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Motivic analogues of MO and MSO

Dondi Ellis

We construct algebraic unoriented and oriented cobordism, named MGLO and
MSLO, respectively. MGLO is defined and its homotopy groups are explicitly
computed, giving an answer to a question of Jack Morava. MSLO is also defined
and its coefficients are explicitly computed after completing at a prime p. Sim-
ilarly to MSO, the homotopy type of MSLO depends on whether the prime p is
even or odd. Finally, a computation of a localization of the homotopy groups of
MGLR is given.
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1. Introduction

Motivic homotopy theory on smooth schemes over a field was introduced by Morel
and Voevodsky [1999] with the purpose of proving the Bloch–Kato conjecture,
which was accomplished by Voevodsky [2003a]. Motivic analogues of well known
spectra of algebraic topology carry additional deep algebraic information. For
example, motivic “ordinary” homology computes Bloch’s higher Chow groups,
motivic K-theory is algebraic K-theory, and motivic cobordism has a geometric
interpretation as algebraic cobordism [Levine and Morel 2007].

In [Hu et al. 2011], Hu, Kriz, and Ormsby (following notes of Deligne [2009])
introduced equivariant stable motivic homotopy theory, and motivic real K-theory
(an analogue of Atiyah’s KR) to solve Thomason’s homotopy limit problem on

This research was partially supported by NSF grant DMS-0943832 and DMS-1045119.
MSC2010: primary 14F42; secondary 19D99, 55N22, 55N91, 55P15, 55P42.
Keywords: motivic cohomology, motivic homotopy theory, bordism and cobordism theories, formal

group laws, equivariant homology and cohomology, classification of homotopy type, stable
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346 DONDI ELLIS

algebraic Hermitian K-theory. A follow-up paper [Berrick et al. 2015] generalized
their result.

The authors of [Hu et al. 2011] introduced a motivic analogue of MR, which
they denote by MGLR. The computation of the coefficients of MGLR remains a
difficult problem.

In this paper we introduce a nonequivariant motivic spectrum MGLO which is
related to MGLR and analogous to unoriented (topological) cobordism MO. We
prove MGLO is a wedge of suspensions of ordinary motivic homology with coef-
ficients in C2. Although our result is similar to the analogous result for MO, the
pattern of suspensions in MGLO is more subtle due to the Tate twist. Our result is
stated in Theorem 3.12. This answers a question of Jack Morava.

An important subtlety arises in the construction of MGLO, and a new concept is
developed in the process. The point is that in topology MO can be obtained from
MR by a construction called geometric fixed points [Lewis et al. 1986, Chapter 2,
Definition 9.7]. In more detail, let EC2 be a free contractible C2-equivariant CW
complex. Then we have a cofiber sequence

EC2+→ S0
→ ẼC2.

For a C2-equivariant topological spectrum E, we define the geometric fixed points
of E as

8C2(E)= (ẼC2 ∧E)
C2 .

In particular,
MO=8C2(MR),

and this is the spectrum we compute with. A similar point is also relevant in
[Hill et al. 2016]. There is also a motivic geometric fixed point functor 8C2

ét (see
Section 6). Applying this functor to MGLR gives

MGLO=8C2
ét (MGLR).

Extending this construction, we also define a motivic analogue of oriented cobor-
dism MSO, which we denote by MSLO. In Theorem 4.12 we compute the coef-
ficients of MSLO completed at an odd prime, and in Theorems 4.25 and 4.23 we
show that the 2-completion of MSLO splits as a wedge sum of copies of motivic
homology.

We would like to point out that the spectrum MSLO is not the same as the
spectrum MSL defined by Panin and Walter [2010]. The topological realization of
MSL is MSU, the special unitary cobordism spectrum. The topological counterparts
of MSLO and MSL (i.e., MSO and MSU, respectively) are discussed in [Pengelley
1982]. Furthermore, using almost the same construction used to form MGLR [Hu
et al. 2011], one can form a spectrum MSLR, which we call special hermitian
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algebraic cobordism. The underlying nonequivariant spectrum of MSLR is MSL,
and the underlying geometric fixed points spectrum of MSL is MSLO.

In Sections 5 and 6 we use our computation of MGLO to obtain some results on
the coefficients of MGLR. In particular, we compute the coefficients of 2-completed
MGLR localized at two elements θ and λ in Theorem 6.6. In Theorem 5.5 and
Corollary 5.6 we show that MGLR is not motivically real-oriented, solving a ques-
tion asked in [Hu et al. 2011].

Notation and conventions. Throughout the paper, k is a field of characteristic 0.
The stable motivic homotopy category of Morel and Voevodsky, as constructed
in [Morel and Voevodsky 1999], is denoted by SH(k). An important feature of
motivic homotopy theory is that we have two circles. These we denote as S1 and
Sα, as opposed to the other common notation of S1,0 and S1,1, respectively. The
topological circle S1 is formed in the usual way as 11/∂11, which we point at 1.
The geometric sphere Sα is Gm ' Spec(k[z, z−1

]) pointed at 1.
For a finite group G, let GSm/k denote the category of smooth schemes of

finite type over k with left G actions and equivariant maps. The construction of
the stable G-equivariant motivic homotopy category SHG(k) can be found in [Hu
et al. 2011]. We write [ – , – ]G for maps in SHG(k). An important feature of the
C2-equivariant motivic homotopy category SHC2(k) is that we have four circles.
These are denoted S1, Sα, Sσ , and Sσα. The topological sphere S1 is the usual
simplicial sphere and Sσ the simplicial sphere with action z→−z. The geometric
sphere Sα is the pointed scheme (Gm, 1) equipped with trivial action and Sσα is
the pointed scheme (Gm, 1) equipped with the inversion action z 7→ z−1. For this
reason we often use the notation G

1/z
m instead of Sσα.

We adopt the convention that ∗ refers to an integer grading of homotopy or
(co)homology groups while ? refers to multidimensional grading. In more detail,
? grading refers to either Z2 grading in the cases of SH(k) and the classical stable
C2-equivariant category, or to Z4 grading in the case of SHC2(k).

2. A motivic analogue of MO

In this section, we give a detailed account of how to construct a motivic analogue of
the unoriented cobordism spectrum MO. In Section 3, we give a full computation
of the coefficients of this spectrum, which we call MGLO, up to knowledge of
the coefficients of motivic HZ/2. In particular, one can compute the coefficients
explicitly for the fields R and C. Moreover, the topological realization of MGLO

over the field C is MO.

The construction of MGLO. The idea behind our definition of MGLO is that, just
as the geometric fixed points of MO is MR, the geometric fixed points of MGLR
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should be MGLO. The definition presented in this paper is different from the def-
inition given in [Hu et al. 2011]. Using simplicial EC2, the authors of [Hu et al.
2011] define MGLO as

(ẼC2 ∧MGLR)C2 . (2.1)

However, the functor
(ẼC2 ∧ ( – ))C2

in (2.1) fails to satisfy a crucial property for general motivic spectra. Topologically,
given a G-equivariant spectrum E, the functor

8G( – ) := (ẼG ∧ ( – ))G

applied to E produces a nonequivariant spectrum 8G(E), which is equivalent to
forgetting E to the prespectrum level and then simultaneously taking G-fixed points
of the spaces making up the prespectrum of E and the connecting maps to form a
nonequivariant prespectrum. One can then promote this to a nonequivariant spec-
trum in the usual way. Similarly, in our definition, MGLO is defined by forgetting
MGLR to the level of prespectra and then taking C2-fixed points of the spaces
and connecting maps to form a nonequivariant prespectrum. Promoting this to a
spectrum defines MGLO.

We suspect this alternative definition of MGLO to be different than (2.1), the
reason being that simplicial ẼC2 is a model for S∞σ . This only takes into account
the σ grading. However, we need to also take into account the σα grading. In
other words, our ẼC2 should really be a model of S∞σ+∞σα . It turns out that there
is an alternative version of ẼC2, whose definition was originally given in [Morel
and Voevodsky 1999, Chapter 4.2], and which we redefine in Section 6. We refer
to this alternative as the geometric model. Our primary definition for MGLO is
Definition 2.19. By Theorem 6.1 our primary definition of MGLO is equivalent to

(MGLR∧ S∞σ+∞σα)C2 . (2.2)

While we do not have a proof that (2.2) and (2.1) are different spectra, the nonequiv-
alence of the geometric and simplicial classifying spaces for C2 imply a general
nonequivalence of (2.2) and (2.1) whenever MGLR is replaced by a general C2-
equivariant motivic spectrum E. For this reason, we do not assume an equivalence
between (2.2) and (2.1) in this paper. For more detail, see Section 6.

Quadratic forms. The classical Milnor spectrum MO has as its prespectrum the
Thom spaces, defined as the quotient BOn /BOn−1 induced by inclusion into the
zero section. This is well defined because of the well known equivalence of the
geometric realization of the two-sided bar construction

|B(∗, On, Sn−1)| ' |B(∗, On−1, ∗)| ' BOn−1 .
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In other words, a key ingredient in the construction of MO is the orthogonal groups
On along with their associated transitive action on an appropriate model of a sphere.
It is well known that the classical orthogonal group On is a special case of a gener-
alized class of orthogonal groups which are defined in terms of symmetric bilinear
forms. In more detail, given a symmetric bilinear form b : kn

× kn
→ k, we can

define the transpose of a matrix A ∈ GLn(k) to be the unique matrix ATb such that

b(Ax, y)= b(x, ATb y) ∀x, y ∈ kn.

Using this, we can then define the group of orthogonal matrices by

Ob
n := {A ∈ GLn(k) | AATb = I }.

We often suppress b in our notation whenever the underlying symmetric bilinear
form b is understood from context.

While MGLO is supposed to be a motivic version of MO, it is also supposed to
be the geometric fixed points of the C2-motivic spectrum MGLR, which in turn is a
motivic version of the C2-equivariant spectrum MR. The C2 action on MR comes
from an action on the group GLn(C) given by complex conjugation,

A↔ A.

However, complex conjugation is trivial over fields which do not contain
√
−1.

This motivates the discussion which follows.
Following [Hu et al. 2011, Section 6.1], we instead consider the hyperbolic

quadratic form on k2n:

q(x1, . . . , x2n)= x1x2+ · · ·+ x2n−1x2n.

The associated symmetric bilinear form is

b((x1, . . . , x2n), (y1, . . . , y2n))=

n∑
i=1

x2i y2i−1+ x2i−1 y2i .

The b-adjoint of a matrix A = (ai, j )
2n
i, j=0 is a 2n×2n matrix ATb such that

b(Ax, y)= b(x, ATb y). (2.3)

Explicitly, putting ATb = (b2n
i, j=1), one has

b2i,2 j = a2 j−1,2i−1, b2i,2 j−1 = a2 j,2i−1,

b2i−1,2 j−1 = a2 j,2i , b2i−1,2 j = a2 j−1,2i .

Notice that there is a C2 action on the quadric

Qn := V(x, y | b(x, y)= 1)
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given by
x↔ y,

where V(xi | E) (sometimes abbreviated to V(E)) denotes the locus of the equa-
tions E in the variables xi .

Taking C2 fixed points of the quadric under this action, we have

(Qn)
C2 = V(x, y | b(x, y)= 1, x = y)

= V

( n∑
i=1

x2i y2i−1+ x2i−1 y2i − 1, x = y
)
. (2.4)

The projection from (2.4) onto the x coordinate scaled by a factor of 2 gives an
equivalence to Q2n−1 := V(x ∈ k2n

| x1x2+ x3x4+ · · ·+ x2n−1x2n − 1). But the
projection from (2.4) onto the x-axis gives the same thing as projecting Qn onto
the x-axis. So long as x 6= 0 there exists a y such that b(x, y) = 1. But this
means that the image of the projection map is A2n r 0. It is a standard result that
A2n r 0 has the homotopy type of S2n−1,n

= Sn−1+nα. Using (2.3) we can define
the even-dimensional orthogonal groups by

O2n := {A ∈ GL2n(k) | AATb = I }.

The group O2n acts on the quadric Q2n−1 in a natural way. We can write Q2n−1 as

V
( 1

2 b(x, x)− 1
)
.

The action on Q2n−1 is given elementwise by A · x = Ax . Notice that

b(Ax, Ax)= b(x, ATb Ax)= b(x, x).

Therefore we have defined an O2n action on Q2n−1. We define O2n−1 to be

O2n−1 := {A ∈ O2n | A(1, 1, 0, . . . , 0)= (1, 1, 0, . . . , 0)}.

Lemma 2.5. For each positive integer n, the even-dimensional orthogonal group
O2n acts transitively on the motivic sphere Q2n−1.

Proof. The quadratic form

q(x)=
n∑

i=1

x2i−1x2i

is uniquely defined by a 2n×2n symmetric matrix A consisting of all zeros, except
for n copies of the 2×2 matrix [

0 1
1 0

]
(2.6)
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along its diagonal. The matrix A is in turn congruent to the matrix B consisting of
all zeros except for n copies of the matrix[

1 0
0 −1

]
(2.7)

along its diagonal. Therefore, the claim about transitivity is equivalent to prov-
ing transitivity with respect to the orthogonal group and sphere induced from the
symmetric bilinear form induced by the matrix B. The symmetric bilinear form
represented by B is given by,

n∑
i=1

x2i−1 y2i−1− x2i y2i .

Under this symmetric bilinear form bB , orthogonal matrices consist of a set of
vectors B = {bi }

2n
i=1 such that

bB(bi , b j )=

{
±1 if i = j,

0 otherwise.

Under our equivalent symmetric bilinear form bB , our sphere is given by

Q B
2n−1 := V

(
x ∈ k2n

∣∣∣−1+
n∑

i=1

(x2
2i−1− x2

2i )

)
.

Now, to prove our claim about transitivity, let {ei }
2n
i=1 denote the standard basis

for k2n . Proving transitivity is equivalent to proving that for any point p ∈ Q B
2n−1

there exists a matrix M such that Me1= p. Under this assumption, the set of vectors
A= {p}∪ {p+ ei }

2n−1
i=1 are linearly independent. Using the Gram–Schmidt process

with respect to the inner product induced by bB , we can form an orthonormal set
of vectors with respect to the basis A= {p} ∪ {p+ ei }

2n−1
i=1 . The basis will become

the rows of M , and our claim will be proven. However, we need to show that the
points obtained from the Gram–Schmidt process still live inside of k2n , rather than
some potentially bigger field k′ ⊃ k. To this end, note that

proja(a+ ei )= a−
b(a+ ei , a)

b(a, a)
a = (1− b(ei , a))a.

Therefore,

bB(proja(a+ ei ), proja(a+ ei ))= (1− b(ei , a))2 · bB(a, a)= (1− b(ei , a))2.

This proves the claim. �

Definition 2.8. The odd-dimensional orthogonal groups O2n−1 are defined to be
the stabilizer of the point (1, 1, 0, . . . , 0).
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Next we define the even-dimensional quadrics as

Q2n−2 := V(x ∈ k2n
| b(x, x0), b(x, x)+ 1)

= {x ∈ k2n
| x1x2+ · · ·+ x2n−1x2n + 1= x1+ x2 = 0}.

We would like to make analogous statements to Lemma 2.5 for O2n−1 and Q2n−2,
but first we show that Q2n−2 is homotopy equivalent to a familiar space.

Lemma 2.9. The motivic space Q2n−2 is homotopy equivalent to the motivic sphere
Sn−1+(n−1)α.

Proof. We have that

Q2n−2 = V(x ∈ k2n
| x1x2+ · · ·+ x2n−1x2n + 1, x1+ x2).

We note that this space is homotopy equivalent to

V((y, x3, x4, . . . , x2n) ∈ k
2n−1
| −y2

+ x3x4+ · · ·+ x2n−1x2n + 1).

But this is easily seen to be equivalent to

Spec(k[y, x3, x4, . . . , x2n−1, x2n]/((1− y)(1+ y)+ x3x4+ · · ·+ x2n−1x2n)).

Now, by [Asok et al. 2017, Theorem 2], we notice that

Sn−1+(n−1)α
'Spec(k[z, a3, a4, . . . , a2n−1, a2n]/(a3a4+· · ·+a2n−1a2n−z(1+z)).

Using the change of variables z 7→ − 1
2(1+ y), ai 7→

1
2 xi , we have that

Spec
(
k[z, a3, a4, . . . , a2n−1, a2n]/(a3a4+ · · ·+ a2n−1a2n − z(1+ z))

)
' Spec

(
k
[
−

1
2(1+ y), 1

2 x3,
1
2 x4, . . . ,

1
2 x2n−1,

1
2 x2n

]
/
(1

4(x3x4+ · · ·+ x2n−1x2n + (1− y)(1+ y))
))

' Spec
(
k[y, x3, x4, . . . , x2n−1, x2n]

/(x3x4+ · · ·+ x2n−1x2n + (1− y)(1+ y))
)
. �

The O2n action on Q2n−1 induces an O2n−1 action on Q2n−2, which we prove
presently. Recall that O2n−1 acts pointwise on the quadric Q2n−2 by A · x 7→ Ax .
Notice that Q2n−2 is induced from the form b2n(x, y), and x ∈ Q2n−2 implies that
1
2 b2n(x, x)=−1. Since

b(Ax, Ax)= b(x, ATb Ax)= b(x, x),

it only remains to show that if x1=−x2 and y= (y1, y2, . . . , y2n) is the image of x ,
then y1=−y2. But notice that for x ∈ Q2n−2 we have that b(x, (1, 1, 0, . . . , 0))= 0.
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Let A ∈ O2n−1 and let y = (y1, y2, . . . , y2n) be the image of x . Then

y1+ y2 = b(y, (1, 1, 0, . . . , 0))= b(Ax, (1, 1, 0, . . . , 0))

= b(x, ATb(1, 1, 0, . . . , 0))= b(x, (1, 1, 0, . . . , 0))= x1+ x2 = 0.

This proves that O2n−1 acts on the quadric Q2n−2.

Lemma 2.10. O2n−1 acts transitively on Q2n−2, and the fixed point subgroup of
y0
= (1,−1, 0, . . . , 0) can be naturally identified with O2n−2.

Proof. We prove the transitivity claim in a similar manner to Lemma 2.5. It is
enough to show that for any x ∈ Q2n−2 there is a matrix A ∈ O2n−1 such that
Ax = y0.

Notice that technically our O2n−1 lives inside of O2n . We choose orthonormal
bases

B1 =

{
x0

‖x0‖
,

y0

‖y0‖
, e3, . . . , e2n

}
,

B2 =

{
x0

‖x0‖
,

x
‖x‖

, v3, . . . , v2n

}
.

Notice there exists a change of basis matrix P from B2 to B1 which sends x0 to x0

and x to y0/‖y0
‖.

This implies that for x ∈ Q2n−2 we have that Px = λy0. We have that

−1= 1
2 b(x, x)= 1

2 b(Px, Px)= 1
2 b(λy0, λy0)= 1

2λ
2b(y0, y0)=−λ2

H⇒ λ=±1.

If λ= 1 then we are done. If λ=−1 then we have that (−P)x = y0. This proves
the transitivity claim.

Now notice that the subgroup of O2n−1 which fixes y0
= (1,−1, 0, . . . , 0) ∈ k2n

is

{A ∈ O2n | Ax0
= x0 and Ay0

= y0
} = {A ∈ O2n−1 | Ae1 = e1 and Ae2 = e2}.

But this is just matrices A ∈ O2n of the form

A =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 x3,3 . . . x3,2n
...
...

...
. . .

...

0 0 x2n,3 . . . x2n,2n

 .

This shows that O2n−2 can be naturally identified with the subgroup of O2n−1,
which fixes the point y0. �
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Cellularity. The following definition is due to [Dugger and Isaksen 2005, Defini-
tion 2.1]. Let M be a pointed model category, and let A be a set of objects in M.

Definition 2.11. The class of A-cellular objects is the smallest class of objects of
M such that

(1) every object of A is A-cellular;

(2) if X is weakly equivalent to an A-cellular object, then X is cellular;

(3) if D : I →M is a diagram such that D is A-cellular, then so is hocolimD.

Choosing M to be the stable motivic homotopy category, and choosing A to be

{Sm+nα
| m, n ∈ Z},

we obtain the cellular stable motivic homotopy category.

Adapting the proof of [Dugger and Isaksen 2005, Proposition 4.1], we prove the
following.

Proposition 2.12. The variety On is stably cellular for every n ≥ 1.

Proof. We first suppose that n = 2k. Let x = (1, 1, 0, . . . , 0). Now consider the
fiber bundle On→ Pn−1 given by

On
mx
−→ An

→ An/An r 0' Pn−1.

Here mx denotes the map A 7→ Ax . Notice that mx induces a transitive action of
On on the motivic sphere Qn−1. The fiber over the point (1, 0, 0, . . . , 0) consists
of all A ∈ On such that a11 6= 1, and a j1 = 0 for j ≥ 2. Recall that

On−1 ∼= {A ∈ On | A(1, 0, 0, . . . )= (1, 0, 0, . . . )}.

But this is just {A ∈ m−1
x ((1, 0, 0, . . . )) | a11 = 1}. Since

det(AAT )= det(A) det(AT )= det(A)2 = 1,

it follows that a11 =±1, and so m−1
x ((1, 0, 0, . . . ))= On−1×{±1}. As a scheme,

but not as a group, this is isomorphic to

{±1}×An−1
× On−1,

which is stably cellular by induction and [Dugger and Isaksen 2005, Lemma 3.4].
The usual cover of Pn by affines is a completely trivializing cover for the bundle,
so [Dugger and Isaksen 2005, Lemma 3.8] applies. �
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Two-sided bar construction. Recall that we have the following equivalences,

Qn '

{
Sk+kα if n = 2k,
Sk−1+kα if n = 2k− 1.

The groups On act on the quadrics Qn−1, allowing us to form the two-sided bar
construction, which we now discuss.

Let G be a finite group and X and Y motivic spaces. If X ×G→ X is a right G
action and G× Y → Y is a left G action, then we form the two-sided bar construc-
tion B(X,G, Y ) as the left derived functor of the coequalizer of X×G×Y ⇒ X×Y .
We denote the geometric realization of B(X,G, Y ) by |B(X,G, Y )|.

Definition 2.13. In the special case X = Y = ∗, we define BG := |B(∗,G, ∗)|.

Lemma 2.14. The geometric realization of B(On, On−1, ∗) is homotopy equiva-
lent to Qn−1.

Proof. It is well known for H ↪→ G an inclusion of groups that the left coset G/H
is isomorphic to |B(G, H, ∗)|. Taking G = On and H = On−1, this gives

On/On−1 ∼= |B(On, On−1, ∗)|.

Notice that by the above discussion, On acts on Qn−1, and the stabilizer of a point
is On−1. This induces an isomorphism between On/On−1 and Qn−1, proving that

Qn−1 ∼= |B(On, On−1, ∗)|. �

Lemma 2.15. The geometric realization of the two-sided bar B(G,G, ∗) is con-
tractible. In particular, we have |B(On, On, ∗)| ' ∗.

Proof. Notice that ∗ ∼= G/G ∼= |B(G,G, ∗)|. �

Proposition 2.16. The geometric realization of the two-sided bar construction
B(∗, On, Qn−1) is homotopy equivalent to BOn−1.

Proof. We have that

|B(∗, On, Qn−1)| '
∣∣B(∗, On, |B(On, On−1, ∗)|

)∣∣
'
∣∣B(|B(∗, On, On)|, On−1, ∗

)∣∣' |B(∗, On−1, ∗)|. �

The prespectrum for MGLO. We define a motivic prespectrum as follows.

Definition 2.17. A motivic prespectrum E is defined to be a collection of based
spaces E1, E2, . . . equipped with connecting maps S1+α

∧ En
σn
−→ En+1. If the

adjoint maps En
σ̃n
−→ [S1+α, En+1] are homotopy equivalences, then we say that E

is a motivic spectrum.
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The identifications from Proposition 2.16 imply that we have a canonical map

BOn−1+
π
−→ BOn+ (2.18)

which is defined by projection maps (BOn−1)m
πm
−→ (BOn)m given by

On × On × · · ·× On︸ ︷︷ ︸
m times

×Qn−1 7→ On × On × · · ·× On︸ ︷︷ ︸
m times

.

Therefore, we can think of (2.18) as a sphere bundle. This allows us to define
Thom space-like objects as the homotopy cofiber of π . The Thom space of BOn ,
which we denote as Thom(BOn), is defined to be the pushout of the diagram

BOn−1+

��

// BOn+

��

* // Thom(BOn)

The spaces Thom(BO2n) form the spaces for the prespectrum of MGLO.

Definition 2.19 (MGLO). At the level of prespectra, MGLO is defined by

(MGLO)n := Thom(BO2n).

Notice the natural inclusions On−1× Om−1 ⊂ On × Om induce maps

B(On−1× Om−1)→ B(On × Om).

We define Thom(B(O2n × O2m)) to be

B(O2n × O2m)/B(O2n−1× O2m−1)' Thom(BO2n)∧Thom(BO2m).

The structure maps

S1+α
∧Thom(BO2n)

σn
−→ Thom(BO2n+2)

are defined by

S1+α
∧Thom(BO2n)'6Gm ∧Thom(BO2n)

→ |B(∗, O2,Gm)|+ ∧Thom(BO2n)→ BO2+ ∧Thom(BO2n)

→ Thom(BO2)∧Thom(BO2n)
'
−→ Thom(BO2×BO2n)→ Thom(BO2n+2).

This defines the prespectrum MGLO and we can promote it to a spectrum in the
usual way.

Notice that since the orthogonal groups are stably cellular by Proposition 2.12,
it follows that the classifying spaces BOn are also stably cellular. Since each of the
Thom spaces Thom(BOn) is constructed as the homotopy cofiber of the inclusion
BOn−1→BOn , it follows that the spaces Thom(BOn) are also cellular. Since these
are the spaces defining the prespectrum of MGLO, it follows that MGLO is cellular.



MOTIVIC ANALOGUES OF MO AND MSO 357

3. Computing the coefficients of MGLO

Combining Proposition 2.16 with a Mayer–Vietoris argument as in [Milnor and
Stasheff 1974] gives us two Thom isomorphisms in motivic HZ/2 (co)homology:

H ?(BOn+)
∼= H ?+ωn (Thom(BOn)),

H?(BOn+)
∼= H?+ωn (Thom(BOn)).

Here ω2k := k+ kα and ω2k+1 := k+ 1+ kα.
For each space BOn , we get a unique Thom class Thom(BOn)

wn
−→ 6ωn HZ/2.

Composing wn with the homotopy cofiber of the map BOn−1+→BOn+, we get
a class wn ∈ Hωn (BOn+). The following theorem has essentially been proved by
A. Smirnov and A. Vishik [2014, Theorem 3.1.1] using different language from
the present paper. The biggest difference between [Smirnov and Vishik 2014] and
the theorem presented here is that the former only applies to fields of character-
istic 0 for which

√
−1 ∈ k, whereas the present theorem holds for any field k of

characteristic 0.

Theorem 3.1. There is a unique set of classes w1, w2, . . . , wn belonging to motivic
Z/2 cohomology for which

H ?(BOn+)
∼= H ?

[w1, . . . , wn].

Here deg(w2i )= i + iα and deg(w2i+1)= i + 1+ iα.

Proof. Notice that the cofibration BOn−1+→BOn+→Thom(BOn) induces a long
exact sequence in cohomology given by

· · · → H ?(Thom(BOn))

→ H ?(BOn+)→ H ?(BOn−1+)→ H ?+1(Thom(BOn))→ · · · .

Using the Thom isomorphism H ?(BOn+)
∼=
−→ H ?+ωn (Thom(BOn)) we get the long

exact sequence

· · ·→H ?(BOn+)
f ∗n
−→H ?+ωn(BOn+)

g∗n
−→H ?+ωn (BOn−1+)

h∗n
−→H ?+1(BOn+)→· · · .

Notice that f ∗n is multiplication by some nonzero class wn . By induction,

H ?(BOn−1+)= H ?
[w1, . . . , wn−1].

Since BOn is cellular, we have that H p+qα(BOn+)= 0 for q < 0. It is also clear
that the map f ∗n is injective on Z/2∼= H 0(BOn+). We can start with the case n = 0
by identifying BO0 with |B(∗, O1, Q0)|, which is contractible. Therefore, we have
that h∗n(wi )= 0 for i = 0, . . . , n− 1. It follows that each of the wi can be uniquely
lifted to H ?(BOn+).
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Moreover, since h∗n(wi )= 0 for i = 0, . . . , n− 1, it follows that h∗n = 0. Thus,
the long exact sequence splits and we get the short exact sequence

0→ H ?(BOn+)
f ∗n
−→ H ?+ωn (BOn+)

g∗n
−→ H ?+ωn (BOn−1+)→ 0.

The key point is that f ∗n is multiplication by the cohomology classwn ∈Hωn (BOn+).
In other words, f ∗n =^wn .

From this the claim follows. We have

H ?(BOn+)
∼= H ?

[w1, . . . , wn−1]⊕ H ?
[w1, . . . , wn−1]^wn

∼= H ?
[w1, . . . , wn]. �

A quick word is in order. We have a Thom isomorphism in (co)homology. We
have computed the cohomology of BOn , but there is a motivic universal coeffi-
cient theorem, and so the (co)homologies are essentially the same and there is a
duality between the (co)homology classes. Motivically, this is not always the case.
However, BOn+ ∧ HZ/2 is a wedge sum of suspensions of HZ/2 of dimensions
p+ qα with p ≥ q and so we can show that the (co)homology classes are dual to
one another [Hoyois 2015, Section 5.1]. This gives us the following theorem.

Theorem 3.2. There is a unique set of classes w1, w2, . . . , wn belonging to motivic
Z/2 homology for which

H?(BOn+)
∼= H?[w1, . . . , wn].

Here deg(w2i )= i + iα and deg(w2i+1)= i + 1+ iα.

Using analogous arguments to those found in [Milnor and Stasheff 1974], we
get the corollary below.

Corollary 3.3. We have

H?(MGLO)∼= H?[w1, w2, . . . ].

Here deg(w2i )= i + iα and deg(w2i+1)= i + 1+ iα.

Since MGLO∧ HZ/2 is a wedge sum of suspensions of HZ/2 of dimensions
p+qα with p ≥ q , it follows that the (co)homology classes are dual to one another

Dual motivic Steenrod algebra. We review some results on the dual motivic Steen-
rod algebra. These results can be found in [Kylling 2017].

The dual motivic Steenrod algebra A∨Mot is defined to be HZ/2∧ HZ/2. As an
H?-algebra, the coefficients of A∨Mot are given by

H?[τ0, τ1, . . . , ξ1, ξ2, . . . ]/(τ
2
i − τξi+1− ρτi+1− ρτ0ξi+1). (3.4)

Here |ξi | = (2i
− 1)(1 + α), |τi | = (2i

− 1)(1 + α) + 1, τ is the generator of
H1−α ∼= µ2(k), and ρ is the class of −1 in H−α ∼= k×/(k×)2. Let E = (ε0, . . . , εn),
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εi ∈ {0, 1}, and R = (r1, . . . , rm). The dual motivic Steenrod algebra is a free
H?-module with basis consisting of the monomials,

τ(E)ξ(R) :=
∏

E

τ
εi
i

∏
R

ξ
ri
i .

By comparing the H?-module basis for the coefficients of MGLO∧HZ/2 and A∨Mot,
we see that MGLO∧ HZ/2 is a wedge sum of suspensions of A∨Mot. Consider the
submodule M of H?(MGLO) obtained by deleting all generators of degree |ξi |

and squaring all generators of degree |τi |. Let M be an H?-module basis for this
submodule. Then

MGLO∧ HZ/2'
∨

mi∈M

6|mi |A∨Mot.

The equivalence between MGLO and MGLO/(2, η). We begin with the defini-
tions of the mod 2 Moore spectrum, and the motivic Hopf map.

Definition 3.5. The mod 2 Moore spectrum is defined to be the stable cofiber M(2)
of the following map induced by multiplication by 2:

S0 2
−→ S0

→M(2).

Notice that the map 2 is induced by the stable homotopy class represented by
2 ∈ Z⊆ π0(S0), where 2= 1+ 1 and 1 is the class representing the unit map.

It is a well known fact that HZ∧M(2)' HZ/2. Recall that classically 2= 0
in the coefficients of MO. The analogous statement is true for MGLO.

Proposition 3.6. We have 2= 0 in the coefficients of MGLO.

Proof. We have a map

π1+α(BO2)→ π1+α(Thom(BO2))→ π0(MGLO).

The unit is the image of 1 ∈ π1+α(BGm) via the map

h : π1+α(BGm)→ π1+α(BO2).

The map z 7→ z−1 sends 1 7→ −1 ∈ π1+α(BGm), but becomes identified with the
identity under h. Thus, 1=−1 ∈ π1+α(BO2). �

Consider the Hopf map given by the projection h : A2 r 0→ P1. Recall that
A2r0' S1+2α and P1

' S1+α . It follows that h induces a stable map η :6αS0
→ S0.

We denote the cokernel of this map by S0/η. For a general spectrum E, we denote
the cokernel of the map η∧E by E/η.

Proposition 3.7. We have η = 0 in the coefficients of MGLO.
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Proof. It is well known that η = 0 in the coefficients of MGL. We stably prove
MGLO is an E∞-ring spectrum in Corollary 6.2. Therefore, it is enough to produce
a map of ring spectra from MGL to MGLO. We accomplish this by producing a
surjective map GLn→ O2n . This map is given by

A 7→ A⊕ (ATb)−1.

This in turn induces a map MGL→MGLO as desired. �

Applying the motivic Hurewicz theorem. We use a modified version of the motivic
Hurewicz theorem of [Bachmann 2018]. We recall what it means to be (n − 1)-
connected in the motivic sense.

Definition 3.8. A motivic spectrum E is finite type (n− 1)-connected if the follow-
ing hold:

(1) πi+ jα(E)= 0 for all 0< i < n.

(2) For each fixed i ∈ Z, πi+ jα(E)= 0 for all but at most a finite number of j ∈ Z.

Theorem 3.9. Let k have characteristic 0, and suppose that E is a finite type
(n−1)-connected cellular stable motivic spectrum for which 2 and η are 0. Then

Hn+∗α(E;Z/2)∼= πn+∗α(E).

Proof. This follows from [Bachmann 2018, Theorem 3]. �

Consider the basis elements vi ∈M⊂ H?(MGLO). Then each of the vi is dual
to a cohomology class ci ∈ H ?(MGLO), and so there exists a map

MGLO
f
−→

∨
mi∈M

6|mi |HZ/2 (3.10)

which induces an equivalence on homology.

Theorem 3.11. The map f in (3.10) is a homotopy equivalence, and so MGLO

splits as a wedge sum of HZ/2.

Proof. Taking the cofiber of the map f we obtain a cofibration

MGLO
f
−→

∨
mi∈M

6|mi |HZ/2→ F.

The idea is that we know that F is cellular, and the coefficients of F∧ HZ/2 are 0
by construction. Since 2 and η are 0 in

∨
mi∈M

6|mi |HZ/2, it follows that 22 and
η2 are 0 in F. Then the motivic Hurewicz theorem combined with the Nakayama
lemma implies that F= 0, and so f is an equivalence. �
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MGLO? and a comparison with MO∗. Combining everything, we have:

Theorem 3.12. As an H? algebra,

MGLO? ∼= H?[un+nα, un+1+nα, u(2i−1)(1+α)+2 | n, i ∈ Z≥0, n 6= 2i
− 1].

Let tC denote the complex topological realization functor. Then

tC(S1)= S1, tC(Sα)= S1, tC(HZ/2Mot)= HZ/2.

From this it follows that tC(MGLO)=MO. Over k= C, we have that

MGLO? = HZ/2Mot?[x2, x2+2α, x3+2α, u4+2α, u4+4α, u5+4α, x5+5α, . . . ]

= Z/2[θ ][u2, u2+2α, x3+2α, u4+2α, u4+4α, u5+4α, u5+5α, . . . ]

= Z/2[θ, u2, u2+2α, u3+2α, u4+2α, u4+4α, u5+4α, u5+5α, . . . ].

Recall that
MO∗ = Z/2[a2, a4, a5, a6, a8, a9, a10, . . . ]. (3.13)

So the generators of MO∗ correspond to generators in MGLO? twisted by powers
of θ .

4. A motivic analogue of MSO

Recall that the classical oriented cobordism spectrum MSO is closely related to MO.
Similarly to MO, the spectrum MSO can be constructed from the Thom spaces of
the classifying spaces of SOn , which we denote by BSOn . Recall that the group
SOn is defined as

{A ∈ On | det(A)= 1}.

Although many results found in the this section can be generalized to more
general fields, many of the proofs rely on the coefficients of the motivic Z/p coho-
mology of the mod p Eilenberg–Mac Lane spectrum being equal to Z/p[τ ], where
τ denotes the Tate twist of degree α− 1. Therefore, for the entirety of Section 4,
the reader should always assume that k is a field of characteristic 0 containing all
p-th roots of unity, and for which all its elements are p-th powers.

Computing the coefficients of MSLO. Having constructed a motivic analogue
of MO, it becomes apparent that it would be possible to construct a motivic ana-
logue of MSO by mimicking the construction of MGLO. The simple observation
is that we can again consider the quadratic form,

q(x1, x2, . . . , x2n)= x1x2+ x3x4+ · · ·+ x2n−1x2n.

To this we can associate a unique orthogonal group O2n . Since the determinant
function is algebraic, we can define the 2n-dimensional special orthogonal groups as

SO2n := {A ∈ O2n | det A = 1}.
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Again, for n ≥ 1 we get a transitive group action of SO2n on

Q2n−1 := V(x ∈ k2n
| q(x)− 1)' Sn−1+nα.

Letting x0
= (1, 1, 0, . . . , 0), the stabilizer of x0 with respect to the group action of

SO2n on Q2n−1 is defined to be SO2n−1. One easily sees that this is exactly equal
to

{A ∈ O2n−1 | det(A)= 1}.
Defining, as before,

Q2n−2 := V(x ∈ k2n
| q(x)+ 1, x1+ x2)' Sn−1+(n−1)α,

we get a group action of SO2n−1 on Q2n−2. This action is transitive, and defining
y0
∈ k2n to be (1,−1, 0, . . . , 0), we can show that the stabilizer of y0 is SO2n−2.
In the lower-dimensional cases, we note that SO2 'Gm , and SO1 ' ∗. The later

equivalence is obvious. For the former, we have to do a bit of work.

Proposition 4.1. SO2 ' Gm .

Proof. We consider the symmetric bilinear form b((x1, x2), (y1, y2)) to see how A
is related to AT . Recall that AT is defined to be the unique matrix A ∈ GL2(k) for
which b(Ax, y)= b(x, AT y). We write

A =
[

a b
c d

]
, AT

=

[
a′ b′

c′ d ′

]
, x = (x1, x2), y = (y1, y2). (4.2)

Recall that b(x, y)= x1 y2+ x2 y1. Therefore,

b(Ax, y)= ax1 y2+ bx2 y2+ cx1 y1+ dx2 y1

and
b(x, AT y)= c′x1 y1+ d ′x1 y2+ a′x2 y1+ b′x2 y2.

Comparing, we see that

AT
=

[
d b
c a

]
.

Now notice that we have the further relations det(A)= 1 and AAT
= I . Explicitly

multiplying the matrices, we see that

AAT
=

[
ad + bc 2ab

2cd ad + bc

]
.

Since det(A)= ad − bc = 1, we have that ad + bc = (ad − bc)+ 2bc = 1+ 2bc.
Therefore, we get the relations 2bc = 2ab = 2cd = 0. It follows, from these
relations alone, that either a = c = 0, b = c = 0, or b = d = 0. But we also have
the relation ad − bc = 1. Therefore, it must be the case that b = c = 0. Therefore,

SO2 = {(a, b, c, d) ∈ k4
| b = c = 0, ad = 1} ' {(v,w) ∈ k2

| vw = 1} ' Gm . �



MOTIVIC ANALOGUES OF MO AND MSO 363

Using a two-sided bar construction as before, we have

|B(SOn,SOn−1, ∗)| ' Qn−1.

Moreover, we are able to show that

|B(∗,SOn, Qn−1)| ' BSOn−1 .

Definition 4.3 (MSLO). The n-th Thom space defining the prespectrum for MSLO

is given by the homotopy cofiber of the map

BSOn−1+→ BSOn+.

Notice that in particular we have the following lemma.

Lemma 4.4. P∞ ' BGm ' BSO2 ' Thom(BSO2).

Proof. Since SO1 ' ∗, we have BSO1 ' ∗. By definition of Thom(BSO2), the
statement follows. �

Calculating the C2 cohomology of MSLO. The goal of this section is to calculate
the motivic C2 cohomology of MSLO. To do this, we first note that On acts on the
unit sphere S0

' {±1} by A · g 7→ (det(A))g for A ∈ On, g ∈ {±1}. This action is
easily seen to be transitive, and the stabilizer of 1 ∈ S0 is

{A ∈ On | det(A)= 1} = SOn .

It follows that |B(∗, On, S0)| ' BSOn . As before, we get a Thom isomorphism

H ?(BOn+)
∼= H ?+1(BOn /BSOn).

We can use this to get a Gysin sequence. We consider the long exact sequence

· · ·→H ?(BOn/BSOn)→H ?(BOn+)→H ?(BSOn+)→H ?+1(BOn/BSOn)→· · · .

Substituting in the Thom isomorphism gives us

· · · → H ?−1(BOn+)→ H ?(BOn+)→ H ?(BSOn+)

→ H ?(BOn+)→ H ?+1(BOn+)→ · · · .

Proposition 4.5. There exists a surjective map

H ?(BOn+)→ H ?(BSOn+),

with kernel generated by w1 as an H ?-module. Hence,

H ?(BSOn+)
∼= H ?

[w2, w3, . . . , wn]

with |w2i | = i + iα, and |w2i+1| = i + 1+ iα.
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Proof. Let x∈H 1(BOn+) be the composition of the Thom class u∈H 1(BOn/BSOn)

with the homotopy cofiber of the map

BSOn+→ BOn+.

This gives a nonzero class x ∈ H 1(BOn+). Since there is only one nonzero class
H ?(BOn+) of degree 1, it is clear that x is the same class as w1 ∈ H 1(BOn+) from
Theorem 3.1.

Thus, we can write

· · · → H ?(BOn+)→ H ?(BSOn+)→ H ?(BOn+)
^w1
−−−→ H ?+1(BOn+)→ · · · .

Since H ?(BOn+)= H ?
[w1, . . . , wn], the map ^w1 is injective in all dimensions,

and so the Gysin sequence breaks up into short exact sequences

0→ H r+sα−1(BOn+)
^w1
−−−→ H r+sα(BOn+)→ H r+sα(BSOn+)→ 0.

The conclusion follows. �

Calculating the Z/ p cohomology of MSLO for p an odd prime.

Definition 4.6. The Euler class xn ∈ Hωn (BSOn+) is defined to be the composition
of the Thom class c ∈ Hωn (Thom(BSOn)) with the homotopy cofiber f of

BSOn−1+→ BSOn+
f
−→ Thom(BSOn).

Theorem 4.7. H ?(BSOn+;Z/p) is the polynomial ring HZ/p?[x2
1 , . . . , x2

k ] for
n = 2k+ 1 and HZ/p?[x2

1 , . . . , x2
k−1, xk] for n = 2k.

Proof. The sphere bundle S(n− 1)→ BSOn−1→ BSOn induces a Gysin sequence
with Z/p coefficients

· · · → H i (BSOn+)
^xn
−−→ H i+ωn (BSOn+)

g∗n
−→ H i+ωn (BSOn−1+)

h∗n
−→ H i+1(BSOn+)→ · · · .

Now, if n= 2k, then by induction we have that H ?(BSOn−1+)
∼= H ?

[x2
1 , . . . , x2

k−1].
Recall that by [Voevodsky 1999], HZ/pm+nα

? (BOn+)= 0 for n < 0. Using the fact
that ^ xn is an isomorphism on H 0(BSOn+)

∼= Z/p, we see that h∗n = 0 and so g∗n
is surjective and the map breaks into short exact sequences. The proof then follows
that of Theorem 3.1.

If n = 2k+ 1, then xn is zero in Hωn (BSOn+) since it has order 2. To see that
xn has order 2, we note that xn is the element corresponding to xn ^ xn under the
Thom isomorphism. Therefore, xn ^ xn =−xn ^ xn by the commutativity relation
of the cup product. It follows that ^ xn = 0, and so the Gysin sequence splits into
short exact sequences

0→ H i+ωn (BSOn+)
g∗n
−→ H i+ωn (BSOn−1+)

h∗n
−→ H i+1(BSOn+)→ 0.
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Therefore g∗n injects H ?(BSOn+) as a subring of

H ?(BSOn−1+)
∼= H ?

[w2
1, . . . , w

2
k−1, wk].

The subring im(g∗n) contains H ?
[x2

1 , . . . , x2
k ], and we can show it equals this ring

by comparing ranks in each dimension. �

Calculating the coefficients of MSLO p for p an odd prime. Recall that the com-
putation of MSO at an odd prime is more or less the same as the computation of
complex cobordism MU. Similarly, the computation of MSLO will be no harder
than the computation of MGL.

We denote the Milnor primitives by Qi ∈A?, |Qi | = pi (1+α)−α. Recall that
if p is odd, then the mod p motivic cohomology of MSLO is generated by classes
xi of degree 2(1+α)i as a free H ?-module.

The following proof is based on the proof of a similar result due to S. Borghesi
[2003, Proposition 6].

Theorem 4.8. Let p be an odd prime. The mod p cohomology of MSLO takes the
form

H ?(MSLO)= (A?/(Q0, Q1, . . .))[mi | i 6= pn
− 1]

as an A?-module, where |mi | = 2i(1+α).

Proof. For c a cohomology class of degree p+ qα, we define ‖c‖ := p− q. We
call the number ‖c‖ the invariance of the cohomology class c. Now note that the
motivic Steenrod algebra A? acts on the cohomology of MSLO. Let Qi denote the
Milnor primitives in degree 2i (1+α)−α. Notice that ‖Qi‖ = 1. Recall that as an
H ? module, the cohomology of MSLO has a basis in monomials whose invariance
is equal to 0. Call this basis M. Therefore, ‖Qi c‖ = 1 implies that Qi c = 0. The
reason is because for any x ∈ H ?, ‖x‖ ≤ 0. Putting this together, we have that
if m ∈M, and y is a basis element of A? as an H ? module, then the action of y
on m sends m to a sum of elements in M with coefficients in Z/2. Now, since
Qi c = 0 for all c ∈ M, it follows that the action of A? on H ?(MSLO) factors
through A?/(Q0, Q1, . . . ). By discussion of the A? action on the cohomology
of MSLO, it now follows that the action produces an H ? linear map in which there
is no interplay between the H ? coefficients. Therefore, any dependencies must be
topologically induced. But topologically, there are no dependencies, and so the
theorem is proved. �

Corollary 4.9. Let p be an odd prime. The mod p cohomology of MSLO takes the
form

H ?(MSLO)= H ?(BPGL)[mi | i 6= pn
− 1]

as an A?-module, where |mi | = 2i(1+α).
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For the remainder of this subsection, we work over the field k= C. By [Stahn
2016], we know that over C, the motivic Z/p cohomology of a point is equal
to Z/p[τ ], where |τ | = α−1. Dually, the motivic Z/p homology of a point is equal
to Z/p[θ ], where |θ | = 1−α. Furthermore, we have that A? ∼=Atop

? ⊗Z/p Z/p[θ ].

Definition 4.10. Let E(n), 0≤ n <∞, denote the quotient Hopf algebroid

E(n) :=A?//(ξ1, ξ2, . . . , τn+1, τn+2, . . . )= H?[τ0, . . . , τn]/(τ
2
i | 0≤ i ≤ n).

If n =∞, let

E(∞) :=A?//(ξ1, ξ2, . . . )= H?[τ0, τ1, . . . ]/(τ
2
i | 0≤ i).

There is a way of switching between A? structures on cohomology and A? struc-
tures on homology. In our case we have the following.

Proposition 4.11. As an A?-comodule algebra, H?BPGL=A?�E(∞) H?.

Using a change of rings isomorphism, we have

ExtA?
(H?, H?(BPGL))∼= ExtA?

(H?,A?�E(∞) H?)∼= ExtE(∞)(H?, H?).

If we let E(∞)top and H top
? denote the topological analogues of E(∞) and H?,

respectively, then it follows that over k= C,

ExtE(∞)(H?, H?)∼= ExtE(∞)top(H top
? , H top

? )⊗Z/p Z/p[θ ].

From here the proof proceeds classically, and so we have the following theorem.

Theorem 4.12. After completing at an odd prime p, the coefficients of MSLO are
given by

π?(MSLO p̂ )∼= Z(p)[θ, x1, x2, x3, . . . ],

where |xi | = 2i(1+α).

HZ/2?-algebra structure of H?(HZ;Z/2). By [Voevodsky 2003b], the map

ψ? :A?→A?⊗H? A?
is given by

ψ?(ξk)=

k∑
i=0

ξ 2i

k−i ⊗ ξi , ψ?(τk)=

k∑
i=0

ξ 2i

k−i ⊗ τi + τk ⊗ 1.

As in [Milnor 1958], we define the conjugates of ξi and τi inductively as

k∑
i=0

ξ 2i

k−i ⊗ c(ξi )= 0 and
k∑

i=0

ξ 2i

k−i ⊗ c(τi )+ τk ⊗ 1= 0,

respectively.
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This gives us

c(ξk)=−ξk − c(ξ1)ξ
2
k−1− · · ·− c(ξk−1)ξ

2k−1

1 ,

c(τk)=−τk − c(τ0)ξk − c(τ1)ξ
2
k−1− · · ·− c(τk−1)ξ

2k−1

1 ,

respectively.
As in topology, motivically we have a cofibration

HZ
2
−→ HZ

mod 2
−−−→ HZ/2

induced from the short exact sequence

0→ Z
2
−→ Z

mod 2
−−−→ Z/2→ 0.

Taking motivic HZ/2 homology of HZ, we get a long exact sequence

· · · → H ?(HZ)
2
−→ H ?(HZ)

mod 2
−−−→ H ?(HZ/2) ∂

−→ · · · .

This gives us an exact couple and so induces a Bockstein spectral sequence. In
particular, we get the diagram

H?(HZ) H?(HZ) H?(HZ)

H?(HZ/2) H?(HZ/2)

β

mod 2

β

mod 2∂
d

∂

Notice that 2= 0 in H?(HZ), and so we have that

H?(HZ)
mod 2
−−−→ H?(HZ/2)

is injective. Thus we have a short exact sequence

0→ H?(HZ)
mod 2
−−−→ H?(HZ/2) d

−→ H?(HZ/2)→ 0.

Here d is the dual of the Steenrod operation Sq1. Notice that H?(HZ)= ker(d).

Lemma 4.13. The motivic cohomology of H?(HZ) over k= C is isomorphic to

Z/2[θ, τ1, τ2, . . . , ξ1, ξ2, . . . ]/(τ
2
i − θξi+1).

Proof. First, one observes that d(τ0) = 1 and d(τi ) = ξi for i ∈ Z>0. Next, one
observes that since d commutes with the Tate twist θ , and since τ 2

i = θξi+1, we
have

0= 2τi d(τi )= d(τ 2
i )= θd(ξi+1).

Therefore d(ξi+1)= 0. Now, as a Z/2[θ ]-algebra, the classes {ξi }
∞

i=1 and the classes
{c(ξi )}

∞

i=1 both generate the same algebra. Looking now at the inductive formula
for the conjugate of τi , and acknowledging that 2= 0 in the coefficients, we have

c(τk)= τk + c(τ0)ξk + c(τ1)ξ
2
k−1+ · · ·+ c(τk−1)ξ

2k−1

1 .
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First we notice that c(τ0) = τ0, and so d(c(τ0)) = 1. We claim that d(c(τi )) = 0
for i ∈ Z>0. For τ1, we have that c(τ1)= τ1+ τ0ξ1. Taking the differential of each
side, we have that

d(c(τ1))= d(τ1)+ τ0d(ξ1)+ ξ1d(τ0)= d(τ1)+ ξ1 = ξ1+ ξ1 = 0.

Now, by induction we can assume d(c(τn−1))= 0. Therefore,

d(c(τn))= d(τn)+ d(c(τ0)ξn)+ d(c(τ1)ξ
2
n−1)+ · · ·+ d(c(τn−1)ξ

2n−1

1 )

= d(τn)+ d(c(τ0)ξn)= d(τn)+ ξn = ξn + ξn = 0.

Thus,
ker(d)= Z/2[θ, c(τ1), c(τ2), . . . , c(ξ1), c(ξ2), . . . ].

One can show that c(τi )
2
= θc(ξi+1). This proves the claim. �

The Sq1 cohomology. Notice that the motivic Steenrod operation Sq1 has the
property that Sq1

◦Sq1
= 0. Therefore, we can think of Sq1 as a differential

of H ?(MSLO). We use the notation H ?(M;Sq1) to denote the cohomology of
the A? module M with respect to the differential Sq1.

Following [Voevodsky 2003b], let I = (ε0, s1, ε1, s2, . . . , sk, εk) be a sequence
where εi ∈ {0, 1} and si are nonnegative integers. Denote by P I the product

P I
= βε0 Ps1 · · · Pskβεk .

A sequence I is called admissible if si ≥ 2si+1+ εi . Monomials P I corresponding
to admissible sequences are called admissible monomials. Here β = Sq1.

Lemma 4.14. Admissible monomials generate A? as a left H ?-module.

Proof. See [Voevodsky 2003b]. �

Lemma 4.15. Suppose that I = (0, s1, . . . , sk, 0) and J = (0, t1, . . . , tr , 0) with
s1, . . . , sk, t1, . . . , tr ∈ Z>0. Then βP I

6= P Jβ. Also, βPs
6= P tβ for s, t ∈ Z>0.

Proof. This follows immediately from Lemma 4.14. �

Lemma 4.16. H ?(A?;Sq1)= 0 and H ?(A?/A? Sq1
;Sq1)= H ?.

