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On the intersection motive of certain Shimura varieties:
the case of Siegel threefolds

Jörg Wildeshaus

We construct a Hecke-equivariant Chow motive whose realizations equal inter-
section cohomology of Siegel threefolds with regular algebraic coefficients. As
a consequence, we are able to define Grothendieck motives for Siegel modular
forms.

0. Introduction

The purpose of this paper is the construction and analysis of the intersection motive
of Kuga–Sato families over a Siegel threefold relative to its Satake–(Baily–Borel)
compactification. As in earlier work on Hilbert–Blumenthal varieties [Wildeshaus
2012b], Picard surfaces [Wildeshaus 2015], and more generally, Picard varieties of
arbitrary dimension [Cloître 2017], the use of the formalism of weight structures
[Bondarko 2010] proves to be successful for dealing with a problem, for which
explicit geometrical methods seem inefficient.

However, Siegel threefolds present a characteristic feature different from the
cases treated so far: the dimension of the boundary of their Satake–(Baily–Borel)
compactification is equal to one. In particular, it is strictly positive.

As a consequence, the context of geometrical motives, i.e., motives over a point,
is no longer adapted to the problem. Let us explain why.

The present construction, as the preceding ones, depends on absence of weights
−1 and 0 in the boundary motive. To prove absence of weights, the idea remains,
as previously, to employ realizations. But then, realizations need to detect weights
(and therefore, their absence). One may expect this to be true in general; let us agree
to refer to that principle as weight conservativity. To date, weight conservativity
is proved for the restriction of the (generic) `-adic realization to the category of
motives of abelian type of characteristic zero [Wildeshaus 2018b].

Partially supported by the Agence Nationale de la Recherche, project “Régulateurs et formules
explicites”.
MSC2010: primary 14G35; secondary 11F32, 11F46, 14C25, 14F20, 14F25.
Keywords: Siegel threefolds, weight structures, intersection motive, motives for Siegel modular
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However, unless the boundary of the Baily–Borel compactification of a given
Shimura variety M is of dimension zero, its boundary motive, as well as the bound-
ary motive of any Kuga–Sato family B over M , is in general not of abelian type;
this is in any case true if M is a Siegel threefold. Concretely, this means that even
if the realization of the boundary motive were proved to avoid weights −1 and 0,
we could not formally conclude that the same is true for the boundary motive itself.

This is where relative motives, together with the formalism of six operations,
enter. Denoting by j the open immersion of M into its Baily–Borel compactifi-
cation M∗, by i its closed complement, and by 1M the structural motive over M ,
there is an exact triangle

i∗i∗ j∗1M [−1] → j!1M → j∗1M → i∗i∗ j∗1M

of motives over M∗. The boundary motive of M is isomorphic to the dual of the
direct image of i∗i∗ j∗1M under the structure morphism of M∗. More generally, the
boundary motive of B is isomorphic to the dual of the direct image of i∗i∗ j∗π∗(1B),
where π : B→ M denotes the projection of the Kuga–Sato family B to its base.

It is then true that the relative motive i∗i∗ j∗π∗(1B) over M∗ is of abelian type.
This suggests our strategy of proof. First, identify the `-adic realization of

i∗i∗ j∗π∗(1B), or more generally, of i∗i∗ j∗V , for direct factors V of π∗(1B); in
the cases where weights 0 and 1 are avoided, weight conservativity tells us that
i∗i∗ j∗V itself avoids weights 0 and 1. Second, apply the direct image a∗ associated
to the structure morphism a of M∗. It is proper, therefore, the functor a∗ is weight
exact. In particular, if i∗i∗ j∗V avoids weights 0 and 1, then so does a∗i∗i∗ j∗V . The
corresponding direct factor of the boundary motive of B thus avoids weights −1
and 0.

It may be useful to remark that if M is a Hilbert–Blumenthal or Picard variety,
then there is essentially no difference between i∗i∗ j∗V and its direct image under a,
since the latter is of relative dimension zero on the boundary of M∗.

The passage from geometrical motives to relative motives necessitates a certain
number of technical adjustments. For better legibility, we decided to separate these
from the present text. The result is [Wildeshaus 2018a]; it contains in particular the
identification of the boundary motive and the dual of a∗i∗i∗ j∗π∗(1B) mentioned
above.

Compared to the cases treated earlier, another feature of the boundary of Siegel
threefolds is new: its canonical stratification is not reduced to a single type of
strata. Indeed, in the boundary, one finds a closed stratum of dimension zero, the
so-called Siegel stratum, and its complement, the so-called Klingen stratum, which
is a disjoint union of (open) modular curves. Control of the weights avoided by the
restrictions of the `-adic realization R`(i∗ j∗π∗(1B)) of i∗ j∗π∗(1B) to the two strata
is related to but does not a priori determine the weights avoided by R`(i∗ j∗π∗(1B)).
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In fact, the precise relation is given by a long exact localization sequence. Its
control is not obvious. In an earlier attempt, we succeeded to identify sufficiently
many terms in this sequence, and (above all) certain morphisms, to prove absence
of weights 0 and 1. This approach is technically difficult; moreover, it does not
use the auto-duality property of the coefficients. Indeed, the device dual to the
localization sequence is the colocalization sequence; even when the coefficients
are auto-dual, the two sequences cannot be related. It turns out that both problems
admit the same solution. Namely, the theory of intermediate extensions allows
one to represent R`(i∗ j∗π∗(1B)) as an extension of two “halfs”, one dual to the
other, and both related to the intermediate extension j!∗ π∗(1B). This observation
is equally integrated in [Wildeshaus 2018a]; for our purposes, its concrete interest
is to divide by two the number of cohomological degrees for which absence of
weights has to be tested, and to reduce the number of morphisms in the localization
sequence, which need to be identified, to zero.

The rôle of the intermediate extension is not only technical. It turns out that the
dual of its direct image under a is canonically isomorphic to the interior motive,
which according to [Wildeshaus 2009] can be defined as soon as the boundary
motive avoids weights −1 and 0. This motivates the slight change of terminology
in the title, as compared to the earlier work mentioned above [Wildeshaus 2012b;
2015; Cloître 2017].

Let us now give a more detailed account of the content of the present article.
Section 1 contains the statement of our main result, Theorem 1.6. Denote by
GSp4,Q the group of symplectic similitudes of a fixed four-dimensional Q-vector
space V . As will be recalled, irreducible representations of GSp4,Q are indexed by
weights α depending on three integral parameters: α = α(k1, k2, r). The weight α
is dominant if and only if k1≥ k2≥ 0; it is regular if and only if k1> k2> 0. Denote
by Vα the irreducible representation of highest weight α. According to the main
result from [Ancona 2015] (which will be recalled in Theorem 1.4), there is a Chow
motive αV over the Siegel threefold M whose cohomological (Hodge theoretic or
`-adic) realizations equal the classical canonical construction µ(Vα). Part (a) of
Theorem 1.6 then states that i∗ j∗αV is of abelian type. Part (b) asserts that if α is
regular, then i∗ j∗αV avoids weights 0 and 1. It has recently become increasingly
important to determine the precise interval containing [0, 1] of weights avoided
by i∗ j∗αV . Theorem 1.6(b) gives a complete answer: putting k :=min(k1− k2, k2),
the motive i∗ j∗αV avoids all the weights between −k+1 and k, while both weights
−k and k+ 1 do occur. Interestingly, this result does not depend on the level of the
Siegel threefold. We then list the main consequences of this result (Corollaries 1.7,
1.8, 1.9, 1.11, 1.13), applying the theory developed in [Wildeshaus 2018a].

Section 2 is devoted to the proof of Theorem 1.6. As in previous cases, our
control of smooth toroidal compactifications of M is sufficiently explicit to verify
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that, as stated in Theorem 1.6(a), the motive i∗ j∗αV is indeed of abelian type. Given
this result, and weight conservativity of the restriction of the `-adic realization R`,
part (b) of Theorem 1.6 may be checked on the image of i∗ j∗αV under R`. Given
that αV realizes to give µ(Vα), the restriction of R`(i∗ j∗αV) to the (Siegel and
Klingen) strata can be computed following a standard pattern, employing Pink’s
and Kostant’s theorems. This computation (Theorem 2.3) is considerably sim-
plified by results of [Lemma 2015]. It remains to glue the information coming
from the strata, in order to get control of the weights on the whole boundary. The
part of Theorem 1.6(b) asserting that weights −k and k+ 1 occur in R`(i∗ j∗αV)
(Proposition 2.9) is the single ingredient requiring a proof longer than any other.

In the final Section 3, we give the necessary ingredients to perform the construc-
tion of the Grothendieck motive associated to a (Siegel) automorphic form with co-
efficients in an irreducible representation with regular highest weight (Definition 3.5).
This is the analogue for Siegel threefolds of the main result from [Scholl 1990]. On
the level of Galois representations, our definition coincides with Weissauer’s [2005,
Theorem I]. We also recover Urban’s result [2005, Théorème 1] on characteristic
polynomials associated to Frobenii (Corollary 3.7).

Conventions. We make use of the triangulated Q-linear categories DMB,c(X)
of constructible Beilinson motives over X [Cisinski and Déglise 2009, Defini-
tion 15.1.1], indexed by schemes X over Spec Q, which are separated and of finite
type. As in [Cisinski and Déglise 2009], the symbol 1X is used to denote the unit for
the tensor product in DMB,c(X). We employ the full formalism of six operations
developed in [loc. cit.]. The reader may choose to consult [Hébert 2011, Section 2]
or [Wildeshaus 2012a, Section 1] for concise presentations of this formalism.

Beilinson motives can be endowed with a canonical weight structure, thanks
to the main results from [Hébert 2011]; see [Bondarko 2010, Proposition 6.5.3]
for the case X = Spec k, for a field k of characteristic zero. We refer to it as
the motivic weight structure. Following [Wildeshaus 2012a, Definition 1.5], the
category CHM(X)Q of Chow motives over X is defined as the heart DMB,c(X)w=0

of the motivic weight structure on DMB,c(X).
A scheme is said to be nilregular if the underlying reduced scheme is regular in

the usual sense.

1. Statement of the main result

In order to state our main result (Theorem 1.6), let us introduce the situation we are
going to consider. The Q-scheme M K is a Siegel threefold, and the Chow motive
αV over M K is associated to a dominant weight α= (k1, k2, r)∈Z3, k1≥ k2≥ 0 (see
below for the precise normalizations). Denote by j the open immersion of M K into
its Satake–(Baily–Borel) compactification (M K )∗, and by i : ∂(M K )∗ ↪→ (M K )∗
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the immersion of the complement of M K in (M K )∗ (with the reduced scheme
structure, say). Recall the following.

Definition 1.1 (cf. [Wildeshaus 2018a, Definition 2.1(a)]). Let CHM(M K )Q,∂w 6=0,1
denote the full subcategory of CHM(M K )Q of objects V such that i∗ j∗V is without
weights 0 and 1.

Theorem 1.6 implies that in our setting, the motive αV ∈CHM(M K )Q belongs to
CHM(M K )Q,∂w 6=0,1 if and only if α is regular: k1> k2> 0. More precisely, putting
k :=min(k1−k2, k2), the motive i∗ j∗αV is without weights −k+1,−k+2, . . . , k.
The proof of Theorem 1.6 is given in Section 2. It is an application of [Wildeshaus
2018a, Theorem 4.4]; in order to verify the hypotheses of the latter, we heavily
rely on results from [Lemma 2015].

Fix a four-dimensional Q-vector space V , together with a Q-valued nondegen-
erate symplectic bilinear form J .

Definition 1.2. The group scheme G over Q is defined as the group of symplectic
similitudes

G := GSp(V, J )⊂ GL(V ).

Thus, G is reductive, and for any Q-algebra R, the group G(R) equals

{g ∈ GL(V ⊗Q R) : ∃λ(g) ∈ R∗, J (g • , g • )= λ(g) · J ( • , • )}.

In particular, the similitude norm λ(g) defines a canonical morphism

λ : G→ Gm,Q .

The group G is split over Q, and its center Z(G) equals Gm,Q ⊂ GL(V ) (inclu-
sion of scalar automorphisms). Maximal Q-split tori, together with an inclusion
into a Borel subgroup of G, are in bijection with symplectic Q-bases of V , in which
J acquires the 4×4-matrix (

0 I2

−I2 0

)
,

also denoted by J . Here as in the sequel, we denote by I2 the 2×2-matrix repre-
senting the identity. Fix one such basis (e1, e2, e3, e4), use it to identify G with the
subgroup GSp4,Q of GL4,Q of matrices g satisfying the relation

tg Jg = λ(g) · J,

the maximal split torus with the subgroup T of diagonal matrices

{diag(a, b, a−1q, b−1q) ∈ GL4,Q},

and the Borel subgroup with the subgroup of matrices stabilizing the flag of totally
isotropic subspaces (e1)Q ⊂ (e1, e2)Q of V . We consider triplets (k1, k2, r) ∈ Z3
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satisfying the congruence relation

r ≡ k1+ k2 mod 2.

To such a triplet, let us associate the (representation-theoretic) weight

α(k1, k2, r) : T → Gm,Q, diag(a, b, a−1q, b−1q) 7→ ak1bk2q−(r+k1+k2)/2.

Note that restriction of α(k1, k2, r) to T ∩ Sp(V, J ) corresponds to the projec-
tion onto (k1, k2). In particular, the weight α(k1, k2, r) is dominant if and only if
k1 ≥ k2 ≥ 0; it is regular if and only if k1 > k2 > 0. Note also that the composition
of α(k1, k2, r) with the cocharacter

Gm,Q→ T, x 7→ diag(x, x, x, x)

equals
Gm,Q→ Gm,Q, x 7→ x−r .

The character λ on T equals α(0, 0,−2), and det= λ2.

Definition 1.3. The analytic space H is defined as the subspace of M2(C) of those
complex 2×2-matrices, which are symmetrical, and whose imaginary part is (pos-
itive or negative) definite:

H := {τ ∈ M2(C) :
tτ = τ and Im(τ ) definite}.

The group of real points G(R) acts on H by analytical automorphisms [Pink
1989, Example 2.7]. In fact, (G,H) are pure Shimura data [Pink 1989, Def-
inition 2.1]. Their reflex field [Pink 1989, Section 11.1] equals Q. Given that
Z(G) = Gm,Q, the Shimura data (G,H) satisfy condition (+) from [Wildeshaus
2007, Section 5].

Let us now fix additional data:

(A) an open compact subgroup K of G(A f ) which is neat [Pink 1989, Section 0.6],

(B) a triplet (k1, k2, r) ∈ Z3 satisfying the congruence

r ≡ k1+ k2 mod 2,

and in addition,
k1 ≥ k2 ≥ 0.

In other words, the character α := α(k1, k2, r) is dominant.

These data are used as follows. The Shimura variety M K
:= M K (G,H) is

smooth over Q. This is the Siegel threefold of level K . According to [Pink 1989,
Theorem 11.16], it admits an interpretation as modular space of abelian surfaces
with additional structures. In particular, there is a universal family B of abelian
surfaces over M K .
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The following result holds in the general context of (smooth) Shimura varieties
of PEL-type.

Theorem 1.4 [Ancona 2015, Théorème 8.6]. There is a Q-linear tensor functor

µ̃ : Rep(G)→ CHMs(M K )Q

from the Tannakian category Rep(G) of algebraic representations of G in finite
dimensional Q-vector spaces to the Q-linear category CHMs(M K )Q of smooth
Chow motives over M K (see [Levine 2009, Definition 5.16]). It has the following
properties.

(a) The composition of µ̃ with the cohomological Hodge theoretic realization is
isomorphic to the canonical construction functor µH (e.g., [Wildeshaus 1997,
Theorem 2.2]) to the category of admissible graded-polarizable variations of
Hodge structure on M K

C
.

(b) The composition of µ̃ with the cohomological `-adic realization is isomorphic
to the canonical construction functor µ` (e.g., [Wildeshaus 1997, Chapter 4])
to the category of lisse `-adic sheaves on M K .

(c) The functor µ̃ commutes with Tate twists.

(d) The functor µ̃ maps the representation V to the dual of the Chow motive π1
∗
1B

over M K .

Here, we denote by πm
∗

1B the m-th Chow-Künneth component of the Chow
motive π∗1B over M K [Deninger and Murre 1991, Theorem 3.1].

Proof. Parts (a), (c) and (d) are identical to [Ancona 2015, Théorème 8.6].
As for part (b), repeat the proof of [loc. cit.], observing that the `-adic analogue

of [Ancona 2015, Proposition 8.5] holds (the base change to Q` of the subgroup
G1 of G coincides with the Lefschetz group). �

Given that the representation on V is faithful, it follows that any object in the
image of µ̃ is isomorphic to a direct sum of direct factors of Tate twists of the Chow
motive πni ,∗1Bni associated to Bni , for suitable ni ∈ N, where πni : B

ni → M K

denotes the ni -fold fibre product of B over M K .

Definition 1.5. (a) Denote by Vα ∈ Rep(G) the irreducible representation of high-
est weight α.

(b) Define αV ∈ CHMs(M K )Q ⊂ CHM(M K )Q as

αV := µ̃(Vα).

Given that Vα is of weight r , the cohomological realizations of αV equal zero
in (classical, i.e., nonperverse) degrees 6= r , and µH(Vα) (in the Hodge theoretic
setting) or µ`(Vα) (in the `-adic setting) in degree r .
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Denote by j : M K ↪→ (M K )∗ the open immersion of M K into its Satake–(Baily–
Borel) compactification, by i : ∂(M K )∗ ↪→ (M K )∗ its complement, and by 8 the
natural stratification of ∂(M K )∗ (the latter will be made explicit in the beginning
of Section 2). Here is our main result.

Theorem 1.6. (a) The motive i∗ j∗αV ∈ DMB,c(∂(M K )∗) is a 8-constructible mo-
tive of abelian type over ∂(M K )∗ (see Definition 2.1).

(b) The motive i∗ j∗αV is without weights

−k+ 1,−k+ 2, . . . , k,

where k := min(k1 − k2, k2). Both weights −k and k + 1 do occur in i∗ j∗αV . In
particular, αV belongs to the subcategory CHM(M K )Q,∂w 6=0,1 of CHM(M K )Q if
and only if α is regular.

Theorem 1.6 should be compared to [Wildeshaus 2012b, Theorem 3.5], [Wilde-
shaus 2015, Theorem 3.8], and [Cloître 2017, Theorem 3.6, Proposition 3.8, Propo-
sition 3.9] (see also [Wildeshaus 2018a, Remark 5.8(b)]), which treat the cases of
Hilbert–Blumenthal varieties, of Picard surfaces, and of Picard varieties of arbitrary
dimension, respectively.

Theorem 1.6 is proved in Section 2. For the rest of the present section, as-
sume that k = min(k1 − k2, k2) ≥ 1, i.e., k1 > k2 > 0. Given that according to
Theorem 1.6(b), the motive αV belongs to CHM(M K )Q,∂w 6=0,1, the intersection
motive of M K relative to (M K )∗ with coefficients in αV is at our disposal: by
[Wildeshaus 2018a, Definition 3.7], it equals

a∗ j!∗ αV ∈ CHM(Q)Q,

where a : (M K )∗ → Spec Q is the structure morphism of (M K )∗. By abuse of
language, let us abbreviate, and refer to a∗ j!∗ αV as the intersection motive with
coefficients in αV . Let us list the main corollaries of Theorem 1.6.

Corollary 1.7. Denote by a and ã the structure morphisms of (M K )∗ and M K ,
respectively, and by m the natural transformation j!→ j∗. Assume k1 > k2 > 0,
i.e., k ≥ 1.

(a) The motive ã!αV ∈ DMB,c(Q) is without weights −k,−k+ 1, . . . ,−1, and the
motive ã∗αV ∈ DMB,c(Q) is without weights 1, 2, . . . , k. More precisely, the exact
triangles

a∗i∗i∗ j!∗ αV[−1] → ã!αV→ a∗ j!∗ αV→ a∗i∗i∗ j!∗ αV
and

a∗ j!∗ αV→ ã∗αV→ a∗i∗i ! j!∗ αV[1] → a∗ j!∗ αV[1]

are weight filtrations (of ã!αV) avoiding weights−k,−k+1, . . . ,−1, and (of ã∗αV)
avoiding weights 1, 2, . . . , k, respectively.



THE INTERSECTION MOTIVE OF CERTAIN SHIMURA VARIETIES 533

(b) The intersection motive a∗ j!∗ αV ∈ CHM(Q)Q behaves functorially with re-
spect to both ã!αV and ã∗αV . In particular, any endomorphism of ã!αV or of ã∗αV
induces an endomorphism of a∗ j!∗ αV .

(c) Let ã!αV→ N → ã∗αV be a factorization of the morphism a∗m : ã!αV→ ã∗αV
through a Chow motive N ∈ CHM(Q)Q. Then the intersection motive a∗ j!∗ αV
is canonically identified with a direct factor of N , with a canonical direct comple-
ment.

Proof. Given Theorem 1.6, parts (a), (b) and (c) follow from [Wildeshaus 2018a,
Theorem 3.4], [Wildeshaus 2018a, Theorem 3.5] and [Wildeshaus 2009, Corol-
lary 2.5], respectively. �

The equivariance statement from Corollary 1.7(b) applies in particular to endo-
morphisms coming from the Hecke algebra H(K ,G(A f )) associated to the neat
open compact subgroup K of G(A f ). Recall that by what was said earlier, the
relative Chow motive αV is a direct factor of a Tate twist of πN ,∗1BN , where
πN : BN

→ M K denotes the N -fold fibre product of the universal abelian scheme
B over M K .

Corollary 1.8. Assume k ≥ 1. Every element of the Hecke algebra H(K ,G(A f ))

acts naturally on the intersection motive a∗ j!∗ αV .

Proof. Let T ∈ H(K ,G(A f )). According to Corollary 1.7(b), it suffices to show
that T acts on ã∗αV . To do so, we refer to [Wildeshaus 2017, pp. 591–592]. �

Corollary 1.9. Assume k ≥ 1, and let B̃N be any smooth compactification of BN .
Then the intersection motive a∗ j!∗ αV is a direct factor of a Tate twist of the Chow
motive b∗1B̃N (b := the structure morphism of the Q-scheme B̃N ).

Proof. The motive αV is a direct factor of a Tate twist of πN ,∗1BN :

αV ↪→ πN ,∗1BN (`)[2`] −→→ αV,

for a suitable integer `. The morphism

a∗m : ã!πN ,∗1BN → ã∗πN ,∗1BN

factors through the Chow motive b∗1B̃N , and hence so does

a∗m : ã!αV→ ã∗αV.
Now apply Corollary 1.7(c). �

Remark 1.10. When r ≥ 0, then according to [Ancona 2017, Lemma 4.13], the
Chow motive αV is a direct factor of πN ,∗1BN (no Tate twist needed). In this
context, let us recall [Wildeshaus 2018a, Corollary 3.10]: the intersection motive
a∗ j!∗ αV is canonically dual to the eα-part of the interior motive of BN , where eα
is the idempotent endomorphism corresponding to the direct factor αV of πN ,∗1BN .
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Corollary 1.11. Assume k ≥ 1, i.e., that α is regular. Then for all n ∈Z, the natural
maps

H n((M K )∗(C), j!∗ µH(Vα))→ H n(M K (C), µH(Vα))

(in the Hodge theoretic setting) and

H n((M K )∗×Q Q, j!∗ µ`(Vα))→ H n(M K
×Q Q, µ`(Vα))

(in the `-adic setting) are injective. Dually,

H n
c (M

K (C), µH(Vα))→ H n((M K )∗(C), j!∗ µH(Vα))

and
H n

c (M
K
×Q Q, µ`(Vα))→ H n((M K )∗×Q Q, j!∗ µ`(Vα))

are surjective. In other words, the natural maps from intersection cohomology to
cohomology with coefficients in µH(Vα) and in µ`(Vα) identify intersection and
interior cohomology, respectively.

Proof. Write αV as a direct factor of πN ,∗1BN (`)[2`], for a suitable integer `.
Given Theorem 1.6, we may quote [Wildeshaus 2018a, Remark 3.13(a), (b)] (for
X = (M K )∗, U = M K , C = BN and e = eα). �

As pointed out in [Wildeshaus 2018a, Remark 3.13(c)], sheaf theoretic consid-
erations alone suffice to show (without any further reference to geometry) that
Theorem 1.6 implies Corollary 1.11.

Corollary 1.11 is already known. Indeed, according to [Mokrane and Tilouine
2002, Proposition 1], the result generalizes to Siegel varieties of arbitrary dimen-
sion. (However, the proof of [loc. cit.] is analytic.)

Remark 1.12. By [Wildeshaus 2009, Theorem 4.14], control of the reduction of
some compactification of BN implies control of certain properties of the `-adic
realization of the intersection motive a∗ j!∗ αV . According to [Faltings and Chai
1990, Theorem VI.1.1], there exists a smooth compactification of BN having good
reduction at each prime number p not dividing the level n of K .

Theorem 4.14 of [Wildeshaus 2009] then yields the following:

(a) for all prime numbers p not dividing n, the p-adic realization of a∗ j!∗ αV is
crystalline;

(b) if furthermore p and ` are different, then the `-adic realization of a∗ j!∗ αV is
unramified at p.

Corollary 1.13. Assume k ≥ 1. Let p be a prime number not dividing the level of K .
Let ` be different from p. Then the characteristic polynomials of the following
coincide:
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(1) the action of Frobenius φ on the φ-filtered module associated to the (crys-
talline) p-adic realization of the intersection motive a∗ j!∗ αV ,

(2) the action of a geometrical Frobenius automorphism at p on the (unramified)
`-adic realization of a∗ j!∗ αV .

