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We prove that the homotopy algebraic K-theory of tame quasi-DM stacks satis-
fies cdh-descent. We apply this descent result to prove that if X is a Noetherian
tame quasi-DM stack and i <− dim(X ), then Ki (X )[1/n] = 0 if n is nilpotent
on X and Ki (X ,Z/n) = 0 if n is invertible on X . Our descent and vanishing
results apply more generally to certain Artin stacks whose stabilizers are exten-
sions of finite group schemes by group schemes of multiplicative type.
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1. Introduction

The negative K-theory of rings was defined by Bass [1968] and later generalized to
all schemes by Thomason and Trobaugh [1990], who established its fundamental
properties such as localization, excision, Mayer–Vietoris, and the projective bundle
formula.

As explained in [Thomason and Trobaugh 1990], these properties of K-theory
give rise to the Bass–Thomason–Trobaugh nonconnective K-theory, or K B-theory,
which is usually nontrivial in negative degrees for singular schemes. A famous con-
jecture of Weibel asserts that for a Noetherian scheme X of Krull dimension d , the
group Ki (X) vanishes for i <−d . This conjecture was settled by Weibel [2001] for
excellent surfaces, by Cortiñas, Haesemeyer, Schlichting and Weibel [Cortiñas et al.
2008] for schemes essentially of finite type over a field of characteristic zero, and
recently by Kerz, Strunk and Tamme [Kerz et al. 2018] for all Noetherian schemes.
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Before a complete proof of Weibel’s conjecture for schemes appeared in [Kerz
et al. 2018], Kelly [2014] used the alteration methods of de Jong and Gabber to
show that the vanishing conjecture for negative K-theory holds in characteristic
p > 0 if one is allowed to invert p. Later, Kerz and Strunk [2017] gave a different
proof of Kelly’s theorem by proving Weibel’s conjecture for negative homotopy
K-theory, or KH-theory, a variant of K-theory introduced by Weibel [1989]. In
their proof, Kerz and Strunk used the method of flatification by blow-up instead of
alterations.

It is natural to ask for an extension of Weibel’s conjecture to algebraic stacks.
The algebraic K-theory of quotient stacks was introduced by Thomason [1987a]
in order to study algebraic K-theory of a scheme which can be equipped with an
action of a group scheme. The localization, excision, and Mayer–Vietoris proper-
ties for the algebraic K-theory of tame Deligne–Mumford stacks were proven by
the second author and Østvær [Krishna and Østvær 2012], and together with the
projective bundle formula they were established for more general quotient stacks
by the second author and Ravi [Krishna and Ravi 2018]. The K B-theory of Bass–
Thomason–Trobaugh and the KH-theory of Weibel were also generalized to such
quotient stacks in [Krishna and Ravi 2018].

The purpose of this paper is to show that the approach of Kerz and Strunk can be
generalized to a large class of algebraic stacks, including all tame Artin stacks in the
sense of [Abramovich et al. 2008]. As a consequence, we obtain a generalization
of Kelly’s vanishing theorem for the negative K-theory of such stacks.

1A. Vanishing of negative K-theory of stacks. Our main results apply to certain
algebraic stacks with finite or multiplicative type stabilizers. More precisely, let
Stk′ be the category consisting of the following algebraic stacks:
• stacks with separated diagonal and linearly reductive finite stabilizers;

• stacks with affine diagonal whose stabilizers are extensions of linearly reduc-
tive finite groups by groups of multiplicative type.

Note that Stk′ contains tame Artin stacks with separated diagonal in the sense
of [Abramovich et al. 2008]. The blow-up dimension of a Noetherian stack X
is a modification of the Krull dimension which is invariant under blow-ups (see
Definition 7.7); it coincides with the usual dimension when X is a quasi-DM stack.

Theorem 1.1 (see Theorems 7.10, 7.14, and 7.16). Let X be a stack in Stk′ satis-
fying the resolution property or having finite inertia. Assume that X is Noetherian
of blow-up dimension d. Then the following hold.

(1) KHi (X )= 0 for i <−d.

(2) If n is nilpotent on X , Ki (X )[1/n] = 0 for i <−d.

(3) If n is invertible on X , Ki (X ,Z/n)= 0 for i <−d.
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1B. Cdh-descent for the homotopy K-theory of stacks. Cdh-descent plays a key
role in all the existing vanishing theorems for negative K-theory. In the recent proof
of Weibel’s conjecture in [Kerz et al. 2018], the central result is pro-cdh-descent
for nonconnective algebraic K-theory. Earlier results towards Weibel’s conjecture
used instead cdh-descent for homotopy K-theory KH . For schemes over a field of
characteristic zero, this descent result was proven by Haesemeyer [2004], and in
arbitrary characteristic, it was shown by Cisinski [2013]. For the equivariant KH-
theory of quasiprojective schemes acted on by a diagonalizable or finite linearly
reductive group over an arbitrary base, cdh-descent was proven by the first author
[Hoyois 2016]. A key step in the proof of Theorem 1.1 is a generalization of the
latter to more general algebraic stacks:

Theorem 1.2 (see Theorem 6.2). The presheaf of homotopy K-theory spectra KH
satisfies cdh-descent on the category Stk′.

Cdh-descent is the combination of two descent properties: descent for the Nis-
nevich topology and descent for abstract blow-ups. Descent for the Nisnevich
topology holds much more generally (see Corollary 4.10) and in fact it holds for
nonconnective K-theory as well (see Corollary 4.6). Descent for abstract blow-ups
is more difficult and uses several nontrivial properties of the category Stk′. The
proof ultimately relies on the proper base change theorem in stable equivariant
motivic homotopy theory, proved in [Hoyois 2017].

2. Preliminaries on algebraic stacks

A stack in this text means a quasicompact and quasiseparated algebraic stack.
Note that all morphisms between such stacks are quasicompact and quasiseparated.
Similarly, algebraic spaces and schemes are always assumed to be quasicompact
and quasiseparated. We say that a morphism of stacks is representable if it is
representable by algebraic spaces, and schematic if it is representable by schemes.
Recall that the diagonal of a stack is representable by definition; see [Stacks 2005–,
Tag 026N]. If X is a stack, k is a field, and x : Spec(k)→ X is a k-point, then
the stabilizer Gx → Spec(k) is a flat separated group scheme of finite type [Stacks
2005–, Tag 0B8D].

All group schemes are assumed flat and finitely presented. With this convention,
if G is a group scheme over a scheme S, then BG = [S/G] is a stack. Recall that
G is called linearly reductive if the pushforward functor QCoh(BG)→ QCoh(S)
on quasicoherent sheaves is exact. One knows from [Abramovich et al. 2008, The-
orem 2.16] that a finite étale group scheme G over S is linearly reductive if and
only if its degree at each point of S is prime to the residual characteristic. Diag-
onalizable group schemes are also linearly reductive by [SGA 3 I 1970, Exposé I,
Théorème 5.3.3]. As linear reductivity is an fpqc-local property on S [Abramovich
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et al. 2008, Proposition 2.4], every group scheme of multiplicative type is linearly
reductive.

We say that a group scheme G is almost multiplicative if it is an extension of
a finite étale group scheme by a group scheme of multiplicative type. Since the
class of linearly reductive group schemes is closed under quotients and extensions
[Alper 2013, Proposition 12.17], an almost multiplicative group scheme G over
S is linearly reductive if and only if, for every s ∈ S, the number of geometric
components of Gs is invertible in κ(s).

2A. Quasiprojective morphisms. Recall from [Laumon and Moret-Bailly 2000,
§14.3] that if X is a stack and A• is a quasicoherent sheaf of graded OX -algebras,
then Proj(A•) is a local construction on the fppf site of X just like for schemes
and hence defines a schematic morphism of stacks q : Proj(A•)→ X . A morphism
f : Y → X is called quasiprojective [Laumon and Moret-Bailly 2000, §14.3.4;
Rydh 2016, Theorem 8.6] if there is a finitely generated quasicoherent sheaf E on
X and a factorization

Y
ι
↪→ P(E)

q
−→ X

of f , where P(E)= Proj(Sym•(E)) and ι is a quasicompact immersion. We say that
f is projective if it is quasiprojective and proper. It is clear that a quasiprojective
morphism of stacks is schematic and hence representable.

Lemma 2.1. If f : X → Y and g : Y → Z are quasiprojective (resp. projective)
morphisms of stacks, then g ◦ f is quasiprojective (resp. projective).

Proof. The proof is the same as [Hoyois 2017, Lemma 2.13], the key point being
that every quasicoherent sheaf on a quasicompact quasiseparated stack is the co-
limit of its finitely generated quasicoherent subsheaves [Rydh 2016]. �

If I ⊂OX is a finitely generated quasicoherent sheaf of ideals, defining a finitely
presented closed substack Z ⊂X , then Proj

(⊕
i≥0 I

i
)
=BlZ(X ) is called the blow-

up of X with center Z. Note that BlZ(X ) is a closed substack of P(I). Since I
is finitely generated, it follows that the structure map BlZ(X )→ X is projective.
If U ⊂ X is an open substack, we say that a blow-up of X is U-admissible if its
center is disjoint from U .

2B. Flatification by blow-ups.

Theorem 2.2 (Rydh). Let S be a quasicompact and quasiseparated algebraic
stack and let f : X → S be a morphism of finite type. Let F be a finitely generated
quasicoherent OX -module. Let U ⊆ S be an open substack such that f |U is of finite
presentation and F | f −1(U) is of finite presentation and flat over U . Then there exists
a sequence of U-admissible blow-ups S̃→ S such that the strict transform of F is
of finite presentation and flat over S̃.
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Proof. This is proved in [Rydh ≥ 2019, Theorem 4.2]. �

Lemma 2.3. Let f : Y→X be a flat, proper, finitely presented, representable, and
birational morphism of stacks. Then f is an isomorphism.

