). Now consider the
fiber bundle On→ Pn−1 given by

On
mx
−→ An

→ An/An r 0' Pn−1.

Here mx denotes the map A 7→ Ax . Notice that mx induces a transitive action of
On on the motivic sphere Qn−1. The fiber over the point (1, 0, 0, . . . , 0) consists
of all A ∈ On such that a11 6= 1, and a j1 = 0 for j ≥ 2. Recall that

On−1 ∼= {A ∈ On | A(1, 0, 0, . . . )= (1, 0, 0, . . . )}.

But this is just {A ∈ m−1
x ((1, 0, 0, . . . )) | a11 = 1}. Since

det(AAT )= det(A) det(AT )= det(A)2 = 1,

it follows that a11 =±1, and so m−1
x ((1, 0, 0, . . . ))= On−1×{±1}. As a scheme,

but not as a group, this is isomorphic to

{±1}×An−1
× On−1,

which is stably cellular by induction and [Dugger and Isaksen 2005, Lemma 3.4].
The usual cover of Pn by affines is a completely trivializing cover for the bundle,
so [Dugger and Isaksen 2005, Lemma 3.8] applies. �
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Two-sided bar construction. Recall that we have the following equivalences,

Qn '

{
Sk+kα if n = 2k,
Sk−1+kα if n = 2k− 1.

The groups On act on the quadrics Qn−1, allowing us to form the two-sided bar
construction, which we now discuss.

Let G be a finite group and X and Y motivic spaces. If X ×G→ X is a right G
action and G× Y → Y is a left G action, then we form the two-sided bar construc-
tion B(X,G, Y ) as the left derived functor of the coequalizer of X×G×Y ⇒ X×Y .
We denote the geometric realization of B(X,G, Y ) by |B(X,G, Y )|.

Definition 2.13. In the special case X = Y = ∗, we define BG := |B(∗,G, ∗)|.

Lemma 2.14. The geometric realization of B(On, On−1, ∗) is homotopy equiva-
lent to Qn−1.

Proof. It is well known for H ↪→ G an inclusion of groups that the left coset G/H
is isomorphic to |B(G, H, ∗)|. Taking G = On and H = On−1, this gives

On/On−1 ∼= |B(On, On−1, ∗)|.

Notice that by the above discussion, On acts on Qn−1, and the stabilizer of a point
is On−1. This induces an isomorphism between On/On−1 and Qn−1, proving that

Qn−1 ∼= |B(On, On−1, ∗)|. �

Lemma 2.15. The geometric realization of the two-sided bar B(G,G, ∗) is con-
tractible. In particular, we have |B(On, On, ∗)| ' ∗.

Proof. Notice that ∗ ∼= G/G ∼= |B(G,G, ∗)|. �

Proposition 2.16. The geometric realization of the two-sided bar construction
B(∗, On, Qn−1) is homotopy equivalent to BOn−1.

Proof. We have that

|B(∗, On, Qn−1)| '
∣∣B(∗, On, |B(On, On−1, ∗)|

)∣∣
'
∣∣B(|B(∗, On, On)|, On−1, ∗

)∣∣' |B(∗, On−1, ∗)|. �

The prespectrum for MGLO. We define a motivic prespectrum as follows.

Definition 2.17. A motivic prespectrum E is defined to be a collection of based
spaces E1, E2, . . . equipped with connecting maps S1+α

∧ En
σn
−→ En+1. If the

adjoint maps En
σ̃n
−→ [S1+α, En+1] are homotopy equivalences, then we say that E

is a motivic spectrum.
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The identifications from Proposition 2.16 imply that we have a canonical map

BOn−1+
π
−→ BOn+ (2.18)

which is defined by projection maps (BOn−1)m
πm
−→ (BOn)m given by

On × On × · · ·× On︸ ︷︷ ︸
m times

×Qn−1 7→ On × On × · · ·× On︸ ︷︷ ︸
m times

.

Therefore, we can think of (2.18) as a sphere bundle. This allows us to define
Thom space-like objects as the homotopy cofiber of π . The Thom space of BOn ,
which we denote as Thom(BOn), is defined to be the pushout of the diagram

BOn−1+

��

// BOn+

��

* // Thom(BOn)

The spaces Thom(BO2n) form the spaces for the prespectrum of MGLO.

Definition 2.19 (MGLO). At the level of prespectra, MGLO is defined by

(MGLO)n := Thom(BO2n).

Notice the natural inclusions On−1× Om−1 ⊂ On × Om induce maps

B(On−1× Om−1)→ B(On × Om).

We define Thom(B(O2n × O2m)) to be

B(O2n × O2m)/B(O2n−1× O2m−1)' Thom(BO2n)∧Thom(BO2m).

The structure maps

S1+α
∧Thom(BO2n)

σn
−→ Thom(BO2n+2)

are defined by

S1+α
∧Thom(BO2n)'6Gm ∧Thom(BO2n)

→ |B(∗, O2,Gm)|+ ∧Thom(BO2n)→ BO2+ ∧Thom(BO2n)

→ Thom(BO2)∧Thom(BO2n)
'
−→ Thom(BO2×BO2n)→ Thom(BO2n+2).

This defines the prespectrum MGLO and we can promote it to a spectrum in the
usual way.

Notice that since the orthogonal groups are stably cellular by Proposition 2.12,
it follows that the classifying spaces BOn are also stably cellular. Since each of the
Thom spaces Thom(BOn) is constructed as the homotopy cofiber of the inclusion
BOn−1→BOn , it follows that the spaces Thom(BOn) are also cellular. Since these
are the spaces defining the prespectrum of MGLO, it follows that MGLO is cellular.



MOTIVIC ANALOGUES OF MO AND MSO 357

3. Computing the coefficients of MGLO

Combining Proposition 2.16 with a Mayer–Vietoris argument as in [Milnor and
Stasheff 1974] gives us two Thom isomorphisms in motivic HZ/2 (co)homology:

H ?(BOn+)
∼= H ?+ωn (Thom(BOn)),

H?(BOn+)
∼= H?+ωn (Thom(BOn)).

Here ω2k := k+ kα and ω2k+1 := k+ 1+ kα.
For each space BOn , we get a unique Thom class Thom(BOn)

wn
−→ 6ωn HZ/2.

Composing wn with the homotopy cofiber of the map BOn−1+→BOn+, we get
a class wn ∈ Hωn (BOn+). The following theorem has essentially been proved by
A. Smirnov and A. Vishik [2014, Theorem 3.1.1] using different language from
the present paper. The biggest difference between [Smirnov and Vishik 2014] and
the theorem presented here is that the former only applies to fields of character-
istic 0 for which

√
−1 ∈ k, whereas the present theorem holds for any field k of

characteristic 0.

Theorem 3.1. There is a unique set of classes w1, w2, . . . , wn belonging to motivic
Z/2 cohomology for which

H ?(BOn+)
∼= H ?

[w1, . . . , wn].

Here deg(w2i )= i + iα and deg(w2i+1)= i + 1+ iα.

Proof. Notice that the cofibration BOn−1+→BOn+→Thom(BOn) induces a long
exact sequence in cohomology given by

· · · → H ?(Thom(BOn))

→ H ?(BOn+)→ H ?(BOn−1+)→ H ?+1(Thom(BOn))→ · · · .

Using the Thom isomorphism H ?(BOn+)
∼=
−→ H ?+ωn (Thom(BOn)) we get the long

exact sequence

· · ·→H ?(BOn+)
f ∗n
−→H ?+ωn(BOn+)

g∗n
−→H ?+ωn (BOn−1+)

h∗n
−→H ?+1(BOn+)→· · · .

Notice that f ∗n is multiplication by some nonzero class wn . By induction,

H ?(BOn−1+)= H ?
[w1, . . . , wn−1].

Since BOn is cellular, we have that H p+qα(BOn+)= 0 for q < 0. It is also clear
that the map f ∗n is injective on Z/2∼= H 0(BOn+). We can start with the case n = 0
by identifying BO0 with |B(∗, O1, Q0)|, which is contractible. Therefore, we have
that h∗n(wi )= 0 for i = 0, . . . , n− 1. It follows that each of the wi can be uniquely
lifted to H ?(BOn+).
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Moreover, since h∗n(wi )= 0 for i = 0, . . . , n− 1, it follows that h∗n = 0. Thus,
the long exact sequence splits and we get the short exact sequence

0→ H ?(BOn+)
f ∗n
−→ H ?+ωn (BOn+)

g∗n
−→ H ?+ωn (BOn−1+)→ 0.

