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Linkage of Pfister forms over C(x1, . . . , xn)

Adam Chapman and Jean-Pierre Tignol

We prove the existence of a set of cardinality 2n of n-fold Pfister forms over
C(x1, . . . , xn) which do not share a common (n − 1)-fold factor. This gives a
negative answer to a question raised by Becher. The main tools are the existence
of the dyadic valuation on the complex numbers and recent results on symmetric
bilinear forms over fields of characteristic 2.

The field C(x1, x2) of rational functions in two indeterminates over the field
of complex numbers is known to be a C2-field in the sense of Lang; see [Elman
et al. 2008, Section 97]. It follows that every quadratic form in five variables
over C(x1, x2) is isotropic, which implies that any two quaternion algebras over
C(x1, x2) share a common maximal subfield; see [Lam 2005, Theorem X.4.20].
Fields with this property are said to be linked. It was noticed by Becher [2018]
and by Chapman, Dolphin, and Leep [Chapman et al. 2018, Corollary 5.3] that the
following stronger property holds: C(x1, x2) is 3-linked in the sense that any three
quaternion algebras over C(x1, x2) share a common maximal subfield. In contrast,
algebraic number fields are known to be m-linked for every integer m; this follows
from Lenstra’s proof that K2 of global fields consists of symbols [Lenstra 1976,
Proposition, p. 70]. We are indebted to an anonymous referee for the following
short argument: a common maximal subfield of quaternion algebras Q1, . . . , Qm

defined over a number field F is given by F(
√

d), where d ∈ F× is a nonsquare
in each of the completions Fp, where p runs through the finitely many primes
that are either archimedean or dyadic, or where at least one of the Qi is nonsplit.
Comparison with the case of number fields suggests asking whether there exists an
upper bound on the integer m for which C(x1, x2) is m-linked.

Theorem A. The following quaternion algebras over C(x1, x2) do not share a
common maximal subfield:

(x1, x2), (x1, x2+ 1), (x2, x1+ 1), (x2, x1x2+ 1).

Tignol acknowledges support from the Fonds de la Recherche Scientifique–FNRS under grant num-
ber J.0159.19.
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The arguments apply to a more general linkage question raised by Becher [2018].
Given a field F , the Witt ring WF of (Witt classes of) symmetric bilinear forms
over F has a natural filtration by the powers of the maximal ideal IF of even-
dimensional forms:

WF ⊃ IF ⊃ I 2F ⊃ · · · .

Each I nF is generated by (bilinear) n-fold Pfister forms, i.e., forms of the shape

〈〈α1, . . . , αn〉〉 = 〈1,−α1〉⊗ · · ·⊗ 〈1,−αn〉 with α1, . . . , αn ∈ F×.

For m, n ≥ 2, we say that I nF is m-linked if any m bilinear n-fold Pfister forms
over F share a common (n− 1)-fold factor. If char(F) 6= 2, quadratic forms can
be identified with their symmetric bilinear polar forms, and in particular the 2-fold
Pfister forms are the norm forms of quaternion algebras. Hence F is m-linked
in the sense discussed above if and only if I 2F is m-linked. Becher raised the
following question:

Question [Becher 2018, Question 5.2]. Suppose I nF is 3-linked for some n ≥ 2.
Does it follow that I nF is m-linked for every m ≥ 3?

This question was answered in the negative for fields F of char(F)= 2 in [Chap-
man 2018]. In this note, we show how Becher’s question can be answered also in
the case of char(F) = 0 using the main result of [Chapman 2018] on symmetric
bilinear forms over fields of characteristic 2 and the existence of a dyadic valuation
on C:

Theorem B. For F = C(x1, . . . , xn) with n ≥ 2, I nF is 3-linked but not 2n-linked.

Proofs

Notation 1. For a given integer n≥2, let 2n
={0, 1}×n , and write 0=(0, . . . , 0)∈2n .