Proof. We can assume that X and hence Y are algebraic spaces. Since f is flat,
proper, and finitely presented, its fibers have locally constant dimension [Stacks
2005–, Tag 0D4R]. Since f is birational, its fibers must have dimension 0, so
f is quasifinite [Stacks 2005–, Tag 04NV]. By Zariski’s main theorem [Stacks
2005–, Tag 082K], we deduce that f is in fact finite. Being finite, flat, and finitely
presented, f is locally free, and it must be of rank 0. �

Corollary 2.4 (Rydh). Let f : Y → X be a proper representable morphism of
stacks that is an isomorphism over some quasicompact open substack U ⊂ X . Then
there exists a projective morphism g : Ỹ→ Y that is an isomorphism over U such
that f ◦ g is also projective.

Proof. By first blowing up a finitely presented complement of U in X (which
exists by [Rydh 2016, Proposition 8.2]) and replacing Y by its strict transform, we
may assume that U is dense in X . By Theorem 2.2, we can find a sequence of
U-admissible blow-ups X̃ → X such that the strict transform f̃ : Ỹ→ X̃ is flat and
of finite presentation. Let g : Ỹ→ Y be the induced map:

U �
�

// Ỹ
f̃
��

g
// Y

f
��

U �
�

// X̃ // X

Then g is a sequence of U-admissible blow-ups and hence it is projective by
Lemma 2.1. Moreover, f̃ is flat, proper, finitely presented, representable, and
birational, whence an isomorphism (Lemma 2.3). Thus, f ◦ g is the composi-
tion of an isomorphism and the sequence of blow-ups X̃ → X , so it is projective
by Lemma 2.1. �

2C. Nisnevich coverings of stacks. The following definition appears in [Hall and
Rydh 2018, Definition 3.1] and, for Deligne–Mumford stacks, in [Krishna and
Østvær 2012, Definition 6.3].

Definition 2.5. Let X be a stack. A family of étale morphisms {Ui → X }i∈I is
called a Nisnevich covering if, for every x ∈ X , there exists i ∈ I and u ∈ Ui above
x such that the induced morphism of residual gerbes ηu→ ηx is an isomorphism.

Let f : Y→ X be a morphism of stacks. A monomorphic splitting sequence for
f is a sequence of quasicompact open substacks

∅= U0 ⊂ U1 ⊂ · · · ⊂ Un = X
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such that f admits a monomorphic section over the reduced substack Ui \Ui−1 for
all i . Note that if f is étale, such a section is an open immersion

Ui \Ui−1 ↪→ Y ×X (Ui \Ui−1).

Proposition 2.6. Let X be a stack. A family of étale morphisms {Ui → X }i is a
Nisnevich covering if and only if the morphism

∐
i Ui → X admits a monomorphic

splitting sequence.

Proof. See [Hall and Rydh 2018, Proposition 3.3]. �

Corollary 2.7. Let X be a stack and let {Ui→X }i∈I be a Nisnevich covering. Then
there exists a finite subset J ⊂ I such that {Ui → X }i∈J is a Nisnevich covering.

Proof. This follows at once from Proposition 2.6. �

A Nisnevich square in the category of stacks is a Cartesian square of the form

W � � //

��

V
f
��

U �
� e

// X
(2.8)

where f is an étale morphism (not necessarily representable) and e is an open
immersion with reduced complement Z such that the induced map Z×X V→ Z is
an isomorphism. Nisnevich squares form a cd-structure on the category of stacks,
in the sense of [Voevodsky 2010].

Proposition 2.9. Let f : Y → X be a Nisnevich covering. Then there exist se-
quences of quasicompact open substacks

Y1 ⊂ · · · ⊂ Yn ⊂ Y, ∅= X0 ⊂ X1 ⊂ · · · ⊂ Xn = X ,

such that f (Yi )⊂ Xi and such that each square

Xi−1×X Yi
� � //

��

Yi

f
��

Xi−1
� � // Xi

is a Nisnevich square.

Proof. The proof is exactly the same as [Morel and Voevodsky 1999, Proposi-
tion 1.4]. Let X0 ⊂ · · · ⊂ Xn be a monomorphic splitting sequence for f (see
Proposition 2.6), and si : Xi \Xi−1→ Y ×X (Xi \Xi−1) a monomorphic section of
the projection. Then si is an open immersion, so the complement of the image of
si is a closed substack Zi ⊂ Y ×X Xi . We can then take Yi = (Y ×X Xi ) \Zi . �
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Proposition 2.9 implies that the Grothendieck topology associated with the Nis-
nevich cd-structure is exactly the topology generated by Nisnevich coverings. The
Nisnevich cd-structure on the category of stacks clearly satisfies the assumptions
of Voevodsky’s descent criterion [Asok et al. 2017, Theorem 3.2.5]. It follows that
a presheaf of spaces or spectra F satisfies descent for Nisnevich coverings if and
only if, for every Nisnevich square (2.8), the induced square

F(X ) e∗
//

f ∗
��

F(U)

��

F(V) // F(W)

is homotopy Cartesian.
The following recent result of Alper, Hall, and Rydh [Alper et al. ≥ 2019] on

the Nisnevich-local structure of some stacks plays an important role in the proof
of our cdh-descent theorem.

Theorem 2.10 (Alper–Hall–Rydh). Let X be a stack, let x ∈ X be a point, and let
ηx be its residual gerbe. Suppose that the stabilizer of X at a representative of x is
a linearly reductive almost multiplicative group scheme. Then there exists

• a morphism of affine schemes U → S,

• a linearly reductive almost multiplicative group scheme G over S acting on U ,

• a commutative diagram of stacks

ηx
� � // [U/G]

f
��

ηx
� � // X

where f is étale.

If X has affine diagonal, we can moreover choose f affine. If X has finite inertia
and coarse moduli space π : X → X , we can take S to be an étale neighborhood
of π(x) in X.

Remark 2.11. Linearly reductive almost multiplicative group schemes are called
nice in [Hall and Rydh 2015] and [Alper et al. ≥ 2019], but this terminology is
used differently in [Krishna and Ravi 2018], so we avoid using it. �

3. Perfect complexes on algebraic stacks

3A. Sheaves on stacks. Let X be a stack. Let Lis-Ét(X ) denote the lisse-étale
site of X . Its objects are smooth morphisms X→ X , where X is a quasicompact
quasiseparated scheme. The coverings are generated by the étale covers of schemes.
Let Mod(X ) denote the abelian category of sheaves of OX -modules, and QCoh(X )
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that of quasicoherent sheaves, on Lis-Ét(X ). It is well known that QCoh(X ) and
Mod(X ) are Grothendieck abelian categories and hence have enough injectives and
all limits.

Let Ch(X ) denote the category of all (possibly unbounded) chain complexes
over Mod(X ), and Chqc(X ) the full subcategory of Ch(X ) consisting of those chain
complexes whose cohomology lies in QCoh(X ). Let D(X ) and Dqc(X ) denote
their corresponding derived categories, obtained by inverting quasi-isomorphisms.
If Z ↪→ X is a closed substack with open complement j : U ↪→ X , we let

Chqc,Z(X )= {F ∈ Chqc(X ) | j∗(F) is quasi-isomorphic to 0}.

The derived category of Chqc,Z(X ) is denoted by Dqc,Z(X ).
Let j : X → Y be a smooth morphism of algebraic stacks. We then have the

pullback functor j∗ :Mod(Y)→Mod(X ), which preserves quasicoherent sheaves.
Since j is smooth, the functor j∗ is simply the restriction functor under the inclu-
sion Lis-Ét(X )⊂ Lis-Ét(Y).

Recall from [SGA 6 1971, Definition I.4.2] that a complex of OX -modules on
a scheme X is perfect if it is locally quasi-isomorphic to a bounded complex of
locally free sheaves.

Definition 3.1. Let X be a stack. A chain complex P ∈ Chqc(X ) is called perfect
if for any affine scheme U = Spec(A) with a smooth morphism s : U → X , the
complex of A-modules s∗(P) ∈ Ch(Mod(A)) is quasi-isomorphic to a bounded
complex of finitely generated projective A-modules. Equivalently, s∗(P) is a per-
fect complex in Ch(Mod(A)) in the sense of [Thomason and Trobaugh 1990].

It follows from [Krishna and Ravi 2018, Lemma 2.5] that the above definition
coincides with that of [Thomason and Trobaugh 1990] if X is a scheme. We denote
the derived category of perfect complexes on X by Dperf(X ). The derived category
of perfect complexes on X whose cohomology is supported on a closed substack
Z is denoted by Dperf,Z(X ).

We also need to use the canonical dg-enhancements of the triangulated cate-
gories Dqc(X ) and Dperf(X ), denoted by Dqc(X ) and Dperf(X ), respectively, whose
construction we now recall. If X is an affine scheme, Dqc(X ) is the usual symmetric
monoidal derived dg-category of O(X ). The 2-category of stacks embeds fully
faithfully in the 2-category of presheaves of groupoids on affine schemes, which
further embeds in the ∞-category sPre(Aff) of simplicial presheaves on affine
schemes. Then one defines Dqc as a presheaf of symmetric monoidal dg-categories
on sPre(Aff) to be the homotopy right Kan extension of Dqc|Aff; see [Lurie 2018,
§6.2]. In other words, it is the unique extension of Dqc|Aff that transforms homotopy
colimits into homotopy limits. One can show that Dqc satisfies descent for the
fpqc topology on sPre(Aff) [Lurie 2018, Proposition 6.2.3.1]. For X a stack, the
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homotopy category of Dqc(X ) is then equivalent to Dqc(X ). If X is an algebraic
space (or more generally a Deligne–Mumford stack), this is proved in [Lurie 2018,
Proposition 6.2.4.1]. In general, this follows from the description of Dqc(X ) in
terms of a smooth representable cover of X by an algebraic space; see for instance
[Hall and Rydh 2017, §1.1]. Finally, Dperf ⊂ Dqc is the full symmetric monoidal
dg-subcategory spanned by the dualizable objects. Since the process of passing to
dualizable objects preserves homotopy limits of dg-categories [Lurie 2017, Propo-
sition 4.6.1.11], Dperf is similarly the unique extension of Dperf|Aff to sPre(Aff) that
transforms homotopy colimits into homotopy limits, and it satisfies fpqc descent.