The key point is that f ∗n is multiplication by the cohomology classwn ∈Hωn (BOn+).
In other words, f ∗n =^wn .

From this the claim follows. We have

H ?(BOn+)
∼= H ?

[w1, . . . , wn−1]⊕ H ?
[w1, . . . , wn−1]^wn

∼= H ?
[w1, . . . , wn]. �

A quick word is in order. We have a Thom isomorphism in (co)homology. We
have computed the cohomology of BOn , but there is a motivic universal coeffi-
cient theorem, and so the (co)homologies are essentially the same and there is a
duality between the (co)homology classes. Motivically, this is not always the case.
However, BOn+ ∧ HZ/2 is a wedge sum of suspensions of HZ/2 of dimensions
p+ qα with p ≥ q and so we can show that the (co)homology classes are dual to
one another [Hoyois 2015, Section 5.1]. This gives us the following theorem.

Theorem 3.2. There is a unique set of classes w1, w2, . . . , wn belonging to motivic
Z/2 homology for which

H?(BOn+)
∼= H?[w1, . . . , wn].

Here deg(w2i )= i + iα and deg(w2i+1)= i + 1+ iα.

Using analogous arguments to those found in [Milnor and Stasheff 1974], we
get the corollary below.

Corollary 3.3. We have

H?(MGLO)∼= H?[w1, w2, . . . ].

Here deg(w2i )= i + iα and deg(w2i+1)= i + 1+ iα.

Since MGLO∧ HZ/2 is a wedge sum of suspensions of HZ/2 of dimensions
p+qα with p ≥ q , it follows that the (co)homology classes are dual to one another

Dual motivic Steenrod algebra. We review some results on the dual motivic Steen-
rod algebra. These results can be found in [Kylling 2017].

The dual motivic Steenrod algebra A∨Mot is defined to be HZ/2∧ HZ/2. As an
H?-algebra, the coefficients of A∨Mot are given by

H?[τ0, τ1, . . . , ξ1, ξ2, . . . ]/(τ
2
i − τξi+1− ρτi+1− ρτ0ξi+1). (3.4)

Here |ξi | = (2i
− 1)(1 + α), |τi | = (2i

− 1)(1 + α) + 1, τ is the generator of
H1−α ∼= µ2(k), and ρ is the class of −1 in H−α ∼= k×/(k×)2. Let E = (ε0, . . . , εn),
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εi ∈ {0, 1}, and R = (r1, . . . , rm). The dual motivic Steenrod algebra is a free
H?-module with basis consisting of the monomials,

τ(E)ξ(R) :=
∏

E

τ
εi
i

∏
R

ξ
ri
i .

By comparing the H?-module basis for the coefficients of MGLO∧HZ/2 and A∨Mot,
we see that MGLO∧ HZ/2 is a wedge sum of suspensions of A∨Mot. Consider the
submodule M of H?(MGLO) obtained by deleting all generators of degree |ξi |

and squaring all generators of degree |τi |. Let M be an H?-module basis for this
submodule. Then

MGLO∧ HZ/2'
∨

mi∈M

6|mi |A∨Mot.

The equivalence between MGLO and MGLO/(2, η). We begin with the defini-
tions of the mod 2 Moore spectrum, and the motivic Hopf map.

Definition 3.5. The mod 2 Moore spectrum is defined to be the stable cofiber M(2)
of the following map induced by multiplication by 2:

S0 2
−→ S0

→M(2).

Notice that the map 2 is induced by the stable homotopy class represented by
2 ∈ Z⊆ π0(S0), where 2= 1+ 1 and 1 is the class representing the unit map.

It is a well known fact that HZ∧M(2)' HZ/2. Recall that classically 2= 0
in the coefficients of MO. The analogous statement is true for MGLO.

Proposition 3.6. We have 2= 0 in the coefficients of MGLO.

Proof. We have a map

π1+α(BO2)→ π1+α(Thom(BO2))→ π0(MGLO).

The unit is the image of 1 ∈ π1+α(BGm) via the map

h : π1+α(BGm)→ π1+α(BO2).

The map z 7→ z−1 sends 1 7→ −1 ∈ π1+α(BGm), but becomes identified with the
identity under h. Thus, 1=−1 ∈ π1+α(BO2). �

Consider the Hopf map given by the projection h : A2 r 0→ P1. Recall that
A2r0' S1+2α and P1

' S1+α . It follows that h induces a stable map η :6αS0
→ S0.

We denote the cokernel of this map by S0/η. For a general spectrum E, we denote
the cokernel of the map η∧E by E/η.

Proposition 3.7. We have η = 0 in the coefficients of MGLO.
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Proof. It is well known that η = 0 in the coefficients of MGL. We stably prove
MGLO is an E∞-ring spectrum in Corollary 6.2. Therefore, it is enough to produce
a map of ring spectra from MGL to MGLO. We accomplish this by producing a
surjective map GLn→ O2n . This map is given by

A 7→ A⊕ (ATb)−1.

This in turn induces a map MGL→MGLO as desired. �

Applying the motivic Hurewicz theorem. We use a modified version of the motivic
Hurewicz theorem of [Bachmann 2018]. We recall what it means to be (n − 1)-
connected in the motivic sense.

Definition 3.8. A motivic spectrum E is finite type (n− 1)-connected if the follow-
ing hold:

(1) πi+ jα(E)= 0 for all 0< i < n.

(2) For each fixed i ∈ Z, πi+ jα(E)= 0 for all but at most a finite number of j ∈ Z.

Theorem 3.9. Let k have characteristic 0, and suppose that E is a finite type
(n−1)-connected cellular stable motivic spectrum for which 2 and η are 0. Then

Hn+∗α(E;Z/2)∼= πn+∗α(E).

Proof. This follows from [Bachmann 2018, Theorem 3]. �

Consider the basis elements vi ∈M⊂ H?(MGLO). Then each of the vi is dual
to a cohomology class ci ∈ H ?(MGLO), and so there exists a map

MGLO
f
−→

∨
mi∈M

6|mi |HZ/2 (3.10)

which induces an equivalence on homology.

Theorem 3.11. The map f in (3.10) is a homotopy equivalence, and so MGLO

splits as a wedge sum of HZ/2.

Proof. Taking the cofiber of the map f we obtain a cofibration

MGLO
f
−→

∨
mi∈M

6|mi |HZ/2→ F.

The idea is that we know that F is cellular, and the coefficients of F∧ HZ/2 are 0
by construction. Since 2 and η are 0 in

∨
mi∈M

6|mi |HZ/2, it follows that 22 and
η2 are 0 in F. Then the motivic Hurewicz theorem combined with the Nakayama
lemma implies that F= 0, and so f is an equivalence. �
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MGLO? and a comparison with MO∗. Combining everything, we have:

Theorem 3.12. As an H? algebra,

MGLO? ∼= H?[un+nα, un+1+nα, u(2i−1)(1+α)+2 | n, i ∈ Z≥0, n 6= 2i
− 1].

Let tC denote the complex topological realization functor. Then

tC(S1)= S1, tC(Sα)= S1, tC(HZ/2Mot)= HZ/2.

From this it follows that tC(MGLO)=MO. Over k= C, we have that

MGLO? = HZ/2Mot?[x2, x2+2α, x3+2α, u4+2α, u4+4α, u5+4α, x5+5α, . . . ]

= Z/2[θ ][u2, u2+2α, x3+2α, u4+2α, u4+4α, u5+4α, u5+5α, . . . ]

= Z/2[θ, u2, u2+2α, u3+2α, u4+2α, u4+4α, u5+4α, u5+5α, . . . ].

Recall that
MO∗ = Z/2[a2, a4, a5, a6, a8, a9, a10, . . . ]. (3.13)

So the generators of MO∗ correspond to generators in MGLO? twisted by powers
of θ .

