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Higher genera for proper actions of Lie groups

Paolo Piazza and Hessel B. Posthuma

Let G be a Lie group with finitely many connected components and let K be a
maximal compact subgroup. We assume that G satisfies the rapid decay (RD)
property and that G/K has a nonpositive sectional curvature. As an example, we
can take G to be a connected semisimple Lie group. Let M be a G-proper mani-
fold with compact quotient M/G. Building on work by Connes and Moscovici
(1990) and Pflaum et al. (2015), we establish index formulae for the C∗-higher
indices of a G-equivariant Dirac-type operator on M . We use these formulae
to investigate geometric properties of suitably defined higher genera on M . In
particular, we establish the G-homotopy invariance of the higher signatures of
a G-proper manifold and the vanishing of the Â-genera of a G-spin G-proper
manifold admitting a G-invariant metric of positive scalar curvature.

1. Introduction

The aim of this paper is to introduce certain geometric invariants associated to
proper actions of Lie groups, generalizing the (higher) signatures and Â-genera.
Let G be a Lie group satisfying the following assumptions:

• G has finitely many components.

• Because |π0(G)|<∞, G has a maximal compact subgroup K , unique up to
conjugation, and we assume that the homogeneous space G/K has nonposi-
tive sectional curvature with respect to the G-invariant metric induced by an
AdK -invariant inner product 〈 , 〉 on the Lie algebra g.

• G satisfies the rapid decay (RD) property.

We explain these last two hypothesis in the course of the paper; it suffices for now
to remark that natural examples of groups satisfying our assumptions are given
by connected semisimple Lie groups. The homogeneous space G/K is a smooth
model for EG, the classifying space for proper actions of G [Baum et al. 1994]:
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for any smooth proper action of G on a manifold M , there exists a smooth G-
equivariant classifying map ψM :M→G/K , unique up to G-equivariant homotopy.
Assuming in addition that the action is cocompact, i.e., that the quotient M/G
is compact, we can fix a cut-off function χM for M . This is a smooth function
χM ∈ C∞c (M) satisfying∫

G
χM(g−1x) dg = 1 for all x ∈ M.

For any proper action of G on M , we consider �•inv(M), the complex of G-
invariant differential forms on M , and its cohomology denoted by H•inv(M). In
the universal case this cohomology can be identified with the K-relative Lie alge-
bra cohomology of the Lie algebra g of G: H•inv(G/K ) ∼= H•CE(g; K ), where CE
stands for Chevalley–Eilenberg. For any α ∈ �•inv(G/K ), consider its pull-back
ψ∗Mα ∈�

•

inv(M). The higher signature associated to α is the real number

σ(M, α) :=
∫

M
χM L(M)∧ψ∗M(α), (1.1)

where L(M) is the invariant de Rham form representing the L-class of M . The
insertion of the cut-off function χM , which has compact support, ensures that the
integral is well-defined, and it can be shown that it only depends on the class
[L(M)∧ψ∗M(α)] ∈ H•inv(M). The numbers in the collection

{σ(M, α) : [α] ∈ H•inv(G/K )} (1.2)

are called the higher signatures of M . Similarly, the higher Â-genus associated to
M and to [α] ∈ H•inv(G/K ) is the real number

Â(M, α) :=
∫

M
χM Â(M)∧ψ∗M(α), (1.3)

where Â(M) is the de Rham class associated to the Â-differential form for a G-
invariant metric. The numbers in the collection

{ Â(M, α) : α ∈ H•inv(G/K )} (1.4)

are called the higher Â-genera of M .
In this paper we establish the following result:

Theorem 1.5. Let G be a Lie group with finitely many connected components sat-
isfying property RD, and such that G/K is of nonpositive sectional curvature for
a maximal compact subgroup K . Let M be an orientable manifold with a proper,
cocompact action of G. Then the following hold true:

(i) each higher signature σ(M, α), α ∈ H•inv(G/K ), is a G-homotopy invariant
of M ;
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(ii) if M admits a G-invariant spin structure and a G-invariant metric of posi-
tive scalar curvature, then each higher Â-genus Â(M, α), α ∈ H•inv(G/K ),
vanishes.

We prove this result by adapting to the G-proper context the seminal paper of
Connes and Moscovici on the cyclic cohomological approach to the Novikov con-
jecture for discrete Gromov hyperbolic groups. Crucial to this program is the proof
of a higher index formula for higher indices associated to elements in H•diff(G) and
to the index class IndC∗r (G)(D) ∈ K∗(C∗r (G)) of a G-equivariant Dirac operator on
an even-dimensional M acting on the sections of a complex vector bundle E . Here
are the main steps for establishing this result (for this introduction we expunge
from the notation the vector bundle E):

(1) First, we remark that for any almost connected Lie group G there is a van Est
isomorphism H•diff(G)' H•inv(G/K )≡ H•inv(EG).

(2) Under the assumption of nonpositive sectional curvature for G/K we prove
that each α ∈ H•diff(G) has a representative cocycle of polynomial growth.

(3) If G is unimodular then for each α ∈ H even
diff (G) we define a cyclic cocycle τG

α

for the convolution algebra C∞c (G), and thus a homomorphism

〈τG
α , · 〉 : K0(C∞c (G))→ C.

(4) For each α ∈ H even
diff (G) we also consider a cyclic cocycle τM

α for the algebra
of G-equivariant smooth kernels of G-compact support Ac

G(M); this defines
a homomorphism 〈τM

α , · 〉 : K0(Ac
G(M))→ C.

(5) We show that if in addition G satisfies the RD property, for example, if G
is semisimple connected, then τG

α extends to K0(C∗r (G)) and τM
α extends

to K0(C∗(M)G), with C∗(M)G denoting the Roe algebra of M .

(6) If D is a G-equivariant Dirac operator we consider its index class IndC∗r (G)(D) in
K0(C∗r (G)) and its Morita equivalent index class IndC∗(M)G (D) in K0(C∗(M)G)
and show that

〈τG
α , IndC∗r (G)(D)〉 = 〈τ

M
α , IndC∗(M)G (D)〉 .

(7) We apply the index theorem of Pflaum, Posthuma and Tang [Pflaum et al.
2015b] in order to compute 〈τM

α , IndC∗(M)G (D)〉, thus establishing our higher
C∗-index formula in the even-dimensional case.

We remark that item (2) above is of independent interest, and should be compared
with the literature on bounded cohomology of Lie groups; see [Hartnick and Ott
2012; Kim and Kim 2015]

The geometric applications in Theorem 1.5 are then a direct consequence of
the G-homotopy invariance of the signature index class established by Fukumoto
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[2017] and, for the higher Â-genera, of the vanishing of the index class IndC∗r (G)(ð)∈
K∗(C∗r (G)) of the spin Dirac operator ð of a G-spin G-proper manifold endowed
with a G-metric of positive scalar curvature, established by Guo, Mathai and Wang
[Guo et al. 2017]. In the odd-dimensional case we argue by suspension. Notice that
for (certain) 2-degree classes α, the G-proper homotopy invariance of the higher
signatures σ(M, α) had already been established by Fukumoto.

2. Preliminaries: proper actions and cohomology

2A. Proper actions. In this section we introduce the geometric setting for this
paper, and list some basic tools that we will need at several points later on. Let
G be a Lie group with finitely many connected components. Recall that a smooth
left action of G on a manifold M is called proper if the associated map

G×M→ M ×M, (g, x) 7→ (x, gx), g ∈ G, x ∈ M,

is a proper map. This implies that the stabilizer groups Gx of all points x ∈ M are
compact and that the quotient space M/G is Hausdorff. The action is said to be
cocompact if the quotient is compact.

The class of manifolds equipped with a proper action of G can be assembled
into a category where the morphisms are given by G-equivariant smooth maps. It
is a basic fact that this category has a final object EG, meaning that any proper
G-action on M is classified by a G-equivariant map ψ : M → EG, unique up
to G-equivariant homotopy. This EG is called the classifying space for proper
G-actions, and in fact we can take EG := G/K , where K is a maximal compact
subgroup. Then, by writing S := ψ−1(eK ) we see that the S is in fact a global
slice: it is a K-stable submanifold for which there is a diffeomorphism

G×K S ∼= M, [g, x] 7→ gx, g ∈ G, x ∈ S.

The existence of such a global slice for proper Lie group actions with finitely many
connected components was first proved in [Abels 1974]. When the action is co-
compact, S is compact as well. Closely related to the global slice is the existence
of a cut-off function. This is a smooth function χ ∈ C∞(M) satisfying∫

G
χ(g−1x) dg = 1 for all x ∈ M.

Here we have chosen, for the rest of the paper, a Haar measure which we nor-
malized so that the volume of the maximal compact subgroup K ⊂ G is equal
to 1. When the action of G is cocompact, we can even choose χ to have compact
support. The cut-off function is constructed from the global slice S ⊂ M as follows:
Choose a smooth function h ∈ C∞(M) which is equal to 1 on S and 0 outside an
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open neighborhood of S in M . Then the function

χ(x)=
(∫

G
h(g−1x) dg

)−1

h(x)

is a cut-off function for the action of G.
Choosing a G-invariant Riemannian metric g on M we can refine this construc-

tion as follows: Choose the initial function h to have support inside the tube of
distance 1 in M around S. Then, rescaling by ε > 0 along the radial coordinate
near S, we obtain a family of functions hε satisfying

hε(x)=
{

1 for x ∈ S,
0 for d(x, S) > ε.