Proposition 3.2. Let f : X ′→ X be an étale morphism of stacks and let Z ⊂ X
be a closed substack with quasicompact open complement such that the projection
Z ×X X ′→ Z is an isomorphism of associated reduced stacks. Then the functor

f ∗ : Dperf,Z(X )→ Dperf,Z×XX ′(X ′)

is an equivalence of triangulated categories.

Proof. The presheaf of dg-categories X 7→ Dperf(X ) satisfies descent for the fpqc
topology on stacks. In particular, it satisfies Nisnevich descent, so that the square
of dg-categories

Dperf(X ) //

f ∗
��

Dperf(X \Z)

��

Dperf(X ′) // Dperf(X ′ \ (Z ×X X ′))

is homotopy Cartesian. It follows that f ∗ induces an equivalence between the
kernels of the horizontal functors. �

3B. Perfect stacks.

Definition 3.3. Let X be a stack. We say that X is perfect if the triangulated
category Dqc(X ) is compactly generated and OX is compact in Dqc(X ).

If Z ⊂ X is a closed substack with quasicompact open complement, we say that
the pair (X ,Z) is perfect if X is perfect and there exists a perfect complex on X
with support |Z|.

We will see in Proposition 3.5 below that our notion of perfect stack agrees with
the one introduced in [Ben-Zvi et al. 2010], except that we do not require perfect
stacks to have affine diagonal.

Let f : X ′ → X be a morphism of stacks. We say that f is concentrated if
for every morphism g : Z → X , the morphism f ′ : X ′ ×X Z → Z has finite
cohomological dimension for quasicoherent sheaves.

Lemma 3.4. Let f : X ′→ X be a representable morphism of stacks. Then f is
concentrated. In particular, if OX is compact, then OX ′ is compact.
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Proof. Since f is representable, and since concentrated morphisms have faith-
fully flat descent by [Hall and Rydh 2017, Lemma 2.5(2)], we can assume that
f is a morphism of algebraic spaces. Now the result follows because any quasi-
compact and quasiseparated morphism of algebraic spaces is concentrated [Stacks
2005–, Tag 073G]. For the second statement, it suffices to show using [Neeman
1996, Theorem 5.1] that the right adjoint f∗ : Dqc(X ′)→ Dqc(X ) of f ∗ preserves
small coproducts. This follows from the first statement and [Hall and Rydh 2017,
Theorem 2.6(3)]. �

Proposition 3.5. Let (X ,Z) be a perfect pair. Then the triangulated category
Dqc,Z(X ) is compactly generated. Moreover, an object of Dqc,Z(X ) is compact if
and only if it is perfect.

Proof. Since OX ∈ Dqc(X ) is compact and since a perfect complex on X is dualiz-
able, it follows that every perfect complex on X is compact. On the other hand, it
follows from the proofs of [Krishna and Ravi 2018, Proposition 2.7, Lemma 2.8]
that compact objects of Dqc(X ) and Dqc,Z(X ) are perfect. The only remark we
need to make here is that the proofs in [loc. cit.] assume that X is a quotient stack.
However, this assumption is used only to ensure that if we choose an atlas u :U→X ,
then u has finite cohomological dimension for quasicoherent sheaves. But this
follows from Lemma 3.4 because X has representable diagonal and hence u is
representable. Finally, the existence of a perfect complex with support |Z| implies,
by [Hall and Rydh 2017, Lemma 4.10], that Dqc,Z(X ) is compactly generated. �

Lemma 3.6. Let f : Y→ X be a schematic morphism of stacks with a relatively
ample family of line bundles. If Dqc(X ) is compactly generated, so is Dqc(Y).
Proof. Let {Li }i∈I be an f -ample family of line bundles on Y . By Lemma 3.4, f is
a concentrated morphism. It follows from [Hall and Rydh 2017, Theorem 2.6(3)]
that f∗ : Dqc(Y)→ Dqc(X ) preserves small coproducts, and hence that its left
adjoint f ∗ preserves compact objects. It therefore suffices to show that Dqc(Y) is
generated by the objects f ∗(F)⊗L⊗−n

i , for F ∈ Dqc(X ) compact, i ∈ I , and n ≥ 1.
So let G ∈ Dqc(Y) be such that Hom( f ∗(F)⊗L⊗−n

i ,G)= 0 for every F compact,
i ∈ I , and n≥ 1. By adjunction, we have Hom(F, f∗(G⊗L⊗n

i ))= 0. Since Dqc(X )
is compactly generated, it follows that

f∗(G⊗L⊗n
i )= 0 (3.7)

for every i ∈ I and n ≥ 1.
To show that G= 0 in Dqc(Y), we let u :U→X be a smooth surjective morphism

such that U is affine. This gives rise to a Cartesian square

V v
//

g
��

Y
f
��

U u
// X
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where V is a scheme. As v is faithfully flat, it suffices to show v∗(G)= 0. It follows
from [Hall and Rydh 2017, Corollary 4.13] and (3.7) that g∗(v∗G⊗ v∗(Li )

⊗n)= 0
for all i ∈ I . Replacing Y by V and Li by v∗(Li ), we can assume that X is an affine
scheme, so that Y is a scheme and {Li }i∈I is an ample family of line bundles on Y .
In this case, (3.7) says that Hom(L⊗−n

i [m],G)= 0 for all i ∈ I , n ≥ 1, and m ∈ Z.
But this implies that G is acyclic because Dqc(Y) is generated by {L⊗−n

i }i∈I, n≥1.
Indeed, Dqc(Y) is compactly generated by bounded complexes of vector bundles
[Thomason and Trobaugh 1990, Theorem 2.3.1(d)], and every vector bundle admits
an epimorphism from a sum of line bundles of the form L⊗−n

i . �

Proposition 3.8. Let (X ,Z) be a perfect pair.

(1) For every algebraic space Y and closed subspace W ⊂ Y with quasicompact
open complement, (X × Y,Z ×W ) is perfect.

(2) For every schematic morphism f : Y→ X with a relatively ample family of
line bundles, (Y,Y ×X Z) is perfect.

Proof. Let P be a perfect complex on X with support |Z|.

(1) By [Hall and Rydh 2017, Theorem A], there exists a perfect complex Q on
Y with support |W |. Then π∗1 (P)⊗ π

∗

2 (Q) is a perfect complex on X × Y with
support |Z ×W |. Since the projection π1 : X × Y → X is representable, OX×Y is
compact by Lemma 3.4. It remains to show that Dqc(X×Y ) is compactly generated.
We claim that there is an equivalence of presentable dg-categories

Dqc(X × Y )' Dqc(X )⊗Dqc(Y ). (3.9)

Since the tensor product of compactly generated dg-categories is compactly gener-
ated, this will complete the proof. Since Y is a quasicompact and quasiseparated
algebraic space, the dg-category Dqc(Y ) is dualizable [Lurie 2018, §9.4], and hence
tensoring with Dqc(Y ) preserves homotopy limits. Since Dqc( – ) is the homotopy
right Kan extension of its restriction to affine schemes, we are reduced to prov-
ing (3.9) when X is an affine scheme, in which case it is a special case of [Lurie
2018, Corollary 9.4.2.4].

(2) The perfect complex f ∗(P) has support |Y ×X Z|. By Lemma 3.4, OY is
compact. It remains to show that Dqc(Y) is compactly generated, but this follows
from Lemma 3.6. �

Proposition 3.10. Let (X ,Z) be a perfect pair and let j : U ↪→ X be the open
immersion complement to Z . Then

j∗ :
Dperf(X )

Dperf,Z(X )
→ Dperf(U)

is an equivalence of triangulated categories, up to direct factors.
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Proof. For any pair (X ,Z), we have an equivalence of triangulated categories

j∗ :
Dqc(X )

Dqc,Z(X )
→ Dqc(U).

Indeed, the functor j∗ : Dqc(U)→ Dqc(X ) is fully faithful by flat base change, so
j∗ j∗ is a localization endofunctor of Dqc(X ) whose kernel is Dqc,Z(X ) by defini-
tion. The claim now follows from [Krause 2010, Proposition 4.9.1]. If (X ,Z) is
perfect, then U is also perfect by Proposition 3.8(2). By Proposition 3.5, all three
categories are compactly generated and their subcategories of compact and perfect
objects coincide. We conclude using [Krause 2010, Theorem 5.6.1]. �

Proposition 3.11. Suppose that X is the limit of a filtered diagram (Xα) of perfect
stacks with affine transition morphisms. Then X is perfect and the canonical map

hocolim
α

Dperf(Xα)→ Dperf(X ) (3.12)

is a weak equivalence of dg-categories.