4. A motivic analogue of MSO

Recall that the classical oriented cobordism spectrum MSO is closely related to MO.
Similarly to MO, the spectrum MSO can be constructed from the Thom spaces of
the classifying spaces of SOn , which we denote by BSOn . Recall that the group
SOn is defined as

{A ∈ On | det(A)= 1}.

Although many results found in the this section can be generalized to more
general fields, many of the proofs rely on the coefficients of the motivic Z/p coho-
mology of the mod p Eilenberg–Mac Lane spectrum being equal to Z/p[τ ], where
τ denotes the Tate twist of degree α− 1. Therefore, for the entirety of Section 4,
the reader should always assume that k is a field of characteristic 0 containing all
p-th roots of unity, and for which all its elements are p-th powers.

Computing the coefficients of MSLO. Having constructed a motivic analogue
of MO, it becomes apparent that it would be possible to construct a motivic ana-
logue of MSO by mimicking the construction of MGLO. The simple observation
is that we can again consider the quadratic form,

q(x1, x2, . . . , x2n)= x1x2+ x3x4+ · · ·+ x2n−1x2n.

To this we can associate a unique orthogonal group O2n . Since the determinant
function is algebraic, we can define the 2n-dimensional special orthogonal groups as

SO2n := {A ∈ O2n | det A = 1}.



362 DONDI ELLIS

Again, for n ≥ 1 we get a transitive group action of SO2n on

Q2n−1 := V(x ∈ k2n
| q(x)− 1)' Sn−1+nα.

Letting x0
= (1, 1, 0, . . . , 0), the stabilizer of x0 with respect to the group action of

SO2n on Q2n−1 is defined to be SO2n−1. One easily sees that this is exactly equal
to

{A ∈ O2n−1 | det(A)= 1}.
Defining, as before,

Q2n−2 := V(x ∈ k2n
| q(x)+ 1, x1+ x2)' Sn−1+(n−1)α,

we get a group action of SO2n−1 on Q2n−2. This action is transitive, and defining
y0
∈ k2n to be (1,−1, 0, . . . , 0), we can show that the stabilizer of y0 is SO2n−2.
In the lower-dimensional cases, we note that SO2 'Gm , and SO1 ' ∗. The later

equivalence is obvious. For the former, we have to do a bit of work.

Proposition 4.1. SO2 ' Gm .

Proof. We consider the symmetric bilinear form b((x1, x2), (y1, y2)) to see how A
is related to AT . Recall that AT is defined to be the unique matrix A ∈ GL2(k) for
which b(Ax, y)= b(x, AT y). We write

A =
[

a b
c d

]
, AT

=

[
a′ b′

c′ d ′

]
, x = (x1, x2), y = (y1, y2). (4.2)

Recall that b(x, y)= x1 y2+ x2 y1. Therefore,

b(Ax, y)= ax1 y2+ bx2 y2+ cx1 y1+ dx2 y1

and
b(x, AT y)= c′x1 y1+ d ′x1 y2+ a′x2 y1+ b′x2 y2.

Comparing, we see that

AT
=

[
d b
c a

]
.

Now notice that we have the further relations det(A)= 1 and AAT
= I . Explicitly

multiplying the matrices, we see that

AAT
=

[
ad + bc 2ab

2cd ad + bc

]
.

Since det(A)= ad − bc = 1, we have that ad + bc = (ad − bc)+ 2bc = 1+ 2bc.
Therefore, we get the relations 2bc = 2ab = 2cd = 0. It follows, from these
relations alone, that either a = c = 0, b = c = 0, or b = d = 0. But we also have
the relation ad − bc = 1. Therefore, it must be the case that b = c = 0. Therefore,

SO2 = {(a, b, c, d) ∈ k4
| b = c = 0, ad = 1} ' {(v,w) ∈ k2

| vw = 1} ' Gm . �
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Using a two-sided bar construction as before, we have

|B(SOn,SOn−1, ∗)| ' Qn−1.

Moreover, we are able to show that

|B(∗,SOn, Qn−1)| ' BSOn−1 .

Definition 4.3 (MSLO). The n-th Thom space defining the prespectrum for MSLO

is given by the homotopy cofiber of the map

BSOn−1+→ BSOn+.

Notice that in particular we have the following lemma.

Lemma 4.4. P∞ ' BGm ' BSO2 ' Thom(BSO2).

Proof. Since SO1 ' ∗, we have BSO1 ' ∗. By definition of Thom(BSO2), the
statement follows. �

Calculating the C2 cohomology of MSLO. The goal of this section is to calculate
the motivic C2 cohomology of MSLO. To do this, we first note that On acts on the
unit sphere S0

' {±1} by A · g 7→ (det(A))g for A ∈ On, g ∈ {±1}. This action is
easily seen to be transitive, and the stabilizer of 1 ∈ S0 is

{A ∈ On | det(A)= 1} = SOn .

It follows that |B(∗, On, S0)| ' BSOn . As before, we get a Thom isomorphism

H ?(BOn+)
∼= H ?+1(BOn /BSOn).

We can use this to get a Gysin sequence. We consider the long exact sequence

· · ·→H ?(BOn/BSOn)→H ?(BOn+)→H ?(BSOn+)→H ?+1(BOn/BSOn)→· · · .

Substituting in the Thom isomorphism gives us

· · · → H ?−1(BOn+)→ H ?(BOn+)→ H ?(BSOn+)

→ H ?(BOn+)→ H ?+1(BOn+)→ · · · .

Proposition 4.5. There exists a surjective map

H ?(BOn+)→ H ?(BSOn+),

with kernel generated by w1 as an H ?-module. Hence,

H ?(BSOn+)
∼= H ?

[w2, w3, . . . , wn]

with |w2i | = i + iα, and |w2i+1| = i + 1+ iα.
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Proof. Let x∈H 1(BOn+) be the composition of the Thom class u∈H 1(BOn/BSOn)

with the homotopy cofiber of the map

BSOn+→ BOn+.

This gives a nonzero class x ∈ H 1(BOn+). Since there is only one nonzero class
H ?(BOn+) of degree 1, it is clear that x is the same class as w1 ∈ H 1(BOn+) from
Theorem 3.1.

Thus, we can write

· · · → H ?(BOn+)→ H ?(BSOn+)→ H ?(BOn+)
^w1
−−−→ H ?+1(BOn+)→ · · · .

Since H ?(BOn+)= H ?
[w1, . . . , wn], the map ^w1 is injective in all dimensions,

and so the Gysin sequence breaks up into short exact sequences

0→ H r+sα−1(BOn+)
^w1
−−−→ H r+sα(BOn+)→ H r+sα(BSOn+)→ 0.

The conclusion follows. �

Calculating the Z/ p cohomology of MSLO for p an odd prime.

Definition 4.6. The Euler class xn ∈ Hωn (BSOn+) is defined to be the composition
of the Thom class c ∈ Hωn (Thom(BSOn)) with the homotopy cofiber f of

BSOn−1+→ BSOn+
f
−→ Thom(BSOn).

Theorem 4.7. H ?(BSOn+;Z/p) is the polynomial ring HZ/p?[x2
1 , . . . , x2

k ] for
n = 2k+ 1 and HZ/p?[x2

1 , . . . , x2
k−1, xk] for n = 2k.

Proof. The sphere bundle S(n− 1)→ BSOn−1→ BSOn induces a Gysin sequence
with Z/p coefficients

· · · → H i (BSOn+)
^xn
−−→ H i+ωn (BSOn+)

g∗n
−→ H i+ωn (BSOn−1+)

h∗n
−→ H i+1(BSOn+)→ · · · .

Now, if n= 2k, then by induction we have that H ?(BSOn−1+)
∼= H ?

[x2
1 , . . . , x2

k−1].
Recall that by [Voevodsky 1999], HZ/pm+nα

? (BOn+)= 0 for n < 0. Using the fact
that ^ xn is an isomorphism on H 0(BSOn+)

∼= Z/p, we see that h∗n = 0 and so g∗n
is surjective and the map breaks into short exact sequences. The proof then follows
that of Theorem 3.1.