Using this as input for the construction of the cut-off function above gives a family
of cut-off functions χε approaching χS:

Lemma 2.1. The family of cut-off functions χε , ε > 0, satisfies

lim
ε↓0

χε = χS,

distributionally.

Proof. We begin by remarking that pointwise

lim
ε↓0

χε(x)=
{

1 for x ∈ S,
0 for x 6∈ S.

This is because for fixed x ∈ S the family hε(g−1x) of functions on G converges
pointwise to the characteristic function of K ⊂ G, and therefore by dominated
convergence we have

lim
ε↓0

∫
G

hε(g−1x) dg =
∫

G
lim
ε↓0

hε(g−1x) dg =
∫

K
dg = 1,

by our normalization of the Haar measure on G. With this pointwise limit of χε(x)
we have, once again by dominated convergence, that

lim
ε↓0

∫
M
χε(x) f (x) dx =

∫
M

lim
ε↓0

χε(x) f (x) dx =
∫

S
f (x) dx

for any test function f ∈ C∞c (M). �

2B. Invariant cohomology and the van Est map. The main point of this subsec-
tion is to define the van Est map associated to a proper action of a Lie group G on M ,
and to reinterpret this map as the pull-back in cohomology along the classifying
map ψM : M→ G/K .
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Let M be a smooth manifold equipped with a smooth proper action of G. We
define

�•inv(M) := {ω ∈�
•(M) : g∗ω = ω, for all g ∈ G},

the vector space of invariant differential forms. The de Rham differential restricts to
this space of invariant forms and its cohomology, called the invariant cohomology,
is denoted by H•inv(M). Taking the invariant cohomology defines a contravariant
functor on the category of proper G-manifolds with an equivariant map f : M→ N
acting on cohomology by pull-back of differential forms as usual. It is not difficult
to see that the induced map f ∗ : H•inv(N ) → H•inv(M) depends only on the G-
homotopy class it is in. Given the choice of a cut-off function χ , it is shown in
[Pflaum et al. 2015b] that for a closed form α ∈�

dim(M)
inv,cl (M), the integral∫

M
χα

only depends on the cohomology class [α] ∈ H dim(M)
inv (M).

For any manifold M equipped with a proper action of G, the van Est map is a
map H•diff(G)→ H•inv(M), where H•diff(G) is the so-called smooth group cohomol-
ogy of G. Let us first recall the definition of this smooth group cohomology. For
G a Lie group, the space of smooth homogeneous group k-cochains is given by

Ck
diff(G) := {c : G

×(k+1)
→ C smooth,

c(gg0, . . . , ggk)= c(g0, . . . , gk), for all g, g0, . . . , gk ∈ G}.

The differential δ : Ck
diff(G)→ Ck+1

diff (G) is defined as

(δc)(g0, . . . , gk+1) :=

k+1∑
i=0

(−1)i c(g1, . . . , ĝi , . . . , gk+1), (2.2)

where the ˆ means omission from the argument of the function. The cohomology of
the resulting complex is called the smooth group cohomology, written as H•diff(G).

With this, the van Est map is constructed as follows: given a smooth group
cochain c ∈ Ck

diff(G), define the differential form

ωχc := (d1 · · · dk fc)|1, (2.3)

where di means taking the differential with respect to the i-th variable of the func-
tion fc ∈ C∞(M×(k+1)) defined as

fc(x0, . . . , xk)

:=

∫
G×(k+1)

χ(g−1
0 x0) · · ·χ(g−1

k xk)c(g0, . . . , gk) dµ(g0) · · · dµ(gk).
(2.4)
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Proposition 2.5. The map c 7→ ω
χ
c defines a morphism of complexes

8
χ

M : (C
•

diff(G), δ)→ (�•inv(M), ddR).

On the level of cohomology, it is independent of the choice of cut-off function χ .

Remark 2.6. Because of this last property, we often omit the superscript χ and
write ωc and 8M when the context only refers to the cohomological meaning of
the differential form and the van Est map.

Proof of Proposition 2.5. We start by giving the abstract cohomological definition
of the map 8M following [Crainic 2003] using a double complex, after which we
show how to obtain the explicit chain morphism by constructing a splitting of the
rows. The double complex is given as follows. We define

C p,q
:= C∞(G×(p+1), �q(M)).

The vertical differential δv : C p,q
→ C p,q+1 is simply given by the de Rham

differential, leaving the G-variables untouched. As for the horizontal differential
δh :C p,q

→C p+1,q , this is given by the differential computing the smooth groupoid
cohomology of the action groupoid G × M ⇒ M with coefficients in

∧q T ∗M ,
viewed as a representation of this groupoid. Since the G-action is proper, the
groupoid G×M ⇒ M is proper by definition. Therefore, the vanishing theorem
for the groupoid cohomology of proper Lie groupoids in [Crainic 2003] applies,
and we see that the rows in this double complex are exact. There are obvious
inclusions C•diff(G) ↪→ C•,0, and �•inv(M) ↪→ C0,•, and now we see that by finding
the appropriate splittings we can “zig-zag” from one end to the other in the double
complex:

...
...

...
...

�1
inv(M)

d

OO

// C0,1

δv

OO

δh
// C1,1

δh

OO

s1

gg

δh
// C2,1

δh

OO

δh
// · · ·

�0
inv(M)

d
OO

// C0,0

δv

OO

δh
// C1,0

δh

OO

δh
// C2,0

δh

OO

s2

gg

δh
// · · ·

C0
diff(G)

OO

δ
// C1

diff(G)

OO

δ
// C2

diff(G)

OO

δ
// · · ·

So it remains to find an appropriate splitting sp : C p,•
→ C p+1,•. Given a choice

of cut-off function χ , the formula

(spα)(g0, . . . , gp−1) :=

∫
G
χ(g−1x0)α(g, g0, . . . , gp−1)

∣∣
1
, α ∈ C p,q
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does the job: a straightforward computation shows that

δh ◦ s+ s ◦ δh = id.

With this choice of contraction map, one obtains exactly (2.3) for the invariant
differential form associated to a group cochain. The preceding argument therefore
shows that the map c 7→ ωc is indeed a morphism of cochain complexes. �

Remark 2.7 (the van Est isomorphism). The main theorem of [Crainic 2003] states
that if M is cohomologically n-connected, the map 8M induces an isomorphism in
cohomology in degree ≤ n and is injective in degree n+1. In the universal case for
the action of G on G/K , which is contractible, we therefore find an isomorphism
H•diff(G)∼= H•inv(G/K ). This is one version of the classical van Est theorem [1955a;
1955b]. In this case we have by left translation

�•inv(G/K )∼=
( •∧

(g/k)∗
)K

, (2.8)

under which the de Rham differential identifies with the Chevalley–Eilenberg dif-
ferential computing the relative Lie algebra cohomology H•CE(g; K ). With this, the
van Est isomorphism is written as

H•diff(G)∼= H•CE(g; K ). (2.9)

Proposition 2.10. Let f : M→ N be an equivariant smooth map between proper
G-manifolds. Then the following diagram commutes:

H•diff(G)
8N

//

8M ((

H•inv(N )

f ∗
��

H•inv(M)

Proof. Let χM be a cut-off function for the G-action on M . Then the pull-back
f ∗χM is a cut-off function for the G-action on N . For this cut-off function we
obviously have ω f ∗χM

c = f ∗ωχM
c . The result now follows from the fact that the

van Est map is independent of the choice of cut-off function. �

Corollary 2.11. Under the van Est isomorphism H•diff(G)∼=H•inv(G/K ), the van Est
map is identified with the pull-back along the classifying map ψM : M→ G/K , i.e.,

8M = ψ
∗

M .