Proof. It follows from Proposition 3.8(2) that X is perfect. By Proposition 3.5,
Dqc(X ) is compactly generated and Dqc(X )c = Dperf(X ), and similarly for each Xα .
Since the pullback functors Dqc(Xα)→ Dqc(Xβ) preserve compact objects, it fol-
lows from [Lurie 2009, Propositions 5.5.7.6 and 5.5.7.8] and [Lurie 2017, Lemma
7.3.5.10] that (3.12) is a weak equivalence if and only if the canonical map

Dqc(X )→ holim
α

Dqc(Xα) (3.13)

is a weak equivalence. Choosing a smooth hypercover of some Xα by schemes
and using flat base change, we see that the map (3.13) is the homotopy limit of
a cosimplicial diagram of similar maps with Xα replaced by a scheme. Hence, it
suffices to prove that (3.12) is a weak equivalence when Xα is a scheme, but this
follows from [Thomason and Trobaugh 1990, Proposition 3.20]. �

We now state the following two results of Hall and Rydh, which provide many
examples of perfect stacks.

Theorem 3.14 (Hall–Rydh). Let X be a stack satisfying one of the following prop-
erties.

(1) X has characteristic zero.

(2) X has linearly reductive almost multiplicative stabilizers.

(3) X has finitely presented inertia and linearly reductive almost multiplicative
stabilizers at points of positive characteristic.

Then OX is compact in Dqc(X ).

Proof. See [Hall and Rydh 2015, Theorem 2.1]. �
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Theorem 3.15 (Hall–Rydh). Let X be a stack satisfying the following properties.

(1) OX is compact in Dqc(X ).
(2) There exists a faithfully flat, representable, separated, and quasifinite mor-

phism f : X ′→ X of finite presentation such that X ′ has affine stabilizers and
satisfies the resolution property.

Then, for every closed substack Z ⊂ X , the pair (X ,Z) is perfect.

Proof. By Lemma 3.4, OX ′ = f ∗(OX ) is compact in Dqc(X ′). Since X ′ has affine
stabilizers and satisfies the resolution property, it has affine diagonal by [Gross
2017, Theorem 1.1]. Since moreover OX ′ is compact, it follows from [Hall and
Rydh 2017, Proposition 8.4] that X ′ is crisp. We now apply [Hall and Rydh 2017,
Theorem C] to conclude that X is also crisp. By definition of crispness, this implies
that (X ,Z) is perfect. �

Corollary 3.16. Let X be a quasi-DM stack with separated diagonal and linearly
reductive stabilizers. Then, for every closed substack Z ⊂ X , the pair (X ,Z) is
perfect.

Proof. Recall that a quasi-DM stack is a stack whose diagonal is quasifinite. It
follows from [Stacks 2005–, Tag 06MC] that a stack X is quasi-DM if and only if
there exists an affine scheme X and a faithfully flat map f : X→X of finite presen-
tation which is quasifinite. Since the diagonal of X is representable and separated,
it follows that f is representable and separated. Since X is affine and hence has
the resolution property, the corollary follows from Theorems 3.14 and 3.15. �

Corollary 3.17. Let X be a stack with affine diagonal and linearly reductive al-
most multiplicative stabilizers. Then, for every closed substack Z ⊂ X , (X ,Z) is
perfect.

Proof. By Theorem 2.10, there exists a Nisnevich covering { fi : [Ui/Gi ] → X }i∈I ,
where fi is affine, Ui is affine over an affine scheme Si , and Gi is a linearly re-
ductive almost multiplicative group scheme over Si . By taking a further affine
Nisnevich covering of Si , we can ensure that Gi is almost isotrivial and hence that
[Ui/Gi ] has the resolution property; see [Hoyois 2017, Example 2.8 and Remark
2.9]. By Corollary 2.7, we can also assume that I is finite. Let X ′ =

∐
i [Ui/Gi ].

Then the induced map X ′→ X is faithfully flat, quasifinite, and affine. Since X ′

has the resolution property, we conclude that (X ,Z) is perfect by Theorems 3.14
and 3.15. �

4. K-theory of perfect stacks

In this section, we establish some descent properties of the K-theory, negative K-
theory, and homotopy K-theory of stacks. Special cases of these results were earlier
proven in [Krishna and Østvær 2012; Krishna and Ravi 2018; Hoyois 2016].
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4A. Localization, excision, and continuity. Let X be an algebraic stack. The
algebraic K-theory spectrum of X is defined to be the K-theory spectrum of the
complicial bi-Waldhausen category of perfect complexes in Chqc(X ) in the sense of
[Thomason and Trobaugh 1990, §1.5.2]. Here, the complicial bi-Waldhausen cate-
gory structure is given with respect to the degreewise split monomorphisms as cofi-
brations and quasi-isomorphisms as weak equivalences. This K-theory spectrum is
denoted by K (X ). Equivalently, one may define K (X ) as the K-theory spectrum
of the dg-category Dperf(X ); see [Blumberg et al. 2013, Corollary 7.12]. Note that
the negative homotopy groups of K (X ) are zero [Thomason and Trobaugh 1990,
§1.5.3]. We shall extend this definition to negative integers in the next section. For
a closed substack Z of X , K (X on Z) is the K-theory spectrum of the complicial bi-
Waldhausen category of those perfect complexes on X which are acyclic on X \Z .

Theorem 4.1 (localization). Let (X ,Z) be a perfect pair and let j : U ↪→ X be the
open immersion complement to Z . Then the morphisms of spectra

K (X on Z)→ K (X )
j∗
−→ K (U)

induce a long exact sequence

· · · → Ki (X on Z)→ Ki (X )→ Ki (U)→ Ki−1(X on Z)→ · · ·
→ K0(X on Z)→ K0(X )→ K0(U).

Proof. This follows from Proposition 3.10 as in [Krishna and Ravi 2018, Theo-
rem 3.4]. �

Theorem 4.2 (excision). Let f : X ′ → X be an étale morphism of stacks and
let Z ⊂ X be a closed substack with quasicompact open complement such that the
projection Z×X X ′→ Z is an isomorphism of associated reduced stacks. Then the
map f ∗ : K (X on Z)→ K (X ′ on Z ×X X ′) is a homotopy equivalence of spectra.

Proof. This follows from Proposition 3.2 using [Thomason and Trobaugh 1990,
Theorem 1.9.8]. �

Theorem 4.3 (continuity). Let X be the limit of a filtered diagram (Xα) of perfect
stacks with affine transition morphisms. Then the canonical map

hocolim
α

K (Xα)→ K (X )

is a homotopy equivalence.

Proof. This follows from Proposition 3.11 and the fact that K preserves filtered
homotopy colimits of dg-categories. �
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4B. The Bass construction and negative K-theory. The nonconnective K-theory
spectrum of any stack may be defined from the complicial bi-Waldhausen cate-
gory of perfect complexes, following [Schlichting 2006], or from the dg-category
Dperf(X ), following [Cisinski and Tabuada 2011]. This allows one to define the
negative K-theory of stacks.

In this subsection, we will see that for perfect stacks a nonconnective K-theory
spectrum K B can be defined much more explicitly using the construction of Bass–
Thomason–Trobaugh. One may prove that this construction agrees with those of
Schlichting and Cisinski–Tabuada exactly as in [Krishna and Ravi 2018, Theo-
rem 3.21].

The K B-theory spectrum K B(X ) was constructed in [Krishna and Ravi 2018,
§3E] based on the following two assumptions.

(1) X is a quotient stack of the form [X/G] over a field, where G is a linearly
reductive group scheme.

(2) X satisfies the resolution property.

Since perfect stacks need not satisfy these conditions, we cannot directly quote the
results of [Krishna and Ravi 2018] for the construction of the K B-theory of stacks.
But the proofs are identical to those in [Krishna and Ravi 2018] using Theorems 4.1
and 4.2, so we only give a brief sketch of the construction. The existence of the
K B-theory is based on the following version of the fundamental theorem of Bass.

Theorem 4.4 (Bass fundamental theorem). Let X be a perfect stack and let X [T ]
denote the stack X ×Spec(Z[T ]). Then the following hold.

(1) For n ≥ 1, there is an exact sequence

0→ Kn(X )
(p∗1 ,−p∗2)
−−−−−→ Kn(X [T ])⊕ Kn(X [T−1

])

( j∗1 , j∗2 )
−−−−→ Kn(X [T, T−1

])
∂T
−→ Kn−1(X )→ 0.

Here p∗1, p∗2 are induced by the projections X [T ] → X , etc. and j∗1 , j∗2 are
induced by the open immersions X [T±1

] = X [T, T−1
] → X [T ], etc. The

sum of these exact sequences for n = 1, 2, . . . is an exact sequence of graded
K∗(X )-modules.

(2) For n ≥ 0, ∂T : Kn+1(X [T±1
])→ Kn(X ) is naturally split by a map hT of

K∗(X )-modules. Indeed, the cup product with T ∈ K1(Z[T±1
]) splits ∂T up

to a natural automorphism of Kn(X ).

(3) There is an exact sequence

0→ K0(X )
(p∗1 ,−p∗2)
−−−−−→ K0(X [T ])⊕ K0(X [T−1

])
( j∗1 , j∗2 )
−−−−→ K0(X [T±1

]).
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Proof. The proof of this theorem is word for word identical to the proof of its
scheme version given in [Thomason and Trobaugh 1990, Theorem 6.1], once we
know that the algebraic K-theory spectrum satisfies the following properties:

(1) The projective bundle formula for the projective line P1
X .

(2) Localization for the pairs (P1
X ,X [T

−1
]) and (X [T ],X [T±1

]).

(3) Excision.

Property (1) follows from [Krishna and Ravi 2018, Theorem 3.8], which holds for
any algebraic stack. Property (2) follows from Proposition 3.8(1) and Theorem 4.1,
and property (3) is Theorem 4.2. �

As an immediate consequence of Theorem 4.4, one obtains the following.

Theorem 4.5. Let X be a perfect stack. Then there exists a spectrum K B(X ),
together with a natural map K (X )→ K B(X ) of spectra inducing isomorphisms
πi K (X )∼= πi K B(X ) for i ≥ 0, which satisfies the following properties.