Proof. To prove the first statement, note that im(Sq1)= ker(Sq1)= Sq1 A?. For the
second statement, we notice that im(Sq1)= Sq1 A?/A? Sq1. Since Sq1 A?/A? Sq1

is clearly in both the kernel and image of Sq1, and using Lemma 4.15, we know
that if I = (0, s1, . . . , sk, 0) with s1, . . . , sk ∈ Z>0 or I = (s) with s ∈ Z>0, then
Sq1 P I /∈ A? Sq1. We have shown what happens to admissible monomials. We
only have to look at what happens to elements of H ?. Clearly these elements get
sent to zero since they commute with the Sq1 operation. Since elements of H ? are
clearly not in the image of Sq1, it follows that H ?(A?/A? Sq1

;Sq1)= H ?. �

We need the following proposition from [Smirnov and Vishik 2014].
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Proposition 4.17. Recall that H ?(BOn+)
∼= H ?

[w1, . . . , wn] as an H ?-module. If
−1 is a square in k, then

Sqk(wm)=

k∑
j=0

(
m− k

j

)
wk− jwm+ j .

The Cartan formula over k= C gives the following.

Proposition 4.18. Let τ be the Tate twist of degree α − 1 in H ?, and suppose
H ?(BOn+)

∼= H ?
[w1, . . . , wn]. We define

εi, j =

{
1 if k is even and i, j are odd,
0 otherwise.

If −1 is a square in k, then

Sqk(wrws)=
∑

i+ j=k

τ εi, j Sqi (wr )Sq j (ws).

Proof. This follows from the formulas given in [Voevodsky 2003b], along with
relations between the geometric and simplicial classifying spaces of On found in
[Smirnov and Vishik 2014]. �

Lemma 4.19. Sq1 tn = 0, where tn ∈ H ?(Thom(BSOn)) is the Thom class.

Proof. Let H ?(BOn+) = H ?
[w1, . . . , wn]. Recall that by Proposition 4.5, we

can identify H ?(BSOn+) with H ?
[w2, w3, . . . , wn] ⊂ H ?(BOn+). Recall also that

there is a Thom isomorphism

H ?(BSOn+) ^ wn ∼= H ?(Thom(BSOn+). (4.20)

Therefore, Sq1(tn) can be identified with Sq1(wn) under (4.20) and so we can work
out the Steenrod operation on H ?(Thom(BSOn)) by comparison with H ?(BOn+).
In particular, Sq1(wn)=wnw1. Since w1= 0 in H ?(BSOn+), the claim follows. �

Since H ?(MSLO) is an A? module, we can compute its Sq1 cohomology.

Proposition 4.21. H ?(H ?(MSLO);Sq1)= H ?
[u2

2, u2
4, u2

6, . . . ].

Proof. By Lemma 4.19, Sq1 commutes with the Thom isomorphism. Therefore, it
is enough to show that H ?(H ?(BSO);Sq1) = H ?

[w2
2, w

2
4, w

2
6, . . . ]. We note that

Sq1(w2n)= w2n+1. From this it follows that H ?
[u3, u5, u7, . . . ] ⊂ im(Sq1). This

implies that the only elements which can be in the kernel but not in the image of
Sq1 are H ?

[w2
2, w

2
4, w

2
6, . . . ] ⊂ H ?(BSO). Noting that Sq1(w2

2n)= 0 for all n, the
claim follows. �
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A motivic version of Wall’s theorem.

Lemma 4.22. The morphism of A?-modules

A?→ H ?(MSLO)

given by a 7→ a · 1, where 1 denotes the Thom class t0 ∈ H 0,0(MSLO), has kernel
J =A? Sq1.

Proof. To simplify notation, we write A?/β :=A?/A? Sq1.
First, it is clear that Sqi (w j ) = 0 if i > j by Proposition 4.17. If i ≤ j , then

Sq1(w j ) is a sum of monomials wkwl with k, l < 2 j . The monomials Sqin · · · Sqi1

with in ≥ 2in−1 and i1 > 1 form an H ?-module basis for A?/β. Therefore, it
is enough to show that the polynomials Sqin · · · Sqi1(t) are linearly independent in
H ?(MSLO). Let I = (ik, . . . , i1)with is≥2is−1 and i1>1. We order the monomials
w I
= wikwik−1 · · ·wi1 lexicographically. For example, w8w4 is of higher order

than w4w2 and w8w2, but lower order than w8w4w2 and w10w2. By induction, we
assume that Sqin−1 · · · Sqi1(t)= win−1 · · ·wi1 t + lower order terms.

Now suppose w jn−1 · · ·w j1 t ∈ H ?(MSLO) is such that jn−1 ≥ jn−1 ≥ · · · ≥ j1. If
i ≥ 2 jn−1, then we show Sqi (w jn−1 · · ·w j1 t)=wiw jn−1 · · ·w j1 t+lower order terms.
Using the Cartan formula, we have

Sqi (w jn−1 · · ·w j1 t)= Sqi (t) ·w jn−1 · · ·w j1 + lower order terms

= wiw jn−1 · · ·w j1 t + lower order terms.

This proves the lemma. �

Theorem 4.23. Over k= C, H ?(MSLO) is a wedge sum of suspensions of A? and
A?/A? Sq1.

Proof. Our approach is to define a map from a wedge sum of suspensions of A?/β
to M which induce an isomorphism in Sq1 cohomology.

Choose classes {xα}α∈I ∈ M whose images in H ?(M;Sq1) form a basis of
H ?(M;Sq1) as a Z/2[θ ]-module. By Proposition 4.21, we can choose the classes
u2

2, u2
4, . . . ∈ H ?(MSLO) ∼= H ?

[u2, u3, u4, . . . ]. The xα are killed by Sq1 and so
we can define a map

φ1 :
⊕
α∈I

A?/β[− deg(xα)] → M.

Next, we define

A? := {admissible monomials x ∈A? | |x |> 0}.

Using this definition, we define

M := M/A?M.
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Notice that
⊕

α∈I A
?/β[− deg(xα)] ∼= A?/β ⊗H ? C for C = Z/2[θ ][u2

2, u2
4, . . . ].

We consider the projection map

M π
−→ M .

We then choose a Z/2[θ ]-submodule Z ⊂ M such that π|Z is injective, and

M ∼= π(φ1(A?/β⊗H ? C))⊕π(Z).

Now set
N =A?/β⊗H ? C ⊕A?⊗H ? Z .

The natural map
φ2 :A?⊗H ? Z→ M

gives a map
8 := φ1⊕φ2 : N → M.

Writing N =A?/β⊗H ? C ⊕A?⊗H ? Z , we let Ni denote the A?-submodule of
N given by Ni =A?/β⊗H ? Ci ⊕A?⊗H ? Zi . Here Ci and Zi denote all elements
in C and Z , respectively, of total degree i . We say the class x with degree n+mα
has total degree n+m. We define Mi to be the image of Ni under the map 8. We
then define N (n) and M (n) to be

⊕
i≤n Ni and

⊕
i≤n 8(Ni ), respectively.

We show by induction that the map8 : N (n)
→M (n) is an isomorphism. Starting

with n = 0, N (0)
= A?/β and M (0)

= A? · t , where t is the Thom class. By
Lemma 4.22 this map is an isomorphism.

Suppose we have proved 8 : N (n−1)
→ M (n−1) is an isomorphism and let

λ : N/N (n−1)
→ M/M (n−1) be the map induced by 8. We show λ|

(N (n)/N (n−1))
is in-

jective. Let P be the Z/2[θ ]-module generated by elements of the form c, z,Sq1(z)
for c ∈ Cn , z ∈ Zn . We can regard P as a Z/2[θ ]-submodule of the Z/2[θ ]-module
N/N (n−1).

We first prove that λ|P is injective. Notice that since H ?(A?;Sq1)= 0, the map

8∗ : H ?(N ;Sq1)→ H ?(M;Sq1)

is still an isomorphism. Since

8 : N (n−1)
→ M (n−1)

is an isomorphism by induction, it follows that

λ∗ : H ?(N/N (n−1)
;Sq1)→ H ?(M/M (n−1)

;Sq1)

is also an isomorphism.
Suppose v ∈ P and λ(v)= 0. Notice that the total dimension of v is n or n+ 1.

We consider the two cases separately. If the total dimension of v is n, then v= c+ z
for c ∈ Cn, z ∈ Zn . Now λ(v)= 0 implies 8(c+ z) ∈ M (n−1) for 8 : N (n)

→ M (n).
However, by choice of Z , λ(z) ∈ Mn , and so z = 0. Then v = c, and so λ(c)= 0.
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Since λ∗ is an isomorphism, it follows that Sq1(c)= 0, and c = Sq1(c′) for some
c′ ∈ N/N (n−1) with total degree n. But every element in N/N (n−1) has total degree
≥ n (or = 0), and so c′ = 0, which implies c = 0.

Now, suppose that the total dimension of v is n+ 1. Then v = Sq1(z) for some
z ∈ Zn . Suppose λ(v)= 0. By definition of v, it follows that λ(v)= λ(Sq1(z))= 0.
Since Sq1 commutes with λ, it follows that Sq1(λ(z))= 0. Now, notice that in Sq1

homology, Sq1(λ(z))= 0. But this means λ(z)= λ(c)+Sq1(z′) for some c ∈ Cn ,
and z′ ∈ (M/M (n−1)) of total degree n − 1. Thus z′ = 0, and we reduce to the
previous case.

Now, returning to the induction step, we have that the multiplication map

µ :MSLO∧MSLO→MSLO

induces a coproduct map

µ∗ : H ?(MSLO)→ H ?(MSLO)⊗H ? H ?(MSLO).

We define a projection map

p : M→ M/M (n−1).

Let u ∈ N (n), and 8 : N (n)
→ M (n). Then

µ∗8(u)= 1⊗H ? 8(u) modulo M ⊗H ? M (n−1).

Therefore, for any v ∈ P we have

(1⊗H ? p)µ∗8(v)= 1⊗H ? λ(v).

Now choose a Z/2[θ ]-basis c1, c2, . . . , cr for Cn , and z1, z2, . . . , zs for Zn . Then
we can give P a Z/2[θ ]-basis

{vi } = {c1, . . . , cr , z1, z2, . . . , zs,Sq1(z1),Sq1(z2), . . . ,Sq1(zs)}.

Any v ∈ N (n)/N (n−1)
= Nn then has a unique expression in the form v =

∑
i aivi

for ai ∈A?\A? Sq1
∪{0}. Now, we let m denote the maximum total dimension of

all of the ai . Next, let {am1, am2, . . . , amv
} denote all of the ai of total dimension m.

Notice that if λ(v)= 0, then 8(v) ∈ M (n−1), and hence

0= (1⊗H ? p)µ∗8(v)=
∑

am j · 1⊗H ? λ(vm j )+
∑

bk · 1⊗H ? mk

for some mk ∈ M , bk ∈A? with total dim bk < m.
The fact

∑
am j ·1⊗H ?λ(vm j )=

∑
bk ·1⊗H ?mk implies

∑
am j ·1⊗H ?λ(vm j )=0.

However, we showed that λ|P is injective, and so the λ(vi j ) are linearly indepen-
dent. This then implies am j · 1 = 0 for all j . But then am j ∈A? Sq1, which is a
contradiction, and so λ(v)= 0 implies v = 0. �
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Corollary 4.24. Over the field k= C,

H?(MSLO)∼= H?(HZ/2)⊗Z/2[θ ] C ⊕A?⊗Z/2[θ ] Z .

Here C is the algebra Z/2[θ, x4, x8, . . . ], where the x4i are generators of degree
2(1+α)i . Z is a Z/2[θ ] polynomial algebra.

The homotopy type of MSLO.

Theorem 4.25. For k = C, 2-completed MSLO splits as a wedge sum of suspen-
sions of motivic homology with coefficients in Z/2 and Z2.

Proof. Once we know that the motivic Z/2 homology of MSLO is a wedge sum of
suspensions of A? and A?/A? Sq1, we can again construct a map

MSLO→
∨
i∈I

HZ/2[ri ] ∨
∨
j∈J

HZ[s j ]

which is an equivalence on motivic Z/2 homology. Then, by applying the Nakayama
lemma and the motivic Hurewicz theorem [Bachmann 2018], one can show that
the map is a homotopy equivalence. �

The dimension of the HZ/2 suspensions. We already showed in Corollary 4.24
that the HZ suspensions of MSLO must live in degrees generated by monomials x4i

of degrees 2i(1+α). It remains to describe the degrees of the HZ/2 suspensions.
To answer this question we use well known combinatorial counting techniques,
as this question very much resembles the coin change problem well known to
combinatorists [Harris et al. 2008, Section 2.6.3] and computer scientists [Abelson
et al. 1996, Section 1.2.2] alike.

Definition 4.26. Let M be a bigraded module with basis B. Let Bn,m denote all
elements of B with bidegree (n,m). The basis B is said to be a special basis if
the following conditions hold:

(1) Bn,m = { } if n < 0.

(2) Bn,m = { } if m < 0.

(3) The size of the set Bn,m is finite for all (n,m) ∈ Z×Z.

(4) B=
⋃

(n,m)∈Z×Z

Bn,m .

Clearly H?(MSLO), HZ/2?(HZ/2), and HZ/2?(HZ) each have a special basis
under their induced n+mα grading.

We can associate a unique polynomial fB(x, y) =
∑

cn,m xn ym
∈ Z[[x, y]] to

any special basis B. Here cn,m represents the number of elements in B of bi-
degree (n,m). Notice that we can order the words xn ym by the length of the word
followed by the alphabetical order of the word. For example, x2 y = xxy comes
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before xy2
= xyy, and y2

= yy comes before x4
= xxxx . Let BH?MSLO be an H?

basis for H?(MSLO), BH?HZ an H? basis for H?(HZ), and BH?HZ/2 an H? basis
for H?(HZ/2).

Proposition 4.27. Let fH?MSLO(x, y), fH?HZ(x, y), and fH?HZ/2(x, y) be the asso-
ciated formal polynomials for the special bases BH?MSLO, BH?HZ, and BH?HZ/2,
respectively. The number of HZ/2 suspensions of H?(MSLO) in dimension n+mα
is given by the coefficient cn,m in

g(x, y)=
∑

cn,m xn ym
=

fH?MSLO(x, y)− fH?HZ(x, y)
∏
∞

i=0(1− (xy)2i )−1

fH?HZ/2(x, y)
.

Proof. The function a(x, y) = fH?MSLO(x, y) represents the number of basis ele-
ments of H?MSLO in each degree. The function

b(x, y)= fH?HZ(x, y)
∞∏

i=0

(1− (xy)2i )−1

represents all elements in a(x, y) generated by an HZ suspension. Therefore,
a(x, y)− b(x, y) represents all basis elements of H?MSLO generated by HZ/2
suspensions. Thus, dividing by fH?HZ/2(x, y) gives the number of HZ/2 suspen-
sions in each degree after applying a Taylor expansion around the point (0, 0). �

5. MGLR, an analogue of MR

There is a C2-equivariant spectrum belonging to classical topology, which was
constructed by Landweber. The coefficients of this spectrum were computed by
Hu and Kriz [2001]. The coefficients are bigraded. While the bigrading given in
[Hu and Kriz 2001] is MR∗+∗′α, we use σ grading instead of α. The reason for
this is that Hu and Kriz used the α to signify the relationship between motivic
homotopy theory and classical C2-equivariant homotopy theory. The topological
realization functor over R sends motivic α grading to the C2 grading. However, in
the present case, we want to stress the relationship between C2 motivic homotopy
theory and C2 classical homotopy theory using the topological realization over C.

In this section we discuss a C2-equivariant motivic spectrum MGLR which was
constructed by Hu, Kriz, and Ormsby [Hu et al. 2011]. There is a complex topologi-
cal realization functor tC

C2
for C2-equivariant motivic spectra, and tC

C2
(MGLR)=MR.

One should think of MGLR as a motivic analogue of MR. Roughly speaking,
the spectrum MR can be thought of as complex cobordism MU endowed with a
C2 action. At its heart, MU is built from the classifying spaces BUn , where Un

denotes the n-dimensional unitary group. We get an involution on this group given
by A↔ AT . The groups Un equipped with this involution action determine the
construction of MR. If one wanted to mimic this construction motivically, one
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would immediately be faced with a problem: complex conjugation is not algebraic.
A priori this means that the groups Un are not definable; however, it turns out that
over the complex numbers, Un ∼= GLn(C). In fact, the motivic analogue of MU is
the well known algebraic cobordism MGL.

In analogy with MR, MGLR should be thought of as algebraic cobordism MGL

endowed with a C2 action. Consider the symmetric bilinear form

b((x1, . . . , x2n), (y1, . . . , y2n))=

n∑
i=1

x2i y2i−1+ x2i−1 y2i .

For any A∈GL2n(k), there is a unique matrix ATb for which b(Ax, y)= b(x, ATb y)
for all x, y ∈ k2n . The C2 action of MGLR is induced from the involution action
A↔ (ATb)−1.

The λ twist. In [Hu and Kriz 2001], the authors show that MR completed at 2
splits as a wedge sum of suspensions of a spectrum BPR whose suspensions are in
degrees mi (1+ σ) for mi 6= 2i+1

− 1, 8C2(BPR) = HZ/2, and nonequivariantly
BPR = BP. This splitting comes from applying the Quillen idempotent to the
formal group law on MR∗(1+σ). From this, it follows that MR? is freely gener-
ated by generators xn of degree n(1 + σ) for n 6= 2i+1

− 1 as a BPR? algebra.
One could ask whether MGLR splits as a wedge sum of suspensions of BPGLR,
with 8C2(BPGLR)= HZ/2 and BPGLR= BPGL nonequivariantly, in such a way
that MGLR? is free as a BPGLR? algebra. Unfortunately, there does not appear
to be any way to construct such a splitting. However, there exists an element
λ ∈ π1−σ+σα−α(MGLR). If we invert this element, then we get a formal group law
and we can use the Quillen idempotent construction to get a splitting. First, let us
elaborate on this mysterious element λ.

In the topological setting there is the notion of real-oriented spectra and it turns
out that MR is universal among real-oriented spectra. There is also a notion of real
orientation found in [Hu et al. 2011]. Following that paper’s notation, we define
X̃ to be the functorial fibrant replacement of X , the reduced suspension of X .

Definition 5.1. A C2-equivariant ring spectrum E is real-oriented if the follow-
ing two conditions are satisfied. Here MGLR(1) denotes the first term of the pre-
spectrum defining MGLR.

(1) The unit in E?(S1+σα+σ+α) restricts to the unit φE of E?(MGLR(1)).

(2) The map

S2+2σα
' G̃

1/z
m ∧ G̃

1/z
m → G̃

1/z
m × G̃

1/z
m → B(G1/z

m ×G1/z
m )→ BGL2→MGLR(1),

with representative ω ∈ π2+2σα, composes with φE to give a unit λE .
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Whenever this is satisfied we get many results analogous to those found in [Hu
and Kriz 2001].

Theorem 5.2. If the C2-equivariant ring spectrum E is real-oriented, then we have
E?(BG

1/z
m )= E?[u], where deg(u)=−(1+ σα).

Unfortunately, it is not clear whether or not MGLR satisfies Definition 5.1. Clearly
MGLR satisfies condition (1) of Definition 5.1. However, it is not clear that λMGLR

is invertible. Using the methods of [Elmendorf et al. 1997] we can “invert” λMGLR

to construct a spectrum λ−1MGLR satisfying both conditions of Definition 5.1. The
formal group law of Theorem 5.2 then gives a canonical map

L→ λ−1MGLR∗(1+σα).

Here L denotes the Lazard ring.
Notice that the topological realization functor over C, which we denote by tC,

is a symmetric monoidal functor, and so if it is applied to the spectrum MGLR, we
get a ring homomorphism

MGLR?→MR?.

One can show that λMGLR is sent to the unit 1 under this ring homomorphism, and
so we get a ring homomorphism

λ−1MGLR?→MR?. (5.3)

Since the homomorphism tC sends 1+ σα grading to 1+ σ grading, and since
λ−1MGLR∗(1+σα) ⊂ λ

−1MGLR? and MR∗(1+σ) ⊂MR? are commutative rings, we
have the following result.

Lemma 5.4. The restriction of the ring homomorphism (5.3) to λ−1MGLR∗(1+σα)
induced by the topological realization functor tC sends the formal group law on
λ−1MGLR? to the formal group law on MR?.

Proof. This is clear since tC(BG
1/z
m )= BSσ . �

Since MGLR is an E∞-ring spectrum, we may apply constructions as in [Elmen-
dorf et al. 1997]. In particular, we may “kill” or “invert” the image of any sequence
of elements of L in the spectrum λ−1MGLR. The ring MGL∗(1+α) = MU2∗ is the
universal formal group law, and so the generator xi of degree i(1+α) is sent to an
element of degree i(1+ σα).

Theorem 5.5. The spectrum 8
C2
ét (λ

−1MGLR) is equivalent to θ−1MGLO.

Proof. Recall that λ is the map

S2+2σα
' G̃

1/z
m ∧ G̃

1/z
m → G̃

1/z
m × G̃

1/z
m → B(G1/z

m ×G1/z
m )→ BGL2

→MGLR(1)→61+σ+σα+αMGLR.
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After taking geometric fixed points, this becomes a map

S2
' S1
∧ S1
→ S1

× S1
→ B(Z/2×Z/2)→ BO2→MGLO(1)→61+αMGLO.

This map is nonzero, and it realizes as an element of degree 1−α in π?(MGLO).
Notice that there exists exactly one element in π?(MGLO) of degree 1−α, the Tate
twist. Therefore, the coefficients of 8C2(λ−1MGLR) are

π?(θ
−1MGLO)∼= π∗(MO)[θ±1

]. �

Corollary 5.6. The spectrum MGLR is not equivalent to λ−1MGLR.

Proof. Since MGLR and λ−1MGLR are not equal on geometric fixed points, they
cannot possibly be equal equivariantly. �

It is interesting to note that while inverting λ has the effect of inverting the Tate
twist θ under the geometric fixed points map, it is not the case that θ is inverted
under the forgetful map MGLR→MGL, which thinks of the structure nonequivari-
antly. The reason for this is the forgetful map sends σ and σα grading to 1 and α,
respectively. Therefore, λ gets sent to the unit under this map. The next theorem
gives more detail.

Theorem 5.7. Nonequivariantly, λ−1MGLR'MGL.

Proof. Notice that nonequivariantly, λ realizes as

S2+2α
'6Gm ∧6Gm→6Gm ×6Gm→ B(Gm ×Gm)

→ BGL2→MGL(1)→62+2αMGL.

Notice that this map is clearly nonzero, and represents an element in π?(MGL) of
degree 0. Notice that the only nonzero element in π?(MGL) of degree 0 is the
identity element. Therefore, λ−1MGLR is nonequivariantly equivalent to MGL. �

Theorem 5.8. Localizing at p = 2, we have that

MGL=
∨
mi

6mi (1+α)BPGL

for integers mi . There exists a spectrum BPGLR such that

MGLR=
∨
mi

6mi (1+σα)BPGLR.

Furthermore, 8C2
ét (BPGLR)= θ

−1 HZ/2.
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6. Calculating the coefficients of θ−1λ−1MGLR

The main difficulty in computing the coefficients of MGLR is the lack of a Tate
diagram. One would like to use simplicial EC2 to get a motivic Tate diagram,

EC2+ ∧MGLR→MGLR→ ẼC2 ∧MGLR.

However, the C2 fixed points of ẼC2 ∧MGLR is not the geometric fixed points
of MGLR in the sense of [Lewis et al. 1986, Chapter 2, Definition 9.7]. In other
words, taking C2 fixed points of MGLR at the level of prespectra does not form a
nonequivariant spectrum equivalent to

(ẼC2 ∧MGLR)C2 .

To fix this, we need to use a different model of EC2. The model we use is

EC2 := lim
−−→

A(nσ)r 0,

where A(nσ)r0 denotes Anr0 with a C2 action z 7→−z. This gives us cofibrations

A(nσ)r 0+→ S0
→ Snσ+nσα.

These piece together to give us a cofibration

EC2+→ S0
→ ẼC2.

The space ẼC2 takes into account the entire equivariant grading in the C2 equivari-
ant stable category, and so we have the following.

Theorem 6.1. 8
C2
ét (MGLR) := (ẼC2 ∧MGLR)C2 'MGLO.

Proof. By construction, the n-th term of the prespectrum defining MGLO is equal
to the C2-fixed points of the n-th term of the prespectrum defining MGLR [Hu
et al. 2011, Section 6]. Let MGLR(n) denote the n-th term of the prespectrum
defining MGLR. Notice that (MGLR∧ ẼC2)

C2 is a nonequivariant spectrum with
prespectrum (MGLR(1))C2, (MGLR(2))C2, . . . , and connecting maps given by

P1
∧ (MGLR(n))C2 → (MGLR(n+ 1))C2 .

The claim follows. �

Corollary 6.2. MGLO is a motivic E∞-ring spectrum.

Proof. In [Hu et al. 2011, Section 6] it is proved that MGLR is a C2-equivariant
motivic E∞-ring spectrum. Being an E∞-ring spectrum is preserved by smashing
with S∞σ+∞σα and taking C2 fixed points. �

The author would like to acknowledge the work of the authors of [Heller et al.
2019], who are the first to have written about the geometric classifying space EC2

in the context of C2-equivariant motivic spectra. The unfortunate reality is that
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calculating F(EC2+,MGLR) via a Borel cohomology spectral sequence involves
developing new tools which do not currently exist. The solution presented in this
paper, however, is to restrict to a field k of characteristic 0, for which all elements
in k are squares. Then after completing at the prime p = 2 and inverting two twists
in MGLR, we can show

(ẼC2 ∧MGLR)C2 ' (ẼC2 ∧MGLR)C2 .

We can then apply the tools of [Hu and Kriz 2001].

Proposition 6.3. There exists an element θ of order 1−α in the Borel cohomology
and the Tate cohomology of λ−1MGLR.

Proof. Using simplicial EC2, we can set up a Borel cohomology spectral se-
quence for λ−1MGLR as follows. First we note that since we have inverted λ,
we can choose to ignore all σα grading, and instead only consider the grading
∗ + ∗

′σ + ∗′′α. Moreover, we filter by α twists. In other words, we consider
the grading ∗ + ∗′σ + kα for fixed k. Now for each k ≤ 0, we have a bijection
between the motivic Borel cohomology spectral sequence of λ−1MGLR and the
classical Borel cohomology spectral sequence of MR. This is true since λ−1MGLR

is nonequivariantly MGL, and over C, there is a bijection between π∗+kα(MGL)

and π∗(MU). It follows that the motivic Borel cohomology spectral sequence
associated to λ−1MGLR∗+∗′σ+∗′′α, where ∗, ∗′ ∈ Z and ∗′′ ∈ Z≤0, converges to
π∗+∗′σ+∗′′α(F(EC2+, λ

−1MGLR)) ∼= π?(MR)[θ ]. It follows that θ ∈ λ−1MGLR.
The same argument works for the Tate cohomology of λ−1MGLR. �

Corollary 6.4. There exists an element, again denoted θ , of degree 1− α in the
coefficients of λ−1MGLR.

Proof. This follows by considering the following square originating from the Tate
diagram:

λ−1MGLR S∞σ ∧ λ−1MGLR

F(EC2+, λ
−1MGLR) S∞σ ∧ F(EC2+, λ

−1MGLR)

It is easy to see that the element θ ∈ π?(F(EC2+, λ
−1MGLR)) is mapped to

θ ∈ π?(S∞σ ∧ F(EC2+, λ
−1MGLR)). This is true since the topological realization

of θ is just 1, and since the Borel and Tate cohomology spectral sequences of
λ−1MGLR and MR are isomorphisms for a fixed alpha twist kα, k ≤ 0. Now,
notice that there is an easily described twist in π?(S∞σ ∧ λ−1MGLR) of degree
1 − α, which we also call θ . If s is the Euler class s ∈ π−σ (MGLR), and t is
the Euler class t ∈ π−σα(MGLR), then θ ∈ π1−α(S∞σ ∧ λ−1MGLR) is given by
λs−1t . By comparison with topology, and in view of the fact that the topological
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realization of θ is 1, it follows that θ ∈ π1−α(S∞σ ∧ λ−1MGLR) is mapped to
θ ∈π1−α(S∞σ ∧F(EC2+, λ

−1MGLR)). Therefore, the element named θ commutes
in the bottom row and rightmost column of the above diagram. Since that diagram
is a pullback, there must exist an element θ ∈ π?(λ−1MGLR) which is sent to
θ ∈ π?(F(EC2+, λ

−1MGLR)). �

As we inverted λ ∈ π1−σ+σα−α(MGLR), so too can we invert θ ∈ π1−α(MGLR).
This gives us a spectrum θ−1λ−1MGLR. In its coefficients, the element λ−1θ has
degree σ − σα and is invertible.

Proposition 6.5. (S∞σ+∞σα ∧ θ−1λ−1MGLR)C2 ' (S∞σ ∧ θ−1λ−1MGLR)C2 .

Proof. To simplify notation, we write

E := S∞σ ∧ θ−1λ−1MGLR, F := S∞σ+∞σα ∧ θ−1λ−1MGLR.

Notice that 6σα−σ E ' E since θλ−1
∈ πσ−σα(E) is invertible. Also, it is clear that

6σ E ' E . Putting this together, we have that 6σαE ' E . Therefore, it follows
that F =6∞σαE ' E . �

Theorem 6.6. We have π?(θ−1BPGLR)= π?(BPR)[λ
±1, θ±1

]. Here, π?(BPR) is

Z(2)[vn,l, a | n ≥ 0, l ∈ Z]/ (
v0,0 = 2, a2n+1

−1vn,l = 0 | for n ≤ m, vm,k · vn,l2m−n = vm,k+l · vn,0
)
,

|a| = −σ , and |vn,l | = (2n
− 1)(1+ σ)+ l2n+1(σ − 1).

Proof. The claim is clear by comparison with topology [Hu and Kriz 2001]. In
more detail, considering the commutative square of Corollary 6.4, the C2 fixed
points of the top right corner is easily seen to be equal to π∗(MO)[θ±1

]. The bottom
right corner is calculated by comparing the Tate cohomology spectral sequence for
θ−1λ−1MGLR to topology. One deduces from the calculation that the C2 fixed
points of the top and bottom right-hand column are equal. From this it follows that
θ−1λ−1MGLR is equal to its Borel cohomology. By comparing with topology, the
claim follows. �
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The congruence subgroup problem for a finitely generated group0 and G≤Aut(0)
asks whether the map Ĝ→ Aut(0̂) is injective, or more generally, what its kernel
C(G, 0) is. Here X̂ denotes the profinite completion of X . In this paper we inves-
tigate C(IA(8n),8n), where 8n is a free metabelian group on n ≥ 4 generators,
and IA(8n)= ker(Aut(8n)→ GLn(Z)).

We show that in this case C(IA(8n),8n) is abelian, but not trivial, and not
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1. Introduction

The classical congruence subgroup problem (CSP) asks for, say, G = SLn(Z) or
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the answer to the CSP is affirmative. A rich theory of the CSP for more general
arithmetic groups has been developed since then.

By the observation GLn(Z)∼= Aut(Zn), the CSP can be generalized to automor-
phism groups as follows: Let 0 be a group and G ≤ Aut(0). For a finite index
characteristic subgroup M ≤ 0, define

G(M)= ker(G→ Aut(0/M)).

A finite index subgroup of G which contains G(M) for some M is called a “con-
gruence subgroup”. The CSP for the pair (G, 0) asks whether every finite index
subgroup of G is a congruence subgroup.

One can easily see that the CSP is equivalent to the question: Is the congruence
map Ĝ = lim

←−
G/U → lim

←−
G/G(M) injective? Here, U ranges over all finite index

normal subgroups of G, and M ranges over all finite index characteristic subgroups
of 0. When 0 is finitely generated, it has only finitely many subgroups of given
index m, and thus, the characteristic subgroups Mm =

⋂
{1C 0 | [0 :1] | m} are

of finite index in 0. Hence, one can write 0̂ = lim
←−

m∈N 0/Mm and have1

lim
←−

G/G(M)= lim
←−

m∈N G/G(Mm)≤ lim
←−

m∈N Aut(0/Mm)

≤ Aut(lim
←−

m∈N(0/Mm))= Aut(0̂).

Therefore, when 0 is finitely generated, the CSP is equivalent to the question:
Is the congruence map: Ĝ → Aut(0̂) injective? More generally, the CSP asks
what is the kernel C(G, 0) of this map. For G = Aut(0) we also use the simpler
notation C(0) = C(G, 0). The classical congruence subgroup result mentioned
above can therefore be reformulated as C(Zn)= {e} for n ≥ 3, and it is also known
that C(Z2)= F̂ω, where F̂ω is the free nonabelian profinite group on a countable
number of generators; see [Melnikov 1976; Lubotzky 1982].

Very few results are known when 0 is nonabelian. Most of the results are related
to 0 = π(Sg,n), the fundamental group of the closed surface of genus g with n
punctures; see [Diaz et al. 1989; McReynolds 2012; Asada 2001; Boggi 2009;
2016]. As observed in [Bux et al. 2011], the result of Asada [2001] actually gives
an affirmative solution to the case 0 = F2, G = Aut(F2); see also [Ben-Ezra and
Lubotzky 2018]. Note that for every n > 0, one has π(Sg,n)∼= F2g+n−1 = the free
group on 2g+n−1 generators. Hence, the aforementioned results relate to various
subgroups of the automorphism group of finitely generated free groups. However,
the CSP for the full Aut(Fn) when n ≥ 3 is still unsettled.

1By the celebrated theorem of Nikolov and Segal [2003], which asserts that every finite index
subgroup of a finitely generated profinite group is open, the second inequality is actually an equality.
However, we do not need it.
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Denote now the free metabelian group on n generators by 8n = Fn/F ′′n . Con-
sidering the metabelian case, it was shown in [Ben-Ezra and Lubotzky 2018] (see
also [Ben-Ezra 2016]) that C(82) = F̂ω. In addition, it was proven there that
C(83) ⊇ F̂ω. The basic motivation which led to this paper was to complete the
picture in the free metabelian case and investigate C(8n) for n ≥ 4. Now, let
IA(8n)= ker(Aut(8n)→ GLn(Z)). Then the commutative exact diagram

1 // IA(8n) //

&&

Aut(8n) //

��

GLn(Z) //

��

1

Aut(8̂n) // GLn(Ẑ)

gives rise to the commutative exact diagram (see Lemma 2.1 in [Bux et al. 2011])

̂IA(8n)

%%

// Âut(8n) //

��

ĜLn(Z) //

��

1

Aut(8̂n) // GLn(Ẑ)

Hence, by using the fact that ĜLn(Z)→ GLn(Ẑ) is injective for n ≥ 3, one can
obtain that C(8n) is an image of C(IA(8n),8n). Thus, for investigating C(8n)

it seems to be worthwhile to investigate C(IA(8n),8n).
The first goal of the present paper is to prove the following theorem:

Theorem 1.1. For every n ≥ 4, the group C(IA(8n),8n) contains a subgroup C
which satisfies the following properties:

• C is isomorphic to a product C =
∏n

i=1 Ci of n copies of

Ci ∼= ker
( ̂SLn−1(Z[x±1])→ SLn−1(Ẑ[x±1])

)
.

• C is a direct factor of C(IA(8n),8n); that is, there is a normal subgroup
N C C(IA(8n),8n) such that C(IA(8n),8n)= N ×C.

Using techniques of Kassabov and Nikolov [2006], one can show that the sub-
groups Ci are not finitely generated. So as an immediate corollary, we obtain the
following theorem:

Theorem 1.2. For every n ≥ 4, the group C(IA(8n),8n) is not finitely generated.

It will be shown in an upcoming paper that when 0 is a finitely generated nilpo-
tent group (of any class), then C(IA(0), 0) = {e} is always trivial. So the free
metabelian cases behave completely different from nilpotent cases. This result
gives the impression that C(IA(8n),8n) is “big”. On the other hand, we have the
following theorem (see [Ben-Ezra 2017]):

Theorem 1.3. For every n ≥ 4, the group C(IA(8n),8n) is central in ̂IA(8n).
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We remark that in the case of arithmetic groups, the congruence kernel is known
to have a dichotomous behavior: it is central if and only if it is finite (see [Prasad
and Rapinchuk 2010, Theorem 2]). So in some sense, the congruence kernel
C(IA(8n),8n) for n ≥ 4 has an intermediate behavior: central, but not finite.
The latter is similar to the behavior of the congruence kernel

ker
( ̂SLd(Z[x])→ SLd(Ẑ[x])

)
for d ≥ 3

that was investigated in [Kassabov and Nikolov 2006, Theorem 4.1].
Theorem 1.3 has already been stated in [Ben-Ezra 2017]. However, a substantial

portion of the proof of Theorem 1.3 appears in this paper — this is the second goal
of the present paper. To be more precise, all the steps of the proof of Theorem 1.3
that involve arguments in algebraic K-theory are given in this paper, and in [Ben-
Ezra 2017] we describe the structure of the proof, and present all the other steps.
As presented in Section 5, the steps that are given in this present paper by them-
selves are sufficient for showing that the subgroup C ≤ C(IA(8n),8n) presented
in Theorem 1.1 is contained in the center of ̂IA(8n). We remark that the main
results in this paper that are used in [Ben-Ezra 2017] in order to prove Theorem 1.3
are Lemma 7.1 and our work in Section 5 (see Remark 5.6 for a more precise
description). The following problem is still open:

Problem 1.4. Is C(IA(8n),8n)=
∏n

i=1 Ci or does it contain more elements?

Remark 1.5. Considering the action of Aut(8n) on IA(8n) by conjugation, we
have a natural map Aut(8n) → Aut(IA(8n)) in which the copy of IA(8n) in
Aut(8n) is mapped onto IA(8n)→ Inn(IA(8n)). Now let

IAn,m =
⋂
{N C IA(8n) | [IA(8n) : N ] | m}.

Then as for every n ≥ 4, the group IA(8n) is finitely generated [Bachmuth and
Mochizuki 1985], the characteristic subgroups IAn,m ≤ IA(8n) are of finite index.
Hence ̂IA(8n)= lim

←−
m∈N(IA(8n)/ IAn,m) and therefore the action of Aut(8n) on

IA(8n) induces an action of Aut(8n) on ̂IA(8n), so we have a map Aut(8n)→

lim
←−

m∈N Aut(IA(8n)/ IAn,m))≤ Aut(̂IA(8n)). The latter gives rise to a map

Âut(8n)→ lim
←−

m∈N Aut(IA(8n)/ IAn,m))≤ Aut(̂IA(8n))

that actually gives an action of Âut(8n) on ̂IA(8n) such that the closure IA(8n)

of IA(8n) in Âut(8n) acts trivially on Z(̂IA(8n)), the center of ̂IA(8n). Thus,
as we have Âut(8n)/IA(8n)= ĜLn(Z) we obtain a natural action of ĜLn(Z) on
Z(̂IA(8n)). It will be clear from the description in the paper that the permutation
matrices permute the copies Ci through this natural action.



THE IA-CONGRUENCE KERNEL OF HIGH RANK FREE METABELIAN GROUPS 387

The aforementioned behavior of C(IA(8n),8n) for n ≥ 4 is also different from
the behavior of C(IA(8n),8n) for n= 2, 3. More precisely, as C(Z3)={e}, similar
arguments show that when n = 3 the group C(83) is an image of C(IA(83),83).
So as C(83)⊇ F̂ω [Ben-Ezra and Lubotzky 2018], we obtain that C(IA(83),83)

is infinite nonabelian. On the other hand, regarding the case n = 2, it is known
that IA(82)= Inn(82) (see [Bachmuth 1965]) and it is known that the center of
82 and 8̂2 is trivial (see [Ben-Ezra 2016]). It follows that we have a canonical
isomorphism

̂IA(82)= ̂Inn(82)∼= 8̂2 ∼= Inn(8̂2)≤ Aut(8̂2),

so C(IA(82),82)= {e} is trivial. Our results show that when n ≥ 4, the behavior
of C(IA(8n),8n) stabilizes and it is abelian, but not trivial.

We also note that considering our basic motivation, as C(8n) is an image of
C(IA(8n),8n) we actually obtain from Theorem 1.3 that when n ≥ 4, the situation
is dramatically different from the cases of n = 2, 3 described above:

Theorem 1.6. For every n ≥ 4, the group C(8n) is abelian.

We remark that despite the result of the latter theorem, we do not know whether
C(8n) is also not finitely generated. In fact we cannot even prove at this point that
it is not trivial.

The paper is organized as follows. For a ring R, ideal H C R and d ∈ N let

GLd(R, H)= ker(GLd(R)→ GLd(R/H)).

For n ∈ N define also the ring Rn = Z[x±1
1 , . . . , x±1

n ] = Z[Zn
]. Using the Magnus

embedding of IA(8n), in which IA(8n) can be viewed as

IA(8n)=

A ∈ GLn(Rn)

∣∣∣∣∣ A

 x1− 1
...

xn − 1

=
 x1− 1

...

xn − 1


 ,

we obtain in Section 3, for every 1≤ i ≤ n, a natural embedding

GLn−1(Rn, (xi − 1)Rn) ↪→ IA(8n)

and a surjective natural homomorphism

IA(8n)
ρi
−� GLn−1

(
Z[x±1

i ], (xi − 1)Z[x±1
i ]
)

in which the obvious copy of the subgroup GLn−1
(
Z[x±1

i ], (xi − 1)Z[x±1
i ]
)

of
the group GLn−1(Rn, (xi − 1)Rn) is mapped onto itself via the composition map
(see Proposition 3.7). This description, combined with some classical notions and
results from algebraic K-theory presented in Section 2, enables us in Section 4 to
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show that for every n ≥ 4 and 1≤ i ≤ n, the group C(IA(8n),8n) contains a copy
of

Ci ∼= ker
( ̂GLn−1

(
Z[x±1

i ], (xi − 1)Z[x±1
i ]
)
→ GLn−1(Ẑ[x±1

i ])
)

∼= ker
( ̂SLn−1(Z[x±1

i ])→ SLn−1(Ẑ[x±1
i ])

)
(1.7)

such that C(IA(8n),8n) is mapped onto Ci through the map ρ̂i induced by ρi .
The second isomorphism in (1.7) is obtained by using some classical results from
algebraic K-theory (Propositions 4.5 and 4.6), and the main lemma, Lemma 7.1.
The proof of Lemma 7.1 will be postponed until the end of the paper. In particular,
we get that for every 1≤ i ≤ n one has

C(IA(8n),8n)=
(
C(IA(8n),8n)∩ ker ρ̂i

)
oCi .

(see Proposition 4.3). In Section 4 we also show that the copies Ci lie in ker ρ̂ j

whenever j 6= i (Proposition 4.2). In particular, we get that the copies Ci inter-
sect each other trivially. Then, following the techniques of Kassabov and Nikolov
[2006] we show that Ci is not finitely generated, and thus deduce that C(IA(8n),8n)

is not finitely generated either, i.e., we prove Theorem 1.2 (see the end of Section 4).
Then, in Section 5 we show that the copies Ci lie in the center of ̂IA(8n), using
classical results from algebraic K-theory and Lemma 7.1. In particular, using the
aforementioned results, we obtain that

C(IA(8n),8n)=

(
C(IA(8n),8n)∩

n⋂
i=1

ker ρ̂i

)
×

n∏
i=1

Ci .

This completes the proof of Theorem 1.1.
After that, we turn to prove Lemma 7.1. In Section 6 we introduce some ele-

ments in 〈IA(8n)
m
〉 which are needed for the proof of the lemma. In Section 7,

using classical results from algebraic K-theory, we conclude the paper by proving
Lemma 7.1, which asserts that for every 1≤ i ≤ n, we have

GLn−1(Rn, (xi − 1)Rn)∩ En−1(Rn, Hn,m2)⊆ 〈IA(8n)
m
〉, (1.8)

where

• GLn−1(Rn, (xi − 1)Rn) denotes its appropriate copy in IA(8n) described
above;

• En−1(Rn, Hn,m2) is the subgroup of En−1(Rn) = 〈In−1 + r Ei, j | r ∈ Rn〉

which is generated as a normal subgroup by the elementary matrices of the
form In−1+hEi, j for h ∈ Hn,m2 = ker(Rn→ Zm2[Zn

m2]), 1≤ i 6= j ≤ n. Here,
In−1 is the (n− 1)×(n− 1) unit matrix and Ei, j is the matrix which has 1 in
the (i, j)-th entry and 0 elsewhere.

• The intersection in the inclusion (1.8) is obtained by viewing the copy of
GLn−1(Rn, (xi − 1)Rn) in IA(8n) as a subgroup of GLn−1(Rn).
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We note that as described above, Lemma 7.1 is used in two places in the course of
the paper. It is used once to prove the second isomorphism in (1.7). The second
place is in the proof that the group C lies in the center of ̂IA(8n). We also note
that almost all the work that we do in order to show that C lies in the center of
̂IA(8n), including Lemma 7.1 (but also most of Section 5), is used in [Ben-Ezra

2017] to prove Theorem 1.3 (see Remark 5.6).

2. Some background in algebraic K-theory

In this section we fix some notation and recall some definitions and background
in algebraic K-theory which will be used throughout the paper. One can find more
general information in the references [Rosenberg 1994; Milnor 1971; Bass 1968].
In this section R always denotes a commutative ring with identity. We start by
recalling the following notation. Let R be a commutative ring, H C R an ideal,
and d ∈ N. Then:

• GLd(R)= {A ∈ Mn(R) | det(A) ∈ R∗}.

• SLd(R)= {A ∈ GLd(R) | det(A)= 1}.

• Ed(R)= 〈Id + r Ei, j | r ∈ R, 1≤ i 6= j ≤ d〉.

• GLd(R, H)= ker(GLd(R)→ GLd(R/H)).

• SLd(R, H)= ker(SLd(R)→ SLd(R/H)).

• Ed(R, H) = the normal subgroup of Ed(R), which is generated as a normal
subgroup by the elementary matrices of the form Id + hEi, j for h ∈ H .

For every d ≥ 3, the subgroup Ed(R, H) is normal in GLd(R); see Corollary 1.4
in [Suslin 1977]. Hence, we can consider the groups

K1(R; d)= GLd(R)/Ed(R), K1(R, H ; d)= GLd(R, H)/Ed(R, H),

SK1(R; d)= SLd(R)/Ed(R), SK1(R, H ; d)= SLd(R, H)/Ed(R, H).

We now go ahead with the following definition:

Definition 2.1. Let R be a commutative ring, and 3 ≤ d ∈ N. We define the
“Steinberg group” Std(R) to be the group generated by the elements xi, j (r) for
r ∈ R and 1≤ i 6= j ≤ d , under the relations

• xi, j (r1) · xi, j (r2)= xi, j (r1+ r2),

• [xi, j (r1), x j,k(r2)] = xi,k(r1 · r2),

• [xi, j (r1), xk,l(r2)] = 1,

for every distinct 1≤ i, j, k, l ≤ d and every r1, r2 ∈ R.
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As the elementary matrices Id + r Ei, j satisfy the relations which define Std(R),
the map xi, j (r) 7→ Id+r Ei, j defines a natural homomorphism φd :Std(R)→ Ed(R).
The kernel of this map is denoted by K2(R; d)= ker(φd). Now, for two invertible
elements u, v ∈ R∗ and 1≤ i 6= j ≤ d , define the “Steinberg symbol” by

{u, v}i, j = hi, j (uv)hi, j (u)−1hi, j (v)
−1
∈ Std(R)

where hi, j (u)= wi, j (u)wi, j (−1) and wi, j (u)= xi, j (u)x j,i (−u−1)xi, j (u).

One can show that {u, v}i, j ∈ K2(R; d) and lie in the center of Std(R). In addition,
for every 3≤ d ∈ N, the Steinberg symbols {u, v}i, j do not depend on the indices
i, j , so they can be denoted simply by {u, v}; see [Dennis and Stein 1973]. The
Steinberg symbols satisfy many identities. For example,

{uv,w} = {u, w}{v,w}, {u, vw} = {u, v}{u, w}. (2.2)

In the semilocal case we have the following:

Theorem 2.3 [Stein and Dennis 1973, Theorem 2.7]. Let R be a semilocal com-
mutative ring and d ≥ 3. Then K2(R; d) is generated by the Steinberg symbols
{u, v} for u, v ∈ R∗. In particular, K2(R; d) is central in Std(R).

Now let R be a commutative ring, H C R an ideal and d ≥ 3. Let R = R/H .
Clearly, there is a natural map Ed(R)→ Ed(R). It is clear that Ed(R, H) lies in
the kernel of the latter map, so we have a map

πd : Ed(R)/Ed(R, H)→ Ed(R).

In addition, it is easy to see that we have a surjective map

ψd : Std(R)� Ed(R)/Ed(R, H)

defined by xi, j (r̄) 7→ Id+r Ei, j such that φd :Std(R)→ Ed(R) satisfies φd =πd◦ψd .
Therefore, we obtain the surjective map

K2(R; d)= ker(φd)
ψd
−� ker(πd)= (Ed(R)∩SLd(R, H))/Ed(R, H)

≤ SK1(R, H ; d).

In particular, it implies that if Ed(R)= SLd(R), then we have a natural surjective
map

K2(R/H ; d)� SK1(R, H ; d).

From this one can easily deduce the following corollary, which will be needed later
in the paper.

Corollary 2.4. Let R be a commutative ring, H C R an ideal of finite index and
d ≥ 3. Assume also that Ed(R)= SLd(R).

(1) SK1(R, H ; d) is a finite group.
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(2) SK1(R, H ; d) is central in GLd(R)/Ed(R, H).

(3) Every element of SK1(R, H ; d) has a representative in SLd(R, H) of the form(
A 0
0 Id−2

)
such that A ∈ SL2(R, H).

Proof. The ring R = R/H is finite. In particular, R is Artinian and hence semilocal.
Thus, by Theorem 2.3, K2(R; d) is an abelian group which is generated by the
Steinberg symbols {u, v} for u, v ∈ R∗. As R is finite, so is the number of the
Steinberg symbols. From (2.2) we obtain that the order of any Steinberg symbol
is finite. So K2(R; d) is a finitely generated abelian group whose generators are of
finite order. Thus, K2(R; d) is finite. Moreover, as R is semilocal, Theorem 2.3
implies that K2(R; d) is central Std(R). Now, as we assume that Ed(R)= SLd(R),
we obtain that SK1(R, H ; d) is the image of K2(R; d) under the surjective map

Std(R)� Ed(R)/Ed(R, H)= SLd(R)/Ed(R, H).

This implies part (1) and that SK1(R, H ; d) is central in SLd(R)/Ed(R, H).
Moreover, as d ≥ 3, we have {u, v} = {u, v}1,2 for every u, v ∈ R∗. Now, it

is easy to check from the definition of the Steinberg symbols that the image of
{u, v}1,2 under the map Std(R)� SLd(R)/Ed(R, H) is of the form(

A 0
0 Id−2

)
· Ed(R, H) (2.5)

for some A ∈ SL2(R, H). So as SK1(R, H ; d) is generated by the images of the
Steinberg symbols, the same holds for every element in SK1(R, H ; d). So we
obtain part (3). Now, as d ≥ 3 we can write

GLd(R)= SLd(R) · {Id + (r − 1)E3,3 | r ∈ R∗}.

Observe also that mod Ed(R, H), all the elements of the form Id + (r − 1)E3,3 for
r ∈ R∗ commute with all the elements of the form (2.5). Hence, the centrality of
SK1(R, H ; d) in SLd(R)/Ed(R, H) shows that actually SK1(R, H ; d) is central
in GLd(R)/Ed(R, H), as required in part (2). �

3. IA(8n) and its subgroups

We start our discussion of the IA-automorphism group of the free metabelian group,
G = IA(8n) = ker

(
Aut(8n)→ Aut(8n/8

′
n) = GLn(Z)

)
, by presenting some of

its properties and subgroups. We begin with the following notation:

• 8=8n = Fn/F ′′n = the free metabelian group on n elements. Here F ′′n denotes
the second derivative of Fn , the free group on n elements.
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• 9m =8/Mm , where Mm = (8
′8m)′(8′8m)m .

• IGm = G(Mm)= ker(IA(8)→ Aut(9m)).

• IAm =
⋂{

N C IA(8) | [IA(8) : N ] | m
}
.

• Rn = Z[Zn
] = Z[x±1

1 , . . . , x±1
n ], where x1, . . . , xn are the generators of Zn .

• Zm = Z/mZ.

• σi = xi − 1 for 1≤ i ≤ n.

• Eσ = the column vector which has σi in its i-th entry.

• A=
∑n

i=1 σi Rn = the augmentation ideal of Rn .

• Hm = ker
(
Rn→ Zm[Z

n
m]
)
=
∑n

i=1(x
m
i − 1)Rn +m Rn .

By the well-known Magnus embedding [Birman 1974; Remeslennikov and Sokolov
1970; Magnus 1939], one can identify 8 with the matrix group

8=

{(
g a1t1+ · · ·+ antn
0 1

) ∣∣∣ g ∈ Zn, ai ∈ Rn, g− 1=
n∑

i=1

aiσi

}
,

where ti is a free basis for an Rn-module, under the identification of the generators
of 8 with the matrices (

xi ti
0 1

)
for 1≤ i ≤ n.

Moreover, for every α ∈ IA(8), one can describe α by its action on the generators
of 8 by

α :

(
xi ti
0 1

)
7→

(
xi ai,1t1+ · · ·+ ai,ntn
0 1

)
.

This description gives an injective homomorphism (see [Bachmuth 1965; Birman
1974])

IA(8) ↪→ GLn(Rn), α 7→

a1,1 · · · a1,n
...

...

an,1 · · · an,n

 ,
which gives an identification of IA(8) with the group

IA(8)= {A ∈ GLn(Rn) | AEσ = Eσ } = {In + A ∈ GLn(Rn) | AEσ = E0}.

Consider now the map

8=

{(
g a1t1+ · · ·+ antn
0 1

) ∣∣∣ g ∈ Zn, ai ∈ Rn, g− 1=
n∑

i=1

aiσi

}
��{(

g a1t1+ · · ·+ antn
0 1

) ∣∣∣ g ∈ Zn
m, ai ∈ Zm[Z

n
m], g− 1=

n∑
i=1

aiσi

}
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which is induced by the projections Zn
→ Zn

m , Rn = Z[Zn
] → Zm[Z

n
m]. Using

a result of Romanovskii [1999], it is shown in [Ben-Ezra 2016] that this map is
surjective and that 9m is canonically isomorphic to its image. Therefore, we can
identify IGm , the principal congruence subgroup of IA(8), with

IGm =
{

A ∈ ker
(
GLn(Rn)→ GLn(Zm[Z

n
m])
)
| AEσ = Eσ

}
,

=
{

In + A ∈ GLn(Rn, Hm) | AEσ = E0
}
.