2C. Group cocycles of polynomial growth. In a later stage of the paper, in the
discussion of the extension properties of cyclic cocycles associated to smooth group
cocycles, it will be important to control the growth of these group cocycles. To this
end, we shall prove below a criterion guaranteeing that we can represent classes
in H•diff(G) by cocycles that have at most polynomial growth. For this, we begin
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by recalling Dupont’s inverse [1976] of the van Est map 8G/K establishing the
isomorphism (2.9). Choose an AdK -invariant inner product 〈 , 〉 on g, which, by
left translations, induces a G-invariant Riemannian metric on G/K . This metric
defines an orthogonal decomposition g = p⊕ k with p ∼= TeK (G/K ). Since K
is maximal compact, the (Riemannian) exponential map induces an isomorphism
p∼= G/K (with inverse denoted by log), and we can define the contraction

ϕs(x) := exp(s log(x))

of G/K to its basepoint eK ∈ G/K , i.e., ϕ1 = idG/K and ϕ0(x)= eK . Now, given
k+ 1 points g0K , . . . , gk K ∈ G/K , also denoted ḡ0, . . . , ḡk , we can consider the
geodesic simplex 1k(g0K , . . . , gk K )⊂ G/K defined inductively as the cone over
1k−1(ḡ1, . . . , ḡk) with tip point ḡ0. More precisely, define the singular simplex
σ k(ḡ0, . . . , ḡk) :1

k
→G/K , where 1k

:=
{
(t0, . . . , tk)∈Rk+1

: ti ≥ 0,
∑

i ti = 1
}
,

by

σ k(g0K , . . . , gk K )(t0, . . . , tk)

:= g0ϕt0

(
σ k−1(g−1

0 g1K , . . . , g−1
0 gk K )

(
t1

1− t0
, . . . ,

tk
1− t0

))
, (2.12)

and σ 0(gK ) := gK . We write1k(g0K , . . . , gk K ) for the image of this simplex. By
construction, this k-simplex is G-invariant: g1k(ḡ0, . . . , ḡk)=1

k(gḡ0, . . . , gḡk).
With these simplices we define a map

J :�•inv(G/K )→C•diff(G), α 7→ J (α)(g0, . . . , gk) :=

∫
1k(g0 K ,...,gk K )

α, (2.13)

which is easily checked to be a morphism of cochain complexes. Since8G/K ◦J = id,
J is a quasi-isomorphism.

Theorem 2.14. Let G be a Lie group with finitely many connected components.
Let K be a maximal compact subgroup and assume that G/K is of nonpositive
sectional curvature with respect to the G-invariant metric induced by an AdK -
invariant inner product 〈 , 〉 on g. Then the group cocycle associated to a closed
α ∈ �k

inv(G/K ) has polynomial growth. More precisely, if we write d(g) for the
distance from eK to gK in G/K , there exists a constant C > 0 and a natural
number N ∈ N such that the following estimate holds true:

|J (α)(g0, . . . , gk)| ≤ C(1+ d(g0))
N
· · · (1+ d(gk))

N .

Proof. Denote by ‖α‖ the norm of the Lie algebra cocycle α∈Ck
CE(g;K)=�

k
inv(G/K)

defined by the K-invariant metric on the Lie algebra g of G that defines the met-
ric on G/K . Since α is a G-invariant differential form we obviously have the
inequality

|J (α)(g0, . . . , gk)| ≤ ‖α‖Vol(1k(ḡ0, . . . , ḡk)).
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We now prove that, under the assumptions of the theorem, the volume of the geo-
desic k-simplex on G/K has at most polynomial growth in the geodesic distance
of its vertices, thus completing the proof. For this we adapt an argument from
[Inoue and Yano 1982, Proposition 1]; we thank Andrea Sambusetti for very useful
discussions on this point and for bringing this article to our attention.

Let τ :1k−1(g1K , . . . , gk K )×[0, 1] →1k(eK , g1K , . . . , gk K ) be defined by

τ(x, t) := ϕ1−t(x).

With this we can write

τ ∗ dvol1k(eK ,g1 K ,...,gk K ) = φ(x, t) dt ∧π∗ dvol1k−1(g1 K ,...,gk K )

for some function φ(x, t), where

π :1k−1(g1K , . . . , gk K )×[0, 1] →1k−1(g1K , . . . , gk K )

is the projection.
Choose x0 ∈1

k−1(g1K , . . . , gk K ) and let γx0(t) := ϕs(x0) be the geodesic start-
ing in γx0(0)= x0 and ending in the basepoint γx0(1)= eK . Let X0(0), . . . , Xn−1(0)
be an orthonormal frame of Tx0(G/K ) such that X0(0)= γ̇ (0)/L , with L=d(eK, x0)

the length of γx0 , and such that X0(0), . . . , Xk−1(0) span Tx01
k(eK, g1K, . . . , gkK ).

We denote by X i (t) the unique extension to parallel vector fields along γx0(t).
We now choose local coordinates (y1, . . . , yk−1) on1k−1(g1K, . . . , gk K) around

x0 satisfying
∂

∂yi (x0)= X i (0)+ bi X0(0), (2.15)

for some constants bi ∈ R. We then get local coordinates (y1, . . . , yk−1, t) around
the image of γ , such that (y1

0 , . . . , yk−1
0 , 0) corresponds to the point x0. Comparing

the vector fields ∂/∂yi with X j defines functions ai j : [0, 1] → R by

∂

∂yi (γ (t))=
n−1∑
j=0

ai j (t)X j (t). (2.16)

The normal projection of ∂/∂yi along γx0(t) is then the vector field

Yi (t) :=
n−1∑
j=1

ai j (t)X j (t), i = 1, . . . , k− 1,

satisfying Yi (0)= X i (0) and Yi (1)= 0. Now note that the vector field ∂/∂yi is a
Jacobi field along the geodesic γx0(t), because by its definition we have

∂

∂yi (γ (t))=
d
ds
γ(y1

0 ,...,syi
0,...,y

k−1
0 )(t)

∣∣
s=0,
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where γ(y1,...,yk−1)(t) is the geodesic ϕt(0, y1, . . . , yk) connecting

(y1, . . . , yk−1) ∈1k−1(g1K , . . . , gk K )

with eK , and x0= (y1
0 , . . . , yk−1

0 ) in local coordinates. It follows that Yi (t) is also a
Jacobi field along γx0(t) because it is the normal projection of ∂/∂yi . (The normal
and tangential projections of a Jacobi vector field are Jacobi.)

We define the (k−1)× (k−1) matrix A(t) with entries

〈Yi (t), Y j (t)〉 =
n−1∑
k=1

aik(t)ak j (t).

Now, computing the inner products of the vector fields ∂/∂yi we get from (2.15)
and an elementary computation that

dvol1k−1(g1 K ,...,gk K ) =

√(
1+

∑
i

b2
i

)
dy1
∧ · · · dyk,

whereas from (2.16) we get

dvol1k(eK ,g1 K ,...,gk K ) = L
√

det(A(t)) dt ∧ dy1
∧ · · · ∧ dyk .

It follows that

φ(x0, t)=
L
√

det(A(t))√(
1+

∑
i b2

i

) ≤ L
√

det(A(t)) .

Consider now the Jacobi field U (t)=
∑k−1

i=1 ui Yi (t), for a vector u= (ui )k−1
i=1 ∈Rk−1.

By the Jacobi equation we now have

d2

dt2 ‖U (t)‖ = 2‖∇∂/∂tU (t)‖2− 2
〈
R
(

U (t), ∂
∂t

)
∂

∂t
,U (t)

〉
≥ 0.

Together with the fact that ‖U (0)‖2 = ‖u‖2 and ‖U (1)‖2 = 0, it follows that
‖U (t)‖2 ≤ ‖u‖2(1− t).

We obviously have

det(A(t))≤
(

sup
u 6=0

ut A(t)u
‖u‖2

)k−1

,

and ut A(t)u = ‖U (t)‖2, so that we can conclude that

det(A(t))≤ (1− t)k−1.

This is the crucial estimate that we use below. Before we complete the proof of
the theorem, we prove the following lemma:

Lemma 2.17. For x ∈1k−1(g1K , . . . , gk K )⊂1k(g0K , . . . , gk K ), we have

d(g0K , x)≤max{d(g0K , g1K ), . . . , d(g0K , gk K )}.
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Proof. We prove this by induction. For k = 1, the statement is obvious. Suppose
now that we have proved the lemma for k− 1. Consider

x ∈1k−1(g1K , . . . , gk K )⊂1k(g0K , . . . , gk K ).

Let γ (t) be the geodesic connecting g1K and x , but continued until it hits the
simplex 1k−2(g2K , . . . , gk K ) in a point that we call y. Using convexity of the
distance function on a manifold with nonpositive sectional curvature, we see that
d(g0K, x)≤max{(d(g0K, g1K ), d(g0K, y)}. To estimate the distance d(g0K, y),
we now consider the geodesic simplex 1k−1(g0K, g2K, . . . , gk K ) and apply the
induction hypothesis. �

The final step in the proof of the theorem is an induction argument: First observe
that for k= 1, the statement of the theorem is obviously true because11(g0K , g1K )
is simply the geodesic connecting g0K and g1K . Suppose now that we have
proved the statement for k − 1. Then we compute the volume of the simplex
1k(eK , g1K , . . . , gk K ) as follows:

Vol(1k(eK , g1K , . . . , gk K ))

=

∫
1k(eK ,g1 K ,...,gk K )

dvol1k(eK ,g1 K ,...,gk K )

=

∫
1k−1(g1 K ,...,gk K )

(∫ 1

0
φ(x, t) dt

)
dvol1k−1(g1 K ,...,gk K )(x)

≤

∫
1k−1(g1 K ,...,gk K )

L(x)
(∫ 1

0
(1− t)(k−1)/2 dt

)
dvol1k−1(g1 K ,...,gk K )(x)

≤ C
∫
1k−1(g1 K ,...,gk K )

L(x) dvol1k−1(g1 K ,...,gk K )(x)

≤ C
k∏

i=1

(1+ d(gi ))Vol(1k−1(g1K , . . . , gk K )).

By the induction assumption,

Vol(1k−1(g1K , . . . , gk K ))≤ C ′
k−1∏
i=1

(1+ d(g1K , gi K )).