(1) Let Z⊂X be a closed substack with quasicompact open complement j : U ↪→X
such that (X ,Z) is perfect. Then there is a homotopy fiber sequence of spectra

K B(X on Z)→ K B(X )
j∗
−→ K B(U).

(2) Let f : Y→ X be an étale map between perfect stacks such that the projection
Z ×X Y→ Z is an isomorphism on the associated reduced stacks. Then the
map f ∗ : K B(X on Z)→ K B(Y on Z ×X Y) is a homotopy equivalence.

(3) Let π : P(E)→ X be the projective bundle associated to a vector bundle E on
X of rank r. Then the map

r−1∏
0

K B(X )→ K B(P(E))

that sends (a0, . . . , ar−1) to
∑

i O(−i)⊗π∗(ai ) is a homotopy equivalence.

(4) Let i : Y ↪→ X be a regular closed immersion and let p : X ′ → X be the
blow-up of X with center Y . Then the square of spectra

K B(X ) i∗
//

p∗
��

K B(Y)

��

K B(X ′) // K B(X ′×X Y)

is homotopy Cartesian.

(5) Suppose X is the limit of a filtered diagram (Xα) of perfect stacks with affine
transition morphisms. Then the canonical map hocolimα K B(Xα)→ K B(X )
is a homotopy equivalence.



VANISHING THEOREMS FOR THE NEGATIVE K-THEORY OF STACKS 455

Proof. The spectrum K B(X ) is constructed word for word using Theorem 4.4 and
the formalism given in (6.2)–(6.4) of [Thomason and Trobaugh 1990] for the case
of schemes. The proof of the asserted properties is a standard deduction from the
analogous properties of K (X ). The sketch of this deduction for (1)–(4) can be
found in [Krishna and Ravi 2018, Theorem 3.20]. Note that quasicompact open
substacks of X , projective bundles over X , and blow-ups of X are perfect stacks
by Proposition 3.8(2). For (5), it suffices to check colimα πn K B(Xα)∼= πn K B(X )
for all n ∈ Z. This follows from Theorem 4.3, since π−n K B(X ), for n > 0, is a
natural retract of K0(G

n
m ×X ). �

Corollary 4.6. Let
W � � //

��

V
f
��

U �
� e
// X

be a Nisnevich square of stacks, and suppose that the pairs (X ,X \U) and (V,V\W)

are perfect. Then the induced square of spectra

K B(X )
f ∗
//

e∗
��

K B(V)

��

K B(U) // K B(W)

is homotopy Cartesian.

Proof. This follows immediately from Theorem 4.5(1) and (2). �

Remark 4.7. We remark that if (X ,X \U) is a perfect pair and if the map f :V→X
in Corollary 4.6 is representable and separated, then (V,V \W) is automatically
a perfect pair. The reason is that in this case, f is quasi-affine by Zariski’s main
theorem for stacks [Laumon and Moret-Bailly 2000, Theorem 16.5] and one can
apply Proposition 3.8(2).

Since the homotopy groups of the two spectra K (X ) and K B(X ) agree in non-
negative degrees by Theorem 4.5, we make the following definition.

Definition 4.8. Let X be a perfect stack and i ∈ Z. We let Ki (X ) denote the i-th
homotopy group of the spectrum K B(X ).

4C. The homotopy K-theory of perfect stacks. For n ∈ N, let

1n
= Spec

(
Z[t0, . . . , tn](∑

i ti − 1
) ).

Recall that 1• is a cosimplicial scheme. For a perfect stack X , the homotopy
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K-theory of X is defined as

KH(X )= hocolim
n∈1op

K B(X ×1n).

There is a natural map K B(X )→ KH(X ) induced by 0 ∈1op.

Theorem 4.9. Let X be a perfect stack.

(1) Let Z⊂X be a closed substack with quasicompact open complement j : U ↪→X
such that (X ,Z) is perfect. Then there is a homotopy fiber sequence of spectra

KH(X on Z)→ KH(X )
j∗
−→ KH(U).

(2) Let f : Y→ X be an étale map between perfect stacks such that the projection
Z ×X Y→ Z is an isomorphism on the associated reduced stacks. Then the
map f ∗ : KH(X on Z)→ KH(Y on Z ×X Y) is a homotopy equivalence.

(3) Let π : P(E)→ X be the projective bundle associated to a vector bundle E on
X of rank r. Then the map

r−1∏
0

KH(X )→ KH(P(E))

that sends (a0, . . . , ar−1) to
∑

i O(−i)⊗π∗(ai ) is a homotopy equivalence.

(4) Let i : Y ↪→ X be a regular closed immersion and let p : X ′ → X be the
blow-up of X with center Y . Then the square of spectra

KH(X ) i∗
//

p∗
��

KH(Y)

��

KH(X ′) // KH(X ′×X Y)

is homotopy Cartesian.

(5) Suppose that X is the limit of a filtered diagram (Xα) of perfect stacks with
affine transition morphisms. Then the canonical map

hocolim
α

KH(Xα)→ KH(X )

is a homotopy equivalence.

(6) Suppose that u : E → X is a vector bundle over X . Then the induced map
u∗ : KH(X )→ KH(E) is a homotopy equivalence.

Proof. Properties (1)–(5) follow immediately from the definition of KH(X ) and
Theorem 4.5. The proof of (6) for quotient stacks is given in [Krishna and Ravi
2018, Theorem 5.2] and the same proof is valid for perfect stacks. �
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Corollary 4.10. Let
W � � //

��

V
f
��

U �
� e

// X

be a Nisnevich square of stacks, and suppose that the pairs (X ,X \U) and (V,V\W)

are perfect. Then the induced square of spectra

KH(X )
f ∗
//

e∗
��

KH(V)

��

KH(U) // KH(W)

is homotopy Cartesian.

Proof. This follows immediately from Theorem 4.9(1) and (2). �

Remark 4.11. In [Hoyois 2016], a potentially different definition of KH is given
for certain quotient stacks, which forces KH to be invariant with respect to vector
bundle torsors and not just vector bundles. The two definitions agree for quotients
of schemes by finite or multiplicative type groups, as we will show in Lemma 6.1,
but they may differ in general. We do not know if the above definition of KH has
good properties for general perfect stacks. �

5. G-theory and the case of regular stacks

Our goal in this section is to show that perfect stacks that are Noetherian and regular
have no negative K-groups. We do this by comparing the K-theory and G-theory
of such stacks.

Let X be a stack. Recall that Mod(X ) is the abelian category of OX -modules
on the lisse-étale site of X and QCoh(X )⊂Mod(X ) is the abelian subcategory of
quasicoherent sheaves.

Lemma 5.1. Assume that X is a Noetherian stack. Then the inclusion

ιX : QCoh(X ) ↪→Mod(X )

induces an equivalence of the derived categories D+(QCoh(X )) '−→ D+qc(X ).

Proof. To show that D+(QCoh(X ))→ D+qc(X ) is full and faithful, it suffices, using
standard reduction, to show that the natural map

ExtiQCoh(X )(N ,M)→ ExtiMod(X )(N ,M)

is an isomorphism for all i ∈ Z for N ,M ∈ QCoh(X ). Since this is clearly true for
i ≤ 0, and since ιX : QCoh(X )→Mod(X ) is exact, it suffices to show that this
functor preserves injective objects.
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Let F be an injective quasicoherent sheaf on X . Since a direct summand of
an injective object in Mod(X ) is injective and since a quasicoherent sheaf which
is injective as a sheaf of OX -modules is also an injective quasicoherent sheaf, it
suffices to show that there is an inclusion F ↪→ G in QCoh(X ) such that ιX (G) is
injective in Mod(X ).

Since X is Noetherian, we can find a smooth atlas u : U → X , where U is a
Noetherian scheme. We can now find an inclusion u∗(F) ↪→H in QCoh(U ) such
that H is injective as a sheaf of OU -modules, by [Thomason and Trobaugh 1990,
B.4]. We now consider the maps

F→ u∗u∗(F)→ u∗(H). (5.2)

As U is Noetherian, it is clear that u∗(H) is a quasicoherent sheaf on X . Fur-
thermore, u∗ has a left adjoint u∗ : Mod(X )→ Mod(U ) which preserves quasi-
coherent sheaves. Since (u : U → X ) is an object of Lis-Ét(X ), it follows that
u∗ :Mod(X )→Mod(U ) is exact. In particular, u∗ :Mod(U )→Mod(X ) has an
exact left adjoint. This implies that it must preserve injective sheaves. It follows
that u∗(H) is a quasicoherent sheaf on X which is injective as a sheaf of OX -
modules.

Letting G = u∗(H), we are now left with showing that the two maps in (5.2) are
injective. The first map is injective because u is faithfully flat and F is quasicoher-
ent. The second map is injective because u∗ : QCoh(U )→ QCoh(X ) is left exact
and hence preserves injections.

To show that the functor D+(QCoh(X ))→ D+qc(X ) is essentially surjective,
we can use its full and faithfulness shown above and an induction on the length
to first see that Db(QCoh(X )) '−→ Db

qc(X ). Since every object of D+qc(X ) is a
colimit of objects in Db

qc(X ) (using good truncations), a limit argument concludes
the proof. �

Lemma 5.3. Let X be as in Lemma 5.1 and let P ∈ D(QCoh(X )) be a compact
object. Then the following hold.

(1) There exists an integer r ≥ 0 such that HomDqc(X )(P, N [i]) = 0 for all
N ∈QCoh(X ) and i > r .

(2) There exists an integer r ≥ 0 such that the natural map

τ≥ j RHomDqc(X )(P,M)→ τ≥ j RHomDqc(X )(P, τ
≥ j−r M)

is a quasi-isomorphism for all M ∈ Dqc(X ) and integers j .