Proposition 3.1. Let In + A ∈ IA(8) and denote the entries of A by ak,l for
1≤ k, l ≤ n. Then for every 1≤ k, l ≤ n, we have ak,l ∈

∑n
l 6=i=1 σi Rn ⊆ A.

Proof. For a given 1≤ k ≤ n, the condition AEσ = E0 gives the equality

0= ak,1σ1+ ak,2σ2+ · · ·+ ak,nσn.

Thus, for a given 1 ≤ l ≤ n, the map Rn → Sl = Z[x±1
l ] defined by xi 7→ 1 for

every i 6= l maps

0= ak,1σ1+ ak,2σ2+ · · ·+ ak,nσn 7→ āk,lσl ∈ Z[x±1
l ].

Hence, as Z[x±1
l ] is a domain, āk,l = 0 ∈ Z[x±1

l ]. Thus ak,l ∈
∑n

l 6=i=1 σi Rn ⊆ A,
as required. �

Proposition 3.2. Let In + A ∈ IA(8). Then det(In + A) is of the form

det(In + A)=
n∏

r=1

x sr
r for some sr ∈ Z.

Proof. The invertible elements in Rn are the elements of the form ±
∏n

i=1 x sr
r ;

see [Crowell and Fox 1963, Chapter 8]. Thus, as In + A ∈ GLn(Rn) we have
det(In + A)=±

∏n
i=1 x sr

r . However, according to Proposition 3.1, for every entry
ak,l of A we have ak,l ∈A. Hence, under the projection xi 7→ 1 for every 1≤ i ≤ n,
one has In+ A 7→ In , and thus, ±

∏n
i=1 x sr

r = det(In+ A) 7→ det(In)= 1. Therefore,
the option det(In + A)=−

∏n
i=1 x sr

r is impossible, as required. �

Let us step forward with the following definition:

Definition 3.3. Let A ∈ GLn(Rn), and for 1 ≤ i ≤ n, denote by Ai,i the minor
which is obtained from A by erasing its i-th row and i-th column. Now, for every
1≤ i ≤ n, define the subgroup IGLn−1,i ≤ IA(8) by

IGLn−1,i =

{
In + A ∈ IA(8)

∣∣∣ the i-th row of A is 0,
In−1+ Ai,i ∈ GLn−1(Rn, σi Rn)

}
.

Proposition 3.4. For every 1≤ i ≤ n, we have IGLn−1,i ∼= GLn−1(Rn, σi Rn).
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Proof. The definition of IGLn−1,i gives us a natural projection

IGLn−1,i → GLn−1(Rn, σi Rn)

which maps an element In+ A ∈ IGLn−1,i to In−1+ Ai,i ∈GLn−1(Rn, σi Rn). Thus,
all we need is to explain why this map is injective and surjective.

Injectivity: Here, it is enough to show that given an element In+ A ∈ IA(8), every
entry in the i-th column is determined uniquely by the other entries in its row.
Indeed, as A satisfies the condition AEσ = E0, for every 1≤ k ≤ n we have

ak,1σ1+ ak,2σ2+ · · ·+ ak,nσn = 0 ⇒ ak,i =
−
∑n

i 6=l=1 ak,lσl

σi
, (3.5)

i.e., we have a formula for ak,i in terms of the other entries in its row.

Surjectivity: Without loss of generality we assume i = n. Let In−1 + σn B be in
GLn−1(Rn, σn Rn), and denote by Ebl the column vectors of B. Define(

In−1+ σn B −
∑n−1

l=1 σl Ebl

0 1

)
∈ IGLn−1,n .

This is clearly a preimage of In−1+ σn B. �

Under the above identification of IGLn−1,i with GLn−1(Rn, σi Rn), we will use
throughout the paper the following notation:

Definition 3.6. Let H C Rn . We define

ISLn−1,i (H)= IGLn−1,i ∩SLn−1(Rn, H),

IEn−1,i (H)= IGLn−1,i ∩En−1(Rn, H)≤ ISLn−1,i (H).

Observe that as for every 1≤ i ≤ n we have

GLn−1(Z[x±1
i ], σi Z[x±1

i ])≤ GLn−1(Rn, σi Rn),

the isomorphism GLn−1(Rn, σi Rn) ∼= IGLn−1,i ≤ IA(8) gives also a natural em-
bedding of GLn−1(Z[x±1

i ], σi Z[x±1
i ]) as a subgroup of IA(8).

Proposition 3.7. For every 1 ≤ i ≤ n, there is a canonical surjective homomor-
phism

ρi : IA(8)� GLn−1(Z[x±1
i ], σi Z[x±1

i ])

such that the following composition map is the identity:

GLn−1(Z[x±1
i ], σi Z[x±1

i ]) ↪→ IA(8)
ρi
−� GLn−1(Z[x±1

i ], σi Z[x±1
i ]).

Hence IA(8)= ker ρi oGLn−1(Z[x±1
i ], σi Z[x±1

i ]).
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Proof. Without loss of generality we assume i = n. First, consider the homomor-
phism IA(8)→ GLn(Z[x±1

n ]), which is induced by the projection Rn→ Z[x±1
n ]

that is defined by x j 7→ 1 for every j 6= n. By Proposition 3.1, given In+A∈ IA(8),
all the entries of the n-th column of A are in

∑n−1
j=1 σ j Rn . Hence, the above map

IA(8)→ GLn(Z[x±1
n ]) is actually a map

IA(8)→
{

In + A ∈ GLn(Z[x±1
n ]) | the n-th column of A is E0

}
.

Observe now that the right side of the above map can be mapped naturally to
GLn−1(Z[x±1

n ]) by erasing the n-th column and the n-th row from every element.
Hence we obtain a map

IA(8)→ GLn−1(Z[x±1
n ]).

Now, by Proposition 3.1, every entry of A such that In + A ∈ IA(8) is in A.
Thus, the entries of every A such that In−1+ A ∈ GLn−1(Z[x±1

n ]) is an image of
In + A ∈ IA(8) are all in σnZ[x±1

n ]. Hence, we actually obtain a homomorphism

ρn : IA(8)→ GLn−1(Z[x±1
n ], σnZ[x±1

n ]).

We conclude by observing that the copy of GLn−1(Z[x±1
n ], σnZ[x±1

n ]) in IGLn−1,n

is mapped isomorphically to itself by ρn . �

Proposition 3.8. Write Si = Z[x±1
i ] ⊆ Rn and Ji,m = (xm

i − 1)Si +mSi ⊆ Hm for
1≤ i ≤ n. Then, by identifying

Im(ρi )∼= GLn−1(Z[x±1
i ], σi Z[x±1

i ])= GLn−1(Si , σi Si ),

for every m ∈ N one has

Im(ρi )∩ IGm = GLn−1(Si , σi Ji,m).

Proof. By the identification

IGm = {In + A ∈ GLn(Rn, Hm) | AEσ = E0}

and by applying the formula of (3.5) to the i-th column of elements in IGLn−1,i , it
is easy to see that the elements of IGLn−1,i which correspond to the elements of
GLn−1(Si , σi Ji,m) are clearly in Im ρi ∩ IGm . For the opposite inclusion, without
loss of generality assume that i = n, and let In + A ∈ Im ρn ∩ IGm . Then In + A
has the form (

In−1+ σn B −
∑n−1

l=1 σl Ebl

0 1

)
∈ IGLn−1,n,

where the entries of B satisfy bk,l ∈ Sn and
∑n−1

j=1 σ j bk, j ∈ Hm . Notice now that
for every l 6= n, by projecting σ j 7→ 0 for j 6= l, n, we see that actually σlbk,l ∈ Hm .
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From here it is easy to see that we necessarily have bk,l ∈ Hm , i.e.,

bk,l ∈ Hm ∩ Sn = (xm
n − 1)Sn +mSn = Jn,m,

and the claim follows. �

Proposition 3.9. For every 1≤ i ≤ n and m ∈ N one has

ρi (IGm2)⊆ Im(ρi )∩ IGm ⊆ ρi (IGm).

Proof. As every element in Im ρi is mapped to itself via ρi we clearly have

Im ρi ∩ IGm = ρi (Im ρi ∩ IGm)⊆ ρi (IGm).

On the other hand, if In + A ∈ IGm2 then viewing Im ρi ∼= GLn−1(Si , σi Si ) for
Si = Z[x±1

i ], the entries of ρi (In+ A)= In−1+ B belong to (xm2

i − 1)Si +m2σi Si .
Observe now that we have

∑m−1
r=0 xmr

i ⊆ (x
m
i − 1)Si +mSi = Ji,m . Hence

xm2

i − 1= σi

m2
−1∑

r=1

xr
i = σi

m−1∑
r=0

xr
i

m−1∑
r=0

xmr
i ∈ σi Ji,m . (3.10)

So by Proposition 3.8, ρi (In + A) ∈ Im ρi ∩ IGm , as required. �

Proposition 3.11. For every m ∈ N and 1≤ i ≤ n one has

ρi (IAm)= Im(ρi )∩ IAm,

where IAm =
⋂{

N C IA(8) | [IA(8) : N ] | m
}
.

Proof. As every element in Im ρi is mapped to itself via ρi , we clearly have
Im ρi ∩ IAm = ρi (Im ρi ∩ IAm)⊆ ρi (IAm). For the opposite, assume that α ∈ IAm ,
and let ρi (α) = β ∈ Im ρi . We want to show that β ∈ IAm . So let N C IA(8)
such that [IA(8) : N ] | m. Then obviously [Im ρi : (N ∩ Im ρi )] | m. Thus, as
ρi is surjective, [IA(8) : ρ−1

i (N ∩ Im ρi )] | m so α ∈ ρ−1
i (N ∩ Im ρi ) and hence

β = ρi (α) ∈ N ∩ Im ρi ≤ N . As this is valid for every such N , we have β ∈ IAm ,
as required. �

We close this section with the following definition:

Definition 3.12. For every 1≤ i ≤ n, define

IGL′n−1,i = {In + A ∈ IA(8) | the i-th row of A is 0}.

Obviously, IGLn−1,i ≤ IGL′n−1,i , and by the same injectivity argument as in the
proof of Proposition 3.4, one can deduce the next proposition:

Proposition 3.13. The subgroup IGL′n−1,i ≤ IA(8) is canonically embedded in
GLn−1(Rn) by the map In + A 7→ In−1+ Ai,i .

Remark 3.14. Note that in general IGLn−1,i � IGL′n−1,i . For example,

I4+ σ3 E1,2− σ2 E1,3 ∈ IGL′3,4 \ IGL3,4 .
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4. The subgroups Ci

In this section we define the subgroups Ci ≤ C(IA(8n),8n), and we show that
for each i we can view C(IA(8n),8n) as a semidirect product of Ci with another
subgroup. We also show that when n ≥ 4,

Ci ∼= ker
( ̂SLn−1(Z[x±1])→ SLn−1(Ẑ[x±1])

)
and use it to show that C(IA(8n),8n) is not finitely generated. Recall the notation

• 8=8n ,

• 9m =8/Mm , where Mm = (8
′8m)′(8′8m)m ,

• IGm = G(Mm)= ker(IA(8)→ Aut(9m)),

• IAm =
⋂{

N C IA(8) | [IA(8) : N ] | m
}
.

It is proven in [Ben-Ezra 2016] that 8̂= lim
←−

9m . So, as for every m ∈N the group
ker(8→9m) is characteristic in 8, we can write explicitly

C(IA(8),8)= ker
(
ÎA(8)→ Aut(8̂)

)
= ker

(
ÎA(8)→ lim

←−
Aut(9m)

)
= ker

(
ÎA(8)→ lim

←−
(IA(8)/ IGm)

)
.

Now, as for every n≥ 4 we know that IA(8) is finitely generated (see [Bachmuth
and Mochizuki 1985]), as explained in Remark 1.5, we have

ÎA(8)= lim
←−
(IA(8)/ IAm).

Hence

C(IA(8),8)= ker
(
lim
←−
(IA(8)/ IAm)→ lim

←−
(IA(8)/ IGm)

)
= ker

(
lim
←−
(IA(8)/ IAm)→ lim

←−
(IA(8)/ IGm · IAm)

)
= lim
←−
(IAm · IGm / IAm).

Similarly, we can write C(IA(8),8)= lim
←−
(IAm · IGm2 / IAm).

Remember now that for every 1≤ i ≤ n the composition map

GLn−1(Z[x±1
i ], σi Z[x±1

i ]) ↪→ IA(8)
ρi
−� GLn−1(Z[x±1

i ], σi Z[x±1
i ])

is the identity on GLn−1(Z[x±1
i ], σi Z[x±1

i ]). Hence, the induced composition map
of the profinite completions

̂GLn−1
(
Z[x±1

i ], σi Z[x±1
i ]
) %̂
−→ ÎA(8)

ρ̂i
−� ̂GLn−1

(
Z[x±1

i ], σi Z[x±1
i ]
)
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is the identity on ̂GLn−1
(
Z[x±1

i ], σi Z[x±1
i ]
)
. In particular, the map %̂ is injective,

so we can write

̂GLn−1
(
Z[x±1

i ], σi Z[x±1
i ]
)
↪→ ÎA(8)

ρ̂i
−� ̂GLn−1

(
Z[x±1

i ], σi Z[x±1
i ]
)
.

This enables us to write IA(8)= ker ρi o Im ρi and ÎA(8)= ker ρ̂i o Im ρ̂i .

Definition 4.1. We define

Ci = C(IA(8),8)∩ Im ρ̂i = ker(Im ρ̂i → Aut(8̂)).

Proposition 4.2. If 1≤ i 6= j ≤ n, then Ci ⊆ ker ρ̂ j . In particular, for every i 6= j
we have Ci ∩C j = {e}.

Proof. By the explicit description ÎA(8)= lim
←−
(IA(8)/ IAm), one can write

Ci = ker(Im ρ̂i → Aut(8̂))

= ker
(
lim
←−
(IAm · Im ρi/ IAm)→ lim

←−
(IA(8)/ IGm)

)
= ker

(
lim
←−
(IAm · Im ρi/ IAm)→ lim

←−
(IA(8)/ IGm · IAm)

)
= lim
←−
((IAm · Im ρi )∩ (IAm · IGm))/ IAm,

and similarly, Ci = lim
←−
((IAm · Im ρi )∩ (IAm · IGm2))/ IAm . We claim now that

(IAm · Im ρi )∩ (IAm · IGm2)⊆ IAm · (Im ρi ∩ IGm)

⊆ (IAm · Im ρi )∩ (IAm · IGm).

The second inclusion is obvious. For the first one, we have to show that if
ar = bs such that a, b ∈ IAm , r ∈ Im ρi and s ∈ IGm2 , then there exist c ∈ IAm and
t ∈ Im ρi ∩ IGm such that ar = bs = ct . Indeed, write Im ρi 3 r = a−1bs. Then
r = ρi (r)= ρi (a−1b)ρi (s), and by Propositions 3.9 and 3.11,

ρi (a−1b) ∈ ρi (IAm)= Im ρi ∩ IAm, ρi (s) ∈ ρi (IGm2)⊆ Im ρi ∩ IGm .

Therefore, by defining c= a ·ρi (a−1b) and t = ρi (s) we get the required inclusion.
Thus, for j 6= i we have

Ci = lim
←−
(IAm · (Im ρi ∩ IGm)/ IAm)

ρ̂ j
−� lim
←−

ρ j (IAm) · ρ j (Im ρi ∩ IGm)/ρ j (IAm).

Using the definition of ρ j , it is not difficult to show that

ρ j (Im ρi ∩ IGm)=
〈
In +m(σi Ek, j − σ j Ek,i ) | k 6= i, j

〉
= ρ j

(〈
In +m(σi Ek, j − σ j Ek,i ) | k 6= i, j

〉)
= ρ j

(〈
In + σi Ek, j − σ j Ek,i | k 6= i, j

〉m)
⊆ ρ j (IAm).

Hence, Ci ⊆ ker ρ̂ j , as required. �
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We can now prove the following proposition:

Proposition 4.3. For every 1≤ i ≤ n we have

Ci ↪→ C(IA(8),8)
ρ̂i
−� Ci .

In particular, C(IA(8),8)= (ker ρ̂i ∩C(IA(8),8))oCi .

Proof. In the proof of Proposition 4.2 we saw that

Ci = lim
←−
(IAm · (Im ρi ∩ IGm)/ IAm).

Similarly, Ci = lim
←−
(IAm · (Im ρi ∩ IGm2)/ IAm). We recall that by Propositions 3.9

and 3.11, we have

ρi (IGm2)⊆ Im ρi ∩ IGm ⊆ ρi (IGm), ρi (IAm)= Im ρi ∩ IAm .

Therefore, we have

Ci = lim
←−

IAm · (Im ρi ∩ IGm)/ IAm = lim
←−

IAm · (Im ρi ∩ IGm2)/ IAm

↪→ lim
←−

IAm · IGm / IAm = lim
←−

IAm · IGm2 / IAm = C(IA(8),8)
ρ̂i
−� lim
←−

ρi (IAm) · ρi (IGm)/ρi (IAm)= lim
←−

ρi (IAm) · ρi (IGm2)/ρi (IAm)

= lim
←−
(Im ρi ∩ IAm) · (Im ρi ∩ IGm)/(Im ρi ∩ IAm)

= lim
←−

IAm · (Im ρi ∩ IGm)/ IAm = Ci .

The latter equality follows from the inclusion Im ρi ∩ IGm ⊆ Im ρi . �

Computing Ci . We turn now to the computation of Ci . We are going to show that
the Ci are canonically isomorphic to

ker
( ̂SLn−1(Z[x±1])→ SLn−1(Ẑ[x±1])

)
and then use that fact in order to show that C(IA(8),8) is not finitely generated.
So fix n ≥ 4, 1≤ i0 ≤ n, and let

• x = xi0 ,

• σ = σi0 = xi0 − 1,

• IGLn−1 = IGLn−1,i0 ,

• IEn−1(H)= IEn−1,i0(H),

• S = Z[x±1
] = Z[x±1

i0
],

• Jm = (xm
− 1)S+mS for m ∈ N,

• ρ = ρi0 : IA(8)� GLn−1(S, σ S),

• ρ̂ = ρ̂i0 : ÎA(8)� ̂GLn−1(S, σ S).
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Now, write

Ci0 = ker(Im ρ̂→ Aut(8̂))

= ker
( ̂GLn−1(S, σ S)→ Aut(8̂)

)
= ker

( ̂GLn−1(S, σ S)→ lim
←−
(IA(8)/ IGm)

)
= ker

( ̂GLn−1(S, σ S)→ lim
←−
(GLn−1(S, σ S) · IGm / IGm)

)
= ker

( ̂GLn−1(S, σ S)→ lim
←−

GLn−1(S, σ S)/(GLn−1(S, σ S)∩ IGm)
)

= ker
( ̂GLn−1(S, σ S)→ lim

←−
GLn−1(S, σ S)/GLn−1(S, σ Jm)

)
(the last equality is by Proposition 3.8). Now, by the same computation as in
Proposition 3.9 one can show that for every m ∈ N we have

(Jm2 ∩ σ S)⊆ σ Jm ⊆ (Jm ∩ σ S),

so the latter is equal to

ker
( ̂GLn−1(S, σ S)→ lim

←−
GLn−1(S, σ S)/(GLn−1(S, σ S)∩GLn−1(S, Jm))

)
= ker

( ̂GLn−1(S, σ S)→ lim
←−
(GLn−1(S, σ S) ·GLn−1(S, Jm))/GLn−1(S, Jm)

)
= ker

( ̂GLn−1(S, σ S)→ lim
←−

GLn−1(S)/GLn−1(S, Jm)
)

= ker
( ̂GLn−1(S, σ S)→ lim

←−
GLn−1(S/Jm)

)
.

Now, if S is a finite quotient of S, then as x is invertible in S, its image x̄ ∈ S is
invertible in S. Thus, there exists r ∈ N such that x̄r

= 1S . In addition, there exists
t ∈ N such that

1S + · · ·+ 1S︸ ︷︷ ︸
t

= 0S.

Therefore, for m= r ·t the map S→ S factorizes through Zm[Zm]∼= S/Jm . Thus, we
have Ŝ= lim

←−
(S/Jm), which implies that GLn−1(Ŝ)= lim

←−
GLn−1(S/Jm). Therefore,

Ci0 = ker
( ̂GLn−1(S, σ S)→ GLn−1(Ŝ)

)
.

Now, the short exact sequence

1→ GLn−1(S, σ S)→ GLn−1(S)→ GLn−1(Z)→ 1

gives rise to the exact sequence (see [Bux et al. 2011, Lemma 2.1])

̂GLn−1(S, σ S)→ ̂GLn−1(S)→ ̂GLn−1(Z)→ 1,
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which gives rise to the commutative diagram

̂GLn−1(S, σ S) //

((

̂GLn−1(S) //

��

̂GLn−1(Z) //

��

1

GLn−1(Ŝ) // GLn−1(Ẑ) // 1

Assuming that n ≥ 4 and using the affirmative answer to the classical congru-
ence subgroup problem [Mennicke 1965; Bass et al. 1964], we have that the map
̂GLn−1(Z)→ GLn−1(Ẑ) is injective. Thus, by diagram chasing we obtain that

ker
( ̂GLn−1(S, σ S)→ GLn−1(Ŝ)

)
is mapped onto ker

( ̂GLn−1(S)→ GLn−1(Ŝ)
)
. In

order to proceed from here we need the following lemma.

Lemma 4.4. Let d ≥ 3 and Dm = {Id + (xk·m
− 1)E1,1 | k ∈ Z} for m ∈ N. Then

ĜLd(S)= lim
←−

(
GLd(S)/(Dm Ed(S, Jm))

)
,

ŜLd(S)= lim
←−

(
SLd(S)/Ed(S, Jm)

)
.

Proof. We prove the first statement; the second is similar but easier. We first
claim that Dm Ed(S, Jm) is a finite index normal subgroup of GLd(S). Indeed, by
a well-known result of Suslin [1977], SLd(S) = Ed(S). Thus, by Corollary 2.4,
SK1(S, Jm; d) = SLd(S, Jm)/Ed(S, Jm) is finite. As the subgroup SLd(S, Jm) is
of finite index in SLd(S), so is Ed(S, Jm). Now, it is not difficult to see that the
group of invertible elements of S is equal to S∗ = {±xk

| k ∈ Z} (see [Crowell and
Fox 1963, Chapter 8]). So as {xk·m

| k ∈ Z} is of finite index in S∗, the subgroup
Dm SLd(S) is of finite index in GLd(S). We deduce that also Dm Ed(S, Jm) is of
finite index in GLd(S). It remains to show that Dm Ed(S, Jm) is normal in GLd(S).

We already stated previously (see Section 2) that Ed(S, Jm) is normal in GLd(S).
Thus, noticing the group identity

gheg−1
= h(h−1ghg−1)(geg−1),

it is enough to show that the commutators of the elements of Dm with any set of
generators of GLd(S) are in Ed(S, Jm). By the aforementioned result of Suslin
and as S∗ = {±xr

| r ∈ Z}, the group GLd(S) is generated by the elements of the
forms

1. Id + (±x − 1)E1,1,

2. Id + r Ei, j , r ∈ S, 2≤ i 6= j ≤ d,

3. Id + r E1, j , r ∈ S, 2≤ j ≤ d,

4. Id + r Ei,1, r ∈ S, 2≤ i ≤ d.

Now, obviously, the elements of Dm commute with the elements of the forms 1
and 2. In addition, for the elements of the forms 3 and 4, one can easily compute
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that [
Id + (xk·m

− 1)E1,1, Id + r E1, j
]
= Id + r(xk·m

− 1)E1, j ∈ Ed(S, Jm),[
Id + (xk·m

− 1)E1,1, Id + r Ei,1
]
= Id + r(x−k·m

− 1)Ei,1 ∈ Ed(S, Jm)

for every 2≤ i, j ≤ d , as required.
Now, clearly, every finite index normal subgroup of GLd(S) contains Dm for

some m ∈ N. In addition, it is not hard to show that when d ≥ 3, every finite index
normal subgroup N CGLd(S) contains Ed(S, J ) for some finite index ideal J C S;
see [Kassabov and Nikolov 2006, Section 1]. Thus, as we saw previously that
every finite index ideal J C Sn contains Jm for some m, we obtain that ĜLd(S)=
lim
←−

(
GLd(S)/(Dm Ed(S, Jm))

)
, as required. �

In order to prove the following proposition, we are going to use Lemma 7.1, the
proof of which is left to the last section of the paper.

Proposition 4.5. Let n ≥ 4. Then the map ̂GLn−1(S, σ S)→ ̂GLn−1(S) is injective.
Hence, the surjective map

Ci0 = ker
( ̂GLn−1(S, σ S)→ GLn−1(Ŝ)

)
� ker

( ̂GLn−1(S)→ GLn−1(Ŝ)
)

is an isomorphism.

Proof. We showed in the previous lemma that

̂GLn−1(S)= lim
←−

GLn−1(S)/(Dm En−1(S, Jm)),

where Dm = {In−1+ (xk·m
−1)E1,1 | k ∈ Z} and Jm = (xm

−1)S+mS. Hence, the
image of ̂GLn−1(S, σ S) in ̂GLn−1(S) is

lim
←−
(GLn−1(S, σ S) · Dm En−1(S, Jm))/(Dm En−1(S, Jm))

= lim
←−

GLn−1(S, σ S)/(GLn−1(S, σ S)∩ Dm En−1(S, Jm)).

Using the fact that Dm ⊆ GLn−1(S, σ S), one can see that the latter equals

lim
←−

GLn−1(S, σ S)/
(
Dm(GLn−1(S, σ S)∩ En−1(S, Jm))

)
.

Recall now the following notation:

• Rn = Z[x±1
1 , . . . , x±1

n ].

• Hm =
∑n

i=1(x
m
i − 1)Rn +m Rn C Rn .

• IEn−1(Hm)= IGLn−1 ∩En−1(Rn, Hm) under the identification of IGLn−1 with
GLn−1(Rn, σRn).

Then, following the definition of the map ρ : IA(8)� GLn−1(S, σ S), we have

〈IA(8)m〉
ρ
−� 〈GLn−1(S, σ S)m〉,

IEn−1(Hm)
ρ
−� GLn−1(S, σ S)∩ En−1(S, Jm).
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So, since by the main lemma (Lemma 7.1) we have IEn−1(Hm2)⊆ 〈IA(8)m〉, we
have also

GLn−1(S, σ S)∩ En−1(S, Jm2)⊆ 〈GLn−1(S, σ S)m〉.

As obviously Dm2 ⊆ 〈GLn−1(S, σ S)m〉, we deduce the following natural surjective
maps:

lim
←−

GLn−1(S, σ S)/
(
Dm(GLn−1(S, σ S)∩ En−1(S, Jm))

)
= lim
←−

GLn−1(S, σ S)/
(
Dm2(GLn−1(S, σ S)∩ En−1(S, Jm2))

)
� lim
←−

GLn−1(S, σ S)/〈GLn−1(S, σ S)m〉

� ̂GLn−1(S, σ S)

� lim
←−

GLn−1(S, σ S)/
(
Dm(GLn−1(S, σ S)∩ En−1(S, Jm))

)
such that the composition gives the identity map. Hence, these maps are also
injective, and in particular, the map

̂GLn−1(S, σ S)� lim
←−

GLn−1(S, σ S)/
(
Dm(GLn−1(S, σ S)∩ En−1(S, Jm))

)
is injective, as required. �

Proposition 4.6. Let d ≥ 3. Then the natural embedding SLd(S)≤GLd(S) induces
a natural isomorphism

ker(ĜLd(S)→ GLd(Ŝ))∼= ker(ŜLd(S)→ SLd(Ŝ)).

Proof. By Lemma 4.4 we have

ker
(
ĜLd(S)→ GLd(Ŝ)= lim

←−
GLd(S/Jm)

)
= ker(lim

←−
GLd(S)/Dm Ed(S, Jm)

→ lim
←−

GLd(S)/GLd(S, Jm))= lim
←−

GLd(S, Jm)/Dm Ed(S, Jm),

where Dm = {In−1 + (xk·m
− 1)E1,1 | k ∈ Z}. We claim now that when m > 2

then GLd(S, Jm) = Dm SLd(S, Jm). Indeed, for every A ∈ GLd(S, Jm) we have
det(A)=±xk for some k ∈ Z. However, as under the map S→ Zm[Zm] we have
A 7→ Id , the map S→Zm[Zm] also implies det(A) 7→ 1. Hence det(A)=±xk·m for
some k ∈ Z, and when m > 2 we even get det(A)= xk·m for some k ∈ Z. It follows
that GLd(S, Jm)= Dm SLd(S, Jm). Therefore, since Dm ∩SLd(S, Jm)= {Id}, we
deduce that

ker(ĜLd(S)→ GLd(Ŝ))= lim
←−

Dm SLd(S, Jm)/Dm Ed(S, Jm)

= lim
←−

SLd(S, Jm)/Ed(S, Jm)

= lim
←−

ker(ŜLd(S)→ SLd(Ŝ)). �

The immediate corollary from Propositions 4.5 and 4.6 is as follows:

Corollary 4.7. For every n ≥ 4, we have Ci0
∼= ker( ̂SLn−1(S)→ SLn−1(Ŝ)).
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We close the section by showing that ker( ̂SLn−1(S)→ SLn−1(Ŝ)) is not finitely
generated, using the techniques in [Kassabov and Nikolov 2006]. It is known that
the group ring S = Z[x±1

] = Z[Z] is Noetherian; see [Ivanov 1989; Brown et al.
1981]. In addition, it is known that the Krull dimension of Z is dim(Z) = 1 and
thus dim(S)= dim(Z[Z])= 2; see [Smith 1972]. Therefore, by Proposition 1.6 in
[Suslin 1977], as n− 1≥ 3, for every J C S, the canonical map

SK1(S, J ; n− 1)→ SK1(S, J ) := lim
−→d∈N

SK1(S, J ; d)

is surjective. Hence, the canonical map (when J C S ranges over all finite index
ideals of S)

ker( ̂SLn−1(S)→ SLn−1(Ŝ))= lim
←−
(SLn−1(S, J )/En−1(S, J ))

= lim
←−

SK1(S, J ; n− 1)→ lim
←−

SK1(S, J )

is surjective, so it is enough to show that lim
←−

SK1(S, J ) is not finitely generated.
By a result of Bass [1968, Chapter 5, Corollary 9.3], for every J C K C S

of finite index in S, the map SK1(S, J )→ SK1(S, K ) is surjective. Hence, it is
enough to show that for every l ∈N there exists a finite index ideal J C S such that
SK1(S, J ) is generated by at least l elements. Now, as SK1(S)= 1 [Suslin 1977],
we obtain the exact sequence

K2(S)→ K2(S/J )→ SK1(S, J )→ SK1(S)= 1

for every J C S (see Theorem 6.2 in [Milnor 1971]). In addition, by a classical
result of Quillen (see [Quillen 1973; Rosenberg 1994, Theorem 5.3.30]), we have

K2(S)= K2(Z[x±1
])= K2(Z)⊕ K1(Z),

so by the classical facts K2(Z) = K1(Z) = {±1} (see [Milnor 1971, Chapters 3
and 10]) we deduce that K2(S) is of order 4. Hence, it is enough to prove that for
every l ∈N there exists a finite index ideal J C S such that K2(S/J ) is generated by
at least l elements. Following [Kassabov and Nikolov 2006], we state the following
proposition (which holds by the proof of Theorem 2.8 in [Stein and Dennis 1973]):

Proposition 4.8. Let p be a prime, l ∈N and denote by P CZ[y] the ideal which is
generated by p2 and y pl

. Then for S = Z[y]/P , the group K2(S) is an elementary
abelian p-group of rank ≥ l.

Observe now that for every l ≥ 0,

(y+ 1)pl+1
= (y pl

+ 1+ p · a(y))p
= 1 mod P,

so y+ 1 is invertible in S. Therefore we have a well-defined surjective homomor-
phism S→ S which is defined by sending x 7→ y+1. In particular, J = ker(S→ S)
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is a finite index ideal of S which satisfies the above requirements. This shows that
indeed Ci0 = ker( ̂SLn−1(S) → SLn−1(Ŝ)) is not finitely generated, and by the
description in Proposition 4.3 it follows that C(IA(8),8) is not finitely generated
either.

5. The centrality of Ci

In this section we prove that for every n≥ 4, the copies Ci lie in the center of ÎA(8).
Throughout the section we assume that n ≥ 4 is constant, and show it for i = n.
Symmetrically, it is valid for every i . We recall:

• Rn = Z[x±1
1 , . . . , x±1

n ].

• Hm =
∑n

i=1(x
m
i − 1)Rn +m Rn .

• IGm = {In + A ∈ GLn(Rn, Hm) | AEσ = E0}.

• IAm =
⋂{

N C IA(8) | [IA(8) : N ] | m
}
.

• S = Sn = Z[x±1
n ].

• Im ρ ∩ IGm = Im ρn ∩ IGm ' GLn−1(S, σn Hm ∩ S)) (see Proposition 3.8).

We saw in Section 4 that we can write

Cn = lim
←−
(IAm · (Im ρ ∩ IGm)/ IAm)

= lim
←−
(IAm · (Im ρ ∩ IGm4)/ IAm)≤ lim

←−
(IA(8)/ IAm)= ÎA(8).

Hence, if we want to show that Cn lies in the center of ÎA(8), it suffices to
show that for every m ∈ N, the group IAm · (Im ρ ∩ IGm4)/ IAm lies in the center
of IA(8)/ IAm .

We first claim that under the isomorphism Im ρ ∩ IGm4 'GLn−1(S, σn Hm4 ∩ S),
one has

IAm · (Im ρ ∩ IGm4)/ IAm ⊆ IAm · SLn−1(S, σn Hm2 ∩ S)/ IAm . (5.1)

Indeed, if α ∈ Im ρ∩ IGm4 then det(α) ∈ 1+σn Hm4 ∩ S ⊆ 1+Hm4 ∩ S. Combining
it with Proposition 3.2, det(α) has the form det(α)= xm4t

n for some t ∈ Z. Hence

det
(
(In + σn E1,1− σ1 E1,n)

−m4t
·α
)
= 1.

Now, as we have

xm4t
n = 1+ (xm4t

n − 1)= 1+ σn

m4
−1∑

i=1

(x t
n)

i

∈ 1+ σn
(
(xm2t

n − 1)S+m2S
)
⊆ 1+ σn Hm2 ∩ S
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(see the computation in the proof of Proposition 3.9), we obtain that

(In + σn E1,1− σ1 E1,n)
m4t
∈ 〈IA(8)m〉 ∩GLn−1(S, σn Hm2 ∩ S)

⊆ IAm ∩GLn−1(S, σn Hm2 ∩ S).

Therefore, writing α= (In+σn E1,1−σ1 E1,n)
m4t
·
(
(In+σn E1,1−σ1 E1,n)

−m4t
·α
)
,

we deduce that

Im ρ ∩ IGm4 ⊆ IAm ·SLn−1(S, σn Hm2 ∩ S)

and we get the inclusion (5.1). It follows that if we want to show that Cn lies in
the center of ÎA(8), it suffices to show that IAm ·SLn−1(S, σn Hm2 ∩ S)/ IAm lies
in the center of IA(8)/ IAm . However, we are going to show even more:

Proposition 5.2. For every m ∈ N, the group

IAm · ISLn−1,n(σn Hm2)/ IAm

lies in the center of IA(8)/ IAm .

Let F be the free group on f1, . . . , fn . It is a classical result by Magnus (see
[Magnus et al. 1966, Chapter 3, Theorem N4]) that IA(F) is generated by the
automorphisms of the form

αr,s,t =

{
fr 7→ [ ft , fs] fr ,

fu 7→ fu, u 6= r,

where [ ft , fs] = ft fs f −1
t f −1

s and 1≤ r, s 6= t ≤ n (notice that we may have r = s).
Bachmuth and Mochizuki [1985] show that when n ≥ 4, the group IA(8) is gener-
ated by the images of these generators under the natural map Aut(F)→ Aut(8),
i.e., IA(8) is generated by the elements of the form

Er,s,t = In + σt Er,s − σs Er,t , 1≤ r, s 6= t ≤ n.

Therefore, to show the centrality of Cn , it is enough to show that given

• an element λ̄ ∈ IAm · ISLn−1,n(σn Hm2)/ IAm ,

• and one of the generators Er,s,t = In + σt Er,s − σs Er,t for 1≤ r, s 6= t ≤ n,

there exists λ ∈ ISLn−1,n(σn Hm2), a representative of λ̄, such that [Er,s,t , λ] ∈ IAm .
So, assume that we have an element λ̄ ∈ IAm · ISLn−1,n(σn Hm2)/ IAm . Then a
representative for λ̄ has the form

λ=

(
In−1+ σn B −

∑n−1
i=1 σi Ebi

0 1

)
∈ ISLn−1,n(σn Hm2)

for some (n−1)×(n−1)matrix B with entries bi, j ∈ Hm2 , and with column vectors
denoted by Ebi .
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Lemma 5.3. Let λ̄∈ IAm · ISLn−1,n(σn Hm2)/ IAm . Then, for every 1≤ l<k≤n−1,
λ̄ has a representative in ISLn−1,n(σn Hm2) of the following form:

Il−1 0 0 0 0 0
0 1+ σna 0 σnb 0 −σla− σkb
0 0 Ik−l−1 0 0 0
0 σnc 0 1+ σnd 0 −σlc− σkd
0 0 0 0 In−k−1 0
0 0 0 0 0 1

↑ ↑ ↑

l-th column k-th column n-th column


← l-th row

← k-th row
(5.4)

for some a, b, c, d ∈ Hm2 . (The above notation means that the matrix is similar to
the identity matrix, except for the entries in the l-th and k-th rows.)

Proof. We demonstrate the proof in the case l = 1, k = 2, and symmetrically, the
arguments hold for arbitrary 1≤ l < k ≤ n−1. Consider an arbitrary representative
of λ̄,

λ=

(
In−1+ σn B −

∑n−1
i=1 σi Ebi

0 1

)
∈ ISLn−1,n(σn Hm2).

Then In−1+ σn B ∈ SLn−1(Rn, σn Hm2). Consider now the ideal

Rn B H ′m2 =

n−1∑
r=1

(xm2

r − 1)Rn + σn(xm2

n − 1)Rn +m2 Rn.

Observe that σn Hm2 C H ′m2 C H m2 C Rn and that H ′m2∩σn Rn = σn Hm2 . In addition,
by similar computations as in the proof of Proposition 3.9, for every x ∈ Rn we
have xm4

− 1 ∈ (x − 1)(xm2
− 1)Rn + (x − 1)m2 Rn , and thus Hm4 ⊆ H ′m2 , so H ′m2

is of finite index in Rn .
Now, In−1+ σn B ∈ SLn−1(Rn, σn Hm2) ⊆ SLn−1(Rn, H ′m2). Thus, by the third

part of Corollary 2.4, as H ′m2 C Rn is an ideal of finite index, n − 1 ≥ 3 and
En−1(Rn)= SLn−1(Rn) [Suslin 1977], one can write the matrix In−1+ σn B as

In−1+ σn B = AD when A =
(

A′ 0
0 In−3

)
for some A′ ∈ SL2(Rn, H ′m2) and D ∈ En−1(Rn, H ′m2). Now consider the images
of D and A under the projection σn→ 0, which we denote by D and A. Observe
that obviously, D ∈ En−1(Rn, H ′m2). In addition, observe that

AD ∈ GLn−1(Rn, σn Rn) ⇒ AD = In−1.

Thus, we have In−1+ σn B = AA−1 D−1 D. Therefore, by replacing D by D−1 D
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and A by AA−1 we can assume that

In−1+ σn B = AD for A =
(

A′ 0
0 In−3

)
,

where A′ ∈ SL2(Rn, H ′m2)∩GL2(Rn, σn Rn)= SL2(Rn, σn Hm2), and

D ∈ En−1(Rn, H ′m2)∩GLn−1(Rn, σn Rn)

⊆ En−1(Rn, Hm2)∩GLn−1(Rn, σn Rn) := IEn−1,n(Hm2).

Now, as we prove in the main lemma (Lemma 7.1) that

IEn−1,n(Hm2)⊆ 〈IA(8)m〉 ⊆ IAm,

this argument shows that λ can be replaced by a representative of the form (5.4). �

We now return to our initial mission. Let λ̄ ∈ IAm · ISLn−1,n(σn Hm2)/ IAm , and
let Er,s,t = In +σt Er,s −σs Er,t for 1≤ r, s 6= t ≤ n be one of the above generators
for IA(8). We want to show that there exists λ∈ ISLn−1,n(σn Hm2), a representative
of λ̄, such that [Er,s,t , λ] ∈ IAm . We separate the treatment to two cases. We note
that Lemma 5.3 is needed only for the second case, which is a bit more delicate.

First Case: 1≤ r ≤ n− 1.

In this case one can take an arbitrary representative λ ∈ ISLn−1,n(σn Hm2) ∼=

SL n−1(Rn, σn Hm2). Considering the embedding of IGL′n−1,n in GLn−1(Rn), we
have Er,s,t ∈ IGL′n−1,n ⊆ GLn−1(Rn) (see Definition 3.12 and Proposition 3.13).
Thus, since by Corollary 2.4

SK1(Rn, Hm2; n− 1)= SL n−1(Rn, Hm2)/En−1(Rn, Hm2)

is central in GLn−1(Rn)/En−1(Rn, Hm2), we have

[Er,s,t , λ] ∈ [GLn−1(Rn),SLn−1(Rn, σn Hm2)] ⊆ En−1(Rn, Hm2).

In addition, as SLn−1(Rn, σn Hm2) ≤ GLn−1(Rn, σn Rn) and GLn−1(Rn, σn Rn) is
normal in GLn−1(Rn), we have

[Er,s,t , λ] ∈ [GLn−1(Rn),GLn−1(Rn, σn Rn)] ⊆ GLn−1(Rn, σn Rn).

Thus, we obtain from Lemma 7.1 that

[Er,s,t , λ] ∈ En−1(Rn, Hm2)∩GLn−1(Rn, σn Rn)

= IEn−1,n(Hm2)⊆ 〈IA(8)m〉 ⊆ IAm .

Second Case: r = n.

This case is a bit more complicated than the previous one, as Er,s,t is not
in IGL′n−1,n . Here, by Lemma 5.3 one can choose λ ∈ ISLn−1,n(σn Hm2) whose
t-th row equals the standard vector Eet . As t 6= r = n, we thus obtain that both λ
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and Er,s,t are in IGL′n−1,t . Considering the embedding IGL′n−1,t ↪→ GLn−1(Rn),
we have Er,s,t ∈ GLn−1(Rn, σt Rn). In addition, remember that λ has the form

λ=

(
In−1+ σn B −

∑n−1
i=1 σi Ebi

0 1

)
for In−1+σn B ∈ SLn−1(Rn, σn Hm2), so that the entries of Ebi are in Hm2 . It follows
that regarding the embedding IGL′n−1,t ↪→GLn−1(Rn), we have λ∈SLn−1(Rn, Hm2).

Remark 5.5. Note that when considering λ ∈ IGL′n−1,n ↪→ GLn−1(Rn), i.e., when
considering λ ∈ GLn−1(Rn) through the embedding of IGL′n−1,n in GLn−1(Rn),
we have λ ∈ GLn−1(Rn, σn Hm2) ≤ GLn−1(Rn). However, when we consider
λ ∈ IGL′n−1,t ↪→ GLn−1(Rn), we do not necessarily have λ ∈ GLn−1(Rn, σn Hm2),
but we still have λ ∈ GLn−1(Rn, Hm2).

Thus, by similar arguments as in the first case,

[Er,s,t , λ] ∈ [GLn−1(Rn, σt Rn),SLn−1(Rn, Hm2)]

⊆ En−1(Rn, Hm2)∩GLn−1(Rn, σt Rn)

= IEn−1,t(Hm2)⊆ 〈IA(8)m〉 ⊆ IAm .

This finishes the argument which shows that the Ci are central in ÎA(8).

Remark 5.6. One can follow and see that completely similar arguments give that
the group

〈IA(8)m〉 · ISLn−1,n(σn Hm2)/〈IA(8)m〉

lies in the center of IA(8)/〈IA(8)m〉. The reason is that the only property of IAm

that we used here was that 〈IA(8)m〉 ⊆ IAm . This claim is used in [Ben-Ezra
2017] to prove Theorem 1.3. We note that in this paper we were careful not to
use the subgroups 〈IA(8)m〉 directly as we still didn’t show that they are of finite
index in IA(8), and therefore we cannot write ÎA(8) = lim

←−
(IA(8)/〈IA(8)m〉).

However, on the way to proving Theorem 1.3, we do show that the 〈IA(8)m〉 are
of finite index in IA(8) (provided n ≥ 4).

6. Some elementary elements of 〈IA(8n)
m〉

In this section we introduce some elements in 〈IA(8n)
m
〉 which are needed for

the proof of Lemma 7.1. In [Ben-Ezra 2017] we introduce a list of elements
in 〈IA(8n)

m
〉 that contains the list below (see Propositions 4.1 and 4.2 therein).

However, we do not need the whole list of [Ben-Ezra 2017] here, and also do not
need all the notation that is used there. Hence, for the convenience of the reader
we include here only the list that is needed for the proof of Lemma 7.1, and repeat
the arguments that are related to this shorter list.
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Proposition 6.1. Let n ≥ 4, 1≤ u ≤ n and m ∈ N. Denote by Eei the i-th standard
row vector. Then the elements of IA(8n) of the following form lie in 〈IA(8n)

m
〉: Iu−1 0 0

au,1 · · · au,u−1 1 au,u+1 · · · au,n

0 0 In−u

← u-th row (6.2)

when (au,1, . . . , au,u−1, 0, au,u+1, . . . , au,n) is a linear combination of the vectors

1.
{
m(σi Ee j − σ j Eei ) | i, j 6= u, i 6= j

}
,

2.
{
(xm

k − 1)(σi Ee j − σ j Eei ) | i, j, k 6= u, i 6= j
}
,

3.
{
σu(xm

u − 1)(σi Ee j − σ j Eei ) | i, j 6= u, i 6= j
}
,

with coefficients in Rn . The notation in (6.2) means that the matrix is similar to the
identity matrix, except the entries in the u-th row.

Proof. Without loss of generality, we assume that u = 1. Observe now that for
every ai , bi ∈ Rn for 2≤ i ≤ n one has(

1 a2 · · · an

0 In−1

)(
1 b2 · · · bn

0 In−1

)
=

(
1 a2+ b2 · · · an + bn

0 In−1

)
.

Hence, it is enough to prove that the elements of the following forms belong to
〈IA(8n)

m
〉 (when we write aEei we mean that the entry of the i-th column in the

first row is a):

1.
(

1 m f (σi Ee j − σ j Eei )

0 In−1

)
, i, j 6= 1, i 6= j, f ∈ Rn,

2.
(

1 (xm
k − 1) f (σi Ee j − σ j Eei )

0 In−1

)
, i, j, k 6= 1, i 6= j, f ∈ Rn,

3.
(

1 σ1(xm
1 − 1) f (σi Ee j − σ j Eei )

0 In−1

)
, i, j 6= 1, i 6= j, f ∈ Rn.

We start with the elements of Form 1. Here we have(
1 m f (σi Ee j − σ j Eei )

0 In−1

)
=

(
1 f (σi Ee j − σ j Eei )

0 In−1

)m

∈ 〈IA(8n)
m
〉.

We pass to the elements of Form 2. In this case we have

〈IA(8n)
m
〉 3

[(
1 f (σi Ee j − σ j Eei )

0 In−1

)−1

,

(
xk −σ1Eek

0 In−1

)m ]
=

(
1 (xm

k − 1) f (σi Ee j − σ j Eei )

0 In−1

)
.
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We finish with the elements of Form 3. The computation here is more compli-
cated than in the previous cases, so we demonstrate it for the special case n = 4,
i = 2, j = 3. It is clear that symmetrically, with similar arguments, the same holds
in general when n ≥ 4 for every i, j 6= 1, i 6= j . By similar arguments as in the
previous case we get

〈IA(84)
m
〉 3


1 0 0 0
0 1 0 0
0 0 1 0
0 σ3(xm

1 − 1) f −σ2(xm
1 − 1) f 1

 .
Therefore, we also have

〈IA(84)
m
〉 3




x4 0 0 −σ1

0 1 0 0
0 0 1 0
0 0 0 1

,


1 0 0 0
0 1 0 0
0 0 1 0
0 σ3(xm

1 − 1) f −σ2(xm
1 − 1) f 1




=


1 −σ3σ1(xm

1 − 1) f σ2σ1(xm
1 − 1) f 0

0 1 0 0
0 0 1 0
0 0 0 1

 . �

7. The main lemma

We recall and present some new notation that is used in this section:

• IAm
= 〈IA(8)m〉, where 8=8n .

• Rn = Z[Zn
] = Z[x±1

1 , . . . , x±1
n ], where x1, . . . , xn are the generators of Zn .

• σr = xr − 1 for 1≤ r ≤ n.

• Ur,m = (xm
r − 1)Rn for 1≤ r ≤ n and m ∈ N.

• Om = m Rn .

• Hm =
∑n

r=1(x
m
r − 1)Rn +m Rn =

∑n
r=1 Ur,m + Om .

• IEn−1,i (H)= IGLn−1,i ∩En−1(Rn, H) ≤ ISLn−1,i (H) for H C Rn under the
identification of IGLn−1,i ≤ IA(8) with GLn−1(Rn, σi Rn) (see Proposition 3.4
and Definition 3.6).

In this section, we prove the following main lemma:

Lemma 7.1. For every n ≥ 4, m ∈ N and 1≤ i ≤ n, we have

IEn−1,i (Hm2)⊆ IAm .

To simplify the proof and the notation, we prove the lemma for the special
case i = n, and symmetrically, all the arguments are valid for every 1≤ i ≤ n.
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In addition, using the identification IGLn−1,n ∼= GLn−1(Rn, σn Rn), we iden-
tify IGLn−1,n with GLn−1(Rn, σn Rn), and the group IEn−1,n(Hm) with the group
GLn−1(Rn, σn Rn)∩ En−1(Rn, Hm). So the goal of this section is proving that

GLn−1(Rn, σn Rn)∩ En−1(Rn, Hm2)⊆ IAm .

Throughout the proof we use also elements of IGL′n−1,n (see Definition 3.12).
We recall that

IEn−1,n(Hm)≤ IGLn−1,n ≤ IGL′n−1,n ↪→ GLn−1(Rn)

(Proposition 3.13), so all the elements that are being used throughout the section
are naturally embedded in GLn−1(Rn). Using this embedding, we do all the com-
putations in GLn−1(Rn), and make the notation simpler by omitting the n-th row
and column from each matrix.

We note that many ideas in the proof of Lemma 7.1 below are based on ideas of
the proof of the “main lemma” in [Bachmuth and Mochizuki 1985] (see Section 4
therein). However, our arguments do not rely directly on the arguments in [Bach-
muth and Mochizuki 1985], so on the whole we cannot make a formal reference
to that work throughout the proof of Lemma 7.1.

Decomposing the proof. In this subsection we start the proof of Lemma 7.1. At
the end of the subsection, there will be a few tasks left, which will be accomplished
in the forthcoming subsections. We start with the following definition:

Definition 7.2. For every m ∈ N, define the following ideal of Rn:

Tm =

n∑
r=1

σ 2
r Ur,m +

n∑
r=1

σr Om + O2
m .

Observe that as for every x ∈ Rn we have
∑m−1

j=0 x j
∈ (x−1)Rn+m Rn , one has

xm2
− 1= (x − 1)

m2
−1∑

j=0

x j
= (x − 1)

m−1∑
j=0

x j
m−1∑
j=0

x jm

∈ (x − 1)((x − 1)Rn +m Rn)((xm
− 1)Rn +m Rn)

⊆ (x − 1)2(xm
− 1)Rn + (x − 1)2m Rn + (x − 1)m2 Rn.

It follows that Hm2 ⊆ Tm . Hence, it is enough to prove that

GLn−1(Rn, σn Rn)∩ En−1(Rn, Tm)⊆ IAm .

Equivalently, it is enough to prove that the group

(GLn−1(Rn, σn Rn)∩ En−1(Rn, Tm)) · IAm / IAm

is trivial. We continue with the following proposition, which is actually a propo-
sition of Suslin [1977, Corollary 1.4] with some elaborations of [Bachmuth and
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Mochizuki 1985] (see the remark that follows their Proposition 3.5 and the begin-
ning of the proof of the “main lemma” in Section 4 therein).

Proposition 7.3. Let R be a commutative ring, d ≥ 3 and H C R an ideal. Then
Ed(R, H) is generated by the matrices of the form

(Id − f Ei, j )(Id + hE j,i )(Id + f Ei, j ) (7.4)

for h ∈ H , f ∈ R and 1≤ i 6= j ≤ d.

Proof. In the proof of Corollary 1.4 in [Suslin 1977], Suslin shows that whenever
d ≥ 3, Ed(R, H) is generated by the elements of the form

Id + hEut(u j Eei − ui Ee j ),

where h∈H , i 6= j and Eu= (u1, u2, . . . , ud)∈ Rn such that Eu·Evt
=1 for some Ev∈ Rn .

In the remark which follows Proposition 3.5 in [Bachmuth and Mochizuki 1985],
it is observed that

Id + hEut(u j Eei − ui Ee j )= (Id + h(ui Eei + u j Ee j )
t(u j Eei − ui Ee j ))

·

∏
l 6=i, j

(Id + h(ul Eel)
t u j Eei ) ·

∏
l 6=i, j

(Id − h(ul Eel)
t ui Ee j ).