Proof. Fix a smooth compactification B̃N of BN with good reduction at p [Faltings
and Chai 1990, Theorem VI.1.1]. Thus the Qp-scheme B̃N ×Q Qp is the generic
fibre of a smooth and proper scheme B̃N over Zp. Let us denote by B̃N

Fp
its special

fibre.
The φ-filtered module associated to p-adic étale cohomology of B̃N ×Q Q is first

isomorphic to Hyodo–Kato cohomology H
•

HK(B̃N ×Q Qp) [Beilinson 2013, Sec-
tion 3.2], and this isomorphism can be chosen to be motivic in the sense that it
commutes with the action of correspondences in B̃N ×Q B̃N [Déglise and Nizioł
2018, Section 4.15]. By definition, Hyodo–Kato cohomology is log-crystalline
cohomology of a log-smooth model; in our case, given good reduction, such a
model is given by B̃N (with divisor equal to zero). In other words, Hyodo–Kato
cohomology equals crystalline cohomology of B̃N . This identification commutes
with the action of correspondences in B̃N ×Zp B̃N . Finally, crystalline cohomology
of B̃N equals crystalline cohomology of B̃N

Fp
.

Altogether, the φ-filtered module associated to p-adic étale cohomology of
B̃N ×Q Q is identified with crystalline cohomology of B̃N

Fp
in a way compatible

with the action of correspondences in B̃N ×Zp B̃N . Concretely, this means that
given a correspondence e in B̃N ×Zp B̃N , the action of its generic fibre eQp on
p-adic étale cohomology is identified with the action of its special fibre eFp on
crystalline cohomology.

For ` 6= p, smooth and proper base change allows us to identify `-adic coho-
mology of B̃N ×Q Q and `-adic cohomology of B̃N

Fp
×Fp Fp, again compatibly with

correspondences.
According to Corollary 1.9, there is an idempotent endomorphism eQ of the

Chow motive associated to B̃N , or in other words, an idempotent correspondence
in B̃N ×Q B̃N , whose images in the endomorphism rings of the realizations are
projections onto the realizations of a∗ j!∗ αV . We claim that eQp := eQ ×Q Qp

can be extended idempotently to B̃N ×Zp B̃N . Indeed, according to [O’Sullivan
2011, Proposition 5.1.1], the restriction morphism from the endomorphism ring
of the Chow motive associated to B̃N to that of the Chow motive associated to
B̃N is epimorphic, with nilpotent kernel. We now follow a standard line of argu-
ment (cf. [Kimura 2005, proof of Corollary 7.8]): let e be any extension of eQp to
B̃N ×Zp B̃N . The difference e− e2 is nilpotent, say

(e− e2)N
= 0.
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But then,
eZp := (idB̃N − (idB̃N − e)N )N

equally extends eQp to B̃N ×Zp B̃N , and eZp is idempotent.
Altogether, there is a smooth and proper scheme B̃N

Fp
over Fp, and an idempo-

tent endomorphism eFp of the Chow motive associated to B̃N
Fp

, whose images in
the endomorphism rings of crystalline and `-adic cohomology, respectively, are
projections onto the realizations of a∗ j!∗ αV . The claim thus follows from [Katz
and Messing 1974, Theorem 2(2)]. �

2. Proof of the main result

We keep the notation of the preceding section. In order to prove Theorem 1.6, the
idea is to apply the criterion from [Wildeshaus 2018a, Corollary 4.6].

In order to check the hypotheses of [loc. cit.], we first need to fix a finite strati-
fication 8 of ∂(M K )∗ by locally closed subschemes. The canonical choice would
be the restriction 8′ to ∂(M K )∗ of the natural (finite) stratification of (M K )∗ from
[Pink 1989, Main Theorem 12.3(c)] — in other words, all the strata of (M K )∗ ex-
cept the open one, i.e., except M K . According to [Wildeshaus 2017, Lemma 8.2(a)],
8′ is good, meaning that the closure of every stratum is a union of strata. Fur-
thermore, by [Wildeshaus 2017, Lemma 8.2(b)], all strata, denoted ig(Mπ1(K1)),
are smooth over Q (recall that K is assumed neat, and that (G,H) satisfies con-
dition (+)), hence regular. The same is therefore true for the following coarser
stratification 8 = {0, 1} of ∂(M K )∗: denote by i0 : Z0 ↪→ ∂(M K )∗ the disjoint
union of all closed strata of 8′, and by i1 : Z1 ↪→ ∂(M K )∗ the disjoint union
of all strata of 8′, which are open in ∂(M K )∗. Indeed, according to [Pink 1989,
Section 6.3, Example 4.25 (with g = 2)],

∂(M K )∗ = Z0q Z1;

more precisely, Z0 is of dimension zero, and Z1 of dimension one (hence so is
the whole of ∂(M K )∗). Let us refer to Z0 as the Siegel stratum, and to Z1 as the
Klingen stratum of ∂(M K )∗. When it is necessary to insist on the structure of
stratified scheme of ∂(M K )∗, we write ∂(M K )∗(8) instead of ∂(M K )∗.

Definition 2.1 [Wildeshaus 2018b, Definitions 3.4 and 3.5]. (a) Let S(S)=
∐
σ∈S Sσ

be a good stratification of a scheme S(S). A morphism π : S(S)→ ∂(M K )∗(8)

is said to be a morphism of good stratifications if the preimage of any of the strata
Z0, Z1 of ∂(M K )∗ is a union of strata Sσ .

(b) A morphism π : S(S)→ ∂(M K )∗(8) of good stratifications is said to be of
abelian type if it is proper, and if the following conditions are satisfied.
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(1) All strata Sσ , σ ∈S, are nilregular, and for any immersion iτ : Sτ ↪→ Sσ of a
stratum Sτ into the closure Sσ of a stratum Sσ , the functor i !τ maps 1Sσ to a
Tate motive over Sτ [Levine 2010, Section 3.3].

(2) For all σ ∈S such that Sσ is a stratum of π−1(Zm), m ∈ {0, 1}, the morphism
πσ : Sσ → Zm can be factorized,

πσ = π
′

σ ◦π
′′

σ : Sσ
π ′′σ
−→ Bσ

π ′σ
−→ Zm,

such that the motive

π ′′σ,∗1Sσ ∈ DMB,c(Bσ )F

belongs to the category DMT(Bσ )F of Tate motives over Bσ , the morphism
π ′σ is proper and smooth, and its pull-back to any geometric point of Zm lying
over a generic point is isomorphic to a finite disjoint union of abelian varieties.

(c) An object V ∈DMB,c(∂(M K )∗) is a8-constructible motive of abelian type over
∂(M K )∗ if the following holds: the motive V belongs to the strict, full, dense, Q-
linear triangulated subcategory DM Ab

B,c,8(∂(M
K )∗) generated by the images under

π∗ of S-constructible Tate motives over S(S) [Wildeshaus 2018b, Definition 3.3],
where

π : S(S)→ ∂(M K )∗(8)

runs through the morphisms of abelian type with target equal to ∂(M K )∗(8).

Theorem 2.2. Let α = α(k1, k2, r), with (k1, k2, r) ∈ Z3 such that

r ≡ k1+ k2 mod 2 and k1 ≥ k2 ≥ 0,

and consider αV = µ̃(Vα) ∈ CHM(M K )Q. The motive i∗ j∗αV belongs to the full
subcategory DM Ab

B,c,8(∂(M
K )∗) of DMB,c(∂(M K )∗). In other words, it is a 8-

constructible motive of abelian type over ∂(M K )∗.

Proof. As recalled earlier, the relative Chow motive αV belongs to the strict, full,
dense, Q-linear triangulated subcategory

πN ,∗DMT(BN )
\

Q

of DMB,c(M K ) generated by the images under πN ,∗ of the category of Tate motives
over BN . Here as before, πN : BN

→ M K denotes the N -fold fibre product of the
universal abelian scheme B over M K .

The latter equals the projection from a mixed Shimura variety: indeed [Pink
1989, Example 2.7], the representation V of G is of Hodge type {(−1, 0), (0,−1)}.
The same is then true for the r -th power V N of V . By [Pink 1989, Proposition 2.17],
this allows for the construction of the unipotent extension (P N ,XN ) of (G,H)
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by V N . The pair (P N ,XN ) constitute mixed Shimura data [Pink 1989, Defini-
tion 2.1]. By construction, they come endowed with a morphism of Shimura data
πN : (P N ,XN )→ (G,H), identifying (G,H) with the pure Shimura data underly-
ing (P N ,XN ). In particular, (P N ,XN ) also satisfies condition (+). Now by [Pink
1989, Theorem 11.18] there is an open compact neat subgroup KN of P N (A f ),
whose image under πN equals K , such that BN is identified with the mixed Shimura
variety M KN := M KN (P N ,XN ), and such that the morphism M KN → M K induced
by the morphism πN of Shimura data is identified with the structure morphism
of BN .

Choose a smooth toroidal compactification MKN(S):=MKN(P N,XN,S) of MKN,
associated to a KN -admissible complete cone decomposition S [Pink 1989, Sec-
tion 6.4]. Then by [Pink 1989, proof of Theorem 9.21], modulo a suitable re-
finement of S, the natural stratification of M KN (S), also denoted S, satisfies
the conclusions of [Wildeshaus 2017, Lemma 8.1], i.e., it is good, and the clo-
sures of all strata are regular. Note that the unique open stratum equals M KN .
According to [Pink 1989, Section 6.24, Main Theorem 12.4(b)], the morphism
πN :BN

=MKN→MK extends to a proper, surjective morphism MKN (S)→(MK )∗,
still denoted πN . From the description given in [Pink 1989, Section 7.3], one sees
that πN is a morphism of stratifications.

According to [Wildeshaus 2017, Corollary 4.10(b), Remark 4.7], the category

πN ,∗DMTS

(
M KN (S)

)\
Q

is obtained by gluing πN ,∗DMT(BN )
\

Q
and πN ,∗DMTS

(
π−1

N (∂(M K )∗)
)\

Q
. In par-

ticular,
i∗ j∗αV ∈ πN ,∗DMTS

(
π−1

N (∂(M K )∗)
)\

Q
.

But πN is of abelian type [Wildeshaus 2017, Lemma 8.4]; therefore,

πN ,∗DMTS

(
π−1

N (∂(M K )∗)
)\

Q
⊂ DM Ab

B,c,8(∂(M
K )∗) . �

Next, we collect information on the restriction of i∗ j∗R`,M K (αV) to the strata
Z0 and Z1. The following is essentially due to Lemma [2015, Section 4].

Theorem 2.3. Let ` be a prime number.

(a) For all integers n ≤ r + 2, the perverse cohomology sheaf

H ni∗0 i∗ j∗R`,M K (αV)

on Z0 is of weights ≤ n− (k1− k2). The perverse cohomology sheaf

H r+2i∗0 i∗ j∗R`,M K (αV)

is nonzero, and pure of weight (r + 2)− (k1− k2).
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(b) For all integers n ≤ r + 2, the perverse cohomology sheaf

H ni∗1 i∗ j∗R`,M K (αV)

on Z1 is of weights ≤ n− k2. The perverse cohomology sheaf

H r+2i∗1 i∗ j∗R`,M K (αV)

is nonzero, and pure of weight (r + 2)− k2.

The proof of Theorem 2.3 is given after Remark 2.6. In order to prepare it,
recall from [Pink 1989, Example 4.25] that Z0 and Z1 correspond bijectively to
the G(Q)-conjugacy classes of proper rational boundary components [Pink 1989,
Section 4.11] of (G,H). Indeed, the group G(Q) acts transitively on the set of
totally isotropic subspaces of V of a given, strictly positive dimension.

We already fixed a basis (e1, e2, e3, e4) of V , in which our symplectic bilinear
form J acquires the 4×4-matrix (

0 I2

−I2 0

)
,

which we equally denoted by J . The subspaces V ′0 and V ′1 generated by {e1, e2}

and {e1}, respectively, are both totally isotropic.
Following [Pink 1989, Example 4.25], we put Qm := StabG(V ′m), m = 0, 1. Let

Pm denote the normal subgroup of Qm underlying the rational boundary component
(Pm,Xm) giving rise to Zm [Pink 1989, Section 4.7], and Wm its unipotent radical
(which equals the unipotent radical of Qm). Then, still according to [Pink 1989,
Example 4.25],

Q0 =

{(
q · A A ·M

0 tA−1

)
: q ∈ Gm,Q, A ∈ GL2,Q,

tM = M
}
,

P0 =

{(
q · I2 M

0 I2

)
: q ∈ Gm,Q,

tM = M
}
,

W0 =

{(
I2 M
0 I2

)
:

tM = M
}
,

while

Q1 =




a aq−1(bu+dw) v aq−1(cu+ew)
0 b w c
0 0 a−1q 0
0 d −u e

 : a, be−cd = q ∈ Gm,Q

 ,
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P1 =




be− cd bu+ dw v cu+ ew
0 b w c
0 0 1 0
0 d −u e

 : be−cd ∈ Gm,Q

 ,

W1 =




1 u v w

0 1 w 0
0 0 1 0
0 0 −u 1


 .

Observe that Q0 ∩ Q1 equals the Borel subgroup of G stabilizing the flag V ′1 ⊂ V ′0,
and that both Q0 and Q1 contain the fixed maximal split torus

T = {diag(a, b, a−1q, b−1q) : a, b, q ∈ Gm,Q}.

In particular, T is canonically identified with a maximal Q-split torus of the re-
ductive group Qm/Wm , for m = 0, 1. Given a (representation-theoretic) weight
α : T → Gm,Q, let us denote by αm the same application, but with T seen as a
subgroup of Qm/Wm , m = 0, 1.

Note that
R`,M K (αV)= µ`(Vα)[−r ].

Recall that we denote by 8′ the natural (finite) stratification of (M K )∗ from [Pink
1989, Main Theorem 12.3(c)], which is finer than 8. In order to determine the
classical cohomology objects Rni∗mi∗ j∗µ`(Vα), for m = 0, 1, and n ∈Z, one applies
the following standard strategy.

(1) By Pink’s theorem [1992, Theorem (5.3.1)], the restriction of Rni∗mi∗ j∗µ`(Vα)
to any individual stratum Z ′ of 8′ contributing to Zm equals

Rni∗mi∗ j∗µ`(Vα)|Z ′ =
⊕

p+q=n

µ`,Z ′
(
H p(HC/KW , Hq(Lie(Wm), Vα))

)
.

Here, HC/KW is an arithmetic subgroup (depending on Z ′) of Cm/Wm [Pink 1992,
Section (5.2)], where Cm is the identity component of the Zariski closure of the
centralizer in Qm(Q) of the rational boundary component (Pm,Xm) [Pink 1992,
Section (3.7)], and µ`,Z ′ is the canonical construction functor to the category of
lisse `-adic sheaves on Z ′.

(2) Apply Kostant’s theorem [Vogan 1981, Theorem 3.2.3], in order to identify
Hq(Lie(Wm), Vα) as a representation of the reductive group Qm/Wm ; this allows
us in particular to obtain its weights, and gives potential information concerning
cohomology of HC/KW with coefficients in Hq(Lie(Wm), Vα).

The Hodge theoretic analogue of the above strategy yields the cohomology
objects of i∗mi∗ j∗µH(Vα)|Z ′ ; this was made explicit in [Lemma 2015, Section 4].
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Since steps (2) of the `-adic and the Hodge theoretic strategies are identical, we
may use the computations from [loc. cit.] in our setting.

Proposition 2.4 [Lemma 2015, Section 4.3]. Let α=α(k1,k2,r)with (k1,k2,r)∈Z3

such that
r ≡ k1+ k2 mod 2 and k1 ≥ k2 ≥ 0.

(a) For m = 0, 1, we have

Hq(Lie(Wm), Vα)= 0

whenever q<0 or q>3. If 0≤q≤3, the Qm/Wm-representation Hq(Lie(W1), Vα)
is (nonzero and) irreducible.

(b) The highest (representation-theoretic) weight of Hq(Lie(W0), Vα), 0≤ q ≤ 3,
is

α0(k1, k2, r) for q = 0,

α0(k1,−k2− 2, r) for q = 1,

α0(k2− 1,−k1− 3, r) for q = 2,

α0(−k2− 3,−k1− 3, r) for q = 3.

(c) The highest (representation-theoretic) weight of Hq(Lie(W1), Vα), 0≤ q ≤ 3,
is

α1(k1, k2, r) for q = 0,

α1(k2− 1, k1+ 1, r) for q = 1,

α1(−k2− 3, k1+ 1, r) for q = 2,

α1(−k1− 4, k2, r) for q = 3.

Proof. Note that given our normalization, we have

α(k1, k2, r)= λ(k1, k2,−r)

in the notation of [Lemma 2015, top of p. 87].
Part (a) follows from Kostant’s theorem, and from the following fact (see [Lemma

2015, proofs of Lemmas 4.8 and 4.10]), valid for both m = 0 and m = 1: the set of
Weyl representatives for Qm contains no element of length < 0 or > 3, and exactly
one element of respective lengths 0, 1, 2 and 3.

As for part (c), we refer to [Lemma 2015, proof of Lemma 4.10].
[Lemma 2015, proof of Lemma 4.8] contains the complete setting for the appli-

cation of Kostant’s theorem for m=0, but makes it explicit only for H 2(Lie(W0),Vα)
and H 3(Lie(W0), Vα). The reader will have no difficulty filling in the missing
information needed for part (b). �

Note that both Q0/W0 and Q1/W1 are isomorphic to Gm,Q×Q GL2,Q. More
precisely,
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Q0/W0 = P0/W0×Q GL2,Q = Gm,Q×Q GL2,Q,

the identification given by sending the class of a matrix(
q · A A ·M

0 tA−1

)
to the pair (q, A), and

Q1/W1 = P1/W1×Q Gm,Q = GL2,Q×Q Gm,Q,

the identification given by sending the class of a matrix
a aq−1(bu+ dw) v aq−1(cu+ ew)
0 b w c
0 0 a−1q 0
0 d −u e


to the pair ((

b c
d e

)
, aq−1

)
.

The restriction of the inverse identification to maximal split tori sends(
q,
(

x 0
0 x−1 y

))
∈ P0/W0×Q GL2,Q

to
diag(qx, qx−1 y, x−1, xy−1) ∈ T ⊂ Q0/W0

for m = 0, and ((
x 0
0 x−1q

)
, y
)
∈ P1/W1×Q Gm,Q

to
diag(yq, x, y−1, x−1q) ∈ T ⊂ Q1/W1

for m = 1.
In the following, the reader should be particularly careful not to confuse two

notions of weight associated to representations of reductive groups: the highest
weights in the sense of representation theory (e.g., those occurring in Kostant’s
theorem), when the representation is irreducible, and the weights as determined
by the action of the weight cocharacter [Pink 1989, Section 1.3], when the group
underlies Shimura data.

Corollary 2.5. (a) The Q0/W0-representations Hq(Lie(W0), Vα), 0 ≤ q ≤ 2,
are (irreducible and) regular, except when q = 0 and k1 = k2, in which case
H 0(Lie(W0), Vα) factors through the quotient Gm,Q×Q Gm,Q of the group

Q0/W0 = Gm,Q×Q GL2,Q
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via the determinant on the factor GL2,Q. The restriction to SL2,Q ⊂ GL2,Q of
H 1(Lie(W0), Vα) is of highest (representation-theoretic) weight k1+ k2+ 2. The
restriction to P0/W0 of H 0(Lie(W0), Vα) is of weight (r + 1)− (k1+ k2)− 1, and
the restriction of H 1(Lie(W0), Vα) is of weight (r + 2)− (k1− k2).

(b) The restriction to P1/W1 of H 0(Lie(W1), Vα) is of weight (r +1)− k1−1, and
the restriction of H 1(Lie(W1), Vα) is of weight (r + 2)− k2− 1.

Proof. (a): Given the above identifications, the weight α0(n1, n2, r) on T maps(
q,
(

x 0
0 x−1 y

))
∈ P0/W0×Q GL2,Q

to

α0(n1, n2, r)(diag(qx, qx−1 y, x−1, xy−1))= xn1−n2 yn2q−(r−n1−n2)/2.

In particular, the restriction of α0(n1, n2, r) to T ∩SL2,Q corresponds to the integer
n1− n2. The first and the second claim thus follow from Proposition 2.4(b).

The weight cocharacter Gm,Q→ P0/W0=Gm,Q maps z to z2 [Pink 1989, Exam-
ples 4.25 and 2.8]. Its composition with the inclusion into T , and with α0(n1, n2, r)
yields

Gm,Q→ Gm,Q, z 7→ z−r+n1+n2 .

The third claim thus follows from Proposition 2.4(b), and from the normalization
of weights of representations [Pink 1989, Section 1.3].

(b): The weight cocharacter Gm,Q→ P1/W1 = GL2,Q maps z to(
z 0
0 z

)
[Pink 1989, Examples 4.25 and 2.8]. Given the above identifications, its composi-
tion with the inclusion into T maps z to diag(z2, z, 1, z). Further composition with
α1(n1, n2, r) then yields

Gm,Q→ Gm,Q, z 7→ z−r+n1 .

The claim thus follows from Proposition 2.4(c). �

To complete the ingredients needed for the computation of the Rni∗mi∗ j∗µ`(Vα)
according to the strategy (1), (2) sketched earlier in this section, observe that the
group HC/KW associated to an individual stratum Z ′ of 8′ contributing to Zm is a
neat arithmetic subgroup of GL2(Q) for m = 0 [Lemma 2015, proof of Lemma 4.8],
and hence of SL2(Q). In particular, it is of cohomological dimension one. For
m = 1, the group HC/KW , being a neat arithmetic subgroup of Gm(Q), is trivial
[Lemma 2015, proof of Lemma 4.10].
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Remark 2.6. When m = 0, let V2 denote the standard representation of SL2,Q, and
u ∈ N. Then Symu V2 ∈ Rep(SL2,Q); in fact, Symu V2 is the irreducible represen-
tation of highest (representation-theoretic) weight u. Denote by g the genus of the
quotient of the upper half space by HC/KW , and by c ≥ 1 the number of its cusps.
(Thus, c ≥ 3 if g = 0 since HC/KW is neat.) Then H 1(HC/KW ,Symu V2) is of
dimension (u+ 1)(2g− 2+ c) if u ≥ 1, and of dimension 2g− 1+ c if u = 0. In
particular,

H 1(HC/KW ,Symu V2) 6= 0 for all u ∈ N.

Proof of Theorem 2.3. (a): According to Corollary 2.5(a) and Proposition 2.4(a),

(o) 0 6= H 0(Lie(W0), Vα) is of weight (r + 1)− (k1+ k2)− 1,

(i) 0 6= H 1(Lie(W0), Vα) is of weight (r + 2)− (k1− k2),

and Hq(Lie(W0), Vα) = 0 whenever q < 0. The group HC/KW associated to a
stratum Z ′ of Z0 is a neat arithmetic subgroup of SL2(Q). It is therefore of coho-
mological dimension one, and admits no nonzero invariants on regular irreducible
representations of Q0/W0 = Gm,Q×Q GL2,Q.

By Proposition 2.4(a) and Corollary 2.5(a), Hq(Lie(W0), Vα), 0 ≤ q ≤ 2, are
irreducible as representations of Q0/W0; it is regular unless q = 0 and k1 = k2,
in which case SL2,Q, so HC/KW acts trivially. Pink’s theorem and [Pink 1992,
Proposition (5.5.4)] then tell us that

(o) R0i∗0 i∗ j∗µ`(Vα) is nonzero if and only if k1 = k2, in which case it is of weight
r − (k1+ k2),

(i) 0 6= R1i∗0 i∗ j∗µ`(Vα) is of weight (r + 1)− (k1+ k2)− 1,

(ii) 0 6= R2i∗0 i∗ j∗µ`(Vα) is of weight (r + 2)− (k1− k2),

and that Rni∗0 i∗ j∗µ`(Vα)= 0 whenever n < 0 (for the nonvanishing statements in
(i), (ii), see Remark 2.6).

The scheme Z0 is of dimension zero; therefore,

H ni∗0 i∗ j∗R`,M K (αV)= H n−r i∗0 i∗ j∗µ`(Vα)= Rn−r i∗0 i∗ j∗µ`(Vα).

From (o), (i), (ii) and the vanishing of Rni∗0 i∗ j∗µ`(Vα)= 0 for n < 0, we conclude
that

(r) H r i∗0 i∗ j∗R`,M K (αV) is zero if k1 > k2, and nonzero of weight r − (k1+ k2)

if k1 = k2,

(r+1) 0 6= H r+1i∗0 i∗ j∗R`,M K (αV) is of weight (r + 1)− (k1+ k2)− 1,

(r+2) 0 6= H r+2i∗0 i∗ j∗R`,M K (αV) is of weight (r + 2)− (k1− k2),

and that H ni∗0 i∗ j∗R`,M K (αV)= 0 whenever n ≤ r − 1.

(b): According to Corollary 2.5(b) and Proposition 2.4(a),
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(o) 0 6= H 0(Lie(W1), Vα) is of weight (r + 1)− k1− 1,

(i) 0 6= H 1(Lie(W1), Vα) is of weight (r + 2)− k2− 1,

and Hq(Lie(W1), Vα) = 0 whenever q < 0. The group HC/KW associated to a
stratum Z ′ of Z1 is trivial. Pink’s theorem and [Pink 1992, Lemma (5.6.6)] then
tell us that

(o) 0 6= R0i∗1 i∗ j∗µ`(Vα) is of weight (r + 1)− k1− 1,

(i) 0 6= R1i∗1 i∗ j∗µ`(Vα) is of weight (r + 2)− k2− 1,

and that Rni∗1 i∗ j∗µ`(Vα)= 0 whenever n < 0. Furthermore, Pink’s theorem tells
us that all classical cohomology objects Rni∗1 i∗ j∗µ`(Vα), n ∈ Z, are lisse. The
formula

H ni∗1 i∗ j∗R`,M K (αV)= H n−r i∗1 i∗ j∗µ`(Vα)= (Rn−r−1i∗1 i∗ j∗µ`(Vα))[1]

is valid: the first equation comes from

R`,M K (αV)= µ`(Vα)[−r ].

As for the second, note that any lisse `-adic sheaf F on a one-dimensional regular
scheme is a perverse sheaf F ′ up to a shift by −1:

F = F ′[−1] and F ′ = F[1].