Together with the inequality d(g1K , gi K ) ≤ d(g0K , g1K ) + d(g0K , gi K ), this
completes the proof of the theorem. �

Example 2.18. As an example, consider the abelian group G = R2 with maximal
compact group given by the trivial group {0} ⊂R2. In this abelian case we have that
H•inv(R

2)=
∧
•

R2, and a generator in degree 2 is given by the area form dx ∧ dy,
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so that we find
J (dx ∧ dy)(x, y, z)= AreaR2(12(x, y, z)), (2.19)

which evidently grows polynomially in the norm of x, y and z.

Remark 2.20. (i) When G is a connected semisimple Lie group, G/K is a non-
compact symmetric space and has nonpositive sectional curvature [Helgason 2001].
Therefore the curvature assumptions in the lemma are automatically satisfied in this
case. In fact, the conjecture in [Dupont 1979] is that for semisimple Lie groups all
these cocycles are bounded. For recent work on this conjecture, see [Hartnick and
Ott 2012; Kim and Kim 2015]. In this last reference, different simplices are used,
given by the barycentric subdivision of the geodesic ones, to prove boundedness
of the top-dimensional cocycle for general connected semisimple Lie groups.

(ii) In general, the polynomial bounds of the lemma above are not sharp, as ex-
pected from the conjecture mentioned in (i). For example, when G = SL(2,R),
the maximal compact subgroup is given by K = SO(2) so that G/K = H2, the
hyperbolic 2-plane. Again, we have H 2

inv(H
2)= R, with generator the hyperbolic

area form. This leads to a smooth group cocycle given by the same formula as
(2.19) above, replacing the Euclidean area by the hyperbolic one, but this time the
cocycle is bounded because the area of a hyperbolic triangle does not exceed π ,
confirming the boundedness in top-degree mentioned in (i).

3. Algebras of invariant kernels

3A. Smoothing kernels of G-compact support. Let M again be a closed smooth
manifold carrying a smooth proper action of a Lie group G with |π0(G)| <∞
and with compact quotient. We choose an invariant complete Riemannian metric,
denoted h, with associated distance function denoted by dM(x, y) for x, y ∈ M ,
and volume form dvol(x). We fix a left-invariant metric on G and we denote by
dG the associated distance function.

Definition 3.1. Consider a G-equivariant smoothing kernel k ∈ C∞(M ×M); thus
k is an element in C∞(M × M)G . We say that k is of G-compact support if the
projection of supp(k) ⊂ M × M in (M × M)/G, with G acting diagonally, is
compact.

We denote by Ac
G(M) the set of G-equivariant smoothing kernels of G-compact

support. It is well known that Ac
G(M) has the structure of a Fréchet algebra with

respect to the convolution product

(k ∗ k ′)(x, z)=
∫

M
k(x, y)k ′(y, z) dvol(y).

It is also well known that each element k ∈ Ac
G(M) defines an equivariant linear

operator Sk : C∞c (M)→ C∞c (M), the integral operator associated to the kernel k,
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and that Sk ◦ Sk′ = Sk∗k′ . Moreover, Sk extends to an equivariant bounded operator
on L2(M). We have therefore defined a subalgebra of B(L2(M)), which we denote
as Sc

G(M); by definition,

Sc
G(M) := {Sk : k ∈Ac

G(M)}. (3.2)

The case in which there is an equivariant vector bundle E on M is similar, in that
we start with G-equivariant elements in C∞(M ×M, E � E∗) and then proceed
analogously, defining in this way the Fréchet algebra Ac

G(M, E) and Sc
G(M, E) :=

{Sk : k ∈Ac
G(M, E)}, a subalgebra of B(L2(M, E)).

Notation. Keeping with a well-established abuse of notation, we often identify
Ac

G(M, E) with Sc
G(M, E), thus identifying a smoothing kernel k in Ac

G(M, E)
with the corresponding operator Sk ∈ Sc

G(M, E).

3B. Holomorphically closed subalgebras. Using the remarks at the end of the pre-
vious subsection we see that Sc

G(M, E) is in an obvious way a subalgebra of the re-
duced Roe C∗-algebra C∗(M, E)G . Recall that C∗(M, E)G is defined as the norm
closure in B(L2(M, E)) of the algebra C∗c (M, E)G of G-equivariant bounded oper-
ators of finite propagation and locally compact. In fact, Sc

G(M, E)⊂ C∗c (M, E)G .
The Roe algebra is canonically isomorphic to K(E), the C∗-algebra of compact
operators of the Hilbert C∗r (G)-Hilbert module E obtained by closing the space
C∞c (M, E) of compactly supported sections of E on M , endowed with the C∗r G-
valued inner product

(e, e′)C∗r G(x) := (e, x · e′)L2(M,E), e, e′ ∈ C∞c (M, E), x ∈ G. (3.3)

See for example [Hochs and Wang 2018], where the Morita isomorphism

K∗(K(E))= K∗(C∗(M, E)G) M
−→ K∗(C∗r G)

is explicitly discussed. We shall come back to this important point in a moment.
The subalgebra Sc

G(M, E) is not holomorphically closed in C∗(M, E)G . On the
other hand, such a subalgebra of C∗(M, E)G is implicitly constructed in [Hochs
and Wang 2018, Section 3.1] by making use of the slice theorem. We recall the es-
sential ingredients, following [Hochs and Wang 2018, Section 3.1] (we also extend
the context slightly for future use).

As already remarked in the previous section, under our assumptions on G, there
exists a global slice for the action of G on M . Thus if K is a maximal compact
subgroup of G there exists a K-invariant compact submanifold S ⊂ M such that
the action map [g, s] 7→ gs, g ∈ G, s ∈ S, defines a G-equivariant diffeomorphism

G×K S α
−→ M,
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where S is compact because the action is cocompact. Corresponding to this diffeo-
morphism we have an isomorphism E ∼= G×K (E |S), and thus isomorphisms

C∞c (M, E)∼= (C∞c (G) ⊗̂C∞(S, E |S))K ,

C∞(M, E)∼= (C∞(G) ⊗̂C∞(S, E |S))K .

See [Hochs and Wang 2018, Section 3.1]. Here we are taking the projective tensor
product ⊗̂π of the two Fréchet algebras; however, since C∞(S, E |S) is nuclear,
the injective ⊗̂ε and projective ⊗̂π tensor products coincide, which is why we do
not use a subscript. Consider now 9−∞(S, E |S), also a nuclear Fréchet algebra,
and let

Ãc
G(M, E) := (C∞c (G) ⊗̂9

−∞(S, E |S))K×K .

Ãc
G(M, E) is a Fréchet algebra, with product denoted by ∗. Let k̃ ∈ Ãc

G(M, E) and
consider the operator Tk̃ on L2(M, E) given by

(Tk̃e)(gs)=
∫

G

∫
S

gk̃(g−1g′, s, s ′)g′ −1e(g′s ′) ds ′ dg′. (3.4)

This is a bounded G-equivariant operator with smooth G-equivariant Schwartz
kernel given by

κ(gs, g′s ′)= gk̃(g−1g′, s, s ′)g′ −1,

where the g and g′ −1 on the right-hand side are used in order to identify fibers on
the vector bundle E . The assignment k̃→ Tk̃ is injective and satisfies

Tk̃ ◦ Tk̃′ = Tk̃∗k̃′ .

Consider the subalgebra of the bounded operators on L2(M, E) given by

{Tk̃ : k̃ ∈ Ãc
G(M, E)}

endowed with the Fréchet algebra structure induced by the injective homomor-
phism k̃→ Tk̃ . It is easy to see that this algebra is precisely equal to the algebra
we have considered in the previous subsection, Sc

G(M, E) := {Sk : k ∈Ac
G(M, E)}.

Thus,
Sc

G(M, E)= {Tk̃ : k̃ ∈ Ãc
G(M, E)}. (3.5)

In summary, using the slice theorem we have realized Sc
G(M, E) as a projective

tensor product of convolution operators on G and smoothing operators on S. This
preliminary result puts us in the position of enlarging the algebra Sc

G(M, E) and
obtaining a subalgebra dense and holomorphically closed in C∗(M, E)G . To this
end we give the following definition.

Definition 3.6. Let A(G) a set of functions on G. We say that A(G) is admissible
if the following properties are satisfied:



488 PAOLO PIAZZA AND HESSEL B. POSTHUMA

(1) A(G) is a Fréchet space and there are continuous inclusions

C∞c (G)⊂A(G)⊂ L2(G);

(2) the action by convolution defines a continuous injective map A(G) ↪→ C∗r (G)
which makes A(G) a subalgebra of C∗r (G);

(3) A(G) is holomorphically closed in C∗r (G).

We can then consider

ÃG(M, E) := (A(G) ⊗̂9−∞(S, E |S))K×K ,

a Fréchet algebra, and for k̃ ∈ ÃG(M, E), the bounded operator Tk̃ on L2(M, E)
given by

(Tk̃e)(gs)=
∫

G

∫
S

gk̃(g−1g′, s, s ′)g′ −1e(g′s ′) ds ′ dg′. (3.7)

The operator Tk̃ is an integral operator with G-equivariant Schwartz kernel κ given
by κ(gs, g′s ′)= gk̃(g−1g′, s, s ′)g′ −1. Since A(G) ↪→ C∗r (G), with A(G) acting
by convolution, we see that Tk̃ is L2-bounded.