Hence, by observing that all the factors in the above expression are all of the form

Id + h( f1Eei + f2Ee j )
t( f2Eei − f1Ee j ) (7.5)

for some f1, f2 ∈ R, h ∈ H and 1≤ i 6= j ≤ d , it is enough to show that the matrices
of the form (7.5) are generated by the matrices of the form (7.4). We show it for
the case i, j, d = 1, 2, 3, and it will be clear that the general argument is similar.
So we have the matrix

Id + h( f1Ee1+ f2Ee2)
t( f2Ee1− f1Ee2)=

1+ h f1 f2 −h f 2
1 0

h f 2
2 1− h f1 f2 0

0 0 1


for some f1, f2 ∈ R and h ∈ H , which is equal to 1 0 −h f1

0 1 −h f2

f2 − f1 1

 1 0 h f1

0 1 h f2

− f2 f1 1


=

 1 0 0
0 1 0
f2 − f1 1

1 0 −h f1

0 1 −h f2

0 0 1

 1 0 0
0 1 0
− f2 f1 1

1 0 h f1

0 1 h f2

0 0 1

 .
As the matrix 1 0 h f1

0 1 h f2

0 0 1

=
1 0 h f1

0 1 0
0 0 1

1 0 0
0 1 h f2

0 0 1





414 DAVID EL-CHAI BEN-EZRA

is generated by the matrices of the form (7.4), it remains to show that 1 0 0
0 1 0
f2 − f1 1

1 0 −h f1

0 1 −h f2

0 0 1

 1 0 0
0 1 0
− f2 f1 1


=

 1 0 0
0 1 0
f2 − f1 1

1 0 −h f1

0 1 0
0 0 1

 1 0 0
0 1 0
− f2 f1 1


·

 1 0 0
0 1 0
f2 − f1 1

1 0 0
0 1 −h f2

0 0 1

 1 0 0
0 1 0
− f2 f1 1


is generated by the matrices of the form (7.4). Now 1 0 0

0 1 0
f2 − f1 1

1 0 −h f1

0 1 0
0 0 1

 1 0 0
0 1 0
− f2 f1 1


=

1 0 0
0 1 0
0 −h f 2

1 f2 1

1 −h f 2
1 0

0 1 0
0 0 1


·

 1 0 0
0 1 0
f2 0 1

1 0 −h f1

0 1 0
0 0 1

 1 0 0
0 1 0
− f2 0 1


is generated by the matrices of the form (7.4), and by a similar computation 1 0 0

0 1 0
f2 − f1 1

1 0 0
0 1 −h f2

0 0 1

 1 0 0
0 1 0
− f2 f1 1


is generated by these matrices as well. �

We proceed with the following lemma. Some of the ideas in its proof are based
on the proof of Proposition 3.5 in [Bachmuth and Mochizuki 1985].

Lemma 7.6. Let n ≥ 4. Recall Ur,m = (xm
r − 1)Rn , Om = mRn , and denote the

corresponding ideals of Rn−1 = Z[x±1
1 , . . . , x±1

n−1] ⊆ Rn by

Om = m Rn−1 ⊆ Om, U r,m = (xm
r − 1)Rn−1 ⊆Ur,m for 1≤ r ≤ n− 1.

Then every element of GLn−1(Rn, σn Rn)∩ En−1(Rn, Tm) can be decomposed as a
product of elements of the following four forms:
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1. A−1(In−1+ hEi, j )A, h ∈ σn Om,

2. A−1(In−1+ hEi, j )A,
h ∈ σ 2

n Un,m or h ∈ σnσ
2
r Ur,m

for 1≤ r ≤ n− 1,

3. A−1[(In−1+ hEi, j ), (In−1+ f E j,i )
]
A, h ∈ O2

m, f ∈ σn Rn,

4. A−1[(In−1+ hEi, j ), (In−1+ f E j,i )
]
A,

h ∈ σ 2
r U r,m or h ∈ σr Om

for 1≤ r ≤ n− 1, f ∈ σn Rn,

where A ∈ GLn−1(Rn) and i 6= j .

Remark 7.7. Notice that as GLn−1(Rn, σn Rn) is normal in GLn−1(Rn), every ele-
ment of the above forms is an element of GLn−1(Rn, σn Rn)∼= IGLn−1,n ≤ IA(8).

Proof of Lemma 7.6. Let B ∈ GLn−1(Rn, σn Rn)∩ En−1(Rn, Tm). We first claim
that to prove the lemma, it is enough to show that B can be decomposed as a
product of the elements in the lemma, and arbitrary elements in GLn−1(Rn−1).
Indeed, assume that we can write B = A1 D1 · · · An Dn for some Di of the forms in
the lemma and Ai ∈ GLn−1(Rn−1) (notice that A1 or Dn might be equal to In−1).
Observe now that we can therefore write

B = A1 D1 A−1
1 · · · (A1 · · · An)Dn(A1 · · · An)

−1(A1 · · · An),

and by definition, the conjugations of the Di can also be considered to be in the
forms in the lemma. On the other hand, we have

(A1 · · · An)D−1
n (A1 · · · An)

−1
· · · A1 D−1

1 A−1
1 B = A1 · · · An

and as the matrices of the forms in the lemma are all in GLn−1(Rn, σn Rn) (by
Remark 7.7), we deduce that

A1 · · · An ∈ GLn−1(Rn, σn Rn)∩GLn−1(Rn−1)= {In−1},

i.e., A1 · · · An = In−1. Hence

B = A1 D1 A−1
1 · · · (A1 · · · An)Dn(A1 · · · An)

−1,

i.e., B is a product of matrices of the forms in the lemma, as required.
So let B ∈ GLn−1(Rn, σn Rn)∩ En−1(Rn, Tm). According to Proposition 7.3, as

B ∈ En−1(Rn, Tm) and n− 1≥ 3, we can write B as a product of elements of the
form

(In−1− f Ei, j )(In−1+ hE j,i )(In−1+ f Ei, j )

for some f ∈ Rn , h ∈ Tm =
∑n

r=1 σ
2
r Ur,m+

∑n
r=1 σr Om+O2

m and 1≤ i 6= j ≤ n−1.
We show now that every element of the above form can be written as a product of
the elements of the forms in the lemma and elements of GLn−1(Rn−1).



416 DAVID EL-CHAI BEN-EZRA

So let h ∈ T and f ∈ Rn . Observe first that by division by σn (with residue),
one has

Tm =

n∑
r=1

σ 2
r Ur,m +

n∑
r=1

σr Om + O2
m

⊆ σn

( n−1∑
r=1

σ 2
r Ur,m + σnUn,m + Om

)
+

n−1∑
r=1

σ 2
r U r,m +

n−1∑
r=1

σr Om + O2
m .

Hence, we can decompose h=σnh1+h2 for some h1∈
∑n−1

r=1 σ
2
r Ur,m+σnUn,m+Om

and h2 ∈
∑n−1

r=1 σ
2
r U r,m +

∑n−1
r=1 σr Om + O2

m . Therefore, we can write

(In−1− f Ei, j )(In−1+ hE j,i )(In−1+ f Ei, j )

= (In−1− f Ei, j )(In−1+ σnh1 E j,i )(In−1+ f Ei, j )

· (In−1− f Ei, j )(In−1+ h2 E j,i )(In−1+ f Ei, j ).

Thus, as the matrix (In−1 − f Ei, j )(In−1 + σnh1 E j,i )(In−1 + f Ei, j ) is clearly a
product of elements of Forms 1 and 2 in the lemma, it is enough to deal with the
matrix

(In−1− f Ei, j )(In−1+ h2 E j,i )(In−1+ f Ei, j )

when h2 ∈
∑n−1

r=1 σ
2
r U r,m +

∑n−1
r=1 σr Om + O2

m . Let us now write f = σn f1+ f2

for some f1 ∈ Rn and f2 ∈ Rn−1, and write

(In−1− f Ei, j )(In−1+ h2 E j,i )(In−1+ f Ei, j )

= (In−1− f2 Ei, j )(In−1− σn f1 Ei, j )

· (In−1+ h2 E j,i )(In−1+ σn f1 Ei, j )(In−1+ f2 Ei, j ).

Now, as (In−1± f2 Ei, j ) ∈ GLn−1(Rn−1), it is enough to deal with the element

(In−1− σn f1 Ei, j )(In−1+ h2 E j,i )(In−1+ σn f1 Ei, j ),

which can be written as a product of elements of the form

(In−1− σn f1 Ei, j )(In−1+ k E j,i )(In−1+ σn f1 Ei, j )

with k ∈ O2
m, σ

2
r U r,m, σr Om, for 1≤ r ≤ n− 1.

Finally, as for every such k one can write

(In−1− σn f1 Ei, j )(In−1+ k E j,i )(In−1+ σn f1 Ei, j )

= (In−1+ k E j,i )[(In−1− k E j,i ), (In−1− σn f1 Ei, j )],

and (In−1+ k E j,i ) ∈ GLn−1(Rn−1), we are actually finished. �

Corollary 7.8. To prove Lemma 7.1, it is enough to show that every element of the
forms in Lemma 7.6 is in IAm .
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We start here by dealing with the elements of Form 1.

Proposition 7.9. Recall Om = m Rn . Elements of the following form are in IAm :

A−1(In−1+ hEi, j )A for A ∈ GLn−1(Rn), h ∈ σn Om and i 6= j.

Proof. In this case we can write h = σnmh′ for some h′ ∈ Rn . So, as

A−1(In−1+ σnh′Ei, j )A ∈ GLn−1(Rn, σn Rn)≤ IA(8),

we obtain that

A−1(In−1+ hEi, j )A = A−1(In−1+ σnmh′Ei, j )A

= (A−1(In−1+ σnh′Ei, j )A)m ∈ IAm,

as required. �

We devote the remaining sections to dealing with the elements of the other three
forms. In these cases the proof is more difficult, and we will need the help of the
computations in the next subsection.

Some auxiliary computations.

Proposition 7.10. For every f, g ∈ Rn we have the following equalities:1− f g − f g 0
f g 1+ f g 0
0 0 1

=
 1 0 0

f g 1 0
f g2 0 1

1 0 0
0 1+ f g − f
0 f g2 1− f g

1 − f g 0
0 1 0
0 − f g2 1


·

1− f g 0 f
0 1 0
− f g2 0 1+ f g

1 0 − f
0 1 f
0 0 1

 (7.11)

=

 1 0 0
f g 1 0
− f g2 0 1

1 0 0
0 1+ f g f
0 − f g2 1− f g

1 − f g 0
0 1 0
0 f g2 1


·

1− f g 0 − f
0 1 0

f g2 0 1+ f g

1 0 f
0 1 − f
0 0 1

 (7.12)

=

1 0 0
0 1 0
f f 1

1− f g 0 f g2

0 1 0
− f 0 1+ f g

 1 0 0
f g 1 − f g2

0 0 1


·

1 0 0
0 1+ f g f g2

0 − f 1− f g

1 − f g − f g2

0 1 0
0 0 1

 (7.13)
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=

 1 0 0
0 1 0
− f − f 1

1− f g 0 − f g2

0 1 0
f 0 1+ f g

 1 0 0
f g 1 f g2

0 0 1


·

1 0 0
0 1+ f g − f g2

0 f 1− f g

1 − f g f g2

0 1 0
0 0 1

 (7.14)

Proof. We use square brackets to help the reader follow the steps of the computation.
Here is the computation for (7.11):1− f g − f g 0

f g 1+ f g 0
0 0 1


=

1 0 f
0 1 − f
g g 1

 1 0 − f
0 1 f
−g −g 1


=

1 0 0
0 1 0
g g 1

1 0 f
0 1 − f
0 0 1

 1 0 0
0 1 0
−g −g 1

1 0 − f
0 1 f
0 0 1


=

1 0 0
0 1 0
g g 1

1 0 0
0 1 − f
0 0 1

 1 0 0
0 1 0
−g −g 1


·

1 0 0
0 1 0
g g 1

1 0 f
0 1 0
0 0 1

 1 0 0
0 1 0
−g −g 1

1 0 − f
0 1 f
0 0 1


=

 1 0 0
f g 1+ f g − f
f g2 f g2 1− f g

1− f g − f g f
0 1 0
− f g2

− f g2 1+ f g

1 0 − f
0 1 f
0 0 1


=

 1 0 0
f g 1 0
f g2 0 1

1 0 0
0 1+ f g − f
0 f g2 1− f g


·

1 − f g 0
0 1 0
0 − f g2 1

1− f g 0 f
0 1 0
− f g2 0 1+ f g

1 0 − f
0 1 f
0 0 1

 .
Line (7.12) is obtained similarly by changing the signs of f and g simultaneously.

Here is the computation for (7.13):1− f g − f g 0
f g 1+ f g 0
0 0 1

=
1 0 g

0 1 −g
f f 1

 1 0 −g
0 1 g
− f − f 1


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=

1 0 0
0 1 0
f f 1

1 0 g
0 1 −g
0 0 1

 1 0 0
0 1 0
− f − f 1

1 0 −g
0 1 g
0 0 1


=

1 0 0
0 1 0
f f 1

1 0 g
0 1 −g
0 0 1

 1 0 0
0 1 0
− f 0 1

1 0 −g
0 1 g
0 0 1


·

1 0 g
0 1 −g
0 0 1

1 0 0
0 1 0
0 − f 1

1 0 −g
0 1 g
0 0 1


=

1 0 0
0 1 0
f f 1

1− f g 0 f g2

f g 1 − f g2

− f 0 1+ f g

1 − f g − f g2

0 1+ f g f g2

0 − f 1− f g


=

1 0 0
0 1 0
f f 1

1− f g 0 f g2

0 1 0
− f 0 1+ f g

 1 0 0
f g 1 − f g2

0 0 1


·

1 0 0
0 1+ f g f g2

0 − f 1− f g

1 − f g − f g2

0 1 0
0 0 1

 .
We obtain (7.14) similarly by changing the signs of f and g simultaneously. �

In the following corollary, a 3×3 matrix B ∈GL3(Rn) denotes the block matrix(
B 0
0 In−4

)
∈ GLn−1(Rn).

Corollary 7.15. Let n ≥ 4, f ∈ σn
(∑n−1

r=1 σrUr,m +Un,m + Om
)

and g ∈ Rn . Then,
mod IAm we have the following equalities (the indices are intended to help us later
to recognize forms of matrices: form 7, form 12, etc.):1− f g − f g 0

f g 1+ f g 0
0 0 1


13

≡

1 0 0
0 1+ f g − f
0 f g2 1− f g


1

1− f g 0 f
0 1 0
− f g2 0 1+ f g


2

≡

1 0 0
0 1+ f g f
0 − f g2 1− f g


3

1− f g 0 − f
0 1 0

f g2 0 1+ f g


4

≡

1− f g 0 f g2

0 1 0
− f 0 1+ f g


5

1 0 0
0 1+ f g f g2

0 − f 1− f g


6
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≡

1− f g 0 − f g2

0 1 0
f 0 1+ f g


7

1 0 0
0 1+ f g − f g2

0 f 1− f g


8

(7.16)

and1− f g f g 0
− f g 1+ f g 0

0 0 1


14

≡

1− f g 0 − f g2

0 1 0
f 0 1+ f g


7

1 0 0
0 1+ f g f g2

0 − f 1− f g


6

. (7.17)

Moreover, we have (the inverse of a matrix is denoted by the same index — one can
observe that the inverse of each matrix in these equations is obtained by changing
the sign of f )1− f g 0 − f g

0 1 0
f g 0 1+ f g


15

≡

1 0 0
0 1− f g f g2

0 − f 1+ f g


8

1− f g f 0
− f g2 1+ f g 1

0 0 0


9

≡

1 0 0
0 1− f g − f g2

0 f 1+ f g


6

1− f g − f 0
f g2 1+ f g 0
0 0 1


10

≡

1− f g f g2 0
− f 1+ f g 0
0 0 1


11

1 0 0
0 1− f g − f
0 f g2 1+ f g


3

≡

1− f g − f g2 0
f 1+ f g 0
0 0 1


12

1 0 0
0 1− f g f
0 − f g2 1+ f g


1

(7.18)

and1− f g 0 f g
0 1 0
− f g 0 1+ f g


16

≡

1− f g − f g2 0
f 1+ f g 0
0 0 1


12

1 0 0
0 1− f g − f
0 f g2 1+ f g


3

(7.19)

and1 0 0
0 1− f g − f g
0 f g 1+ f g


17

≡

1− f g 0 f g2

0 1 0
− f 0 1+ f g


5

1+ f g − f g2 0
f 1− f g 1
0 0 0


11

(7.20)

and1 0 0
0 1− f g f g
0 − f g 1+ f g


18

≡

1+ f g f 0
− f g2 1− f g 0

0 0 1


10

1− f g 0 − f
0 1 0

f g2 0 1+ f g


4

. (7.21)
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Remark 7.22. We remark that since f ∈ σn Rn , every matrix which takes part in
the above equalities is indeed in GLn−1(Rn, σn Rn)∼= IGLn−1,n ≤ IA(8).

Proof. As f ∈ σn
(∑n−1

r=1 σrUr,m + Un,m + Om
)
, (7.16) is obtained by applying

Proposition 7.10 combined with Proposition 6.1. We obtain (7.17) similarly by
transposing all the computations which led to the first part of (7.16). Similarly, by
switching the roles of the second row and column with the third row and column,
one obtains (7.18) and (7.19). By switching one more time the roles of the first
row and column with the second row and column, we obtain (7.20) and (7.21) as
well. �

Elements of Form 2.

Proposition 7.23. Recall Ur,m = (xm
r − 1)Rn . The elements of the form

A−1(In−1+ hEi, j )A,

where A ∈GLn−1(Rn), h ∈ σnσ
2
r Ur,m, σ

2
n Un,m for 1≤ r ≤ n−1 and i 6= j , belong

to IAm .

Notice that for every n ≥ 4, the groups En−1(σ
2
n Un,m) and En−1(σnσ

2
r Ur,m) for

1 ≤ r ≤ n − 1 are normal in GLn−1(Rn), and thus, all the above elements are
in En−1(σ

2
n Un,m) and En−1(σnσ

2
r Ur,m). Hence, to prove Proposition 7.23, it is

enough to show that for every 1≤ r ≤ n− 1, we have

En−1(σ
2
n Un,m), En−1(σnσ

2
r Ur,m)⊆ IAm .

Therefore, by Proposition 7.3, to prove Proposition 7.23, it is enough to show that
the elements of the form

(In−1− f E j,i )(In−1+ hEi, j )(In−1+ f E j,i )

are in IAm when h ∈ σnσ
2
r Ur,m, σ

2
n Un,m for 1≤ r ≤ n− 1, f ∈ Rn and i 6= j . We

prove this in a few stages, starting with the following lemma.

Lemma 7.24. Let h ∈σnσrUr,m, σnUn,m for 1≤ r ≤ n−1 and f1, f2 ∈ Rn . Assume
that the elements of the forms

(In−1± f1 E j,i )(In−1+ hEi, j )(In−1∓ f1 E j,i ),

(In−1± f2 E j,i )(In−1+ hEi, j )(In−1∓ f2 E j,i ),

for every 1≤ i 6= j ≤ n− 1, belong to IAm . Then the elements of the form

(In−1± ( f1+ f2)E j,i )(In−1+ hEi, j )(In−1∓ ( f1+ f2)E j,i )

for 1≤ i 6= j ≤ n− 1 also belong to IAm .
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Proof. Observe first that by Proposition 6.1, all the matrices of the form

In−1+ hEi, j for h ∈ σnσrUr,m, σnUn,m

belong to IAm . We use this in the following computations. Without loss of gen-
erality, under the assumptions of the proposition, we show that for i, j = 2, 1 we
have

(In−1− ( f1+ f2)E1,2)(In−1+ hE2,1)(In−1+ ( f1+ f2)E1,2) ∈ IAm

and the general argument is similar. In the computation, a block matrix of the form(
B 0
0 In−4

)
∈ GLn−1(Rn)

is denoted by B ∈ GL3(Rn). We use square brackets to help the reader follow the
steps of the computation.

So we compute

(In−1− ( f1+ f2)E1,2)(In−1+ hE2,1)(In−1+ ( f1+ f2)E1,2)

=

1− h( f1+ f2) −h( f1+ f2)
2 0

h 1+ h( f1+ f2) 0
0 0 1


=

 1 0 −( f1+ f2)

0 1 1
−h −h( f1+ f2) 1

1 0 ( f1+ f2)

0 1 −1
h h( f1+ f2) 1


=

 1 0 0
0 1 0
−h −h( f1+ f2) 1

1 0 −( f1+ f2)

0 1 1
0 0 1


·

1 0 0
0 1 0
h h( f1+ f2) 1

1 0 ( f1+ f2)

0 1 −1
0 0 1


=

 1 0 0
0 1 0
−h −h( f1+ f2) 1


·

1 0 −( f1+ f2)

0 1 1
0 0 1

1 0 0
0 1 0
0 h f2 1

1 0 f1+ f2

0 1 −1
0 0 1


·

1 0 − f2

0 1 0
0 0 1

1 0 0
0 1 0
h h f1 1

1 0 f2

0 1 0
0 0 1


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·

1 0 − f2

0 1 0
0 0 1

 1 0 0
0 1 0
−h −h f1 1

1 0 − f1

0 1 1
0 0 1


·

1 0 0
0 1 0
h h f1 1

1 0 f1

0 1 −1
0 0 1

1 0 f2

0 1 0
0 0 1


=

 1 0 0
0 1 0
−h −h( f1+ f2) 1


·

1 0 0
0 1+ h f2 −h f2

0 h f2 1− h f2

1 −( f1+ f2)h f2 ( f1+ f2)h f2

0 1 0
0 0 1


·

1 −h f1 f2 0
0 1 0
0 h f1 1

1− h f2 0 −h f 2
2

0 1 0
h 0 1+ h f2


·

1 0 −h f1 f2

0 1 h f2

0 0 1

1− h f1 −h f 2
1 0

h 1+ h f1 0
0 0 1

 .
Notice now that by assumption, and by the remark at the beginning of the proof,

the latter expression is congruent mod IAm to1 0 0
0 1+ h f2 −h f2

0 h f2 1− h f2

 .
Consider now (7.21) in Corollary 7.15, and switch the roles of f and g by −h
and f2, respectively. Using this identity we deduce that, mod IAm , the latter ex-
pression is congruent to1− h f2 −h 0

h f 2
2 1+ h f2 0

0 0 1

1+ h f2 0 h
0 1 0
−h f 2

2 0 1− h f2

 ,
which is congruent to In−1 by assumption. This finishes the proof of the lemma. �

We pass to the next stage:

Proposition 7.25. The elements of the form

(In−1− f E j,i )(In−1+ hEi, j )(In−1+ f E j,i ),

where h ∈ σnσ
2
r Ur,m, σ

2
n Un,m for 1≤ r ≤ n− 1, f ∈ Z and i 6= j , belong to IAm .
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Remark 7.26. We note that some of the matrices that we use in the following
computations lie in IGL′n−1,n ↪→ GLn−1(Rn) and not necessarily in IGLn−1,n (see
Definition 3.12 and Proposition 3.13).

Proof of Proposition 7.25. According to Lemma 7.24, it is enough to prove the
proposition for f =±1. Without loss of generality, we prove the proposition for
r =1, i.e., h∈σnσ

2
1 U1,m , and symmetrically, the same is valid for every 1≤r ≤n−1.

The case h ∈ σ 2
n Un,m is considered separately.

So let h ∈ σnσ
2
1 U1,m and write h = σ1u for some u ∈ σnσ1U1,m . We prove the

proposition for i 6= j ∈ {1, 2, 3}— as one can see below, we do it simultaneously
for all the options for i 6= j ∈ {1, 2, 3}. The treatment in the other cases in which
i 6= j ∈ {1, k, l} such that 1< k 6= l ≤ n− 1 is obtained symmetrically, so we get
that the proposition is valid for every 1≤ i 6= j ≤ n− 1.

As before, we denote a block matrix of the form(
B 0
0 In−4

)
∈ GLn−1(Rn)

by B ∈ GL3(Rn). In the following computations, the indices of the matrices are in-
tended to help the reader recognize the corresponding matrix type in Corollary 7.15,
as explained below. We recall that the inverse of a matrix is denoted by the same
index, and one can observe that the inverse of each indexed matrix is obtained
by changing the sign of u. We also recall that u ∈ σnσ1U1,m ⊆ σn Rn . Thus, by
Proposition 6.1 we have1−σ1u −σ 2

1 u 0
u 1+σ1u 0
0 0 1


12

=

x2 −σ1 0
0 1 0
0 0 1

 1 0 0
ux2 1 0
0 0 1

x−1
2 x−1

2 σ1 0
0 1 0
0 0 1

∈ IAm,

1−σ1u 0 −σ 2
1 u

0 1 0
u 0 1+σ1u


7

=

x3 0 −σ1

0 1 0
0 0 1

 1 0 0
0 1 0

ux3 0 1

x−1
3 0 x−1

3 σ1

0 1 0
0 0 1

∈ IAm,

1 0 0
0 1+σ1u u
0 −σ 2

1 u 1−σ1u


3

=

 1 0 0
uσ2 1 0
−uσ1σ2 0 1

 1 0 0
0 1 0
σ2 −σ1 1

1 0 0
0 1 u
0 0 1

 1 0 0
0 1 0
−σ2 σ1 1

∈ IAm,

1 0 0
0 1−σ1u −σ 2

1 u
0 u 1+σ1u


6

=

 1 0 0
−uσ1σ3 1 0

uσ3 0 1

 1 0 0
σ3 1 −σ1

0 0 1

1 0 0
0 1 0
0 u 1

 1 0 0
−σ3 1 σ1

0 0 1

∈ IAm .

By switching the signs of σ1, σ2 and σ3 in the two latter computations we obtain
also that 1 0 0

0 1−σ1u u
0 −σ 2

1 u 1+σ1u


1

,

1 0 0
0 1+σ1u −σ 2

1 u
0 u 1−σ1u


8

∈ IAm .
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Consider now the identities which we got in Corollary 7.15, and switch the roles of
f, g in the corollary by u, σ1, respectively. Remember that u ∈ σnσ1U1,m . Hence,
as by the computations above matrices of Forms 7 and 8 belong to IAm , we obtain
from the last part of (7.16) that also matrices of Form 13 belong to IAm . Thus, as
we showed that Forms 1, 3, 6 also belong to IAm , (7.16) shows that Forms 2, 4, 5
also belong to IAm . Similar arguments show that (7.16)–(7.21) give that all the 18
forms belong to IAm . In particular, the matrices which correspond to Forms 13–18
belong to IAm , and these matrices (and their inverses) are precisely the matrices of
the form

(In−1± E j,i )(In−1+ hEi, j )(In−1∓ E j,i ), i 6= j ∈ {1, 2, 3}

(recalling that h = σ1u). Clearly, by similar arguments, the proposition holds for
every 1≤ i 6= j ≤ n− 1 and every h ∈ σnσ

2
r Ur,m for 1≤ r ≤ n− 1.

The case h ∈ σ 2
n Un,m is a bit different, but easier. In this case one can consider

the same computations we built for r = 1, with the following modifications: Firstly,
write h ∈ σ 2

n Un,m as h = σnu for some u ∈ σnUn,m . Secondly, change σ1 to σn ,
change σ2, σ3 to 0 and change x2, x3 to 1 in the right side of the above equations.
It is easy to see that in this situation we obtain in the left side of the equations the
same matrices, just that instead of σ1 we have σn . From here we continue exactly
the same. �

Proposition 7.27. The elements of the following form belong to IAm :

(In−1− f E j,i )(In−1+ hEi, j )(In−1+ f E j,i ),

where h ∈ σ 2
n Un,m, σnσ

2
r Ur,m for 1≤ r ≤ n−1, f ∈ σs Rn for 1≤ s ≤ n and i 6= j .

Proof. We prove it for s = 1, i 6= j ∈ {1, 2, 3}, and denote a block matrix of the
form (

B 0
0 In−4

)
∈ GLn−1(Rn)

by B ∈ GL3(Rn). We use again the result of Corollary 7.15, when we switch the
roles of f, g in the corollary by h, σ1u, respectively, for some u ∈ Rn .

As h ∈ σnσ
2
r Ur,m, σ

2
n Un,m , we have also σ1uh ∈ σnσ

2
r Ur,m, σ

2
n Un,m . Hence,

we obtain from the previous proposition that the matrices of Forms 13–18 belong
to IAm . In addition,1 0 0

0 1−uσ1h h
0 −u2σ 2

1 h 1+uσ1h


1

=

 1 0 0
−huσ2 1 0
−hu2σ1σ2 0 1

 1 0 0
0 1 0
−uσ2 uσ1 1

1 0 0
0 1 h
0 0 1

 1 0 0
0 1 0

uσ2 −uσ1 1

 ∈ IAm,
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0 1− uσ1h −u2σ 2

1 h
0 h 1+ uσ1h


6

=

 1 0 0
−hu2σ1σ3 1 0

huσ3 0 1

 1 0 0
uσ3 1 −uσ1

0 0 1

1 0 0
0 1 0
0 h 1

 1 0 0
−uσ3 1 uσ1

0 0 1

 ∈ IAm,

and by switching the signs of u and h simultaneously, we get also Forms 3 and
8. So we easily conclude from Corollary 7.15 ((7.16) and (7.18)) that also the
matrices of the other eight forms are in IAm . In particular, the matrices of the form

(In−1− σ1uE j,i )(In−1+ hEi, j )(In−1+ σ1uE j,i ), i 6= j ∈ {1, 2, 3},

belong to IAm . The treatment for every i 6= j and 1≤ s ≤ n− 1 is similar, and the
treatment in the case s = n is obtained by replacing σ1 by σn and σ2, σ3 by 0 in the
above equations. �

Corollary 7.28. As every f ∈ Rn can be decomposed as

f =
n∑

s=1

σs fs + f0

for some f0 ∈ Z and fi ∈ Rn , we obtain from Lemma 7.24 and from the above two
propositions that we actually finished the proof of Proposition 7.23.

Elements of Form 3.

Proposition 7.29. Recall Om = m Rn−1, where

Rn−1 = Z[x±1
1 , . . . , x±1

n−1] ⊆ Rn.

Then the elements of the form

A−1
[(In−1+ hEi, j ), (In−1+ f E j,i )]A

belong to IAm , where A ∈ GLn−1(Rn), f ∈ σn Rn , h ∈ O2
m and i 6= j .

We prove the proposition in the case i, j = 2, 1, and the same arguments are
valid for arbitrary i 6= j . In this case one can write h = m2h′ for some h′ ∈ Rn−1,
and thus, our element is of the form

A−1

 1− f m2h′ f 0
− f (m2h′)2 1+ f m2h′ 0

0 0 In−3

1 − f 0
0 1 0
0 0 In−3

 A

for some A ∈GLn−1(Rn), f ∈ σn Rn and h′ ∈ Rn−1. The proposition follows easily
from the following lemma.
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Lemma 7.30. Let h1, h2 ∈ Rn , f ∈ σn Rn and denote a block matrix of the form(
B 0
0 In−4

)
∈ GLn−1(Rn)

by B ∈ GL3(Rn). Then

A−1

 1− f m(h1+ h2) f 0
− f (m(h1+h2))

2 1+ f m(h1+h2) 0
0 0 1

1 − f 0
0 1 0
0 0 1

A

≡ A−1

 1− f mh1 f 0
− f (mh1)

2 1+ f mh1 0
0 0 1

1 − f 0
0 1 0
0 0 1


·

 1− f mh2 f 0
− f (mh2)

2 1+ f mh2 0
0 0 1

1 − f 0
0 1 0
0 0 1

A mod IAm .

Now, if Lemma 7.30 is proved, one can deduce that for f ∈ σn Rn and h =m2h′,
h′ ∈ Rn , we have

A−1

 1− f m2h′ f 0
− f (m2h′)2 1+ f m2h′ 0

0 0 In−3

1 − f 0
0 1 0
0 0 In−3

A

≡

A−1

 1− f mh′ f 0
− f (mh′)2 1+ f mh′ 0

0 0 In−3

1 − f 0
0 1 0
0 0 In−3

A

m

mod IAm

and as the latter element obviously belongs to IAm , Proposition 7.29 follows. So
it is enough to prove Lemma 7.30.

Proof of Lemma 7.30. Throughout this computation we use the observation that
as GLn−1(Rn, σn Rn) is normal in GLn−1(Rn), every conjugate of an element of
GLn−1(Rn, σn Rn) ≤ IA(8) by an element of GLn−1(Rn) is also an element of
GLn−1(Rn, σn Rn) ≤ IA(8) (as was mentioned in Remark 7.7) — even though
GLn−1(Rn)� IA(8). Throughout the computation, we use the below notation:

• A matrix
(

B 0
0 In−4

)
∈ GLn−1(Rn) is denoted by B ∈ GL3(Rn).

• “=” denotes an equality between matrices in GLn−1(Rn).

• “≡” denotes an equality in IA(8)/ IAm .

• We use square brackets to help the reader follow the steps of the computation.
Whenever square brackets are used, it is recommended to concentrate on the
expression inside them separately in order to follow the transition to the next
step.
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So, let’s compute:

A−1

 1− f m(h1+h2) f 0
− f (m(h1+h2))

2 1+ f m(h1+h2) 0
0 0 1

1 − f 0
0 1 0
0 0 1

 A

= A−1

 1 0 − f
0 1 − f m(h1+h2)

−m(h1+h2) 1 1


 1 0 f

0 1 f m(h1+h2)

m(h1+h2) −1 1


1 − f 0

0 1 0
0 0 1

A

= A−1

 1 0 0
0 1 0

−m(h1+h2) 1 1


1 0 − f

0 1 − f m(h1+h2)

0 0 1


 1 0 0

0 1 0
m(h1+h2) −1 1



·

1 0 f
0 1 f m(h1+h2)

0 0 1

1 − f 0
0 1 0
0 0 1

A

= A−1

 1 0 0
0 1 0
−mh2 0 1



 1 0 0

0 1 0
−mh1 1 1


1 0 − f

0 1 − f mh1

0 0 1


 1 0 0

0 1 0
mh1 −1 1


1 0 f

0 1 f mh1

0 0 1




·

1 0 − f
0 1 − f mh1

0 0 1

 1 0 0
0 1 0

mh2 0 1

A

·

A−1

 1 0 0
0 1 0

−m(h1+h2) 1 1


1 0 0

0 1 − f mh2

0 0 1


 1 0 0

0 1 0
m(h1+h2) −1 1

A



·

A−1

1 0 0
0 1 f (h1+h2)

0 0 1

A

m

A−1

1 − f f
0 1 0
0 0 1

A

≡ A−1

 1 0 0
0 1 0
−mh2 0 1

 1− f mh1 f 0
− f (mh1)

2 1+ f mh1 0
0 0 1

1 0 − f
0 1 − f mh1

0 0 1

 1 0 0
0 1 0

mh2 0 1

A

·

A−1

 1 0 0
0 1 0

−m(h1+h2) 1 1


1 0 0

0 1 − f h2

0 0 1


 1 0 0

0 1 0
m(h1+h2) −1 1

A


m

·A−1

1 − f f
0 1 0
0 0 1

A
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≡ A−1


 1 0 0

0 1 0
−mh2 0 1


 1− f mh1 f 0
− f (mh1)

2 1+ f mh1 0
0 0 1


 1 0 0

0 1 0
mh2 0 1




·


 1 0 0

0 1 0
−mh2 0 1


1 0 − f

0 1 0
0 0 1


 1 0 0

0 1 0
mh2 0 1




·

 1 0 0
0 1 0
−mh2 0 1

1 0 0
0 1 − f mh1

0 0 1

 1 0 0
0 1 0

mh2 0 1

1 − f f
0 1 0
0 0 1

A

= A−1

 1− f mh1 f 0
− f (mh1)

2 1+ f mh1 0
0 0 1

A

A−1

 1 0 0
0 1 0

f mh1h2 − f h2 1

A

m

·A−1

 1 0 0
0 1 0
−mh2 0 1


1 0 − f

0 1 0
0 0 1


 1 0 0

0 1 0
mh2 0 1

A

·

A−1

 1 0 0
0 1 0
−mh2 0 1

1 0 0
0 1 − f h1

0 0 1

 1 0 0
0 1 0

mh2 0 1

A

m

A−1

1 − f f
0 1 0
0 0 1

A

≡ A−1

 1− f mh1 f 0
− f (mh1)

2 1+ f mh1 0
0 0 1


·

 1 0 0
0 1 0
−mh2 0 1

1 0 − f
0 1 0
0 0 1

 1 0 0
0 1 0

mh2 0 1

1 − f f
0 1 0
0 0 1

A

= A−1

 1− f mh1 f 0
− f (mh1)

2 1+ f mh1 0
0 0 1

1 − f 0
0 1 0
0 0 1


·

1 f 0
0 1 0
0 0 1

1−m f h2 0 − f
0 1 0

f (mh2)
2 0 1+m f h2

1 − f 0
0 1 0
0 0 1

1 0 f
0 1 0
0 0 1

A

= A−1

 1− f mh1 f 0
− f (mh1)

2 1+ f mh1 0
0 0 1


1 − f 0

0 1 0
0 0 1

A

A−1

1 f 2h2 0
0 1 0
0 −m( f h2)

2 1

A


m

A−1

·

1−m f h2 0 − f
0 1 0

f (mh2)
2 0 1+m f h2

1 0 f
0 1 0
0 0 1

A
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≡ A−1

 1− f mh1 f 0
− f (mh1)

2 1+ f mh1 0
0 0 1

1 − f 0
0 1 0
0 0 1


·

1− f mh2 0 − f
0 1 0

f (mh2)
2 0 1+ f mh2

1 0 f
0 1 0
0 0 1

A.

So it remains to show that

A−1

1− f mh2 0 − f
0 1 0

f (mh2)
2 0 1+ f mh2

1 0 f
0 1 0
0 0 1

A

≡ A−1

 1− f mh2 f 0
− f (mh2)

2 1+ f mh2 0
0 0 1

1 − f 0
0 1 0
0 0 1

A. (7.31)

By a similar computation as for (7.14), switching the roles of f, g in the equation
by f,mh2, respectively, and then switching the roles of the first row and column
with the third row and column, we have1 0 0

0 1+ f mh2 f mh2

0 − f mh2 1− f mh2


=

1 − f − f
0 1 0
0 0 1

 1+ f mh2 0 f
0 1 0

− f (mh2)
2 0 1− f mh2

 1 0 0
f (mh2)

2 1 f mh2

0 0 1


·

 1− f mh2 f 0
− f (mh2)

2 1+ f mh2 0
0 0 1

 1 0 0
0 1 0

f (mh2)
2
− f mh2 1

.
Therefore, using Proposition 7.9 and the observation

A−1

1 0 0
0 1+ f mh2 f mh2

0 − f mh2 1− f mh2

A =

A−1

1 0 0
0 1+ f h2 f h2

0 − f h2 1− f h2

A

m

∈ IAm,

we obtain that mod IAm we have

A−1

 1+ f mh2 0 f
0 1 0

− f (mh2)
2 0 1− f mh2

 1− f mh2 f 0
− f (mh2)

2 1+ f mh2 0
0 0 1

A

≡ A−1

1 f f
0 1 0
0 0 1

A. (7.32)
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From here, we easily get (7.31) by noticing that the inverse of every matrix in
(7.32) is obtained by replacing f by − f . This finishes the proof of the lemma, and
hence, also the proof of Proposition 7.29. �

Elements of Form 4.

Proposition 7.33. Recall Om =m Rn−1 and U r,m = (xm
r −1)Rn−1 for 1≤ r ≤n−1,

where Rn−1 = Z[x±1
1 , . . . , x±1

n−1] ⊆ Rn . The elements of the form

A−1
[(In−1+ hEi, j ), (In−1+ f E j,i )]A

where A ∈GLn−1(Rn), f ∈ σn Rn , h ∈ σ 2
r U r,m, σr Om for 1≤ r ≤ n− 1 and i 6= j ,

belong to IAm .

As before, throughout the subsection we denote a block matrix of the form(
B 0
0 In−4

)
∈ GLn−1(Rn)

by B ∈ GL3(Rn). We start the proof of this proposition with the following lemma.

Lemma 7.34. Let f, h ∈ Rn and A ∈ GLn−1(Rn). Then

A−1

1− f h − f h 0
f h 1+ f h 0
0 0 1

A

= A−1

 1 0 0
f h 1 0
f h2 0 1

AA−1

1 0 0
0 1+ f h − f
0 f h2 1− f h

1 0 0
0 1 f
0 0 1

A

· A−1

1 0 0
0 1 − f
0 0 1

AA−1

1 − f h 0
0 1 0
0 − f h2 1

AA−1

1 0 0
0 1 f
0 0 1

A

· A−1

1− f h 0 f
0 1 0
− f h2 0 1+ f h

AA−1

 1 0 0
f 2h2 1 − f 2h

0 0 1

AA−1

1 0 − f
0 1 0
0 0 1

A.

Proof. The lemma follows from Proposition 7.10, line (7.11), by substituting g
with h, combined with verifying the identity1 0 0

0 1 − f
0 0 1

1− f h 0 f
0 1 0
− f h2 0 1+ f h

1 0 0
0 1 f
0 0 1


=

1− f h 0 f
0 1 0
− f h2 0 1+ f h

 1 0 0
f 2h2 1 − f 2h

0 0 1

 . �
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Observe now that if we have f ∈ σn Rn and h ∈ σ 2
r U r,m, σr Om for 1≤ r ≤ n−1,

then by Propositions 7.9 and 7.23, we have

A−1

1− f h − f h 0
f h 1+ f h 0
0 0 1

A = A−1

 1 0 0
−1 1 0

0 0 1

1 − f h 0
0 1 0
0 0 1

1 0 0
1 1 0
0 0 1

A ∈ IAm .

So, by Propositions 7.9 and 7.23 and the previous lemma, for every A ∈GLn−1(Rn)

we have the following equality mod IAm :

A−1

1 0 0
0 1+ f h − f
0 f h2 1− f h

1 0 0
0 1 f
0 0 1

A

≡ A−1

1− f h 0 f
0 1 0
− f h2 0 1+ f h

1 0 − f
0 1 0
0 0 1

−1

A.

We thus have the following corollary (notice that we switched the sign of f ).

Corollary 7.35. For every h ∈ σ 2
r U r,m, σr Om for 1 ≤ r ≤ n − 1, f ∈ σn Rn and

A ∈ GLn−1(Rn), the following elements are congruent mod IAm :

A−1
[(In−1+ hE3,2), (In−1+ f E2,3)]A ≡ A−1

[(In−1− f E1,3), (In−1+ hE3,1)]A.

We proceed with the following proposition:

Proposition 7.36. Let h ∈ σ 2
1 U 1,m, σ1Om and f ∈ σn Rn . Then

[(In−1+ hE3,2), (In−1+ f E2,3)] ∈ IAm .

Proof. Let h = σ1u for some u ∈ σ1U 1,m, Om . By Proposition 6.1, we have 1 0 0
0 1 0
−σ2u σ1u 1

 ∈ IAm

and hence

IAm
3

 1 0 0
0 1 0
−σ2u σ1u 1

1 0 0
0 1 f
0 0 1

 1 0 0
0 1 0
σ2u −σ1u 1

1 0 0
0 1 − f
0 0 1


=

 1 0 0
f σ2u 1 0

σ1σ2u2 f 0 1

1 0 0
0 1 0
0 σ1u 1

1 0 0
0 1 f
0 0 1

1 0 0
0 1 0
0 −σ1u 1

1 0 0
0 1 − f
0 0 1

 .
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As by Proposition 6.1 the first matrix in the right-hand side is also in IAm , we
obtain that

[(In−1+ hE3,2), (In−1+ f E2,3)] =

1 0 0
0 1 0
0 h 1

,
1 0 0

0 1 f
0 0 1

∈ IAm

as required. �

We can now pass to the following proposition.

Proposition 7.37. Let h ∈ σ 2
1 U 1,m, σ1Om , f ∈ σn Rn and A ∈ GLn−1(Rn). Then

A−1
[(In−1+ hE3,2), (In−1+ f E2,3)]A ∈ IAm .

Proof. We prove the proposition by induction. By a result of Suslin [1977], as
n − 1 ≥ 3, the group SLn−1(Rn) is generated by the elementary matrices of the
form

In−1+ r El,k for r ∈ Rn and 1≤ l 6= k ≤ n− 1.

So as the invertible elements of Rn are the elements of the form

±

n∏
i=1

x si
i for si ∈ Z

(see [Crowell and Fox 1963, Chapter 8]), GLn−1(Rn) is generated by the elemen-
tary matrices and the matrices of the form

In−1+ (±xi − 1)E1,1 for 1≤ i ≤ n.

Therefore, by the previous proposition it is enough to show that if

A−1
[(In−1+ hE3,2), (In−1+ f E2,3)]A ∈ IAm

and E is one of the above generators, then mod IAm we have

A−1 E−1
[(In−1+ hE3,2), (In−1+ f E2,3)]EA

≡ A−1
[(In−1+ hE3,2), (In−1+ f E2,3)]A. (7.38)

So if E is of the form In−1+ (±xi − 1)E1,1, we obviously have Property (7.38).
If E is an elementary matrix of the form In−1+ r El,k such that l, k /∈ {2, 3}, then
we also have Property (7.38) in an obvious way. Consider now the case l, k = 2, 3.
In this case, by Corollary 7.35 we have the following mod IAm :
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A−1 E−1

1 0 0
0 1 0
0 h 1

,
1 0 0

0 1 f
0 0 1

EA

≡ A−1

1 0 0
0 1 −r
0 0 1

1 0 − f
0 1 0
0 0 1

,
1 0 0

0 1 0
h 0 1

1 0 0
0 1 r
0 0 1

A

= A−1

1 0 0
0 1 −r
0 0 1

1− h f + h2 f 2 0 −h f 2

0 1 0
−h2 f 0 1+ h f

1 0 0
0 1 r
0 0 1

A

= A−1

1− h f + h2 f 2 0 −h f 2

0 1 0
−h2 f 0 1+ h f

AA−1

 1 0 0
rh2 f 1 −rh f

0 0 1

A

= A−1

1 0 − f
0 1 0
0 0 1

,
1 0 0

0 1 0
h 0 1

AA−1

 1 0 0
rh2 f 1 −rh f

0 0 1

A.

So by applying Propositions 7.9 and 7.23 and Corollary 7.35 once again in the
opposite way, we obtain Property (7.38). The other cases for l, k are treated by
similar arguments: if l, k = 3, 2 we do exactly the same, and if l or k are different
from 2 and 3, then the situation is easier — we use similar arguments, but without
passing to [(In−1− f E1,3), (In−1+ hE3,1)] through Corollary 7.35. �

Corollary 7.39. Let h ∈ σ 2
1 U 1,m, σ1Om , f ∈ σn R and A ∈ GLn−1(Rn). Then for

every i 6= j , we have

A−1
[(In−1+ hEi, j ), (In−1+ f E j,i )]A ∈ IAm .

Proof. Denote a permutation matrix, such that its action on GLn−1(Rn) by con-
jugation moves 2 7→ j and 3 7→ i , by P . Then, by the previous proposition, we
have

A−1
[(In−1+ hEi, j ), (In−1+ f E j,i )]A

= A−1 P−1
[(In−1+ hE3,2), (In−1+ f E2,3)]PA ∈ IAm . �

Now, since one can see that symmetrically, the above corollary is valid for every
h ∈ σ 2

r U r,m, σr Om for 1 ≤ r ≤ n − 1, we have actually finished the proof of
Proposition 7.33.

8. Index of notation

For convenience, we gather here some notation that plays a role in the paper, and
mention the section where they appear for the first time:
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• Fn = the free group on n elements (Section 3).

• 8=8n = Fn/F ′′n = the free metabelian group on n elements (Section 3).

• 9m =8/Mm where Mm = (8
′8m)′(8′8m)m (Section 3).

• IA(8)= ker(Aut(8)→ Aut(8/8′)) (Section 3).

• IGm = G(Mm)= ker(IA(8)→ Aut(9m)) (Section 3).

• IAm
= 〈IA(8)m〉 (Section 7).

• IAm =
⋂{

N C IA(8) | [IA(8) : N ] | m
}

(Section 3).

• Rn = Z[x±1
1 , . . . , x±1

n ], where the x1, . . . , xn are free commutative variables
(Section 3).

• Rn−1 = Z[x±1
1 , . . . , x±1

n−1] (Section 7).

• Zm = Z/mZ (Section 3).

• σi = xi − 1 for 1≤ i ≤ n (Section 3).

• Eσ = the column vector which has σi in its i-th entry (Section 3).

• A=
∑n

i=1 σi Rn C Rn = the augmentation ideal of Rn (Section 3).

• Om = m Rn C Rn (Section 7).

• Om = m Rn−1 C Rn−1 (Section 7).

• Ur,m = (xm
r − 1)Rn C Rn for 1≤ r ≤ n (Section 7).

• U r,m = (xm
r − 1)Rn−1 C Rn−1 for 1≤ r ≤ n (Section 7).

• Hm =
∑n

i=1(x
m
i − 1)Rn +m Rn C Rn (Section 3).

• S = Z[x±1
] (Section 4).

• Jm = (xm
− 1)S+mS C S (Section 4).

• Ed(R)= 〈Id+r Ei, j | r ∈ R, 1≤ i 6= j ≤ d〉 ≤ SLd(R), where R is a ring and
Ei, j is the matrix that has 1 in its (i, j)-th entry and 0 elsewhere (Section 2).

• SLd(R, H) = ker(SLd(R) → SLd(R/H)), where R is a ring and H C R
(Section 2).

• GLd(R, H) = ker(GLd(R)→ GLd(R/H)), where R is a ring and H C R
(Section 2).

• Ed(R, H)= the normal subgroup of Ed(R), generated as a normal subgroup
by the matrices of the form Id + hEi, j for h ∈ H (Section 2).

• IGLn−1,i =

{
In + A ∈ IA(8)

∣∣∣ the i-th row of A is 0,
In−1+ Ai,i ∈ GLn−1(Rn, σi Rn)

}
,

for 1≤ i ≤ n (Section 3).

• ISLn−1,i (H)= IGLn−1,i ∩SLn−1(Rn, H), under the identification of IGLn−1,i

with GLn−1(Rn, σi Rn) (Section 3).
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• IEn−1,i (H)= IGLn−1,i ∩En−1(Rn, H), under the identification of the group
IGLn−1,i with GLn−1(Rn, σi Rn) (Section 3).

• IGL′n−1,i = {In+ A ∈ IA(8) | the i-th row of A is 0} for 1≤ i ≤ n (Section 3).

Acknowledgements

I wish to offer my thanks to my supervisor during the research, Prof. Alexander
Lubotzky, for his sensitive and devoted guidance. During the period of the research,
I was supported by the Rudin foundation and, not concurrently, by NSF research
training grant (RTG) #1502651.