Given a sequence α1, . . . , αn in the multiplicative group of a field F and d =
(d1, . . . , dn) ∈ 2n , let αd

=
∏n

i=1 α
di
i ∈ F×. If d 6= 0 and 1+αd

6= 0, let

ϕd = 〈〈α1, . . . , α̂`, . . . , αn〉〉⊗ 〈〈1+αd
〉〉,

where ` is the minimal index in {1, . . . , n} for which d` 6= 0, and let

ϕ0 = 〈〈α1, . . . , αn〉〉.

The following result is from [Chapman 2018, Theorem 3.3]:

Proposition 2. Suppose char(F)= 2 and α1, . . . , αn are 2-independent in F , which
means that (αd)d∈2n is a linearly independent family in F viewed as an F2-vector
space. Then the forms ϕd for d ∈ 2n are anisotropic and have no common 1-fold
factor.

The main result from which Theorems A and B derive is the following.
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Proposition 3. Let F = k(x1, . . . , xn) be the field of rational functions in n indeter-
minates over an arbitrary field k of characteristic zero, for some n ≥ 2. Let ϕd for
d ∈ 2n be the Pfister forms defined as in Notation 1 with the sequence x1, . . . , xn

for α1, . . . , αn . The forms ϕd do not have a common 1-fold factor.

Proof. A theorem of Chevalley [Engler and Prestel 2005, Theorem 3.1.2] shows
that the 2-adic valuation on Q extends to a valuation v0 on k. Let k̄ be the residue
field of this valuation, which has characteristic 2. The valuation v0 has a Gauss
extension to a valuation v on F such that v(xi )= 0 for i = 1, . . . , n and x1, . . . , xn

are algebraically independent over k̄; see [Engler and Prestel 2005, Corollary 2.2.2].
The residue field of v is thus F = k̄(x1, . . . , xn), a field of rational functions in n
indeterminates over k̄. Since the coefficients of the forms {ϕd : d ∈ 2n

} are all of
value 0, they have residue forms {ϕd : d ∈ 2n

}, where the coefficients of ϕd are
the residues of the coefficients of ϕd . The forms ϕd are bilinear Pfister forms as
defined in Notation 1, with the 2-independent sequence x1, . . . , xn for α1, . . . , αn .

For d ∈ 2n , let td = (t1,d, . . . , t2n−1,d) be a (2n
− 1)-tuple of indeterminates.

Suppose the bilinear forms ϕd have a common factor 〈〈α〉〉. Then the pure subforms
ϕ′d defined by the equation ϕd = 〈1〉 ⊥ ϕ′d all represent −α. Hence the system of
equations

ϕ′d(td, td)=−α for d ∈ 2n

has a solution. We may therefore find nontrivial solutions to the system of equations

ϕ′d(td, td)= ϕ
′

0(t0, t0) for d ∈ 2n
\ {0}.

Since these equations are homogeneous, upon scaling we may find solutions (ud)d∈2n

such that
min{v(ui,d) | i = 1, . . . , 2n

− 1, d ∈ 2n
} = 0.

Taking residues, we obtain

ϕ′d(ud, ud)= ϕ
′

0(u0, u0) for d ∈ 2n
\ {0}.

Since at least one ui,d is nonzero and the forms ϕ′d are anisotropic, it follows that
these forms all represent some β ∈ F×. Hence the forms ϕd have a common
factor 〈〈β〉〉 by [Elman et al. 2008, Lemma 6.11]. This yields a contradiction to
Proposition 2. �

Theorem A readily follows from Proposition 3 with n = 2 and k = C, because
the forms ϕ0, ϕ(0,1), ϕ(1,0), and ϕ(1,1) are the norm forms of the quaternion algebras
(x1, x2), (x1, x2+ 1), (x2, x1+ 1), and (x2, x1x2+ 1), respectively.

Proof of Theorem B. The field F = C(x1, . . . , xn) is a Cn-field, and hence F(t) is a
Cn+1-field; see [Elman et al. 2008, Corollary 97.6]. In particular, u(F(t))= 2n+1,
and it follows from [Becher 2018, Corollary 5.4] that I nF is 3-linked. Apply
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Proposition 3 with k = C to obtain a set of cardinality 2n of n-fold Pfister forms
that do not have a common 1-fold factor, and hence are not linked. �
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