Definition 3.8. We define AG(M, E) as the subalgebra of the bounded operators
on L2(M, E) given by

AG(M, E) := {Tk̃ : k̃ ∈ ÃG(M, E)}.

We endow AG(M, E) with the structure of a Fréchet algebra induced by the injec-
tive homomorphism k̃→ Tk̃ .

Proposition 3.9. Under the assumptions (1)–(3) for A(G) in Definition 3.6, the
following hold:

(i) We have a continuous inclusion of Fréchet algebras

S c
G(M, E)⊂AG(M, E). (3.10)

(ii) AG(M, E) is a dense subalgebra of C∗(M, E)G and it is holomorphically
closed.

Proof. (i) The continuous inclusion of Fréchet algebras Sc
G(M, E)⊂ AG(M, E)

follows immediately from (3.5).

(ii) The fact that AG(M, E) is a dense subalgebra of C∗(M, E)G is proved pre-
cisely as in [Hochs and Wang 2018, Lemma 3.3]; the property of being holomor-
phically closed follows easily from the hypothesis that A(G) is holomorphically
closed in C∗r G and the well-known fact that 9−∞(S, E |S) is holomorphically
closed in the compact operators of L2(S, E |S). �
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Definition 3.11. Let G be a Lie group and let L be a length function on G. We
consider

H∞L (G)=
{

f ∈ L2(G) :
∫

G
(1+ L(x))2k

| f (x)|2 dx <+∞ for all k ∈N

}
(3.12)

endowed with the Fréchet topology induced by the sequence of seminorms

νk( f ) := ‖(1+ L)k f ‖L2 . (3.13)

We say that the pair (G, L) satisfies the rapid decay property (RD) if there is a
continuous inclusion H∞L (G) ↪→ C∗r (G).

For conditions equivalent to the one given here, see [Chatterji et al. 2007]. We
also recall that if G satisfies (RD) then G is unimodular [Ji and Schweitzer 1996].

Proposition 3.14. Let G be a Lie group with |π0(G)| < ∞; we can and shall
choose L to be the length function associated to a left-invariant Riemannian metric.
Assume additionally that G satisfies (RD) (with respect to this L). Then

H∞L (G)=
{

f ∈ L2(G) :
∫

G
(1+ L(x))2k

| f (x)|2 dx <+∞
}

(3.15)

satisfies the properties (1)–(3) given in Definition 3.6. Consequently, for G with
|π0(G)|<∞ and with the (RD) property, there exists a subalgebra of C∗(M, E)G ,
denoted S∞G (M, E), which consists of integral operators, is dense and holomorphi-
cally closed in C∗(M, E)G and contains Sc

G(M, E) as a subalgebra.

Proof. The fact that H∞L (G) is not only contained in C∗r (G), via convolution, but
is in fact a subalgebra of it, follows from [Jolissaint 1990]. Hence H∞L (G) satisfies
the properties (1) and (2) given in Definition 3.6. The fact that this subalgebra is
holomorphically closed is proved as in [Jolissaint 1989]. The rest of the proposition
then follows from Proposition 3.9. �

Example 3.16. Here are two examples of Lie groups that satisfy property (RD),
and to which our theory applies:

(1) The abelian group Rn satisfies (RD). In this case the algebra H∞L (R
n) associ-

ated to the length function defined by the Euclidean metric is the algebra of
rapidly decaying functions on Rn .

(2) Connected semisimple Lie groups satisfy property (RD) [Chatterji et al. 2007],
for example G = SL(2,R). In this case the algebra H∞L (G) is closely related
to Harish–Chandra’s Schwartz algebra C(G) (see below).

Remark 3.17. We have just seen that for G semisimple, by taking A(G)= H∞L (G)
we obtain a holomorphically closed subalgebra S∞G (M, E)⊂ C∗(M, E)G . Notice
that there are other algebras that can be considered. For example, we can consider
as in [Hochs and Wang 2018] the Harish-Chandra Schwartz algebra C(G)⊂C∗r (G).
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This is a holomorphically closed subalgebra of C∗r (G) [Lafforgue 2002], which
is made of smooth functions acting by convolution. The corresponding algebra
CG(M, E)⊂ C∗(M, E)G is a subalgebra of C∗(M, E)G with elements that are in
fact smoothing operators. One can prove that C(G)⊂ H∞L (G) [Varadarajan 1977,
§II.9] and consequently, CG(M, E) ⊂ S∞G (M, E). Notice that Hochs and Wang
have proved that the heat operator exp(−tD2) is an element in CG(M, E). Hence
exp(−tD2) ∈ S∞G (M, E).

4. Index classes

From now on we make constant use of the identification Ac
G(M, E)≡ Sc

G(M, E).

4A. The index class in K∗(C∗(M, E)G). We consider as before a closed even-
dimensional manifold M with a proper cocompact action of G. Let D be a G-
equivariant odd Z2-graded Dirac operator. Recall, first of all, the classical Connes–
Skandalis idempotent. Let Qσ be a G-equivariant parametrix of G-compact sup-
port with remainders S±; here the subscript σ stands for symbolic. Consider the
2×2 matrix

Pσ :=
(

S2
+

S+(I + S+)Q
S−D+ I − S2

−

)
. (4.1)

This produces a class

Indc(D) := [Pσ ] − [e1] ∈ K0(Ac
G(M, E)) with e1 :=

(
0 0
0 1

)
. (4.2)

To understand where this definition comes from, see for example [Connes and
Moscovici 1990]. Recall now that Ac

G(M, E)⊂ C∗(M, E)G .

Definition 4.3. The C∗-index associated to D is the class

IndC∗(M,E)(D) ∈ K0(C∗(M, E)G)

obtained by taking the image of the Connes–Skandalis projector in K0(C∗(M, E)G).
Unless absolutely necessary, we denote this index class simply by Ind(D).

Remark 4.4. If we are in the position of considering a dense holomorphically
closed subalgebra AG(M, E) of C∗(M, E)G as in the previous section, then we can
equivalently take the image of the Connes–Skandalis projector in K0(AG(M, E))
(recall that, by construction, Ac

G(M, E)⊂AG(M, E)⊂C∗(M, E)G). For example,
if G satisfies (RD) and |π0(G)|<∞, then we can take the C∗-index class as the
image of the Connes–Skandalis projector in K0(S∞G (M, E)).

Remark 4.5. There are other representatives of Ind(D) ∈ K0(C∗(M, E)G) that
can be of great interest. For example, as in [Connes and Moscovici 1990], we can
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choose the parametrix (which is not of G-compact support)

QV :=
I − exp

(
−

1
2 D−D+

)
D−D+

D+,

obtaining I − QV D+ = exp
(
−

1
2 D−D+

)
, I − D+QV = exp

(
−

1
2 D+D−

)
. This

particular choice of parametrix produces the idempotent

VD =

(
e−D−D+ e−

1
2 D−D+( I−e−D−D+

D−D+
)
D−

e−
1
2 D+D−D+ I − e−D+D−

)
. (4.6)

We call this the Connes–Moscovici idempotent. One can also consider the graph-
projection [eD] − [e1] ∈ K0(C∗(M, E)G) with eD given by

eD =

(
(I + D−D+)−1 (I + D−D+)−1 D−

D+(I + D−D+)−1 D+(I + D−D+)−1 D−

)
. (4.7)

Finally, following [Moscovici and Wu 1994], we can consider the projector

P(D) :=
(

S2
+

S+(I + S+)P
S−D+ I − S2

−

)
(4.8)

with P = ū(D−D+)D−, S+ = I − PD+, S− = I − D+P and ū(x) := u(x2)

with u ∈ C∞(R) an even function with the property that w(x) = 1− x2u(x) is a
Schwartz function and w and u have compactly supported Fourier transform. One
proves easily that P(D) ∈ M2×2(Ac

G(M, E)) (with the identity adjoined). It is not
difficult to prove that

Ind(D) := [Pσ ] − [e1]

= [VD] − [e1] = [eD] − [e1] = [P(D)] − [e1] in K0(C∗(M, E)G).

The advantage of using the Connes–Moscovici projection, the graph projection or
the Moscovici–Wu projection is that Getzler rescaling can be used in order to prove
the corresponding higher index formulae. This is crucial if one wishes to pass, for
example, to manifolds with boundary. However, in this paper we concentrate solely
on closed manifolds and use the approach to the index theorem given in [Pflaum
et al. 2015b]; this employs the algebraic index theorem in a fundamental way.