If n = 2k+ 1, then xn is zero in Hωn (BSOn+) since it has order 2. To see that
xn has order 2, we note that xn is the element corresponding to xn ^ xn under the
Thom isomorphism. Therefore, xn ^ xn =−xn ^ xn by the commutativity relation
of the cup product. It follows that ^ xn = 0, and so the Gysin sequence splits into
short exact sequences

0→ H i+ωn (BSOn+)
g∗n
−→ H i+ωn (BSOn−1+)

h∗n
−→ H i+1(BSOn+)→ 0.
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Therefore g∗n injects H ?(BSOn+) as a subring of

H ?(BSOn−1+)
∼= H ?

[w2
1, . . . , w

2
k−1, wk].

The subring im(g∗n) contains H ?
[x2

1 , . . . , x2
k ], and we can show it equals this ring

by comparing ranks in each dimension. �

Calculating the coefficients of MSLO p for p an odd prime. Recall that the com-
putation of MSO at an odd prime is more or less the same as the computation of
complex cobordism MU. Similarly, the computation of MSLO will be no harder
than the computation of MGL.

We denote the Milnor primitives by Qi ∈A?, |Qi | = pi (1+α)−α. Recall that
if p is odd, then the mod p motivic cohomology of MSLO is generated by classes
xi of degree 2(1+α)i as a free H ?-module.

The following proof is based on the proof of a similar result due to S. Borghesi
[2003, Proposition 6].

Theorem 4.8. Let p be an odd prime. The mod p cohomology of MSLO takes the
form

H ?(MSLO)= (A?/(Q0, Q1, . . .))[mi | i 6= pn
− 1]

as an A?-module, where |mi | = 2i(1+α).

Proof. For c a cohomology class of degree p+ qα, we define ‖c‖ := p− q. We
call the number ‖c‖ the invariance of the cohomology class c. Now note that the
motivic Steenrod algebra A? acts on the cohomology of MSLO. Let Qi denote the
Milnor primitives in degree 2i (1+α)−α. Notice that ‖Qi‖ = 1. Recall that as an
H ? module, the cohomology of MSLO has a basis in monomials whose invariance
is equal to 0. Call this basis M. Therefore, ‖Qi c‖ = 1 implies that Qi c = 0. The
reason is because for any x ∈ H ?, ‖x‖ ≤ 0. Putting this together, we have that
if m ∈M, and y is a basis element of A? as an H ? module, then the action of y
on m sends m to a sum of elements in M with coefficients in Z/2. Now, since
Qi c = 0 for all c ∈ M, it follows that the action of A? on H ?(MSLO) factors
through A?/(Q0, Q1, . . . ). By discussion of the A? action on the cohomology
of MSLO, it now follows that the action produces an H ? linear map in which there
is no interplay between the H ? coefficients. Therefore, any dependencies must be
topologically induced. But topologically, there are no dependencies, and so the
theorem is proved. �

Corollary 4.9. Let p be an odd prime. The mod p cohomology of MSLO takes the
form

H ?(MSLO)= H ?(BPGL)[mi | i 6= pn
− 1]

as an A?-module, where |mi | = 2i(1+α).
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For the remainder of this subsection, we work over the field k= C. By [Stahn
2016], we know that over C, the motivic Z/p cohomology of a point is equal
to Z/p[τ ], where |τ | = α−1. Dually, the motivic Z/p homology of a point is equal
to Z/p[θ ], where |θ | = 1−α. Furthermore, we have that A? ∼=Atop

? ⊗Z/p Z/p[θ ].

Definition 4.10. Let E(n), 0≤ n <∞, denote the quotient Hopf algebroid

E(n) :=A?//(ξ1, ξ2, . . . , τn+1, τn+2, . . . )= H?[τ0, . . . , τn]/(τ
2
i | 0≤ i ≤ n).

If n =∞, let

E(∞) :=A?//(ξ1, ξ2, . . . )= H?[τ0, τ1, . . . ]/(τ
2
i | 0≤ i).

There is a way of switching between A? structures on cohomology and A? struc-
tures on homology. In our case we have the following.

Proposition 4.11. As an A?-comodule algebra, H?BPGL=A?�E(∞) H?.

Using a change of rings isomorphism, we have

ExtA?
(H?, H?(BPGL))∼= ExtA?

(H?,A?�E(∞) H?)∼= ExtE(∞)(H?, H?).

If we let E(∞)top and H top
? denote the topological analogues of E(∞) and H?,

respectively, then it follows that over k= C,

ExtE(∞)(H?, H?)∼= ExtE(∞)top(H top
? , H top

? )⊗Z/p Z/p[θ ].

From here the proof proceeds classically, and so we have the following theorem.

Theorem 4.12. After completing at an odd prime p, the coefficients of MSLO are
given by

π?(MSLO p̂ )∼= Z(p)[θ, x1, x2, x3, . . . ],

where |xi | = 2i(1+α).

HZ/2?-algebra structure of H?(HZ;Z/2). By [Voevodsky 2003b], the map

ψ? :A?→A?⊗H? A?
is given by

ψ?(ξk)=

k∑
i=0

ξ 2i

k−i ⊗ ξi , ψ?(τk)=

k∑
i=0

ξ 2i

k−i ⊗ τi + τk ⊗ 1.

As in [Milnor 1958], we define the conjugates of ξi and τi inductively as

k∑
i=0

ξ 2i

k−i ⊗ c(ξi )= 0 and
k∑

i=0

ξ 2i

k−i ⊗ c(τi )+ τk ⊗ 1= 0,

respectively.
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This gives us

c(ξk)=−ξk − c(ξ1)ξ
2
k−1− · · ·− c(ξk−1)ξ

2k−1

1 ,

c(τk)=−τk − c(τ0)ξk − c(τ1)ξ
2
k−1− · · ·− c(τk−1)ξ

2k−1

1 ,

respectively.
As in topology, motivically we have a cofibration

HZ
2
−→ HZ

mod 2
−−−→ HZ/2

induced from the short exact sequence

0→ Z
2
−→ Z

mod 2
−−−→ Z/2→ 0.

Taking motivic HZ/2 homology of HZ, we get a long exact sequence

· · · → H ?(HZ)
2
−→ H ?(HZ)

mod 2
−−−→ H ?(HZ/2) ∂

−→ · · · .

This gives us an exact couple and so induces a Bockstein spectral sequence. In
particular, we get the diagram

H?(HZ) H?(HZ) H?(HZ)

H?(HZ/2) H?(HZ/2)

β

mod 2

β

mod 2∂
d

∂

Notice that 2= 0 in H?(HZ), and so we have that

H?(HZ)
mod 2
−−−→ H?(HZ/2)

is injective. Thus we have a short exact sequence

0→ H?(HZ)
mod 2
−−−→ H?(HZ/2) d

−→ H?(HZ/2)→ 0.

Here d is the dual of the Steenrod operation Sq1. Notice that H?(HZ)= ker(d).

Lemma 4.13. The motivic cohomology of H?(HZ) over k= C is isomorphic to

Z/2[θ, τ1, τ2, . . . , ξ1, ξ2, . . . ]/(τ
2
i − θξi+1).

Proof. First, one observes that d(τ0) = 1 and d(τi ) = ξi for i ∈ Z>0. Next, one
observes that since d commutes with the Tate twist θ , and since τ 2

i = θξi+1, we
have

0= 2τi d(τi )= d(τ 2
i )= θd(ξi+1).

Therefore d(ξi+1)= 0. Now, as a Z/2[θ ]-algebra, the classes {ξi }
∞

i=1 and the classes
{c(ξi )}

∞

i=1 both generate the same algebra. Looking now at the inductive formula
for the conjugate of τi , and acknowledging that 2= 0 in the coefficients, we have

c(τk)= τk + c(τ0)ξk + c(τ1)ξ
2
k−1+ · · ·+ c(τk−1)ξ

2k−1

1 .
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First we notice that c(τ0) = τ0, and so d(c(τ0)) = 1. We claim that d(c(τi )) = 0
for i ∈ Z>0. For τ1, we have that c(τ1)= τ1+ τ0ξ1. Taking the differential of each
side, we have that

d(c(τ1))= d(τ1)+ τ0d(ξ1)+ ξ1d(τ0)= d(τ1)+ ξ1 = ξ1+ ξ1 = 0.

Now, by induction we can assume d(c(τn−1))= 0. Therefore,

d(c(τn))= d(τn)+ d(c(τ0)ξn)+ d(c(τ1)ξ
2
n−1)+ · · ·+ d(c(τn−1)ξ

2n−1

1 )

= d(τn)+ d(c(τ0)ξn)= d(τn)+ ξn = ξn + ξn = 0.