References

[Asada 2001] M. Asada, “The faithfulness of the monodromy representations associated with certain
families of algebraic curves”, J. Pure Appl. Algebra 159:2-3 (2001), 123–147. MR Zbl

[Bachmuth 1965] S. Bachmuth, “Automorphisms of free metabelian groups”, Trans. Amer. Math.
Soc. 118 (1965), 93–104. MR Zbl

[Bachmuth and Mochizuki 1985] S. Bachmuth and H. Y. Mochizuki, “Aut(F)→ Aut(F/F ′′) is
surjective for free group F of rank ≥ 4”, Trans. Amer. Math. Soc. 292:1 (1985), 81–101. MR Zbl

[Bass 1968] H. Bass, Algebraic K -theory, W. A. Benjamin, New York, 1968. MR Zbl

[Bass et al. 1964] H. Bass, M. Lazard, and J.-P. Serre, “Sous-groupes d’indice fini dans SL(n, Z)”,
Bull. Amer. Math. Soc. 70 (1964), 385–392. MR Zbl

[Ben-Ezra 2016] D. E.-C. Ben-Ezra, “The congruence subgroup problem for the free metabelian
group on two generators”, Groups Geom. Dyn. 10:2 (2016), 583–599. MR Zbl

[Ben-Ezra 2017] D. E.-C. Ben-Ezra, “The congruence subgroup problem for the free metabelian
group on n ≥ 4 generators”, preprint, 2017. To appear in Groups Geom. Dyn. arXiv

[Ben-Ezra and Lubotzky 2018] D. E.-C. Ben-Ezra and A. Lubotzky, “The congruence subgroup
problem for low rank free and free metabelian groups”, J. Algebra 500 (2018), 171–192. MR Zbl

[Birman 1974] J. S. Birman, Braids, links, and mapping class groups, Annals of Math. Studies 82,
Princeton University Press, 1974. MR Zbl

[Boggi 2009] M. Boggi, “The congruence subgroup property for the hyperelliptic modular group:
the open surface case”, Hiroshima Math. J. 39:3 (2009), 351–362. MR Zbl

[Boggi 2016] M. Boggi, “A generalized congruence subgroup property for the hyperelliptic modular
group”, preprint, 2016. arXiv

[Brown et al. 1981] K. A. Brown, T. H. Lenagan, and J. T. Stafford, “K -theory and stable structure
of some Noetherian group rings”, Proc. London Math. Soc. (3) 42:2 (1981), 193–230. MR Zbl

[Bux et al. 2011] K.-U. Bux, M. V. Ershov, and A. S. Rapinchuk, “The congruence subgroup prop-
erty for Aut F2: a group-theoretic proof of Asada’s theorem”, Groups Geom. Dyn. 5:2 (2011),
327–353. MR Zbl

[Crowell and Fox 1963] R. H. Crowell and R. H. Fox, Introduction to knot theory, Ginn and Co.,
Boston, 1963. MR Zbl

[Dennis and Stein 1973] R. K. Dennis and M. R. Stein, “The functor K2: a survey of computations
and problems”, pp. 243–280 in Algebraic K -theory, II: “Classical” algebraic K -theory and con-
nections with arithmetic (Seattle, 1972), edited by H. Bass, Lecture Notes in Math. 342, Springer,
1973. MR Zbl

http://dx.doi.org/10.1016/S0022-4049(00)00056-6
http://dx.doi.org/10.1016/S0022-4049(00)00056-6
http://msp.org/idx/mr/1828935
http://msp.org/idx/zbl/1045.14013
http://dx.doi.org/10.2307/1993945
http://msp.org/idx/mr/180597
http://msp.org/idx/zbl/0131.02101
http://dx.doi.org/10.2307/2000171
http://dx.doi.org/10.2307/2000171
http://msp.org/idx/mr/805954
http://msp.org/idx/zbl/0575.20031
http://msp.org/idx/mr/0249491
http://msp.org/idx/zbl/0174.30302
http://dx.doi.org/10.1090/S0002-9904-1964-11107-1
http://msp.org/idx/mr/161913
http://msp.org/idx/zbl/0232.20086
http://dx.doi.org/10.4171/GGD/357
http://dx.doi.org/10.4171/GGD/357
http://msp.org/idx/mr/3513109
http://msp.org/idx/zbl/1353.20013
http://msp.org/idx/arx/1701.02459
http://dx.doi.org/10.1016/j.jalgebra.2017.01.001
http://dx.doi.org/10.1016/j.jalgebra.2017.01.001
http://msp.org/idx/mr/3765452
http://msp.org/idx/zbl/1386.20027
http://msp.org/idx/mr/0375281
http://msp.org/idx/zbl/0305.57013
http://dx.doi.org/10.32917/hmj/1257544213
http://dx.doi.org/10.32917/hmj/1257544213
http://msp.org/idx/mr/2569009
http://msp.org/idx/zbl/1209.14023
http://msp.org/idx/arx/0803.3841v5
http://dx.doi.org/10.1112/plms/s3-42.2.193
http://dx.doi.org/10.1112/plms/s3-42.2.193
http://msp.org/idx/mr/607301
http://msp.org/idx/zbl/0427.16010
http://dx.doi.org/10.4171/GGD/130
http://dx.doi.org/10.4171/GGD/130
http://msp.org/idx/mr/2782176
http://msp.org/idx/zbl/1251.20035
http://msp.org/idx/mr/0146828
http://msp.org/idx/zbl/0126.39105
http://msp.org/idx/mr/0354815
http://msp.org/idx/zbl/0271.18011


THE IA-CONGRUENCE KERNEL OF HIGH RANK FREE METABELIAN GROUPS 437

[Diaz et al. 1989] S. Diaz, R. Donagi, and D. Harbater, “Every curve is a Hurwitz space”, Duke
Math. J. 59:3 (1989), 737–746. MR Zbl

[Ivanov 1989] S. V. Ivanov, “Group rings of Noetherian groups”, Mat. Zametki 46:6 (1989), 61–66.
In Russian; translated in Math. Notes 46:5–6 (1990), 929–933. MR Zbl

[Kassabov and Nikolov 2006] M. Kassabov and N. Nikolov, “Universal lattices and property tau”,
Invent. Math. 165:1 (2006), 209–224. MR Zbl

[Lubotzky 1982] A. Lubotzky, “Free quotients and the congruence kernel of SL2”, J. Algebra 77:2
(1982), 411–418. MR Zbl

[Magnus 1939] W. Magnus, “On a theorem of Marshall Hall”, Ann. of Math. (2) 40 (1939), 764–768.
MR Zbl

[Magnus et al. 1966] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory: presenta-
tions of groups in terms of generators and relations, Interscience Publishers, New York, 1966. MR
Zbl

[McReynolds 2012] D. B. McReynolds, “The congruence subgroup problem for pure braid groups:
Thurston’s proof”, New York J. Math. 18 (2012), 925–942. MR Zbl

[Melnikov 1976] O. V. Melnikov, “Congruence kernel of the group SL2(Z)”, Dokl. Akad. Nauk
SSSR 228:5 (1976), 1034–1036. In Russian; translated in Soviet Math. Dokl. 17:3 (1976), 867–870.
MR

[Mennicke 1965] J. L. Mennicke, “Finite factor groups of the unimodular group”, Ann. of Math. (2)
81 (1965), 31–37. MR Zbl

[Milnor 1971] J. Milnor, Introduction to algebraic K -theory, Annals of Math. Studies 72, Princeton
University Press, 1971. MR Zbl

[Nikolov and Segal 2003] N. Nikolov and D. Segal, “Finite index subgroups in profinite groups”, C.
R. Math. Acad. Sci. Paris 337:5 (2003), 303–308. MR Zbl

[Prasad and Rapinchuk 2010] G. Prasad and A. S. Rapinchuk, “Developments on the congruence
subgroup problem after the work of Bass, Milnor and Serre”, pp. 307–325 in Collected papers
of John Milnor, V: Algebra, edited by H. Bass and T. Y. Lam, American Mathematical Society,
Providence, RI, 2010. MR Zbl

[Quillen 1973] D. Quillen, “Higher algebraic K -theory, I”, pp. 85–147 in Algebraic K -theory, I:
Higher K -theories (Seattle, 1972), edited by H. Bass, Lecture Notes in Math. 341, Springer, 1973.
MR Zbl

[Remeslennikov and Sokolov 1970] V. N. Remeslennikov and V. G. Sokolov, “Some properties of
a Magnus embedding”, Algebra Log. 9 (1970), 566–578. In Russian; translated in Algebra Logic 9
(1970), 342–349. MR Zbl

[Romanovskii 1999] N. S. Romanovskii, “On Shmel’kin embeddings for abstract and profinite
groups”, Algebra Log. 38:5 (1999), 598–612. In Russian; translated in Algebra Logic 38:5 (1999),
326–334. MR Zbl

[Rosenberg 1994] J. Rosenberg, Algebraic K -theory and its applications, Graduate Texts in Math.
147, Springer, 1994. MR Zbl

[Smith 1972] P. F. Smith, “On the dimension of group rings”, Proc. London Math. Soc. (3) 25 (1972),
288–302. MR Zbl

[Stein and Dennis 1973] M. R. Stein and R. K. Dennis, “K2 of radical ideals and semi-local rings
revisited”, pp. 281–303 in Algebraic K -theory, II: “Classical” algebraic K -theory and connections
with arithmetic (Seattle, 1972), edited by H. Bass, Lecture Notes in Math. 342, Springer, 1973. MR
Zbl

http://dx.doi.org/10.1215/S0012-7094-89-05933-4
http://msp.org/idx/mr/1046746
http://msp.org/idx/zbl/0712.14013
http://dx.doi.org/10.1007/BF01158629
http://msp.org/idx/mr/1051052
http://msp.org/idx/zbl/0702.16017
http://dx.doi.org/10.1007/s00222-005-0498-0
http://msp.org/idx/mr/2221141
http://msp.org/idx/zbl/1139.19003
http://dx.doi.org/10.1016/0021-8693(82)90263-0
http://msp.org/idx/mr/673125
http://msp.org/idx/zbl/0495.20021
http://dx.doi.org/10.2307/1968892
http://msp.org/idx/mr/0000262
http://msp.org/idx/zbl/0022.31403
http://msp.org/idx/mr/0207802
http://msp.org/idx/zbl/0138.25604
http://nyjm.albany.edu:8000/j/2012/18_925.html
http://nyjm.albany.edu:8000/j/2012/18_925.html
http://msp.org/idx/mr/3007206
http://msp.org/idx/zbl/1331.20046
http://msp.org/idx/mr/0466341
http://dx.doi.org/10.2307/1970380
http://msp.org/idx/mr/0171856
http://msp.org/idx/zbl/0135.06504
http://msp.org/idx/mr/0349811
http://msp.org/idx/zbl/0237.18005
http://dx.doi.org/10.1016/S1631-073X(03)00349-2
http://msp.org/idx/mr/2016979
http://msp.org/idx/zbl/1033.20029
http://msp.org/idx/mr/2841244
http://msp.org/idx/zbl/1208.01050
http://msp.org/idx/mr/0338129
http://msp.org/idx/zbl/0292.18004
http://msp.org/idx/mr/0292920
http://msp.org/idx/zbl/0247.20026
http://dx.doi.org/10.1007/BF02671749
http://dx.doi.org/10.1007/BF02671749
http://msp.org/idx/mr/1766704
http://msp.org/idx/zbl/0943.20020
http://dx.doi.org/10.1007/978-1-4612-4314-4
http://msp.org/idx/mr/1282290
http://msp.org/idx/zbl/0801.19001
http://dx.doi.org/10.1112/plms/s3-25.2.288
http://msp.org/idx/mr/0314952
http://msp.org/idx/zbl/0236.16011
http://msp.org/idx/mr/0406998
http://msp.org/idx/zbl/0271.18012


438 DAVID EL-CHAI BEN-EZRA

[Suslin 1977] A. A. Suslin, “On the structure of the special linear group over polynomial rings”, Izv.
Akad. Nauk SSSR Ser. Mat. 41:2 (1977), 235–252. In Russian; translated in Math. USSR, Izv. 11
(1977), 221–238. MR Zbl

Received 2 Aug 2017. Revised 28 Mar 2019. Accepted 12 Apr 2019.

DAVID EL-CHAI BEN-EZRA: davidel-chai.ben-ezra@mail.huji.ac.il
Department of Mathematics, University of California, San Diego, CA, United States

msp

http://msp.org/idx/mr/0472792
http://msp.org/idx/zbl/0378.13002
mailto:davidel-chai.ben-ezra@mail.huji.ac.il
http://msp.org


msp
ANNALS OF K-THEORY

Vol. 4, No. 3, 2019

dx.doi.org/10.2140/akt.2019.4.439

Vanishing theorems for the negative K-theory of stacks

Marc Hoyois and Amalendu Krishna

We prove that the homotopy algebraic K-theory of tame quasi-DM stacks satis-
fies cdh-descent. We apply this descent result to prove that if X is a Noetherian
tame quasi-DM stack and i <− dim(X ), then Ki (X )[1/n] = 0 if n is nilpotent
on X and Ki (X ,Z/n) = 0 if n is invertible on X . Our descent and vanishing
results apply more generally to certain Artin stacks whose stabilizers are exten-
sions of finite group schemes by group schemes of multiplicative type.
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1. Introduction

The negative K-theory of rings was defined by Bass [1968] and later generalized to
all schemes by Thomason and Trobaugh [1990], who established its fundamental
properties such as localization, excision, Mayer–Vietoris, and the projective bundle
formula.

As explained in [Thomason and Trobaugh 1990], these properties of K-theory
give rise to the Bass–Thomason–Trobaugh nonconnective K-theory, or K B-theory,
which is usually nontrivial in negative degrees for singular schemes. A famous con-
jecture of Weibel asserts that for a Noetherian scheme X of Krull dimension d , the
group Ki (X) vanishes for i <−d . This conjecture was settled by Weibel [2001] for
excellent surfaces, by Cortiñas, Haesemeyer, Schlichting and Weibel [Cortiñas et al.
2008] for schemes essentially of finite type over a field of characteristic zero, and
recently by Kerz, Strunk and Tamme [Kerz et al. 2018] for all Noetherian schemes.
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Before a complete proof of Weibel’s conjecture for schemes appeared in [Kerz
et al. 2018], Kelly [2014] used the alteration methods of de Jong and Gabber to
show that the vanishing conjecture for negative K-theory holds in characteristic
p > 0 if one is allowed to invert p. Later, Kerz and Strunk [2017] gave a different
proof of Kelly’s theorem by proving Weibel’s conjecture for negative homotopy
K-theory, or KH-theory, a variant of K-theory introduced by Weibel [1989]. In
their proof, Kerz and Strunk used the method of flatification by blow-up instead of
alterations.

It is natural to ask for an extension of Weibel’s conjecture to algebraic stacks.
The algebraic K-theory of quotient stacks was introduced by Thomason [1987a]
in order to study algebraic K-theory of a scheme which can be equipped with an
action of a group scheme. The localization, excision, and Mayer–Vietoris proper-
ties for the algebraic K-theory of tame Deligne–Mumford stacks were proven by
the second author and Østvær [Krishna and Østvær 2012], and together with the
projective bundle formula they were established for more general quotient stacks
by the second author and Ravi [Krishna and Ravi 2018]. The K B-theory of Bass–
Thomason–Trobaugh and the KH-theory of Weibel were also generalized to such
quotient stacks in [Krishna and Ravi 2018].

The purpose of this paper is to show that the approach of Kerz and Strunk can be
generalized to a large class of algebraic stacks, including all tame Artin stacks in the
sense of [Abramovich et al. 2008]. As a consequence, we obtain a generalization
of Kelly’s vanishing theorem for the negative K-theory of such stacks.

1A. Vanishing of negative K-theory of stacks. Our main results apply to certain
algebraic stacks with finite or multiplicative type stabilizers. More precisely, let
Stk′ be the category consisting of the following algebraic stacks:
• stacks with separated diagonal and linearly reductive finite stabilizers;

• stacks with affine diagonal whose stabilizers are extensions of linearly reduc-
tive finite groups by groups of multiplicative type.

Note that Stk′ contains tame Artin stacks with separated diagonal in the sense
of [Abramovich et al. 2008]. The blow-up dimension of a Noetherian stack X
is a modification of the Krull dimension which is invariant under blow-ups (see
Definition 7.7); it coincides with the usual dimension when X is a quasi-DM stack.

Theorem 1.1 (see Theorems 7.10, 7.14, and 7.16). Let X be a stack in Stk′ satis-
fying the resolution property or having finite inertia. Assume that X is Noetherian
of blow-up dimension d. Then the following hold.

(1) KHi (X )= 0 for i <−d.

(2) If n is nilpotent on X , Ki (X )[1/n] = 0 for i <−d.

(3) If n is invertible on X , Ki (X ,Z/n)= 0 for i <−d.
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1B. Cdh-descent for the homotopy K-theory of stacks. Cdh-descent plays a key
role in all the existing vanishing theorems for negative K-theory. In the recent proof
of Weibel’s conjecture in [Kerz et al. 2018], the central result is pro-cdh-descent
for nonconnective algebraic K-theory. Earlier results towards Weibel’s conjecture
used instead cdh-descent for homotopy K-theory KH . For schemes over a field of
characteristic zero, this descent result was proven by Haesemeyer [2004], and in
arbitrary characteristic, it was shown by Cisinski [2013]. For the equivariant KH-
theory of quasiprojective schemes acted on by a diagonalizable or finite linearly
reductive group over an arbitrary base, cdh-descent was proven by the first author
[Hoyois 2016]. A key step in the proof of Theorem 1.1 is a generalization of the
latter to more general algebraic stacks:

Theorem 1.2 (see Theorem 6.2). The presheaf of homotopy K-theory spectra KH
satisfies cdh-descent on the category Stk′.

Cdh-descent is the combination of two descent properties: descent for the Nis-
nevich topology and descent for abstract blow-ups. Descent for the Nisnevich
topology holds much more generally (see Corollary 4.10) and in fact it holds for
nonconnective K-theory as well (see Corollary 4.6). Descent for abstract blow-ups
is more difficult and uses several nontrivial properties of the category Stk′. The
proof ultimately relies on the proper base change theorem in stable equivariant
motivic homotopy theory, proved in [Hoyois 2017].

2. Preliminaries on algebraic stacks

A stack in this text means a quasicompact and quasiseparated algebraic stack.
Note that all morphisms between such stacks are quasicompact and quasiseparated.
Similarly, algebraic spaces and schemes are always assumed to be quasicompact
and quasiseparated. We say that a morphism of stacks is representable if it is
representable by algebraic spaces, and schematic if it is representable by schemes.
Recall that the diagonal of a stack is representable by definition; see [Stacks 2005–,
Tag 026N]. If X is a stack, k is a field, and x : Spec(k)→ X is a k-point, then
the stabilizer Gx → Spec(k) is a flat separated group scheme of finite type [Stacks
2005–, Tag 0B8D].

All group schemes are assumed flat and finitely presented. With this convention,
if G is a group scheme over a scheme S, then BG = [S/G] is a stack. Recall that
G is called linearly reductive if the pushforward functor QCoh(BG)→ QCoh(S)
on quasicoherent sheaves is exact. One knows from [Abramovich et al. 2008, The-
orem 2.16] that a finite étale group scheme G over S is linearly reductive if and
only if its degree at each point of S is prime to the residual characteristic. Diag-
onalizable group schemes are also linearly reductive by [SGA 3 I 1970, Exposé I,
Théorème 5.3.3]. As linear reductivity is an fpqc-local property on S [Abramovich
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et al. 2008, Proposition 2.4], every group scheme of multiplicative type is linearly
reductive.

We say that a group scheme G is almost multiplicative if it is an extension of
a finite étale group scheme by a group scheme of multiplicative type. Since the
class of linearly reductive group schemes is closed under quotients and extensions
[Alper 2013, Proposition 12.17], an almost multiplicative group scheme G over
S is linearly reductive if and only if, for every s ∈ S, the number of geometric
components of Gs is invertible in κ(s).

2A. Quasiprojective morphisms. Recall from [Laumon and Moret-Bailly 2000,
§14.3] that if X is a stack and A• is a quasicoherent sheaf of graded OX -algebras,
then Proj(A•) is a local construction on the fppf site of X just like for schemes
and hence defines a schematic morphism of stacks q : Proj(A•)→ X . A morphism
f : Y → X is called quasiprojective [Laumon and Moret-Bailly 2000, §14.3.4;
Rydh 2016, Theorem 8.6] if there is a finitely generated quasicoherent sheaf E on
X and a factorization

Y
ι
↪→ P(E)

q
−→ X

of f , where P(E)= Proj(Sym•(E)) and ι is a quasicompact immersion. We say that
f is projective if it is quasiprojective and proper. It is clear that a quasiprojective
morphism of stacks is schematic and hence representable.

Lemma 2.1. If f : X → Y and g : Y → Z are quasiprojective (resp. projective)
morphisms of stacks, then g ◦ f is quasiprojective (resp. projective).

Proof. The proof is the same as [Hoyois 2017, Lemma 2.13], the key point being
that every quasicoherent sheaf on a quasicompact quasiseparated stack is the co-
limit of its finitely generated quasicoherent subsheaves [Rydh 2016]. �

If I ⊂OX is a finitely generated quasicoherent sheaf of ideals, defining a finitely
presented closed substack Z ⊂X , then Proj

(⊕
i≥0 I

i
)
=BlZ(X ) is called the blow-

up of X with center Z. Note that BlZ(X ) is a closed substack of P(I). Since I
is finitely generated, it follows that the structure map BlZ(X )→ X is projective.
If U ⊂ X is an open substack, we say that a blow-up of X is U-admissible if its
center is disjoint from U .

2B. Flatification by blow-ups.

Theorem 2.2 (Rydh). Let S be a quasicompact and quasiseparated algebraic
stack and let f : X → S be a morphism of finite type. Let F be a finitely generated
quasicoherent OX -module. Let U ⊆ S be an open substack such that f |U is of finite
presentation and F | f −1(U) is of finite presentation and flat over U . Then there exists
a sequence of U-admissible blow-ups S̃→ S such that the strict transform of F is
of finite presentation and flat over S̃.
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Proof. This is proved in [Rydh ≥ 2019, Theorem 4.2]. �

Lemma 2.3. Let f : Y→X be a flat, proper, finitely presented, representable, and
birational morphism of stacks. Then f is an isomorphism.

Proof. We can assume that X and hence Y are algebraic spaces. Since f is flat,
proper, and finitely presented, its fibers have locally constant dimension [Stacks
2005–, Tag 0D4R]. Since f is birational, its fibers must have dimension 0, so
f is quasifinite [Stacks 2005–, Tag 04NV]. By Zariski’s main theorem [Stacks
2005–, Tag 082K], we deduce that f is in fact finite. Being finite, flat, and finitely
presented, f is locally free, and it must be of rank 0. �

Corollary 2.4 (Rydh). Let f : Y → X be a proper representable morphism of
stacks that is an isomorphism over some quasicompact open substack U ⊂ X . Then
there exists a projective morphism g : Ỹ→ Y that is an isomorphism over U such
that f ◦ g is also projective.

Proof. By first blowing up a finitely presented complement of U in X (which
exists by [Rydh 2016, Proposition 8.2]) and replacing Y by its strict transform, we
may assume that U is dense in X . By Theorem 2.2, we can find a sequence of
U-admissible blow-ups X̃ → X such that the strict transform f̃ : Ỹ→ X̃ is flat and
of finite presentation. Let g : Ỹ→ Y be the induced map:

U �
�

// Ỹ
f̃
��

g
// Y

f
��

U �
�

// X̃ // X

Then g is a sequence of U-admissible blow-ups and hence it is projective by
Lemma 2.1. Moreover, f̃ is flat, proper, finitely presented, representable, and
birational, whence an isomorphism (Lemma 2.3). Thus, f ◦ g is the composi-
tion of an isomorphism and the sequence of blow-ups X̃ → X , so it is projective
by Lemma 2.1. �

2C. Nisnevich coverings of stacks. The following definition appears in [Hall and
Rydh 2018, Definition 3.1] and, for Deligne–Mumford stacks, in [Krishna and
Østvær 2012, Definition 6.3].

Definition 2.5. Let X be a stack. A family of étale morphisms {Ui → X }i∈I is
called a Nisnevich covering if, for every x ∈ X , there exists i ∈ I and u ∈ Ui above
x such that the induced morphism of residual gerbes ηu→ ηx is an isomorphism.

Let f : Y→ X be a morphism of stacks. A monomorphic splitting sequence for
f is a sequence of quasicompact open substacks

∅= U0 ⊂ U1 ⊂ · · · ⊂ Un = X
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such that f admits a monomorphic section over the reduced substack Ui \Ui−1 for
all i . Note that if f is étale, such a section is an open immersion

Ui \Ui−1 ↪→ Y ×X (Ui \Ui−1).

Proposition 2.6. Let X be a stack. A family of étale morphisms {Ui → X }i is a
Nisnevich covering if and only if the morphism

∐
i Ui → X admits a monomorphic

splitting sequence.

Proof. See [Hall and Rydh 2018, Proposition 3.3]. �

Corollary 2.7. Let X be a stack and let {Ui→X }i∈I be a Nisnevich covering. Then
there exists a finite subset J ⊂ I such that {Ui → X }i∈J is a Nisnevich covering.

Proof. This follows at once from Proposition 2.6. �

A Nisnevich square in the category of stacks is a Cartesian square of the form

W � � //

��

V
f
��

U �
� e

// X
(2.8)

where f is an étale morphism (not necessarily representable) and e is an open
immersion with reduced complement Z such that the induced map Z×X V→ Z is
an isomorphism. Nisnevich squares form a cd-structure on the category of stacks,
in the sense of [Voevodsky 2010].

Proposition 2.9. Let f : Y → X be a Nisnevich covering. Then there exist se-
quences of quasicompact open substacks

Y1 ⊂ · · · ⊂ Yn ⊂ Y, ∅= X0 ⊂ X1 ⊂ · · · ⊂ Xn = X ,

such that f (Yi )⊂ Xi and such that each square

Xi−1×X Yi
� � //

��

Yi

f
��

Xi−1
� � // Xi

is a Nisnevich square.

Proof. The proof is exactly the same as [Morel and Voevodsky 1999, Proposi-
tion 1.4]. Let X0 ⊂ · · · ⊂ Xn be a monomorphic splitting sequence for f (see
Proposition 2.6), and si : Xi \Xi−1→ Y ×X (Xi \Xi−1) a monomorphic section of
the projection. Then si is an open immersion, so the complement of the image of
si is a closed substack Zi ⊂ Y ×X Xi . We can then take Yi = (Y ×X Xi ) \Zi . �
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Proposition 2.9 implies that the Grothendieck topology associated with the Nis-
nevich cd-structure is exactly the topology generated by Nisnevich coverings. The
Nisnevich cd-structure on the category of stacks clearly satisfies the assumptions
of Voevodsky’s descent criterion [Asok et al. 2017, Theorem 3.2.5]. It follows that
a presheaf of spaces or spectra F satisfies descent for Nisnevich coverings if and
only if, for every Nisnevich square (2.8), the induced square

F(X ) e∗
//

f ∗
��

F(U)

��

F(V) // F(W)

is homotopy Cartesian.
The following recent result of Alper, Hall, and Rydh [Alper et al. ≥ 2019] on

the Nisnevich-local structure of some stacks plays an important role in the proof
of our cdh-descent theorem.

Theorem 2.10 (Alper–Hall–Rydh). Let X be a stack, let x ∈ X be a point, and let
ηx be its residual gerbe. Suppose that the stabilizer of X at a representative of x is
a linearly reductive almost multiplicative group scheme. Then there exists

• a morphism of affine schemes U → S,

• a linearly reductive almost multiplicative group scheme G over S acting on U ,

• a commutative diagram of stacks

ηx
� � // [U/G]

f
��

ηx
� � // X

where f is étale.

If X has affine diagonal, we can moreover choose f affine. If X has finite inertia
and coarse moduli space π : X → X , we can take S to be an étale neighborhood
of π(x) in X.

Remark 2.11. Linearly reductive almost multiplicative group schemes are called
nice in [Hall and Rydh 2015] and [Alper et al. ≥ 2019], but this terminology is
used differently in [Krishna and Ravi 2018], so we avoid using it. �

3. Perfect complexes on algebraic stacks

3A. Sheaves on stacks. Let X be a stack. Let Lis-Ét(X ) denote the lisse-étale
site of X . Its objects are smooth morphisms X→ X , where X is a quasicompact
quasiseparated scheme. The coverings are generated by the étale covers of schemes.
Let Mod(X ) denote the abelian category of sheaves of OX -modules, and QCoh(X )
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that of quasicoherent sheaves, on Lis-Ét(X ). It is well known that QCoh(X ) and
Mod(X ) are Grothendieck abelian categories and hence have enough injectives and
all limits.

Let Ch(X ) denote the category of all (possibly unbounded) chain complexes
over Mod(X ), and Chqc(X ) the full subcategory of Ch(X ) consisting of those chain
complexes whose cohomology lies in QCoh(X ). Let D(X ) and Dqc(X ) denote
their corresponding derived categories, obtained by inverting quasi-isomorphisms.
If Z ↪→ X is a closed substack with open complement j : U ↪→ X , we let

Chqc,Z(X )= {F ∈ Chqc(X ) | j∗(F) is quasi-isomorphic to 0}.

The derived category of Chqc,Z(X ) is denoted by Dqc,Z(X ).
Let j : X → Y be a smooth morphism of algebraic stacks. We then have the

pullback functor j∗ :Mod(Y)→Mod(X ), which preserves quasicoherent sheaves.
Since j is smooth, the functor j∗ is simply the restriction functor under the inclu-
sion Lis-Ét(X )⊂ Lis-Ét(Y).

Recall from [SGA 6 1971, Definition I.4.2] that a complex of OX -modules on
a scheme X is perfect if it is locally quasi-isomorphic to a bounded complex of
locally free sheaves.

Definition 3.1. Let X be a stack. A chain complex P ∈ Chqc(X ) is called perfect
if for any affine scheme U = Spec(A) with a smooth morphism s : U → X , the
complex of A-modules s∗(P) ∈ Ch(Mod(A)) is quasi-isomorphic to a bounded
complex of finitely generated projective A-modules. Equivalently, s∗(P) is a per-
fect complex in Ch(Mod(A)) in the sense of [Thomason and Trobaugh 1990].

It follows from [Krishna and Ravi 2018, Lemma 2.5] that the above definition
coincides with that of [Thomason and Trobaugh 1990] if X is a scheme. We denote
the derived category of perfect complexes on X by Dperf(X ). The derived category
of perfect complexes on X whose cohomology is supported on a closed substack
Z is denoted by Dperf,Z(X ).

We also need to use the canonical dg-enhancements of the triangulated cate-
gories Dqc(X ) and Dperf(X ), denoted by Dqc(X ) and Dperf(X ), respectively, whose
construction we now recall. If X is an affine scheme, Dqc(X ) is the usual symmetric
monoidal derived dg-category of O(X ). The 2-category of stacks embeds fully
faithfully in the 2-category of presheaves of groupoids on affine schemes, which
further embeds in the ∞-category sPre(Aff) of simplicial presheaves on affine
schemes. Then one defines Dqc as a presheaf of symmetric monoidal dg-categories
on sPre(Aff) to be the homotopy right Kan extension of Dqc|Aff; see [Lurie 2018,
§6.2]. In other words, it is the unique extension of Dqc|Aff that transforms homotopy
colimits into homotopy limits. One can show that Dqc satisfies descent for the
fpqc topology on sPre(Aff) [Lurie 2018, Proposition 6.2.3.1]. For X a stack, the
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homotopy category of Dqc(X ) is then equivalent to Dqc(X ). If X is an algebraic
space (or more generally a Deligne–Mumford stack), this is proved in [Lurie 2018,
Proposition 6.2.4.1]. In general, this follows from the description of Dqc(X ) in
terms of a smooth representable cover of X by an algebraic space; see for instance
[Hall and Rydh 2017, §1.1]. Finally, Dperf ⊂ Dqc is the full symmetric monoidal
dg-subcategory spanned by the dualizable objects. Since the process of passing to
dualizable objects preserves homotopy limits of dg-categories [Lurie 2017, Propo-
sition 4.6.1.11], Dperf is similarly the unique extension of Dperf|Aff to sPre(Aff) that
transforms homotopy colimits into homotopy limits, and it satisfies fpqc descent.

Proposition 3.2. Let f : X ′→ X be an étale morphism of stacks and let Z ⊂ X
be a closed substack with quasicompact open complement such that the projection
Z ×X X ′→ Z is an isomorphism of associated reduced stacks. Then the functor

f ∗ : Dperf,Z(X )→ Dperf,Z×XX ′(X ′)

is an equivalence of triangulated categories.

Proof. The presheaf of dg-categories X 7→ Dperf(X ) satisfies descent for the fpqc
topology on stacks. In particular, it satisfies Nisnevich descent, so that the square
of dg-categories

Dperf(X ) //

f ∗
��

Dperf(X \Z)

��

Dperf(X ′) // Dperf(X ′ \ (Z ×X X ′))

is homotopy Cartesian. It follows that f ∗ induces an equivalence between the
kernels of the horizontal functors. �

3B. Perfect stacks.

Definition 3.3. Let X be a stack. We say that X is perfect if the triangulated
category Dqc(X ) is compactly generated and OX is compact in Dqc(X ).

If Z ⊂ X is a closed substack with quasicompact open complement, we say that
the pair (X ,Z) is perfect if X is perfect and there exists a perfect complex on X
with support |Z|.

We will see in Proposition 3.5 below that our notion of perfect stack agrees with
the one introduced in [Ben-Zvi et al. 2010], except that we do not require perfect
stacks to have affine diagonal.

Let f : X ′ → X be a morphism of stacks. We say that f is concentrated if
for every morphism g : Z → X , the morphism f ′ : X ′ ×X Z → Z has finite
cohomological dimension for quasicoherent sheaves.

Lemma 3.4. Let f : X ′→ X be a representable morphism of stacks. Then f is
concentrated. In particular, if OX is compact, then OX ′ is compact.
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Proof. Since f is representable, and since concentrated morphisms have faith-
fully flat descent by [Hall and Rydh 2017, Lemma 2.5(2)], we can assume that
f is a morphism of algebraic spaces. Now the result follows because any quasi-
compact and quasiseparated morphism of algebraic spaces is concentrated [Stacks
2005–, Tag 073G]. For the second statement, it suffices to show using [Neeman
1996, Theorem 5.1] that the right adjoint f∗ : Dqc(X ′)→ Dqc(X ) of f ∗ preserves
small coproducts. This follows from the first statement and [Hall and Rydh 2017,
Theorem 2.6(3)]. �

Proposition 3.5. Let (X ,Z) be a perfect pair. Then the triangulated category
Dqc,Z(X ) is compactly generated. Moreover, an object of Dqc,Z(X ) is compact if
and only if it is perfect.

Proof. Since OX ∈ Dqc(X ) is compact and since a perfect complex on X is dualiz-
able, it follows that every perfect complex on X is compact. On the other hand, it
follows from the proofs of [Krishna and Ravi 2018, Proposition 2.7, Lemma 2.8]
that compact objects of Dqc(X ) and Dqc,Z(X ) are perfect. The only remark we
need to make here is that the proofs in [loc. cit.] assume that X is a quotient stack.
However, this assumption is used only to ensure that if we choose an atlas u :U→X ,
then u has finite cohomological dimension for quasicoherent sheaves. But this
follows from Lemma 3.4 because X has representable diagonal and hence u is
representable. Finally, the existence of a perfect complex with support |Z| implies,
by [Hall and Rydh 2017, Lemma 4.10], that Dqc,Z(X ) is compactly generated. �

Lemma 3.6. Let f : Y→ X be a schematic morphism of stacks with a relatively
ample family of line bundles. If Dqc(X ) is compactly generated, so is Dqc(Y).
Proof. Let {Li }i∈I be an f -ample family of line bundles on Y . By Lemma 3.4, f is
a concentrated morphism. It follows from [Hall and Rydh 2017, Theorem 2.6(3)]
that f∗ : Dqc(Y)→ Dqc(X ) preserves small coproducts, and hence that its left
adjoint f ∗ preserves compact objects. It therefore suffices to show that Dqc(Y) is
generated by the objects f ∗(F)⊗L⊗−n

i , for F ∈ Dqc(X ) compact, i ∈ I , and n ≥ 1.
So let G ∈ Dqc(Y) be such that Hom( f ∗(F)⊗L⊗−n

i ,G)= 0 for every F compact,
i ∈ I , and n≥ 1. By adjunction, we have Hom(F, f∗(G⊗L⊗n

i ))= 0. Since Dqc(X )
is compactly generated, it follows that

f∗(G⊗L⊗n
i )= 0 (3.7)

for every i ∈ I and n ≥ 1.
To show that G= 0 in Dqc(Y), we let u :U→X be a smooth surjective morphism

such that U is affine. This gives rise to a Cartesian square

V v
//

g
��

Y
f
��

U u
// X
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where V is a scheme. As v is faithfully flat, it suffices to show v∗(G)= 0. It follows
from [Hall and Rydh 2017, Corollary 4.13] and (3.7) that g∗(v∗G⊗ v∗(Li )

⊗n)= 0
for all i ∈ I . Replacing Y by V and Li by v∗(Li ), we can assume that X is an affine
scheme, so that Y is a scheme and {Li }i∈I is an ample family of line bundles on Y .
In this case, (3.7) says that Hom(L⊗−n

i [m],G)= 0 for all i ∈ I , n ≥ 1, and m ∈ Z.
But this implies that G is acyclic because Dqc(Y) is generated by {L⊗−n

i }i∈I, n≥1.
Indeed, Dqc(Y) is compactly generated by bounded complexes of vector bundles
[Thomason and Trobaugh 1990, Theorem 2.3.1(d)], and every vector bundle admits
an epimorphism from a sum of line bundles of the form L⊗−n

i . �

Proposition 3.8. Let (X ,Z) be a perfect pair.

(1) For every algebraic space Y and closed subspace W ⊂ Y with quasicompact
open complement, (X × Y,Z ×W ) is perfect.

(2) For every schematic morphism f : Y→ X with a relatively ample family of
line bundles, (Y,Y ×X Z) is perfect.

Proof. Let P be a perfect complex on X with support |Z|.

(1) By [Hall and Rydh 2017, Theorem A], there exists a perfect complex Q on
Y with support |W |. Then π∗1 (P)⊗ π

∗

2 (Q) is a perfect complex on X × Y with
support |Z ×W |. Since the projection π1 : X × Y → X is representable, OX×Y is
compact by Lemma 3.4. It remains to show that Dqc(X×Y ) is compactly generated.
We claim that there is an equivalence of presentable dg-categories

Dqc(X × Y )' Dqc(X )⊗Dqc(Y ). (3.9)

Since the tensor product of compactly generated dg-categories is compactly gener-
ated, this will complete the proof. Since Y is a quasicompact and quasiseparated
algebraic space, the dg-category Dqc(Y ) is dualizable [Lurie 2018, §9.4], and hence
tensoring with Dqc(Y ) preserves homotopy limits. Since Dqc( – ) is the homotopy
right Kan extension of its restriction to affine schemes, we are reduced to prov-
ing (3.9) when X is an affine scheme, in which case it is a special case of [Lurie
2018, Corollary 9.4.2.4].

(2) The perfect complex f ∗(P) has support |Y ×X Z|. By Lemma 3.4, OY is
compact. It remains to show that Dqc(Y) is compactly generated, but this follows
from Lemma 3.6. �

Proposition 3.10. Let (X ,Z) be a perfect pair and let j : U ↪→ X be the open
immersion complement to Z . Then

j∗ :
Dperf(X )

Dperf,Z(X )
→ Dperf(U)

is an equivalence of triangulated categories, up to direct factors.
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Proof. For any pair (X ,Z), we have an equivalence of triangulated categories

j∗ :
Dqc(X )

Dqc,Z(X )
→ Dqc(U).

Indeed, the functor j∗ : Dqc(U)→ Dqc(X ) is fully faithful by flat base change, so
j∗ j∗ is a localization endofunctor of Dqc(X ) whose kernel is Dqc,Z(X ) by defini-
tion. The claim now follows from [Krause 2010, Proposition 4.9.1]. If (X ,Z) is
perfect, then U is also perfect by Proposition 3.8(2). By Proposition 3.5, all three
categories are compactly generated and their subcategories of compact and perfect
objects coincide. We conclude using [Krause 2010, Theorem 5.6.1]. �

Proposition 3.11. Suppose that X is the limit of a filtered diagram (Xα) of perfect
stacks with affine transition morphisms. Then X is perfect and the canonical map

hocolim
α

Dperf(Xα)→ Dperf(X ) (3.12)

is a weak equivalence of dg-categories.

Proof. It follows from Proposition 3.8(2) that X is perfect. By Proposition 3.5,
Dqc(X ) is compactly generated and Dqc(X )c = Dperf(X ), and similarly for each Xα .
Since the pullback functors Dqc(Xα)→ Dqc(Xβ) preserve compact objects, it fol-
lows from [Lurie 2009, Propositions 5.5.7.6 and 5.5.7.8] and [Lurie 2017, Lemma
7.3.5.10] that (3.12) is a weak equivalence if and only if the canonical map

Dqc(X )→ holim
α

Dqc(Xα) (3.13)

is a weak equivalence. Choosing a smooth hypercover of some Xα by schemes
and using flat base change, we see that the map (3.13) is the homotopy limit of
a cosimplicial diagram of similar maps with Xα replaced by a scheme. Hence, it
suffices to prove that (3.12) is a weak equivalence when Xα is a scheme, but this
follows from [Thomason and Trobaugh 1990, Proposition 3.20]. �

We now state the following two results of Hall and Rydh, which provide many
examples of perfect stacks.

Theorem 3.14 (Hall–Rydh). Let X be a stack satisfying one of the following prop-
erties.

(1) X has characteristic zero.

(2) X has linearly reductive almost multiplicative stabilizers.

(3) X has finitely presented inertia and linearly reductive almost multiplicative
stabilizers at points of positive characteristic.

Then OX is compact in Dqc(X ).

Proof. See [Hall and Rydh 2015, Theorem 2.1]. �
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Theorem 3.15 (Hall–Rydh). Let X be a stack satisfying the following properties.

(1) OX is compact in Dqc(X ).
(2) There exists a faithfully flat, representable, separated, and quasifinite mor-

phism f : X ′→ X of finite presentation such that X ′ has affine stabilizers and
satisfies the resolution property.

Then, for every closed substack Z ⊂ X , the pair (X ,Z) is perfect.

Proof. By Lemma 3.4, OX ′ = f ∗(OX ) is compact in Dqc(X ′). Since X ′ has affine
stabilizers and satisfies the resolution property, it has affine diagonal by [Gross
2017, Theorem 1.1]. Since moreover OX ′ is compact, it follows from [Hall and
Rydh 2017, Proposition 8.4] that X ′ is crisp. We now apply [Hall and Rydh 2017,
Theorem C] to conclude that X is also crisp. By definition of crispness, this implies
that (X ,Z) is perfect. �

Corollary 3.16. Let X be a quasi-DM stack with separated diagonal and linearly
reductive stabilizers. Then, for every closed substack Z ⊂ X , the pair (X ,Z) is
perfect.

Proof. Recall that a quasi-DM stack is a stack whose diagonal is quasifinite. It
follows from [Stacks 2005–, Tag 06MC] that a stack X is quasi-DM if and only if
there exists an affine scheme X and a faithfully flat map f : X→X of finite presen-
tation which is quasifinite. Since the diagonal of X is representable and separated,
it follows that f is representable and separated. Since X is affine and hence has
the resolution property, the corollary follows from Theorems 3.14 and 3.15. �

Corollary 3.17. Let X be a stack with affine diagonal and linearly reductive al-
most multiplicative stabilizers. Then, for every closed substack Z ⊂ X , (X ,Z) is
perfect.

Proof. By Theorem 2.10, there exists a Nisnevich covering { fi : [Ui/Gi ] → X }i∈I ,
where fi is affine, Ui is affine over an affine scheme Si , and Gi is a linearly re-
ductive almost multiplicative group scheme over Si . By taking a further affine
Nisnevich covering of Si , we can ensure that Gi is almost isotrivial and hence that
[Ui/Gi ] has the resolution property; see [Hoyois 2017, Example 2.8 and Remark
2.9]. By Corollary 2.7, we can also assume that I is finite. Let X ′ =

∐
i [Ui/Gi ].

Then the induced map X ′→ X is faithfully flat, quasifinite, and affine. Since X ′

has the resolution property, we conclude that (X ,Z) is perfect by Theorems 3.14
and 3.15. �

4. K-theory of perfect stacks

In this section, we establish some descent properties of the K-theory, negative K-
theory, and homotopy K-theory of stacks. Special cases of these results were earlier
proven in [Krishna and Østvær 2012; Krishna and Ravi 2018; Hoyois 2016].
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4A. Localization, excision, and continuity. Let X be an algebraic stack. The
algebraic K-theory spectrum of X is defined to be the K-theory spectrum of the
complicial bi-Waldhausen category of perfect complexes in Chqc(X ) in the sense of
[Thomason and Trobaugh 1990, §1.5.2]. Here, the complicial bi-Waldhausen cate-
gory structure is given with respect to the degreewise split monomorphisms as cofi-
brations and quasi-isomorphisms as weak equivalences. This K-theory spectrum is
denoted by K (X ). Equivalently, one may define K (X ) as the K-theory spectrum
of the dg-category Dperf(X ); see [Blumberg et al. 2013, Corollary 7.12]. Note that
the negative homotopy groups of K (X ) are zero [Thomason and Trobaugh 1990,
§1.5.3]. We shall extend this definition to negative integers in the next section. For
a closed substack Z of X , K (X on Z) is the K-theory spectrum of the complicial bi-
Waldhausen category of those perfect complexes on X which are acyclic on X \Z .

Theorem 4.1 (localization). Let (X ,Z) be a perfect pair and let j : U ↪→ X be the
open immersion complement to Z . Then the morphisms of spectra

K (X on Z)→ K (X )
j∗
−→ K (U)

induce a long exact sequence

· · · → Ki (X on Z)→ Ki (X )→ Ki (U)→ Ki−1(X on Z)→ · · ·
→ K0(X on Z)→ K0(X )→ K0(U).

Proof. This follows from Proposition 3.10 as in [Krishna and Ravi 2018, Theo-
rem 3.4]. �

Theorem 4.2 (excision). Let f : X ′ → X be an étale morphism of stacks and
let Z ⊂ X be a closed substack with quasicompact open complement such that the
projection Z×X X ′→ Z is an isomorphism of associated reduced stacks. Then the
map f ∗ : K (X on Z)→ K (X ′ on Z ×X X ′) is a homotopy equivalence of spectra.

Proof. This follows from Proposition 3.2 using [Thomason and Trobaugh 1990,
Theorem 1.9.8]. �

Theorem 4.3 (continuity). Let X be the limit of a filtered diagram (Xα) of perfect
stacks with affine transition morphisms. Then the canonical map

hocolim
α

K (Xα)→ K (X )

is a homotopy equivalence.

Proof. This follows from Proposition 3.11 and the fact that K preserves filtered
homotopy colimits of dg-categories. �
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4B. The Bass construction and negative K-theory. The nonconnective K-theory
spectrum of any stack may be defined from the complicial bi-Waldhausen cate-
gory of perfect complexes, following [Schlichting 2006], or from the dg-category
Dperf(X ), following [Cisinski and Tabuada 2011]. This allows one to define the
negative K-theory of stacks.

In this subsection, we will see that for perfect stacks a nonconnective K-theory
spectrum K B can be defined much more explicitly using the construction of Bass–
Thomason–Trobaugh. One may prove that this construction agrees with those of
Schlichting and Cisinski–Tabuada exactly as in [Krishna and Ravi 2018, Theo-
rem 3.21].

The K B-theory spectrum K B(X ) was constructed in [Krishna and Ravi 2018,
§3E] based on the following two assumptions.

(1) X is a quotient stack of the form [X/G] over a field, where G is a linearly
reductive group scheme.

(2) X satisfies the resolution property.

Since perfect stacks need not satisfy these conditions, we cannot directly quote the
results of [Krishna and Ravi 2018] for the construction of the K B-theory of stacks.
But the proofs are identical to those in [Krishna and Ravi 2018] using Theorems 4.1
and 4.2, so we only give a brief sketch of the construction. The existence of the
K B-theory is based on the following version of the fundamental theorem of Bass.

Theorem 4.4 (Bass fundamental theorem). Let X be a perfect stack and let X [T ]
denote the stack X ×Spec(Z[T ]). Then the following hold.

(1) For n ≥ 1, there is an exact sequence

0→ Kn(X )
(p∗1 ,−p∗2)
−−−−−→ Kn(X [T ])⊕ Kn(X [T−1

])

( j∗1 , j∗2 )
−−−−→ Kn(X [T, T−1

])
∂T
−→ Kn−1(X )→ 0.

Here p∗1, p∗2 are induced by the projections X [T ] → X , etc. and j∗1 , j∗2 are
induced by the open immersions X [T±1

] = X [T, T−1
] → X [T ], etc. The

sum of these exact sequences for n = 1, 2, . . . is an exact sequence of graded
K∗(X )-modules.

(2) For n ≥ 0, ∂T : Kn+1(X [T±1
])→ Kn(X ) is naturally split by a map hT of

K∗(X )-modules. Indeed, the cup product with T ∈ K1(Z[T±1
]) splits ∂T up

to a natural automorphism of Kn(X ).

(3) There is an exact sequence

0→ K0(X )
(p∗1 ,−p∗2)
−−−−−→ K0(X [T ])⊕ K0(X [T−1

])
( j∗1 , j∗2 )
−−−−→ K0(X [T±1

]).
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Proof. The proof of this theorem is word for word identical to the proof of its
scheme version given in [Thomason and Trobaugh 1990, Theorem 6.1], once we
know that the algebraic K-theory spectrum satisfies the following properties:

(1) The projective bundle formula for the projective line P1
X .

(2) Localization for the pairs (P1
X ,X [T

−1
]) and (X [T ],X [T±1

]).

(3) Excision.

Property (1) follows from [Krishna and Ravi 2018, Theorem 3.8], which holds for
any algebraic stack. Property (2) follows from Proposition 3.8(1) and Theorem 4.1,
and property (3) is Theorem 4.2. �

As an immediate consequence of Theorem 4.4, one obtains the following.

Theorem 4.5. Let X be a perfect stack. Then there exists a spectrum K B(X ),
together with a natural map K (X )→ K B(X ) of spectra inducing isomorphisms
πi K (X )∼= πi K B(X ) for i ≥ 0, which satisfies the following properties.

(1) Let Z⊂X be a closed substack with quasicompact open complement j : U ↪→X
such that (X ,Z) is perfect. Then there is a homotopy fiber sequence of spectra

K B(X on Z)→ K B(X )
j∗
−→ K B(U).

(2) Let f : Y→ X be an étale map between perfect stacks such that the projection
Z ×X Y→ Z is an isomorphism on the associated reduced stacks. Then the
map f ∗ : K B(X on Z)→ K B(Y on Z ×X Y) is a homotopy equivalence.

(3) Let π : P(E)→ X be the projective bundle associated to a vector bundle E on
X of rank r. Then the map

r−1∏
0

K B(X )→ K B(P(E))

that sends (a0, . . . , ar−1) to
∑

i O(−i)⊗π∗(ai ) is a homotopy equivalence.

(4) Let i : Y ↪→ X be a regular closed immersion and let p : X ′ → X be the
blow-up of X with center Y . Then the square of spectra

K B(X ) i∗
//

p∗
��

K B(Y)

��

K B(X ′) // K B(X ′×X Y)

is homotopy Cartesian.

(5) Suppose X is the limit of a filtered diagram (Xα) of perfect stacks with affine
transition morphisms. Then the canonical map hocolimα K B(Xα)→ K B(X )
is a homotopy equivalence.
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Proof. The spectrum K B(X ) is constructed word for word using Theorem 4.4 and
the formalism given in (6.2)–(6.4) of [Thomason and Trobaugh 1990] for the case
of schemes. The proof of the asserted properties is a standard deduction from the
analogous properties of K (X ). The sketch of this deduction for (1)–(4) can be
found in [Krishna and Ravi 2018, Theorem 3.20]. Note that quasicompact open
substacks of X , projective bundles over X , and blow-ups of X are perfect stacks
by Proposition 3.8(2). For (5), it suffices to check colimα πn K B(Xα)∼= πn K B(X )
for all n ∈ Z. This follows from Theorem 4.3, since π−n K B(X ), for n > 0, is a
natural retract of K0(G

n
m ×X ). �

Corollary 4.6. Let
W � � //

��

V
f
��

U �
� e
// X

be a Nisnevich square of stacks, and suppose that the pairs (X ,X \U) and (V,V\W)

are perfect. Then the induced square of spectra

K B(X )
f ∗
//

e∗
��

K B(V)

��

K B(U) // K B(W)

is homotopy Cartesian.

Proof. This follows immediately from Theorem 4.5(1) and (2). �

Remark 4.7. We remark that if (X ,X \U) is a perfect pair and if the map f :V→X
in Corollary 4.6 is representable and separated, then (V,V \W) is automatically
a perfect pair. The reason is that in this case, f is quasi-affine by Zariski’s main
theorem for stacks [Laumon and Moret-Bailly 2000, Theorem 16.5] and one can
apply Proposition 3.8(2).

Since the homotopy groups of the two spectra K (X ) and K B(X ) agree in non-
negative degrees by Theorem 4.5, we make the following definition.

Definition 4.8. Let X be a perfect stack and i ∈ Z. We let Ki (X ) denote the i-th
homotopy group of the spectrum K B(X ).

4C. The homotopy K-theory of perfect stacks. For n ∈ N, let

1n
= Spec

(
Z[t0, . . . , tn](∑

i ti − 1
) ).

Recall that 1• is a cosimplicial scheme. For a perfect stack X , the homotopy
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K-theory of X is defined as

KH(X )= hocolim
n∈1op

K B(X ×1n).

There is a natural map K B(X )→ KH(X ) induced by 0 ∈1op.

Theorem 4.9. Let X be a perfect stack.

(1) Let Z⊂X be a closed substack with quasicompact open complement j : U ↪→X
such that (X ,Z) is perfect. Then there is a homotopy fiber sequence of spectra

KH(X on Z)→ KH(X )
j∗
−→ KH(U).

(2) Let f : Y→ X be an étale map between perfect stacks such that the projection
Z ×X Y→ Z is an isomorphism on the associated reduced stacks. Then the
map f ∗ : KH(X on Z)→ KH(Y on Z ×X Y) is a homotopy equivalence.

(3) Let π : P(E)→ X be the projective bundle associated to a vector bundle E on
X of rank r. Then the map

r−1∏
0

KH(X )→ KH(P(E))

that sends (a0, . . . , ar−1) to
∑

i O(−i)⊗π∗(ai ) is a homotopy equivalence.

(4) Let i : Y ↪→ X be a regular closed immersion and let p : X ′ → X be the
blow-up of X with center Y . Then the square of spectra

KH(X ) i∗
//

p∗
��

KH(Y)

��

KH(X ′) // KH(X ′×X Y)

is homotopy Cartesian.

(5) Suppose that X is the limit of a filtered diagram (Xα) of perfect stacks with
affine transition morphisms. Then the canonical map

hocolim
α

KH(Xα)→ KH(X )

is a homotopy equivalence.

(6) Suppose that u : E → X is a vector bundle over X . Then the induced map
u∗ : KH(X )→ KH(E) is a homotopy equivalence.

Proof. Properties (1)–(5) follow immediately from the definition of KH(X ) and
Theorem 4.5. The proof of (6) for quotient stacks is given in [Krishna and Ravi
2018, Theorem 5.2] and the same proof is valid for perfect stacks. �
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Corollary 4.10. Let
W � � //

��

V
f
��

U �
� e

// X

be a Nisnevich square of stacks, and suppose that the pairs (X ,X \U) and (V,V\W)

are perfect. Then the induced square of spectra

KH(X )
f ∗
//

e∗
��

KH(V)

��

KH(U) // KH(W)

is homotopy Cartesian.

Proof. This follows immediately from Theorem 4.9(1) and (2). �

Remark 4.11. In [Hoyois 2016], a potentially different definition of KH is given
for certain quotient stacks, which forces KH to be invariant with respect to vector
bundle torsors and not just vector bundles. The two definitions agree for quotients
of schemes by finite or multiplicative type groups, as we will show in Lemma 6.1,
but they may differ in general. We do not know if the above definition of KH has
good properties for general perfect stacks. �

5. G-theory and the case of regular stacks

Our goal in this section is to show that perfect stacks that are Noetherian and regular
have no negative K-groups. We do this by comparing the K-theory and G-theory
of such stacks.

Let X be a stack. Recall that Mod(X ) is the abelian category of OX -modules
on the lisse-étale site of X and QCoh(X )⊂Mod(X ) is the abelian subcategory of
quasicoherent sheaves.

Lemma 5.1. Assume that X is a Noetherian stack. Then the inclusion

ιX : QCoh(X ) ↪→Mod(X )

induces an equivalence of the derived categories D+(QCoh(X )) '−→ D+qc(X ).

Proof. To show that D+(QCoh(X ))→ D+qc(X ) is full and faithful, it suffices, using
standard reduction, to show that the natural map

ExtiQCoh(X )(N ,M)→ ExtiMod(X )(N ,M)

is an isomorphism for all i ∈ Z for N ,M ∈ QCoh(X ). Since this is clearly true for
i ≤ 0, and since ιX : QCoh(X )→Mod(X ) is exact, it suffices to show that this
functor preserves injective objects.
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Let F be an injective quasicoherent sheaf on X . Since a direct summand of
an injective object in Mod(X ) is injective and since a quasicoherent sheaf which
is injective as a sheaf of OX -modules is also an injective quasicoherent sheaf, it
suffices to show that there is an inclusion F ↪→ G in QCoh(X ) such that ιX (G) is
injective in Mod(X ).