4B. The index class in K•(C∗
r (G)). There is a canonical Morita isomorphism M

between K∗(C∗(M, E)G) and K∗(C∗r (G)). This is clear once we bear in mind
that C∗(M, E)G is isomorphic to K(E); however, for reasons connected with the
extension of cyclic cocycles, we want to be explicit about this isomorphism. We
assume the existence of a dense holomorphically closed subalgebra A(G)⊂C∗r (G)
and follow [Hochs and Wang 2018]. Let AG(M, E) be the dense holomorphically
dense subalgebra of C∗(M, E)G corresponding to A(G), as defined in Section 3B.
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Define a partial trace map TrS : AG(M, E)→ A(G) associated to the slice S as
follows: if f ⊗ k ∈ (A(G)) ⊗̂9−∞(S, E |S))K×K then

TrS( f ⊗ k) := f Tr(Tk)= f
∫

S
tr k(s, s) ds,

with Tk denoting the smoothing operator on S defined by k and Tr(Tk) its functional
analytic trace on L2(S, E |S). It is proved in [Hochs and Wang 2018] that this map
induces the Morita isomorphism M between K∗(C∗(M, E)G) and K∗(C∗r (G)).
We denote the image through M of the index class Ind(D) ∈ K0(C∗(M)G) in the
group K0(C∗r (G)) by IndC∗r (G)(D). There are other well-known descriptions of
the latter index class: one, following [Kasparov 1980], describes the C∗r (G)-index
class as the difference of two finitely generated projective C∗r (G)-modules, using
the invertibility modulo C∗r (G)-compact operators of (the bounded transform of) D;
the other description is via assembly and KK-theory, as in [Baum et al. 1994]. All
these descriptions of the class IndC∗r (G)(D) ∈ K0(C∗r (G)) are equivalent. See [Roe
2002; Piazza and Schick 2014, Proposition 2.1].

5. Cyclic cocycles and pairings with K-theory

5A. Cyclic cohomology. In this subsection we briefly review the basic complex
computing cyclic cohomology. Let A be a unital algebra. The space of reduced
Hochschild cochains is defined as

C•red(A) := HomC(A⊗ (A/C1)•,C)

and is equipped with the Hochschild differential b : Ck
red(A)→ Ck+1

red (A) given by
the standard formula

bτ(a0, . . . ,ak+1) :=

k∑
i=0

(−1)iτ(a0, . . . ,ai ai+1, . . . ,ak)+(−1)k+1τ(aka0, . . . ,ak−1).

The cyclic bicomplex is given by
...

...
...

C2
red(A)

B
//

b

OO

C1
red(A)

B
//

b

OO

C0
red(A)

b

OO

C1
red(A)

B
//

b
OO

C0
red(A)

b
OO

C0
red(A)

b
OO



HIGHER GENERA FOR PROPER ACTIONS OF LIE GROUPS 493

where B : Ck
red(A)→ Ck−1

red (A) denotes Connes’ cyclic differential

Bτ(a0, . . . , ak−1) :=

k−1∑
i=0

(−1)(k−1)iτ(1, ai , . . . , ak−1, a0, . . . , ai−1).

We denote the total complex associated to this double complex by CC•(A). When
A is not unital, we consider the unitization Ã = A⊕C, and compute cyclic coho-
mology from the complex CC•(A) := CC•( Ã)/CC•(C).

Finally, let us close by mentioning that the structure underlying the definition
of cyclic cohomology is that of a cocyclic object. This is a cosimplicial object
(X•, ∂•, σ •) equipped with an additional cyclic symmetry tn

: Xn
→ Xn of order

n + 1 satisfying well-known compatibility conditions with respect to the coface
operators ∂ and degeneracies σ ; see [Loday 1998]. For the cyclic cohomology of an
algebra the underlying cosimplicial object is given by X k

= Ck(A) with coface and
degeneracies controlling the Hochschild complex. The additional cyclic symmetry
t underlying cyclic cohomology is simply the operator which in degree k cyclically
permutes the k+ 1 entries in a cochain τ ∈ Ck(A).

5B. The van Est map in cyclic cohomology. Let G be a unimodular Lie group
with |π0(G)|<∞. In this subsection we describe, following [Pflaum et al. 2015a;
2015b], how to obtain cyclic cocycles from smooth group cocycles. In this, we can
work with two algebras: C∞c (G), the convolution algebra of the group, and Ac

G(M),
the algebra of invariant smoothing operators with cocompact support. In order to
simplify the notation we take the vector bundle E to be the product bundle of
rank 1.

We start by recalling a well-known fact: inspection of the differential (2.2)
shows that the cochain complex (C•diff(G), δ) computing smooth group cohomol-
ogy H•diff(G) comes from an underlying cosimplicial structure given by coface
maps ∂ i and codegeneracies σ j defined on the vector space of homogeneous smooth
group cochains C•diff(G). This simplicial vector space can be upgraded to a cocyclic
one by the cyclic operator t : C•→ C• given by

(t f )(g0, . . . , gk)= f (gk, g0, . . . , gk−1), f ∈ Ck
diff(G).

As seen above, the Hochschild theory of this cocyclic complex is just the smooth
group cohomology. The associated cyclic theory is given by

⊕
i≥0 H•−2i

diff (G).
Let us now describe the associated cyclic cocycles on the convolution algebra

C∞c (G). Instead of using the full complex of smooth group cochains, we restrict
to the quasi-isomorphic subcomplex C•diff,λ(G)⊂ C•diff(G) of cyclic cochains, i.e.,
cochains c ∈ Ck

diff(G) satisfying

c(g0, . . . , gk)= (−1)kc(gk, g0, . . . , gk−1).
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Let c ∈ Ck
diff(G) be a smooth homogeneous group cochain. Define the cyclic

cochain τc ∈ Ck(C∞c (G)) by

τG
c (a0, . . . , ak):=

∫
G×k

c(e, g1, g1g2, . . . , g1 · · · gk)

· a0((g1 · · · gk)
−1)a1(g1) · · · ak(gk) dg1 · · · dgk . (5.1)

Next up is the algebra Ac
G(M) of invariant smoothing operators with cocompact

support. Again given a smooth homogeneous group cochain c ∈ Ck
diff(G), we now

define a cyclic cochain on this algebra by the formula

τM
c (k0, . . . , kn)

:=

∫
G×k

∫
M×(k+1)

χ(x0) · · ·χ(xn)k0(x0, g1x1) · · · kn(xn, (g1 · · · gn)
−1x0)

· c(e, g1, g1g2, . . . , g1 · · · gn) dx0 · · · dxn dg1 · · · dgn. (5.2)

Proposition 5.3. (i) The map c 7→ τG
c defined above is a morphism of cochain

complexes, and therefore induces a map

9G : H•diff(G)→ HC•(C∞c (G)).

(ii) The map c 7→ τM
c defined above is a morphism of cocyclic complexes, and

therefore induces a map

9M : H•diff(G)→ HC•(Ac
G(M)).

Proof. Both of the statements are already known: for the first one, see [Pflaum
et al. 2015a, §1.3], and for the second, [Pflaum et al. 2015b, §2.2]. �

Example 5.4. In Example 2.18 we discussed the smooth group 2-cocycles for
G=R2, G=SL(2,R), associated to the area forms of the homogeneous space G/K ,
equal to R2 and H2, respectively. Let us now consider the cyclic cocycles defined
by these forms via the construction (5.1) above. For G = SL(2,R) this gives the
following cyclic 2-cocycle on C∞c (SL(2,R)):

τSL(2,R)
ω ( f0, f1, f2) :=

∫
SL(2,R)

∫
SL(2,R)

f0((g1g2)
−1) f1(g1) f2(g2)

·AreaH2(12(ē, ḡ1, ḡ2)) dg1 dg2.

This is exactly the cyclic cocycle considered in [Connes 1985, §9]. For G = R2 we
get a cyclic 2-cocycle on C∞c (R

2) (with convolution product) given by the same
formula with the hyperbolic area replaced by the Euclidean area, and integrations
being over R2 instead of SL(2,R), again considered in [Connes 1985, §9]. After
Fourier transform f 7→ f̂ this cocycle takes the usual form

τω( f0, f1, f2)=

∫
R2

f̂0 df̂1 ∧ df̂2 for f0, f1, f2 ∈ C∞c (R
2).
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5C. Extension properties. In the previous subsection we constructed cyclic co-
cycles τG

c on C∞c (G) and τM
c on Ac

G(M) from a homogeneous smooth group co-
cycle c. (Recall, once again, that for notational convenience we are taking E to be
the product rank 1 bundle.) In Section 3B we have given sufficient conditions on G
ensuring that these algebras embed into holomorphically closed subalgebras A(G)
and AG(M) of the reduced group C∗-algebra and of the Roe algebra. Now we want
to discuss the extension properties of these cocycles. Assume, quite generally, that
we are given a subalgebra A(G) as in Definition 3.6, with associated algebra of
operators on L2(M) denoted, as usual, as AG(M). First, we have:

Proposition 5.5. Let c ∈ Ck
diff,λ(G) be a smooth group cocycle. Then

τG
c extends to A(G) H⇒ τM

c extends to AG(M).

Proof. Recall that the algebra AG(M) is constructed from the choice of subset
A(G) ⊂ C∗r (G) by the slice theorem: an invariant kernel k belongs to AG(M) if
the function

k̃(g, s1, s2) := k(s1, gs2)

belongs to
(A(G) ⊗̂9−∞(S, E |S))K×K .