Thus,
ker(d)= Z/2[θ, c(τ1), c(τ2), . . . , c(ξ1), c(ξ2), . . . ].

One can show that c(τi )
2
= θc(ξi+1). This proves the claim. �

The Sq1 cohomology. Notice that the motivic Steenrod operation Sq1 has the
property that Sq1

◦Sq1
= 0. Therefore, we can think of Sq1 as a differential

of H ?(MSLO). We use the notation H ?(M;Sq1) to denote the cohomology of
the A? module M with respect to the differential Sq1.

Following [Voevodsky 2003b], let I = (ε0, s1, ε1, s2, . . . , sk, εk) be a sequence
where εi ∈ {0, 1} and si are nonnegative integers. Denote by P I the product

P I
= βε0 Ps1 · · · Pskβεk .

A sequence I is called admissible if si ≥ 2si+1+ εi . Monomials P I corresponding
to admissible sequences are called admissible monomials. Here β = Sq1.

Lemma 4.14. Admissible monomials generate A? as a left H ?-module.

Proof. See [Voevodsky 2003b]. �

Lemma 4.15. Suppose that I = (0, s1, . . . , sk, 0) and J = (0, t1, . . . , tr , 0) with
s1, . . . , sk, t1, . . . , tr ∈ Z>0. Then βP I

6= P Jβ. Also, βPs
6= P tβ for s, t ∈ Z>0.

Proof. This follows immediately from Lemma 4.14. �

Lemma 4.16. H ?(A?;Sq1)= 0 and H ?(A?/A? Sq1
;Sq1)= H ?.

Proof. To prove the first statement, note that im(Sq1)= ker(Sq1)= Sq1 A?. For the
second statement, we notice that im(Sq1)= Sq1 A?/A? Sq1. Since Sq1 A?/A? Sq1

is clearly in both the kernel and image of Sq1, and using Lemma 4.15, we know
that if I = (0, s1, . . . , sk, 0) with s1, . . . , sk ∈ Z>0 or I = (s) with s ∈ Z>0, then
Sq1 P I /∈ A? Sq1. We have shown what happens to admissible monomials. We
only have to look at what happens to elements of H ?. Clearly these elements get
sent to zero since they commute with the Sq1 operation. Since elements of H ? are
clearly not in the image of Sq1, it follows that H ?(A?/A? Sq1

;Sq1)= H ?. �

We need the following proposition from [Smirnov and Vishik 2014].
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Proposition 4.17. Recall that H ?(BOn+)
∼= H ?

[w1, . . . , wn] as an H ?-module. If
−1 is a square in k, then

Sqk(wm)=

k∑
j=0

(
m− k

j

)
wk− jwm+ j .

The Cartan formula over k= C gives the following.

Proposition 4.18. Let τ be the Tate twist of degree α − 1 in H ?, and suppose
H ?(BOn+)

∼= H ?
[w1, . . . , wn]. We define

εi, j =

{
1 if k is even and i, j are odd,
0 otherwise.

If −1 is a square in k, then

Sqk(wrws)=
∑

i+ j=k

τ εi, j Sqi (wr )Sq j (ws).

Proof. This follows from the formulas given in [Voevodsky 2003b], along with
relations between the geometric and simplicial classifying spaces of On found in
[Smirnov and Vishik 2014]. �

Lemma 4.19. Sq1 tn = 0, where tn ∈ H ?(Thom(BSOn)) is the Thom class.

Proof. Let H ?(BOn+) = H ?
[w1, . . . , wn]. Recall that by Proposition 4.5, we

can identify H ?(BSOn+) with H ?
[w2, w3, . . . , wn] ⊂ H ?(BOn+). Recall also that

there is a Thom isomorphism

H ?(BSOn+) ^ wn ∼= H ?(Thom(BSOn+). (4.20)

Therefore, Sq1(tn) can be identified with Sq1(wn) under (4.20) and so we can work
out the Steenrod operation on H ?(Thom(BSOn)) by comparison with H ?(BOn+).
In particular, Sq1(wn)=wnw1. Since w1= 0 in H ?(BSOn+), the claim follows. �

Since H ?(MSLO) is an A? module, we can compute its Sq1 cohomology.

Proposition 4.21. H ?(H ?(MSLO);Sq1)= H ?
[u2

2, u2
4, u2

6, . . . ].

Proof. By Lemma 4.19, Sq1 commutes with the Thom isomorphism. Therefore, it
is enough to show that H ?(H ?(BSO);Sq1) = H ?

[w2
2, w

2
4, w

2
6, . . . ]. We note that

Sq1(w2n)= w2n+1. From this it follows that H ?
[u3, u5, u7, . . . ] ⊂ im(Sq1). This

implies that the only elements which can be in the kernel but not in the image of
Sq1 are H ?

[w2
2, w

2
4, w

2
6, . . . ] ⊂ H ?(BSO). Noting that Sq1(w2

2n)= 0 for all n, the
claim follows. �
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A motivic version of Wall’s theorem.

Lemma 4.22. The morphism of A?-modules

A?→ H ?(MSLO)

given by a 7→ a · 1, where 1 denotes the Thom class t0 ∈ H 0,0(MSLO), has kernel
J =A? Sq1.

Proof. To simplify notation, we write A?/β :=A?/A? Sq1.
First, it is clear that Sqi (w j ) = 0 if i > j by Proposition 4.17. If i ≤ j , then

Sq1(w j ) is a sum of monomials wkwl with k, l < 2 j . The monomials Sqin · · · Sqi1

with in ≥ 2in−1 and i1 > 1 form an H ?-module basis for A?/β. Therefore, it
is enough to show that the polynomials Sqin · · · Sqi1(t) are linearly independent in
H ?(MSLO). Let I = (ik, . . . , i1)with is≥2is−1 and i1>1. We order the monomials
w I
= wikwik−1 · · ·wi1 lexicographically. For example, w8w4 is of higher order

than w4w2 and w8w2, but lower order than w8w4w2 and w10w2. By induction, we
assume that Sqin−1 · · · Sqi1(t)= win−1 · · ·wi1 t + lower order terms.

Now suppose w jn−1 · · ·w j1 t ∈ H ?(MSLO) is such that jn−1 ≥ jn−1 ≥ · · · ≥ j1. If
i ≥ 2 jn−1, then we show Sqi (w jn−1 · · ·w j1 t)=wiw jn−1 · · ·w j1 t+lower order terms.
Using the Cartan formula, we have

Sqi (w jn−1 · · ·w j1 t)= Sqi (t) ·w jn−1 · · ·w j1 + lower order terms

= wiw jn−1 · · ·w j1 t + lower order terms.

This proves the lemma. �

Theorem 4.23. Over k= C, H ?(MSLO) is a wedge sum of suspensions of A? and
A?/A? Sq1.

Proof. Our approach is to define a map from a wedge sum of suspensions of A?/β
to M which induce an isomorphism in Sq1 cohomology.

Choose classes {xα}α∈I ∈ M whose images in H ?(M;Sq1) form a basis of
H ?(M;Sq1) as a Z/2[θ ]-module. By Proposition 4.21, we can choose the classes
u2

2, u2
4, . . . ∈ H ?(MSLO) ∼= H ?

[u2, u3, u4, . . . ]. The xα are killed by Sq1 and so
we can define a map

φ1 :
⊕
α∈I

A?/β[− deg(xα)] → M.

Next, we define

A? := {admissible monomials x ∈A? | |x |> 0}.

Using this definition, we define

M := M/A?M.



MOTIVIC ANALOGUES OF MO AND MSO 371

Notice that
⊕

α∈I A
?/β[− deg(xα)] ∼= A?/β ⊗H ? C for C = Z/2[θ ][u2

2, u2
4, . . . ].

We consider the projection map

M π
−→ M .

We then choose a Z/2[θ ]-submodule Z ⊂ M such that π|Z is injective, and

M ∼= π(φ1(A?/β⊗H ? C))⊕π(Z).

Now set
N =A?/β⊗H ? C ⊕A?⊗H ? Z .

The natural map
φ2 :A?⊗H ? Z→ M

gives a map
8 := φ1⊕φ2 : N → M.