From (o), (i) and the vanishing of Rni∗1 i∗ j∗µ`(Vα)= 0 for n < 0, we conclude that

(r+1) 0 6= H r+1i∗1 i∗ j∗R`,M K (αV) is of weight (r + 1)− k1,

(r+2) 0 6= H r+2i∗1 i∗ j∗R`,M K (αV) is of weight (r + 2)− k2,

and that H ni∗1 i∗ j∗R`,M K (αV)= 0 whenever n ≤ r . �

For the final step of the proof of Theorem 1.6, the following commutative dia-
gram of immersions will be useful:

Z1G g

i ′

tt

N n

i1

◦

~~

(M K )∗− Z0
_�

j ′′◦
��

M K
' �

j ′

◦

55

� �

j

◦
// (M K )∗ ∂(M K )∗? _

i
oo

Z0
?�

i ′′

OO

. �

i0

>>



546 JÖRG WILDESHAUS

Immersions situated on the same line are complementary to each other (example:
j ′′ and i ′′), the four immersions marked by “◦” are open (example: i1), and the
other four are closed (example: i ′).

Remark 2.7. Denote by τ t≤•
Zm

and τ t≥•
Zm

the truncation functors with respect to the
perverse t-structure on Zm , m = 0, 1.

(a) The immersions j ′ and i ′ being complementary,

(i ′)∗ j ′
!∗
F ′ = τ t≤−1

Z1
(i ′)∗ j ′

∗
F ′

for any perverse sheaf F ′ on M K [Beilinson et al. 1982, Proposition 1.4.23].

(b) The intermediate extension is transitive, i.e.,

j!∗ = j ′′
!∗

j ′
!∗

[Beilinson et al. 1982, Corollaire 1.4.24]. Application of the functor (i ′′)∗ j ′′
∗

to the
exact triangle

i ′
∗
τ

t≥0
Z1
(i ′)∗ j ′

∗
[−1] → j ′

!∗
→ j ′

∗
→ i ′

∗
τ

t≥0
Z1
(i ′)∗ j ′

∗

of functors on perverse sheaves on M K (see (a)) yields the exact triangle

i∗0 i1,∗τ
t≥0
Z1
(i ′)∗ j ′

∗
[−1] → (i ′′)∗ j ′′

∗
j ′
!∗
→ i∗0 i∗ j∗→ i∗0 i1,∗τ

t≥0
Z1
(i ′)∗ j ′

∗
.

The immersions j ′′ and i ′′ being complementary, we have as in (a)

(i ′′)∗ j ′′
!∗
F ′′ = τ t≤−1

Z0
(i ′′)∗ j ′′

∗
F ′′

for any perverse sheaf F ′′ on (M K )∗− Z0. It follows that for any perverse sheaf
F ′ on M K , there are exact sequences of perverse cohomology objects

H n−1(i∗0 i1,∗τ
t≥0
Z1

i∗1 i∗ j∗F ′
)
→ H n(i∗0 i∗ j!∗ F ′)

→ H n(i∗0 i∗ j∗F ′)→ H n(i∗0 i1,∗τ
t≥0
Z1

i∗1 i∗ j∗F ′
)

for n ≤−1, while H n(i∗0 i∗ j!∗ F ′)= 0 for all n ≥ 0.

(c) Recall that R`,M K (αV)=µ`(Vα)[−r ]; the variety M K being of dimension three,
the complex R`,M K (αV) is therefore concentrated in perverse degree r+3. Accord-
ing to our conventions, i∗1 i∗ j!∗ R`,M K (αV)= (i ′)∗ j ′

!∗
R`,M K (αV) thus equals(

(i ′)∗ j ′
!∗
(R`,M K (αV)[r + 3])

)
[−(r + 3)].

According to (a), we thus have

i∗1 i∗ j!∗ R`,M K (αV)= τ t≤r+2
Z1

(i ′)∗ j ′
∗

R`,M K (αV)= τ t≤r+2
Z1

i∗1 i∗ j∗R`,M K (αV).

Similarly, following (b),

H ni∗0 i∗ j!∗ R`,M K (αV)= 0
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for all n ≥ r + 3, and there are exact sequences

H n−1i∗0 i1,∗τ
t≥r+3
Z1

i∗1 i∗ j∗R`,M K (αV)→ H ni∗0 i∗ j!∗ R`,M K (αV)

→ H ni∗0 i∗ j∗R`,M K (αV)→ H ni∗0 i1,∗τ
t≥r+3
Z1

i∗1 i∗ j∗R`,M K (αV)
for n ≤ r + 2.

(d) We claim that

H ni∗0 i1,∗τ
t≥r+3
Z1

i∗1 i∗ j∗R`,M K (αV)= 0

for all n ≤ r + 1. Equivalently,

H ni∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)= 0

for all n ≤ 1. Indeed, by Pink’s theorem, the classical cohomology objects of
i∗1 i∗ j∗µ`(Vα) are all lisse. Applying τ t≥3

Z1
, we thus get a complex concentrated in

classical degrees ≥ 2 (recall that Z1 is of dimension one). The same is thus true
after application of i∗0 i1,∗ (recall that inverse images are t-exact for the classical
t-structure). In other words, the complex

i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)

has trivial cohomology (classical or perverse; recall that Z0 is of dimension zero)
in degrees ≤ 1.

(e) From (c) and (d), we deduce that

H ni∗0 i∗ j!∗ R`,M K (αV) ∼−→ H ni∗0 i∗ j∗R`,M K (αV)

for n ≤ r + 1, and that H r+2i∗0 i∗ j!∗ R`,M K (αV) equals the kernel of

H r+2i∗0 i∗ j∗R`,M K (αV)→ H r+2i∗0 i1,∗τ
t≥r+3
Z1

i∗1 i∗ j∗R`,M K (αV).

Corollary 2.8. Let ` be a prime number.

(a) For all n ∈ Z,
H ni∗0 i∗ j!∗ R`,M K (αV)

is of weights ≤ n− (k1− k2).

(b) For all n ∈ Z,
H ni∗1 i∗ j!∗ R`,M K (αV)

is of weights ≤ n− k2. The perverse cohomology sheaf

H r+2i∗1 i∗ j!∗ R`,M K (αV)

is nonzero, and pure of weight (r + 2)− k2.

Proof. Part (a) follows from Remark 2.7(c), (e), and from Theorem 2.3(a). Part (b)
follows from Remark 2.7(c), and from Theorem 2.3(b). �
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Corollary 2.8 suffices to prove the part of Theorem 1.6(b) asserting that regular-
ity of α is sufficient for weights 0 and 1 to be avoided by i∗ j∗αV . In order to prove
that it is necessary, we need the following statement.

Proposition 2.9. Let ` be a prime number. Then provided that k1 ≥ 1, the perverse
cohomology sheaf

H r+2i∗0 i∗ j!∗ R`,M K (αV)

is nonzero, and pure of weight (r + 2)− (k1− k2).

Proof. According to Remark 2.7(e),

H r+2i∗0 i∗ j!∗ R`,M K (αV)

equals the kernel of

ad : H r+2i∗0 i∗ j∗R`,M K (αV)→ H r+2i∗0 i1,∗τ
t≥r+3
Z1

i∗1 i∗ j∗R`,M K (αV)

— in particular, it is pure of weight (r + 2)− (k1− k2) (Theorem 2.3(a)) — i.e., it
equals the kernel of

H 2i∗0 i∗ j∗µ`(Vα)→ H 2i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα).

Thanks to Pink’s theorem, the regularity of H 2(Lie(W0), Vα) as a representation of
Q0/W0 (Corollary 2.5(a)), and the fact that the group HC/KW is of cohomological
dimension one, locally on Z0, the (perverse or classical) sheaf

H 2i∗0 i∗ j∗µ`(Vα)= R2i∗0 i∗ j∗µ`(Vα)

equals
µ`,Z ′

(
H 1(HC/KW , H 1(Lie(W0), Vα))

)
,

for a stratum Z ′ of 8′ contributing to Z0. Furthermore, by Corollary 2.5(a), the
restriction of H 1(Lie(W0), Vα) to HC/KW is isomorphic to the (k1+k2+2)-nd sym-
metric power of the standard representation of SL2,Q. Therefore, by Remark 2.6,
H 2i∗0 i∗ j∗µ`(Vα)|Z ′ is of constant rank (k1+ k2+ 3)(2g− 2+ c), where g denotes
the genus of HC/KW , and c the number of cusps.

We claim that the restriction to the same Z ′ of

H 2i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)

is of constant rank c. Indeed, according to Remark 2.7(d), the classical cohomology
objects of i∗1 i∗ j∗µ`(Vα) are all lisse. Therefore, perverse truncation above degree
three equals classical truncation above degree two (recall that Z1 is of dimension
one). The complex

i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)



THE INTERSECTION MOTIVE OF CERTAIN SHIMURA VARIETIES 549

is concentrated in degrees ≥ 2, and we get

H 2i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)= R0i∗0 i1,∗R2i∗1 i∗ j∗µ`(Vα).

Restriction to Z ′ yields

H 2i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)|Z ′ =
⊕

Z ′′
(R0i∗0 i1,∗(R2i∗1 i∗ j∗µ`(Vα)|Z ′′))|Z ′ ,

where the direct sum is indexed by all strata Z ′′ contributing to Z1, and containing
Z ′ in their closure. For every such Z ′′,

R2i∗1 i∗ j∗µ`(Vα)|Z ′′ = µ`,Z ′′(H 2(Lie(W1), Vα))

according to Pink’s theorem (since the group HC/KW (for m = 1!) is trivial).
Denote by j1 : Z1 ↪→ Z∗1 the Baily–Borel compactification, and by i01 :∂Z∗1 ↪→ Z∗1

its complement. The immersion i1 : Z1 ↪→ (M K )∗ admits a natural extension
ī1 : Z∗1 → (M K )∗ [Pink 1989, Main Theorem 12.3(c), Section 7.6], which is finite.
The diagram

Z∗1
ī1
��

∂Z∗1
ī1
��

? _
i01

oo

(M K )∗ Z0?
_i0

oo

is cartesian up to nilpotent elements. Proper base change therefore yields the for-
mula

R0i∗0 i1,∗ = R0ī1,∗i∗0,1 j1,∗.

The functors ī1,∗ and i∗0,1 being exact on sheaves, we have

R0i∗0 i1,∗(R2i∗1 i∗ j∗µ`(Vα)|Z ′′)= ī1,∗i∗0,1 R0 j1,∗µ`,Z ′′(H 2(Lie(W1), Vα)).

According to Proposition 2.4(a), H 2(Lie(W1), Vα) is irreducible as a representation
of Q1/W1, and hence of GL2,Q. Yet another application of Pink’s theorem shows
that

i∗0,1 R0 j1,∗µ`,Z ′′(H 2(Lie(W1), Vα))

is of constant rank one on the intersection of ∂Z∗1 with the closure of Z ′′ in (Z1)
∗.

Our claim on the rank of

H 2i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)|Z ′ = ī1,∗
⊕

Z ′′

(
i∗0,1 R0 j1,∗µ`,Z ′′(H 2(Lie(W1), Vα))

)
|Z ′

is therefore proven as soon as we establish that the number of points in the geomet-
rical fibres of the morphism ī1 : ∂Z∗1→ Z0 above Z ′⊂ Z0 equals c. This verification
can be done on the level of C-valued points, where the adelic description of the
situation is at our disposal. More precisely, write (Gm,Hm) := (Pm,Xm)/Wm [Pink
1989, Proposition 2.9], m = 0, 1, for the Shimura data contributing to ∂(M K )∗, and



550 JÖRG WILDESHAUS

Q01 for the Borel subgroup Q0 ∩ Q1 of G. According to [Pink 1989, Section 6.3],
the diagram of C-valued points corresponding to the diagram

Z∗1
ī1
��

∂Z∗1
ī1
��

? _
i01

oo

(M K )∗ Z0?
_i0

oo

equals

Q1(Q)\(H∗1 ×G(A f )/K )

ī1
��

Q01(Q)\(H0×G(A f )/K )

ī1
��

? _
i01
oo

G(Q)\(H∗×G(A f )/K ) Q0(Q)\(H0×G(A f )/K )? _
i0

oo

where all maps are induced by canonical inclusions of groups and spaces. Indeed,
the full group Qm(Q) (and not only a subgroup of finite index) stabilizes Hm ,
m = 0, 1, and two rational boundary components of (G1,H1) are conjugate under
G1(Q) if and only if they are conjugate under G(Q) (by explicit computation, or
[Pink 1989, Remark (iii) on p. 91]). The subscheme Z ′ ⊂ Z0 equals the image of a
Shimura variety associated to (G0,H0) under a morphism ig associated to an ele-
ment g ∈ G(A f ) [Pink 1989, Main Theorem 12.3(c)]; given the adelic description
of ig from [Pink 1989, Section 6.3], we see that under the above identification, any
z ∈ Z ′(C) equals the class [h0, p0g] in

Q0(Q)\(H0×G(A f )/K )

of a pair of the form (h0, p0g), with h0 ∈H0 and p0 ∈ P0(A f ). Put

Q+0 (Q) := {q0 ∈ Q0(Q) : λ(q0) > 0};

this group equals the centralizer in Q0(Q) of h0, and indeed, of the whole of H0.
Putting

H ′C := Q+0 (Q)∩ p0gK g−1 p−1
0 ,

we leave it to the reader to verify that the map

Q01(Q)\Q0(Q)/H ′C → ī−1
1 (z), [q0] 7→ q0[h0, p0g] = [q0h0, q0 p0g]

is well-defined, and bijective. By strong approximation,

W0(Q) · H ′C = Q+0 (Q)∩W0(A f ) · p0gK g−1 p−1
0 .

But
Q0/W0 = P0/W0×Q GL2,Q,

meaning that modulo W0, elements in P0 and in Q0 commute with each other.
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Thus,
W0(Q) · H ′C = Q+0 (Q)∩W0(A f ) · gK g−1.

The image of W0(Q) · H ′C under the projection π0 : Q0 −→→ Q0/W0 coincides with
the image of

W0(A f ) · Q+0 (Q)∩ gK g−1

(both images equal π0(Q+0 (Q))∩π(gK g−1)). But by definition [Pink 1992, (3.7.4)],
W0(A f ) · Q+0 (Q)∩ gK g−1 equals HC . We thus showed that

π0(H ′C)= π0(HC).

Now the quotient morphism Q0 −→→ Q0/P0, q0 7→ q0 induces an isomorphism

Q01(Q)\Q0(Q)/H ′C
∼
−→ Q01(Q)\Q0(Q)/H ′C = Q01(Q)\Q0(Q)/HC .

But Q0(Q)= GL2(Q), and under this identification, Q01(Q) equals the subgroup
of upper triangular matrices, while HC = HC/KW . In other words,

Q01(Q)\Q0(Q)/H ′C

is identified with the set up cusps of HC/KW .
The formula

(k1+ k2+ 3)(2g− 2+ c)≥ 4(2g− 2+ c) > c

(recall that c is greater or equal to 1, and that c ≥ 3 if g = 0) implies that the rank
of the source of ad is strictly greater than the rank of its target; the kernel of ad is
therefore nontrivial. �

Remark 2.10. (a) As the reader may verify,

H r+2i∗0 i1,∗τ
t≥r+3
Z1

i∗1 i∗ j∗R`,M K (αV)

is pure of weight (r + 2)− (k1− k2), i.e., of the same weight as

H r+2i∗0 i∗ j∗R`,M K (αV).

Weight considerations alone therefore do not imply nontriviality of the kernel of
the map ad from the proof of Proposition 2.9.

(b) A more conceptual proof of Proposition 2.9 would consist in showing that
locally on Z0, the map ad equals the direct sum over all cusps of HC/KW of the
residue maps. Identify H 1(HC/KW , H 1(Lie(W0), Vα))⊗Q C with the direct sum
of the space of modular forms and (the conjugate of) the space of cusp forms for
HC/KW of weight k1+k2+4≥ 5. The kernel of the residues contains the space of
cusp forms. Its dimension is computed in [Shimura 1971, Theorems 2.24 and 2.25];
thanks to [Shimura 1971, Proposition 1.40] (always remember that HC/KW is
neat), this dimension can be seen to be strictly positive.
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(c) On the level of geometry of Baily–Borel compactifications, a “strange dual-
ity” seems to be involved in the proof of Proposition 2.9: we need to know how
many modular curves in the boundary of (M K )∗ contain a given cusp Z ′ in their
closure. The response yields the number of cusps of a “modular curve”, which
does not explicitly occur in (M K )∗, namely the quotient of the upper half space by
HC/KW . It would be interesting to see how this phenomenon generalizes to higher
dimensional Siegel varieties.

(d) Our computation of the fibres of the morphism ī1 : Z∗1 → (M K )∗ over points
of Z0 is a quantitative version of a classical noninjectivity result of Satake [1958,
Exemple on p. 13-06].

Remark 2.11. The Hodge theoretic analogues of Theorem 2.3, Corollary 2.8 and
Proposition 2.9 hold. The proofs are identical up to the use of Pink’s theorem,
which is replaced by [Burgos and Wildeshaus 2004, Theorem 2.9].

Proof of Theorem 1.6. According to Theorem 2.2, i∗ j∗αV is a 8-constructible
motive of abelian type over ∂(M K )∗; this proves part (a) of our claim.

By [Pink 1989, Summary 1.18(d)], there is a perfect pairing

Vα ⊗Q Vα→Q(−r)

in Rep(G).
Fix a prime `. Applying µ`, we get a perfect pairing

µ`(Vα)⊗Q`
µ`(Vα)→Q`(−r)

of `-adic lisse sheaves on M K . In terms of local duality, the pairing induces an
isomorphism

D`,M K (µ`(Vα))∼= µ`(Vα)(r + 3)[6]

(M K is smooth of dimension three). Given R`,M K (αV)=µ`(Vα)[−r ], we find that

D`,M K (R`,M K (αV))∼= R`,M K (αV)(s)[2s],

where s = r + 3.
Corollary 2.8 tells us that for all n ∈ Z, and m = 0, 1,

H ni∗mi∗ j!∗ R`,M K (αV)

is of weights ≤ n − k. According to [Wildeshaus 2018a, Corollary 4.6(b)], the
motive i∗ j∗αV therefore avoids weights −k+ 1,−k+ 2, . . . , k.

In order to conclude the proof of part (b), it remains to show, again thanks to
[Wildeshaus 2018a, Corollary 4.6(b)], that for some n ∈ Z, and m = 0 or m = 1,
weight n− k does occur in

H ni∗mi∗ j!∗ R`,M K (αV).
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We take n = r + 2, and distinguish two cases. If k = k2, i.e., k2 ≤ k1 − k2, take
m = 1; the claim then follows from Corollary 2.8(b). Else, k2 > k1 − k2 and
k = k1 − k2. Since k1 ≥ k2, we necessarily have k1 ≥ 1. Take m = 0 and apply
Proposition 2.9. �

Remark 2.12. (a) An element of H n(∂(M K )∗(C), i∗ j∗µH(Vα)) is called a ghost
class if it lies in the image of

H n(M K (C), µH(Vα))→ H n(∂(M K )∗(C), i∗ j∗µH(Vα))

and in the kernel of both restriction maps

H n(∂(M K )∗(C), i∗ j∗µH(Vα))→ H n(Zm(C), i∗mi∗ j∗µH(Vα)),

m = 0, 1. One of the main results of [Moya Giusti 2018] implies that if α is regular,
then there are no nonzero ghost classes [Moya Giusti 2018, Theorem 3.1]. This
result does not formally imply, nor is it implied by, our Theorem 1.6. Nonethe-
less, it might be worthwhile to note that the weight arguments that occur in the
proofs are quite similar. The most relevant information from Theorem 1.6, as far
as [Moya Giusti 2018, Theorem 3.1] is concerned, comes from the weight filtration

a∗ j!∗ αV→ ã∗αV→ a∗i∗i ! j!∗ αV[1] → a∗ j!∗ αV[1]

avoiding weights 1, 2, . . . , k (Corollary 1.7(a)), and hence avoiding weight 1 if
α is regular, which we assume in the sequel. This implies that any element of
H n(M K (C), µH(Vα)) not mapping to zero in H n(∂(M K )∗(C), i∗ j∗µH(Vα)), re-
mains nonzero in

H n(∂(M K )∗(C), i ! j!∗ µH(Vα)[1]
)
= H n(∂(M K )∗(C), τ

t≥3
∂(M K )∗

i∗ j∗µH(Vα)
)
.

In other words, a ghost class vanishing in H n
(
∂(M K )∗(C), τ

t≥3
∂(M K )∗

i∗ j∗µH(Vα)
)

is zero. The Hodge structure H n
(
∂(M K )∗(C), τ

t≥3
∂(M K )∗

i∗ j∗µH(Vα)
)

has weights
≥ (r + n)+ 2; the same type of considerations as those leading to Corollary 2.8
then imply that the direct sum of the restriction maps

H n(∂(M K )∗(C), τ
t≥3
∂(M K )∗

i∗ j∗µH(Vα)
)
→ H n(Zm(C), i∗mτ

t≥3
∂(M K )∗

i∗ j∗µH(Vα)
)
,

m = 0, 1, is injective.

(b) The above illustrates an observation made by Moya Giusti: for a class in the
cohomology of the boundary whose weight is neither the middle weight nor the
middle weight plus one, we can determine exactly whether or not it is in the image
of the morphism

H n(M K (C), µH(Vα))→ H n(∂(M K )∗(C), i∗ j∗µH(Vα)).
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In fact, it appears amusing to note that the “middle weight” is relevant in another
context than the one studied in the present paper. According to [Moya Giusti
2018, p. 2317, second paragraph], the representation Vα satisfies the middle weight
property if the space of ghost classes in H n(∂(M K )∗(C), i∗ j∗µH(Vα)) is pure of
weight r + n. In particular, [Moya Giusti 2018, Theorem 3.1] implies that for all
α (regular or not), the representation Vα does satisfy the middle weight property,
while our Theorem 1.6 implies that weights {r + n, r + n+ 1} do not occur at all
in H n(∂(M K )∗(C), i∗ j∗µH(Vα)), as soon as α is regular.

Remark 2.13. Saper’s vanishing theorem [2005, Theorem 5] says that if α is reg-
ular, then the groups H n(M K (C), µH(Vα)), and hence (by comparison)

H n(M K
×Q Q, µ`(Vα)),

vanish for n< 3= dim M K . By duality, one obtains that H n
c (M

K (C), µH(Vα))= 0
and H n

c (M
K
×Q Q, µ`(Vα))= 0 for n > 3. It follows that interior cohomology

with coefficients in µH(Vα), denoted

H n
!
(M K (C), µH(Vα)),

and interior cohomology with coefficients in µ`(Vα), denoted

H n
!
(M K

×Q Q, µ`(Vα)),

both vanish for n 6= 3, provided that α is regular.

3. The motive for an automorphic form

This final section contains the analogues for Siegel threefolds of the main results
from [Scholl 1990]. Since we do not restrict ourselves to the case of Hecke eigen-
forms, our notation becomes a little more technical than in [loc. cit.].

We continue to consider the situation of Sections 1 and 2. In particular, we fix a
dominant α = α(k1, k2, r), which we assume to be regular, i.e., k1 > k2 > 0. Con-
sider the intersection motive a∗ j!∗ αV ∈ CHM(Q)Q, where a : (M K )∗→ Spec Q

again denotes the structure morphism of (M K )∗. According to [Wildeshaus 2018a,
Remark 3.13(a)] and Remark 2.13, its Hodge theoretic realization equals

H 3
!
(M K (C), µH(Vα))[−(r + 3)],

and its `-adic realization equals

H 3
!
(M K

×Q Q, µ`(Vα))[−(r + 3)].

By Corollary 1.8, every element of the Hecke algebraH(K ,G(A f )) acts on a∗ j!∗ αV .
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Theorem 3.1 [Harder 2017, Theorem 3.1.1]. Let L be any field of characteristic
zero. Then the H(K ,G(A f ))⊗Q L-module H 3

!
(M K (C), µH(Vα))⊗Q L is semi-

simple.

Note that [Harder 2017, Section 8.1.6, p. 232] gives a proof of Theorem 3.1,
while the statement in [Harder 2017, Theorem 3.1.1] is “nonadelic”. Denote by
R(H) := R(H(K ,G(A f ))) the image of the Hecke algebra in the endomorphism
algebra of H 3

!
(M K (C), µH(Vα)).

Corollary 3.2. Let L be any field of characteristic zero. Then the L-algebra
R(H)⊗Q L is semisimple.

In particular, the isomorphism classes of simple right R(H)⊗Q L-modules cor-
respond bijectively to isomorphism classes of minimal right ideals.

Fix L , and let Yπ f be such a minimal right ideal of R(H)⊗Q L . There is a
(primitive) idempotent eπ f ∈ R(H)⊗Q L generating Yπ f .

Definition 3.3. (a) The Hodge structure W (π f ) associated to Yπ f is defined as

W (π f ) := HomR(H)⊗Q L
(
Yπ f , H 3

!
(M K (C), µH(Vα))⊗Q L

)
.

(b) Let ` be a prime number. The Galois module W (π f )` associated to Yπ f is
defined as

W (π f )` := HomR(H)⊗Q L
(
Yπ f , H 3

!
(M K

×Q Q, µ`(Vα))⊗Q L
)
.

Definition 3.3(b) should be compared to [Weissauer 2005, Theorem I].

Proposition 3.4. There is a canonical isomorphism of Hodge structures

W (π f )
∼
−→
(
H 3
!
(M K (C), µH(Vα))⊗Q L

)
· eπ f ,

and a canonical isomorphism of Galois modules

W (π f )`
∼
−→
(
H 3
!
(M K

×Q Q, µ`(Vα))⊗Q L
)
· eπ f .

Proof. We perform the proof for Hodge structures; the one for Galois modules is
formally identical. Obviously,

HomR(H)⊗Q L
(
R(H)⊗Q L , H 3

!
(M K (C), µH(Vα))⊗Q L

)
is canonically identified with

H 3
!
(M K (C), µH(Vα))⊗Q L

by mapping an morphism g to the image of 1= 1R(H) under g. Inside

HomR(H)⊗Q L
(
R(H)⊗Q L , H 3

!
(M K (C), µH(Vα))⊗Q L

)
,
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the object W (π f ) contains precisely those morphisms g vanishing on 1− eπ f , or
in other words, satisfying the relation g(1)= g(eπ f )= g(1) · eπ f . �

Since we do not know whether the Chow motive a∗ j!∗ αV is finite dimensional,
we cannot apply [Kimura 2005, Corollary 7.8], and therefore do not know whether
eπ f can be lifted idempotently to the Hecke algebra H(K ,G(A f )). This is why
we need to descend to the level of Grothendieck motives. Denote by a∗ j!∗ αV ′ the
Grothendieck motive underlying a∗ j!∗ αV .