Since X is Noetherian, we can find a smooth atlas u : U → X , where U is a
Noetherian scheme. We can now find an inclusion u∗(F) ↪→H in QCoh(U ) such
that H is injective as a sheaf of OU -modules, by [Thomason and Trobaugh 1990,
B.4]. We now consider the maps

F→ u∗u∗(F)→ u∗(H). (5.2)

As U is Noetherian, it is clear that u∗(H) is a quasicoherent sheaf on X . Fur-
thermore, u∗ has a left adjoint u∗ : Mod(X )→ Mod(U ) which preserves quasi-
coherent sheaves. Since (u : U → X ) is an object of Lis-Ét(X ), it follows that
u∗ :Mod(X )→Mod(U ) is exact. In particular, u∗ :Mod(U )→Mod(X ) has an
exact left adjoint. This implies that it must preserve injective sheaves. It follows
that u∗(H) is a quasicoherent sheaf on X which is injective as a sheaf of OX -
modules.

Letting G = u∗(H), we are now left with showing that the two maps in (5.2) are
injective. The first map is injective because u is faithfully flat and F is quasicoher-
ent. The second map is injective because u∗ : QCoh(U )→ QCoh(X ) is left exact
and hence preserves injections.

To show that the functor D+(QCoh(X ))→ D+qc(X ) is essentially surjective,
we can use its full and faithfulness shown above and an induction on the length
to first see that Db(QCoh(X )) '−→ Db

qc(X ). Since every object of D+qc(X ) is a
colimit of objects in Db

qc(X ) (using good truncations), a limit argument concludes
the proof. �

Lemma 5.3. Let X be as in Lemma 5.1 and let P ∈ D(QCoh(X )) be a compact
object. Then the following hold.

(1) There exists an integer r ≥ 0 such that HomDqc(X )(P, N [i]) = 0 for all
N ∈QCoh(X ) and i > r .

(2) There exists an integer r ≥ 0 such that the natural map

τ≥ j RHomDqc(X )(P,M)→ τ≥ j RHomDqc(X )(P, τ
≥ j−r M)

is a quasi-isomorphism for all M ∈ Dqc(X ) and integers j .

(3) There exists an integer r ≥ 0 such that the natural map

τ≥ j RHomD(QCoh(X ))(P,M)→ τ≥ j RHomD(QCoh(X ))(P, τ≥ j−r M)

is a quasi-isomorphism for all M ∈ D(QCoh(X )) and integers j .
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Proof. It follows from Lemma 5.1 that ιX induces an equivalence between the
derived categories of perfect complexes of quasicoherent sheaves and perfect com-
plexes of OX -modules. Since the compact objects of Dqc(X ) are perfect [Krishna
and Ravi 2018, Proposition 2.7], it follows that D(QCoh(X )) and Dqc(X ) have
equivalent full subcategories of compact objects. The parts (1) and (2) now fol-
low from [Hall and Rydh 2017, Lemma 4.5] and the proof of [Hall et al. 2014,
Lemma 2.4] shows that (1) implies (3) for any stack. �

Lemma 5.4. Let X be a Noetherian stack such that Dqc(X ) is compactly gener-
ated. Then ιX : QCoh(X )→Mod(X ) induces an equivalence of the unbounded
derived categories D(QCoh(X )) '−→ Dqc(X ).

Proof. Let 9 : D(QCoh(X ))→ Dqc(X ) denote the derived functor induced by ιX .
We have shown in the proof of Lemma 5.3 that 9 restricts to an equivalence
between the full subcategories of compact objects. Using [Benson et al. 2011,
Lemma 4.5], it thus suffices to show that D(QCoh(X )) is compactly generated.

So let M ∈ D(QCoh(X )) be such that HomD(QCoh(X ))(P,M) = 0 for every
compact object P . We need to show that M = 0. Since any compact object of
D(QCoh(X )) is perfect, and 9 is conservative and induces equivalence of com-
pact objects, it suffices to show that RHom(P,M) '−→ RHom(9(P),9(M)) for
every perfect complex P . Equivalently, we need to show that for every integer j ,
the map τ≥ j RHom(P,M)→ τ≥ j RHom(9(P),9(M)) is a quasi-isomorphism.
Lemma 5.3 now allows us to assume that M ∈ D+(QCoh(X )). But in this case,
the result follows from Lemma 5.1. �

For a Noetherian stack X , let Gnaive(X ) denote the K-theory spectrum of the
exact category of coherent OX -modules in the sense of Quillen, and let G(X ) be the
K-theory spectrum of the complicial bi-Waldhausen category of cohomologically
bounded pseudocoherent complexes in Chqc(X ), in the sense of [Thomason and
Trobaugh 1990, §1.5.2]. We have a natural map of spectra Gnaive(X )→ G(X ).

Lemma 5.5. Let X be a Noetherian stack such that Dqc(X ) is compactly gener-
ated. Then the map Gnaive(X )→ G(X ) is a homotopy equivalence.

Proof. It follows from Lemma 5.4 that G(X ) is homotopy equivalent to the K-
theory of the Waldhausen category Chpc(QCoh(X )) of cohomologically bounded
pseudocoherent chain complexes of quasicoherent sheaves on X . Let Chb(Coh(X ))
denote the Waldhausen category of bounded complexes of coherent OX -modules.

Using the fact that every quasicoherent sheaf on X is a filtered colimit of coher-
ent subsheaves [Laumon and Moret-Bailly 2000, Proposition 15.4], we can mimic
the proof of [Thomason and Trobaugh 1990, Lemma 3.12] to conclude that the
inclusion Chb(Coh(X )) ↪→ Chpc(QCoh(X )) induces a homotopy equivalence be-
tween the associated K-theory spectra. By induction on the length of complexes in
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Chb(Coh(X )), the map Gnaive(X )→ K (Chb(Coh(X ))) is also a homotopy equiv-
alence, so we conclude the proof. �

Lemma 5.6. Let X be a Noetherian regular stack. Then the canonical map of
spectra K (X )→ G(X ) is a homotopy equivalence.

Proof. As for schemes [Thomason and Trobaugh 1990, Theorem 3.21], it suffices
to show that every cohomologically bounded pseudocoherent complex E• on X is
perfect. Let u :U→X be a smooth atlas such that U is affine. Since (u :U→X ) is
an object of Lis-Ét(X ), the functor u∗ :Mod(X )→Mod(U ) is exact and preserves
coherent sheaves. It follows that u∗(E•) is a cohomologically bounded pseudo-
coherent complex on U . Since U is a regular scheme, we conclude from the proof
of [Thomason and Trobaugh 1990, Theorem 3.21] that u∗(E•) is perfect. But this
implies that E• is perfect on X . �

Theorem 5.7. Let X be a Noetherian regular stack such that Dqc(X ) is compactly
generated. Then the following hold.

(1) The canonical maps K (X )→ G(X )← Gnaive(X ) are homotopy equivalences.

(2) For any vector bundle E on X and any E-torsor π : Y→ X , the pullback map
K (X )→ K (Y) is a homotopy equivalence.

(3) The canonical morphisms of spectra

K (X )→ K B(X )→ KH(X )

are homotopy equivalences. In particular, Ki (X )= KHi (X )= 0 for i < 0.

Proof. Part (1) of the theorem follows directly from Lemmas 5.5 and 5.6. As shown
in [Merkurjev 2005, Theorem 2.11], there exists a short exact sequence of vector
bundles

0→ E→W
φ
−→ A1

X → 0

such that Y = φ−1(1). In particular, Y is the complement of the projective bundle
P(E) in P(W). It follows from our hypothesis and Lemma 3.6 that P(W) is a
Noetherian regular stack such that Dqc(P(W)) is compactly generated. The same
holds for P(E) as well. The Quillen localization sequence

Gnaive(P(E))→ Gnaive(P(W))→ Gnaive(Y) (5.8)

and the projective bundle formula [Krishna and Ravi 2018, Theorem 3.8] now
prove (2).

By (1) and the Quillen localization sequence for Gnaive( – ) associated to the
inclusions X [T ] ↪→ P1

X and X [T±1
] ↪→ X [T ], we see that the Bass fundamen-

tal theorem holds for X and moreover that the sequence (3) of Theorem 4.4 is a
short exact sequence. This implies that one can define K B(X ) as in Section 4B,
and moreover that K (X ) '−→ K B(X ). On the other hand, it follows from (2) that
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K B(X ) '−→ K B(X ×1n) for every n ≥ 0, which implies that K B(X ) '−→ KH(X ).
The last assertion of (3) holds because K (X ) has no negative homotopy groups. �

6. Cdh-descent for homotopy K-theory

We denote by Stk′ the category of stacks X satisfying one of the following condi-
tions:

• X has separated diagonal and linearly reductive finite stabilizers.

• X has affine diagonal and linearly reductive almost multiplicative stabilizers.

By Corollaries 3.16 and 3.17, for every X ∈ Stk′ and every closed substack Z ⊂ X
with quasicompact open complement, the pair (X ,Z) is perfect. Furthermore,
by Theorem 2.10, X admits a Nisnevich covering by quotient stacks [U/G] where
U is affine over an affine scheme S and G is a linearly reductive almost multiplica-
tive group scheme over S

Note that if X ∈ Stk′ and Y→ X is a representable morphism with affine diag-
onal, then also Y ∈ Stk′, since the stabilizers of Y are subgroups of the stabilizers
of X .

Lemma 6.1. Let X be a stack in Stk′ and let f : Y→X be a torsor under a vector
bundle. Then

f ∗ : KH(X )→ KH(Y)

is a homotopy equivalence.

Proof. By Theorem 2.10, there exists a Nisnevich covering [U/G] → X , where
U is affine over an affine scheme S and G is a linearly reductive S-group scheme.
By Proposition 2.9 and Corollary 4.10, we are reduced to showing that

KH([U/G])→ KH([U/G]×X Y)

is a homotopy equivalence. But since U and S are affine and G is linearly reductive,
the vector bundle torsor [U/G]×X Y→[U/G] has a section and hence is a vector
bundle. The result now follows from Theorem 4.9(6). �

The following theorem is our cdh-descent result for the homotopy K-theory of
stacks.

Theorem 6.2. Let X be a stack in Stk′ and let

E �
�
//

��

Y
p
��

Z �
� e
// X

be a Cartesian square where p is a proper representable morphism, e is a closed
immersion, and p induces an isomorphism Y \ E ∼= X \Z . Then the induced square
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of spectra
KH(X )

p∗
//

e∗
��

KH(Y)

��

KH(Z) // KH(E)

(6.3)

is homotopy Cartesian.

Proof. We proceed in several steps.

Step 1. We prove the result under the assumptions that p is projective, that p and e
are of finite presentation, and that X = [U/G] is quasi-affine over [S/G] for some
affine scheme S and some linearly reductive isotrivial almost multiplicative group
scheme G over S (note that such a stack belongs to Stk′ and has the resolution
property). Since G is finitely presented, we can write U as an inverse limit of quasi-
affine G-schemes of finite presentation over S. By Theorem 4.9(5), KH transforms
such limits into homotopy colimits. Since homotopy colimits of spectra commute
with homotopy pullbacks, we can assume that U is finitely presented over S. We
are now in the situation of [Hoyois 2016, Theorem 1.3], and we deduce that (6.3)
is a homotopy Cartesian square for the KH-theory defined in [Hoyois 2016] (more
precisely, for the presheaf of spectra KH[S/G] defined in [Hoyois 2016, §4]). But
the latter agrees with the KH-theory defined in this paper, by Lemma 6.1.

Step 2. We prove the result under the assumption that p is projective and that X
is as in Step 1. Since every quasicoherent sheaf on X is the union of its finitely
generated quasicoherent subsheaves [Rydh 2016], we can write Z as a filtered
intersection of finitely presented closed substacks of X . By continuity of KH
(Theorem 4.9(5)), we can therefore assume that e is finitely presented. In particular,
U = X \Z is quasicompact. Since Y is projective over X , it is a closed substack
of P(F) for some finitely generated quasicoherent sheaf F on X . Since X has
the resolution property and affine stabilizers, we can write X = [V/GLn] for some
quasi-affine scheme V [Gross 2017, Theorem 1.1]. On such stacks, it is known that
every quasicoherent sheaf is a filtered colimit of finitely presented quasicoherent
sheaves [Rydh 2015, Theorem A and Proposition 2.10(iii)]. In particular, F is a
quotient of a finitely presented sheaf, so we can assume without loss of generality
that F is finitely presented. We can again write Y as a filtered intersection of
finitely presented closed substacks Yi ⊂ P(F). By [Rydh 2015, Theorem C(ii)],
the projection Yi ×X U → U is a closed immersion for sufficiently large i . But
since it has a section, it must be an isomorphism. By continuity of KH , we can
therefore assume that p is finitely presented, and we are thus reduced to Step 1.

Step 3. We prove the result assuming only that p is projective. By Theorem 2.10
and the fact that groups of multiplicative type are isotrivial locally in the Nisnevich
topology [Hoyois 2017, Remark 2.9], there exists a Nisnevich covering {Ui → X }
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where each Ui is as in Step 1. By Proposition 2.9, there is a sequence of quasi-
compact open substacks ∅= X0 ⊂ · · · ⊂ Xn = X together with Nisnevich squares

W j
� � //

��

V j

��

X j−1
� � // X j

where each V j is a quasicompact open substack of
∐

i Ui . In particular, each V j and
each W j is as in Step 1. Since KH satisfies Nisnevich descent (Corollary 4.10), we
deduce from Step 2 by a straightforward induction on j that (6.3) is a homotopy
Cartesian square.

Step 4. We prove the result in general. As in Step 2, we can assume that the
complement of e is quasicompact. By Corollary 2.4, there exists a projective mor-
phism Y ′→ Y which is an isomorphism over the complement of e and such that
the composite Y ′→ Y→ X is projective. Consider the squares

KH(X )
p∗
//

e∗
��

KH(Y)

��

// KH(Y ′)

��

KH(Z) // KH(E) // KH(E ′)

where E ′ = E ×Y Y ′. The right-hand square and the total square are both homotopy
Cartesian by Step 3. Hence, the left-hand square is also homotopy Cartesian, as
desired. �

7. The vanishing theorems

Our goal now is to use the cdh-descent for homotopy K-theory to prove the vanish-
ing theorems for negative K-theory. In order to apply cdh-descent, Kerz and Strunk
[2017] used the idea of killing classes in the negative K-theory of schemes using
Gruson–Raynaud flatification [Raynaud and Gruson 1971]. In Section 7A, we
prove an analog of this result for stacks. This is done essentially like in the case of
schemes, where we replace Gruson–Raynaud flatification with Rydh’s flatification
theorem for algebraic stacks (Theorem 2.2). The vanishing results are proven in
Sections 7B and 7C.

7A. Killing by flatification. We need the following two preparatory results about
quasicoherent sheaves on stacks.

Lemma 7.1. Let f : Y → X be a quasi-affine morphism of stacks. If X satisfies
the resolution property, so does Y .

Proof. This is [Hall and Rydh 2017, Lemma 7.1]. �
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Lemma 7.2. Let f : Y→ X be a smooth morphism of Noetherian stacks and let
F be a coherent sheaf on Y which is flat over X . Then F has finite tor-dimension
over Y .

Proof. Since the question is smooth-local on X and Y , we can assume that X
and Y are Noetherian schemes. In this case, the result is [Kerz and Strunk 2017,
Lemma 6]. �

Proposition 7.3 (the killing lemma). Let X be a reduced Noetherian stack and let
f : Y→ X be a smooth morphism of finite type such that Y is perfect and satisfies
the resolution property. Let n > 0 be an integer and let ξ ∈ K−n(Y). Then there
exists a sequence of blow-ups u : X ′→ X with nowhere dense centers such that for
the induced map uY : Y ′ := X ′×X Y→ Y , one has u∗Y(ξ)= 0 in K−n(Y ′).

Proof. We repeat the proof of [Kerz and Strunk 2017, Proposition 5] with minor
modifications. By the construction of negative K-theory of perfect stacks (see
Definition 4.8), there exists a surjection

Coker(K0(Y ×An)→ K0(Y ×Gn
m))� K−n(Y), (7.4)

natural in Y . It therefore suffices to prove that, for any ξ ∈ K0(Y ×Gn
m), there

exists a sequence of blow-ups u : X ′→ X with nowhere dense centers such that
u∗Y×Gn

m
(ξ) lies in the image of the restriction map

j∗ : K0(Y ′×An)→ K0(Y ′×Gn
m). (7.5)

Since Y satisfies the resolution property, it follows from Lemma 7.1 that Y×Gn
m

also satisfies the resolution property. In particular, K0(Y ×Gn
m) is generated by

classes of vector bundles on Y ×Gn
m . Since any finite collection of sequences of

blow-ups of X can be refined by a single such sequence, we can assume that ξ is
represented by a vector bundle E on Y ×Gn

m . We can now extend E to a coherent
sheaf F on Y ×An by [Gross 2017, Theorem 1.1; Thomason 1987b, Lemma 1.4].

Choose a commutative square

Y
g
//

p
��

X
q
��

Y
f
// X

where X and Y are algebraic spaces, p and q are smooth surjective maps, and g
is smooth of finite type. By generic flatness [Stacks 2005–, Tag 06QR], we can
find a dense open subspace U ⊂ X such that (q × idAn )∗(F) is flat over U under
the composite map Y ×An

→ Y → X . Then U induces a dense open substack
U ⊂ X such that F is flat over U . We now apply Theorem 2.2 to find a sequence
of blow-ups u : X ′ → X whose centers are disjoint from U such that the strict
transform F̃ of F on Y ′×An is flat over X ′.
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We consider the commutative diagram of Cartesian squares

Y ′×Gn
m

j
//

q
��

Y ′×An e′
//

w
��

Y ′ //

v
��

X ′

u
��

Y ×Gn
m

// Y ×An e
// Y // X

(7.6)

in which the vertical arrows are blow-ups and the horizontal arrows are smooth.
We next recall that the strict transform F̃ is defined by the cokernel of the map
H0

E×An (w
∗(F)) ↪→w∗(F), where E ↪→ Y ′ is the exceptional locus of the blow-up

and H0
( – ) is the sheaf of sections with support. Since F restricts to the vector bundle

E over Y ×Gn
m , which in turn is smooth over X , it follows that j∗(F̃)= q∗(E) by

[Stacks 2005–, Tag 080F].
Lemma 7.2 says that F̃ has finite tor-dimension over Y ′×An . In particular, it

defines a class [F̃] ∈ K0(Y ′×An). Moreover, we have [q∗(E)]= [ j∗(F̃)]= j∗([F̃]).
This finishes the proof. �

7B. Vanishing of negative homotopy K-theory. We now use the techniques of
cdh-descent and killing by flatification to prove our main results on the vanishing
of negative K-theory of stacks.

Definition 7.7. Let X be a Noetherian stack.

(1) The Krull dimension Kr dim(X ) ∈ N∪ {±∞} is the Krull dimension of the
underlying topological space |X |; see [Laumon and Moret-Bailly 2000, Chap-
ter 5] for the definition of |X |.

(2) The blow-up dimension bl dim(X )∈N∪{±∞} is the supremum of the integers
n ≥ 0 such that there exists a sequence Xn → Xn−1 → · · · → X0 = X of
nonempty stacks where each Xi is a nowhere dense closed substack of an
iterated blow-up of Xi−1.

(3) The covering dimension cov dim(X ) ∈ N∪ {±∞} is the least dimension of a
scheme X admitting a faithfully flat finitely presented morphism X→ X .

Lemma 7.8. Let X be a Noetherian stack. Then

Kr dim(X )≤ bl dim(X )≤ cov dim(X ).

If X is a quasi-DM stack, all three are equal to dim(X ).

Proof. The inequality Kr dim(X )≤ bl dim(X ) follows directly from the definitions,
since Kr dim(X ) is the supremum of a subset of the set of integers described in
Definition 7.7(2). For the inequality bl dim(X )≤ cov dim(X ), it suffices to prove
the following:

(i) If Y→ X is a blow-up, then cov dim(Y)≤ cov dim(X ).
(ii) If Z⊂X is a nowhere dense closed substack, then cov dim(Z)≤cov dim(X )−1.
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Let f : X → X be an fppf cover, where X is a scheme. Then X is Noetherian
and X ×X Y → X is a blow-up of X . It follows that dim(X ×X Y) ≤ dim(X),
whence (i). By [Stacks 2005–, Tag 04XL], the induced map of topological spaces
| f | : |X | → |X | is continuous and open. Using [Stacks 2005–, Tag 03HR], we
deduce that X ×X Z is a nowhere dense closed subscheme of X . It follows that
dim(X ×X Z)≤ dim(X)− 1, whence (ii).

For the last statement, we prove more generally that the following hold for every
faithfully flat representable quasifinite morphism of Noetherian stacks f : Y→ X :

(i) dim(Y)= dim(X ).

(ii) Kr dim(Y)≤ Kr dim(X ).

If X is quasi-DM, we can take Y to be a scheme and we deduce cov dim(X )≤dim(X )
and dim(X )≤ Kr dim(X ), as desired. To prove (i), by definition of the dimension
of a stack [Stacks 2005–, Tag 0AFL], we are immediately reduced to the case where
X is an algebraic space. In this case, the claim follows from [Stacks 2005–, Tags
04NV and 0AFH]. If Z0 ⊂ · · · ⊂ Zn is a strictly increasing sequence of irreducible
closed subsets of |Y|, then f (Z0)⊂ · · · ⊂ f (Zn) is a sequence of irreducible closed
subsets of |X |. To check that it is strictly increasing, we may again assume that X
is an algebraic space. If the sequence were not strictly increasing, we would have
a nontrivial specialization in a fiber of | f |, which is a discrete space [Stacks 2005–,
Tag 06RW]. This proves (ii). �

Example 7.9. Let k be a field, let n≥ 1, and let X be the stack quotient of An
k by the

standard action of the general linear group GLn . Then Kr dim(X )= bl dim(X )= 1,
cov dim(X ) = n, and dim(X ) = n − n2. We do not know an example where
Kr dim(X ) 6= bl dim(X ). �

See Section 6 for the definition of the category Stk′ appearing in the next theo-
rem.

Theorem 7.10. Let X be a stack in Stk′ satisfying the resolution property. If X is
Noetherian of blow-up dimension d, then KHi (X )= 0 for i <−d.

Proof. We prove the theorem by induction on d. Since KH is nil-invariant (take
Y =∅ in Theorem 6.2), we can assume that X is reduced. We can write KH(X )=
hocolimn Fn(X ), where

Fn(X )= hocolim
1

op
≤n

K B(X ×1•).

It suffices to show inductively on n that the canonical map πi Fn(X )→ KHi (X ) is
zero for all i <−d . This is trivial if n < 0, so assume n ≥ 0.

Let Ci,n(X ) denote the cokernel of πi Fn−1(X )→ πi Fn(X ). Since the cofiber of
the map Fn−1(X )→ Fn(X ) is canonically a direct summand of6n K B(X×1n) (see
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for instance [Lurie 2017, Remark 1.2.4.7]), we may identify Ci,n(X ) with a sub-
group of Ki−n(X×1n). By the induction hypothesis, the map πi Fn(X )→ KHi (X )
factors through Ci,n(X ):

πi Fn−1(X ) //

0 %%

πi Fn(X )

��

// // Ci,n(X )

φi,nzz

� � // Ki−n(X ×1n)

KHi (X )

(7.11)

Hence, it suffices to show that φi,n : Ci,n(X )→ KHi (X ) is zero. Let ξ be in
Ci,n(X )⊂ Ki−n(X ×1n). By Lemma 7.1, X ×1n satisfies the resolution property.
By Proposition 7.3, there exists a sequence of blow-ups u : X ′→ X with nowhere
dense centers such that u∗(ξ)= 0 in Ci,n(X ′)⊂ Ki−n(X ′×1n) (note that i−n< 0).
Let Z ⊂X be a nowhere dense closed substack of X such that u is an isomorphism
over the complement of Z . By Theorem 6.2, we have a long exact sequence

· · · → KHi+1(u−1(Z))→ KHi (X )→ KHi (X ′)⊕ KHi (Z)→ · · · .

Note that both Z and u−1(Z) have blow-up dimension strictly less than d. By
the induction hypothesis, KHi+1(u−1(Z)) and KHi (Z) are both zero, so the map
u∗ : KHi (X )→ KHi (X ′) is injective. Since φi,n is natural in X , we have u∗φi,n(ξ)=

φi,nu∗(ξ)= 0, and we conclude that φi,n(ξ)= 0. This finishes the proof. �

Our next goal is to remove the resolution property assumption from Theorem 7.10.
We are able to do so under the additional assumption that X has finite inertia. If
X is a Noetherian algebraic space, we denote by ÉtX the category of algebraic
spaces over X that are étale, separated, and of finite type. The following lemma is
a Nisnevich variant of [Kerz and Strunk 2017, Proposition 3].

Lemma 7.12. Let X be a Noetherian algebraic space, let F be a Nisnevich sheaf
of abelian groups on ÉtX , and let r be an integer. Suppose that F(Oh

Y,y)= 0 for
every point y ∈ Y ∈ ÉtX with dim {y}> r . Then H i

Nis(X,F)= 0 for all i > r .

Proof. Let s ∈ F(X) be a section, and let i : Z ↪→ X be a closed immersion such
that the support of s is |Z |, i.e., |Z | is the closed subset of points x ∈ X such that
s is nonzero in every open neighborhood of x . We claim that

dim(Z)≤ r.

Otherwise, let y ∈ Z be a generic point such that dim {y}> r . Then i∗(F)(OZ ,y)∼=

F(Oh
X,y)= 0, so the section i∗(s) of i∗(F) vanishes on an open neighborhood Y

of y in Z . This means that s itself vanishes on an étale neighborhood of Y . Since
it also vanishes on X \ Z and F is a Nisnevich sheaf, it follows that s vanishes on
the open (X \ Z)∪ Y , which is a contradiction.
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Let S be a finite set of local sections of F , and let FS ⊂ F be the subsheaf
generated by S. Let iS : X S ↪→ X be a closed immersion such that |X S| is the
union of the closures of the images of the supports of the sections in S, and let
jS : X \ X S ↪→ X be the complementary open immersion. Then j∗S (FS)= 0 since
every s ∈ S is zero over X \ X S . Using the gluing short exact sequence

0→ ( jS)! j∗S (FS)→ FS→ (iS)∗i∗S(FS)→ 0,

we deduce FS∼= (iS)∗i∗S(FS). If we now write F as a filtered colimit F∼=colimS bFS ,
we obtain

H i
Nis(X,F)∼= colim

S
H i

Nis(X,FS)∼= colim
S

H i
Nis(X S, i∗S(FS)).

The last isomorphism holds because (iS)∗ is an exact functor on Nisnevich sheaves
of abelian groups. By our preliminary result, dim(X S)≤ r . Since X S is a Noether-
ian algebraic space, its Nisnevich cohomological dimension is bounded by its Krull
dimension [Lurie 2018, Theorem 3.7.7.1]. We therefore have H i

Nis(X S, i∗S(FS))= 0
for i > r , whence H i

Nis(X,F)= 0 for i > r . �

Lemma 7.13. Let X be a Noetherian algebraic space of finite Krull dimension,
let F be a presheaf of spectra on ÉtX satisfying Nisnevich descent, and let n be
an integer. Suppose that, for every point y ∈ Y ∈ ÉtX , F(Oh

Y,y) is (n+ dim {y})-
connective. Then the spectrum F(X) is n-connective.

Proof. We can assume without loss of generality that n = 0. Let π∗F denote the
Nisnevich sheaves of homotopy groups of F . Since X is a Noetherian algebraic
space of finite Krull dimension, its Nisnevich topos has finite homotopy dimension
[Lurie 2018, Theorem 3.7.7.1], so that the descent spectral sequence

H p
Nis(X, πqF)⇒ πq−pF(X)

is strongly convergent. Applying Lemma 7.12 to πqF , we deduce that

H p
Nis(X, πqF)= 0

for all p > q , and we conclude using the above spectral sequence. �

Theorem 7.14. Let X be a stack in Stk′ with finite inertia, e.g., a separated quasi-
DM stack with linearly reductive stabilizers. Assume that X is Noetherian of di-
mension d. Then KHi (X )= 0 for i <−d.

Proof. Let X be the coarse moduli space of X . Note that X is a Noetherian algebraic
space of dimension d . Let F be the presheaf of spectra on ÉtX defined by

F(Y )= KH(X ×X Y ).
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By Corollary 4.10, F satisfies Nisnevich descent on ÉtX . For y ∈ Y ∈ ÉtX , let
X h

y = X ×X Spec(Oh
Y,y). By continuity of KH (Theorem 4.9(5)), we have

F(Oh
Y,y)' KH(X h

y ).

By Theorem 2.10, the stack X h
y has the form [U/G], where U is affine and G is a

finite group scheme over Spec(Oh
Y,y). In particular, X h

y belongs to Stk′ and satisfies
the resolution property. Moreover, the dimension of X h

y is at most d − dim {y}, and
it equals its blow-up dimension by Lemma 7.8. It follows from Theorem 7.10 that
F(Oh

Y,y) is (−d + dim {y})-connective. By Lemma 7.13, we deduce that F(X) is
(−d)-connective, i.e., that KHi (X )= 0 for i <−d. �

7C. Vanishing of negative K-theory with coefficients. Let X be a perfect stack
and let n ∈ Z. Recall from [Krishna and Ravi 2018, §5C] that the algebraic K-
theory of X with coefficients is defined by

K B(X )[1/n] := hocolim(K B(X ) n
−→ K B(X ) n

−→ · · · ),

K B(X ,Z/n) := K B(X )∧S/n,

where S/n is the mod-n Moore spectrum, and similarly for KH .

Proposition 7.15. Let X be a perfect stack.

(1) If n is nilpotent on X , then the canonical map K B(X )[1/n] → KH(X )[1/n]
is a homotopy equivalence.

(2) If n is invertible on X , then the canonical map K B(X ,Z/n)→ KH(X ,Z/n)
is a homotopy equivalence.

Proof. We have shown in the proof of Proposition 3.8(1) that there is a weak
equivalence of dg-categories

Dperf(X ×A1)' Dperf(X )⊗Dperf(A
1).

Given this, the proposition follows immediately from [Tabuada 2017, Theorem
1.2]. �

Theorem 7.16. Let X be a stack in Stk′ satisfying the resolution property or hav-
ing finite inertia. Assume that X is Noetherian of blow-up dimension d. Then the
following hold.

(1) If n is nilpotent on X , then Ki (X )[1/n] = 0 for any i <−d.

(2) If n is invertible on X , then Ki (X ,Z/n)= 0 for any i <−d.

Proof. This follows from Theorems 7.10 and 7.14 and Proposition 7.15. �



470 MARC HOYOIS AND AMALENDU KRISHNA

Acknowledgments

We are very grateful to David Rydh for several fruitful discussions about his recent
work, which allowed us to significantly enhance the scope of this paper.

The bulk of this work was completed during the authors’ stay at the Mittag-
Leffler Institute as part of the research program “Algebro-geometric and homotopi-
cal methods”, and we would like to thank the institute and the organizers, Eric
Friedlander, Lars Hesselholt, and Paul Arne Østvær, for this opportunity.

References

[Abramovich et al. 2008] D. Abramovich, M. Olsson, and A. Vistoli, “Tame stacks in positive char-
acteristic”, Ann. Inst. Fourier (Grenoble) 58:4 (2008), 1057–1091. MR Zbl

[Alper 2013] J. Alper, “Good moduli spaces for Artin stacks”, Ann. Inst. Fourier (Grenoble) 63:6
(2013), 2349–2402. MR Zbl

[Alper et al. ≥ 2019] J. Alper, J. Hall, and D. Rydh, “The étale local structure of algebraic stacks”,
in preparation.

[Asok et al. 2017] A. Asok, M. Hoyois, and M. Wendt, “Affine representability results in A1-
homotopy theory, I: Vector bundles”, Duke Math. J. 166:10 (2017), 1923–1953. MR Zbl

[Bass 1968] H. Bass, Algebraic K-theory, W. A. Benjamin, New York, 1968. MR Zbl

[Ben-Zvi et al. 2010] D. Ben-Zvi, J. Francis, and D. Nadler, “Integral transforms and Drinfeld cen-
ters in derived algebraic geometry”, J. Amer. Math. Soc. 23:4 (2010), 909–966. MR Zbl

[Benson et al. 2011] D. J. Benson, S. B. Iyengar, and H. Krause, “Stratifying modular representa-
tions of finite groups”, Ann. of Math. (2) 174:3 (2011), 1643–1684. MR Zbl

[Blumberg et al. 2013] A. J. Blumberg, D. Gepner, and G. Tabuada, “A universal characterization of
higher algebraic K-theory”, Geom. Topol. 17:2 (2013), 733–838. MR Zbl

[Cisinski 2013] D.-C. Cisinski, “Descente par éclatements en K-théorie invariante par homotopie”,
Ann. of Math. (2) 177:2 (2013), 425–448. MR Zbl

[Cisinski and Tabuada 2011] D.-C. Cisinski and G. Tabuada, “Non-connective K-theory via univer-
sal invariants”, Compos. Math. 147:4 (2011), 1281–1320. MR Zbl

[Cortiñas et al. 2008] G. Cortiñas, C. Haesemeyer, M. Schlichting, and C. Weibel, “Cyclic homology,
cdh-cohomology and negative K-theory”, Ann. of Math. (2) 167:2 (2008), 549–573. MR Zbl

[Gross 2017] P. Gross, “Tensor generators on schemes and stacks”, Algebr. Geom. 4:4 (2017), 501–
522. MR Zbl

[Haesemeyer 2004] C. Haesemeyer, “Descent properties of homotopy K-theory”, Duke Math. J.
125:3 (2004), 589–620. MR Zbl

[Hall and Rydh 2015] J. Hall and D. Rydh, “Algebraic groups and compact generation of their
derived categories of representations”, Indiana Univ. Math. J. 64:6 (2015), 1903–1923. MR Zbl

[Hall and Rydh 2017] J. Hall and D. Rydh, “Perfect complexes on algebraic stacks”, Compos. Math.
153:11 (2017), 2318–2367. MR Zbl

[Hall and Rydh 2018] J. Hall and D. Rydh, “Addendum to “Étale dévissage, descent and pushouts
of stacks” [J. Algebra 331 (1) (2011) 194–223]”, J. Algebra 498 (2018), 398–412. MR Zbl

[Hall et al. 2014] J. Hall, A. Neeman, and D. Rydh, “One positive and two negative results for
derived categories of algebraic stacks”, preprint, 2014. arXiv

http://dx.doi.org/10.5802/aif.2378
http://dx.doi.org/10.5802/aif.2378
http://msp.org/idx/mr/2427954
http://msp.org/idx/zbl/1222.14004
http://dx.doi.org/10.5802/aif.2833
http://msp.org/idx/mr/3237451
http://msp.org/idx/zbl/1314.14095
http://dx.doi.org/10.1215/00127094-0000014X
http://dx.doi.org/10.1215/00127094-0000014X
http://msp.org/idx/mr/3679884
http://msp.org/idx/zbl/1401.14118
http://msp.org/idx/mr/0249491
http://msp.org/idx/zbl/0174.30302
http://dx.doi.org/10.1090/S0894-0347-10-00669-7
http://dx.doi.org/10.1090/S0894-0347-10-00669-7
http://msp.org/idx/mr/2669705
http://msp.org/idx/zbl/1202.14015
http://dx.doi.org/10.4007/annals.2011.174.3.6
http://dx.doi.org/10.4007/annals.2011.174.3.6
http://msp.org/idx/mr/2846489
http://msp.org/idx/zbl/1261.20057
http://dx.doi.org/10.2140/gt.2013.17.733
http://dx.doi.org/10.2140/gt.2013.17.733
http://msp.org/idx/mr/3070515
http://msp.org/idx/zbl/1267.19001
http://dx.doi.org/10.4007/annals.2013.177.2.2
http://msp.org/idx/mr/3010804
http://msp.org/idx/zbl/1264.19003
http://dx.doi.org/10.1112/S0010437X11005380
http://dx.doi.org/10.1112/S0010437X11005380
http://msp.org/idx/mr/2822869
http://msp.org/idx/zbl/1247.19001
http://dx.doi.org/10.4007/annals.2008.167.549
http://dx.doi.org/10.4007/annals.2008.167.549
http://msp.org/idx/mr/2415380
http://msp.org/idx/zbl/1191.19003
http://dx.doi.org/10.14231/AG-2017-026
http://msp.org/idx/mr/3683505
http://msp.org/idx/zbl/06849617
http://dx.doi.org/10.1215/S0012-7094-04-12534-5
http://msp.org/idx/mr/2166754
http://msp.org/idx/zbl/1079.19001
http://dx.doi.org/10.1512/iumj.2015.64.5719
http://dx.doi.org/10.1512/iumj.2015.64.5719
http://msp.org/idx/mr/3436239
http://msp.org/idx/zbl/1348.14045
http://dx.doi.org/10.1112/S0010437X17007394
http://msp.org/idx/mr/3705292
http://msp.org/idx/zbl/1390.14057
http://dx.doi.org/10.1016/j.jalgebra.2017.11.027
http://dx.doi.org/10.1016/j.jalgebra.2017.11.027
http://msp.org/idx/mr/3754421
http://msp.org/idx/zbl/06834838
http://msp.org/idx/arx/1405.1888


VANISHING THEOREMS FOR THE NEGATIVE K-THEORY OF STACKS 471

[Hoyois 2016] M. Hoyois, “Cdh descent in equivariant homotopy K-theory”, preprint, 2016. arXiv

[Hoyois 2017] M. Hoyois, “The six operations in equivariant motivic homotopy theory”, Adv. Math.
305 (2017), 197–279. MR Zbl

[Kelly 2014] S. Kelly, “Vanishing of negative K-theory in positive characteristic”, Compos. Math.
150:8 (2014), 1425–1434. MR Zbl

[Kerz and Strunk 2017] M. Kerz and F. Strunk, “On the vanishing of negative homotopy K-theory”,
J. Pure Appl. Algebra 221:7 (2017), 1641–1644. MR Zbl

[Kerz et al. 2018] M. Kerz, F. Strunk, and G. Tamme, “Algebraic K-theory and descent for blow-
ups”, Invent. Math. 211:2 (2018), 523–577. MR Zbl

[Krause 2010] H. Krause, “Localization theory for triangulated categories”, pp. 161–235 in Trian-
gulated categories, edited by T. Holm et al., London Math. Soc. Lecture Note Ser. 375, Cambridge
Univ. Press, 2010. MR Zbl

[Krishna and Østvær 2012] A. Krishna and P. A. Østvær, “Nisnevich descent for K-theory of Deligne–
Mumford stacks”, J. K-Theory 9:2 (2012), 291–331. MR Zbl

[Krishna and Ravi 2018] A. Krishna and C. Ravi, “Algebraic K-theory of quotient stacks”, Ann.
K-Theory 3:2 (2018), 207–233. MR Zbl

[Laumon and Moret-Bailly 2000] G. Laumon and L. Moret-Bailly, Champs algébriques, Ergebnisse
der Math. (3) 39, Springer, 2000. MR Zbl

[Lurie 2009] J. Lurie, Higher topos theory, Annals of Mathematics Studies 170, Princeton Univ.
Press, 2009. MR Zbl

[Lurie 2017] J. Lurie, “Higher algebra”, preprint, 2017, available at http://www.math.harvard.edu/
~lurie/papers/HA.pdf.

[Lurie 2018] J. Lurie, “Spectral algebraic geometry”, book in progress, 2018, available at http://
www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf.

[Merkurjev 2005] A. S. Merkurjev, “Equivariant K-theory”, pp. 925–954 in Handbook of K-theory,
vol. 2, edited by E. M. Friedlander and D. R. Grayson, Springer, 2005. MR Zbl

[Morel and Voevodsky 1999] F. Morel and V. Voevodsky, “A1-homotopy theory of schemes”, Inst.
Hautes Études Sci. Publ. Math. 90 (1999), 45–143. MR Zbl

[Neeman 1996] A. Neeman, “The Grothendieck duality theorem via Bousfield’s techniques and
Brown representability”, J. Amer. Math. Soc. 9:1 (1996), 205–236. MR Zbl

[Raynaud and Gruson 1971] M. Raynaud and L. Gruson, “Critères de platitude et de projectivité:
techniques de “platification” d’un module”, Invent. Math. 13 (1971), 1–89. MR Zbl

[Rydh 2015] D. Rydh, “Noetherian approximation of algebraic spaces and stacks”, J. Algebra 422
(2015), 105–147. MR Zbl

[Rydh 2016] D. Rydh, “Approximation of sheaves on algebraic stacks”, Int. Math. Res. Not. 2016:3
(2016), 717–737. MR Zbl

[Rydh ≥ 2019] D. Rydh, “Equivariant flatification, étalification and compactification”, in prepara-
tion.

[Schlichting 2006] M. Schlichting, “Negative K-theory of derived categories”, Math. Z. 253:1 (2006),
97–134. MR Zbl

[SGA 3 I 1970] M. Demazure and A. Grothendieck, Schémas en groupes, I: Propriétés générales des
schémas en groupes (Séminaire de Géométrie Algébrique du Bois Marie 1962–64), Lecture Notes
in Mathematics 151, Springer, Berlin, 1970. MR Zbl

http://msp.org/idx/arx/1604.06410
http://dx.doi.org/10.1016/j.aim.2016.09.031
http://msp.org/idx/mr/3570135
http://msp.org/idx/zbl/1400.14065
http://dx.doi.org/10.1112/S0010437X14007301
http://msp.org/idx/mr/3252025
http://msp.org/idx/zbl/1301.19001
http://dx.doi.org/10.1016/j.jpaa.2016.12.021
http://msp.org/idx/mr/3614971
http://msp.org/idx/zbl/1372.19003
http://dx.doi.org/10.1007/s00222-017-0752-2
http://dx.doi.org/10.1007/s00222-017-0752-2
http://msp.org/idx/mr/3748313
http://msp.org/idx/zbl/1391.19007
http://dx.doi.org/10.1017/CBO9781139107075.005
http://msp.org/idx/mr/2681709
http://msp.org/idx/zbl/1232.18012
http://dx.doi.org/10.1017/is011006028jkt161
http://dx.doi.org/10.1017/is011006028jkt161
http://msp.org/idx/mr/2922391
http://msp.org/idx/zbl/1284.19005
http://dx.doi.org/10.2140/akt.2018.3.207
http://msp.org/idx/mr/3781427
http://msp.org/idx/zbl/06861673
http://msp.org/idx/mr/1771927
http://msp.org/idx/zbl/0945.14005
http://dx.doi.org/10.1515/9781400830558
http://msp.org/idx/mr/2522659
http://msp.org/idx/zbl/1175.18001
http://www.math.harvard.edu/~lurie/papers/HA.pdf
http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf
http://dx.doi.org/10.1007/978-3-540-27855-9_18
http://msp.org/idx/mr/2181836
http://msp.org/idx/zbl/1108.19002
http://www.numdam.org/item?id=PMIHES_1999__90__45_0
http://msp.org/idx/mr/1813224
http://msp.org/idx/zbl/0983.14007
http://dx.doi.org/10.1090/S0894-0347-96-00174-9
http://dx.doi.org/10.1090/S0894-0347-96-00174-9
http://msp.org/idx/mr/1308405
http://msp.org/idx/zbl/0864.14008
http://dx.doi.org/10.1007/BF01390094
http://dx.doi.org/10.1007/BF01390094
http://msp.org/idx/mr/0308104
http://msp.org/idx/zbl/0227.14010
http://dx.doi.org/10.1016/j.jalgebra.2014.09.012
http://msp.org/idx/mr/3272071
http://msp.org/idx/zbl/1308.14006
http://dx.doi.org/10.1093/imrn/rnv142
http://msp.org/idx/mr/3493431
http://msp.org/idx/zbl/1353.14003
http://dx.doi.org/10.1007/s00209-005-0889-3
http://msp.org/idx/mr/2206639
http://msp.org/idx/zbl/1090.19002
http://library.msri.org/books/sga/sga/pdf/sga3-1.pdf
http://library.msri.org/books/sga/sga/pdf/sga3-1.pdf
http://msp.org/idx/mr/0274458
http://msp.org/idx/zbl/0207.51401


472 MARC HOYOIS AND AMALENDU KRISHNA

[SGA 6 1971] A. Grothendieck, P. Berthelot, and L. Illusie, Théorie des intersections et théorème
de Riemann–Roch (Séminaire de Géométrie Algébrique du Bois Marie 1966–1967), Lecture Notes
in Mathematics 225, Springer, Berlin, 1971. MR Zbl

[Stacks 2005–] P. Belmans, A. J. de Jong, et al., “The Stacks project”, electronic reference, 2005–,
available at http://stacks.math.columbia.edu.

[Tabuada 2017] G. Tabuada, “A1-homotopy invariance of algebraic K-theory with coefficients and
du Val singularities”, Ann. K-Theory 2:1 (2017), 1–25. MR Zbl

[Thomason 1987a] R. W. Thomason, “Algebraic K-theory of group scheme actions”, pp. 539–563
in Algebraic topology and algebraic K-theory (Princeton, NJ, 1983), edited by W. Browder, Ann.
of Math. Stud. 113, Princeton Univ. Press, 1987. MR Zbl

[Thomason 1987b] R. W. Thomason, “Equivariant resolution, linearization, and Hilbert’s fourteenth
problem over arbitrary base schemes”, Adv. in Math. 65:1 (1987), 16–34. MR Zbl

[Thomason and Trobaugh 1990] R. W. Thomason and T. Trobaugh, “Higher algebraic K-theory of
schemes and of derived categories”, pp. 247–435 in The Grothendieck Festschrift, vol. III, edited
by P. Cartier et al., Progr. Math. 88, Birkhäuser, Boston, 1990. MR Zbl

[Voevodsky 2010] V. Voevodsky, “Homotopy theory of simplicial sheaves in completely decompos-
able topologies”, J. Pure Appl. Algebra 214:8 (2010), 1384–1398. MR Zbl

[Weibel 1989] C. A. Weibel, “Homotopy algebraic K-theory”, pp. 461–488 in Algebraic K-theory
and algebraic number theory (Honolulu, HI, 1987), edited by M. R. Stein and R. K. Dennis, Con-
temp. Math. 83, Amer. Math. Soc., Providence, RI, 1989. MR Zbl

[Weibel 2001] C. Weibel, “The negative K-theory of normal surfaces”, Duke Math. J. 108:1 (2001),
1–35. MR Zbl

Received 3 May 2018. Accepted 29 Jan 2019.

MARC HOYOIS: hoyois@usc.edu
Department of Mathematics, University of Southern California, Los Angeles, CA, United States

AMALENDU KRISHNA: amal@math.tifr.res.in
School of Mathematics, Tata Institute of Fundamental Research, Mumbai, India

msp

http://library.msri.org/books/sga/sga/pdf/sga6.pdf
http://library.msri.org/books/sga/sga/pdf/sga6.pdf
http://msp.org/idx/mr/0354655
http://msp.org/idx/zbl/0218.14001
http://stacks.math.columbia.edu
http://dx.doi.org/10.2140/akt.2017.2.1
http://dx.doi.org/10.2140/akt.2017.2.1
http://msp.org/idx/mr/3599514
http://msp.org/idx/zbl/1366.14006
http://msp.org/idx/mr/921490
http://msp.org/idx/zbl/0701.19002
http://dx.doi.org/10.1016/0001-8708(87)90016-8
http://dx.doi.org/10.1016/0001-8708(87)90016-8
http://msp.org/idx/mr/893468
http://msp.org/idx/zbl/0624.14025
http://dx.doi.org/10.1007/978-0-8176-4576-2_10
http://dx.doi.org/10.1007/978-0-8176-4576-2_10
http://msp.org/idx/mr/1106918
http://msp.org/idx/zbl/0731.14001
http://dx.doi.org/10.1016/j.jpaa.2009.11.004
http://dx.doi.org/10.1016/j.jpaa.2009.11.004
http://msp.org/idx/mr/2593670
http://msp.org/idx/zbl/1194.55020
http://dx.doi.org/10.1090/conm/083/991991
http://msp.org/idx/mr/991991
http://msp.org/idx/zbl/0669.18007
http://dx.doi.org/10.1215/S0012-7094-01-10811-9
http://msp.org/idx/mr/1831819
http://msp.org/idx/zbl/1092.14014
mailto:hoyois@usc.edu
mailto:amal@math.tifr.res.in
http://msp.org


msp
ANNALS OF K-THEORY

Vol. 4, No. 3, 2019

dx.doi.org/10.2140/akt.2019.4.473

Higher genera for proper actions of Lie groups

Paolo Piazza and Hessel B. Posthuma

Let G be a Lie group with finitely many connected components and let K be a
maximal compact subgroup. We assume that G satisfies the rapid decay (RD)
property and that G/K has a nonpositive sectional curvature. As an example, we
can take G to be a connected semisimple Lie group. Let M be a G-proper mani-
fold with compact quotient M/G. Building on work by Connes and Moscovici
(1990) and Pflaum et al. (2015), we establish index formulae for the C∗-higher
indices of a G-equivariant Dirac-type operator on M . We use these formulae
to investigate geometric properties of suitably defined higher genera on M . In
particular, we establish the G-homotopy invariance of the higher signatures of
a G-proper manifold and the vanishing of the Â-genera of a G-spin G-proper
manifold admitting a G-invariant metric of positive scalar curvature.

1. Introduction

The aim of this paper is to introduce certain geometric invariants associated to
proper actions of Lie groups, generalizing the (higher) signatures and Â-genera.
Let G be a Lie group satisfying the following assumptions:

• G has finitely many components.

• Because |π0(G)|<∞, G has a maximal compact subgroup K , unique up to
conjugation, and we assume that the homogeneous space G/K has nonposi-
tive sectional curvature with respect to the G-invariant metric induced by an
AdK -invariant inner product 〈 , 〉 on the Lie algebra g.

• G satisfies the rapid decay (RD) property.

We explain these last two hypothesis in the course of the paper; it suffices for now
to remark that natural examples of groups satisfying our assumptions are given
by connected semisimple Lie groups. The homogeneous space G/K is a smooth
model for EG, the classifying space for proper actions of G [Baum et al. 1994]:
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Keywords: Lie groups, proper actions, group cocycles, van Est isomorphism, cyclic cohomology,

K-theory, index classes, higher indices, higher index formulae, higher signatures, G-homotopy
invariance, higher genera, positive scalar curvature.
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for any smooth proper action of G on a manifold M , there exists a smooth G-
equivariant classifying map ψM :M→G/K , unique up to G-equivariant homotopy.
Assuming in addition that the action is cocompact, i.e., that the quotient M/G
is compact, we can fix a cut-off function χM for M . This is a smooth function
χM ∈ C∞c (M) satisfying∫

G
χM(g−1x) dg = 1 for all x ∈ M.

For any proper action of G on M , we consider �•inv(M), the complex of G-
invariant differential forms on M , and its cohomology denoted by H•inv(M). In
the universal case this cohomology can be identified with the K-relative Lie alge-
bra cohomology of the Lie algebra g of G: H•inv(G/K ) ∼= H•CE(g; K ), where CE
stands for Chevalley–Eilenberg. For any α ∈ �•inv(G/K ), consider its pull-back
ψ∗Mα ∈�

•

inv(M). The higher signature associated to α is the real number

σ(M, α) :=
∫

M
χM L(M)∧ψ∗M(α), (1.1)

where L(M) is the invariant de Rham form representing the L-class of M . The
insertion of the cut-off function χM , which has compact support, ensures that the
integral is well-defined, and it can be shown that it only depends on the class
[L(M)∧ψ∗M(α)] ∈ H•inv(M). The numbers in the collection

{σ(M, α) : [α] ∈ H•inv(G/K )} (1.2)

are called the higher signatures of M . Similarly, the higher Â-genus associated to
M and to [α] ∈ H•inv(G/K ) is the real number

Â(M, α) :=
∫

M
χM Â(M)∧ψ∗M(α), (1.3)

where Â(M) is the de Rham class associated to the Â-differential form for a G-
invariant metric. The numbers in the collection

{ Â(M, α) : α ∈ H•inv(G/K )} (1.4)

are called the higher Â-genera of M .
In this paper we establish the following result:

Theorem 1.5. Let G be a Lie group with finitely many connected components sat-
isfying property RD, and such that G/K is of nonpositive sectional curvature for
a maximal compact subgroup K . Let M be an orientable manifold with a proper,
cocompact action of G. Then the following hold true:

(i) each higher signature σ(M, α), α ∈ H•inv(G/K ), is a G-homotopy invariant
of M ;



HIGHER GENERA FOR PROPER ACTIONS OF LIE GROUPS 475

(ii) if M admits a G-invariant spin structure and a G-invariant metric of posi-
tive scalar curvature, then each higher Â-genus Â(M, α), α ∈ H•inv(G/K ),
vanishes.

We prove this result by adapting to the G-proper context the seminal paper of
Connes and Moscovici on the cyclic cohomological approach to the Novikov con-
jecture for discrete Gromov hyperbolic groups. Crucial to this program is the proof
of a higher index formula for higher indices associated to elements in H•diff(G) and
to the index class IndC∗r (G)(D) ∈ K∗(C∗r (G)) of a G-equivariant Dirac operator on
an even-dimensional M acting on the sections of a complex vector bundle E . Here
are the main steps for establishing this result (for this introduction we expunge
from the notation the vector bundle E):

(1) First, we remark that for any almost connected Lie group G there is a van Est
isomorphism H•diff(G)' H•inv(G/K )≡ H•inv(EG).

(2) Under the assumption of nonpositive sectional curvature for G/K we prove
that each α ∈ H•diff(G) has a representative cocycle of polynomial growth.

(3) If G is unimodular then for each α ∈ H even
diff (G) we define a cyclic cocycle τG

α

for the convolution algebra C∞c (G), and thus a homomorphism

〈τG
α , · 〉 : K0(C∞c (G))→ C.

(4) For each α ∈ H even
diff (G) we also consider a cyclic cocycle τM

α for the algebra
of G-equivariant smooth kernels of G-compact support Ac

G(M); this defines
a homomorphism 〈τM

α , · 〉 : K0(Ac
G(M))→ C.