Writing N =A?/β⊗H ? C ⊕A?⊗H ? Z , we let Ni denote the A?-submodule of
N given by Ni =A?/β⊗H ? Ci ⊕A?⊗H ? Zi . Here Ci and Zi denote all elements
in C and Z , respectively, of total degree i . We say the class x with degree n+mα
has total degree n+m. We define Mi to be the image of Ni under the map 8. We
then define N (n) and M (n) to be

⊕
i≤n Ni and

⊕
i≤n 8(Ni ), respectively.

We show by induction that the map8 : N (n)
→M (n) is an isomorphism. Starting

with n = 0, N (0)
= A?/β and M (0)

= A? · t , where t is the Thom class. By
Lemma 4.22 this map is an isomorphism.

Suppose we have proved 8 : N (n−1)
→ M (n−1) is an isomorphism and let

λ : N/N (n−1)
→ M/M (n−1) be the map induced by 8. We show λ|

(N (n)/N (n−1))
is in-

jective. Let P be the Z/2[θ ]-module generated by elements of the form c, z,Sq1(z)
for c ∈ Cn , z ∈ Zn . We can regard P as a Z/2[θ ]-submodule of the Z/2[θ ]-module
N/N (n−1).

We first prove that λ|P is injective. Notice that since H ?(A?;Sq1)= 0, the map

8∗ : H ?(N ;Sq1)→ H ?(M;Sq1)

is still an isomorphism. Since

8 : N (n−1)
→ M (n−1)

is an isomorphism by induction, it follows that

λ∗ : H ?(N/N (n−1)
;Sq1)→ H ?(M/M (n−1)

;Sq1)

is also an isomorphism.
Suppose v ∈ P and λ(v)= 0. Notice that the total dimension of v is n or n+ 1.

We consider the two cases separately. If the total dimension of v is n, then v= c+ z
for c ∈ Cn, z ∈ Zn . Now λ(v)= 0 implies 8(c+ z) ∈ M (n−1) for 8 : N (n)

→ M (n).
However, by choice of Z , λ(z) ∈ Mn , and so z = 0. Then v = c, and so λ(c)= 0.
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Since λ∗ is an isomorphism, it follows that Sq1(c)= 0, and c = Sq1(c′) for some
c′ ∈ N/N (n−1) with total degree n. But every element in N/N (n−1) has total degree
≥ n (or = 0), and so c′ = 0, which implies c = 0.

Now, suppose that the total dimension of v is n+ 1. Then v = Sq1(z) for some
z ∈ Zn . Suppose λ(v)= 0. By definition of v, it follows that λ(v)= λ(Sq1(z))= 0.
Since Sq1 commutes with λ, it follows that Sq1(λ(z))= 0. Now, notice that in Sq1

homology, Sq1(λ(z))= 0. But this means λ(z)= λ(c)+Sq1(z′) for some c ∈ Cn ,
and z′ ∈ (M/M (n−1)) of total degree n − 1. Thus z′ = 0, and we reduce to the
previous case.

Now, returning to the induction step, we have that the multiplication map

µ :MSLO∧MSLO→MSLO

induces a coproduct map

µ∗ : H ?(MSLO)→ H ?(MSLO)⊗H ? H ?(MSLO).

We define a projection map

p : M→ M/M (n−1).

Let u ∈ N (n), and 8 : N (n)
→ M (n). Then

µ∗8(u)= 1⊗H ? 8(u) modulo M ⊗H ? M (n−1).

Therefore, for any v ∈ P we have

(1⊗H ? p)µ∗8(v)= 1⊗H ? λ(v).

Now choose a Z/2[θ ]-basis c1, c2, . . . , cr for Cn , and z1, z2, . . . , zs for Zn . Then
we can give P a Z/2[θ ]-basis

{vi } = {c1, . . . , cr , z1, z2, . . . , zs,Sq1(z1),Sq1(z2), . . . ,Sq1(zs)}.

Any v ∈ N (n)/N (n−1)
= Nn then has a unique expression in the form v =

∑
i aivi

for ai ∈A?\A? Sq1
∪{0}. Now, we let m denote the maximum total dimension of

all of the ai . Next, let {am1, am2, . . . , amv
} denote all of the ai of total dimension m.

Notice that if λ(v)= 0, then 8(v) ∈ M (n−1), and hence

0= (1⊗H ? p)µ∗8(v)=
∑

am j · 1⊗H ? λ(vm j )+
∑

bk · 1⊗H ? mk

for some mk ∈ M , bk ∈A? with total dim bk < m.
The fact

∑
am j ·1⊗H ?λ(vm j )=

∑
bk ·1⊗H ?mk implies

∑
am j ·1⊗H ?λ(vm j )=0.

However, we showed that λ|P is injective, and so the λ(vi j ) are linearly indepen-
dent. This then implies am j · 1 = 0 for all j . But then am j ∈A? Sq1, which is a
contradiction, and so λ(v)= 0 implies v = 0. �
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Corollary 4.24. Over the field k= C,

H?(MSLO)∼= H?(HZ/2)⊗Z/2[θ ] C ⊕A?⊗Z/2[θ ] Z .

Here C is the algebra Z/2[θ, x4, x8, . . . ], where the x4i are generators of degree
2(1+α)i . Z is a Z/2[θ ] polynomial algebra.

The homotopy type of MSLO.

Theorem 4.25. For k = C, 2-completed MSLO splits as a wedge sum of suspen-
sions of motivic homology with coefficients in Z/2 and Z2.

Proof. Once we know that the motivic Z/2 homology of MSLO is a wedge sum of
suspensions of A? and A?/A? Sq1, we can again construct a map

MSLO→
∨
i∈I

HZ/2[ri ] ∨
∨
j∈J

HZ[s j ]

which is an equivalence on motivic Z/2 homology. Then, by applying the Nakayama
lemma and the motivic Hurewicz theorem [Bachmann 2018], one can show that
the map is a homotopy equivalence. �

The dimension of the HZ/2 suspensions. We already showed in Corollary 4.24
that the HZ suspensions of MSLO must live in degrees generated by monomials x4i

of degrees 2i(1+α). It remains to describe the degrees of the HZ/2 suspensions.
To answer this question we use well known combinatorial counting techniques,
as this question very much resembles the coin change problem well known to
combinatorists [Harris et al. 2008, Section 2.6.3] and computer scientists [Abelson
et al. 1996, Section 1.2.2] alike.

Definition 4.26. Let M be a bigraded module with basis B. Let Bn,m denote all
elements of B with bidegree (n,m). The basis B is said to be a special basis if
the following conditions hold:

(1) Bn,m = { } if n < 0.

(2) Bn,m = { } if m < 0.

(3) The size of the set Bn,m is finite for all (n,m) ∈ Z×Z.

(4) B=
⋃

(n,m)∈Z×Z

Bn,m .

Clearly H?(MSLO), HZ/2?(HZ/2), and HZ/2?(HZ) each have a special basis
under their induced n+mα grading.

We can associate a unique polynomial fB(x, y) =
∑

cn,m xn ym
∈ Z[[x, y]] to

any special basis B. Here cn,m represents the number of elements in B of bi-
degree (n,m). Notice that we can order the words xn ym by the length of the word
followed by the alphabetical order of the word. For example, x2 y = xxy comes
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before xy2
= xyy, and y2

= yy comes before x4
= xxxx . Let BH?MSLO be an H?

basis for H?(MSLO), BH?HZ an H? basis for H?(HZ), and BH?HZ/2 an H? basis
for H?(HZ/2).

Proposition 4.27. Let fH?MSLO(x, y), fH?HZ(x, y), and fH?HZ/2(x, y) be the asso-
ciated formal polynomials for the special bases BH?MSLO, BH?HZ, and BH?HZ/2,
respectively. The number of HZ/2 suspensions of H?(MSLO) in dimension n+mα
is given by the coefficient cn,m in

g(x, y)=
∑

cn,m xn ym
=

fH?MSLO(x, y)− fH?HZ(x, y)
∏
∞

i=0(1− (xy)2i )−1

fH?HZ/2(x, y)
.