(3) There exists an integer r ≥ 0 such that the natural map

τ≥ j RHomD(QCoh(X ))(P,M)→ τ≥ j RHomD(QCoh(X ))(P, τ≥ j−r M)

is a quasi-isomorphism for all M ∈ D(QCoh(X )) and integers j .
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Proof. It follows from Lemma 5.1 that ιX induces an equivalence between the
derived categories of perfect complexes of quasicoherent sheaves and perfect com-
plexes of OX -modules. Since the compact objects of Dqc(X ) are perfect [Krishna
and Ravi 2018, Proposition 2.7], it follows that D(QCoh(X )) and Dqc(X ) have
equivalent full subcategories of compact objects. The parts (1) and (2) now fol-
low from [Hall and Rydh 2017, Lemma 4.5] and the proof of [Hall et al. 2014,
Lemma 2.4] shows that (1) implies (3) for any stack. �

Lemma 5.4. Let X be a Noetherian stack such that Dqc(X ) is compactly gener-
ated. Then ιX : QCoh(X )→Mod(X ) induces an equivalence of the unbounded
derived categories D(QCoh(X )) '−→ Dqc(X ).

Proof. Let 9 : D(QCoh(X ))→ Dqc(X ) denote the derived functor induced by ιX .
We have shown in the proof of Lemma 5.3 that 9 restricts to an equivalence
between the full subcategories of compact objects. Using [Benson et al. 2011,
Lemma 4.5], it thus suffices to show that D(QCoh(X )) is compactly generated.

So let M ∈ D(QCoh(X )) be such that HomD(QCoh(X ))(P,M) = 0 for every
compact object P . We need to show that M = 0. Since any compact object of
D(QCoh(X )) is perfect, and 9 is conservative and induces equivalence of com-
pact objects, it suffices to show that RHom(P,M) '−→ RHom(9(P),9(M)) for
every perfect complex P . Equivalently, we need to show that for every integer j ,
the map τ≥ j RHom(P,M)→ τ≥ j RHom(9(P),9(M)) is a quasi-isomorphism.
Lemma 5.3 now allows us to assume that M ∈ D+(QCoh(X )). But in this case,
the result follows from Lemma 5.1. �

For a Noetherian stack X , let Gnaive(X ) denote the K-theory spectrum of the
exact category of coherent OX -modules in the sense of Quillen, and let G(X ) be the
K-theory spectrum of the complicial bi-Waldhausen category of cohomologically
bounded pseudocoherent complexes in Chqc(X ), in the sense of [Thomason and
Trobaugh 1990, §1.5.2]. We have a natural map of spectra Gnaive(X )→ G(X ).

Lemma 5.5. Let X be a Noetherian stack such that Dqc(X ) is compactly gener-
ated. Then the map Gnaive(X )→ G(X ) is a homotopy equivalence.

Proof. It follows from Lemma 5.4 that G(X ) is homotopy equivalent to the K-
theory of the Waldhausen category Chpc(QCoh(X )) of cohomologically bounded
pseudocoherent chain complexes of quasicoherent sheaves on X . Let Chb(Coh(X ))
denote the Waldhausen category of bounded complexes of coherent OX -modules.

Using the fact that every quasicoherent sheaf on X is a filtered colimit of coher-
ent subsheaves [Laumon and Moret-Bailly 2000, Proposition 15.4], we can mimic
the proof of [Thomason and Trobaugh 1990, Lemma 3.12] to conclude that the
inclusion Chb(Coh(X )) ↪→ Chpc(QCoh(X )) induces a homotopy equivalence be-
tween the associated K-theory spectra. By induction on the length of complexes in
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Chb(Coh(X )), the map Gnaive(X )→ K (Chb(Coh(X ))) is also a homotopy equiv-
alence, so we conclude the proof. �

Lemma 5.6. Let X be a Noetherian regular stack. Then the canonical map of
spectra K (X )→ G(X ) is a homotopy equivalence.

Proof. As for schemes [Thomason and Trobaugh 1990, Theorem 3.21], it suffices
to show that every cohomologically bounded pseudocoherent complex E• on X is
perfect. Let u :U→X be a smooth atlas such that U is affine. Since (u :U→X ) is
an object of Lis-Ét(X ), the functor u∗ :Mod(X )→Mod(U ) is exact and preserves
coherent sheaves. It follows that u∗(E•) is a cohomologically bounded pseudo-
coherent complex on U . Since U is a regular scheme, we conclude from the proof
of [Thomason and Trobaugh 1990, Theorem 3.21] that u∗(E•) is perfect. But this
implies that E• is perfect on X . �

Theorem 5.7. Let X be a Noetherian regular stack such that Dqc(X ) is compactly
generated. Then the following hold.

(1) The canonical maps K (X )→ G(X )← Gnaive(X ) are homotopy equivalences.

(2) For any vector bundle E on X and any E-torsor π : Y→ X , the pullback map
K (X )→ K (Y) is a homotopy equivalence.

(3) The canonical morphisms of spectra

K (X )→ K B(X )→ KH(X )

are homotopy equivalences. In particular, Ki (X )= KHi (X )= 0 for i < 0.

Proof. Part (1) of the theorem follows directly from Lemmas 5.5 and 5.6. As shown
in [Merkurjev 2005, Theorem 2.11], there exists a short exact sequence of vector
bundles

0→ E→W
φ
−→ A1

X → 0

such that Y = φ−1(1). In particular, Y is the complement of the projective bundle
P(E) in P(W). It follows from our hypothesis and Lemma 3.6 that P(W) is a
Noetherian regular stack such that Dqc(P(W)) is compactly generated. The same
holds for P(E) as well. The Quillen localization sequence

Gnaive(P(E))→ Gnaive(P(W))→ Gnaive(Y) (5.8)

and the projective bundle formula [Krishna and Ravi 2018, Theorem 3.8] now
prove (2).

By (1) and the Quillen localization sequence for Gnaive( – ) associated to the
inclusions X [T ] ↪→ P1

X and X [T±1
] ↪→ X [T ], we see that the Bass fundamen-

tal theorem holds for X and moreover that the sequence (3) of Theorem 4.4 is a
short exact sequence. This implies that one can define K B(X ) as in Section 4B,
and moreover that K (X ) '−→ K B(X ). On the other hand, it follows from (2) that
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K B(X ) '−→ K B(X ×1n) for every n ≥ 0, which implies that K B(X ) '−→ KH(X ).
The last assertion of (3) holds because K (X ) has no negative homotopy groups. �

6. Cdh-descent for homotopy K-theory

We denote by Stk′ the category of stacks X satisfying one of the following condi-
tions:

• X has separated diagonal and linearly reductive finite stabilizers.

• X has affine diagonal and linearly reductive almost multiplicative stabilizers.

By Corollaries 3.16 and 3.17, for every X ∈ Stk′ and every closed substack Z ⊂ X
with quasicompact open complement, the pair (X ,Z) is perfect. Furthermore,
by Theorem 2.10, X admits a Nisnevich covering by quotient stacks [U/G] where
U is affine over an affine scheme S and G is a linearly reductive almost multiplica-
tive group scheme over S

Note that if X ∈ Stk′ and Y→ X is a representable morphism with affine diag-
onal, then also Y ∈ Stk′, since the stabilizers of Y are subgroups of the stabilizers
of X .

Lemma 6.1. Let X be a stack in Stk′ and let f : Y→X be a torsor under a vector
bundle. Then

f ∗ : KH(X )→ KH(Y)

is a homotopy equivalence.

Proof. By Theorem 2.10, there exists a Nisnevich covering [U/G] → X , where
U is affine over an affine scheme S and G is a linearly reductive S-group scheme.
By Proposition 2.9 and Corollary 4.10, we are reduced to showing that

KH([U/G])→ KH([U/G]×X Y)

is a homotopy equivalence. But since U and S are affine and G is linearly reductive,
the vector bundle torsor [U/G]×X Y→[U/G] has a section and hence is a vector
bundle. The result now follows from Theorem 4.9(6). �

The following theorem is our cdh-descent result for the homotopy K-theory of
stacks.

Theorem 6.2. Let X be a stack in Stk′ and let

E �
�
//

��

Y
p
��

Z �
� e
// X

be a Cartesian square where p is a proper representable morphism, e is a closed
immersion, and p induces an isomorphism Y \ E ∼= X \Z . Then the induced square
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of spectra
KH(X )

p∗
//

e∗
��

KH(Y)

��

KH(Z) // KH(E)

(6.3)

is homotopy Cartesian.

Proof. We proceed in several steps.

Step 1. We prove the result under the assumptions that p is projective, that p and e
are of finite presentation, and that X = [U/G] is quasi-affine over [S/G] for some
affine scheme S and some linearly reductive isotrivial almost multiplicative group
scheme G over S (note that such a stack belongs to Stk′ and has the resolution
property). Since G is finitely presented, we can write U as an inverse limit of quasi-
affine G-schemes of finite presentation over S. By Theorem 4.9(5), KH transforms
such limits into homotopy colimits. Since homotopy colimits of spectra commute
with homotopy pullbacks, we can assume that U is finitely presented over S. We
are now in the situation of [Hoyois 2016, Theorem 1.3], and we deduce that (6.3)
is a homotopy Cartesian square for the KH-theory defined in [Hoyois 2016] (more
precisely, for the presheaf of spectra KH[S/G] defined in [Hoyois 2016, §4]). But
the latter agrees with the KH-theory defined in this paper, by Lemma 6.1.