These functions k̃i (gi , xi , xi+1), i = 0, . . . , n− 1, and k̃n((g1 · · · gn)
−1, xn, x0) are

used in the formula (5.2) for the cocycle τM
c . Since the cut-off function χ has

compact support, performing the integrations over M in (5.2), we end up with the
pairing of an element in A(G)⊗(k+1) with the group cocycle c as defined in (5.1).
But then it is clear that τM

c is well-defined on AG(M) if τG
c is well-defined on

A(G). �

For the following, recall from Section 2C the explicit form (2.13) of the van
Est isomorphism mapping a closed invariant form α ∈ �k

inv(G/K ) to a smooth
group cocycle J (α) ∈ Ck

diff(G). For notational convenience, we drop the J in the
description of the associated cyclic cocycles, writing τG

α and τM
α instead of τG

J (α)
and τM

J (α).

Proposition 5.6. Let G be a Lie group with finitely many connected components
and satisfying the rapid decay property (RD). Assume that G/K is of nonpositive
sectional curvature. Then the cocycle τG

α associated to a closed invariant differ-
ential form α ∈ �k

inv(G/K ) extends continuously to H∞L (G). Consequently, the
cyclic cocycle τM

α extends to S∞G (M).

Proof. Recall the definition of the smooth group cocycle J (α) ∈ Ck
diff(G) defined

in (2.13), satisfying the polynomial estimates of Theorem 2.14. This, together with
the rapid decay property of G, ensures we can follow the line of proof of [Connes
and Moscovici 1990, Proposition 6.5], where the analogous extension property is
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proved for certain discrete groups. To show that the cyclic cocycle τα extends con-
tinuously to the algebra H∞L (G), we need to show that it is bounded with respect
to the seminorm νk in (3.13) defining the Fréchèt topology, for some k ∈ N. Let
a0, . . . , ak ∈ H∞L (G), and write ã0 := |a0|, ãi (g) := (1+d(g))k |ai (g)|, i = 1, . . . , k.
Then we can make the following estimate:

|τG
α (a0, . . . , ak)| ≤ C

∫
G×k
(1+ d(g1))

k
· · · (1+ d(gk))

k
|a0((g1 · · · gk)

−1)|

· |a1(g1)| · · · |ak(gk)| dg1 · · · dgk
= C(ã0 ∗ · · · ∗ ãk)(e)

≤ C‖ã0 ∗ · · · ∗ ãk‖C∗r (G)

≤ C‖ã0‖C∗r (G) · · · ‖ãk‖C∗r (G)

≤ CDk+1νp(ã0) · · · νp(ãk)= CDk+1νp+k(a0) · · · νp+k(ak).

In this computation we have used the fact that the Plancherel trace a 7→ a(e) on the
convolution algebra has a continuous extension to C∗r (G), together with the rapid
decay property: ‖a‖C∗r (G) ≤ D‖(1+ d)pa‖L2 , for some p. Altogether, this proves
the proposition. �

5D. Pairing with K-theory. Cyclic cohomology was first developed by Connes
to pair with K-theory via the Chern character. Let us recall this construction. Let
τ=(τ0,τ2, . . . , τ2k)∈CC2k(A) be a cyclic cocycle of degree 2k on a unital algebra A,
and [p]−[q] an element in K0(A) represented by idempotents p, q ∈ MN (A). The
number

〈[p] − [q], τ 〉

:=

k∑
n=0

(−1)n (2n)!
n!

(
τ2n

(
tr
(

p− 1
2
, p, . . . , p

))
− τ2n

(
tr
(

q − 1
2
, q, . . . , q

)))
,

where tr : MN (A)⊗(n+1)
→ A⊗(n+1) is the generalized matrix trace, is well-defined

and depends only on the (periodic) cyclic cohomology class of τ .

Proposition 5.7. Let c, A(G) and AG(M) be as in Proposition 5.5, and assume
that τG

c , and therefore τM
c , extends. Then, under the Morita isomorphism

M : K0(C∗(M, E)G)
∼=
−→ K0(C∗r (G)),

we have the equality

〈[p] − [q], τM
c 〉 = 〈M([p] − [q]), τG

c 〉.

Proof. Recall that the isomorphism M : K (C∗(M, E)G)→ K (C∗r (G)) is imple-
mented by the partial trace map TrS :AG(M, E)→A(G) on the respective dense
subalgebras. By the abstract Morita isomorphism M, it suffices to consider a
simple idempotent e= e1⊗e2 ∈ Mn(AG(M, E)), so that TrS(e)= TrS(e2)e1 yields
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an idempotent in Mn(A(G)), where we have extended TrS to matrix algebras in
the usual way by combining with the matrix trace.

Because we know that the cyclic cohomology class of τ̃c is independent of the
choice of a cut-off function, the pairing with K-theory does not depend on this
choice either, so we can choose the family χε constructed in Lemma 2.1 and take
the limit as ε ↓ 0:

〈[e], τM
c 〉

= lim
ε↓0

(2k)!
k!

∫
G×k

∫
M×(k+1)

χε(x0) · · ·χε(xn)e(x0, g1x1) · · · e(xn, (g1 · · · gn)
−1x0)

· c(e, g1, g1g2, . . . , g1 · · · gn) dx0 · · · dxn dg1 · · · dgn

=
(2k)!

k!

∫
G×k

∫
S×(k+1)

e(x0, g1x1) · · · e(xn, (g1 · · · gn)
−1x0)

· c(e, g1, g1g2, . . . , g1 · · · gn) dx0 · · · dxn dg1 · · · dgn

=
(2k)!

k!
TrS(e2 · · · e2)

∫
G×k

e1(g1) · · · e1((g1 · · · gn)
−1)

· c(e, g1, g1g2, . . . , g1 · · · gn) dg1 · · · dgn

= 〈[M(e)], τG
c 〉,

where, to go to the last line, we have used the fact that e2
2 = e2 is an idempotent.

This completes the proof. �

6. Higher C∗-indices and geometric applications

6A. Higher C∗-indices and the index formula. Let M and G be as above, with
M even-dimensional. Hence G is a unimodular Lie group with |π0(G)|<∞. (For
the time being we do not put additional hypotheses on G.) Let E be an equivariant
complex vector bundle. Consider an odd Z2-graded Dirac type operator D acting
on the sections of E . We have then defined the compactly supported index class
Indc(D)∈ K0(Ac

G(M, E)). Let α∈ H even
diff (G) and let9M(α)∈ HCeven(Ac

G(M, E))
be the cyclic cohomology class corresponding to α. We know that, in general, we
have a pairing

K0(Ac
G(M, E))× HCeven(Ac

G(M, E))→ C. (6.1)

We thus obtain, through 9M : H•diff(G)→ HC•(Ac
G(M, E)), a pairing

K0(Ac
G(M, E))× H even

diff (G)→ C. (6.2)

In particular, by pairing Indc(D) ∈ K0(Ac
G(M, E)) with α ∈ H even

diff (G) we obtain
the higher indices

Indc,α(D) := 〈Indc(D),9M(α)〉, α ∈ H even
diff (G).
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On the other hand, we can also take the image of α through the van Est map
8M : H•diff(G)→ H•inv(M); recall that this is nothing but the pull-back through the
classifying map ψM : M→ G/K once we identify H•diff(G) with H•inv(G/K ). The
following theorem is proved in [Pflaum et al. 2015b]:

Theorem 6.3 (Pflaum–Posthuma–Tang). Let M , G and D be as above. In partic-
ular, M is even-dimensional. Let α ∈ H even

diff (G). Then the identity

Indc,α(D)=
∫

M
χM(m)AS(M)∧8M(α) (6.4)

holds true, where AS(M) is the Atiyah–Singer integrand on M :

AS(M) := Â(M,∇M)∧Ch′(E,∇E).

Equivalently,
Indc,α(D)=

∫
M
χM(m)AS(M)∧ψ∗M(α) (6.5)

if we identify H•diff(G) and H•inv(G/K ) via the van Est isomorphism (see Remark 2.7).