Definition 3.5. Assume α = α(k1, k2, r) to be regular. Let L be a field of charac-
teristic zero, and Yπ f a minimal right ideal of R(H)⊗Q L . The motive associated
to Yπ f is defined as

W(π f ) := a∗ j!∗ αV ′ · eπ f .

Definition 3.5 should be compared to [Scholl 1990, Section 4.2.0]. Given our
construction, the following is obvious.

Theorem 3.6. Assume α = α(k1, k2, r) to be regular, i.e., k1 > k2 > 0. Let L be
a field of characteristic zero, and Yπ f a minimal right ideal of R(H)⊗F L. The
realizations of the motive W(π f ) associated to Yπ f are concentrated in the single
cohomological degree r+3, and they take the values W (π f ) (in the Hodge theoretic
setting) and W (π f )` (in the `-adic setting).

A special case occurs when Yπ f is of dimension one over L , i.e., corresponds to
a nontrivial character of R(H) with values in L . The automorphic form is then an
eigenform for the Hecke algebra. This is the analogue of the situation considered
in [Scholl 1990] for elliptic cusp forms.

The motive W(π f ) being a direct factor of a∗ j!∗ αV ′, our results on the latter
from Section 1 have obvious consequences for the realizations of W(π f ).

Corollary 3.7. Assume α = α(k1, k2, r) to be regular. Let L be a field of character-
istic zero, and Yπ f a minimal right ideal of R(H)⊗Q L. Let p be a prime number
not dividing the level of K . Let ` be different from p.

(a) The p-adic realization W (π f )p of W(π f ) is crystalline.

(b) The `-adic realization W (π f )` of W(π f ) is unramified at p.

(c) The characteristic polynomials of the following coincide: (1) the action of
Frobenius φ on the φ-filtered module associated to W (π f )p; (2) the action of a
geometrical Frobenius automorphism at p on W (π f )`.

Proof. Parts (a) and (b) follow from Remark 1.12.
As for (c), in order to apply [Katz and Messing 1974, Theorem 2(2)], use the

fact that both realizations are cut out by the same cycle from the cohomology of a
smooth and proper scheme over the field Fp (cf. the proof of Corollary 1.13). �

Corollary 3.7 should be compared to [Scholl 1990, Theorem 1.2.4].
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Remark 3.8. Corollary 3.7(c) is already contained in [Urban 2005, Théorème 1].
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A Baum–Connes conjecture for singular foliations

Iakovos Androulidakis and Georges Skandalis

We consider singular foliations whose holonomy groupoid may be nicely de-
composed using Lie groupoids (of unequal dimension). We construct a K-theory
group and a natural assembly type morphism to the K-theory of the foliation C∗-
algebra generalizing to the singular case the Baum–Connes assembly map. This
map is shown to be an isomorphism under assumptions of amenability. We ex-
amine some simple examples that can be described in this way and make explicit
computations of their K-theory.
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Introduction

The celebrated Baum–Connes conjecture assigns to geometric objects (e.g., dis-
crete groups, Lie groups, (regular) foliations, Lie groupoids) two K-groups and
links them with a morphism, the “assembly map”. The “right-hand side” of the as-
sembly map is the K-theory group of the C∗-algebra associated with the geometric
object in hand. The other group, the “left-hand-side”, called the topological K-
theory, arises from topological constructions associated with the geometric object
in hand, such as classifying spaces.

Although this topological K-theory is often not much easier to calculate than
the analytic one, constructing it and the assembly map is really important.
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• First of all, the topological K-groups are important and meaningful groups.
In particular, they represent — up to torsion — the correct cohomology of the
geometric object.

• Injectivity of the assembly map controls the topological K-theory by the an-
alytic one. It thus has important topological consequences, as the homotopy
invariance of higher signature, i.e., Novikov’s conjecture and its generaliza-
tions to foliations [Baum and Connes 1985].

• Surjectivity controls the analytic K-theory by the topological one. It thus has
important consequences like the Kadison–Kaplansky conjecture.

• Even its nonbijectivity has strong consequences by constructing secondary
invariants of purely analytic type; see [Piazza and Schick 2007].

Foliations, and in particular singular ones, arise in an abundance of interesting
mathematical problems, so the formulation of an assembly map is important in its
own right. For instance, Poisson manifolds are completely determined by their
symplectic foliation [Vaisman 1994]. In particular, regarding the Lie–Poisson
structure [Vaisman 2000] associated with a nilpotent Lie group, formulating the
Baum–Connes conjecture of the associated symplectic foliation might give a more
insightful understanding of the orbit method [Kirillov 2004]. (In fact, Androuli-
dakis and Higson have work in progress in this direction.)

Let (M,F) be a singular Stefan–Sussmann foliation [Stefan 1974; Sussmann
1973]. We constructed its holonomy groupoid and the foliation C∗-algebra C∗(M,F)
in [Androulidakis and Skandalis 2009]. In [Androulidakis and Skandalis 2011a;
2011b] we showed that the K-theory of C∗(M,F) is a receptacle for natural index
problems along the leaves. It is then natural to look for a “left-hand side” too
and try to construct the corresponding topological K-group and assembly map. In
particular, this gives some insight into this K-theory. Of course we cannot hope in
general for such a map to be an isomorphism (since it is not always an isomorphism
in the regular case, as shown in [Higson et al. 2002]), and it is even hard to believe
that the topological K-group could be defined for every kind of singular foliation.
However, in this paper we manage to construct such a map for a quite general class
of singular foliations.

0.A. Some examples. In order to formulate the assembly map, let us examine a
few natural and quite simple examples. Consider the foliation given by a smooth
action of a connected Lie group on a manifold M :

(a) the action of SO(3) on R3;

(b) the action of SL(2,R) on R2;

(c) any action of R (given by a vector field X ).
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In these three cases, we can compute the K-theory thanks to an exact sequence

0→ C∗(�0,F|�0)→ C∗(M,F)→ C∗(M,F)|Y1 → 0.

Here �0 corresponds to “most regular points” of the foliation (more precisely, the
place where the source fibers of the foliation groupoid are of lowest dimension)
and Y1 = M \�0: in example (a), �0 =R3

\ {0}, in example (b), �0 =R2
\ {0} and

in example (c), �0 is the interior of the set of points where X vanishes.
In these examples, the connecting map ∂ of the K-theory exact sequence is easily

computed and we can describe precisely K∗(C∗(M,F)).
In other examples that we discuss here, the “regularity” of points varies even

more. For instance:

(d) The action on Rn of a parabolic subgroup G of GL(n,R); e.g., the minimal
parabolic subgroup of upper triangular matrices.

(e) The action of PG = G/R∗ on RPn−1.

(f) The action of G×G by left and right multiplication on GLn(R). (Orbits give
the well-known Bruhat decomposition.)

In the last three cases, the computation becomes harder since we obtain a longer
sequence of ideals — and therefore spectral sequences instead of short exact se-
quences. We do not explicitly compute the K-theory in these cases. On the other
hand, in all cases, the holonomy groupoid nicely decomposes in locally closed
subsets where the source fibers have fixed dimension. We use this decomposition
in order to construct the topological K-group and the assembly map.

0.B. Nicely decomposable foliations and the height of a nice decomposition. Let
(M,F) be a singular foliation. Its holonomy groupoid may be very singular. On
the other hand, this singularity gives rise to open subsets which are saturated for
F (i.e., a union of leaves of F). We thus obtain ideals of C∗(M,F) that we may
use to compute the K-theory.

For instance, recall that the source fibers of the holonomy groupoid of the fo-
liation as defined in [Androulidakis and Skandalis 2009] were shown in [Debord
2013] to be smooth manifolds. On the other hand, the dimension of these manifolds
varies. Let us denote by `0 < `1 < · · · < `k the various dimensions occurring
(note that k may be infinite, as shown in [Androulidakis and Zambon 2013]). Let
� j denote the set of points with source fiber dimension ≤ ` j . We find an as-
cending sequence �0 ⊆ �1 ⊆ · · · ⊆ �k−1 ⊆ �k = M of saturated open subsets
of M . This decomposition yields a sequence of two-sided ideals J j =C∗(� j ,F|� j )

of C∗(M,F). The quotient C∗-algebra J j/J j−1 is the C∗-algebra of the restriction
of the holonomy groupoid H(F) to the locally closed saturated set Y j =� j \� j−1.
The module F , when restricted to Y j , is finitely generated and projective, and the
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restriction of H(F) to Y j is a Lie groupoid (when Y j is a submanifold) so that we
may expect a Baum–Connes map for it.

Our computation of the K-theory is based on an ingredient which we add as an
extra assumption (it is satisfied in the above examples).

Let (M,F) a singular foliation. We say that (M,F) is nicely decomposable
with height k if there is a cover of M by open subsets (W j ) j∈N, j≤k , such that for
every j ∈N with j ≤ k, the restriction of the foliation F to each W j is defined by a
Hausdorff Lie groupoid G j , the open subset � j =

⋃
i≤ j Wi is saturated and G j coin-

cides with the holonomy groupoid H(F) on the (locally closed) set Y j =� j \� j−1

(we set Y0 =W0 =�0). Moreover, we assume that the groupoids G j are linked via
morphisms which are submersions

G j |� j−1∩W j → G j−1.

If (M,F) is nicely decomposable, the quotients J j/J j−1 are given by (restriction
to closed sets of) Lie groupoids, for which a Baum–Connes conjecture does exist.
This makes the calculation of the K-theory of C∗(M,F) possible, at least in terms
of a spectral sequence.

• Singularity height 0 corresponds to foliations whose holonomy groupoid is a
Lie groupoid, and there already is a topological K-theory and a Baum–Connes
assembly map for Lie groupoids; see [Tu 2000].

• Examples (a), (b), (c) are all of singularity height 1. We will use the decom-
position given by the dimensions of the fibers. In examples (a) and (b), the
dimensions of the fibers are `0 = 2 and `1 = 3; in example (c), these dimen-
sions are `0 = 0 and `1 = 1. For the singularity height 1 case, the topological
K-theory can be constructed using the exact sequence of C∗-algebras and a
mapping cone construction.

• A new difficulty in the construction of the topological K-theory arises when
we have higher singularity height, as in examples (d), (e) and (f). We use here
a telescope construction.

0.C. The topological K-theory and the assembly map. We construct the topolog-
ical K-theory and the assembly map in two steps:

• The first step consists of replacing the holonomy groupoid H(F) by a slightly
more regular one G whose (full) C∗-algebra is E-equivalent to the foliation
one. This groupoid is constructed via a mapping cone construction in the
height 1 case and via a telescope construction in the higher singularity case.

• In the second step we construct a topological K-theory and the assembly map
for the “telescopic groupoid” G which is the K-theory of a proper G-algebra
in a generalized sense, together with a Dirac type construction.
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0.C.1. A telescopic construction.

A mapping cone construction in the height 1 case. Let us explain our strategy more
explicitly in the case of a foliation admitting a singularity height 1 decomposition.
In this case, we obtain a diagram of full C∗-algebras (with G = G1):

0 // C∗(G�0)
iG

//

π�0

��

C∗(G) //

π

��

C∗(GY1)
// 0

0 // C∗(�0,F|�0)
iF
// C∗(M,F) // C∗(M,F)|Y1

// 0

The singularity height 1 assumption means that the holonomy groupoid of the re-
striction F|�0 of the foliation F to�0 is a Lie groupoid G0 and C∗(�0,F|�0)=C∗(G0).
The lines of this diagram are exact at the level of full C∗-algebras.

Since G defines F , it is an atlas in the sense of [Androulidakis and Skandalis
2009], so H(F) is a quotient of G. Hence the two extensions are connected by the
map π and its restriction π�0 , which is integration along the fibers of this quotient
map G → H(F). From this diagram, we conclude that the algebra C∗(M,F)
is equivalent in E-theory (up to a shift of degree) with the mapping cone of the
morphism

(iG, π�0) : C
∗(G�0)→ C∗(G)⊕C∗(�0,F|�0).

Foliations of height ≥ 2. As far as singular foliations with nice decompositions
of arbitrary (bounded or not) singularity height are concerned, we show that the
strategy developed for the singularity height 1 case can be generalized. In particular,
C∗(M,F) is E-equivalent to a “telescopic” C∗-algebra whose components are Lie
groupoids. In fact, we see that these telescopes can just be treated as mapping
cones.

Now let us see how the above apparatus can be used to formulate the Baum–
Connes assembly map for singular foliations. It suffices to explain the idea for the
height 1 case.

Longitudinally smooth groupoids. The above mapping cone and the telescopic al-
gebra constructed here are based on morphisms of Lie groupoids which are smooth
submersions and open inclusions at the level of objects. These C∗-algebras are im-
mediately seen to be the C∗-algebras of a kind of groupoids which generalize both
Lie groupoids and singular foliation groupoids: longitudinally smooth groupoids.

0.C.2. A topological K-theory group for the telescopic groupoid.

Setting of the problem. Before we outline our construction of a topological K-
theory group, let us make a remark. Recall that Jean-Louis Tu [2000] defined
a topological K-theory group and a Baum–Connes morphism for Lie groupoid C∗-
algebras of the form K top

∗ (G)→ K∗(C∗(G)). In order to construct a topological
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K-theory group for this mapping cone, we need to find a “left-hand side” for the
morphism (iG, π�0). In fact we not only need it as a morphism at the level of
groups K top

∗ , but we really need to construct it as a KK-element.
The difficulty lies with the understanding of the topological K-theory of the

mapping cone of the surjective homomorphism π�0 : C
∗(G�0)→ C∗(�0,F|�0).

We treat this by deploying the Baum–Douglas formulation given in [Baum and
Connes 2000; Baum and Douglas 1982a; 1982b]. At this point we will need fur-
ther assumptions on the groupoids G and G1, namely that their classifying spaces
of proper actions are smooth manifolds, to make sure that the Baum–Connes mor-
phisms are naturally given by KK-elements. (In the Appendix we show how this
assumption can be weakened.)

Actions of the telescopic groupoid. In order to define the topological K-theory
group for the telescopic groupoid, we follow the Lie groupoid case:

• For every longitudinally smooth groupoid G, one defines G-algebras very much
in the spirit of [Androulidakis and Skandalis 2009]: algebraic conditions are stated
at the level of the groupoid, topological ones at the level of bisubmersions which
can be thought of as “smooth local covers” of G (cf. [Androulidakis and Skandalis
2009]). We define the (full and reduced) crossed product for every G-algebra.

• One may define a generalized notion of “proper G-algebra”: a G-algebra is said
to be “proper” if its restriction to the groupoids corresponding to the various strata
is proper in the usual sense. In particular, one may define actions on spaces and
“proper” actions on spaces. Of course, they are not proper in the usual sense! But
from the point of view of the Baum–Connes conjecture they are as good, since the
Baum–Connes conjecture is compatible with extensions (in the amenable case).

• We define Le Gall’s equivariant KK-theory [1999] in the context of longitudinally
smooth G-algebras, despite the topological pathology of the holonomy groupoid G.
We extend the equivariant Kasparov product to this case.

• We may then construct the topological K-theory group and the assembly map
for the telescopic algebras of a nice decomposition of a singular foliation. To that
end we still need to assume for (M,F) that the Lie groupoids of its decomposition
admit smooth manifolds as classifying spaces for proper actions.

• Actually, this point of view allows one to construct a Baum–Connes map with
coefficients for every G algebra. It is easily seen that, in the case of nicely decom-
posable foliations, our Baum–Connes map with coefficients in “proper” spaces or
algebras is an isomorphism.

The main result. We show then that in cases as above the Baum–Connes map can
be constructed canonically. Namely, we prove the following:



A BAUM–CONNES CONJECTURE FOR SINGULAR FOLIATIONS 567

Theorem 0.1. (i) If (M,F) admits a nice decomposition by Lie groupoids whose
classifying space for proper actions is a manifold, then there is a well-defined
topological K-group and one may construct a Baum–Connes assembly map.

(ii) If moreover the groupoids of the nice decomposition are amenable and Haus-
dorff , then the Baum–Connes map is an isomorphism.

Note that examples (a) and (c) above are amenable; although example (b) is not,
it is “strongly K-amenable” and the Baum–Connes conjecture (for the full version)
holds for it.

Note also that example (c) is not exactly covered by our theorem since the
groupoid G0 is not assumed to be Hausdorff. However, the Baum–Connes con-
jecture holds also in this case

For the examples of larger singularity height described in examples (d), (e)
and (f), note that, as the minimal parabolic subgroup of GL(n,R) is amenable,
Theorem 0.1 implies that the Baum–Connes conjecture holds.

Let us point out that our constructions of the equivariant KK-theory could in a
way be bypassed, but may have its own interest. In particular, we give a simple
quite general formulation and proof for the existence of the Kasparov product,
which applies in all known equivariant contexts: groups, group actions [Kasparov
1988], groupoids [Le Gall 1999], Hopf algebras [Baaj and Skandalis 1989].

Trying to weaken our assumptions. The assumption on the classifying spaces is
quite natural. All the groupoids given by Lie group actions admit manifolds as
classifying spaces for proper actions, and this assumption is stable by Morita equiv-
alence. In this way it is satisfied by all the (Hausdorff) groupoids that appear in
the examples that we discuss in this work. Nevertheless, it is quite tempting to
try to get rid of it. In the Appendix we explain how it can be replaced by a quite
weaker, rather technical one: Assumption A.1, which could be true in general, i.e.,
for every longitudinally smooth groupoid.

Structure of the paper.

• In Section 1 we introduce the notion of singularity height for a singular foli-
ation and define nicely decomposable foliations. We also explain the examples
mentioned in the beginning of this introduction.

• Section 2 focuses on nicely decomposable foliations with singularity height 1.
We give the construction of the associated mapping cone C∗-algebra and prove that
it is E-equivalent to the foliation C∗-algebra. We give there the explicit calculation
of the K-theory for examples (a), (b) and (c).

• In Section 3 we extend this construction and result to foliations of arbitrary
singularity height, replacing mapping cones with telescopes.
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• Section 4 defines longitudinally smooth groupoids and their actions and con-
structs the associated KK-theory.

• The crucial section is Section 5, where we formulate the Baum–Connes con-
jecture (topological K-theory and Baum–Connes map) for the telescopic algebra,
assuming the classifying spaces of proper actions of the groupoids associated with
the nice decomposition of (M,F) are smooth manifolds. The proof of Theorem 0.1
can be found there.

• Finally, in the Appendix we explain how to remove the assumption that the
classifying spaces of proper actions are smooth manifolds.

Notation 0.2. Let (M,F) be a foliation. We denote the (minimal, i.e., the groupoid
associated with the path holonomy atlas — cf. [Androulidakis and Skandalis 2009])
holonomy groupoid by H(F) (or H(M,F)when needed). We denote by C∗(M,F)
and C∗red(M,F) its full and reduced C∗-algebras.

We mainly use the full C∗-algebra. This is justified by the two following reasons:

• Constructing a Baum–Connes map for the full foliation algebra automatically
gives the one for the reduced version. Recall that the Baum–Connes map, in the
regular case, factors through the full version of the foliation algebra.

• All our constructions are based on sequences of groupoid C∗-algebras, which are
always exact at the full C∗-algebra level, and may fail to be exact at the reduced
level (see Section 2.B).

1. Nicely decomposable foliations

1.A. Notations and remarks. Let M be a smooth manifold and Xc(M) the C∞(M)-
module of compactly supported vector fields. In [Androulidakis and Skandalis
2009], we defined a singular foliation on M to be a C∞(M)-submodule F of
Xc(M) which is locally finitely generated and satisfies [F,F] ⊆ F .

Given a point x ∈M let Ix = { f ∈C∞(M) : f (x)= 0} and recall from [Androul-
idakis and Skandalis 2009] the fiber Fx = F/IxF . The map M 3 x 7→ dim(Fx) is
upper semicontinuous [Androulidakis and Skandalis 2009, Proposition 1.5].

When this dimension is constant (continuous if M is not assumed to be con-
nected), i.e., when the module F is projective, the foliation is said to be almost
regular and the holonomy groupoid H(F) was proved to be a Lie groupoid in
[Debord 2001].

In the present paper, we deal with cases where the dimension of Fx is not con-
stant. The number of possible dimensions measures the singularity of the foliation.
We give a definition of this singularity height more appropriate for our purposes
in Definition 1.4.
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By semicontinuity, the subsets O` = {x ∈ M : dim(Fx)≤ `} are open. They are
saturated, i.e., unions of leaves of F .

We deal with restrictions of the foliation to open sets. We use the following
remark:

Remark 1.1. Let (M,F) be a foliation. Let V be an open subset of M .

(i) The holonomy groupoid of the restriction F|V to V is the s-connected compo-
nent of the restriction H(F)VV = {z ∈ H(F) : t (z) ∈ V and s(z) ∈ V } to V .

(ii) If V is saturated, then H(F|V )= H(F)VV .

Actually an analogous statement holds for the pull-back foliation f −1(F) by a
smooth map f : V → M transverse to F [Androulidakis and Skandalis 2009,
§1.2.3]: H( f −1(F)) is the s-connected component of

H(F) f
f = {(v, z, w) ∈ V × H(F)× V : t (z)= f (v) and s(z)= f (w)}.

If moreover f is a submersion whose image is saturated with connected fibers,
then H( f −1(F))= H(F) f

f .

Now let us discuss the notation for C∗-algebras used in the sequel as far as restric-
tions are concerned. If G is a locally compact groupoid (with Haar measure) and Y
is a locally closed saturated subset of G0, then GY ={x ∈G : s(x)∈Y } is also a locally
closed groupoid and we can define its C∗-algebra. We put C∗(G)|Y = C∗(GY ). The
same construction for foliation algebras is useful in our context:

Notation 1.2. Let (M,F) be a (singular) foliation.

(a) Let �⊂ M be a saturated open subset. Then

C∗(M,F)|� := C0(�)C∗(M,F)= C∗(�,F|�)

is the foliation C∗-algebra of the restriction of F to �. The same holds for
the reduced C∗-algebras.

(b) If Y ⊂ M is a saturated closed subset then the full C∗(M,F)|Y is the quotient
of C∗(M,F) by C∗(M,F)|M\Y .

Note that the natural definition for the reduced one is to take the quotient
of C∗(M,F) corresponding to the regular representations at points of Y , i.e.,
the representations on L2(H(M,F)y) for y ∈ Y .

(c) If Y ⊂ M is a saturated locally closed subset then Y is open in its closure Y
and the closed subset Y \ Y is saturated. Let U = M \ (Y \ Y ). We denote
by C∗(M,F)|Y the quotient of C0(U )C∗(M,F) by C∗(M,F)|M\Y . In other
words, C∗(M,F)|Y = (C∗(M,F)|U )|Y .
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1.B. Foliations associated with Lie groupoids. In the sequel we consider folia-
tions defined from Lie groupoids (at least locally — cf. Section 1.C). Let us make
a few observations regarding singular foliations defined by Lie groupoids.

Every Lie algebroid A with base M , and thus every Lie groupoid (t, s) : G ⇒ M ,
defines a foliation. Indeed, the anchor map ] : A→ TM is a morphism of Lie
algebroids, whence ](0c A)⊂ Xc(M) is a singular foliation.

Let G be a (locally Hausdorff) Lie groupoid over a manifold M and F the associ-
ated foliation. Up to replacing G by its s-connected component (which is an open
subgroupoid of G with the same algebroid, and thus defines the same foliation
on M) we may assume that G is s-connected, i.e., the fibers of the source map
s : G→ M are connected. Then the groupoid G is an atlas for our foliation, in the
sense of [Androulidakis and Skandalis 2009, Definition 3.1]. As G is assumed s-
connected, it defines the path holonomy atlas [Androulidakis and Skandalis 2009,
Example 3.4.3]. The holonomy groupoid H(M,F) is a quotient of G by the equiv-
alence relation defined in [Androulidakis and Skandalis 2009, Proposition 3.4.2].
Put q : G→ H(M,F) the associated quotient map.

In order to compute this quotient, we use a lemma from [Androulidakis and
Zambon 2013].

Let γ ∈ G and write x = s(γ ). Note that if q(γ ) is a unit, then t (γ ) = x .
Choosing a bisection through γ we obtain a local diffeomorphism g of M which
acts on the tangent bundle Tx M and fixes the tangent to the leaf Fx . It therefore acts
on Nx = Tx M/Fx . This action only depends on γ . Denote it by ν(γ ) ∈ GL(Nx).

Now, it was shown in [Androulidakis and Zambon 2013] that there is an action
of H(F) on this “bundle” of normal spaces. As an immediate consequence, we
find the following:

Lemma 1.3. If q(γ ) is a unit, then ν(γ )= idNx . �

1.C. Nicely decomposable foliations. We now present the constraints that we put
on our foliations. We say that the foliation is nicely decomposable if it admits a
nice decomposition in the following sense.

Definition 1.4. Let (M,F) be a singular foliation and let k ∈ N∪ {+∞}. A nice
decomposition of (M,F) of singularity height k is given by

(a) a sequence (W j )0≤ j<k+1 of open sets of M such that the open set� j =
⋃
`≤ j W`

is saturated and
⋃

j<k+1 W j = M (with the convention +∞+ 1=+∞);

(b) a sequence of Lie groupoids G j −→−→W j defining the restriction of F to W j ,
and such that G j |Y j = H(F)|Y j , where Y0 =�0 and, for j ≥ 1, Y j =� j \� j−1;

(c) morphisms of Lie groupoids q j : G j |� j−1∩W j → G j−1 (for j > 0) which are sub-
mersions, and which at the level of objects are just the inclusion� j−1∩W j→W j−1.
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Remarks 1.5. (a) If (M,F) is an almost regular foliation then H(F) is a Lie
groupoid as shown in [Androulidakis and Skandalis 2009] (it coincides with the one
constructed in [Debord 2001]). In our current context, the decomposition sequence
of such a foliation has singularity height zero; its realization is H(F) itself. We
will not be concerned with such situations in the sequel. Truly singular examples
of nicely decomposable singular foliations arise when the singularity height of the
decomposition is 1 or larger.