Step 2. We prove the result under the assumption that p is projective and that X
is as in Step 1. Since every quasicoherent sheaf on X is the union of its finitely
generated quasicoherent subsheaves [Rydh 2016], we can write Z as a filtered
intersection of finitely presented closed substacks of X . By continuity of KH
(Theorem 4.9(5)), we can therefore assume that e is finitely presented. In particular,
U = X \Z is quasicompact. Since Y is projective over X , it is a closed substack
of P(F) for some finitely generated quasicoherent sheaf F on X . Since X has
the resolution property and affine stabilizers, we can write X = [V/GLn] for some
quasi-affine scheme V [Gross 2017, Theorem 1.1]. On such stacks, it is known that
every quasicoherent sheaf is a filtered colimit of finitely presented quasicoherent
sheaves [Rydh 2015, Theorem A and Proposition 2.10(iii)]. In particular, F is a
quotient of a finitely presented sheaf, so we can assume without loss of generality
that F is finitely presented. We can again write Y as a filtered intersection of
finitely presented closed substacks Yi ⊂ P(F). By [Rydh 2015, Theorem C(ii)],
the projection Yi ×X U → U is a closed immersion for sufficiently large i . But
since it has a section, it must be an isomorphism. By continuity of KH , we can
therefore assume that p is finitely presented, and we are thus reduced to Step 1.

Step 3. We prove the result assuming only that p is projective. By Theorem 2.10
and the fact that groups of multiplicative type are isotrivial locally in the Nisnevich
topology [Hoyois 2017, Remark 2.9], there exists a Nisnevich covering {Ui → X }
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where each Ui is as in Step 1. By Proposition 2.9, there is a sequence of quasi-
compact open substacks ∅= X0 ⊂ · · · ⊂ Xn = X together with Nisnevich squares

W j
� � //

��

V j

��

X j−1
� � // X j

where each V j is a quasicompact open substack of
∐

i Ui . In particular, each V j and
each W j is as in Step 1. Since KH satisfies Nisnevich descent (Corollary 4.10), we
deduce from Step 2 by a straightforward induction on j that (6.3) is a homotopy
Cartesian square.

Step 4. We prove the result in general. As in Step 2, we can assume that the
complement of e is quasicompact. By Corollary 2.4, there exists a projective mor-
phism Y ′→ Y which is an isomorphism over the complement of e and such that
the composite Y ′→ Y→ X is projective. Consider the squares

KH(X )
p∗
//

e∗
��

KH(Y)

��

// KH(Y ′)

��

KH(Z) // KH(E) // KH(E ′)

where E ′ = E ×Y Y ′. The right-hand square and the total square are both homotopy
Cartesian by Step 3. Hence, the left-hand square is also homotopy Cartesian, as
desired. �

7. The vanishing theorems

Our goal now is to use the cdh-descent for homotopy K-theory to prove the vanish-
ing theorems for negative K-theory. In order to apply cdh-descent, Kerz and Strunk
[2017] used the idea of killing classes in the negative K-theory of schemes using
Gruson–Raynaud flatification [Raynaud and Gruson 1971]. In Section 7A, we
prove an analog of this result for stacks. This is done essentially like in the case of
schemes, where we replace Gruson–Raynaud flatification with Rydh’s flatification
theorem for algebraic stacks (Theorem 2.2). The vanishing results are proven in
Sections 7B and 7C.

7A. Killing by flatification. We need the following two preparatory results about
quasicoherent sheaves on stacks.

Lemma 7.1. Let f : Y → X be a quasi-affine morphism of stacks. If X satisfies
the resolution property, so does Y .

Proof. This is [Hall and Rydh 2017, Lemma 7.1]. �
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Lemma 7.2. Let f : Y→ X be a smooth morphism of Noetherian stacks and let
F be a coherent sheaf on Y which is flat over X . Then F has finite tor-dimension
over Y .

Proof. Since the question is smooth-local on X and Y , we can assume that X
and Y are Noetherian schemes. In this case, the result is [Kerz and Strunk 2017,
Lemma 6]. �

Proposition 7.3 (the killing lemma). Let X be a reduced Noetherian stack and let
f : Y→ X be a smooth morphism of finite type such that Y is perfect and satisfies
the resolution property. Let n > 0 be an integer and let ξ ∈ K−n(Y). Then there
exists a sequence of blow-ups u : X ′→ X with nowhere dense centers such that for
the induced map uY : Y ′ := X ′×X Y→ Y , one has u∗Y(ξ)= 0 in K−n(Y ′).

Proof. We repeat the proof of [Kerz and Strunk 2017, Proposition 5] with minor
modifications. By the construction of negative K-theory of perfect stacks (see
Definition 4.8), there exists a surjection

Coker(K0(Y ×An)→ K0(Y ×Gn
m))� K−n(Y), (7.4)

natural in Y . It therefore suffices to prove that, for any ξ ∈ K0(Y ×Gn
m), there

exists a sequence of blow-ups u : X ′→ X with nowhere dense centers such that
u∗Y×Gn

m
(ξ) lies in the image of the restriction map

j∗ : K0(Y ′×An)→ K0(Y ′×Gn
m). (7.5)

Since Y satisfies the resolution property, it follows from Lemma 7.1 that Y×Gn
m

also satisfies the resolution property. In particular, K0(Y ×Gn
m) is generated by

classes of vector bundles on Y ×Gn
m . Since any finite collection of sequences of

blow-ups of X can be refined by a single such sequence, we can assume that ξ is
represented by a vector bundle E on Y ×Gn

m . We can now extend E to a coherent
sheaf F on Y ×An by [Gross 2017, Theorem 1.1; Thomason 1987b, Lemma 1.4].

Choose a commutative square

Y
g
//

p
��

X
q
��

Y
f
// X

where X and Y are algebraic spaces, p and q are smooth surjective maps, and g
is smooth of finite type. By generic flatness [Stacks 2005–, Tag 06QR], we can
find a dense open subspace U ⊂ X such that (q × idAn )∗(F) is flat over U under
the composite map Y ×An

→ Y → X . Then U induces a dense open substack
U ⊂ X such that F is flat over U . We now apply Theorem 2.2 to find a sequence
of blow-ups u : X ′ → X whose centers are disjoint from U such that the strict
transform F̃ of F on Y ′×An is flat over X ′.
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We consider the commutative diagram of Cartesian squares

Y ′×Gn
m

j
//

q
��

Y ′×An e′
//

w
��

Y ′ //

v
��

X ′

u
��

Y ×Gn
m

// Y ×An e
// Y // X

(7.6)

in which the vertical arrows are blow-ups and the horizontal arrows are smooth.
We next recall that the strict transform F̃ is defined by the cokernel of the map
H0

E×An (w
∗(F)) ↪→w∗(F), where E ↪→ Y ′ is the exceptional locus of the blow-up

and H0
( – ) is the sheaf of sections with support. Since F restricts to the vector bundle

E over Y ×Gn
m , which in turn is smooth over X , it follows that j∗(F̃)= q∗(E) by

[Stacks 2005–, Tag 080F].
Lemma 7.2 says that F̃ has finite tor-dimension over Y ′×An . In particular, it

defines a class [F̃] ∈ K0(Y ′×An). Moreover, we have [q∗(E)]= [ j∗(F̃)]= j∗([F̃]).
This finishes the proof. �

7B. Vanishing of negative homotopy K-theory. We now use the techniques of
cdh-descent and killing by flatification to prove our main results on the vanishing
of negative K-theory of stacks.

Definition 7.7. Let X be a Noetherian stack.

(1) The Krull dimension Kr dim(X ) ∈ N∪ {±∞} is the Krull dimension of the
underlying topological space |X |; see [Laumon and Moret-Bailly 2000, Chap-
ter 5] for the definition of |X |.

(2) The blow-up dimension bl dim(X )∈N∪{±∞} is the supremum of the integers
n ≥ 0 such that there exists a sequence Xn → Xn−1 → · · · → X0 = X of
nonempty stacks where each Xi is a nowhere dense closed substack of an
iterated blow-up of Xi−1.

(3) The covering dimension cov dim(X ) ∈ N∪ {±∞} is the least dimension of a
scheme X admitting a faithfully flat finitely presented morphism X→ X .

Lemma 7.8. Let X be a Noetherian stack. Then

Kr dim(X )≤ bl dim(X )≤ cov dim(X ).

If X is a quasi-DM stack, all three are equal to dim(X ).

Proof. The inequality Kr dim(X )≤ bl dim(X ) follows directly from the definitions,
since Kr dim(X ) is the supremum of a subset of the set of integers described in
Definition 7.7(2). For the inequality bl dim(X )≤ cov dim(X ), it suffices to prove
the following:

(i) If Y→ X is a blow-up, then cov dim(Y)≤ cov dim(X ).
(ii) If Z⊂X is a nowhere dense closed substack, then cov dim(Z)≤cov dim(X )−1.
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Let f : X → X be an fppf cover, where X is a scheme. Then X is Noetherian
and X ×X Y → X is a blow-up of X . It follows that dim(X ×X Y) ≤ dim(X),
whence (i). By [Stacks 2005–, Tag 04XL], the induced map of topological spaces
| f | : |X | → |X | is continuous and open. Using [Stacks 2005–, Tag 03HR], we
deduce that X ×X Z is a nowhere dense closed subscheme of X . It follows that
dim(X ×X Z)≤ dim(X)− 1, whence (ii).

For the last statement, we prove more generally that the following hold for every
faithfully flat representable quasifinite morphism of Noetherian stacks f : Y→ X :

(i) dim(Y)= dim(X ).

(ii) Kr dim(Y)≤ Kr dim(X ).