We now make the fundamental assumption that G satisfies the rapid decay
property and that G/K is of nonpositive sectional curvature. Consider the dense
holomorphically closed subalgebra S∞G (M, E)⊂ C∗(M, E)G defined by the rapid
decay algebra H∞L (G)⊂ C∗r (G). Thanks to the results of the previous section we
can extend the pairing (6.2) to a pairing

K0(S∞G (M, E))= K0(C∗(M, E)G)× H even
diff (G)→ C, (6.6)

obtaining in this way the higher C∗-indices of D, denoted Indα(D). These numbers
are well-defined and can be computed by choosing a suitable representative of the
class Ind(D) ∈ K0(C∗(M, E)G). Choosing the Connes–Skandalis projector, we
can apply again the index formula of Pflaum–Posthuma–Tang, obtaining for each
α ∈ H even

diff (G) the C∗-index formula

Indα(D)=
∫

M
χM(m)AS(M)∧8M(α). (6.7)

Notice that we also have a pairing

K0(C∞c (G))× HCeven(C∞c (G))→ C (6.8)

and thus, through the homomorphism 9G : H•diff(G)→ HC∗(C∞c (G)), a pairing

K0(C∞c (G))× H even
diff (G)→ C. (6.9)

According to the results of the previous section this pairing extends to a pairing

K0(C∗r (G))× H even
diff (G)→ C (6.10)
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if G satisfies (RD). In particular, we can define the C∗r (G)-indices IndC∗r (G),α(D) by
pairing IndC∗r (G)(D)∈K0(C∗r (G))with α∈H even

diff (G). Further, from Proposition 5.7
we get the equality

〈Ind(D),9M(α)〉 = 〈IndC∗r (G)(D),9G(α)〉, (6.11)

which means that

IndC∗r (G),α(D)= Indα(D) for all α ∈ H even
diff (G) (6.12)

and thus, thanks to (6.7), we can state the following fundamental result:

Theorem 6.13. Let G be a Lie group satisfying the properties stated in the intro-
duction: |π0(G)|<∞, (RD) and EG of nonpositive curvature. Let α ∈ H even

diff (G).
Then there is a well-defined associated higher C∗r (G)-index IndC∗r (G),α(D), and the
formula

IndC∗r (G),α(D)=
∫

M
χM(m)AS(M)∧8M(α) (6.14)

holds. Equivalently, if we identify H•diff(G) and H•inv(G/K ) ≡ H•inv(EG) via the
van Est isomorphism, then

IndC∗r (G),α(D)=
∫

M
χM(m)AS(M)∧ψ∗Mα.

For α=1, the associated cyclic cocycle (5.1) is the Plancherel trace τG( f )= f (e)
on C∗r (G), and the theorem reduces to the L2-index theorem first proved by Wang
[2014]. Remark that in this case the trace extends to C∗r (G) without problems, so
the assumptions on the curvature of G/K and property (RD) are unnecessary.

6B. Higher signatures and their G-homotopy invariance. Let M and N be two
orientable G-proper manifolds and let f : M→ N be a G-homotopy equivalence.
Let us denote by Dsign

M and Dsign
N the corresponding signature operators. Then,

according to the main result in [Fukumoto 2017] we have that

IndC∗r (G)(D
sign
M )= IndC∗r (G)(D

sign
N ) in K0(C∗r (G)). (6.15)

Consequently, from (6.14), we obtain the following result, stated as item (i) in
Theorem 1.5 in the introduction:

Theorem 6.16. Let G be a Lie group satisfying the properties stated in the intro-
duction: |π0(G)| <∞, (RD) and EG of nonpositive curvature. Let M and N be
two orientable G-proper manifolds and assume that there exists an orientation pre-
serving G-homotopy equivalence between M and N. Let us identify H•diff(G) and
H•inv(G/K )≡ H•inv(EG) via the van Est isomorphism. Then for each α ∈ H•inv(EG),∫

M
χM(m)L(M)∧ψ∗Mα =

∫
N
χN (n)L(N )∧ψ∗Nα.
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Proof. For even-dimensional manifolds, this follows immediately from the previ-
ous discussion. For the odd-dimensional case we argue by suspension. Thus, let
M be an orientable odd-dimensional G-proper manifold. We endow M with a G-
invariant Riemannian metric gM . Consider R and the natural action of Z on it by
translations (this is a free, proper and cocompact action). Taking the product of
M and R we obtain the even-dimensional (G×Z)-proper manifold M ×R; it has
compact quotient equal to M/G× S1. We endow M×R with the (G×Z)-invariant
metric gM + dt2. Consider the dual group T 1

:= Hom(Z,U (1)). The signature
operator on M ×R defines an index class in the group K0(C∗(M ×R)G×Z), which
is isomorphic to K0(C∗(G) ⊗̂C(T 1)). Consider the generator d ′ of H 1(Z;Z) ⊂

H∗(Z;C) and let d :=
(√
−1/(2π)

)
d ′ ∈ H∗(Z;C). We know that H∗(Z;C) can

be identified with H∗Z(EZ;C) and that EZ = R; we denote this isomorphism by
4 : H∗(Z;C)→ H∗Z(R;C)= H 1(S1). Consider EG× EZ≡ EG×R≡G/K ×R.
To α ∈ H odd

diff (G)≡ H odd
inv (EG)≡ H odd

inv (G/K ) we associate

β := α⊗4(d) ∈ H odd
inv (G/K )⊗ H 1

Z(R)= H odd
inv (G/K )⊗ H 1(S1).

Now, on the one hand, we have natural homomorphisms

9G×Z : H odd
inv (G/K )⊗ H 1(S1)→ HCeven(C∞c (G) ⊗̂C∞(S1))

and
9M×R : H odd

inv (G/K )⊗ H 1(S1)→ HCeven(Ac
G×Z(M ×R)),

noting that Ac
G×Z(M×R)=Ac

G(M)⊗̂A
c
Z(R) and Ac

G×Z(M×R)=C∗c (M×R)G×Z.
On the other hand, the classifying map ψM and the classifying map for the Z-action
on R together give a smooth (G×Z)-equivariant map ψM×R : M×R→ G/K×R.
We can apply the Pflaum–Posthuma–Tang index theorem and obtain, for the signa-
ture operator,〈

IndC∗c (M×R)G×Z(DM×R),9M×R(β)
〉
=

∫
G

∫
S1
χM L(M ×R)ψ∗M(α)∧4(d)

=

∫
G
χM L(M)ψ∗M(α)= σ(M, α).

If G satisfies (RD), then this formula remains true for the C∗(M×R)G×Z-index,
because S∞G (M) ⊗̂SZ(R), with SZ(R) denoting the smooth Z-invariant kernels of
R×R of rapid polynomial decay, is a dense holomorphically closed subalgebra of
C∗(M ×R)G×Z to which the pairing with 9M×R(β) extends. Consequently,〈

IndC∗(G)⊗̂C(S1)(DM×R),9G×Z(β)
〉
= σ(M, α).

Now, if M and N are G-homotopy equivalent, then M × R and N × R are
G×Z homotopy equivalent. Hence the corresponding signature index classes in
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K0(C∗(G) ⊗̂C(T 1)) are equal; thus〈
IndC∗(G)⊗̂C(S1)(DM×R),9G×Z(β)

〉
=
〈
IndC∗(G)⊗̂C(S1)(DN×R),9G×Z(β)

〉
.

This gives us
σ(M, α)= σ(N , α),

which is what we wanted to prove in odd dimension. �

6C. Higher Â-genera and G-metrics of positive scalar curvature. Let S be a
compact smooth manifold with an action of a compact Lie group K . In general, the
existence of a K-invariant metric of positive scalar curvature on S is a more refined
property than the existence of a positive scalar curvature metric on S; indeed, as
shown in [Bérard-Bergery 1981], averaging a positive scalar curvature metric on S
might destroy the positivity of the scalar curvature. For sufficient conditions on K
and S ensuring the existence of such metrics, see [Lawson and Yau 1974; Hanke
2008].

If M is a G-proper manifold we can try to built a G-invariant positive scalar
curvature metric on M through a K-invariant positive scalar curvature metric on
the slice S. This is precisely what is achieved in [Guo et al. 2017]:

Theorem 6.17 (Guo–Mathai–Wang). Let G be an almost connected Lie group and
let K be a maximal compact subgroup of G. If S is a compact manifold with a K-
invariant metric of positive scalar curvature, then the G-proper manifold G×K S
admits a G-invariant metric of positive scalar curvature.

This result shows that the space of positive scalar curvature G-metrics on a
G-proper manifold can be nonempty.

We can ask for numerical obstructions to the existence of a positive scalar cur-
vature G-metric. Assume that M has a G-equivariant spin structure and let ð be
the associated spin-Dirac operator. Then one can show that

IndC∗r (G)(ð)= 0 in K∗(C∗r G); (6.18)

see again [Guo et al. 2017]. The following result was item (ii) in Theorem 1.5 in
the introduction:

Theorem 6.19. Let G be a Lie group satisfying the properties stated in the in-
troduction: |π0(G)| < ∞, (RD) and EG of nonpositive curvature. Let M be
a G-proper manifold admitting a G-equivariant spin structure. Let us identify
H•diff(G) and H•inv(G/K )≡ H•inv(EG) via the van Est isomorphism. If M admits a
G-invariant metric of positive scalar curvature, then

Â(M, α) :=
∫

M
χM(m) Â(M)∧ψ∗Mα = 0

for each α ∈ H•inv(EG).
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Proof. The even-dimensional case follows directly from our C∗-index formula and
from (6.18). In the odd-dimensional case we argue by suspension, as we did for
the signature operator. It suffices to observe that if M is an odd-dimensional G-
proper manifold admitting a G-equivariant spin structure and a G-invariant metric
of positive scalar curvature gM , then M×R is an even-dimensional (G×Z)-proper
manifold with a (G ×Z)-equivariant spin structure and with a (G ×Z)-invariant
metric gM + dt2 which is of positive scalar curvature too. Consequently, the ana-
logue of (6.18) holds for the spin Dirac operator on M ×R and so, arguing as for
the signature operator, we finally obtain that

Â(M, α) :=
∫

M
χM(m) Â(M)∧ψ∗Mα = 0,

as required. �
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