(5) We show that if in addition G satisfies the RD property, for example, if G
is semisimple connected, then τG

α extends to K0(C∗r (G)) and τM
α extends

to K0(C∗(M)G), with C∗(M)G denoting the Roe algebra of M .

(6) If D is a G-equivariant Dirac operator we consider its index class IndC∗r (G)(D) in
K0(C∗r (G)) and its Morita equivalent index class IndC∗(M)G (D) in K0(C∗(M)G)
and show that

〈τG
α , IndC∗r (G)(D)〉 = 〈τ

M
α , IndC∗(M)G (D)〉 .

(7) We apply the index theorem of Pflaum, Posthuma and Tang [Pflaum et al.
2015b] in order to compute 〈τM

α , IndC∗(M)G (D)〉, thus establishing our higher
C∗-index formula in the even-dimensional case.

We remark that item (2) above is of independent interest, and should be compared
with the literature on bounded cohomology of Lie groups; see [Hartnick and Ott
2012; Kim and Kim 2015]

The geometric applications in Theorem 1.5 are then a direct consequence of
the G-homotopy invariance of the signature index class established by Fukumoto
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[2017] and, for the higher Â-genera, of the vanishing of the index class IndC∗r (G)(ð)∈
K∗(C∗r (G)) of the spin Dirac operator ð of a G-spin G-proper manifold endowed
with a G-metric of positive scalar curvature, established by Guo, Mathai and Wang
[Guo et al. 2017]. In the odd-dimensional case we argue by suspension. Notice that
for (certain) 2-degree classes α, the G-proper homotopy invariance of the higher
signatures σ(M, α) had already been established by Fukumoto.

2. Preliminaries: proper actions and cohomology

2A. Proper actions. In this section we introduce the geometric setting for this
paper, and list some basic tools that we will need at several points later on. Let
G be a Lie group with finitely many connected components. Recall that a smooth
left action of G on a manifold M is called proper if the associated map

G×M→ M ×M, (g, x) 7→ (x, gx), g ∈ G, x ∈ M,

is a proper map. This implies that the stabilizer groups Gx of all points x ∈ M are
compact and that the quotient space M/G is Hausdorff. The action is said to be
cocompact if the quotient is compact.

The class of manifolds equipped with a proper action of G can be assembled
into a category where the morphisms are given by G-equivariant smooth maps. It
is a basic fact that this category has a final object EG, meaning that any proper
G-action on M is classified by a G-equivariant map ψ : M → EG, unique up
to G-equivariant homotopy. This EG is called the classifying space for proper
G-actions, and in fact we can take EG := G/K , where K is a maximal compact
subgroup. Then, by writing S := ψ−1(eK ) we see that the S is in fact a global
slice: it is a K-stable submanifold for which there is a diffeomorphism

G×K S ∼= M, [g, x] 7→ gx, g ∈ G, x ∈ S.

The existence of such a global slice for proper Lie group actions with finitely many
connected components was first proved in [Abels 1974]. When the action is co-
compact, S is compact as well. Closely related to the global slice is the existence
of a cut-off function. This is a smooth function χ ∈ C∞(M) satisfying∫

G
χ(g−1x) dg = 1 for all x ∈ M.

Here we have chosen, for the rest of the paper, a Haar measure which we nor-
malized so that the volume of the maximal compact subgroup K ⊂ G is equal
to 1. When the action of G is cocompact, we can even choose χ to have compact
support. The cut-off function is constructed from the global slice S ⊂ M as follows:
Choose a smooth function h ∈ C∞(M) which is equal to 1 on S and 0 outside an
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open neighborhood of S in M . Then the function

χ(x)=
(∫

G
h(g−1x) dg

)−1

h(x)

is a cut-off function for the action of G.
Choosing a G-invariant Riemannian metric g on M we can refine this construc-

tion as follows: Choose the initial function h to have support inside the tube of
distance 1 in M around S. Then, rescaling by ε > 0 along the radial coordinate
near S, we obtain a family of functions hε satisfying

hε(x)=
{

1 for x ∈ S,
0 for d(x, S) > ε.

Using this as input for the construction of the cut-off function above gives a family
of cut-off functions χε approaching χS:

Lemma 2.1. The family of cut-off functions χε , ε > 0, satisfies

lim
ε↓0

χε = χS,

distributionally.

Proof. We begin by remarking that pointwise

lim
ε↓0

χε(x)=
{

1 for x ∈ S,
0 for x 6∈ S.

This is because for fixed x ∈ S the family hε(g−1x) of functions on G converges
pointwise to the characteristic function of K ⊂ G, and therefore by dominated
convergence we have

lim
ε↓0

∫
G

hε(g−1x) dg =
∫

G
lim
ε↓0

hε(g−1x) dg =
∫

K
dg = 1,

by our normalization of the Haar measure on G. With this pointwise limit of χε(x)
we have, once again by dominated convergence, that

lim
ε↓0

∫
M
χε(x) f (x) dx =

∫
M

lim
ε↓0

χε(x) f (x) dx =
∫

S
f (x) dx

for any test function f ∈ C∞c (M). �

2B. Invariant cohomology and the van Est map. The main point of this subsec-
tion is to define the van Est map associated to a proper action of a Lie group G on M ,
and to reinterpret this map as the pull-back in cohomology along the classifying
map ψM : M→ G/K .
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Let M be a smooth manifold equipped with a smooth proper action of G. We
define

�•inv(M) := {ω ∈�
•(M) : g∗ω = ω, for all g ∈ G},

the vector space of invariant differential forms. The de Rham differential restricts to
this space of invariant forms and its cohomology, called the invariant cohomology,
is denoted by H•inv(M). Taking the invariant cohomology defines a contravariant
functor on the category of proper G-manifolds with an equivariant map f : M→ N
acting on cohomology by pull-back of differential forms as usual. It is not difficult
to see that the induced map f ∗ : H•inv(N ) → H•inv(M) depends only on the G-
homotopy class it is in. Given the choice of a cut-off function χ , it is shown in
[Pflaum et al. 2015b] that for a closed form α ∈�

dim(M)
inv,cl (M), the integral∫

M
χα

only depends on the cohomology class [α] ∈ H dim(M)
inv (M).

For any manifold M equipped with a proper action of G, the van Est map is a
map H•diff(G)→ H•inv(M), where H•diff(G) is the so-called smooth group cohomol-
ogy of G. Let us first recall the definition of this smooth group cohomology. For
G a Lie group, the space of smooth homogeneous group k-cochains is given by

Ck
diff(G) := {c : G

×(k+1)
→ C smooth,

c(gg0, . . . , ggk)= c(g0, . . . , gk), for all g, g0, . . . , gk ∈ G}.

The differential δ : Ck
diff(G)→ Ck+1

diff (G) is defined as

(δc)(g0, . . . , gk+1) :=

k+1∑
i=0

(−1)i c(g1, . . . , ĝi , . . . , gk+1), (2.2)

where the ˆ means omission from the argument of the function. The cohomology of
the resulting complex is called the smooth group cohomology, written as H•diff(G).

With this, the van Est map is constructed as follows: given a smooth group
cochain c ∈ Ck

diff(G), define the differential form

ωχc := (d1 · · · dk fc)|1, (2.3)

where di means taking the differential with respect to the i-th variable of the func-
tion fc ∈ C∞(M×(k+1)) defined as

fc(x0, . . . , xk)

:=

∫
G×(k+1)

χ(g−1
0 x0) · · ·χ(g−1

k xk)c(g0, . . . , gk) dµ(g0) · · · dµ(gk).
(2.4)
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Proposition 2.5. The map c 7→ ω
χ
c defines a morphism of complexes

8
χ

M : (C
•

diff(G), δ)→ (�•inv(M), ddR).

On the level of cohomology, it is independent of the choice of cut-off function χ .

Remark 2.6. Because of this last property, we often omit the superscript χ and
write ωc and 8M when the context only refers to the cohomological meaning of
the differential form and the van Est map.

Proof of Proposition 2.5. We start by giving the abstract cohomological definition
of the map 8M following [Crainic 2003] using a double complex, after which we
show how to obtain the explicit chain morphism by constructing a splitting of the
rows. The double complex is given as follows. We define

C p,q
:= C∞(G×(p+1), �q(M)).

The vertical differential δv : C p,q
→ C p,q+1 is simply given by the de Rham

differential, leaving the G-variables untouched. As for the horizontal differential
δh :C p,q

→C p+1,q , this is given by the differential computing the smooth groupoid
cohomology of the action groupoid G × M ⇒ M with coefficients in

∧q T ∗M ,
viewed as a representation of this groupoid. Since the G-action is proper, the
groupoid G×M ⇒ M is proper by definition. Therefore, the vanishing theorem
for the groupoid cohomology of proper Lie groupoids in [Crainic 2003] applies,
and we see that the rows in this double complex are exact. There are obvious
inclusions C•diff(G) ↪→ C•,0, and �•inv(M) ↪→ C0,•, and now we see that by finding
the appropriate splittings we can “zig-zag” from one end to the other in the double
complex:

...
...

...
...

�1
inv(M)

d

OO

// C0,1

δv

OO

δh
// C1,1

δh

OO

s1

gg

δh
// C2,1

δh

OO

δh
// · · ·

�0
inv(M)

d
OO

// C0,0

δv

OO

δh
// C1,0

δh

OO

δh
// C2,0

δh

OO

s2

gg

δh
// · · ·

C0
diff(G)

OO

δ
// C1

diff(G)

OO

δ
// C2

diff(G)

OO

δ
// · · ·

So it remains to find an appropriate splitting sp : C p,•
→ C p+1,•. Given a choice

of cut-off function χ , the formula

(spα)(g0, . . . , gp−1) :=

∫
G
χ(g−1x0)α(g, g0, . . . , gp−1)

∣∣
1
, α ∈ C p,q
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does the job: a straightforward computation shows that

δh ◦ s+ s ◦ δh = id.

With this choice of contraction map, one obtains exactly (2.3) for the invariant
differential form associated to a group cochain. The preceding argument therefore
shows that the map c 7→ ωc is indeed a morphism of cochain complexes. �

Remark 2.7 (the van Est isomorphism). The main theorem of [Crainic 2003] states
that if M is cohomologically n-connected, the map 8M induces an isomorphism in
cohomology in degree ≤ n and is injective in degree n+1. In the universal case for
the action of G on G/K , which is contractible, we therefore find an isomorphism
H•diff(G)∼= H•inv(G/K ). This is one version of the classical van Est theorem [1955a;
1955b]. In this case we have by left translation

�•inv(G/K )∼=
( •∧

(g/k)∗
)K

, (2.8)

under which the de Rham differential identifies with the Chevalley–Eilenberg dif-
ferential computing the relative Lie algebra cohomology H•CE(g; K ). With this, the
van Est isomorphism is written as

H•diff(G)∼= H•CE(g; K ). (2.9)

Proposition 2.10. Let f : M→ N be an equivariant smooth map between proper
G-manifolds. Then the following diagram commutes:

H•diff(G)
8N

//

8M ((

H•inv(N )

f ∗
��

H•inv(M)

Proof. Let χM be a cut-off function for the G-action on M . Then the pull-back
f ∗χM is a cut-off function for the G-action on N . For this cut-off function we
obviously have ω f ∗χM

c = f ∗ωχM
c . The result now follows from the fact that the

van Est map is independent of the choice of cut-off function. �

Corollary 2.11. Under the van Est isomorphism H•diff(G)∼=H•inv(G/K ), the van Est
map is identified with the pull-back along the classifying map ψM : M→ G/K , i.e.,

8M = ψ
∗

M .

2C. Group cocycles of polynomial growth. In a later stage of the paper, in the
discussion of the extension properties of cyclic cocycles associated to smooth group
cocycles, it will be important to control the growth of these group cocycles. To this
end, we shall prove below a criterion guaranteeing that we can represent classes
in H•diff(G) by cocycles that have at most polynomial growth. For this, we begin
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by recalling Dupont’s inverse [1976] of the van Est map 8G/K establishing the
isomorphism (2.9). Choose an AdK -invariant inner product 〈 , 〉 on g, which, by
left translations, induces a G-invariant Riemannian metric on G/K . This metric
defines an orthogonal decomposition g = p⊕ k with p ∼= TeK (G/K ). Since K
is maximal compact, the (Riemannian) exponential map induces an isomorphism
p∼= G/K (with inverse denoted by log), and we can define the contraction

ϕs(x) := exp(s log(x))

of G/K to its basepoint eK ∈ G/K , i.e., ϕ1 = idG/K and ϕ0(x)= eK . Now, given
k+ 1 points g0K , . . . , gk K ∈ G/K , also denoted ḡ0, . . . , ḡk , we can consider the
geodesic simplex 1k(g0K , . . . , gk K )⊂ G/K defined inductively as the cone over
1k−1(ḡ1, . . . , ḡk) with tip point ḡ0. More precisely, define the singular simplex
σ k(ḡ0, . . . , ḡk) :1

k
→G/K , where 1k

:=
{
(t0, . . . , tk)∈Rk+1

: ti ≥ 0,
∑

i ti = 1
}
,

by

σ k(g0K , . . . , gk K )(t0, . . . , tk)

:= g0ϕt0

(
σ k−1(g−1

0 g1K , . . . , g−1
0 gk K )

(
t1

1− t0
, . . . ,

tk
1− t0

))
, (2.12)

and σ 0(gK ) := gK . We write1k(g0K , . . . , gk K ) for the image of this simplex. By
construction, this k-simplex is G-invariant: g1k(ḡ0, . . . , ḡk)=1

k(gḡ0, . . . , gḡk).
With these simplices we define a map

J :�•inv(G/K )→C•diff(G), α 7→ J (α)(g0, . . . , gk) :=

∫
1k(g0 K ,...,gk K )

α, (2.13)

which is easily checked to be a morphism of cochain complexes. Since8G/K ◦J = id,
J is a quasi-isomorphism.

Theorem 2.14. Let G be a Lie group with finitely many connected components.
Let K be a maximal compact subgroup and assume that G/K is of nonpositive
sectional curvature with respect to the G-invariant metric induced by an AdK -
invariant inner product 〈 , 〉 on g. Then the group cocycle associated to a closed
α ∈ �k

inv(G/K ) has polynomial growth. More precisely, if we write d(g) for the
distance from eK to gK in G/K , there exists a constant C > 0 and a natural
number N ∈ N such that the following estimate holds true:

|J (α)(g0, . . . , gk)| ≤ C(1+ d(g0))
N
· · · (1+ d(gk))

N .

Proof. Denote by ‖α‖ the norm of the Lie algebra cocycle α∈Ck
CE(g;K)=�

k
inv(G/K)

defined by the K-invariant metric on the Lie algebra g of G that defines the met-
ric on G/K . Since α is a G-invariant differential form we obviously have the
inequality

|J (α)(g0, . . . , gk)| ≤ ‖α‖Vol(1k(ḡ0, . . . , ḡk)).
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We now prove that, under the assumptions of the theorem, the volume of the geo-
desic k-simplex on G/K has at most polynomial growth in the geodesic distance
of its vertices, thus completing the proof. For this we adapt an argument from
[Inoue and Yano 1982, Proposition 1]; we thank Andrea Sambusetti for very useful
discussions on this point and for bringing this article to our attention.

Let τ :1k−1(g1K , . . . , gk K )×[0, 1] →1k(eK , g1K , . . . , gk K ) be defined by

τ(x, t) := ϕ1−t(x).

With this we can write

τ ∗ dvol1k(eK ,g1 K ,...,gk K ) = φ(x, t) dt ∧π∗ dvol1k−1(g1 K ,...,gk K )

for some function φ(x, t), where

π :1k−1(g1K , . . . , gk K )×[0, 1] →1k−1(g1K , . . . , gk K )

is the projection.
Choose x0 ∈1

k−1(g1K , . . . , gk K ) and let γx0(t) := ϕs(x0) be the geodesic start-
ing in γx0(0)= x0 and ending in the basepoint γx0(1)= eK . Let X0(0), . . . , Xn−1(0)
be an orthonormal frame of Tx0(G/K ) such that X0(0)= γ̇ (0)/L , with L=d(eK, x0)

the length of γx0 , and such that X0(0), . . . , Xk−1(0) span Tx01
k(eK, g1K, . . . , gkK ).

We denote by X i (t) the unique extension to parallel vector fields along γx0(t).
We now choose local coordinates (y1, . . . , yk−1) on1k−1(g1K, . . . , gk K) around

x0 satisfying
∂

∂yi (x0)= X i (0)+ bi X0(0), (2.15)

for some constants bi ∈ R. We then get local coordinates (y1, . . . , yk−1, t) around
the image of γ , such that (y1

0 , . . . , yk−1
0 , 0) corresponds to the point x0. Comparing

the vector fields ∂/∂yi with X j defines functions ai j : [0, 1] → R by

∂

∂yi (γ (t))=
n−1∑
j=0

ai j (t)X j (t). (2.16)

The normal projection of ∂/∂yi along γx0(t) is then the vector field

Yi (t) :=
n−1∑
j=1

ai j (t)X j (t), i = 1, . . . , k− 1,

satisfying Yi (0)= X i (0) and Yi (1)= 0. Now note that the vector field ∂/∂yi is a
Jacobi field along the geodesic γx0(t), because by its definition we have

∂

∂yi (γ (t))=
d
ds
γ(y1

0 ,...,syi
0,...,y

k−1
0 )(t)

∣∣
s=0,
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where γ(y1,...,yk−1)(t) is the geodesic ϕt(0, y1, . . . , yk) connecting

(y1, . . . , yk−1) ∈1k−1(g1K , . . . , gk K )

with eK , and x0= (y1
0 , . . . , yk−1

0 ) in local coordinates. It follows that Yi (t) is also a
Jacobi field along γx0(t) because it is the normal projection of ∂/∂yi . (The normal
and tangential projections of a Jacobi vector field are Jacobi.)

We define the (k−1)× (k−1) matrix A(t) with entries

〈Yi (t), Y j (t)〉 =
n−1∑
k=1

aik(t)ak j (t).

Now, computing the inner products of the vector fields ∂/∂yi we get from (2.15)
and an elementary computation that

dvol1k−1(g1 K ,...,gk K ) =

√(
1+

∑
i

b2
i

)
dy1
∧ · · · dyk,

whereas from (2.16) we get

dvol1k(eK ,g1 K ,...,gk K ) = L
√

det(A(t)) dt ∧ dy1
∧ · · · ∧ dyk .

It follows that

φ(x0, t)=
L
√

det(A(t))√(
1+

∑
i b2

i

) ≤ L
√

det(A(t)) .

Consider now the Jacobi field U (t)=
∑k−1

i=1 ui Yi (t), for a vector u= (ui )k−1
i=1 ∈Rk−1.

By the Jacobi equation we now have

d2

dt2 ‖U (t)‖ = 2‖∇∂/∂tU (t)‖2− 2
〈
R
(

U (t), ∂
∂t

)
∂

∂t
,U (t)

〉
≥ 0.

Together with the fact that ‖U (0)‖2 = ‖u‖2 and ‖U (1)‖2 = 0, it follows that
‖U (t)‖2 ≤ ‖u‖2(1− t).

We obviously have

det(A(t))≤
(

sup
u 6=0

ut A(t)u
‖u‖2

)k−1

,

and ut A(t)u = ‖U (t)‖2, so that we can conclude that

det(A(t))≤ (1− t)k−1.

This is the crucial estimate that we use below. Before we complete the proof of
the theorem, we prove the following lemma:

Lemma 2.17. For x ∈1k−1(g1K , . . . , gk K )⊂1k(g0K , . . . , gk K ), we have

d(g0K , x)≤max{d(g0K , g1K ), . . . , d(g0K , gk K )}.
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Proof. We prove this by induction. For k = 1, the statement is obvious. Suppose
now that we have proved the lemma for k− 1. Consider

x ∈1k−1(g1K , . . . , gk K )⊂1k(g0K , . . . , gk K ).

Let γ (t) be the geodesic connecting g1K and x , but continued until it hits the
simplex 1k−2(g2K , . . . , gk K ) in a point that we call y. Using convexity of the
distance function on a manifold with nonpositive sectional curvature, we see that
d(g0K, x)≤max{(d(g0K, g1K ), d(g0K, y)}. To estimate the distance d(g0K, y),
we now consider the geodesic simplex 1k−1(g0K, g2K, . . . , gk K ) and apply the
induction hypothesis. �

The final step in the proof of the theorem is an induction argument: First observe
that for k= 1, the statement of the theorem is obviously true because11(g0K , g1K )
is simply the geodesic connecting g0K and g1K . Suppose now that we have
proved the statement for k − 1. Then we compute the volume of the simplex
1k(eK , g1K , . . . , gk K ) as follows:

Vol(1k(eK , g1K , . . . , gk K ))

=

∫
1k(eK ,g1 K ,...,gk K )

dvol1k(eK ,g1 K ,...,gk K )

=

∫
1k−1(g1 K ,...,gk K )

(∫ 1

0
φ(x, t) dt

)
dvol1k−1(g1 K ,...,gk K )(x)

≤

∫
1k−1(g1 K ,...,gk K )

L(x)
(∫ 1

0
(1− t)(k−1)/2 dt

)
dvol1k−1(g1 K ,...,gk K )(x)

≤ C
∫
1k−1(g1 K ,...,gk K )

L(x) dvol1k−1(g1 K ,...,gk K )(x)

≤ C
k∏

i=1

(1+ d(gi ))Vol(1k−1(g1K , . . . , gk K )).

By the induction assumption,

Vol(1k−1(g1K , . . . , gk K ))≤ C ′
k−1∏
i=1

(1+ d(g1K , gi K )).

Together with the inequality d(g1K , gi K ) ≤ d(g0K , g1K ) + d(g0K , gi K ), this
completes the proof of the theorem. �

Example 2.18. As an example, consider the abelian group G = R2 with maximal
compact group given by the trivial group {0} ⊂R2. In this abelian case we have that
H•inv(R

2)=
∧
•

R2, and a generator in degree 2 is given by the area form dx ∧ dy,
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so that we find
J (dx ∧ dy)(x, y, z)= AreaR2(12(x, y, z)), (2.19)

which evidently grows polynomially in the norm of x, y and z.

Remark 2.20. (i) When G is a connected semisimple Lie group, G/K is a non-
compact symmetric space and has nonpositive sectional curvature [Helgason 2001].
Therefore the curvature assumptions in the lemma are automatically satisfied in this
case. In fact, the conjecture in [Dupont 1979] is that for semisimple Lie groups all
these cocycles are bounded. For recent work on this conjecture, see [Hartnick and
Ott 2012; Kim and Kim 2015]. In this last reference, different simplices are used,
given by the barycentric subdivision of the geodesic ones, to prove boundedness
of the top-dimensional cocycle for general connected semisimple Lie groups.

(ii) In general, the polynomial bounds of the lemma above are not sharp, as ex-
pected from the conjecture mentioned in (i). For example, when G = SL(2,R),
the maximal compact subgroup is given by K = SO(2) so that G/K = H2, the
hyperbolic 2-plane. Again, we have H 2

inv(H
2)= R, with generator the hyperbolic

area form. This leads to a smooth group cocycle given by the same formula as
(2.19) above, replacing the Euclidean area by the hyperbolic one, but this time the
cocycle is bounded because the area of a hyperbolic triangle does not exceed π ,
confirming the boundedness in top-degree mentioned in (i).

3. Algebras of invariant kernels

3A. Smoothing kernels of G-compact support. Let M again be a closed smooth
manifold carrying a smooth proper action of a Lie group G with |π0(G)| <∞
and with compact quotient. We choose an invariant complete Riemannian metric,
denoted h, with associated distance function denoted by dM(x, y) for x, y ∈ M ,
and volume form dvol(x). We fix a left-invariant metric on G and we denote by
dG the associated distance function.

Definition 3.1. Consider a G-equivariant smoothing kernel k ∈ C∞(M ×M); thus
k is an element in C∞(M × M)G . We say that k is of G-compact support if the
projection of supp(k) ⊂ M × M in (M × M)/G, with G acting diagonally, is
compact.

We denote by Ac
G(M) the set of G-equivariant smoothing kernels of G-compact

support. It is well known that Ac
G(M) has the structure of a Fréchet algebra with

respect to the convolution product

(k ∗ k ′)(x, z)=
∫

M
k(x, y)k ′(y, z) dvol(y).

It is also well known that each element k ∈ Ac
G(M) defines an equivariant linear

operator Sk : C∞c (M)→ C∞c (M), the integral operator associated to the kernel k,
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and that Sk ◦ Sk′ = Sk∗k′ . Moreover, Sk extends to an equivariant bounded operator
on L2(M). We have therefore defined a subalgebra of B(L2(M)), which we denote
as Sc

G(M); by definition,

Sc
G(M) := {Sk : k ∈Ac

G(M)}. (3.2)

The case in which there is an equivariant vector bundle E on M is similar, in that
we start with G-equivariant elements in C∞(M ×M, E � E∗) and then proceed
analogously, defining in this way the Fréchet algebra Ac

G(M, E) and Sc
G(M, E) :=

{Sk : k ∈Ac
G(M, E)}, a subalgebra of B(L2(M, E)).

Notation. Keeping with a well-established abuse of notation, we often identify
Ac

G(M, E) with Sc
G(M, E), thus identifying a smoothing kernel k in Ac

G(M, E)
with the corresponding operator Sk ∈ Sc

G(M, E).

3B. Holomorphically closed subalgebras. Using the remarks at the end of the pre-
vious subsection we see that Sc

G(M, E) is in an obvious way a subalgebra of the re-
duced Roe C∗-algebra C∗(M, E)G . Recall that C∗(M, E)G is defined as the norm
closure in B(L2(M, E)) of the algebra C∗c (M, E)G of G-equivariant bounded oper-
ators of finite propagation and locally compact. In fact, Sc

G(M, E)⊂ C∗c (M, E)G .
The Roe algebra is canonically isomorphic to K(E), the C∗-algebra of compact
operators of the Hilbert C∗r (G)-Hilbert module E obtained by closing the space
C∞c (M, E) of compactly supported sections of E on M , endowed with the C∗r G-
valued inner product

(e, e′)C∗r G(x) := (e, x · e′)L2(M,E), e, e′ ∈ C∞c (M, E), x ∈ G. (3.3)

See for example [Hochs and Wang 2018], where the Morita isomorphism

K∗(K(E))= K∗(C∗(M, E)G) M
−→ K∗(C∗r G)

is explicitly discussed. We shall come back to this important point in a moment.
The subalgebra Sc

G(M, E) is not holomorphically closed in C∗(M, E)G . On the
other hand, such a subalgebra of C∗(M, E)G is implicitly constructed in [Hochs
and Wang 2018, Section 3.1] by making use of the slice theorem. We recall the es-
sential ingredients, following [Hochs and Wang 2018, Section 3.1] (we also extend
the context slightly for future use).

As already remarked in the previous section, under our assumptions on G, there
exists a global slice for the action of G on M . Thus if K is a maximal compact
subgroup of G there exists a K-invariant compact submanifold S ⊂ M such that
the action map [g, s] 7→ gs, g ∈ G, s ∈ S, defines a G-equivariant diffeomorphism

G×K S α
−→ M,
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where S is compact because the action is cocompact. Corresponding to this diffeo-
morphism we have an isomorphism E ∼= G×K (E |S), and thus isomorphisms

C∞c (M, E)∼= (C∞c (G) ⊗̂C∞(S, E |S))K ,

C∞(M, E)∼= (C∞(G) ⊗̂C∞(S, E |S))K .

See [Hochs and Wang 2018, Section 3.1]. Here we are taking the projective tensor
product ⊗̂π of the two Fréchet algebras; however, since C∞(S, E |S) is nuclear,
the injective ⊗̂ε and projective ⊗̂π tensor products coincide, which is why we do
not use a subscript. Consider now 9−∞(S, E |S), also a nuclear Fréchet algebra,
and let

Ãc
G(M, E) := (C∞c (G) ⊗̂9

−∞(S, E |S))K×K .

Ãc
G(M, E) is a Fréchet algebra, with product denoted by ∗. Let k̃ ∈ Ãc

G(M, E) and
consider the operator Tk̃ on L2(M, E) given by

(Tk̃e)(gs)=
∫

G

∫
S

gk̃(g−1g′, s, s ′)g′ −1e(g′s ′) ds ′ dg′. (3.4)

This is a bounded G-equivariant operator with smooth G-equivariant Schwartz
kernel given by

κ(gs, g′s ′)= gk̃(g−1g′, s, s ′)g′ −1,

where the g and g′ −1 on the right-hand side are used in order to identify fibers on
the vector bundle E . The assignment k̃→ Tk̃ is injective and satisfies

Tk̃ ◦ Tk̃′ = Tk̃∗k̃′ .

Consider the subalgebra of the bounded operators on L2(M, E) given by

{Tk̃ : k̃ ∈ Ãc
G(M, E)}

endowed with the Fréchet algebra structure induced by the injective homomor-
phism k̃→ Tk̃ . It is easy to see that this algebra is precisely equal to the algebra
we have considered in the previous subsection, Sc

G(M, E) := {Sk : k ∈Ac
G(M, E)}.

Thus,
Sc

G(M, E)= {Tk̃ : k̃ ∈ Ãc
G(M, E)}. (3.5)

In summary, using the slice theorem we have realized Sc
G(M, E) as a projective

tensor product of convolution operators on G and smoothing operators on S. This
preliminary result puts us in the position of enlarging the algebra Sc

G(M, E) and
obtaining a subalgebra dense and holomorphically closed in C∗(M, E)G . To this
end we give the following definition.

Definition 3.6. Let A(G) a set of functions on G. We say that A(G) is admissible
if the following properties are satisfied:
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(1) A(G) is a Fréchet space and there are continuous inclusions

C∞c (G)⊂A(G)⊂ L2(G);

(2) the action by convolution defines a continuous injective map A(G) ↪→ C∗r (G)
which makes A(G) a subalgebra of C∗r (G);

(3) A(G) is holomorphically closed in C∗r (G).

We can then consider

ÃG(M, E) := (A(G) ⊗̂9−∞(S, E |S))K×K ,

a Fréchet algebra, and for k̃ ∈ ÃG(M, E), the bounded operator Tk̃ on L2(M, E)
given by

(Tk̃e)(gs)=
∫

G

∫
S

gk̃(g−1g′, s, s ′)g′ −1e(g′s ′) ds ′ dg′. (3.7)

The operator Tk̃ is an integral operator with G-equivariant Schwartz kernel κ given
by κ(gs, g′s ′)= gk̃(g−1g′, s, s ′)g′ −1. Since A(G) ↪→ C∗r (G), with A(G) acting
by convolution, we see that Tk̃ is L2-bounded.

Definition 3.8. We define AG(M, E) as the subalgebra of the bounded operators
on L2(M, E) given by

AG(M, E) := {Tk̃ : k̃ ∈ ÃG(M, E)}.

We endow AG(M, E) with the structure of a Fréchet algebra induced by the injec-
tive homomorphism k̃→ Tk̃ .

Proposition 3.9. Under the assumptions (1)–(3) for A(G) in Definition 3.6, the
following hold:

(i) We have a continuous inclusion of Fréchet algebras

S c
G(M, E)⊂AG(M, E). (3.10)

(ii) AG(M, E) is a dense subalgebra of C∗(M, E)G and it is holomorphically
closed.

Proof. (i) The continuous inclusion of Fréchet algebras Sc
G(M, E)⊂ AG(M, E)

follows immediately from (3.5).

(ii) The fact that AG(M, E) is a dense subalgebra of C∗(M, E)G is proved pre-
cisely as in [Hochs and Wang 2018, Lemma 3.3]; the property of being holomor-
phically closed follows easily from the hypothesis that A(G) is holomorphically
closed in C∗r G and the well-known fact that 9−∞(S, E |S) is holomorphically
closed in the compact operators of L2(S, E |S). �



HIGHER GENERA FOR PROPER ACTIONS OF LIE GROUPS 489

Definition 3.11. Let G be a Lie group and let L be a length function on G. We
consider

H∞L (G)=
{

f ∈ L2(G) :
∫

G
(1+ L(x))2k

| f (x)|2 dx <+∞ for all k ∈N

}
(3.12)

endowed with the Fréchet topology induced by the sequence of seminorms

νk( f ) := ‖(1+ L)k f ‖L2 . (3.13)

We say that the pair (G, L) satisfies the rapid decay property (RD) if there is a
continuous inclusion H∞L (G) ↪→ C∗r (G).

For conditions equivalent to the one given here, see [Chatterji et al. 2007]. We
also recall that if G satisfies (RD) then G is unimodular [Ji and Schweitzer 1996].

Proposition 3.14. Let G be a Lie group with |π0(G)| < ∞; we can and shall
choose L to be the length function associated to a left-invariant Riemannian metric.
Assume additionally that G satisfies (RD) (with respect to this L). Then

H∞L (G)=
{

f ∈ L2(G) :
∫

G
(1+ L(x))2k

| f (x)|2 dx <+∞
}

(3.15)

satisfies the properties (1)–(3) given in Definition 3.6. Consequently, for G with
|π0(G)|<∞ and with the (RD) property, there exists a subalgebra of C∗(M, E)G ,
denoted S∞G (M, E), which consists of integral operators, is dense and holomorphi-
cally closed in C∗(M, E)G and contains Sc

G(M, E) as a subalgebra.

Proof. The fact that H∞L (G) is not only contained in C∗r (G), via convolution, but
is in fact a subalgebra of it, follows from [Jolissaint 1990]. Hence H∞L (G) satisfies
the properties (1) and (2) given in Definition 3.6. The fact that this subalgebra is
holomorphically closed is proved as in [Jolissaint 1989]. The rest of the proposition
then follows from Proposition 3.9. �

Example 3.16. Here are two examples of Lie groups that satisfy property (RD),
and to which our theory applies:

(1) The abelian group Rn satisfies (RD). In this case the algebra H∞L (R
n) associ-

ated to the length function defined by the Euclidean metric is the algebra of
rapidly decaying functions on Rn .

(2) Connected semisimple Lie groups satisfy property (RD) [Chatterji et al. 2007],
for example G = SL(2,R). In this case the algebra H∞L (G) is closely related
to Harish–Chandra’s Schwartz algebra C(G) (see below).

Remark 3.17. We have just seen that for G semisimple, by taking A(G)= H∞L (G)
we obtain a holomorphically closed subalgebra S∞G (M, E)⊂ C∗(M, E)G . Notice
that there are other algebras that can be considered. For example, we can consider
as in [Hochs and Wang 2018] the Harish-Chandra Schwartz algebra C(G)⊂C∗r (G).
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This is a holomorphically closed subalgebra of C∗r (G) [Lafforgue 2002], which
is made of smooth functions acting by convolution. The corresponding algebra
CG(M, E)⊂ C∗(M, E)G is a subalgebra of C∗(M, E)G with elements that are in
fact smoothing operators. One can prove that C(G)⊂ H∞L (G) [Varadarajan 1977,
§II.9] and consequently, CG(M, E) ⊂ S∞G (M, E). Notice that Hochs and Wang
have proved that the heat operator exp(−tD2) is an element in CG(M, E). Hence
exp(−tD2) ∈ S∞G (M, E).

4. Index classes

From now on we make constant use of the identification Ac
G(M, E)≡ Sc

G(M, E).

4A. The index class in K∗(C∗(M, E)G). We consider as before a closed even-
dimensional manifold M with a proper cocompact action of G. Let D be a G-
equivariant odd Z2-graded Dirac operator. Recall, first of all, the classical Connes–
Skandalis idempotent. Let Qσ be a G-equivariant parametrix of G-compact sup-
port with remainders S±; here the subscript σ stands for symbolic. Consider the
2×2 matrix

Pσ :=
(

S2
+

S+(I + S+)Q
S−D+ I − S2

−

)
. (4.1)

This produces a class

Indc(D) := [Pσ ] − [e1] ∈ K0(Ac
G(M, E)) with e1 :=

(
0 0
0 1

)
. (4.2)

To understand where this definition comes from, see for example [Connes and
Moscovici 1990]. Recall now that Ac

G(M, E)⊂ C∗(M, E)G .

Definition 4.3. The C∗-index associated to D is the class

IndC∗(M,E)(D) ∈ K0(C∗(M, E)G)

obtained by taking the image of the Connes–Skandalis projector in K0(C∗(M, E)G).
Unless absolutely necessary, we denote this index class simply by Ind(D).

Remark 4.4. If we are in the position of considering a dense holomorphically
closed subalgebra AG(M, E) of C∗(M, E)G as in the previous section, then we can
equivalently take the image of the Connes–Skandalis projector in K0(AG(M, E))
(recall that, by construction, Ac

G(M, E)⊂AG(M, E)⊂C∗(M, E)G). For example,
if G satisfies (RD) and |π0(G)|<∞, then we can take the C∗-index class as the
image of the Connes–Skandalis projector in K0(S∞G (M, E)).

Remark 4.5. There are other representatives of Ind(D) ∈ K0(C∗(M, E)G) that
can be of great interest. For example, as in [Connes and Moscovici 1990], we can
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choose the parametrix (which is not of G-compact support)

QV :=
I − exp

(
−

1
2 D−D+

)
D−D+

D+,

obtaining I − QV D+ = exp
(
−

1
2 D−D+

)
, I − D+QV = exp

(
−

1
2 D+D−

)
. This

particular choice of parametrix produces the idempotent

VD =

(
e−D−D+ e−

1
2 D−D+( I−e−D−D+

D−D+
)
D−

e−
1
2 D+D−D+ I − e−D+D−

)
. (4.6)

We call this the Connes–Moscovici idempotent. One can also consider the graph-
projection [eD] − [e1] ∈ K0(C∗(M, E)G) with eD given by

eD =

(
(I + D−D+)−1 (I + D−D+)−1 D−

D+(I + D−D+)−1 D+(I + D−D+)−1 D−

)
. (4.7)

Finally, following [Moscovici and Wu 1994], we can consider the projector

P(D) :=
(

S2
+

S+(I + S+)P
S−D+ I − S2

−

)
(4.8)

with P = ū(D−D+)D−, S+ = I − PD+, S− = I − D+P and ū(x) := u(x2)

with u ∈ C∞(R) an even function with the property that w(x) = 1− x2u(x) is a
Schwartz function and w and u have compactly supported Fourier transform. One
proves easily that P(D) ∈ M2×2(Ac

G(M, E)) (with the identity adjoined). It is not
difficult to prove that

Ind(D) := [Pσ ] − [e1]

= [VD] − [e1] = [eD] − [e1] = [P(D)] − [e1] in K0(C∗(M, E)G).

The advantage of using the Connes–Moscovici projection, the graph projection or
the Moscovici–Wu projection is that Getzler rescaling can be used in order to prove
the corresponding higher index formulae. This is crucial if one wishes to pass, for
example, to manifolds with boundary. However, in this paper we concentrate solely
on closed manifolds and use the approach to the index theorem given in [Pflaum
et al. 2015b]; this employs the algebraic index theorem in a fundamental way.

4B. The index class in K•(C∗
r (G)). There is a canonical Morita isomorphism M

between K∗(C∗(M, E)G) and K∗(C∗r (G)). This is clear once we bear in mind
that C∗(M, E)G is isomorphic to K(E); however, for reasons connected with the
extension of cyclic cocycles, we want to be explicit about this isomorphism. We
assume the existence of a dense holomorphically closed subalgebra A(G)⊂C∗r (G)
and follow [Hochs and Wang 2018]. Let AG(M, E) be the dense holomorphically
dense subalgebra of C∗(M, E)G corresponding to A(G), as defined in Section 3B.
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Define a partial trace map TrS : AG(M, E)→ A(G) associated to the slice S as
follows: if f ⊗ k ∈ (A(G)) ⊗̂9−∞(S, E |S))K×K then

TrS( f ⊗ k) := f Tr(Tk)= f
∫

S
tr k(s, s) ds,

with Tk denoting the smoothing operator on S defined by k and Tr(Tk) its functional
analytic trace on L2(S, E |S). It is proved in [Hochs and Wang 2018] that this map
induces the Morita isomorphism M between K∗(C∗(M, E)G) and K∗(C∗r (G)).
We denote the image through M of the index class Ind(D) ∈ K0(C∗(M)G) in the
group K0(C∗r (G)) by IndC∗r (G)(D). There are other well-known descriptions of
the latter index class: one, following [Kasparov 1980], describes the C∗r (G)-index
class as the difference of two finitely generated projective C∗r (G)-modules, using
the invertibility modulo C∗r (G)-compact operators of (the bounded transform of) D;
the other description is via assembly and KK-theory, as in [Baum et al. 1994]. All
these descriptions of the class IndC∗r (G)(D) ∈ K0(C∗r (G)) are equivalent. See [Roe
2002; Piazza and Schick 2014, Proposition 2.1].

5. Cyclic cocycles and pairings with K-theory

5A. Cyclic cohomology. In this subsection we briefly review the basic complex
computing cyclic cohomology. Let A be a unital algebra. The space of reduced
Hochschild cochains is defined as

C•red(A) := HomC(A⊗ (A/C1)•,C)

and is equipped with the Hochschild differential b : Ck
red(A)→ Ck+1

red (A) given by
the standard formula

bτ(a0, . . . ,ak+1) :=

k∑
i=0

(−1)iτ(a0, . . . ,ai ai+1, . . . ,ak)+(−1)k+1τ(aka0, . . . ,ak−1).

The cyclic bicomplex is given by
...

...
...

C2
red(A)

B
//

b

OO

C1
red(A)

B
//

b

OO

C0
red(A)

b

OO

C1
red(A)

B
//

b
OO

C0
red(A)

b
OO

C0
red(A)

b
OO
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where B : Ck
red(A)→ Ck−1

red (A) denotes Connes’ cyclic differential

Bτ(a0, . . . , ak−1) :=

k−1∑
i=0

(−1)(k−1)iτ(1, ai , . . . , ak−1, a0, . . . , ai−1).

We denote the total complex associated to this double complex by CC•(A). When
A is not unital, we consider the unitization Ã = A⊕C, and compute cyclic coho-
mology from the complex CC•(A) := CC•( Ã)/CC•(C).

Finally, let us close by mentioning that the structure underlying the definition
of cyclic cohomology is that of a cocyclic object. This is a cosimplicial object
(X•, ∂•, σ •) equipped with an additional cyclic symmetry tn

: Xn
→ Xn of order

n + 1 satisfying well-known compatibility conditions with respect to the coface
operators ∂ and degeneracies σ ; see [Loday 1998]. For the cyclic cohomology of an
algebra the underlying cosimplicial object is given by X k

= Ck(A) with coface and
degeneracies controlling the Hochschild complex. The additional cyclic symmetry
t underlying cyclic cohomology is simply the operator which in degree k cyclically
permutes the k+ 1 entries in a cochain τ ∈ Ck(A).

5B. The van Est map in cyclic cohomology. Let G be a unimodular Lie group
with |π0(G)|<∞. In this subsection we describe, following [Pflaum et al. 2015a;
2015b], how to obtain cyclic cocycles from smooth group cocycles. In this, we can
work with two algebras: C∞c (G), the convolution algebra of the group, and Ac

G(M),
the algebra of invariant smoothing operators with cocompact support. In order to
simplify the notation we take the vector bundle E to be the product bundle of
rank 1.

We start by recalling a well-known fact: inspection of the differential (2.2)
shows that the cochain complex (C•diff(G), δ) computing smooth group cohomol-
ogy H•diff(G) comes from an underlying cosimplicial structure given by coface
maps ∂ i and codegeneracies σ j defined on the vector space of homogeneous smooth
group cochains C•diff(G). This simplicial vector space can be upgraded to a cocyclic
one by the cyclic operator t : C•→ C• given by

(t f )(g0, . . . , gk)= f (gk, g0, . . . , gk−1), f ∈ Ck
diff(G).

As seen above, the Hochschild theory of this cocyclic complex is just the smooth
group cohomology. The associated cyclic theory is given by

⊕
i≥0 H•−2i

diff (G).
Let us now describe the associated cyclic cocycles on the convolution algebra

C∞c (G). Instead of using the full complex of smooth group cochains, we restrict
to the quasi-isomorphic subcomplex C•diff,λ(G)⊂ C•diff(G) of cyclic cochains, i.e.,
cochains c ∈ Ck

diff(G) satisfying

c(g0, . . . , gk)= (−1)kc(gk, g0, . . . , gk−1).
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Let c ∈ Ck
diff(G) be a smooth homogeneous group cochain. Define the cyclic

cochain τc ∈ Ck(C∞c (G)) by

τG
c (a0, . . . , ak):=

∫
G×k

c(e, g1, g1g2, . . . , g1 · · · gk)

· a0((g1 · · · gk)
−1)a1(g1) · · · ak(gk) dg1 · · · dgk . (5.1)

Next up is the algebra Ac
G(M) of invariant smoothing operators with cocompact

support. Again given a smooth homogeneous group cochain c ∈ Ck
diff(G), we now

define a cyclic cochain on this algebra by the formula

τM
c (k0, . . . , kn)

:=

∫
G×k

∫
M×(k+1)

χ(x0) · · ·χ(xn)k0(x0, g1x1) · · · kn(xn, (g1 · · · gn)
−1x0)

· c(e, g1, g1g2, . . . , g1 · · · gn) dx0 · · · dxn dg1 · · · dgn. (5.2)

Proposition 5.3. (i) The map c 7→ τG
c defined above is a morphism of cochain

complexes, and therefore induces a map

9G : H•diff(G)→ HC•(C∞c (G)).

(ii) The map c 7→ τM
c defined above is a morphism of cocyclic complexes, and

therefore induces a map

9M : H•diff(G)→ HC•(Ac
G(M)).

Proof. Both of the statements are already known: for the first one, see [Pflaum
et al. 2015a, §1.3], and for the second, [Pflaum et al. 2015b, §2.2]. �

Example 5.4. In Example 2.18 we discussed the smooth group 2-cocycles for
G=R2, G=SL(2,R), associated to the area forms of the homogeneous space G/K ,
equal to R2 and H2, respectively. Let us now consider the cyclic cocycles defined
by these forms via the construction (5.1) above. For G = SL(2,R) this gives the
following cyclic 2-cocycle on C∞c (SL(2,R)):

τSL(2,R)
ω ( f0, f1, f2) :=

∫
SL(2,R)

∫
SL(2,R)

f0((g1g2)
−1) f1(g1) f2(g2)

·AreaH2(12(ē, ḡ1, ḡ2)) dg1 dg2.

This is exactly the cyclic cocycle considered in [Connes 1985, §9]. For G = R2 we
get a cyclic 2-cocycle on C∞c (R

2) (with convolution product) given by the same
formula with the hyperbolic area replaced by the Euclidean area, and integrations
being over R2 instead of SL(2,R), again considered in [Connes 1985, §9]. After
Fourier transform f 7→ f̂ this cocycle takes the usual form

τω( f0, f1, f2)=

∫
R2

f̂0 df̂1 ∧ df̂2 for f0, f1, f2 ∈ C∞c (R
2).
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5C. Extension properties. In the previous subsection we constructed cyclic co-
cycles τG

c on C∞c (G) and τM
c on Ac

G(M) from a homogeneous smooth group co-
cycle c. (Recall, once again, that for notational convenience we are taking E to be
the product rank 1 bundle.) In Section 3B we have given sufficient conditions on G
ensuring that these algebras embed into holomorphically closed subalgebras A(G)
and AG(M) of the reduced group C∗-algebra and of the Roe algebra. Now we want
to discuss the extension properties of these cocycles. Assume, quite generally, that
we are given a subalgebra A(G) as in Definition 3.6, with associated algebra of
operators on L2(M) denoted, as usual, as AG(M). First, we have:

Proposition 5.5. Let c ∈ Ck
diff,λ(G) be a smooth group cocycle. Then

τG
c extends to A(G) H⇒ τM

c extends to AG(M).

Proof. Recall that the algebra AG(M) is constructed from the choice of subset
A(G) ⊂ C∗r (G) by the slice theorem: an invariant kernel k belongs to AG(M) if
the function

k̃(g, s1, s2) := k(s1, gs2)

belongs to
(A(G) ⊗̂9−∞(S, E |S))K×K .

These functions k̃i (gi , xi , xi+1), i = 0, . . . , n− 1, and k̃n((g1 · · · gn)
−1, xn, x0) are

used in the formula (5.2) for the cocycle τM
c . Since the cut-off function χ has

compact support, performing the integrations over M in (5.2), we end up with the
pairing of an element in A(G)⊗(k+1) with the group cocycle c as defined in (5.1).
But then it is clear that τM

c is well-defined on AG(M) if τG
c is well-defined on

A(G). �

For the following, recall from Section 2C the explicit form (2.13) of the van
Est isomorphism mapping a closed invariant form α ∈ �k

inv(G/K ) to a smooth
group cocycle J (α) ∈ Ck

diff(G). For notational convenience, we drop the J in the
description of the associated cyclic cocycles, writing τG

α and τM
α instead of τG

J (α)
and τM

J (α).

Proposition 5.6. Let G be a Lie group with finitely many connected components
and satisfying the rapid decay property (RD). Assume that G/K is of nonpositive
sectional curvature. Then the cocycle τG

α associated to a closed invariant differ-
ential form α ∈ �k

inv(G/K ) extends continuously to H∞L (G). Consequently, the
cyclic cocycle τM

α extends to S∞G (M).

Proof. Recall the definition of the smooth group cocycle J (α) ∈ Ck
diff(G) defined

in (2.13), satisfying the polynomial estimates of Theorem 2.14. This, together with
the rapid decay property of G, ensures we can follow the line of proof of [Connes
and Moscovici 1990, Proposition 6.5], where the analogous extension property is
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proved for certain discrete groups. To show that the cyclic cocycle τα extends con-
tinuously to the algebra H∞L (G), we need to show that it is bounded with respect
to the seminorm νk in (3.13) defining the Fréchèt topology, for some k ∈ N. Let
a0, . . . , ak ∈ H∞L (G), and write ã0 := |a0|, ãi (g) := (1+d(g))k |ai (g)|, i = 1, . . . , k.
Then we can make the following estimate:

|τG
α (a0, . . . , ak)| ≤ C

∫
G×k
(1+ d(g1))

k
· · · (1+ d(gk))

k
|a0((g1 · · · gk)

−1)|

· |a1(g1)| · · · |ak(gk)| dg1 · · · dgk
= C(ã0 ∗ · · · ∗ ãk)(e)

≤ C‖ã0 ∗ · · · ∗ ãk‖C∗r (G)

≤ C‖ã0‖C∗r (G) · · · ‖ãk‖C∗r (G)

≤ CDk+1νp(ã0) · · · νp(ãk)= CDk+1νp+k(a0) · · · νp+k(ak).

In this computation we have used the fact that the Plancherel trace a 7→ a(e) on the
convolution algebra has a continuous extension to C∗r (G), together with the rapid
decay property: ‖a‖C∗r (G) ≤ D‖(1+ d)pa‖L2 , for some p. Altogether, this proves
the proposition. �

5D. Pairing with K-theory. Cyclic cohomology was first developed by Connes
to pair with K-theory via the Chern character. Let us recall this construction. Let
τ=(τ0,τ2, . . . , τ2k)∈CC2k(A) be a cyclic cocycle of degree 2k on a unital algebra A,
and [p]−[q] an element in K0(A) represented by idempotents p, q ∈ MN (A). The
number

〈[p] − [q], τ 〉

:=

k∑
n=0

(−1)n (2n)!
n!

(
τ2n

(
tr
(

p− 1
2
, p, . . . , p

))
− τ2n

(
tr
(

q − 1
2
, q, . . . , q

)))
,

where tr : MN (A)⊗(n+1)
→ A⊗(n+1) is the generalized matrix trace, is well-defined

and depends only on the (periodic) cyclic cohomology class of τ .

Proposition 5.7. Let c, A(G) and AG(M) be as in Proposition 5.5, and assume
that τG

c , and therefore τM
c , extends. Then, under the Morita isomorphism

M : K0(C∗(M, E)G)
∼=
−→ K0(C∗r (G)),

we have the equality

〈[p] − [q], τM
c 〉 = 〈M([p] − [q]), τG

c 〉.

Proof. Recall that the isomorphism M : K (C∗(M, E)G)→ K (C∗r (G)) is imple-
mented by the partial trace map TrS :AG(M, E)→A(G) on the respective dense
subalgebras. By the abstract Morita isomorphism M, it suffices to consider a
simple idempotent e= e1⊗e2 ∈ Mn(AG(M, E)), so that TrS(e)= TrS(e2)e1 yields
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an idempotent in Mn(A(G)), where we have extended TrS to matrix algebras in
the usual way by combining with the matrix trace.

Because we know that the cyclic cohomology class of τ̃c is independent of the
choice of a cut-off function, the pairing with K-theory does not depend on this
choice either, so we can choose the family χε constructed in Lemma 2.1 and take
the limit as ε ↓ 0:

〈[e], τM
c 〉

= lim
ε↓0

(2k)!
k!

∫
G×k

∫
M×(k+1)

χε(x0) · · ·χε(xn)e(x0, g1x1) · · · e(xn, (g1 · · · gn)
−1x0)

· c(e, g1, g1g2, . . . , g1 · · · gn) dx0 · · · dxn dg1 · · · dgn

=
(2k)!

k!

∫
G×k

∫
S×(k+1)

e(x0, g1x1) · · · e(xn, (g1 · · · gn)
−1x0)

· c(e, g1, g1g2, . . . , g1 · · · gn) dx0 · · · dxn dg1 · · · dgn

=
(2k)!

k!
TrS(e2 · · · e2)

∫
G×k

e1(g1) · · · e1((g1 · · · gn)
−1)

· c(e, g1, g1g2, . . . , g1 · · · gn) dg1 · · · dgn

= 〈[M(e)], τG
c 〉,

where, to go to the last line, we have used the fact that e2
2 = e2 is an idempotent.