(b) By definition W0=�0 and the restriction of H(F) coincides with G0. It follows
that the restriction of F to �0 is almost regular, which means that �0 is contained
in the (open) set of points where dimF is continuous and, since dimF is upper
semicontinuous, these are the places where it has a local minimum.

(c) Such a decomposition need not be unique. In all our examples, W j =� j and
� j may be constructed using the dimension of the fibers.

For ` ∈ N, put
O` = {x ∈ M : dim(Fx)≤ `}.

Denote by `0 < `1 < · · ·< ` j for j < k+ 1 the various possible dimensions. For
j = 0, 1, . . . , k put � j = O` j .

Note that an example is given in [Androulidakis and Zambon 2013] of a foliation
where this k is infinite.

1.D. Examples of nicely decomposable foliations. We now give a few examples
of nice decompositions of foliations.

1.D.1. Examples of height 1.

Remark 1.6. In the case of height 1, we have W0 = �0 and G0 is the holonomy
groupoid of the restriction of F to �0. We therefore just need to specify the set �0

and the Lie groupoid G1 −→−→W1 defining the foliation F on an open subset W1

containing the complement Y1 = M \�0 of �0 and such that the restriction of G
to Y1 coincides with that of H(F).

Actually, in our examples W1 = M .

Examples 1.7. We give here examples of singularity height 1 associated with
Lie group actions. Some examples of larger singularity height are computed in
forthcoming work of Androulidakis and Higson. In this paper, we calculate the
associated K-theory explicitly for the following examples.

(a) Let M = R3 and consider the foliation F defined by the image of the (infinites-
imal) action of SO(3) on R3 by rotations. The leaves are concentric spheres in R3

with one singularity at {0}. Let G be the action groupoid R3oSO(3) −→−→R3. Since
SO(3) is simple, the restriction of H(F) to 0, which is a quotient of SO(3), has to
be SO(3) (we may also use Lemma 1.3 to prove this result). The restriction of F



572 IAKOVOS ANDROULIDAKIS AND GEORGES SKANDALIS

to R3
\ {0} is really a regular foliation — and in fact the fibration S2

×R∗
+
→ R∗

+
,

whence the holonomy groupoid of F , is

H(F)= (S2
× S2
×R∗

+
)∪ {0}×SO(3).

It follows that the foliation has a nice decomposition of singularity height 1, namely
W1 = R3, G1 = G and �0 = R3

\ {0}.

(b) Let M = R2 and consider the action of SL(2,R). It has two leaves, namely {0}
and R2

\ {0}. Using again Lemma 1.3, the associated holonomy groupoid is seen
to be

H(F)= (R2
\ {0}×R2

\ {0})∪ {0}×SL(2,R).

Considering the action groupoid G = R2 o SL(2,R), we obtain the singularity
height 1 nice decomposition �1 = R2, G1 = R2 o SL2(R) and �0 = R2

\ {0},
G0 =�0×�0.

(c) There are many singular foliations of singularity height 1 arising from group
actions which have nice decompositions. For instance, take n ≥ 4 instead of 3 in
example (a) or n ≥ 3 instead of 2 in example (b).

We may also consider the action of GL(2,R) on R2. The associated holonomy
groupoid is

H(F)= (R2
\ {0}×R2

\ {0})∪ {0}×GL+(2,R),

where GL+(2,R) denotes 2×2 matrices with positive determinant. Considering
the action groupoid G = R2 oGL+(2,R), we obtain �1 = R2 and �0 = R2

\ {0}.
We can of course replace 2 by n also in this situation.

Another example as such comes from the action of SL(n,C) on Cn . Its holo-
nomy groupoid is

H(F)= (Cn
\ {0}×Cn

\ {0})∪ {0}×SL(n,C).

Considering the action groupoid G=CnoSL(n,C) we have�1=Cn ,�0=Cn
\{0}.

(d) We end with an example of a quite different flavor.
Let M be a manifold endowed with a smooth action α of R. Let G1 = M oα R

be the associated action groupoid, and F the associated foliation.
Denote by Fix(α) the set of fixed points of α, by W = Int(Fix(α)) its interior

and by V = M \Fix(α) its complement. Let x ∈ M .

• If x ∈W , then Fx = 0.

• For x ∈ V , the dimension of Fx is 1. By semicontinuity, dimFx = 1 for x ∈ V .

Let �0 be the set of continuity points of dimF . Its complement Y1 is the boundary
∂W of W . The restriction of F to the open set �0 is almost regular.
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We show that the morphism M oα R→ H(F) is injective over Y1. We thus have
a nice decomposition H(�0,F|�0) −→−→�0, and M oα R −→−→M .

This is done using classical facts based on the period bounding lemma (see
[Abraham and Robbin 1967]), which we recall here:

Lemma 1.8 (period bounding). Let X be a compactly supported Cr -vector field
on a Cr -manifold M with r ≥ 2. There is a real number η > 0 such that, for any
x ∈ M , either X (x)= 0 or the prime period τx of the integral curve of X passing
through x is τx > η. �

Put P = {(x, u) ∈ M ×R : αu(x)= x}. It is obviously a closed subset of M ×R

and the restrictions of the source and target maps to P coincide. By definition of
the holonomy groupoid, an element (x, u) ∈ G1 = M o R is a trivial element in
H(F) if and only if there is an identity bisection through it, i.e., if there exists an
open neighborhood U of x and a smooth function f :U → R such that f (x)= u
and (z, f (z)) ∈ P for all z ∈U .

Let Per(α) be the set of stably periodic points, i.e., the set of x ∈ M such that
there exists an open neighborhood U of x and a smooth function f :U → R∗ such
that (y, f (y)) ∈ P for all y ∈U . It is the set of x ∈ M such that

{(x, u) : u ∈ R} → H(F)
is not injective.

Obviously W ⊆ Per(α).

Proposition 1.9. The set Y1 ∩Per(α) is empty.

Proof. Let x ∈ W ∩ Per(α). We need to show that x 6∈ Y1, i.e., that x ∈ W . Up to
changing X far from x , we may assume that X has compact support.

Since x ∈W , it follows that X as well as all its derivatives vanish at x . We may
then write X = qY , where q is a smooth nonnegative function such that q(x)= 0
and Y is a smooth vector field with compact support (take for instance q to be a
smooth function which coincides near x to the square of the distance to x for some
riemannian metric). Let then U be an open relatively compact neighborhood of x
and f :U→R∗ a smooth bounded function such that (y, f (y))∈ P for all y ∈U . It
follows that all the points in U are periodic for X and therefore for Y . When y→ x ,
f (y)→ f (x), so the Y period of y tends to 0. By the period bounding lemma, it
follows that any y close enough to x satisfies Y (y)= 0, whence x ∈W . �

It follows that (H(�0) −→−→�0,M oα R −→−→M) is a nice decomposition for F .
It is worth noticing that the holonomy groupoid G0 = H(�0,F|�0) is a disjoint

union of clopen subgroupoids W t H(V ′,F|V ′), where V ′ is the interior of V , and
that its C∗-algebra C∗(�0,F|�0) is a direct sum C0(W )⊕C∗(V ′,F|V ′).

Note that, in the presence of periodic points, the groupoid H(V,F|V ) and there-
fore G0 need not be Hausdorff.
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Let us also remark that, in the computation above, we could as well have chosen
to take �0 to be the set where the fibers are of dimension 0, i.e., the set W .

1.D.2. An example of larger singularity height. We start by giving a natural family
of examples of nicely decomposable foliations with singularity height larger than 1.
Some of them will be studied in forthcoming work of Androulidakis and Higson.

If a subgroup G ⊂GLn(R) has more than two orbits in its action on Rn , then the
transformation groupoid Rn oG may give rise to interesting nicely decomposable
foliations of singularity height ≥ 2.

A typical example is given by a parabolic subgroup of GL(n,K), where K = R

or C: given a flag {0} = Ek ⊂ Ek−1 ⊂ Ek−2 ⊂ · · · ⊂ E1 ⊂ E0 =Kn (with k ≤ n and
Ek pairwise different), let G be the group of (positive if K = R) automorphisms of
this flag, i.e., G is the subgroup of GL(n,K) of elements fixing the spaces Ek ; if
K = R we further impose that their restriction to E j has positive determinant (in
order to fulfill connectedness).

For 0 ≤ j ≤ k, let � j = Kn
\ E j+1 and Y j = E j \ E j+1 (with the convention

Ek+1 = ∅). The set Y j consists of one or two G orbits (depending on whether
dim E j ≥ 2+ dim E j+1 or dim E j = 1+ dim E j+1 — in the complex case the Y j

consists of a single orbit).
For every j ∈ {0, . . . , k}, let F j be the quotient space F j =Kn/E j endowed with

the flag {0} ⊂ E j−1/E j ⊂ · · · ⊂ E0/E j and let G j be the group of positive automor-
phisms of this flag. The quotient map Kn

→ F j induces a group homomorphism
q j : G→ G j .

Let also p j :� j → F j be the restriction of the quotient map to � j . Let then G̃ j

be the pull-back groupoid of F j oG j by the map p j . In other words

G̃ j = {(x, g, y) ∈� j ×G j ×� j : p j (x)= gp j (y)}.

The map (x, g, y) 7→(x, q j (g), y) is a submersion and a groupoid morphism from
� j oG = {(x, g, y) ∈� j ×G×� j : x = gy} into G̃ j . Its image is the s-connected
component G j of G̃ j .

It follows from the following obvious lemma that G j ⇒ Kn is a bisubmersion.

Lemma 1.10. Let M,U, V be manifolds, (M,F) a foliation, p :U → V a surjec-
tive submersion and tV , sV : V ⇒ M two submersions. Then (U, tV ◦ p, sV ◦ p) is
a bisubmersion for F if and only if (V, tV , sV ) is a bisubmersion for F . �

It follows then from Lemma 1.3 that H(F)|Y j = (G j )|Y j . We deduce:

Proposition 1.11. The foliation of Kn by the action of G is nicely decomposed by
the groupoids G j ⇒� j . Its holonomy groupoid is a union

∐k
j=0(G j )|Y j .

Remarks 1.12. (a) One may write a projective analogue of this example: let PG
be the projective analogue of G acting on KPn−1, namely PG is the quotient
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of G by its center, the group of similarities in G. It has k orbits: the images
Y j = PE j \ PE j+1 of E j \ E j+1 by the quotient map p : Kn

\ {0} → KPn−1 (for
j > 0). This foliation is nicely decomposed by the projective analogues PG j of
the G j . Note that the map p : E j \{0}→ p(E j ) induces a morphism p j : G j→ PG j

which is a Morita equivalence in the complex case. In the real case, it is almost a
Morita equivalence: the morphism p j induces an isomorphism of the stabilizer of
x ∈ E j \ {0} in G j with the stabilizer of p(x) ∈ PE j in PG j , but for 0< i ≤ j and
dim(Ei )= dim(Ek+1)+ 1, the set Ei \ Ei−1 consists of two orbits of the groupoid
G j which become equivalent in PG j . The corresponding foliation C∗-algebra is
(almost) Morita equivalent to C∗(�1,F).
(b) There are many other interesting examples of the same flavor. A typical one
is given in the following way: let P1, P2 ⊂ GL(n,K) be two parabolic subgroups,
and let P1× P2 act on GL(n,K) by left and right multiplication. If P1 = P2 is the
minimal parabolic subgroup consisting of upper triangular matrices, the orbits of
this action are labeled by the symmetric group Sn (Bruhat decomposition). In this
example, the decomposition to be taken into account is more complicated than just
the dimension of the fibers. One may need to use the partial ordering of the orbits
given by the inclusion of the closures.

2. Foliations with singularity height 1

Let (M,F) be a foliation admitting a nice decomposition of height 1. In this
section our purpose is to show that the full foliation C∗-algebra C∗(M,F) can be
replaced by a mapping cone of Lie groupoid C∗-algebras associated with a nice
decomposition of F . We generalize this construction to higher length in the next
section, but before this, we make some comments on the difficulties with dealing
with reduced C∗-algebras.

2.A. A mapping cone construction. In the length 1 case, as noted in Remark 1.6,
we just need to specify the saturated open subset � = �0 and the Lie groupoid
G = G1 −→−→W1 = W which defines the foliation on an open set W containing
Y = M \� and whose restriction to Y coincides with that of H(F).

The open subset � gives rise (at the level of the full C∗-algebras) to a short exact
sequence

0→ C∗(�,F|�)
ιF
−→ C∗(M,F) πF−→ C∗(M,F)|Y → 0

which in principle allows us to compute its K-theory. This is actually the case in
our examples (Sections 2.C and 2.D).

In order to only use Lie groupoids (note that Y need not be a manifold), and also
to be able to extend our construction to a more general setting (see Section 3), we
also make use of the somewhat more elaborate diagram which appears in Figure 1.
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0 // C∗(GW∩�)
ιG

//

π�
��

C∗(G)
pG

//

πM
��

C∗(GY ) // 0

0 // C∗(�,F|�)
ιF
// C∗(M,F)

pF
// C∗(M,F)|Y // 0

Figure 1. Exact sequences for a nicely decomposable foliation of
singularity height 1.

Restricting G to the open subset W ∩� and H(F) to the open subset �, the
integration along fibers (see [Androulidakis and Skandalis 2009]) of the quotient
map G→ H(F) induces the diagram of half-exact sequences of full C∗-algebras
shown in Figure 1.

Let F be a nicely decomposable foliation of singularity height one. We may
use the diagram in Figure 1 in order to compute the K-theory of C∗(M,F) via a
Mayer–Vietoris exact sequence.

We explain here how one may replace C∗(M,F) by a mapping cone of Lie
groupoid C∗-algebras. We use the following notation:

• For any C∗-algebra Z and a locally compact space X put Z(X)= C0(X; Z).

• Recall that the mapping cone of a morphism u : A→ B of C∗-algebras is

Cu = {(a, φ) ∈ A× B([0, 1)) : φ(0)= u(a)}.

With the notation of the diagram in Figure 1, consider the morphism of C∗-
algebras

(iG, π�) : C∗(GW∩�)→ C∗(G)⊕C∗(W ∩�,F|�).

Proposition 2.1. With the notation of Figure 1, the (full) foliation C∗-algebra
C∗(M,F) is canonically E1-equivalent to the mapping cone C(ιG ,π�).

Proof. We show that given a diagram of exact sequences of C∗-algebras and mor-
phisms

0 // I i
//

π
��

B1 //

��

Q // 0

0 // B0
i ′
// A // Q // 0

the mapping cone C(i,π) of the map (π, i) : I→ B0⊕B1 is canonically E1-equivalent
to A.

Indeed, we have canonical morphisms Ci → Ci ′→ Q(0, 1). Since Ci → Q(0, 1)
and Ci ′ → Q(0, 1) are both onto with contractible kernels (I [0, 1) and B0[0, 1),
respectively), it follows that the morphism Ci → Ci ′ induces an equivalence in
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E-theory. Now, using the diagram

0 // B0(0, 1) // C(i,π) //

��

Ci

��

// 0

0 // B0(0, 1) // C(i ′,idB0 )
// Ci ′ // 0

we find that the morphism C(i,π)→ C(i ′,idB0 )
induces an equivalence in E-theory.

Finally the (split) exact sequence

0 // A(0, 1) // C(i ′,idB0 )
// B0[0, 1) // 0

yields the desired E1-equivalence. �

Remark 2.2. We may note that we have just shown that the morphism

C(i,π)→ C(idA,idA) ' A(0, 1)

is invertible in E-theory.

2.B. Difficulties at the level of reduced C∗-algebra. Let us discuss the reduced
version of the diagram in Figure 1:

• If the restriction G|Y is an amenable groupoid we also have horizontal exact-
ness at the level of reduced C∗-algebras.

• If G|W∩� is not amenable then the integration along fibers may not exist at the
level of the kernels. We discuss such an example in Example 2.4.

In view of Examples 1.7 we focus now on foliations (M,F) arising from an
action of a Lie group G on a manifold M . We assume that W = M , the action
groupoid G = M o G realizes a nice decomposition of singularity height 1 for
(M,F) and the complementary set Y is a point.

If the group G is amenable then integration along fibers of the quotient map
G→ H(F) gives the diagram in Figure 2.

0 // C0(�)oG
ιG
//

π�

��

C0(M)oG
πG

//

π

��

C∗(G) // 0

0 // C∗(�,F|�)
ιF
// C∗(M,F)

πF
// C∗(G) // 0

Figure 2. Exact sequences for a nicely decomposable foliation of
singularity height 1 arising from the action of an amenable
Lie group.
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If G is not amenable, the sequences are exact at the level of full C∗-algebras.
At the reduced C∗-algebra level,

• the sequences need not be exact;

• the morphism C0(�)oG→ C∗r (M,F) obtained as a composition of π with
the morphism C∗(M,F)→ C∗r (M,F) doesn’t need to pass to the quotient
C0(�)or G of C0(�)oG.

Note however that

• in most cases that we consider, the top sequence in Figure 2 is exact since the
groups we consider are exact;

• we always have some completely positive splittings (see Proposition 2.3);

• in the example of the action of GL(2,R) on R2, since the stabilizers are
amenable, the morphism π� : C0(R

2
\ {0}) o GL(2,R)→ K is defined at

the reduced C∗-algebra level. As the group GL(2,R) is K-amenable, we find
that in this case the full and reduced C∗-algebra of F are KK-equivalent.

Proposition 2.3. Let G be the action groupoid in Figure 2. Then the morphisms
C∗r (G) → C∗r (G), C∗(G) → C∗(G) and C∗(M,F) → C∗(G) have completely
positive splittings.

Proof. This is due to the fact that C∗(G) sits in the multiplier algebra of a crossed
product AoG — and the same for reduced ones:

We construct a completely positive splitting for the map C∗(G)→ C∗(G). Take
a function f ∈ C0(M) such that ‖ f ‖ = 1 and f (x0) = 1. Given ζ ∈ C∗(G) put
σ(ζ )= f ∗ζ f . This is obviously a completely positive (and contractive) splitting of
the top sequence. (The same is true for the reduced algebra and crossed products.)

Composing the completely positive splitting C∗(G)→ C∗(G) with the mor-
phism π : C∗(G)→ C∗(M,F) (given by integration along the fibers) we obtain a
completely positive splitting of the second sequence. �

We now give an example where the morphism π� is not defined at the reduced
C∗-algebra level:

Example 2.4. Consider the action of G = SL(n,R) on Rn for n ≥ 3. This action
has two orbits: {0} and � = Rn

\ {0}. The stabilizer of a nonzero point for this
action is isomorphic to H = Rn−1 o SL(n− 1,R), which is not amenable if n ≥ 3.
The full crossed product C0(R

n
\ {0})o SL(n,R) is Morita equivalent to C∗(H).

Therefore, the full C∗-algebra of this foliation is the quotient of C0(R
n)oSL(n,R)
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sitting in a diagram

0 // C0(�)oG ' K⊗C∗(H) //

idK⊗εH
��

C0(R
n)oG

πG
//

π
��

C∗(G) // 0

0 // K // C∗(Rn,F)
πF
// C∗(G) // 0

where εH denotes the trivial representation of H = Rn−1 o SL(n − 1,R). The
reduced crossed product C0(R

n
\ {0})or SL(n,R) is Morita equivalent to C∗r (H).

Note that the trivial representation C∗(H)→ C is not defined at the level of
C∗r (H) when the group H is not amenable.

The reduced C∗-algebra C∗r (R
n,F) of this foliation is the quotient of C0(R

n)oG
corresponding to the sum of the two covariant representations on L2(�)= L2(Rn)

and {0}×G.

Remark 2.5. In the sequel we use (almost) only the full C∗-algebra to ensure that
our sequences are exact and the trivial representation exists. This is legitimate from
the point of view of the Baum–Connes conjecture, since the assembly map factors
through the K-theory of the full C∗-algebra anyway.

2.C. Two examples of foliations of singularity height 1 given by linear actions.
In this section we compute the K-theory for two simple examples of foliations of
singularity height 1 coming from linear actions. In the height 1 case, this can be
done rather easily, using six-term exact sequences of K-theory groups and standard
K-theory results. The (nonlinear) examples of R-actions (see Example 1.7(d)) are
discussed in Section 2.D.

2.C.1. The SO(3)-action. In this section we consider the foliation (R3,F) defined
by the action of SO(3) on R3 (see Example 1.7(a)).

Holonomy groupoid and exact sequences. As discussed in Examples 1.7, H(F)=
(SO(3)× {0}) t (R∗

+
× S2

× S2) and F is nicely decomposable, in the sense of
Definition 1.4 with �0 = R3

\ {0} and G1 = R3 oSO(3).
Note that SO(3) is compact and therefore amenable, so the reduced and full

crossed product C∗-algebras coincide. The (full and reduced) C∗-algebra of G0 is
the crossed product C0(R

3)oSO(3).
Writing R3

\{0} =R∗
+
×S2, we find that C∗(G|�0)=C0(R

∗
+
)⊗(C(S2)oSO(3))

and C∗(M,F)|�0 =C0(R
∗
+
)⊗K(L2(S2)). Now Figure 1 reads as in Figure 3. Here

q̂ = idC0(R
∗
+)
⊗q , where q :C(S2)oSO(3)→K(L2(S2)) is obtained by integration

along the fibers of the groupoid morphism (t, s) : S2 oSO(3)→ S2
× S2.

Calculation of K-theory with mapping cones. To describe the foliation C∗-algebra
we give an interpretation of Figure 3 using mapping cones.
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0 // C0(R
∗
+
)⊗(C(S2)oSO(3))

q̂
��

i
// C0(R

3)oSO(3) //

π

��

C∗(SO(3)) // 0 (ES1)

0 // C0(R
+
∗
)⊗K(L2(S2)) // C∗(R3,F) // C∗(SO(3)) // 0 (ES2)

Figure 3. Exact sequences for the SO(3) action.

C∗(SO(3))

ρ
''

j
// C(S2)oSO(3)

q
��

K(L2(S2))

Figure 4. Mapping cones for the SO(3) action.

Let ρ :C∗(SO(3))→K(L2(S2)) be the natural representation of SO(3) on L2(S2).
We thus have the diagram in Figure 4, where j : C∗(SO(3))→ C(S2)oSO(3) is
the morphism induced by the unital inclusion C→ C(S2).

Identify C0(R
3) with the mapping cone of C→ C(S2). Taking crossed products

by the action of SO(3) and using the diagram in Figure 3, we find:

• The crossed product C∗-algebra C0(R
3)o SO(3) in extension (ES1) is the

mapping cone Cp, where p is the map j : C∗(SO(3))→ C(S2)oSO(3).

• The foliation C∗-algebra C∗(R3,F) in extension (ES2) is the mapping cone Cρ .

To describe C∗(F), it suffices to describe the representation

ρ : C∗(SO(3))→ K(L2(S2)).

It follows from the Peter–Weyl theorem that C∗(SO(3))=
⊕

m∈N M2m+1(C) and
K0(C∗(SO(3)))= Z(N) (and K1(C∗(SO(3)))= {0}).

In order to compute the map ρ∗ : K0(C∗(SO(3)))→ Z, we have to understand
how many times the representation σm (of dimension 2m + 1) appears in ρ, i.e.,
count the dimension of HomSO(3)(σm, ρ).

Since S2
= SO(3)/S1, the representation ρ is the representation IndSO(3)

S1 (ε) in-
duced by the trivial representation ε of S1. Using the Frobenius reciprocity theorem,
we know dim(HomSO(3)(σm, ρ))= dim(HomS1(σm, ε))= 1.

It follows that the map ρ∗ : K0(C∗(SO(3)))→ Z is the map which sends each
generator [σm] of K0(C∗(SO(3))) to 1. We immediately deduce:

Proposition 2.6. We have K0(C∗(F))= ker ρ∗'Z(N) and K1(C∗(F))= 0. �
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Remark 2.7. In the same way, one may easily compute

j∗ : K0(C∗(SO(3))→ K0(C(S2)oC∗(SO(3)) and K∗(C0(R
3)oSO(3)).

In fact, this is a classical result, which states that the algebra C(S2)oC∗(SO(3)) is
Morita equivalent to C∗(S1) and the morphism j∗ : K0(C∗(SO(3)))→ K0(C∗(S1))

is the restriction morphism R(SO(3))→ R(S1), where R(G)= K0(C∗(G)) is the
representation ring of a compact group G; see [Rieffel 1976; Julg 1982].

It follows that j∗([σm]) =
∑m

k=−m[χk], where the (χk)k∈Z are the characters
of S1. The morphism j∗ is therefore (split) injective, and we find

K0(C0(R
3)oSO(3))= 0,

K1(C0(R
3)oSO(3))' Z(N).

2.C.2. The SL(2,R)-action. We consider the foliation on R2 induced by the action
of SL(2,R). Recall the following:

(a) SL(2,R) is not compact and not amenable, but it was shown in [Kasparov
1984] to be KK-amenable.

(b) Its maximal compact is S1.

(c) The action of SL(2,R) on R2
\ {0} is transitive and the stabilizer of the point

(1, 0) is the set of matrices of the form
( 1

0
t
1

)
. Hence the action groupoid

(R2
\{0})oSL(2,R) is Morita equivalent to the group R. So the crossed prod-

uct C0(R
2
\{0})oSL(2,R) is Morita equivalent to the group C∗-algebra C∗(R).

(d) It follows as above from Lemma 1.3 (see also [Androulidakis and Skandalis
2009, Example 3.7]) that the associated holonomy groupoid is

H(F)= (R2
\ {0}×R2

\ {0})∪ {0}×SL(2,R).

It follows that this foliation is nicely decomposable of singularity height 1 with
G = G0 = R2 oSL(2,R) (see Remark 1.6). Here the diagram of Figure 1 reads as
in Figure 5. Recall that the C∗-algebras involved are full C∗-algebras.