Proof. The function a(x, y) = fH?MSLO(x, y) represents the number of basis ele-
ments of H?MSLO in each degree. The function

b(x, y)= fH?HZ(x, y)
∞∏

i=0

(1− (xy)2i )−1

represents all elements in a(x, y) generated by an HZ suspension. Therefore,
a(x, y)− b(x, y) represents all basis elements of H?MSLO generated by HZ/2
suspensions. Thus, dividing by fH?HZ/2(x, y) gives the number of HZ/2 suspen-
sions in each degree after applying a Taylor expansion around the point (0, 0). �

5. MGLR, an analogue of MR

There is a C2-equivariant spectrum belonging to classical topology, which was
constructed by Landweber. The coefficients of this spectrum were computed by
Hu and Kriz [2001]. The coefficients are bigraded. While the bigrading given in
[Hu and Kriz 2001] is MR∗+∗′α, we use σ grading instead of α. The reason for
this is that Hu and Kriz used the α to signify the relationship between motivic
homotopy theory and classical C2-equivariant homotopy theory. The topological
realization functor over R sends motivic α grading to the C2 grading. However, in
the present case, we want to stress the relationship between C2 motivic homotopy
theory and C2 classical homotopy theory using the topological realization over C.

In this section we discuss a C2-equivariant motivic spectrum MGLR which was
constructed by Hu, Kriz, and Ormsby [Hu et al. 2011]. There is a complex topologi-
cal realization functor tC

C2
for C2-equivariant motivic spectra, and tC

C2
(MGLR)=MR.

One should think of MGLR as a motivic analogue of MR. Roughly speaking,
the spectrum MR can be thought of as complex cobordism MU endowed with a
C2 action. At its heart, MU is built from the classifying spaces BUn , where Un

denotes the n-dimensional unitary group. We get an involution on this group given
by A↔ AT . The groups Un equipped with this involution action determine the
construction of MR. If one wanted to mimic this construction motivically, one
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would immediately be faced with a problem: complex conjugation is not algebraic.
A priori this means that the groups Un are not definable; however, it turns out that
over the complex numbers, Un ∼= GLn(C). In fact, the motivic analogue of MU is
the well known algebraic cobordism MGL.

In analogy with MR, MGLR should be thought of as algebraic cobordism MGL

endowed with a C2 action. Consider the symmetric bilinear form

b((x1, . . . , x2n), (y1, . . . , y2n))=

n∑
i=1

x2i y2i−1+ x2i−1 y2i .

For any A∈GL2n(k), there is a unique matrix ATb for which b(Ax, y)= b(x, ATb y)
for all x, y ∈ k2n . The C2 action of MGLR is induced from the involution action
A↔ (ATb)−1.

The λ twist. In [Hu and Kriz 2001], the authors show that MR completed at 2
splits as a wedge sum of suspensions of a spectrum BPR whose suspensions are in
degrees mi (1+ σ) for mi 6= 2i+1

− 1, 8C2(BPR) = HZ/2, and nonequivariantly
BPR = BP. This splitting comes from applying the Quillen idempotent to the
formal group law on MR∗(1+σ). From this, it follows that MR? is freely gener-
ated by generators xn of degree n(1 + σ) for n 6= 2i+1

− 1 as a BPR? algebra.
One could ask whether MGLR splits as a wedge sum of suspensions of BPGLR,
with 8C2(BPGLR)= HZ/2 and BPGLR= BPGL nonequivariantly, in such a way
that MGLR? is free as a BPGLR? algebra. Unfortunately, there does not appear
to be any way to construct such a splitting. However, there exists an element
λ ∈ π1−σ+σα−α(MGLR). If we invert this element, then we get a formal group law
and we can use the Quillen idempotent construction to get a splitting. First, let us
elaborate on this mysterious element λ.

In the topological setting there is the notion of real-oriented spectra and it turns
out that MR is universal among real-oriented spectra. There is also a notion of real
orientation found in [Hu et al. 2011]. Following that paper’s notation, we define
X̃ to be the functorial fibrant replacement of X , the reduced suspension of X .

Definition 5.1. A C2-equivariant ring spectrum E is real-oriented if the follow-
ing two conditions are satisfied. Here MGLR(1) denotes the first term of the pre-
spectrum defining MGLR.

(1) The unit in E?(S1+σα+σ+α) restricts to the unit φE of E?(MGLR(1)).

(2) The map

S2+2σα
' G̃

1/z
m ∧ G̃

1/z
m → G̃

1/z
m × G̃

1/z
m → B(G1/z

m ×G1/z
m )→ BGL2→MGLR(1),

with representative ω ∈ π2+2σα, composes with φE to give a unit λE .
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Whenever this is satisfied we get many results analogous to those found in [Hu
and Kriz 2001].

Theorem 5.2. If the C2-equivariant ring spectrum E is real-oriented, then we have
E?(BG

1/z
m )= E?[u], where deg(u)=−(1+ σα).

Unfortunately, it is not clear whether or not MGLR satisfies Definition 5.1. Clearly
MGLR satisfies condition (1) of Definition 5.1. However, it is not clear that λMGLR

is invertible. Using the methods of [Elmendorf et al. 1997] we can “invert” λMGLR

to construct a spectrum λ−1MGLR satisfying both conditions of Definition 5.1. The
formal group law of Theorem 5.2 then gives a canonical map

L→ λ−1MGLR∗(1+σα).

Here L denotes the Lazard ring.
Notice that the topological realization functor over C, which we denote by tC,

is a symmetric monoidal functor, and so if it is applied to the spectrum MGLR, we
get a ring homomorphism

MGLR?→MR?.

One can show that λMGLR is sent to the unit 1 under this ring homomorphism, and
so we get a ring homomorphism

λ−1MGLR?→MR?. (5.3)

Since the homomorphism tC sends 1+ σα grading to 1+ σ grading, and since
λ−1MGLR∗(1+σα) ⊂ λ

−1MGLR? and MR∗(1+σ) ⊂MR? are commutative rings, we
have the following result.

Lemma 5.4. The restriction of the ring homomorphism (5.3) to λ−1MGLR∗(1+σα)
induced by the topological realization functor tC sends the formal group law on
λ−1MGLR? to the formal group law on MR?.

Proof. This is clear since tC(BG
1/z
m )= BSσ . �

Since MGLR is an E∞-ring spectrum, we may apply constructions as in [Elmen-
dorf et al. 1997]. In particular, we may “kill” or “invert” the image of any sequence
of elements of L in the spectrum λ−1MGLR. The ring MGL∗(1+α) = MU2∗ is the
universal formal group law, and so the generator xi of degree i(1+α) is sent to an
element of degree i(1+ σα).

Theorem 5.5. The spectrum 8
C2
ét (λ

−1MGLR) is equivalent to θ−1MGLO.

Proof. Recall that λ is the map

S2+2σα
' G̃

1/z
m ∧ G̃

1/z
m → G̃

1/z
m × G̃

1/z
m → B(G1/z

m ×G1/z
m )→ BGL2

→MGLR(1)→61+σ+σα+αMGLR.
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After taking geometric fixed points, this becomes a map

S2
' S1
∧ S1
→ S1

× S1
→ B(Z/2×Z/2)→ BO2→MGLO(1)→61+αMGLO.

This map is nonzero, and it realizes as an element of degree 1−α in π?(MGLO).
Notice that there exists exactly one element in π?(MGLO) of degree 1−α, the Tate
twist. Therefore, the coefficients of 8C2(λ−1MGLR) are

π?(θ
−1MGLO)∼= π∗(MO)[θ±1

]. �

Corollary 5.6. The spectrum MGLR is not equivalent to λ−1MGLR.

Proof. Since MGLR and λ−1MGLR are not equal on geometric fixed points, they
cannot possibly be equal equivariantly. �

It is interesting to note that while inverting λ has the effect of inverting the Tate
twist θ under the geometric fixed points map, it is not the case that θ is inverted
under the forgetful map MGLR→MGL, which thinks of the structure nonequivari-
antly. The reason for this is the forgetful map sends σ and σα grading to 1 and α,
respectively. Therefore, λ gets sent to the unit under this map. The next theorem
gives more detail.

Theorem 5.7. Nonequivariantly, λ−1MGLR'MGL.