This completes the proof. �

6. Higher C∗-indices and geometric applications

6A. Higher C∗-indices and the index formula. Let M and G be as above, with
M even-dimensional. Hence G is a unimodular Lie group with |π0(G)|<∞. (For
the time being we do not put additional hypotheses on G.) Let E be an equivariant
complex vector bundle. Consider an odd Z2-graded Dirac type operator D acting
on the sections of E . We have then defined the compactly supported index class
Indc(D)∈ K0(Ac

G(M, E)). Let α∈ H even
diff (G) and let9M(α)∈ HCeven(Ac

G(M, E))
be the cyclic cohomology class corresponding to α. We know that, in general, we
have a pairing

K0(Ac
G(M, E))× HCeven(Ac

G(M, E))→ C. (6.1)

We thus obtain, through 9M : H•diff(G)→ HC•(Ac
G(M, E)), a pairing

K0(Ac
G(M, E))× H even

diff (G)→ C. (6.2)

In particular, by pairing Indc(D) ∈ K0(Ac
G(M, E)) with α ∈ H even

diff (G) we obtain
the higher indices

Indc,α(D) := 〈Indc(D),9M(α)〉, α ∈ H even
diff (G).
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On the other hand, we can also take the image of α through the van Est map
8M : H•diff(G)→ H•inv(M); recall that this is nothing but the pull-back through the
classifying map ψM : M→ G/K once we identify H•diff(G) with H•inv(G/K ). The
following theorem is proved in [Pflaum et al. 2015b]:

Theorem 6.3 (Pflaum–Posthuma–Tang). Let M , G and D be as above. In partic-
ular, M is even-dimensional. Let α ∈ H even

diff (G). Then the identity

Indc,α(D)=
∫

M
χM(m)AS(M)∧8M(α) (6.4)

holds true, where AS(M) is the Atiyah–Singer integrand on M :

AS(M) := Â(M,∇M)∧Ch′(E,∇E).

Equivalently,
Indc,α(D)=

∫
M
χM(m)AS(M)∧ψ∗M(α) (6.5)

if we identify H•diff(G) and H•inv(G/K ) via the van Est isomorphism (see Remark 2.7).

We now make the fundamental assumption that G satisfies the rapid decay
property and that G/K is of nonpositive sectional curvature. Consider the dense
holomorphically closed subalgebra S∞G (M, E)⊂ C∗(M, E)G defined by the rapid
decay algebra H∞L (G)⊂ C∗r (G). Thanks to the results of the previous section we
can extend the pairing (6.2) to a pairing

K0(S∞G (M, E))= K0(C∗(M, E)G)× H even
diff (G)→ C, (6.6)

obtaining in this way the higher C∗-indices of D, denoted Indα(D). These numbers
are well-defined and can be computed by choosing a suitable representative of the
class Ind(D) ∈ K0(C∗(M, E)G). Choosing the Connes–Skandalis projector, we
can apply again the index formula of Pflaum–Posthuma–Tang, obtaining for each
α ∈ H even

diff (G) the C∗-index formula

Indα(D)=
∫

M
χM(m)AS(M)∧8M(α). (6.7)

Notice that we also have a pairing

K0(C∞c (G))× HCeven(C∞c (G))→ C (6.8)

and thus, through the homomorphism 9G : H•diff(G)→ HC∗(C∞c (G)), a pairing

K0(C∞c (G))× H even
diff (G)→ C. (6.9)

According to the results of the previous section this pairing extends to a pairing

K0(C∗r (G))× H even
diff (G)→ C (6.10)
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if G satisfies (RD). In particular, we can define the C∗r (G)-indices IndC∗r (G),α(D) by
pairing IndC∗r (G)(D)∈K0(C∗r (G))with α∈H even

diff (G). Further, from Proposition 5.7
we get the equality

〈Ind(D),9M(α)〉 = 〈IndC∗r (G)(D),9G(α)〉, (6.11)

which means that

IndC∗r (G),α(D)= Indα(D) for all α ∈ H even
diff (G) (6.12)

and thus, thanks to (6.7), we can state the following fundamental result:

Theorem 6.13. Let G be a Lie group satisfying the properties stated in the intro-
duction: |π0(G)|<∞, (RD) and EG of nonpositive curvature. Let α ∈ H even

diff (G).
Then there is a well-defined associated higher C∗r (G)-index IndC∗r (G),α(D), and the
formula

IndC∗r (G),α(D)=
∫

M
χM(m)AS(M)∧8M(α) (6.14)

holds. Equivalently, if we identify H•diff(G) and H•inv(G/K ) ≡ H•inv(EG) via the
van Est isomorphism, then

IndC∗r (G),α(D)=
∫

M
χM(m)AS(M)∧ψ∗Mα.

For α=1, the associated cyclic cocycle (5.1) is the Plancherel trace τG( f )= f (e)
on C∗r (G), and the theorem reduces to the L2-index theorem first proved by Wang
[2014]. Remark that in this case the trace extends to C∗r (G) without problems, so
the assumptions on the curvature of G/K and property (RD) are unnecessary.

6B. Higher signatures and their G-homotopy invariance. Let M and N be two
orientable G-proper manifolds and let f : M→ N be a G-homotopy equivalence.
Let us denote by Dsign

M and Dsign
N the corresponding signature operators. Then,

according to the main result in [Fukumoto 2017] we have that

IndC∗r (G)(D
sign
M )= IndC∗r (G)(D

sign
N ) in K0(C∗r (G)). (6.15)

Consequently, from (6.14), we obtain the following result, stated as item (i) in
Theorem 1.5 in the introduction:

Theorem 6.16. Let G be a Lie group satisfying the properties stated in the intro-
duction: |π0(G)| <∞, (RD) and EG of nonpositive curvature. Let M and N be
two orientable G-proper manifolds and assume that there exists an orientation pre-
serving G-homotopy equivalence between M and N. Let us identify H•diff(G) and
H•inv(G/K )≡ H•inv(EG) via the van Est isomorphism. Then for each α ∈ H•inv(EG),∫

M
χM(m)L(M)∧ψ∗Mα =

∫
N
χN (n)L(N )∧ψ∗Nα.
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Proof. For even-dimensional manifolds, this follows immediately from the previ-
ous discussion. For the odd-dimensional case we argue by suspension. Thus, let
M be an orientable odd-dimensional G-proper manifold. We endow M with a G-
invariant Riemannian metric gM . Consider R and the natural action of Z on it by
translations (this is a free, proper and cocompact action). Taking the product of
M and R we obtain the even-dimensional (G×Z)-proper manifold M ×R; it has
compact quotient equal to M/G× S1. We endow M×R with the (G×Z)-invariant
metric gM + dt2. Consider the dual group T 1

:= Hom(Z,U (1)). The signature
operator on M ×R defines an index class in the group K0(C∗(M ×R)G×Z), which
is isomorphic to K0(C∗(G) ⊗̂C(T 1)). Consider the generator d ′ of H 1(Z;Z) ⊂

H∗(Z;C) and let d :=
(√
−1/(2π)

)
d ′ ∈ H∗(Z;C). We know that H∗(Z;C) can

be identified with H∗Z(EZ;C) and that EZ = R; we denote this isomorphism by
4 : H∗(Z;C)→ H∗Z(R;C)= H 1(S1). Consider EG× EZ≡ EG×R≡G/K ×R.
To α ∈ H odd

diff (G)≡ H odd
inv (EG)≡ H odd

inv (G/K ) we associate

β := α⊗4(d) ∈ H odd
inv (G/K )⊗ H 1

Z(R)= H odd
inv (G/K )⊗ H 1(S1).

Now, on the one hand, we have natural homomorphisms

9G×Z : H odd
inv (G/K )⊗ H 1(S1)→ HCeven(C∞c (G) ⊗̂C∞(S1))

and
9M×R : H odd

inv (G/K )⊗ H 1(S1)→ HCeven(Ac
G×Z(M ×R)),

noting that Ac
G×Z(M×R)=Ac

G(M)⊗̂A
c
Z(R) and Ac

G×Z(M×R)=C∗c (M×R)G×Z.
On the other hand, the classifying map ψM and the classifying map for the Z-action
on R together give a smooth (G×Z)-equivariant map ψM×R : M×R→ G/K×R.
We can apply the Pflaum–Posthuma–Tang index theorem and obtain, for the signa-
ture operator,〈

IndC∗c (M×R)G×Z(DM×R),9M×R(β)
〉
=

∫
G

∫
S1
χM L(M ×R)ψ∗M(α)∧4(d)

=

∫
G
χM L(M)ψ∗M(α)= σ(M, α).

If G satisfies (RD), then this formula remains true for the C∗(M×R)G×Z-index,
because S∞G (M) ⊗̂SZ(R), with SZ(R) denoting the smooth Z-invariant kernels of
R×R of rapid polynomial decay, is a dense holomorphically closed subalgebra of
C∗(M ×R)G×Z to which the pairing with 9M×R(β) extends. Consequently,〈

IndC∗(G)⊗̂C(S1)(DM×R),9G×Z(β)
〉
= σ(M, α).

Now, if M and N are G-homotopy equivalent, then M × R and N × R are
G×Z homotopy equivalent. Hence the corresponding signature index classes in
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K0(C∗(G) ⊗̂C(T 1)) are equal; thus〈
IndC∗(G)⊗̂C(S1)(DM×R),9G×Z(β)

〉
=
〈
IndC∗(G)⊗̂C(S1)(DN×R),9G×Z(β)

〉
.

This gives us
σ(M, α)= σ(N , α),

which is what we wanted to prove in odd dimension. �

6C. Higher Â-genera and G-metrics of positive scalar curvature. Let S be a
compact smooth manifold with an action of a compact Lie group K . In general, the
existence of a K-invariant metric of positive scalar curvature on S is a more refined
property than the existence of a positive scalar curvature metric on S; indeed, as
shown in [Bérard-Bergery 1981], averaging a positive scalar curvature metric on S
might destroy the positivity of the scalar curvature. For sufficient conditions on K
and S ensuring the existence of such metrics, see [Lawson and Yau 1974; Hanke
2008].

If M is a G-proper manifold we can try to built a G-invariant positive scalar
curvature metric on M through a K-invariant positive scalar curvature metric on
the slice S. This is precisely what is achieved in [Guo et al. 2017]:

Theorem 6.17 (Guo–Mathai–Wang). Let G be an almost connected Lie group and
let K be a maximal compact subgroup of G. If S is a compact manifold with a K-
invariant metric of positive scalar curvature, then the G-proper manifold G×K S
admits a G-invariant metric of positive scalar curvature.

This result shows that the space of positive scalar curvature G-metrics on a
G-proper manifold can be nonempty.

We can ask for numerical obstructions to the existence of a positive scalar cur-
vature G-metric. Assume that M has a G-equivariant spin structure and let ð be
the associated spin-Dirac operator. Then one can show that

IndC∗r (G)(ð)= 0 in K∗(C∗r G); (6.18)

see again [Guo et al. 2017]. The following result was item (ii) in Theorem 1.5 in
the introduction:

Theorem 6.19. Let G be a Lie group satisfying the properties stated in the in-
troduction: |π0(G)| < ∞, (RD) and EG of nonpositive curvature. Let M be
a G-proper manifold admitting a G-equivariant spin structure. Let us identify
H•diff(G) and H•inv(G/K )≡ H•inv(EG) via the van Est isomorphism. If M admits a
G-invariant metric of positive scalar curvature, then

Â(M, α) :=
∫

M
χM(m) Â(M)∧ψ∗Mα = 0

for each α ∈ H•inv(EG).
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Proof. The even-dimensional case follows directly from our C∗-index formula and
from (6.18). In the odd-dimensional case we argue by suspension, as we did for
the signature operator. It suffices to observe that if M is an odd-dimensional G-
proper manifold admitting a G-equivariant spin structure and a G-invariant metric
of positive scalar curvature gM , then M×R is an even-dimensional (G×Z)-proper
manifold with a (G ×Z)-equivariant spin structure and with a (G ×Z)-invariant
metric gM + dt2 which is of positive scalar curvature too. Consequently, the ana-
logue of (6.18) holds for the spin Dirac operator on M ×R and so, arguing as for
the signature operator, we finally obtain that

Â(M, α) :=
∫

M
χM(m) Â(M)∧ψ∗Mα = 0,

as required. �
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Periodic cyclic homology and
derived de Rham cohomology

Benjamin Antieau

We use the Beilinson t-structure on filtered complexes and the Hochschild–
Kostant–Rosenberg theorem to construct filtrations on the negative cyclic and
periodic cyclic homologies of a scheme X with graded pieces given by the
Hodge completion of the derived de Rham cohomology of X . Such filtrations
have previously been constructed by Loday in characteristic zero and by Bhatt–
Morrow–Scholze for p-complete negative cyclic and periodic cyclic homology
in the quasisyntomic case.

1. Introduction

Let k be a quasisyntomic ring and k→R a quasisyntomic k-algebra. Bhatt, Morrow,
and Scholze construct in [Bhatt et al. 2019, Theorem 1.17] a functorial complete
exhaustive decreasing multiplicative Z-indexed filtration F?BMSHP(R/k;Zp) on the
p-adic completion HP(R/k;Zp) of periodic cyclic homology with graded pieces
grn

BMSHP(–/k;Zp)' L�R/k[2n], where L�R/k is the derived de Rham complex
and L�R/k is the p-adic completion of the Hodge completion of this complex. The
Hodge filtration �>n

R/k for smooth algebras induces a Hodge filtration L�>n
R/k on the

derived de Rham complex and its completed variants. There is a corresponding
filtration on negative cyclic homology, with graded pieces given by L�>n

R/k[2n],
the p-completion of the Hodge completion of L�>n

R/k[2n].
For smooth Q-algebras, a similar statement goes back to Loday [1992, 5.1.12].

One can also derive very general results along these lines in characteristic zero
from [Toën and Vezzosi 2011]. Related results in the context of commutative dif-
ferential graded algebras were obtained using explicit mixed complexes by Cortiñas
[1999]. The authors of [Bhatt et al. 2019] suggest that such a filtration should exist
outside the p-complete setting. In this note, we use the Beilinson t-structure on
filtered complexes [Beilinson 1987] to prove that this is indeed the case.

MSC2010: 13D03, 14F40.
Keywords: negative cyclic homology, periodic cyclic homology, derived de Rham cohomology,

t-structures, filtered complexes.
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Theorem 1.1. If k is a commutative ring and X is a quasicompact quasiseparated
k-scheme, then there are functorial complete decreasing multiplicative Z-indexed
filtrations F?BHC−(X/k) and F?BHP(X/k) on negative cyclic homology and peri-
odic cyclic homology, respectively. These filtrations satisfy the following proper-
ties.

(a) There are natural equivalences

grn
BHC−(X/k)' R0(X, L̂�>n

–/k[2n]),

grn
BHP(X/k)' R0(X, L̂� –/k[2n]),

where L̂� –/k is the Hodge completion of the derived de Rham complex and
L̂�>n

–/k is the n-th term in the Hodge filtration on L̂� –/k .

(b) The filtered pieces Fn
BHC−(X/k) and Fn

BHP(X/k) are equipped with compati-
ble decreasing filtrations which induce the Hodge filtration on grn

BHC−(X/k)
and grn

BHP(X/k) under the equivalences of part (a).

(c) If X/k is quasi-lci,1 then the filtrations F?BHC−(X/k) and F?BHP(X/k) are
exhaustive.

Negative cyclic homology and periodic cyclic homology satisfy fpqc descent
by [Bhatt et al. 2019, Corollary 3.4] as a consequence of the fact that the de-
rived exterior powers 3i L –/k of the cotangent complex are fpqc sheaves by [Bhatt
et al. 2019, Theorem 3.1]. Since L̂�>n

–/k has by definition a complete exhaustive
decreasing N-indexed filtration with graded pieces 3i L –/k , it follows that the
Hodge-truncated Hodge-completed derived de Rham complexes L̂�>n

–/k are also
fpqc sheaves. Thus, to prove the theorem, it suffices to handle the affine case.

Theorem 1.1 follows from a much more general theorem, Theorem 4.6, which
states that in a suitable∞-category of bicomplete bifiltered complexes, the Beilin-
son filtrations are exhaustive for any quasicompact quasiseparated k-scheme X .

Remark 1.2. (i) In case both are defined, the p-adic completion of the filtration
of Theorem 1.1 agrees with the filtration of [Bhatt et al. 2019, Theorem 1.17].
This follows in the smooth case by examining the proofs of each theorem and
in general by mapping the left Kan extension of our proof to the filtration
obtained by quasisyntomic descent in their proof.

(ii) In [Antieau and Nikolaus 2018], we introduce a t-structure on cyclotomic
spectra. As one application of the t-structure, we show using calculations of
Hesselholt [1996] that the methods of this paper can be used to construct a
filtration F?BTP(X) on topological periodic cyclic homology TP(X) when X
is a smooth scheme over a perfect field with graded pieces given by (shifted)
crystalline cohomology grn

BTP(X)'R0crys(X/W (k))[2n]. When X =Spec R

1We say that a k-scheme X is quasi-lci if LX/k has Tor-amplitude contained in [0, 1].
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is smooth and affine, then in fact grn
BTP(X) is given canonically by W�•R[2n],

the shifted de Rham–Witt complex. This recovers several parts of [Bhatt et al.
2019, Theorems 1.10, 1.12, and 1.15] in the case of a smooth scheme over a
perfect field.

Outline. In Section 2, we outline the theory of filtrations we need. We explain the
smooth affine case in Section 3. In Section 4, we give the full proof, which follows
from the smooth case by taking nonabelian derived functors in an appropriate∞-
category of bifiltrations.

Conventions and notation. We work with∞-categories throughout, following the
conventions of [Lurie 2009; 2017]. Hochschild homology HH(R/k) and its rel-
atives are viewed as objects in the derived ∞-category D(k), possibly with ad-
ditional structure. Typically, we view objects of D(k) as being given by chain
complexes up to quasi-isomorphism, but several constructions lead us to cochain
complexes as well. Given an object X ∈ D(k), we write H∗X for its homology
groups. We write X• for a given cochain complex model for X . Thus, X• is
an object of the category Ch(k) of cochain complexes of k-modules. The main
example is the de Rham complex �•R/k for a smooth commutative k-algebra R.

2. Background on filtrations

Throughout this section, fix a commutative ring k. Let D(k) be the derived ∞-
category of k, a stable presentable∞-categorical enhancement of the derived cat-
egory of unbounded chain complexes of k-modules. The derived tensor product
of chain complexes makes D(k) into a presentably symmetric monoidal stable∞-
category, meaning that D(k) is a symmetric monoidal presentable∞-category in
which the tensor product commutes with colimits in each variable.

The filtered derived∞-category of k is DF(k)=Fun(Zop,D(k)), the∞-category
of sequences

X (?) : · · · → X (n+ 1)→ X (n)→ · · ·

in D(k). Write X (∞)= limn X (n)' lim(· · · → X (n+ 1)→ X (n)→ · · · ) for the
limit of the filtration. A filtered complex X (?) ∈ DF(k) is complete if X (∞)' 0.
Similarly, write X (−∞) for colimn X (n)' colim(· · ·→ X (n+1)→ X (n)→· · · ).
Given a map X (−∞)→ Y , we say that X (?) is a filtration on Y ; if the map is an
equivalence, we say that X (?) is an exhaustive filtration on Y .

We refer to general objects X (?) of DF(k) as decreasing Z-indexed filtrations.
We write grn X for the cofiber of X (n+ 1)→ X (n), the n-th graded piece of the
filtration. Several filtrations of interest in this paper are in fact N-indexed, meaning
that X (0)' X (−1)' X (−2)' · · · , or equivalently that grn X ' 0 for n < 0.
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Day convolution (using the additive symmetric monoidal structure of Zop) makes
DF(k) into a presentably symmetric monoidal stable∞-category. The Day con-
volution symmetric monoidal structure has the property that if X (?) and Y (?) are
filtered objects of D(k), then (X ⊗k Y )(?) is a filtered spectrum with graded pieces
grn(X ⊗k Y )'

⊕
i+ j=n gri X ⊗k gr j Y .

A filtration X (?) equipped with the structure of a commutative algebra object
(or E∞-algebra object) in DF(k) is called a multiplicative filtration.

One source of decreasing filtrations is via the Whitehead tower2 induced from
some t-structure on D(k). We use the standard t-structure, which has D(k)>0⊆D(k),
the full subcategory of D(k) consisting of X such that Hn(X)= 0 for n < 0. Simi-
larly, D(k)60 is the full subcategory of D(k) consisting of X such that Hn(X)= 0 for
n> 0. Given an object X , its n-connective cover τ>n X→ X has Hi (τ>n X)∼=Hi (X)
for i > n and Hi (τ>n X)= 0 for i < n.

Example 2.1. If R is a connective commutative algebra object in D(k), then the
Whitehead tower τ>?R is a complete exhaustive decreasing multiplicative N-indexed
filtration on R with grnτ>?R ' Hn(R)[n].

For details and proofs of the statements above, see [Gwilliam and Pavlov 2018].
For more background, see [Bhatt et al. 2019, Section 5]. Now we introduce the
Beilinson t-structure on DF(k).

Definition 2.2. Let DF(k)>i ⊆ DF(k) be the full subcategory of those filtered ob-
jects X (?) such that grn X ∈D(k)>i−n , and DF(k)6i ⊆DF(k) be the full subcategory
of those filtered objects X (?) such that X (n) ∈ D(k)6i−n .

Note the asymmetry in the definition. The pair (DF(k)>0,DF(k)60) defines a
t-structure on DF(k) by [Beilinson 1987]; see also [Bhatt et al. 2019, Theorem 5.4]
for a proof. We write τB

6n , τB
>n , πB

n for the truncation and homotopy object functors
in the Beilinson t-structure.

The connective objects DF(k)>0 are closed under the tensor product on DF(k),
and hence the natural map πB

0 : DF(k)>0→ DF(k)♥ is symmetric monoidal. The
heart is the abelian category of cochain complexes of k-modules equipped with the
usual tensor product of cochain complexes.

Remark 2.3. The Beilinson Whitehead tower τB
>?X is most naturally a bifiltered

object, since each τB
>n+1 X→ τB

>n X is a map of objects of DF(k). If we forget the
residual filtration on τB

>?X (by taking the colimit), then we obtain a new filtration
on X (−∞). In this paper, we need this only for N-indexed filtrations. In this case,

2The Whitehead tower of an object X in a stable∞-category D with a t-structure is the tower

· · · → τ>n+1 X→ τ>n X→ · · · ,

where τ>n X denotes truncation with respect to the t-structure.
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each n-connective cover τB
>n X is also N-indexed, and we can view the resulting

filtration (τB
>n X)(0) as a new filtration on X (0).3 If X is a commutative algebra

object of DF(k), then the Beilinson Whitehead tower τB
>?X is a new multiplicative

filtration on X .

For our purposes, it is most important to understand the n-connective cover
functors. Given X (?) ∈ DF(k), the n-connective cover in the Beilinson t-structure
τB
>n X→ X (?) induces equivalences

griτB
>n X ' τ>n−i gri X

[Bhatt et al. 2019, Theorem 5.4]. From this, we see that griπB
n X'(Hn−i (gri X))[−i].

The cochain complex corresponding to πB
n X is of the form

· · · → Hn(gr0 X)→ Hn−1(gr1 X)→ Hn−2(gr2 X) · · · ,

where Hn(gr0 X) is in cohomological degree 0 and where the differentials are in-
duced from the boundary maps in homology coming from the cofiber sequences
gri+1 X → X (i)/X (i + 2)→ gri X . See [Bhatt et al. 2019, Theorem 5.4(3)] for
details.

The next example illustrates our main idea in a general setting.

Example 2.4. Let X ∈ D(k) be an object equipped with an S1-action. The White-
head tower τ>?X defines a complete exhaustive S1-equivariant Z-indexed filtration
F?P X on X with graded pieces grn

P X'Hn(X)[n], equipped with the trivial S1-action.
Applying homotopy S1-fixed points, we obtain a complete Z-indexed filtration
F?P XhS1

on XhS1
with graded pieces grn

P XhS1
' (Hn(X)[n])hS1

. Let F?B XhS1
be the

double-speed Whitehead tower of F?P XhS1
in the Beilinson t-structure on DF(k), so

that Fn
B XhS1

= τB
>2nF?XhS1

. By definition, Fn
B XhS1

is a filtered spectrum with

gri Fn
B XhS1

' τ>2n−i gri
P XhS1

' τ>2n−i (Hi (X)[i])hS1
.

Hence,
gri grn

B XhS1
'

{
Hi (X)[2n− i] if n 6 i ,
0 otherwise.

This shows in fact that grn
B XhS1

[−2n] ' πB
2nF?P XhS1

and hence it is in DF(k)♥, the
abelian category of cochain complexes, and is represented by a cochain complex

0→ Hn(X)→ Hn+1(X)→ Hn+2(X)→ · · · ,

where Hn(X) is in cohomological degree n. The differential is given by the Connes–
Tsygan B-operator. An object X ∈ D(k) with an S1-action is the same as a dg
module over C•(S1, k), the dg algebra of chains on S1. The fundamental class B

3Note that this is not an idempotent operation: applying the Beilinson Whitehead tower to
τB
>?X (0) typically produces yet another filtration on X (0).
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of the circle defines a k-module generator of H1(S1, k) and B2
= 0. The differential

in the cochain complex above is given by the action of B. Hence, we have obtained
a filtration F?B XhS1

on XhS1
with graded pieces given by (H•>n(X), B)[2n].

Remark 2.5. The same argument shows that there is a filtration F?B X tS1
on the S1-

Tate construction X tS1
with graded pieces grn

B X tS1
' (H•(X), B)[2n]. We ignore

for the time being any convergence issues.

3. The smooth case

The Hochschild–Kostant–Rosenberg theorem [Hochschild et al. 1962] implies that
there are canonical isomorphisms �n

R/k
∼= HHn(R/k) when R is a smooth commu-

tative k-algebra. In particular, letting F?HKRHH(R/k) denote the usual Whitehead
tower, given by the good truncations τ>?HH(R/k), we see that there are natural
equivalences grn

HKRHH(R/k) ' �n
R/k[n] for all n > 0. Applying homotopy S1-

fixed points, we obtain a complete exhaustive decreasing multiplicative N-indexed
filtration F?HKRHC−(R/k) on HC−(R/k).

Definition 3.1. Let F?BHC−(R/k) be the double-speed Beilinson Whitehead tower
for the filtration F?HKRHC−(R/k), so that Fn

BHC−(R/k) = τB
>2nF?HKRHC−(R/k).

For a picture of this filtration, see Figure 1.

Example 2.4 implies that this filtration is a multiplicative N-indexed filtration
on HC−(R/k); each graded piece πB

n F?HKRHC−(R/k) ' grn
BHC−(R/k)[−2n] in

DF(k)♥ is given by a cochain complex of the form

· · · → 0→�n
R/k→�n+1

R/k → · · · ,

where �n
R/k is in cohomological degree n. It is verified in [Loday 1992, Corol-

lary 2.3.3] that the differential is indeed the de Rham differential. This can also
be checked by hand in the case of k[x] to which the general case reduces. It
follows that grn

BHC−(R/k)'�•>n
R/k [2n]. The additional filtration on F?BHC−(R/k)

reduces to the Hodge filtration on �•>n
R/k [2n]. The exhaustiveness and completeness

of F?BHC−(R/k) follows from Lemma 3.2 below. The case of HP(R/k) is similar.
This proves Theorem 1.1 in the case of smooth algebras.4

We needed the following lemma in the proof.

Lemma 3.2. Let X (?) be a complete N-indexed filtration on X = X (0) and let
τB
>?X be the associated Beilinson Whitehead tower in DF(k).

(i) The truncations τB
>n X and τB

6n−1 X are complete for all n ∈ Z.

(ii) The filtration (τB
>?X)(0) on X ' X (0) is complete and exhaustive.

4Note that for R a smooth k-algebra, the de Rham complex �•R/k is already Hodge-complete.
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F2
HKR

F3
CW

τ B
≥0

s

t

d2

d2

d2

Figure 1. The Beilinson filtration. The figure shows the E2-page of
the spectral sequence Es,t

2 = Hs(BS1,HHt(R/k))⇒ HC−t−s(R/k)
and which parts of HC−(R/k) are cut out by τB

>0HC−(R/k),
F2

HKRHC−(R/k), and F3
CWHC−(R/k), respectively. For the defini-

tion of the CW filtration, see Section 4.

Proof. Since the full subcategory D̂F(k)⊆ DF(k) of complete filtrations is stable,
to prove part (i) it is enough to show that τB

6n−1 X is complete for all n. However,
(τB
6n−1 X)(i)∈D(k)6n−1−i . We find that limi (τ

B
6n−1 X)(i) is in D(k)6−∞' 0. This

proves (i). It follows from (i) and the fact that complete filtered spectra are closed
under colimits that we can view limn τ

B
>n X as a complete filtered spectrum Y (?)

with graded pieces

gri Y ' lim
n

griτB
>n X ' lim

n
τ>n−i gri X.

Hence, each gri Y is∞-connective. Thus, gri Y ' 0 for all i and hence Y (?)' 0 as it
is complete. This proves the completeness in (ii). Finally, (τB

6n−1 X)(0)∈D(k)6n−1.
It follows that (τB

>n X)(0)→ X (0) ' X is an n-equivalence, and exhaustiveness
follows by letting n→−∞. �

4. The general case

Our general strategy for the proof of Theorem 1.1 is to left Kan extend from the
case of smooth algebras. Because of convergence issues, we are forced to Kan
extend in an∞-category which keeps track of multiple filtrations.

Let k be a commutative ring, sCAlgk the∞-category of simplicial k-algebras,
and CAlgpoly

k ⊆ sCAlgk the full subcategory of finitely generated polynomial k-
algebras. This embedding admits a universal property: given any∞-category C

which admits sifted colimits, the forgetful functor

Fun′(sCAlgk,C)→ Fun(CAlgpoly
k ,C)
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is an equivalence, where Fun′(sCAlgk,C) is the ∞-category of sifted colimit-
preserving functors sCAlgk→C. Given F : CAlgpoly

k → C, we call the correspond-
ing sifted colimit-preserving functor dF : sCAlgk → C the left Kan extension or
the nonabelian derived functor of F . For details, see [Lurie 2009, Section 5.5.9].

Let R ∈ sCAlgk and fix F : CAlgpoly
k → C. Then one extends F to all polyno-

mial rings by taking filtered colimits in C. To compute the value of the left Kan
extension dF of F on R, one takes a simplicial resolution |P•| ' R, where each P•
is polynomial (but not necessarily finitely generated), and computes |F(P•)| in C.

Let k be a commutative ring, and let R be a simplicial commutative k-algebra.
Then, HH(R/k) is a connective commutative algebra object in D(k)BS1

, the ∞-
category of complexes of k-modules equipped with an S1-action. We could apply
Example 2.4 to obtain a filtration on HC−(R/k)= HH(R/k)hS1

with graded pieces
truncations of the cochain complex (HH∗(R/k), B). However, in the nonsmooth
case, this does not capture derived de Rham cohomology.

We use the fact that Hochschild homology commutes with sifted colimits (see
for example [Bhatt et al. 2019, Remark 2.3]) to Kan extend the HKR filtration
of [Hochschild et al. 1962] from finitely generated polynomial algebras to all sim-
plicial commutative k-algebras. This gives a functorial complete exhaustive decreas-
ing multiplicative N-indexed S1-equivariant multiplicative filtration F?HKRHH(R/k)
on HH(R/k) with graded pieces gr t

HKRHH(R/k)'3t LR/k[t] with the trivial S1-
action, where LR/k denotes the cotangent complex and 3t LR/k is the t-th derived
exterior power of the cotangent complex. Since Ft

HKRHH(R/k) is t-connective for
all t , it follows that the HKR filtration is complete.

Applying homotopy S1-fixed points or Tate, we obtain decreasing multiplica-
tive N-indexed filtrations F?HKRHC−(R/k) and F?HKRHP(R/k) on negative cyclic
homology

HC−(R/k)= HH(R/k)hS1

and periodic cyclic homology

HP(R/k)= HH(R/k)tS
1
.

These filtrations are both complete. To see this, note first that the induced HKR
filtration F?HKRHC(R/k) on cyclic homology HC(R/k)=HH(R/k)hS1 is complete
since Ft

HKRHC(R/k)' (Ft
HKRHH(R/k))hS1 is t-connective. Thus, since we have

a cofiber sequence

F?HKRHC(R/k)[1] → F?HKRHC−(R/k)→ F?HKRHP(R/k)

in DF(k), it suffices to see that the HKR filtration on HC−(R/k) is complete. But
this follows from the fact that ( – )hS1

commutes with limits.
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Negative cyclic homology admits a second filtration, coming from the standard
cell structure CP0

⊆CP1
⊆· · · on BS1

'CP∞. This second filtration is compatible
with the HKR filtration since on Hochschild homology the HKR filtration is S1-
equivariant. To be precise, we consider the double filtration

Ft
HKRFs

CWHC−(R/k)= fib
(
(Ft

HKRHH(R/k))hS1
→ (Ft

HKRHH(R/k))h�CPs−1)
,

which has graded pieces

gr t
HKRgrs

CWHC−(R/k)'3t LR/k[t − 2s].

This bifiltration is multiplicative in the natural sense with respect to the Day con-
volution symmetric monoidal structure on Fun(Nop

×Nop,D(k)), where we give
Nop
×Nop the symmetric monoidal structure coming from (the opposite of) addition

in the monoid N×N.
We let DBF(k) denote the ∞-category Fun(Nop

× Nop,D(k)) of Nop
× Nop-

indexed bifiltered complexes of k-modules and we denote by D̂BF(k) the full sub-
category of DBF(k) on those bicomplete bifiltered complexes, i.e., those X (?, ?)
such that for each s one has limt X (s, t)' 0 and for each t one has lims X (s, t)' 0.
Note that either condition implies that X (?, ?) is complete in the weaker sense that
lims,t X (s, t)' 0.

Remark 4.1. Bicomplete bifiltered objects are the same as complete filtered ob-
jects in the complete filtered derived category.

Lemma 4.2. For any simplicial commutative k-algebra R, the filtration

F?HKRF?CWHC−(R/k)

is bicomplete.

Proof. Fix s. We have

lim
t

Ft
HKRFs

CWHC−(R/k)' 0

as both ( – )hS1
and ( – )h�CPs−1

commute with limits. Now fix t . Then we want to
show that

lim
s

Ft
HKRFs

CWHC−(R/k)
' fib

(
(Ft

HKRHH(R/k))hS1
→ lim

s
(Ft

HKRHH(R/k))h�CPs−1)
' 0.

However, for any bounded below spectrum with an S1-action X , the natural map
XhS1
→ lims Xh�CPs−1

is an equivalence. Indeed, this follows by a computation if
X has a single nonzero homotopy group, and then it follows for all homologically
bounded complexes by induction. Then it follows in the limit up the Postnikov
tower since both ( – )hS1

and lims( – )h�CPs−1
commute with limits. �
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We can Kan extend HC−(–/k) with its bifiltration from finitely generated poly-
nomial k-algebras to all simplicial commutative k-algebras to obtain a bifiltration
F?HKRF?CWdHC−(R/k) on derived negative cyclic homology. Let d̂HC−(R/k) de-
note bicompleted derived negative cyclic homology and let F?HKRF?CWd̂HC−(R/k)
be the bicomplete bifiltration on bicompleted derived negative cyclic homology,
which is the Kan extension of F?HKRF?CWHC−(–/k) as a functor CAlgpoly

k → D̂BF(k)
to all simplicial commutative k-algebras.

Lemma 4.3. For any R ∈ sCAlgk , the natural map

F?HKRF?CWd̂HC−(R/k)→ F?HKRF?CWHC−(R/k)

is an equivalence in D̂BF(k).

Proof. Since both bifiltered objects are bicomplete, it is enough to check on graded
pieces. Since the graded pieces functors gr t grs

: D̂BF(k)→D(k) commute with col-
imits, grt

HKRgrs
CWd̂HC−(R/k) is the left Kan extension of R 7→�t

R/k[t − 2s] from
finitely generated polynomial algebras to all simplicial commutative k-algebras,
which is precisely grt

HKRgrs
CWHC−(R/k)'3t LR/k[t − 2s]. �

Remark 4.4. The lemma says that even though HC−(–/k) does not commute
with sifted colimits as a functor sCAlgk → D(k), it does commute with sifted
colimits as a functor sCAlgk→ D̂BF(k) when equipped with its skeletal and HKR
filtrations. In particular, we can compute HC−(R/k) by left Kan extending from
finitely generated polynomial algebras and then bicompleting.

Fix s and consider the Whitehead tower

· · · → τB
>r F?HKRFs

CWHC−(R/k)→ τB
>r−1F?HKRFs

CWHC−(R/k)→ · · ·

in the Beilinson t-structure on filtered complexes, where we are taking Beilinson
connective covers in the HKR-direction. Recall that

gr tτB
>r F?HKRFs

CWHC−(R/k)
' τ>−t+r grt

HKRFs
CWTC−(R/k)

' τ>−t+r fib
(
(3t LR/k[t])hS1

→ (3t LR/K [t])h�CPs−1)
(4.5)

and hence that

gr tπB
r F?HKRFs

CWHC−(R/k)
'
(
π−t+r fib

(
(3t LR/k[t])hS1

→ (3t LR/k[t])h�CPs−1))
[−t + r ].

Here, the notation implies that we view π−t+r of the object on the right as a complex
concentrated in degree −t + r . If R/k is smooth, we have 3t LR/k ' �

t
R/k . In
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particular, in this case, we see that

gr tπB
r F?HKRFs

CWHC−(R/k)'
{
�t

R/k[−t + r ] if r is even and r 6 2t − 2s,
0 otherwise.

Theorem 4.6. There is a complete exhaustive multiplicative decreasing Z-indexed
filtration F?B on the bicomplete bifiltered complex F?HKRF?CWHC−(R/k). The graded
piece gru

BHC−(R/k) is naturally equivalent to the Hodge-complete derived de Rham
cohomology L̂�>u

R/k[2u] of R, naively truncated. Moreover, the remaining HKR
and CW filtrations on gru

BHC−(R/k) both coincide with the Hodge filtration. Fi-
nally, the underlying filtration F?BHC−(R/k) in the sense of Remark 2.3 is a com-
plete filtration of HC−(R/k); if LR/k has Tor-amplitude contained in [0, 1], then
the filtration is exhaustive.

Proof. When R/k is a finitely generated polynomial algebra, we take as our fil-
tration F?B the double-speed Whitehead filtration τB

>2?F
?
HKRFs

CWHC−(R/k) in the
Beilinson t-structure. By definition of the Beilinson t-structure and the analysis in
the paragraph above, πB

2uF?HKRFs
CWHC−(R/k) is a chain complex of the form

0→�u+s
R/k→�u+s+1

R/k → · · · ,

where �u+s
R/k sits in homological degree u− s. Thus, as in Section 3, for R smooth,

gru
BF?HKRFs

CWHC−(R/k)' πB
2uF?HKRFs

CWHC−(R/k)'�•>u+s
R/k [2u].

Both the CW filtration and the HKR filtration induce the Hodge filtration on this
graded piece.

We claim that for R/k a finitely generated polynomial algebra on d variables, for
each u, the bifiltered spectrum Fu

BF?HKRF?CWHC−(R/k) is bicomplete. For each s,
this follows from Lemma 3.2. In the other direction, as soon as 2s > 2d − u, (4.5)
shows that Fu

BF?HKRFs
CWHC−(R/k) ' 0, so completeness in the CW-direction is

immediate.
We now view the filtration F?B as giving a functor CAlgpoly

k →Fun(Zop, D̂BF(k)),
which we left Kan extend to a functor sCAlgk → Fun(Zop, D̂BF(k)). We verify
the necessary properties in a series of lemmas.

Lemma 4.7. For any R ∈ sCAlgk ,

colim
u→−∞

Fu
BF?HKRF?CWHC−(R/k)' F?HKRF?CWHC−(R/k),

where the colimit is computed in D̂BF(k).

Proof. The colimit functor Fun(Zop, D̂BF(k))→ D̂BF(k) commutes with colimits,
so this follows from Lemma 4.3 once we show that the filtration Fu

BF?HKRF?HC−(R/k)
is exhaustive on F?HKRF?CWHC−(R/k) for R a finitely generated polynomial ring.
This follows from Lemma 3.2. �
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Lemma 4.8. We have limu Fu
BF?HKRF?CWHC−(R/k) ' 0, where the limit is com-

puted in D̂BF(k).

Proof. By conservativity of the limit-preserving functors grt grs
: D̂BF(k)→ D(k),

it is enough to see that

lim
u

gr tτB
>2uF?HKRgrs

CWHC−(R/k)' 0

for all pairs (s, t). But this object is (2u− t)-connective by definition of the Beilin-
son t-structure and because of the fact that colimits of (2s− t)-connective objects
are (2s− t)-connective. Thus, the limit vanishes. �

Lemma 4.9. The graded piece gru
BHC−(R/k) is the bicomplete bifiltered object

obtained by left Kan extending R 7→�>u
[2u] to all simplicial commutative rings,

where the filtration is given by F(s,t)�>u
[2u] '�>u+max(s−u,t−u,0)

[2u].

Proof. Indeed, this is clear on finitely generated polynomial algebras by Section 3 so
this follows by Kan extension using the fact that gru

:Fun(Zop, D̂BF(k))→ D̂BF(k)
commutes with colimits. �

Thus, we have proved the theorem except for the last sentence. Now we examine
the underlying filtration F?BHC−(R/k) on HC−(R/k) given by forgetting the HKR
and CW filtrations.

Lemma 4.10. Let D̂BF(k)→D(k) be the functor that sends a bicomplete Nop
×Nop-

index bifiltered spectrum X (?, ?) to X (0, 0). This functor preserves limits.

Proof. The functor is the composition of the inclusion functor D̂BF(k)→ DBF(k)
(a right adjoint) and the limit preserving evaluation functor X (?, ?) 7→ X (0, 0)
on DBF(k). �

From Lemmas 4.8 and 4.10, it follows that the filtration Fu
BHC−(R/k) is a com-

plete filtration on HC−(R/k). Exhaustiveness is somewhat subtle.

Lemma 4.11. If LR/k has Tor-amplitude contained in [0, 1], then the filtration
F?BHC−(R/k) on HC−(R/k) is exhaustive.

Proof. Consider the cofiber Cu of Fu
BHC−(R/k)→ HC−(R/k) in D̂BF(k). We

find that

gr t
HKRgrs

CWFu
BHC−(R/k)'

{
0 if u > t − s,
3t LR/k[t − 2s] otherwise.

Similarly, grt
HKRgrs

CWHC−(R/k)'3t LR/k[t − 2s]. It follows that

grt
HKRgrs

CWCu
'

{
3t LR/k[t − 2s] if t − s < u,
0 otherwise.
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Since LR/k has Tor-amplitude contained in [0, 1], it follows that 3t LR/k has Tor-
amplitude contained in [0, t],5 and hence 3t LR/k[t − 2s] has Tor-amplitude con-
tained in [t − 2s, 2t − 2s]. In particular, we see that Cu has a complete filtration
with graded pieces having Tor-amplitude in [t − 2s, 2t − 2s] for t − s < u. In
particular, since R is discrete, the graded pieces are 2u-coconnected. Since Cu is a
limit of 2u-coconnected objects, it follows that πi Cu

= 0 for i > 2u. In particular,
colimu→−∞ Cu

= 0 and the filtration is exhaustive as claimed. �

This completes the proof of Theorem 4.6. �

Now we give the argument for HP(R/k).

Corollary 4.12. There is a complete filtration F?BHP(R/k) on HP(R/k) with

gru
BHP(R/k)' L̂�R/k[2u].

If R/k is quasi-lci, the filtration is exhaustive.

Proof. We use the cofiber sequence HC(R/k)[1] → HC−(R/k) → HP(R/k).
Note that HC(–/k)= HH(R/k)hS1 preserves colimits. The Kan extension of the
HKR filtration on HC(–/k)[1] from finitely generated polynomial k-algebras to
all simplicial commutative k-algebras thus equips HC(–/k)[1] with an N-indexed
filtration F?HKRHC(–/k)[1] with graded pieces

grn
HKRHC(–/k)[1] '3nLR/k[n+ 1].

Moreover, since Fn
HKRHC(–/k)[1] is n-connective, the filtration is complete. By

Lemma 3.2, the double-speed Beilinson Whitehead tower induces a complete ex-
haustive decreasing Z-indexed filtration F?BHC(–/k)[1] on HC−(–/k)[1]. A straight-
forward check implies that the graded pieces are

gru
BHC(–/k)[1] ' L�6u−1

R/k [2u− 1].

Here, it makes no difference whether we take the Hodge-completed derived de
Rham complex or the non-Hodge-completed derived de Rham complex, as the
Hodge filtration on L�6u−1

R/k is finite. Now we have a cofiber sequence

F?BHC(–/k)[1] → F?BHC−(R/k)→ F?BHP(R/k).

Since the filtrations on HC(–/k) and HC−(R/k) are complete, so is the induced fil-
tration on HP(R/k). When R/k is quasi-lci, Theorem 4.6 implies that the filtration
on HC−(R/k) is exhaustive. We have already noted that the filtration on HC(R/k)

5Use the fact that LR/k is quasi-isomorphic to a complex M0← M1, where M0,M1 are flat, the
fact that flats are filtered colimits of finitely generated projectives, the standard filtration on 3t LR/k
with graded pieces 3 j M0 ⊗R 3

t− j (M1[1]), and the fact that 3t− j (M1[1]) ' (0t− j M1)[t − j],
where 0t− j is the divided power functor on flats.
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is exhaustive. Hence, the filtration on HP(R/k) is exhaustive. The graded pieces
gru

BHP(R/k) fit into cofiber sequences

L̂�>u
R/k[2u] → gru

BHP(R/k)→ L�6u−1
R/k [2u].

One finds using the remaining HKR filtration that in the smooth case the graded
piece gru

BHP(R/k)[−2u] is a chain complex (it is in the heart of the Beilinson
t-structure) and that this sequence is equivalent to the canonical stupid filtration
sequence

0→�
•>u
R/k →�•R/k→�

•6u−1
R/k → 0.

This completes the proof, since now we see in general that

gru
BHP(R/k)' L̂�R/k[2u]. �

Proof of Theorem 1.1. Theorem 4.6 and Corollary 4.12 establish the theorem for
affine k-schemes. It follows for general quasicompact separated schemes because
everything in sight is then computed from a finite limit of affine schemes, and the
conditions of being complete or exhaustive are stable under finite limits. Finally, it
follows for a quasicompact quasiseparated scheme X by induction on the number
of affines needed to cover X . �
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Linkage of Pfister forms over C(x1, . . . , xn)

Adam Chapman and Jean-Pierre Tignol

We prove the existence of a set of cardinality 2n of n-fold Pfister forms over
C(x1, . . . , xn) which do not share a common (n − 1)-fold factor. This gives a
negative answer to a question raised by Becher. The main tools are the existence
of the dyadic valuation on the complex numbers and recent results on symmetric
bilinear forms over fields of characteristic 2.

The field C(x1, x2) of rational functions in two indeterminates over the field
of complex numbers is known to be a C2-field in the sense of Lang; see [Elman
et al. 2008, Section 97]. It follows that every quadratic form in five variables
over C(x1, x2) is isotropic, which implies that any two quaternion algebras over
C(x1, x2) share a common maximal subfield; see [Lam 2005, Theorem X.4.20].
Fields with this property are said to be linked. It was noticed by Becher [2018]
and by Chapman, Dolphin, and Leep [Chapman et al. 2018, Corollary 5.3] that the
following stronger property holds: C(x1, x2) is 3-linked in the sense that any three
quaternion algebras over C(x1, x2) share a common maximal subfield. In contrast,
algebraic number fields are known to be m-linked for every integer m; this follows
from Lenstra’s proof that K2 of global fields consists of symbols [Lenstra 1976,
Proposition, p. 70]. We are indebted to an anonymous referee for the following
short argument: a common maximal subfield of quaternion algebras Q1, . . . , Qm

defined over a number field F is given by F(
√

d), where d ∈ F× is a nonsquare
in each of the completions Fp, where p runs through the finitely many primes
that are either archimedean or dyadic, or where at least one of the Qi is nonsplit.
Comparison with the case of number fields suggests asking whether there exists an
upper bound on the integer m for which C(x1, x2) is m-linked.

Theorem A. The following quaternion algebras over C(x1, x2) do not share a
common maximal subfield:

(x1, x2), (x1, x2+ 1), (x2, x1+ 1), (x2, x1x2+ 1).

Tignol acknowledges support from the Fonds de la Recherche Scientifique–FNRS under grant num-
ber J.0159.19.
MSC2010: primary 11E81; secondary 11E04, 19D45.
Keywords: quadratic forms, linkage, rational function fields.
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The arguments apply to a more general linkage question raised by Becher [2018].
Given a field F , the Witt ring WF of (Witt classes of) symmetric bilinear forms
over F has a natural filtration by the powers of the maximal ideal IF of even-
dimensional forms:

WF ⊃ IF ⊃ I 2F ⊃ · · · .

Each I nF is generated by (bilinear) n-fold Pfister forms, i.e., forms of the shape

〈〈α1, . . . , αn〉〉 = 〈1,−α1〉⊗ · · ·⊗ 〈1,−αn〉 with α1, . . . , αn ∈ F×.

For m, n ≥ 2, we say that I nF is m-linked if any m bilinear n-fold Pfister forms
over F share a common (n− 1)-fold factor. If char(F) 6= 2, quadratic forms can
be identified with their symmetric bilinear polar forms, and in particular the 2-fold
Pfister forms are the norm forms of quaternion algebras. Hence F is m-linked
in the sense discussed above if and only if I 2F is m-linked. Becher raised the
following question:

Question [Becher 2018, Question 5.2]. Suppose I nF is 3-linked for some n ≥ 2.
Does it follow that I nF is m-linked for every m ≥ 3?

This question was answered in the negative for fields F of char(F)= 2 in [Chap-
man 2018]. In this note, we show how Becher’s question can be answered also in
the case of char(F) = 0 using the main result of [Chapman 2018] on symmetric
bilinear forms over fields of characteristic 2 and the existence of a dyadic valuation
on C:

Theorem B. For F = C(x1, . . . , xn) with n ≥ 2, I nF is 3-linked but not 2n-linked.

Proofs

Notation 1. For a given integer n≥2, let 2n
={0, 1}×n , and write 0=(0, . . . , 0)∈2n .

Given a sequence α1, . . . , αn in the multiplicative group of a field F and d =
(d1, . . . , dn) ∈ 2n , let αd

=
∏n

i=1 α
di
i ∈ F×. If d 6= 0 and 1+αd

6= 0, let

ϕd = 〈〈α1, . . . , α̂`, . . . , αn〉〉⊗ 〈〈1+αd
〉〉,

where ` is the minimal index in {1, . . . , n} for which d` 6= 0, and let

ϕ0 = 〈〈α1, . . . , αn〉〉.

The following result is from [Chapman 2018, Theorem 3.3]:

Proposition 2. Suppose char(F)= 2 and α1, . . . , αn are 2-independent in F , which
means that (αd)d∈2n is a linearly independent family in F viewed as an F2-vector
space. Then the forms ϕd for d ∈ 2n are anisotropic and have no common 1-fold
factor.

The main result from which Theorems A and B derive is the following.
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Proposition 3. Let F = k(x1, . . . , xn) be the field of rational functions in n indeter-
minates over an arbitrary field k of characteristic zero, for some n ≥ 2. Let ϕd for
d ∈ 2n be the Pfister forms defined as in Notation 1 with the sequence x1, . . . , xn

for α1, . . . , αn . The forms ϕd do not have a common 1-fold factor.

Proof. A theorem of Chevalley [Engler and Prestel 2005, Theorem 3.1.2] shows
that the 2-adic valuation on Q extends to a valuation v0 on k. Let k̄ be the residue
field of this valuation, which has characteristic 2. The valuation v0 has a Gauss
extension to a valuation v on F such that v(xi )= 0 for i = 1, . . . , n and x1, . . . , xn

are algebraically independent over k̄; see [Engler and Prestel 2005, Corollary 2.2.2].
The residue field of v is thus F = k̄(x1, . . . , xn), a field of rational functions in n
indeterminates over k̄. Since the coefficients of the forms {ϕd : d ∈ 2n

} are all of
value 0, they have residue forms {ϕd : d ∈ 2n

}, where the coefficients of ϕd are
the residues of the coefficients of ϕd . The forms ϕd are bilinear Pfister forms as
defined in Notation 1, with the 2-independent sequence x1, . . . , xn for α1, . . . , αn .

For d ∈ 2n , let td = (t1,d, . . . , t2n−1,d) be a (2n
− 1)-tuple of indeterminates.

Suppose the bilinear forms ϕd have a common factor 〈〈α〉〉. Then the pure subforms
ϕ′d defined by the equation ϕd = 〈1〉 ⊥ ϕ′d all represent −α. Hence the system of
equations

ϕ′d(td, td)=−α for d ∈ 2n

has a solution. We may therefore find nontrivial solutions to the system of equations

ϕ′d(td, td)= ϕ
′

0(t0, t0) for d ∈ 2n
\ {0}.

Since these equations are homogeneous, upon scaling we may find solutions (ud)d∈2n

such that
min{v(ui,d) | i = 1, . . . , 2n

− 1, d ∈ 2n
} = 0.

Taking residues, we obtain

ϕ′d(ud, ud)= ϕ
′

0(u0, u0) for d ∈ 2n
\ {0}.

Since at least one ui,d is nonzero and the forms ϕ′d are anisotropic, it follows that
these forms all represent some β ∈ F×. Hence the forms ϕd have a common
factor 〈〈β〉〉 by [Elman et al. 2008, Lemma 6.11]. This yields a contradiction to
Proposition 2. �

Theorem A readily follows from Proposition 3 with n = 2 and k = C, because
the forms ϕ0, ϕ(0,1), ϕ(1,0), and ϕ(1,1) are the norm forms of the quaternion algebras
(x1, x2), (x1, x2+ 1), (x2, x1+ 1), and (x2, x1x2+ 1), respectively.

Proof of Theorem B. The field F = C(x1, . . . , xn) is a Cn-field, and hence F(t) is a
Cn+1-field; see [Elman et al. 2008, Corollary 97.6]. In particular, u(F(t))= 2n+1,
and it follows from [Becher 2018, Corollary 5.4] that I nF is 3-linked. Apply
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Proposition 3 with k = C to obtain a set of cardinality 2n of n-fold Pfister forms
that do not have a common 1-fold factor, and hence are not linked. �
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