0 // (C0(R
2
\ {0}))oSL(2,R)

ι
//

π1

��

C0(R
2)oSL(2,R) //

π

��

C∗(SL(2,R)) // 0

0 // K(L2(R2
\ {0})) // C∗(F) // C∗(SL(2,R)) // 0

Figure 5. Exact sequences for the SL(2,R) action.
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Direct Calculation of K-theory. The short exact sequence

0→ K(L2(R2
\ {0}))→ C∗(F)→ C∗(SL(2,R))→ 0

gives the 6-term exact sequence

K0(K(L2(R2
\ {0}))) // K0(C∗(F)) // K0(C∗(SL(2,R)))

��

K1(C∗(SL(2,R)))

OO

K1(C∗(F))oo K1(K(L2(R2
\ {0})))oo

We have K0(K(L2(R2
\{0})))=Z and K1(K(L2(R2

\{0})))= 0. On the other hand,
using the Connes–Kasparov conjecture proved in [Kasparov 1984; Wassermann
1987], we have K1(C∗(SL(2,R)))= 0. We conclude that

K1(C∗(R2,F))= 0 and K0(C∗(R2,F))= Z⊕ K0(C∗(SL(2,R)))= Z⊕Z(Z).

Calculation of K-theory with mapping cones. Although the above construction is
quite direct, it may be worth examining a construction following the general pro-
cedure of Section 2.A (Proposition 2.1).

To apply the mapping cones approach we gave in Section 2.A, we need the
following result, which follows from [Kasparov 1984; 1988].

Proposition 2.8. Let SL(2,R) act on a C∗-algebra A by automorphisms. The
algebras AoSL(2,R) and Ao S1 are KK-equivalent.

Proof. The Lie group S1 is a maximal compact subgroup of SL(2,R). Note also
that SL(2,R)/S1 is the Poincaré half plane and therefore admits a complex struc-
ture, and hence an SL(2,R)-invariant spinc structure. The result follows from
[Kasparov 1984]. �

It follows in fact from [Kasparov 1984] that the exact sequences

0→ C0(R
2
\ {0})oSL(2,R)→ C0(R

2)oSL(2,R)→ C∗(SL(2,R))→ 0

and
0→ C0(R

2
\ {0})o S1

→ C0(R
2)o S1

→ C∗(S1)→ 0

are KK-equivalent. We note the following:

• K0(C∗(SL(2,R)))= K0(C∗(S1))= Z(Z), and K1 = 0.

• Since S1 acts freely on R2
\{0}with quotient R∗

+
, it follows that C0(R

2
\{0})oS1

is Morita equivalent to C0(R
∗
+
); also since SL(2,R) acts transitively on R2

\{0}
with stabilizers isomorphic to R, it follows that C0(R

2
\ {0})o SL(2,R) is

Morita equivalent to C∗(R). It follows that K1(C(R2
\ {0})o SL(2,R)) =

K1(C(R2
\ {0})o S1)= Z and K0 = 0.
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• Using the complex structure of R2, we have a Bott isomorphism between
K∗(C0(R

2)o S1) and K∗(C∗(S1)). It follows that K0(C(R2)o SL(2,R)) =

K0(C(R2)o S1)= Z(Z), and K1 = 0.

From this discussion, it follows that the morphism

ι : C0(R
2
\ {0})oSL(2,R)→ C0(R

2)oSL(2,R)

induces the 0 map in K-theory, and so does the map π :C0(R
2
\{0})oSL(2,R)→K.

Remark 2.9. Denoting by (χn)n∈Z the characters of S1, for each n the image of
[χn] ∈ K∗(C0(R

2)oS1) by C0(R
2)oS1

→C∗(S1) (evaluation at 0) is [χn]−[χn+1].
This morphism is one to one and its image is the set of elements in R(S1) of
dimension 0.

As the maps ι and π induce the 0 map in K-theory, we find as above from
Proposition 2.1.

Proposition 2.10. Let F be the foliation defined by the action of SL(2,R) on R2.
We have

K0(F)'K0(C0(R
2)oSL2(R))⊕K0(K)⊕K1(C0(R

2
\{0})oSL2(R))'Z(N)⊕Z⊕Z

and K1(F)= 0. �

Note that we have a split short exact sequence 0→ K0(C0(R
2)o SL2(R))→

K0(C∗(SL2(R))) → K1(C0(R
2
\ {0}) o SL2(R)) → 0, and thus the results of

Proposition 2.10 and the direct calculation (Section 2.C.2) are coherent.

2.C.3. Generalizations. The examples introduced above can be extended to the
action of SO(n) or SL(n,R) on Rn . Let us discuss here a slightly more general
situation which still gives singularity height 1 foliations.

Subgroups of SO(n). Let G be a connected closed subgroup of SO(n). Assume
that its action on Sn−1 is transitive, and let H ⊂ G be the stabilizer of a point
in Sn−1. Denote by F the foliation of Rn associated with the action of G. Exactly
as in the case of the action of SO(3) ∈ R3, we find that

• H(F)= (G×{0})t (R∗
+
× Sn−1

× Sn−1);

• C∗(Rn,F) is the mapping cone of the morphism C∗(G)→ K(Sn−1).

• The map R(G)→ Z corresponding to this morphism associates to a (virtual)
representation σ the (virtual) dimension of its H fixed points. It is onto, and
therefore K0(C∗(Rn,F))= Z(N) and K1(C∗(Rn,F))= 0.
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Subgroups of GLn . Now let G be a closed connected subgroup of GL(n,R). As-
sume that its action on Rn

\ {0} is transitive, and let H ⊂ G be the stabilizer of a
nonzero point in Rn . As for the case of SL(2,R) acting on R2, we have:

• The holonomy groupoid is H(F)= ((Rn
\ {0})× (Rn

\ {0}))t (G×{0}).

• We have an exact sequence of full C∗-algebras

0→ K(L2(Rn
\ {0}))→ C∗(Rn,F)→ C∗(G)→ 0,

and therefore an exact sequence

0→ K1(C∗(Rn,F))→ K1(C∗(G))
∂
−→ Z→ K0(C∗(Rn,F))→ K0(C∗(G))→ 0.

In order to try and compute the connecting map ∂ , we may use the diagram
of Figure 1. Note that the groupoid (Rn

\ {0})oG is Morita equivalent to the
group H . Following this diagram, the connecting map ∂ is the composition
of the trivial representation of H of with the connecting map

∂ ′ : K1(C∗(G))→ K0(C0(R
n
\ {0})oG)' K0(C∗(H)).

An example of this kind is of course SL(n,C)⊂ SL(2n,R). The stabilizer group
of a z ∈ Cn

\ {0}, say z = (1, 0, . . . , 0), is the group of matrices in SL(n,C) whose
first row is z. That is Cn−1 oSL(n− 1,C).

Another example is given by G = G1×R∗
+

, where G1 is a connected closed
subgroup of SO(N ) whose action on Sn−1 is transitive, and R∗

+
acts by similari-

ties. Note that if F1 is the foliation defined by the action of G1, there is a natural
action of R∗

+
on H(F1) and H(F) is a semidirect product H(F1)oR∗

+
; we find

C∗(Rn,F) = C∗(Rn,F1)o R∗
+

. Thanks to the Connes–Thom isomorphism, the
algebras C∗(Rn,F) and C∗(Rn,F1) have the same K-theory up to a shift of di-
mension.

2.D. Actions of R on manifolds. Now we come to Example 1.7(d), which also
belongs to the case of height 1 foliations. Let M be a manifold endowed with a
smooth action α of R. Let F be the foliation associated with this action — i.e.,
with the groupoid M oα R. We keep the notation of Example 1.7(d). There are
several papers concerned with actions of R and the computation of the associated
C∗-algebra; see [Torpe 1985; Wang 1987; Hirsch and Wang 1987]. The particular
difficulty with the general case we examine here comes from the (interior of the)
set where the vector field vanishes, and partly also from those points where the
vector field is periodic.

We showed that F is nicely decomposable in the sense of Definition 1.4. Here
we compute the K-theory using an exact sequence. Note that in this example, in
the presence of periodic points, the groupoid G0 is not always Hausdorff and its
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classifying space for proper actions is not a manifold. Therefore Theorem 5.13
does not apply directly.

From Proposition 1.9 we deduce that the groupoid G′1 −→−→M which coincides
with H(F) on the complement of W and with W ×R on W is a (not necessarily
Hausdorff) Lie groupoid and gives rise to the nice decomposition (W −→−→ W,
G′1 −→−→M) of F . We exploit this one in the computations below.

Put also Y = M \W .

2.D.1. Exact sequence of fixed points.

Proposition 2.11. The KK 1-element associated with the exact sequence

0→ C0(W )→ C∗(M,F)→ C∗(M,F)|Y → 0 (ES3)

is 0.

Proof. The corresponding exact sequence for the groupoid G′1 givers rise to the
following diagram:

0 // C0(W ) // // C∗(M,F) // C∗(M,F)|Y // 0 (ES3)

0 // C0(W ×R) //

ev0

OO

C∗(G′1) //

OO

C∗(G′1)|Y // 0 (ES4)

Denote by z1, z2 the KK 1 elements associated with the exact sequences (ES3)
and (ES4). We have z1 = (ev0)∗(z2). But (ev0), which is the map induced by the
inclusion x 7→ (x, 0) from W to W ×R, is the 0 element in KK , whence z1 = 0 as
claimed. �

We immediately deduce:

Corollary 2.12. We have K∗(C∗(M,F))= K∗(C0(W ))⊕ K∗(C∗(M,F)|Y ).
�

If all periodic points are in fact fixed, i.e., if Per(α)= W , then, using Connes’
Thom isomorphism [Connes 1981], this computation yields:

Corollary 2.13. Assume that all the periodic points are in fact fixed. The K-theory
group of C∗(M,F) is

K∗(C∗(M,F))= K∗(C0(W ))⊕ K∗(C0(Y )oR)

= K∗(C0(W ))⊕ K1−∗(C0(Y )). �

Remark 2.14. Corollary 2.13 can be interpreted by saying that, when there are
no nontrivial stably periodic points, the classifying space of proper actions of the
holonomy groupoid is W tY ×R. The associated assembly map is an isomorphism.
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2.D.2. The stably periodic points. In the presence of nontrivial stable periodic
points, the complete computation of the K-theory is not so simple. Even in the
regular case, this computation is quite hard. See, e.g., [Torpe 1985].

As a consequence of Proposition 1.9 we find:

Proposition 2.15. The set P̂er(α)= Per(α) \W of nontrivial stably periodic points
is open.

Proof. By Proposition 1.9, the set W is closed in Per(α), whence its complement
is open in Per(α)— and therefore in M , since Per(α) is open. �

For x ∈ P̂er(α), let p(x) ∈ R+ be the infimum of the set of t > 0 such that
(x, t) ∈ M ×R is the trivial element in H(F). By [Debord 2013] it follows that
p(x) > 0 and (x, p(x)) is the trivial element in H(F).

Proposition 2.16. The map p : P̂er(α)→ R+ is smooth.

Proof. Since (x, p(x)) is the trivial element in H(F), there exists an open neigh-
borhood U ⊂ P̂er(α) of x and a bounded (below and above) smooth function
f : U → R∗

+
such that (y, f (y)) ∈ P for all y ∈ U and p(x) = f (x). For y ∈ U ,

since U is a neighborhood of y, it follows that f (y) is a multiple of p(y). We
consider two cases.

• Assume X (x) = 0. Let m ∈ R+ be such that f (y) ≤ m for all y ∈ U . Put
V = {x ∈ U : ∀ t ∈ [0,m], αt(x) ∈ U }; by compactness of [0,m] it is an open
subset of U . Then by periodicity, V is invariant by αt , t ∈ R. For y ∈ V and
t ∈ [0, T ], as f (αt(y)) is a multiple of p(αt(y))= p(y), it follows by continuity
of f that f (αt(y))= f (y). Replacing X by (1/ f )X , we get an action of S1 on V.

Since S1 is compact, Bochner’s linearization theorem [1945] says that in an open
and S1-equivariant neighborhood U ′ of x the S1-action is actually a linear repre-
sentation of S1, which is faithful since f (x)= p(x). It follows that p(y)= f (y)
for all y ∈U ′.

• Assume X (x) 6= 0. Then x is periodic of period p(x)/k with k ∈ N∗. Now
choose a transversal T at x ; we get an action of Z/kZ, and applying Bochner’s
linearization theorem again, we conclude f (y)= p(y) in a neighborhood of x . �

When restricting to P̂er(α), we may therefore replace X by 1
p X and obtain an

action of S1. The foliation groupoid is then W t P̂er(α)o S1
t (M \Per(α))oR.

Remarks 2.17. (a) The building blocks of C∗(M,F) are the algebras C0(W ),
C0(P̂er(α))o S1 and C0(M \ Per(α))o R. For each of them there is of course
a topological K-theory and a Baum–Connes map. Actually, since the first two
are given by compact group actions, they are their own “left-hand side”! The
“left-hand side” for C0(M \ Per(α))oR given by Connes’ Thom isomorphism is
(M \Per(α))×R.



A BAUM–CONNES CONJECTURE FOR SINGULAR FOLIATIONS 587

(b) We already noticed that K∗(C∗(M,F)) = K∗(W ) ⊕ K∗(C∗(M,F)|Y ). To
compute K∗(C∗(M,F)|Y ) we may use the exact sequence

0→ C0(P̂er(α))o S1
→ C∗(M,F)|Y → C0(M \Per(α))oR→ 0 (ES5)

In order to compute the connecting map of this sequence we note that we have
a diagram:

0 // C0(P̂er(α))o S1 // C∗(F)|Y // C∗(M,F)|M\Per(α) // 0 (ES5)

0 // C0(P̂er(α))oR //

q

OO

C0(Y )oR //

OO

C0(M \Per(α))oR // 0 (ES6)

Denote by z3, z4 the KK 1 elements associated with the exact sequences (ES5)
and (ES6). We have z3 = q∗(z4)= z4⊗[q]. To compute z3 we then remark:

• Through Connes’ Thom isomorphism

KK 1(C0(M \Per(α))oR,C0(P̂er(α))oR)= KK 1(C0(M \Per(α)),C0(P̂er(α)))

the element [z4] corresponds to the exact sequence of commutative algebras

0→ C0(P̂er(α))→ C0(Y )→ C0(M \Per(α))→ 0

• Under the Takesaki–Takai isomorphism C0(P̂er(α))⊗K' (C0(P̂er(α))o S1)oZ

the element [q] in

KK (C0(P̂er(α))oR,C0(P̂er(α))o S1)

= KK 1(C0(P̂er(α)),C0(P̂er(α))o S1)

= KK 1((C0(P̂er(α))o S1)oZ,C0(P̂er(α))o S1)
is the one associated to the Pimsner–Voiculescu exact sequence

0→ B⊗K→ T→ B oZ→ 0

(here B = C0(P̂er(α))o S1).

3. Larger singularity height and telescope

In this section we extend the constructions of Section 2 to singular foliations of
arbitrary singularity height. The mapping cone of Section 2 is replaced by a tele-
scope. We start by recalling telescope constructions.
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3.A. Mapping telescopes. Let us recall the following construction of C∗-algebras:

Definition 3.1. Let n ∈ N∪ {+∞}. Given C∗-algebras (Bk)0≤k<n and (Ik)1≤k<n

and morphisms αk : Ik→ Bk−1 and βk : Ik→ Bk , we define the associated telescopic
C∗-algebra

T ((αk)1≤k<n, (βk)1≤k<n)

to be the C∗-algebra comprising

((φk)0≤k<n, (xk)1≤k<n) ∈
∏

0≤k<n

Bk[k, k+ 1]×
∏

1≤k<n

Ik

such that

• for 1≤ k < n we have φk(k)= βk(xk) and φk−1(k)= αk−1(xk),

• φ0(0)= 0,

•

{
φn−1(n)= 0 if n 6= +∞,
limk→+∞ ‖φk‖ = limk→+∞ ‖xk‖ = 0 if n =+∞.

Remark 3.2. A particular case of a telescope is when Ik = Bk−1 and αk = idIk .
We denote just by T (β) the associated mapping telescope T (id, β). In that case,
if n =∞, let us also denote by B∞ the inductive limit of the system (Bk, βk). We
then have an exact sequence

0→ T (β)→ T ′(β)→ B∞→ 0, (3.3)

where T ′(β) is the set of elements that have a limit at∞: it is the inductive limit of
T ′k (β) (i.e., the closure in M(T (β)) of the increasing union of T ′k (β)) where T ′k (β)
is the algebra of functions that become constant after k, i.e., such that φ` is constant
for `≥ k — and of course equal to the image in B` of the element φk(k) ∈ Bk . Note
that we have a diagram

0 // T (β) //

��

T ′(β) //

��

B∞ // 0

0 // B∞(0,+∞) // B∞(0,+∞] // B∞ // 0

It follows that the composition of the element in E1(B∞, T (β)) given by the exact
sequence (3.3) with the morphism T (β)→ B∞(0,+∞) is the unit element of
E1(B∞, B∞(0,+∞))= E(B∞, B∞).

Using this remark, one obtains the following results (cf. [Rosenberg and Scho-
chet 1987]):

Proposition 3.4. (a) If Ik and Bk are E-contractible, then T (α, β) is also E-
contractible.

(b) If (Bk, βk) is an inductive system of E-contractible C∗-algebras, then their
inductive limit B∞ is E-contractible.
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(c) If (Bk, βk) is an inductive system of C∗-algebras then T ′(β) is E-contractible
and the element in E1(B∞, T (β)) given by the exact sequence (3.3) is invertible.

Proof. (a) Indeed, we have a unital ring morphism∏
E(Bk, Bk)→ E

(⊕
Bk,

⊕
Bk

)
and it follows that if the Bk are E-contractible, then

⊕
Bk is E-contractible. Since⊕

Bk and
⊕

Ik are E-contractible, then by the exact sequence

0→
⊕

Bk(0, 1)→ T (α, β)→
⊕

Ik→ 0,

the telescope T (α, β) is E-contractible.

(b) Since the telescope T (β) is E-contractible, the algebra B∞ is E-contractible
since, by Remark 3.2, it is E-subequivalent to T (β).

(c) We have (split) exact sequences 0→ Bk(k, k + 1] → T ′k+1(β)→ T ′k (β)→ 0
and it follows by induction that, for all k, T ′k (β) is KK-contractible, and therefore
E-contractible (note that T ′0 (β)= 0). It follows that the inductive limit T ′(β) is E-
contractible and therefore the exact sequence (3.3) induces an E1-equivalence. �

In fact a telescope can be expressed as a mapping torus:

Remarks 3.5. (a) Recall that given C∗-algebras A, B and morphisms u, v : A→ B
the torus C∗-algebra T(u, v) is

{(a, φ) ∈ A× B[0, 1] : u(a)= φ(0), v(a)= φ(1)}.

In fact the telescopic C∗-algebra T (α, β) identifies with the torus C∗-algebra
T(qα, qβ) of the morphisms qα, qβ :

⊕n
k=1 Ik→

⊕n
k=0 Bk defined by

qα((xk)k)= (0, α1(x1), . . . , αk(xk), . . .)

and
qβ((xk)k)=

{
(β0(x1), . . . , βn−1(xn), 0) if n ∈ N,

(βk(xk+1))k∈N if n =+∞.

(b) In turn, a mapping torus is easily seen to be K-equivalent to a mapping cone.
Let A, B be C∗-algebras and j± : A→ B ∗-homomorphisms. Let j : A(R∗

+
)→ B(R)

be the ∗-homomorphism defined by

j (φ)(t)=


j+(φ(t)) if t > 0,
0 if t = 0,
j−(φ(−t)) if t < 0.

Then T( j+, j−)(R∗+) is canonically isomorphic with C j .
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Indeed,

T( j+, j−)(R∗+)

=
{
(φ, ψ) ∈ A(R∗

+
)× B(R∗

+
×[0, 1]) : ψ(t, 0)= j+(φ(t)), ψ(t, 1)= j−(φ(t))

}
and

C j =

(φ,ψ)∈ A(R∗
+
)×B(R×R+) : ψ(t, 0)=


j+(φ(t)) if t > 0,
0 if t = 0,
j−(φ(−t)) if t < 0,


=

{
(φ,ψ)∈ A(R∗

+
)×B(R×R+\{(0, 0)}) : ψ(t, 0)=

{
j+(φ(t)) if t > 0,
j−(φ(−t)) if t < 0

}
are isomorphic through the homeomorphism (r, θ) 7→ (r cosπθ, r sinπθ) from
R∗
+
×[0, 1] onto (R×R+) \ {(0, 0)}.

3.B. The telescope of nicely decomposable foliations. Let (M,F) be a nicely
decomposable foliation of height n ∈ N ∪ {∞} in the sense of Definition 1.4.
Generalizing the case n = 1, we construct a C∗-algebra which is E-equivalent
with the (full) foliation C∗-algebra. We are thus given open subsets (Wk)k<n+1,
groupoids Gk −→−→Wk and morphisms Gk |Wk∩Wk−1→ Gk−1 satisfying the conditions
of Definition 1.4.

Let �k =
⋃

j≤k W j be the sequence of strata of this decomposition and Yk =

�k \ �k−1. Since F is assumed to be nicely decomposable, we are given Lie
groupoids Gk −→−→Wk and morphisms of Lie groupoids qk : Gk |�k−1 → Gk−1 such
that Gk |Yk = H(Yk,F).

For every 0≤ k < n+1 consider the full C∗-algebras Ak =C∗(�k,F) and Bk =

C∗(Gk) and the morphism obtained by integration along the fibers pk : Bk→ Ak .
Put also Qk = C∗(Gk |Yk ). We have the diagram in Figure 6. Here the map qk

is integration along the fibers of the groupoid morphism qk : Gk+1|�k → Gk and
πk = pk ◦ qk : Ik → Ak . The quotient algebras Bk/Ik−1 and Ak/Ak−1 coincide
(with Qk).

Let ι̃k : Ak → C∗(M,F) = An be the inclusion. As for every k < n we have
ι̃k◦πk= ι̃k◦pk◦qk= ι̃k+1◦pk+1◦ jk+1, we get a morphism9 :T (q, j)→ An(0, n+1)
defined by 9((φk)0≤k<n+1, (xk)1≤k<n+1)(t)= ι̃k ◦ pk(φk(t)) for t ∈ [k, k+ 1].

Theorem 3.6. With the above notation, the class in E(T (q, j), An(0, n + 1)) of
the morphism 9 is invertible.

Proof. Let B = { f ∈ An(0, n+ 1] : ∀t ∈ R∗
+
,∀k ∈ N, t − 1≤ k ≤ n⇒ f (t) ∈ Ak}

and put J = { f ∈ B : f (n+ 1)= 0}.
The inclusion J → An(0, n+ 1) is an E-equivalence (cf. [Rosenberg and Scho-

chet 1987] — if n <+∞, it is a KK-equivalence). Its inverse is given by the exact
sequence 0→ J → B→ An→ 0.
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0 // Ik

πk

��

jk+1
//

qk

��

Bk+1

pk+1

��

// Qk+1 // 0

Bk

pk��

0 // Ak
ιk

//

ι̃k &&

Ak+1 //

ι̃k+1��

Ak+1/Ak // 0

C∗(M,F)

Figure 6. Short exact sequences of strata.

For ` ∈N, `≤ n, put J` = { f ∈ J : f (t)= 0 if t ≥ `+1} and let T` be the ideal

T` = {((φk)0≤k<n+1, (xk)1≤k<n+1) ∈ T : ∀k > n, φk = 0 and xk = 0}.

Let us show by induction that the morphism 9` : T`→ J` induced by 9 is an
E-equivalence:

• 90 is an isomorphism (and the case `=1 follows from the proof of Proposition 2.1).

• We have an exact sequence

0 // T`−1 //

9`−1
��

T` //

9`
��

C j`
//

p̃`
��

0

0 // J`−1 // J` // Cι`−1
// 0

where p̃` : C j`→ Cι`−1 is the morphism induced by p` : B`→ A` at the cone level.
Examining Figure 6, as j` and ι`−1 are inclusions of ideals and p` induces an

isomorphism B`/I`→ A`/A`−1, we deduce that p̃` is E-invertible. We thus obtain
the induction step.

If n is finite, the proof is complete.
If n = +∞, the mapping cones C9` are E-contractible for all ` and it follows

that their inductive limit C9 is E-contractible. �

4. Longitudinally smooth groupoids and equivariant KK-theory

We proved in Theorem 3.6 that the telescopic algebra T (q, j) has the same K-
theory as C∗(M,F). In the next section, we will build a Baum–Connes map for the
telescopic algebra T (q, j), which will give us a Baum–Connes map for C∗(M,F).

The telescopic algebra T (q, j) associated with a nicely decomposable foliation,
as well as the foliation algebra itself (thanks to [Debord 2013]), is the C∗-algebra
of a longitudinally smooth groupoid in a sense that we briefly describe here.
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Note that all the constructions we give below generalize easily to groupoids that
are covered by C∞,0 manifolds or even locally compact spaces with Haar measures.

4.A. Some “classical” constructions with Lie groupoids. Before proceeding to
explain this construction, we recall some constructions based on Lie groupoids
that we use.

Pull-back groupoid. Let G
t,s
−→−→G(0) be a Lie groupoid, M a smooth manifold and

q : M→ G(0) a smooth submersion. The pull-back groupoid Gq
q is a subgroupoid

Gq
q = {(x, γ, y) ∈ M ×G×M : q(x)= t (γ ) and q(y)= s(γ )}

of the product groupoid of G with the pair groupoid M ×M . As q is supposed to
be a submersion, Gq

q is a Lie groupoid (actually, a transversality condition suffices).
If q(M) meets all the G-orbits, the groupoids G and Gq

q are canonically Morita
equivalent.

Actions on spaces. Recall that an action of a groupoid G
t,s
−→−→G(0) on a space X is

given by a map p : X→G(0) and the action G×s,p X→ X denoted by (γ, x) 7→γ.x
with the requirements p(γ.x)= t (γ ), γ.(γ ′.x)= (γ γ ′).x and u.x = x if u= p(x).

Semidirect product. If a groupoid G acts on a space X , we may form the semidirect
product groupoid X oG:

• As a set X oG = X ×t G = {(x, γ ) ∈ X ×G : t (γ )= x}.

• (X oG)(0) = X ; we have t (x, γ )= x and s(x, γ )= γ−1.x .

• The elements (x, γ ) and (y, γ ′) are composable if x = γ y; the composition
is then (x, γ )(y, γ ′)= (x, γ γ ′).