Proof. Notice that nonequivariantly, λ realizes as

S2+2α
'6Gm ∧6Gm→6Gm ×6Gm→ B(Gm ×Gm)

→ BGL2→MGL(1)→62+2αMGL.

Notice that this map is clearly nonzero, and represents an element in π?(MGL) of
degree 0. Notice that the only nonzero element in π?(MGL) of degree 0 is the
identity element. Therefore, λ−1MGLR is nonequivariantly equivalent to MGL. �

Theorem 5.8. Localizing at p = 2, we have that

MGL=
∨
mi

6mi (1+α)BPGL

for integers mi . There exists a spectrum BPGLR such that

MGLR=
∨
mi

6mi (1+σα)BPGLR.

Furthermore, 8C2
ét (BPGLR)= θ

−1 HZ/2.
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6. Calculating the coefficients of θ−1λ−1MGLR

The main difficulty in computing the coefficients of MGLR is the lack of a Tate
diagram. One would like to use simplicial EC2 to get a motivic Tate diagram,

EC2+ ∧MGLR→MGLR→ ẼC2 ∧MGLR.

However, the C2 fixed points of ẼC2 ∧MGLR is not the geometric fixed points
of MGLR in the sense of [Lewis et al. 1986, Chapter 2, Definition 9.7]. In other
words, taking C2 fixed points of MGLR at the level of prespectra does not form a
nonequivariant spectrum equivalent to

(ẼC2 ∧MGLR)C2 .

To fix this, we need to use a different model of EC2. The model we use is

EC2 := lim
−−→

A(nσ)r 0,

where A(nσ)r0 denotes Anr0 with a C2 action z 7→−z. This gives us cofibrations

A(nσ)r 0+→ S0
→ Snσ+nσα.

These piece together to give us a cofibration

EC2+→ S0
→ ẼC2.

The space ẼC2 takes into account the entire equivariant grading in the C2 equivari-
ant stable category, and so we have the following.

Theorem 6.1. 8
C2
ét (MGLR) := (ẼC2 ∧MGLR)C2 'MGLO.

Proof. By construction, the n-th term of the prespectrum defining MGLO is equal
to the C2-fixed points of the n-th term of the prespectrum defining MGLR [Hu
et al. 2011, Section 6]. Let MGLR(n) denote the n-th term of the prespectrum
defining MGLR. Notice that (MGLR∧ ẼC2)

C2 is a nonequivariant spectrum with
prespectrum (MGLR(1))C2, (MGLR(2))C2, . . . , and connecting maps given by

P1
∧ (MGLR(n))C2 → (MGLR(n+ 1))C2 .

The claim follows. �

Corollary 6.2. MGLO is a motivic E∞-ring spectrum.

Proof. In [Hu et al. 2011, Section 6] it is proved that MGLR is a C2-equivariant
motivic E∞-ring spectrum. Being an E∞-ring spectrum is preserved by smashing
with S∞σ+∞σα and taking C2 fixed points. �

The author would like to acknowledge the work of the authors of [Heller et al.
2019], who are the first to have written about the geometric classifying space EC2

in the context of C2-equivariant motivic spectra. The unfortunate reality is that
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calculating F(EC2+,MGLR) via a Borel cohomology spectral sequence involves
developing new tools which do not currently exist. The solution presented in this
paper, however, is to restrict to a field k of characteristic 0, for which all elements
in k are squares. Then after completing at the prime p = 2 and inverting two twists
in MGLR, we can show

(ẼC2 ∧MGLR)C2 ' (ẼC2 ∧MGLR)C2 .

We can then apply the tools of [Hu and Kriz 2001].

Proposition 6.3. There exists an element θ of order 1−α in the Borel cohomology
and the Tate cohomology of λ−1MGLR.

Proof. Using simplicial EC2, we can set up a Borel cohomology spectral se-
quence for λ−1MGLR as follows. First we note that since we have inverted λ,
we can choose to ignore all σα grading, and instead only consider the grading
∗ + ∗

′σ + ∗′′α. Moreover, we filter by α twists. In other words, we consider
the grading ∗ + ∗′σ + kα for fixed k. Now for each k ≤ 0, we have a bijection
between the motivic Borel cohomology spectral sequence of λ−1MGLR and the
classical Borel cohomology spectral sequence of MR. This is true since λ−1MGLR

is nonequivariantly MGL, and over C, there is a bijection between π∗+kα(MGL)

and π∗(MU). It follows that the motivic Borel cohomology spectral sequence
associated to λ−1MGLR∗+∗′σ+∗′′α, where ∗, ∗′ ∈ Z and ∗′′ ∈ Z≤0, converges to
π∗+∗′σ+∗′′α(F(EC2+, λ

−1MGLR)) ∼= π?(MR)[θ ]. It follows that θ ∈ λ−1MGLR.
The same argument works for the Tate cohomology of λ−1MGLR. �

Corollary 6.4. There exists an element, again denoted θ , of degree 1− α in the
coefficients of λ−1MGLR.

Proof. This follows by considering the following square originating from the Tate
diagram:

λ−1MGLR S∞σ ∧ λ−1MGLR

F(EC2+, λ
−1MGLR) S∞σ ∧ F(EC2+, λ

−1MGLR)

It is easy to see that the element θ ∈ π?(F(EC2+, λ
−1MGLR)) is mapped to

θ ∈ π?(S∞σ ∧ F(EC2+, λ
−1MGLR)). This is true since the topological realization

of θ is just 1, and since the Borel and Tate cohomology spectral sequences of
λ−1MGLR and MR are isomorphisms for a fixed alpha twist kα, k ≤ 0. Now,
notice that there is an easily described twist in π?(S∞σ ∧ λ−1MGLR) of degree
1 − α, which we also call θ . If s is the Euler class s ∈ π−σ (MGLR), and t is
the Euler class t ∈ π−σα(MGLR), then θ ∈ π1−α(S∞σ ∧ λ−1MGLR) is given by
λs−1t . By comparison with topology, and in view of the fact that the topological
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realization of θ is 1, it follows that θ ∈ π1−α(S∞σ ∧ λ−1MGLR) is mapped to
θ ∈π1−α(S∞σ ∧F(EC2+, λ

−1MGLR)). Therefore, the element named θ commutes
in the bottom row and rightmost column of the above diagram. Since that diagram
is a pullback, there must exist an element θ ∈ π?(λ−1MGLR) which is sent to
θ ∈ π?(F(EC2+, λ

−1MGLR)). �

As we inverted λ ∈ π1−σ+σα−α(MGLR), so too can we invert θ ∈ π1−α(MGLR).
This gives us a spectrum θ−1λ−1MGLR. In its coefficients, the element λ−1θ has
degree σ − σα and is invertible.

Proposition 6.5. (S∞σ+∞σα ∧ θ−1λ−1MGLR)C2 ' (S∞σ ∧ θ−1λ−1MGLR)C2 .

Proof. To simplify notation, we write

E := S∞σ ∧ θ−1λ−1MGLR, F := S∞σ+∞σα ∧ θ−1λ−1MGLR.

Notice that 6σα−σ E ' E since θλ−1
∈ πσ−σα(E) is invertible. Also, it is clear that

6σ E ' E . Putting this together, we have that 6σαE ' E . Therefore, it follows
that F =6∞σαE ' E . �

Theorem 6.6. We have π?(θ−1BPGLR)= π?(BPR)[λ
±1, θ±1

]. Here, π?(BPR) is

Z(2)[vn,l, a | n ≥ 0, l ∈ Z]/ (
v0,0 = 2, a2n+1

−1vn,l = 0 | for n ≤ m, vm,k · vn,l2m−n = vm,k+l · vn,0
)
,

|a| = −σ , and |vn,l | = (2n
− 1)(1+ σ)+ l2n+1(σ − 1).

Proof. The claim is clear by comparison with topology [Hu and Kriz 2001]. In
more detail, considering the commutative square of Corollary 6.4, the C2 fixed
points of the top right corner is easily seen to be equal to π∗(MO)[θ±1

]. The bottom
right corner is calculated by comparing the Tate cohomology spectral sequence for
θ−1λ−1MGLR to topology. One deduces from the calculation that the C2 fixed
points of the top and bottom right-hand column are equal. From this it follows that
θ−1λ−1MGLR is equal to its Borel cohomology. By comparing with topology, the
claim follows. �
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