If X is quasi-DM, we can take Y to be a scheme and we deduce cov dim(X )≤dim(X )
and dim(X )≤ Kr dim(X ), as desired. To prove (i), by definition of the dimension
of a stack [Stacks 2005–, Tag 0AFL], we are immediately reduced to the case where
X is an algebraic space. In this case, the claim follows from [Stacks 2005–, Tags
04NV and 0AFH]. If Z0 ⊂ · · · ⊂ Zn is a strictly increasing sequence of irreducible
closed subsets of |Y|, then f (Z0)⊂ · · · ⊂ f (Zn) is a sequence of irreducible closed
subsets of |X |. To check that it is strictly increasing, we may again assume that X
is an algebraic space. If the sequence were not strictly increasing, we would have
a nontrivial specialization in a fiber of | f |, which is a discrete space [Stacks 2005–,
Tag 06RW]. This proves (ii). �

Example 7.9. Let k be a field, let n≥ 1, and let X be the stack quotient of An
k by the

standard action of the general linear group GLn . Then Kr dim(X )= bl dim(X )= 1,
cov dim(X ) = n, and dim(X ) = n − n2. We do not know an example where
Kr dim(X ) 6= bl dim(X ). �

See Section 6 for the definition of the category Stk′ appearing in the next theo-
rem.

Theorem 7.10. Let X be a stack in Stk′ satisfying the resolution property. If X is
Noetherian of blow-up dimension d, then KHi (X )= 0 for i <−d.

Proof. We prove the theorem by induction on d. Since KH is nil-invariant (take
Y =∅ in Theorem 6.2), we can assume that X is reduced. We can write KH(X )=
hocolimn Fn(X ), where

Fn(X )= hocolim
1

op
≤n

K B(X ×1•).

It suffices to show inductively on n that the canonical map πi Fn(X )→ KHi (X ) is
zero for all i <−d . This is trivial if n < 0, so assume n ≥ 0.

Let Ci,n(X ) denote the cokernel of πi Fn−1(X )→ πi Fn(X ). Since the cofiber of
the map Fn−1(X )→ Fn(X ) is canonically a direct summand of6n K B(X×1n) (see
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for instance [Lurie 2017, Remark 1.2.4.7]), we may identify Ci,n(X ) with a sub-
group of Ki−n(X×1n). By the induction hypothesis, the map πi Fn(X )→ KHi (X )
factors through Ci,n(X ):

πi Fn−1(X ) //

0 %%

πi Fn(X )

��

// // Ci,n(X )

φi,nzz

� � // Ki−n(X ×1n)

KHi (X )

(7.11)

Hence, it suffices to show that φi,n : Ci,n(X )→ KHi (X ) is zero. Let ξ be in
Ci,n(X )⊂ Ki−n(X ×1n). By Lemma 7.1, X ×1n satisfies the resolution property.
By Proposition 7.3, there exists a sequence of blow-ups u : X ′→ X with nowhere
dense centers such that u∗(ξ)= 0 in Ci,n(X ′)⊂ Ki−n(X ′×1n) (note that i−n< 0).
Let Z ⊂X be a nowhere dense closed substack of X such that u is an isomorphism
over the complement of Z . By Theorem 6.2, we have a long exact sequence

· · · → KHi+1(u−1(Z))→ KHi (X )→ KHi (X ′)⊕ KHi (Z)→ · · · .

Note that both Z and u−1(Z) have blow-up dimension strictly less than d. By
the induction hypothesis, KHi+1(u−1(Z)) and KHi (Z) are both zero, so the map
u∗ : KHi (X )→ KHi (X ′) is injective. Since φi,n is natural in X , we have u∗φi,n(ξ)=

φi,nu∗(ξ)= 0, and we conclude that φi,n(ξ)= 0. This finishes the proof. �

Our next goal is to remove the resolution property assumption from Theorem 7.10.
We are able to do so under the additional assumption that X has finite inertia. If
X is a Noetherian algebraic space, we denote by ÉtX the category of algebraic
spaces over X that are étale, separated, and of finite type. The following lemma is
a Nisnevich variant of [Kerz and Strunk 2017, Proposition 3].

Lemma 7.12. Let X be a Noetherian algebraic space, let F be a Nisnevich sheaf
of abelian groups on ÉtX , and let r be an integer. Suppose that F(Oh

Y,y)= 0 for
every point y ∈ Y ∈ ÉtX with dim {y}> r . Then H i

Nis(X,F)= 0 for all i > r .

Proof. Let s ∈ F(X) be a section, and let i : Z ↪→ X be a closed immersion such
that the support of s is |Z |, i.e., |Z | is the closed subset of points x ∈ X such that
s is nonzero in every open neighborhood of x . We claim that

dim(Z)≤ r.

Otherwise, let y ∈ Z be a generic point such that dim {y}> r . Then i∗(F)(OZ ,y)∼=

F(Oh
X,y)= 0, so the section i∗(s) of i∗(F) vanishes on an open neighborhood Y

of y in Z . This means that s itself vanishes on an étale neighborhood of Y . Since
it also vanishes on X \ Z and F is a Nisnevich sheaf, it follows that s vanishes on
the open (X \ Z)∪ Y , which is a contradiction.
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Let S be a finite set of local sections of F , and let FS ⊂ F be the subsheaf
generated by S. Let iS : X S ↪→ X be a closed immersion such that |X S| is the
union of the closures of the images of the supports of the sections in S, and let
jS : X \ X S ↪→ X be the complementary open immersion. Then j∗S (FS)= 0 since
every s ∈ S is zero over X \ X S . Using the gluing short exact sequence

0→ ( jS)! j∗S (FS)→ FS→ (iS)∗i∗S(FS)→ 0,

we deduce FS∼= (iS)∗i∗S(FS). If we now write F as a filtered colimit F∼=colimS bFS ,
we obtain

H i
Nis(X,F)∼= colim

S
H i

Nis(X,FS)∼= colim
S

H i
Nis(X S, i∗S(FS)).

The last isomorphism holds because (iS)∗ is an exact functor on Nisnevich sheaves
of abelian groups. By our preliminary result, dim(X S)≤ r . Since X S is a Noether-
ian algebraic space, its Nisnevich cohomological dimension is bounded by its Krull
dimension [Lurie 2018, Theorem 3.7.7.1]. We therefore have H i

Nis(X S, i∗S(FS))= 0
for i > r , whence H i

Nis(X,F)= 0 for i > r . �

Lemma 7.13. Let X be a Noetherian algebraic space of finite Krull dimension,
let F be a presheaf of spectra on ÉtX satisfying Nisnevich descent, and let n be
an integer. Suppose that, for every point y ∈ Y ∈ ÉtX , F(Oh

Y,y) is (n+ dim {y})-
connective. Then the spectrum F(X) is n-connective.

Proof. We can assume without loss of generality that n = 0. Let π∗F denote the
Nisnevich sheaves of homotopy groups of F . Since X is a Noetherian algebraic
space of finite Krull dimension, its Nisnevich topos has finite homotopy dimension
[Lurie 2018, Theorem 3.7.7.1], so that the descent spectral sequence

H p
Nis(X, πqF)⇒ πq−pF(X)

is strongly convergent. Applying Lemma 7.12 to πqF , we deduce that

H p
Nis(X, πqF)= 0

for all p > q , and we conclude using the above spectral sequence. �

Theorem 7.14. Let X be a stack in Stk′ with finite inertia, e.g., a separated quasi-
DM stack with linearly reductive stabilizers. Assume that X is Noetherian of di-
mension d. Then KHi (X )= 0 for i <−d.

Proof. Let X be the coarse moduli space of X . Note that X is a Noetherian algebraic
space of dimension d . Let F be the presheaf of spectra on ÉtX defined by

F(Y )= KH(X ×X Y ).
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By Corollary 4.10, F satisfies Nisnevich descent on ÉtX . For y ∈ Y ∈ ÉtX , let
X h

y = X ×X Spec(Oh
Y,y). By continuity of KH (Theorem 4.9(5)), we have

F(Oh
Y,y)' KH(X h

y ).

By Theorem 2.10, the stack X h
y has the form [U/G], where U is affine and G is a

finite group scheme over Spec(Oh
Y,y). In particular, X h

y belongs to Stk′ and satisfies
the resolution property. Moreover, the dimension of X h

y is at most d − dim {y}, and
it equals its blow-up dimension by Lemma 7.8. It follows from Theorem 7.10 that
F(Oh

Y,y) is (−d + dim {y})-connective. By Lemma 7.13, we deduce that F(X) is
(−d)-connective, i.e., that KHi (X )= 0 for i <−d. �

7C. Vanishing of negative K-theory with coefficients. Let X be a perfect stack
and let n ∈ Z. Recall from [Krishna and Ravi 2018, §5C] that the algebraic K-
theory of X with coefficients is defined by

K B(X )[1/n] := hocolim(K B(X ) n
−→ K B(X ) n

−→ · · · ),

K B(X ,Z/n) := K B(X )∧S/n,

where S/n is the mod-n Moore spectrum, and similarly for KH .

Proposition 7.15. Let X be a perfect stack.

(1) If n is nilpotent on X , then the canonical map K B(X )[1/n] → KH(X )[1/n]
is a homotopy equivalence.

(2) If n is invertible on X , then the canonical map K B(X ,Z/n)→ KH(X ,Z/n)
is a homotopy equivalence.

Proof. We have shown in the proof of Proposition 3.8(1) that there is a weak
equivalence of dg-categories

Dperf(X ×A1)' Dperf(X )⊗Dperf(A
1).

Given this, the proposition follows immediately from [Tabuada 2017, Theorem
1.2]. �

Theorem 7.16. Let X be a stack in Stk′ satisfying the resolution property or hav-
ing finite inertia. Assume that X is Noetherian of blow-up dimension d. Then the
following hold.

(1) If n is nilpotent on X , then Ki (X )[1/n] = 0 for any i <−d.

(2) If n is invertible on X , then Ki (X ,Z/n)= 0 for any i <−d.

Proof. This follows from Theorems 7.10 and 7.14 and Proposition 7.15. �
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