When p is a submersion, X o G is a Lie groupoid: it is the closed subgroupoid
{(x, γ, y) ∈ G p

p : x = γ.y} of G p
p.

Actions on groupoids. This construction can be generalized. If X
tX ,sX
−→−→ X (0) is a

groupoid, we say that the action is by groupoid automorphisms [Brown 1972] if G
acts on X (0) through a map p0 : X (0)

→ G(0), we have p = p0 ◦ tX = p0 ◦ sX and
γ.(xy)= (γ.x)(γ.y). There is a semidirect product construction in this generalized
setting.

4.B. Longitudinally smooth groupoids. A longitudinally smooth groupoid is a
groupoid G

t,s
−→−→G(0) such that

• its set of objects is endowed with a structure of smooth manifold (possibly
with boundary or corners);

• for every x ∈ G(0), the set Gx
= t−1({x}) also carries a smooth structure

(without boundary) and the source map s : Gx
→ G(0) is smooth with (locally)

constant rank;
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• the “smooth structure” of G itself is given by an atlas, which is a family of
smooth (Hausdorff) manifolds (Ui )i∈I (possibly with boundary or corners)
and maps qi :Ui → G.

We assume that these smooth structures satisfy the following conditions:

Compatibility. For every i ∈ I , the maps t ◦ qi and s ◦ qi are smooth submer-
sions; for every i ∈ I and every x ∈ G(0) the map qi induces a smooth submersion
q−1

i (Gx)→ Gx .

Minimal elements. For every γ ∈ G, there exists i ∈ I and z ∈ Ui such that
qi (z) = γ and the map q−1

i (G t (γ ))→ G t (γ ) is a local diffeomorphism near z. If
j ∈ I and z′ ∈ U j are such that q j (z′) = γ , then there is an open neighborhood
V ′ ⊂U j of z′ and a submersion ϕ : V ′→Ui such that qi ◦ϕ = (q j )|V ′ .

Inverse is smooth. For every i ∈ I , there exists j ∈ I and a diffeomorphism
κ :Ui →U j such that q j ◦ κ(z)= qi (z)−1 for every z ∈Ui .

Composition is smooth. For every i, j ∈ I , let Ui ◦U j be the fibered product
Ui ×s◦qi ,t◦q j U j . For every (zi , z j ) ∈Ui ◦U j , there is a k ∈ I , a neighborhood W
of (zi , z j ) in Ui ◦U j and a submersion ϕ :W →Uk such that for all (wi , w j ) ∈W
we have qi (wi )q j (w j )= qk ◦ϕ(wi , w j ).

Exactly as in [Androulidakis and Skandalis 2009], we may associate to a lon-
gitudinally smooth groupoid a C∗-algebra C∗(G) (as well as a reduced one, since
the s-fibers are assumed to be manifolds).

Examples 4.1. (a) A Lie groupoid is of course a longitudinally smooth groupoid.
The atlas is the groupoid itself!

(b) The holonomy groupoid of a singular foliation is such a longitudinally smooth
groupoid; the atlas is given by bisubmersions [Androulidakis and Skandalis 2009].

(c) The telescopic algebra T (q, j) constructed in the previous section is associated
with the groupoid G =

⋃n
k=0 Gk × (k, k + 1)∪

⋃n
k=1(Gk)�k−1∩Wk × {k}. Its set of

objects is the open subset( n⋃
k=0

Wk × (k, k+ 1)
)
∪

( n⋃
k=1

(�k−1 ∩Wk)× (k− 1, k+ 1)
)

of M ×R∗
+

.
It is endowed with the atlas formed by the Lie groupoids (Gk×(k, k+1))k∈N, k≤n

and ((Gk)�k−1∩Wk × (k− 1, k+ 1))k∈N, 1≤k≤n .

4.C. Action of a longitudinally smooth groupoid on a C∗-algebra. We now fix a
longitudinally smooth groupoid G

t,s
−→−→M with an atlas (Ui , qi )i∈I . We put si = s◦qi

and ti = t ◦ qi .



594 IAKOVOS ANDROULIDAKIS AND GEORGES SKANDALIS

4.C.1. Action of a locally compact groupoid on a C∗-algebra. For the convenience
of the reader we recall some definitions on C(X)-algebras and actions of locally
compact groupoids from [Kasparov 1988; Le Gall 1999]. In this section, all
spaces — and groupoids — are assumed to be Hausdorff.

Let M be a locally compact space.

(a) A C0(M)-algebra is a pair (A, θ), where A is a C∗-algebra and θ is a ∗-homo-
morphism from C0(M) to the center ZM(A) of the multiplier algebra of A such
that θ(C0(M))A = A.

(b) Put Ab = {a ∈M(A) : φa ∈ A for all φ ∈ C0(X)} and Ac = Cc(X)A.

(c) Let A, B be C0(M)-algebras. A homomorphism of C0(M)-algebras φ : A→ B
is a C0(M)-linear homomorphism of C∗-algebras.

(d) Let N be a locally compact space and p : N → M a continuous map. Then
C0(N ) is a C0(M)-algebra via the map θ = p∗ : C0(M)→ Cb(N )=M(C0(M)).

Let A be a C0(M)-algebra.

(e) For every x ∈M there is a fiber Ax= A/Cx A, where Cx={h∈C0(M) :h(x)=0}.
The natural map A→

∏
x∈M Ax induced by the quotient maps πx : A→ Ax is

injective. For instance, in (d), given x ∈ M the fiber C0(N )x is C0(Nx), where
Nx = p−1(x).

(f) A homomorphism of C0(M)-algebras φ : A→ B induces a homomorphism of
C∗-algebras (φx)x∈M :

∏
x∈M Ax →

∏
x∈M Bx . The homomorphism φ is injective

(surjective) if and only if φx is injective (surjective) for every x ∈ M .

(g) There are natural operations of restriction to open and closed subsets of M . If
U is an open subset of M and F = X \U , the algebra C0(U ) identifies with the
ideal C0(U )= { f ∈ C0(M) : f (y)= 0 for all y ∈ F} of C0(M). Then AU denotes
the C0(U )-algebra C0(U )A and AF the C0(F)-algebra A/AU . If Y ⊂ X is locally
closed, then Y is open in Y and AY denotes the C0(Y )-algebra (AY )Y .

(h) Let A be a C0(M) and B a C0(N )-algebra. Then A⊗max B is a C0(M × N )-
algebra. When M = N , the restriction of A⊗max B to the diagonal {(x, x) : x ∈ M}
(which is a closed subset of M ×M) is a C0(M)-algebra denoted A⊗C0(M) B.

(i) Again let A be a C0(M)-algebra and consider a smooth map p : N → M . We
denote by p∗A the C0(N )-algebra obtained by restricting A⊗C0(N ) to the graph
{(p(y), y) : y ∈ N }, which is a closed subset of M×N (here C0(N ) is regarded as a
C0(N )-algebra). It is easy to see that this construction has the following properties:

• (p∗A)y = Ap(y) for every y ∈ N ;

• if A, B are C0(M)-algebras then p∗A⊗C0(Y ) p∗B = p∗(A⊗C0(M) B);

• if q : Z→ N is a smooth map then q∗(p∗A)= (p ◦ q)∗A.
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(j) With the previous notation, for every a ∈ A we put p∗a = a⊗ 1 ∈ (p∗A)b. If
φ : A→ B is a homomorphism of C0(M)-algebras we put

p∗φ = φ⊗ idC0(N ) : p∗A→ p∗B.

(k) An action of a Lie groupoid G −→−→ M on a C0(M)-algebra A is defined in
[Le Gall 1999] by an isomorphism α of C0(G)-algebras s∗A→ t∗A. This isomor-
phism is given by a family of isomorphisms αγ : As(γ )→ At (γ ) for γ ∈ G. The
isomorphism α is required to be a representation of G, i.e., to satisfy αγ ◦γ ′ =αγ ◦αγ ′
for all (γ, γ ′) ∈ G(2) = G×s,t G.

4.C.2. Action of a longitudinally smooth groupoid. Let G
t,s
−→−→M be a longitudi-

nally smooth groupoid with an atlas (Ui , qi )i∈I . We put si = s ◦ qi and ti = t ◦ qi .

Definition 4.2. A G-algebra is a C0(M)-algebra A together with an isomorphism
of C0(Ui )-algebras αi

: s∗i A→ t∗i A for every i ∈ I .

(a) The isomorphism αi is a family (αi
u)i∈I of isomorphisms αi

u : Asi (u)→ Ati (u).
We require that if γ ∈ G is represented by two elements ui ∈Ui and u j ∈U j (with
i, j ∈ I ), then αi

ui
= α

j
u j .

(b) By (a), we get a well-defined isomorphism αγ : As(γ )→ At (γ ). We require that
for every composable γ, γ ′ ∈ G, we have αγ γ ′ = αγ ◦αγ ′ .

Definition 4.3. Let (A, α) and (B, β) be G-algebras.

(a) A morphism φ : A→ B is said to be G-equivariant if it is C0(M)-linear and
for every γ ∈ G we have φt (γ ) ◦α(γ )= β(γ ) ◦φs(γ ).

(b) More generally, let φ : A→M(B) be a morphism. Let

D = G(φ)⊕ (0⊕ B)⊂ A⊕M(B),

where G(φ)= {(x, φ(x)) : x ∈ A} is the graph of φ. We say that φ is equivariant
if there is an action of G on D such that the inclusions A→ D and B→ D are
equivariant.

Examples 4.4. (a) The algebra C0(M) is a G-algebra. For every i ∈ I , we have
t∗(C0(M))= C0(U )= s∗(C0(M)); the action α is the identity. For i ∈ I , then at
every u ∈Ui we associate the identity map (C→ C). In a sense, this corresponds
to the trivial representation.

(b) More generally, let Y ⊂ M be a locally closed saturated subset (i.e., such that
for every γ ∈ G we have t (γ ) ∈ Y if and only if s(γ ) ∈ Y ). Then C0(Y ) is an
H(F)-algebra. In that case, for every i ∈ I , we have t−1(Y ) = s−1(Y ) since Y
is saturated and t∗(C0(Y ))= C0(t−1(Y ))= C0(s−1(Y ))= s∗(C0(Y )). Again, the
action α is the identity.
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4.C.3. Covariant representations and full crossed products. Let us very briefly
extend some constructions of [Androulidakis and Skandalis 2009, §4 and 5] to
the more general case of our longitudinally smooth groupoid G −→−→M with atlas
(Ui , qi )i∈I .

• When f : N→ M is a smooth submersion of manifolds, we may define a Hilbert
C0(M)-module E f obtained by completion of the space Cc(N ;�1/2 ker(d f )) with
respect to the C0(M)-valued inner product defined by 〈ξ, η〉(x)=

∫
z∈ f −1(x) ξ(z)η(z).

This Hilbert module is endowed with an action of C0(N ).

• Let i ∈ I . We may then construct two Hilbert C∗-modules Eti and Esi over C0(M).

• As C0(M) sits in the multiplier algebra of C∗(G), every representation πG of
C∗(G) on a Hilbert space H gives rise to a representation πM of C0(M).

• The representation π is then characterized by πM and, for every i ∈ I , a unitary
Vi ∈ L(Esi ⊗C0(M)H, Eti ⊗C0(M)H) intertwining the representations of C0(U ). It
therefore defines a measurable family of unitaries Uu : Hsi (u) → Hti (u). We re-
quire that Uu only depends on the class of qi (u) in G (almost everywhere) and
that (almost everywhere) it determines a representation of the groupoid G. See
[Androulidakis and Skandalis 2009, §5.2] for the details.

Let G act on a C∗-algebra A and let πA be a representation of A on a Hilbert
space H. Using the morphism from C0(M) to the multiplier algebra of A, we
obtain a representation of C0(M) to L(H). For every i ∈ I , as the image of C0(M)
sits in the center of the multiplier algebra of A, we have representations

π
si
A : s

∗

i (A)→ L(Esi ⊗C0(M)H) and π
ti
A : t

∗

i (A)→ L(Eti ⊗C0(M)H).

A covariant representation of G and A is given by a representation of πG of
C∗(G) and a representation πA of A in the same Hilbert space H such that the
two representations of C0(M) agree and, for every i ∈ I , the unitary Vi intertwines
π

si
A ◦α

i with π ti
A .

Then the closed linear span of πA(a)πG(x), where a runs over A and x over
C∗(G), is a ∗-subalgebra of L(H).

Definition 4.5. The full crossed product A o G is the completion of this linear
span with respect to the supremum norm over all covariant representations.

Using the “regular representations” on L2(Gx), one may also construct a natural
reduced crossed product.

4.C.4. Actions of a longitudinally smooth groupoid on Hilbert modules. Let G,
(Ui )i∈I , si , ti be as above.

Let (A, α) be a G-algebra and E a Hilbert module over A. As usual, we may
define an action of G on E by saying that it is just given by an action of G on the
C∗-algebra K(E ⊕ A) in such a way that the natural morphism A→ K(E ⊕ A) is
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equivariant. This amounts to giving, for any i ∈ I , an isomorphism

α̃ : E ⊗A s∗i A→ E ⊗A t∗i A

of Banach spaces, which corresponds to a family of isomorphisms α̃u :Esi (u)→Eti (u).
We need compatibility with α, which means that for every x ∈ Asi (u) and ξ, ζ ∈Esi (u),
we have α̃u(ξ x)= α̃u(ξ)αu(x) and αu(〈ξ |ζ 〉)= 〈̃αu(ξ)|̃αu(ζ )〉.

As above, we require that α̃u only depends on the class of u in G and that the so
defined α̃γ : Es(γ )→ Et (γ ) for γ ∈ H(F) defines a morphism of groupoids, which
means that α̃γ γ ′ = α̃γ α̃γ ′ . Note also that, given an action of G on a E , we obtain
for any i ∈ I an isomorphism of C0(Ui )-algebras K(E ⊗A s∗i A)→ K(E ⊗A t∗i A)
and of their multipliers α̌U : L(E ⊗A s∗i A)→ L(E ⊗A t∗i A).

4.D. G-equivariant KK-theory. Let G
t,s
−→−→M be a longitudinally smooth groupoid

with an atlas (Ui , qi )i∈I . We put si = s ◦ qi and ti = t ◦ qi .
Here we use the apparatus developed in the previous sections to construct the

topological K-theory at the left-hand side of the Baum–Connes conjecture in clas-
sical terms (e.g., as in [Le Gall 1999]). Namely we define the groups KKG(A, B)
in Section 4.D.1. The difficulty is to construct the Kasparov product; we do this in
Section 4.D.3.

4.D.1. Equivariant Kasparov cycles. We may of course define graded G-algebras,
graded Hilbert modules, etc.

In what follows, all algebras are Z/2Z-graded and all commutators are graded
ones. Also, all the C∗-algebras and Hilbert C∗-modules that we consider are sup-
posed to be separable. Recall the following from [Kasparov 1980]:

• Let A, B be graded C∗-algebras. An (A, B) bimodule is a pair (E, πA), where
E is a B-Hilbert C∗-module and πA : A→ L(E) a representation which pre-
serves the degree. For every ξ ∈ E and a ∈ A we denote aξ = πA(a)(ξ).

• A Kasparov (A, B) bimodule is a triple (E, πA, F), where (E, πA) is an (A, B)
bimodule and F ∈ L(E) is of degree 1 (for the grading) and for all a ∈ A, the
elements [F, πA(a)], (F − F∗)πA(a) and (1− F2)πA(a) are all in K(E).

Definition 4.6. Let (A, B) be G-algebras. A G-equivariant Kasparov (A, B) bi-
module is a Kasparov (A, B) bimodule (E, πA, F) with the following properties.

(a) E is endowed with an action of G (see Section 4.C.4) and the representation
πA : A→ L(E)=M(K(E)) is G-equivariant (in the sense of Definition 4.3(b)).

(b) For every i ∈ I and h ∈C0(Ui ), we have (qαi (F⊗1)− F⊗1)h ∈K(E⊗A t∗i A).

Two G-equivariant Kasparov bimodules (E, πA, F), (E ′, π ′A, F ′) are unitarily
equivalent if there exists a G-equivariant unitary U ∈ L(E, E ′) of degree 0 which
satisfies UFU∗ = F ′ and UπA(a)U∗ = π ′A(a) for all a ∈ A.
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Denote by EG(A, B) the set of equivalence classes of G-equivariant Kasparov
bimodules. A homotopy in EG(A, B) is an element of EG(A, B[0, 1]). We define
KKG(A, B) to be the set of homotopy classes of elements of EG(A, B).

The direct sum of Kasparov bimodules induces an abelian group structure in
KKG(A, B). We define the unit element 1A ∈ KKG(A, A) as the class of (A, ιA, 0),
where ιA(a)= a ∈ K(A) for all a ∈ A, where the action of G on the C∗-module A
is the action of G on the C∗-algebra A.

4.D.2. Kasparov’s descent morphism. Given an equivariant Hilbert B module E ,
we may define the crossed product E oG = E ⊗B B oG — and the same for the
reduced crossed product. If we have an equivariant action A→ L(E), we naturally
obtain an action AoG→ L(E oG).

Let (E, F) be an equivariant Kasparov (A, B) bimodule. Let

F⊗̂1 ∈ L(E ⊗B B oG)= L(E oG).

We check as in [Le Gall 1999] that (E oG, F⊗̂1) is a Kasparov (AoG, B oG)
bimodule. This construction gives a well-defined descent morphism

jG : KKG(A, B)→ KK (AoG, B oG).

In the same way we also obtain a reduced descent morphism.

4.D.3. Kasparov product — a general approach. In order to define the Kasparov
product in this equivariant context, we need first to understand the analogue of
Kasparov’s “technical theorem” [1980, §3, Theorem 4]. It turns out that, in a
sense, the original theorem actually applies when formulated in a slightly different
way. In turn, this formulation contains many equivariant generalizations.

We start by recalling Voiculescu’s theorem on quasicentral approximate units
[Voiculescu 1990; Arveson 1977].

Lemma 4.7. Let D1 be a C∗-algebra and D2 ⊂ D1 be a closed essential two-
sided ideal. Let h ∈ D1 be a strictly positive element with ‖h‖ ≤ 1. Let b ∈ D1

and let K ⊂M(D2) be a (norm) compact subset such that [h, k] ∈ D1 for all
k ∈ K ; let ε > 0. Let f0 : [0, 1] → [0, 1] be a continuous function such that
f (0) = 0. Then there exists continuous f : [0, 1] → [0, 1] such that f (0) = 0,
f0 ≤ f , ‖b− f (h)b‖< ε and ‖[ f (h), k]‖< ε for all k ∈ K . �

The following result is in fact proved in [Kasparov 1980, §3, Theorem 4]. For-
mulated in this way, it further contains many generalizations of the Kasparov prod-
uct [Kasparov 1988; Baaj and Skandalis 1989; Le Gall 1999]. One immediately
sees that Higson’s proof [1987] applies, so we omit it.

If J is a closed two-sided ideal in a C∗-algebra B, then

M(B; J )= {x ∈M(B) : x B ⊂ J }.
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Theorem 4.8. (cf. [Kasparov 1980, §3, Theorem 4]) Let D1 be a separable graded
C∗-algebra and D2 a graded closed essential two-sided ideal in D1. Consider
b ∈M(D1; D2)+. Let also A1 be a graded C∗-subalgebra of D1 containing a
strictly positive element of D1 and such that A2 = A1 ∩ D2 contains a strictly
positive element of D2. Let K ⊂M(D2) be a compact subset such that, for every
x ∈ A1 and every k ∈ K , we have [x, k] ∈ D1. Then there exists M ∈M(A1; A2)

(0)

such that 0≤ M ≤ 1, (1−M)b ∈ D2 and [M, K ] ⊂ D2. �

One obtains easily a formulation which encodes many equivariant formulations
of the product.

Notation 4.9. Let D be a separable graded C∗-algebra and A ⊂ D a subalgebra
containing a strictly positive element of D(0).

Let I denote the set of graded closed two-sided essential ideals I of D such that
I ∩ A(0) contains a strictly positive element of I .

Let D1, D2 ∈ I be such that D2 ⊂ D1. Put Ai = Di ∩ A. Denote by EA(D1, D2)

the set of F ∈M(A2)
(1) such that for all x ∈ D1, we have

x(1− F2) ∈ D2, x(F − F∗) ∈ D2, [x, F] ∈ D2.

In other words (A2, F) is a Kasparov (A1, A2) bimodule and (D2, F) is a Kasparov
(D1, D2) bimodule.

Theorem 4.10. Let D0, D1, D2 ∈ I such that D2⊂ D1⊂ D0. Let F1 ∈ EA(D0, D1)

and F2 ∈ EA(D1, D2). Let

F1]F2 = {F ∈ EA(D0, D2) : F − F2 ∈M(A1; A2), [F, F1] ∈M(A2)++ A2}.

(a) For every F1 ∈ EA(D0, D1) and F2 ∈ EA(D1, D2) the set F1]F2 is nonempty
and path connected.

(b) The path connected component of F ∈ F1]F2 in EA(D0, D2) only depends on
the path connected components of F1 ∈ EA(D0, D1) and of F2 ∈ EA(D1, D2).

(c) (Associativity). Let D3∈I with D3⊂D2 and F3∈EA(D2, D3). Let F ′1∈ F1]F2

and F ′2 ∈ F2]F3. Then F ′1]F3 and F1]F ′2 are contained in the same path
connected component of EA(D0, D3).

Proof. The proof is exactly the same as in the “classical” case (cf. [Kasparov 1980;
Connes and Skandalis 1984; Skandalis 1984b]).

For instance, to establish that F1]F2 is nonempty, we take Q = C∗(D0, F1, F2).
Let K be a compact subset of Q generating Q as a closed space and let b be a
strictly positive element of Q ∩M(D1; D2). Apply then Theorem 4.8, and put
F = M1/2 F1+ (1−M)1/2 F2.
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If we start with paths F t
1 ∈ EA(A0, A1), F t

2 ∈ EA(A1, A2), we just take a bigger
algebra: Q = C∗(A0, {F t

1, F t
2 : t ∈ [0, 1]}). The associativity is proved exactly as

Lemma 22 in [Skandalis 1984b]. �

We now introduce further notation in order to relate this theorem with equivari-
ant KK-theory.

Notation 4.11. Let A,A be separable graded C∗-algebras. Let ϕ,ψ :M(A)→M(A)

be two grading-preserving strictly continuous morphisms.
Let J denote the set of closed two-sided essential ideals I of A such that

ϕ(I )A = ψ(I )A.
Let A1, A2∈J be such that A2⊂ A1. Put Ai =ϕ(Ai )A. Denote by Eϕ,ψ(A1, A2)

the set of F ∈M(A2)
(1) such that

(a) for all x ∈ A1, we have x(1− F2) ∈ A2, x(F − F∗) ∈ A2, [x, F] ∈ A2 (in
other words (A2, F) is a Kasparov (A1, A2) bimodule);

(b) (ϕ−ψ)(F) ∈M(A1;A2) (the “equivariance property”).

As an immediate consequence of Theorem 4.10, we have:

Corollary 4.12. (a) For every F1 ∈ Eϕ,ψ(A0, A1) and F2 ∈ Eϕ,ψ(A1, A2) the set
F1]F2 is nonempty and path connected.

(b) The path connected component of F ∈ F1]F2 only depends on the path con-
nected components of F1 ∈ Eϕ,ψ(A0, A1) and of F2 ∈ Eϕ,ψ(A1, A2).

(c) (Associativity). Let A3 ∈ I with A3 ⊂ A2 and F3 ∈ Eϕ,ψ(A2, A3). Let
F ′1 ∈ F1]F2 and F ′2 ∈ F2]F3. Then F ′1]F3 and F1]F ′2 are contained in the
same path connected component of Eϕ,ψ(A0, A3).

Proof. Let χ :M(A)→M(A⊕M2(A)) be the morphism

x 7→ x ⊕
(
ϕ(x) 0

0 ψ(x)

)
and put D = χ(A)+ (0⊕M2(A))⊂M(A⊕M2(A)).

Let A1, A2 ∈ J be such that A2 ⊂ A1. Put

Ai = ϕ(Ai )A and Di = χ(Ai )+ (0⊕M2(Ai ))⊂ D.

We obviously have Eϕ,ψ(A1, A2)= Eχ(A)(D1, D2). Therefore, Theorem 4.10 im-
mediately applies. �

Examples 4.13. It is very easy to apply this abstract theorem (Corollary 4.12) to
many equivariant situations.

(a) (see [Kasparov 1988]) If a second countable locally compact group G acts on
separable C∗-algebras A and B, an equivariant Kasparov (A, B) bimodule is then
a pair (E, F) where:
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1. E is an (A, B)-equivariant Hilbert bimodule;

2. F ∈ Eϕ,ψ(A1, A2), where we have put
• A2 = K(E) and A1 = A+ A2,
• Ai = C0(G; A),
• ϕ,ψ :Ai→Cb(G; Ai )⊂M(Ai ) defined by ϕ(a)(g)=a andψ(a)(g)=g.a.

(b) (see [Baaj and Skandalis 1989]) Exactly in the same way, if S is a separable
Hopf algebra, given a C∗-algebra A with an action α : A→M(A⊗ S) of S, we
just put A = A⊗ S and let ϕ : a 7→ a⊗ 1 and ψ = α.

(c) (see [Le Gall 1999]) If G
s,t
⇒G(0) is a second countable locally compact groupoid,

given a C∗-algebra A with an action α : s∗A→ t∗A of G, we just put A= t∗A and
let ϕ : a 7→ t∗a ∈M(t∗A) and ψ(a)= α(s∗a).

4.D.4. Kasparov product in KKG . Let G be a longitudinally smooth groupoid with
atlas (Ui )i∈I . We assume that I is countable.

Let A0, A1, A2 be G-algebras. Let (E1, F1) and (E2, F2) be equivariant (A0, A1)

and (A1, A2) cycles. Put E = E1⊗̂A1E2. Put F ′1 = F1⊗̂1 and let F ′2 be an F2

connection. Put Ǎ2 = K(E), Ǎ1 = K(E1)⊗̂1+ Ǎ2 and Ǎ0 = A0 + Ǎ1 (where we
denote by A0 its image in L(E)).

The algebras Ǎi are G algebras, the inclusions Ǎ2 ⊂ Ǎ1 ⊂ Ǎ0 are equivariant
and the pairs ( Ǎ1, F ′1) and ( Ǎ2, F ′2) are equivariant ( Ǎ0, Ǎ1) and ( Ǎ1, Ǎ2) cycles.

Let
(U, q)=

∐
j∈I

(U j , q j ).

Let t̂ = t ◦q and ŝ = s ◦q . The action of G on Ǎ0 gives a map α : ŝ∗( Ǎ0)→ t̂∗( Ǎ0).
Put Ai = t̂∗( Ǎi ). Let ϕ : Ǎ0→M(A0) be the natural map t̂∗ defined by ϕ(x)u= xt̂(u)
for all u ∈U . Let ψ : Ǎ0→M(A0) be the composition of α with the map ŝ∗. In
other words, ψ(x)u = αu(xŝ(u)). Let also q ∈ C0(U ) be a strictly positive function.

The equivariance condition means exactly that (ϕ−ψ)(F ′i ) ∈M(Ai−1;Ai ). We
thus may apply Theorem 4.10 and obtain the existence of the Kasparov product in
KKG with the usual properties:

Theorem 4.14. There is a well-defined bilinear product

KKG(A0, A1)× KKG(A1, A2)→ KKG(A0, A2)

which is natural in all Ai ’s and associative. The element 1 acts as a unit element.
Moreover, the Kasparov product is compatible with the descent morphisms. �

5. A Baum–Connes assembly map for the telescopic algebra

In this section, we construct the Baum–Connes map for the telescopic algebra of
a nicely decomposable singular foliation.
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5.A. An abstract construction.

5.A.1. Setting of the problem. Let F be a nicely decomposable foliation. We keep
the notation of Section 3.B. We put G′k = (Gk)|�k−1∩Wk .

There is a priori a topological K-group of the Lie groupoid Gk and G′k . In or-
der to construct a topological K-group and a Baum–Connes map for T (q, j), we
first wish to understand the morphisms and mapping cones associated with the
morphisms jk and qk at the “left-hand side” level.

Let us first note that the morphism jk is just the inclusion G′k ⊂ Gk of the restric-
tion of Gk to the (saturated) open subset �k−1 ∩Wk of Wk . The mapping cone of
such a morphism is just the C∗-algebra of a Lie groupoid (restriction of Gk ×[0, 1)
to the open subset (�k−1 ∩Wk)× [0, 1)∪Wk × (0, 1)). We may then very easily
construct a topological K-group for it.

On the other hand, the morphism qk corresponds to a groupoid homomorphism
which is the identity at the level of objects (Wk) and a surjective submersion at the
level of arrows. The corresponding map at the level of topological K-groups is not
as easy. Let us also note that, even knowing the map (qk)

top
∗ at the level of K top

∗ ,
we need more in order to construct the topological K-group for the mapping cone:
this morphism only gives a short exact sequence

0→ coker(qk)
top
∗ → K top

∗ (F)→ ker(qk)
top
∗ → 0,

which is not sufficient in order to determine the group K top
∗ (F) that we seek.

In order to understand the K-theory of this mapping cone, one needs in fact
to construct (qk)

top
∗ as a KK-element. To do so, we need to write explicitly the

topological K-groups as K-groups of C∗-algebras and the Baum–Connes maps as
KK-elements. To that end we assume:

(i) The Lie groupoids Gk are Hausdorff.

(ii) The classifying spaces for proper actions of these groupoids are smooth mani-
folds. This is always the case when the groupoids Gk are given by (connected)
Lie group actions — or are Morita equivalent to those. This is indeed the case
in most singularity height 1 examples in Examples 1.7 above — in fact, also
in the examples of higher height given in Section 1.D.2.

It turns out that condition (ii) can be somewhat bypassed, thanks to the Baum–
Douglas presentation of K ∗top [Baum and Douglas 1982a; 1982b; Baum and Connes
2000; Tu 2000]. We discuss this in the Appendix.

5.A.2. The Baum–Connes map for groupoids. Let us recall some facts about the
Baum–Connes map for groupoids. (See [Baum and Connes 2000; Tu 2000].)

Let G be a Lie groupoid. If the classifying space for proper actions is a mani-
fold M , then there is no inductive limit to be taken, and replacing if necessary M
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by the total space of the vector bundle (ker dp)∗, we may assume that the equivari-
ant submersion p : M→ G(0) is K-oriented and then the topological K-group is
K∗(C0(M)o G) and the Baum–Connes map is just the wrong-way functoriality
element p̂! ∈ KK (C0(M)oG,C∗(G)) constructed in [Connes and Skandalis 1984;
Hilsum and Skandalis 1987].

In Le Gall’s equivariant KKG theory and terminology [1999] (see also [Kasparov
1988]), the Baum–Connes assembly map is the element p̂!= jG(p!), where p! is the
element of KKG(C0(M),C0(G(0))) associated with the G-equivariant K-oriented
smooth map p.

This statement is just a Poincaré duality. One easily adapts the constructions in
[Connes and Skandalis 1984]. Indeed, the groupoids G and M oG have the same
classifying space for proper actions (namely M). If X is a G-invariant, G-compact
subspace of M , by properness we find that the forgetful map

KKMoG(C0(X),C0(M))→ KKG(C0(X),C0(M))

is an isomorphism.
Using again properness of X , we see that p! ∈ KKG(C0(M),C0(G(0))) induces

an isomorphism KKG(C0(X),C0(M))→ KKG(C0(X),C0(G(0))). The inverse of
this morphism is the composition of the “induction” construction

KKG(C0(X),C0(G(0)))→ KKMoG(C0(X ×G(0) M),C0(M))

and the wrong way functoriality element j! associated with the inclusion map
j : X → X ×G(0) M . In other words, the groupoids G and M o G have the same
topological K-groups. Moreover, the groupoid M oG is proper, and therefore the
Baum–Connes conjecture holds for it [Julg 1998] (see also [Tu 1999], since proper
groupoids are amenable).

5.A.3. Submersions of Lie groupoids and “left-hand sides”. Before we proceed
and construct a topological K-group for the telescopic groupoid, we examine the
case of a morphism π :G0→G1 of Hausdorff Lie groupoids Gi

ti ,si
−→−→G(0)

i (i = 0, 1).
We assume that π is a submersion and that it is an inclusion of an open subset
π : G(0)

0 ⊂ G(0)
1 at the level of units.

Let pi : Mi→ G(0)
i be smooth manifolds which are classifying spaces for proper

actions for Gi . We assume further that the pi ’s are K-oriented submersions and
that the dimensions of the fibers are even.

• Let W=M0×p0,t1 G1. The groupoid G0 acts properly on W ; we thus obtain a Haus-
dorff locally compact quotient W/G0 = M0×G0 G1. Note that x 7→ (x, π(p0(x))
defines a continuous map from M0 to W and therefore M0→ M0×G0 G1.

• The groupoid G1 acts properly on the quotient space M0×G0 G1. Since M1 is
universal, we get a G1-equivariant map M0×G0 G1→M1. Hence, by composition



604 IAKOVOS ANDROULIDAKIS AND GEORGES SKANDALIS

we have a G0-equivariant map q :M0→M1. As p1◦q = p0, we obtain a morphism
of proper groupoids

q : M0 oG0→ M1 oG1.

• The map q is naturally K-oriented, so it induces an element

q! ∈ KKG0(C0(M0),C0(M1)).

Applying the descent map jG0 we obtain an element

q̂! = π̃∗( jG0(q!)) in KK (C0(M0)oG0,C0(M1)oG1),

where π̃ is the morphism C0(M1)oG0→C0(M1)oG1 induced by the morphism π .

Proposition 5.1. The morphism π : C∗(G0)→ C∗(G1) corresponds at the level of
topological K-theory to the element q̂!. More precisely, we have

π∗((̂p0)!)= q̂!⊗ (̂p1)! .

Proof. The morphism p1, being G1-equivariant, is also G0-equivariant (where G0

acts through the morphism π ). It gives rise to an element

~(p1)! ∈ KK (C0(M1)oG0,C∗(G0)).

The elements ~(p1)! and (̂p1)! correspond to each other via the morphism π :G0→G1,
i.e., we have π∗(~(p1)!)= π̃

∗((̂p1)!). In other words, denoting by

[π̃ ] ∈ KK (C∗(C0(M1)oG0,C0(M1)oG1)) and [π ] ∈ KK (C∗(G0),C∗(G1))

the KK-elements associated with the morphisms π̃ and π , respectively, we have
~(p1)!⊗[π ] = [π̃ ]⊗ (̂p1)!. We find

q̂!⊗ (̂p1)! = jG0(q!)⊗[π̃ ]⊗ ((̂p1)!)= jG0(q!)⊗~(p1)!⊗[π ]

= jG0(q!)⊗ jG0((p1)!)⊗[π ] = jG0(q!⊗ (p1)!)⊗[π ]

= π∗( jG0(q!⊗ (p1)!))= π∗( jG0((p0)!)).

Here, the fourth equality follows from naturality of jG [Kasparov 1980; 1988;
Le Gall 1999], and the last equality from the wrong way functoriality [Connes
and Skandalis 1984; Hilsum and Skandalis 1987]. Note that, since the groupoid
M0 oG0 is proper, the γ obstruction appearing in this computation in [Hilsum and
Skandalis 1987] vanishes. �

5.A.4. Abstract “left-hand sides” for mapping cones. Next, we wish to construct
in a natural way the topological K-group for the mapping cone of the morphism
πC∗ : C∗(G0)→ C∗(G1). Proposition 5.1 states that the relative topological K-
group of π is an element in KK (C0(M0)o G0,C0(M1)o G1). The topological
K-group of the cone of π should be a kind of “mapping cone of this KK-element”.
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In this section, we abstractly construct this mapping cone up to KK-equivalence.
We give an explicit description of this topological K-group (Section 5.B) and of
the Baum–Connes assembly map (Section 5.B.5) below.

Recall that a KK-element x ∈ KK(A, B) can be given as a composition

x = [ f ]−1
⊗[g] (♠)

of a morphism g : D→ B with the KK-inverse [ f ]−1 of a morphism f : D→ A
which is invertible in KK-theory (see [Lafforgue 2007, Appendix A]). We may
then wish to define (up to KK-equivalence) the cone of x as being the cone of g.

Next, in order to understand the Baum–Connes map, we should construct a KK-
element associated with a map between mapping cones. We use the next lemma.

Lemma 5.2. Let fi : Ai → Bi be morphisms of C∗-algebras (i = 0 or 1). Denote
by pi : C fi → Ai and ji : Bi (0, 1)→ C fi the natural maps (pi (ai , φ) = ai and
ji (φ)= (0, φ)). Let x ∈ KK (A0, A1) and y ∈ KK (B0, B1) satisfy ( f1)∗(x)= f ∗0 (y).

(a) There is z ∈ KK (C f0,C f1) such that (p1)∗(z)= p∗0(x) and ( j1)∗(Sy)= j∗0 (z),
where Sy ∈ KK (B0(0, 1), B1(0, 1)) is deduced from y.

(b) If x and y are invertible, then so is z.

In the language of [Meyer and Nest 2006], Lemma 5.2 is one of the axioms of a
triangulated category. Although it is proved in [Meyer and Nest 2006], we include
a proof for the reader’s convenience.

Proof. (a) Note that z is not a priori unique. To construct it, one needs in fact to
be more specific. Fix Kasparov bimodules (E A, FA) representing x and (EB, FB)

representing y; a Kasparov (A0, B1[0, 1]) bimodule (E ′, F ′) realizing a homotopy
between (E A⊗A1 B1, FA⊗ 1) and f ∗0 (EB, FB) gives rise to a Kasparov (A0, Z f1)

bimodule, where Z f1 = {(a1, φ) ∈ A1⊗ B1[0, 1] : f1(a1)= φ(0)} is the mapping
cylinder of f1, which can be glued with (EB, FB)[0, 1) to give rise to the desired
element in KK (C f0,C f1).

(b) By (a) applied to x−1 and y−1, there exists z′ ∈ KK (C f1,C f0) such that
(p1)∗(z′)= p∗1(x

−1) and ( j0)∗(Sy−1)= j∗1 (z
′). The Kasparov products u0 = z⊗ z′

and u1 = z′ ⊗ z are elements in KK (C fi ,C fi ) such that (pi )∗(1 − ui ) = 0 and
j∗i (1− ui ) = 0. From the first equality and the mapping cone exact sequence, it
follows that there exists di ∈ KK (C fi , Bi (0, 1)) such that 1− ui = ( ji )∗(d), and it
follows that

(1− ui )
2
= ( ji )∗(d)⊗ (1− ui )= d ⊗ j∗i (1− ui )= 0,

whence ui is invertible. �



606 IAKOVOS ANDROULIDAKIS AND GEORGES SKANDALIS

Remark 5.3. Note also that we have a diagram

Ki (A0) //

⊗x
��

Ki (B0) //

⊗y
��

K1−i (C f0)
//

⊗z
��

K1−i (A0) //

⊗x
��

K1−i (B0)

⊗y
��

Ki (A1) // Ki (B1) // K1−i (C f1)
// K1−i (A1) // K1−i (B1)

where the lines are exact (Puppe sequences) and the squares commute. It follows
that if x and y induce isomorphisms in K-theory, then the same holds for z.

Remarks 5.4. (a) It follows easily from this construction that given an element
x ∈ KK (A, B) the mapping cone Cg does not depend on the decomposition (♠)
up to KK-equivalence.

(b) An alternative (and equivalent) way to construct the K-theory of the mapping
cone of the KK-element x is to write x as an extension

0→ SB⊗K→ D→ A→ 0

and define this K-theory as being K∗(D).

(c) One can also define the KK-theory of this mapping cone as a relative KK-group
[Skandalis 1984a, Remark 3.7(c)].

5.B. Baum–Connes map for mapping cones of submersions of Lie groupoids.
Let us come back to our morphism π : G0 → G1 of Hausdorff Lie groupoids,
which is assumed to be a submersion and an open inclusion at the level of objects.
We assume that the classifying spaces for proper maps of Gi are manifolds Mi . In
Section 5.A.3, we explained how to construct an equivariant map q : M0→ M1

that can be assumed to be a smooth submersion (up to replacing M0 by a homotopy
equivalent manifold).

As a consequence of Lemma 5.2 and Proposition 5.1, we see that, in order
to construct the topological K-group we need to give an explicit construction of
the wrong-way functoriality element π̃∗( jG0)(q!) ∈ KK (C∗(M0 o G0),C∗(M1 o
G1)). Here, using a double deformation longitudinally smooth groupoid we give a
groupoid H which is a family over [0, 1]×[0, 1], whose vertical lines {i}×[0, 1] can
be interpreted as the Baum–Connes maps for the groupoid Gi and whose horizontal
lines [0, 1]× {0} and [0, 1]× {1} are q! and [π ], respectively.

We then may define the relative topological K-group of π as the groupoid H

restricted to [0, 1)×{0} and construct the Baum–Connes map using the groupoid
H (restricted to [0, 1)×[0, 1]).

In order to have a “ready to glue” groupoid, in view of the case of the tele-
scopic algebra (Section 5.C), we are lead to perform a slightly more complicated
construction.
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5.B.1. Deformation groupoids.

Deformation to the normal cone. The adiabatic deformation of a Lie groupoid G
with Lie algebroid G was defined by Alain Connes in the particular case of the
pair groupoid [Connes 1994] and generalized by various authors (e.g., [Hilsum
and Skandalis 1987; Monthubert and Pierrot 1997; Nistor et al. 1999]). This is
based on the notion of deformation to the normal cone, which we briefly recall;
see also [Carrillo Rouse 2008; Debord and Skandalis 2014].

Let X be a submanifold of a manifold Y . Denote by N Y
X the total space of the

normal bundle to X in Y . There is a natural way to put a manifold structure to
Y ×R∗ ∪ N Y

X ×{0}; denote this manifold by DNC(Y, X).
The map p : DNC(Y, X)→ R defined by p(y, t) = t for (y, t) ∈ Y ×R∗ and

p(ξ, 0)= 0 for ξ ∈ N Y
X is a smooth submersion. For J ⊂R, we write DNCJ (Y, X)

for p−1(J ).
This construction is functorial. Given a commutative diagram of smooth maps

X �
�

//

fX
��

Y
fY
��

X ′ �
�
// Y ′

where the horizontal arrows are inclusions of submanifolds, we naturally obtain a
smooth map DNC( f ) : DNC(Y, X)→ DNC(Y ′, X ′). If fY is a submersion and
X = X ′×Y ′ Y then DNC( f ) is a submersion.

Double deformations to the normal cone. Let Z be a smooth manifold, Y a (lo-
cally) closed submanifold of Z and X a (locally) closed submanifold of Y . Then
DNC(Y, X) is a (locally) closed submanifold of DNC(Z , X). Put then

DNC2(Z , Y, X)= DNC(DNC(Z , X),DNC(Y, X)).

We have a submersion p2 : DNC2(Z , Y, X)→ R2. For every subset L of R2, we
put

DNC2
L(Z , Y, X)= p−1

2 (L).

By definition of the deformation to the normal cone,

DNC2
R×R∗(Z , Y, X)= DNC(Z , X)×R∗.

By functoriality of the DNC construction,

DNC2
R∗×R(Z , Y, X)= DNC(Z ×R∗, Y ×R∗)' DNC(Z , Y )×R∗.

Deformation groupoids, adiabatic groupoids. From naturality, it follows that if Y
is a Lie groupoid and X is a Lie subgroupoid of Y , then DNC(Y, X) is naturally
endowed with a Lie groupoid structure — with objects DNC(Y (0), X (0)), and target
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and source maps DNC(t) and DNC(s). Of course, if in the above diagram all the
maps are groupoid morphisms, then DNC( f ) is a morphism of groupoids too.

The adiabatic groupoid of a Lie groupoid G is just Gad = DNC[0,1)(G,G(0))=

G× {0} ∪ G × (0, 1) (with base manifold G(0)
× [0, 1)). Note that the normal

bundle N G
G(0) is, by definition, the Lie algebroid G of G. It follows that Z is a Lie

groupoid, Y is a Lie subgroupoid of Z and X is a Lie subgroupoid of Y . Then
DNC2(Z , Y, X) is a Lie groupoid.

5.B.2. The Baum–Connes map of a Lie groupoid via deformation groupoids. Let
G be a Lie groupoid and let M be a smooth manifold on which G acts via a smooth
onto submersion p : M→ G(0). We do not assume that p is K oriented but rather
consider the total space of (ker dp)∗. Note that if M is a classifying space for
proper actions of G, then (ker dp)∗→ G(0) is also a classifying space of proper
actions, and it moreover carries a canonical K-orientation. So we can replace M
with (ker dp)∗.

Put then 0p=DNC(G p
p,MoG). As p is supposed to be a surjective submersion,

the groupoid G p
p is Morita equivalent to G. There is a canonical Morita equivalence

bimodule E of the C∗-algebras C∗(G p
p) and C∗(G).

We have an exact sequence of C∗-algebras:

0→ C∗(G p
p× (0, 1])→ C∗((0p)[0,1])

ev0
−−→ C∗(ker(dp)oG)→ 0.

Note that C∗(G p
p × (0, 1]) is contractible. It follows that ev0 is invertible in E-

theory. We may then observe the diagram

C0((ker dp)∗)oG C∗((0p)[0,1])
ev0
oo

ev1
// C∗(G p

p)
E C∗(G).

We thus obtain an element

µM = [ev0]
−1
⊗[ev1]⊗ [E] ∈ E(C0((ker dp)∗)oG,C∗(G)).

Note that this E-theory coincides with KK-theory if the action of G on M is as-
sumed to be amenable — and in particular, if it is proper.

If M is the classifying space for proper algebras, the morphism on K-groups
defined by µM is the Baum–Connes map.

5.B.3. A double deformation construction. Now let G0 and G1 be Lie groupoids
and let π :G0→G1 be a groupoid morphism which is a smooth submersion whose
restriction π (0) : G0→ G1 is the inclusion of an open subset. Let Mi be manifolds
with actions of Gi . We assume that the maps pi : Mi → G(0)

i defining these actions
are smooth submersions. Let also q : M0→ M1 be a smooth submersion which is
equivariant, i.e., q(γ.x)= π(γ )q(x) for every (x, γ ) ∈ M0×s G0. In other words,
we assume that we have a morphism of semidirect products π̂ :M0oG0→M1oG1

defined by π̂(x, γ )= (q(x), π(γ )).
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The groupoid G0 acts on the open subspace M ′1 = q(M0) of M1 through the
morphism π : just put γ.q(x)= q(γ.x)= π(γ ).q(x) for x ∈ M0 and γ ∈ G0 with
s(x)= p0(x)= p1(q(x)).

We have inclusions of groupoids M0 oG0 ⊂ (M ′1 oG0)
q
q ⊂ (G0)

p0
p0 . Indeed,

M0 oG0 =
{
(x, γ, y) ∈ (G0)

p0
p0
: x = γ.y

}
,

(M ′1 oG0)
q
q =

{
(x, γ, y) ∈ (G0)

p0
p0
: q(x)= q(γ.y)

}
.

Let then H0 be the double deformation Lie groupoid:

H0 = DNC2((G0)
p0
p0
, (M ′1 oG0)

q
q ,M0 oG0

)
.

The groupoid H0 is a family of groupoids indexed by R2. For every locally closed
subset L of R2, we may form the locally compact groupoid (H0)L .

Let q ′ : M0 t M1 → M1 be the map which coincides with q on M0 and the
identity on M1 and p′ :M0tM1→G(0)

1 , p′ = p1 ◦ q ′. Define the groupoid

H1 = DNC
(
(G1)

p′

p′ ×R∗, (M1 oG1)
q ′

q ′ ×R∗
)
' DNC

(
(G1)

p′

p′, (M1 oG1)
q ′

q ′
)
×R∗

(with objects (M0 tM1)×R∗×R).
For every locally closed subset Y ⊂ R∗×R we denote by (H1)Y the restriction

of H1 to its saturated subset (M0 tM1)× Y .

5.B.4. A longitudinally smooth groupoid. Note that

(M ′1 oG0)
q
q =

{
(x, γ, y) ∈ (G0)

p
p : q(x)= π(γ )q(y)

}
.

In other words, (M ′1 oG0)
q
q is the fibered product (G0)

p0
p0 ×(G1)

p0
p0
(M1 oG1)

q
q . We

therefore have a commutative diagram

(M ′1 oG0)
q
q
� � //

��

(G0)
p0
p0

��

(M1 oG1)
q
q
� � // (G1)

p0
p0

which gives rise to a morphism

DNC
(
(G0)

p0
p0
, (M ′1 oG0)

q
q
)
→ DNC

(
(G1)

p0
p0
, (M1 oG1)

q
q
)

which is a groupoid morphism, a submersion and the identity at the level of objects
(M0×R). We thus obtain a morphism of groupoids

π : (H0)R∗×R→H1

which is a submersion. At the level of objects it is the inclusion M0×R∗×R→

(M0 tM1)×R∗×R.
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Let Z0 = [0, 1)×
[
0, 1

2

]
, Q =

{
(u, v) ∈ R2

: 0≤ u ≤ v ≤ 1
2

}
and Z1 = Z0 \ Q =

{(u, v) ∈ Z0 : u > v}. We may then construct a longitudinally smooth groupoid
H= (H0)Q ∪ (H1)Z1 with atlas formed by (H0)Z0 and (H1)Z1 , using the morphism
π in order to map (H0)Z1 to (H1)Z1 . We have H(0)

= (M0× Z0)t (M1× Z1).
In the same way as above, for every locally closed subset Y ⊂ Z0 we denote by

HY the restriction of H to its saturated subset M0× Y ∪M1× (Y ∩ Z1).

Remarks 5.5. (a) It is worthwhile to note that the groupoid H only depends on
π : G0 → G1, the (proper) actions of Gi on Mi and the submersion q. Also,
the restriction H{1/2}×[0,1/2] is nothing else than (M0 ×p0 M0)ad o G0 (restricted
to
[
0, 1

2

]
). It does not depend on G1,M1, q .

(b) Note H0,0 is isomorphic to the direct sum of vector bundles ker dq⊕q∗(ker dp1).

5.B.5. Baum–Connes map for a mapping cone. Set F0= [0, 1)×{0}∪{0}×
[
0, 1

2

]
.

Note that, since the action of Gi on Mi is proper, the groupoid

HF0 = (ker dp0)oG0×
[
0, 1

2

]
∪ ((ker dp1)oG1)

q ′

q ′ × (0, 1)

is amenable and we have a semisplit exact sequence

0→ C∗(HZ0\F0)→ C∗(H)
σ0
−→ C∗(HF0)→ 0.

Proposition 5.6. The homomorphism σ0 is invertible in KK-theory.

Proof. We have a semisplit exact sequence

0→ C∗(HZ1\F0)→ C∗(HZ0\F0)→ C∗(HQ\F0)→ 0.

Note that the groupoid H is constant over the sets Z1 \ F0 and Q \ F0:

H(u,v) = (G1)
p1◦q ′

p1◦q ′ for (u, v) ∈ Z1 \ F0,

H(u,v) = (G0)
p0
p0

for (u, v) ∈ Q \ F0.

The sets
Z1 \ F0 =

{
(u, v) : 0< v < u < 1 and v ≤ 1

2

}
,

Q \ F0 =
{
(u, v) : 0< u ≤ v ≤ 1

2

}
are contractible (more precisely, their one point compactification contracts to this
point) and it follows that the C∗-algebras C∗(HZ1\F0) and C∗(HQ\F0) are con-
tractible. It follows that C∗(HZ0\F0) is KK-contractible (it is actually contractible).
We deduce that [σ0] is a KK-equivalence. �

Set also F1 =
{1

2

}
×
[1

2 , 1
)
. One sees that HF1 is isomorphic to the groupoid

Cπ = G0×{0} ∪G1× (0, 1) pulled back by

q ′′ : (M0×[0, 1))t (M1× (0, 1))→ G(0)
1 ×[0, 1)

(recall that G(0)
0 is an open subset of G(0)

1 ).
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Corollary 5.7. The algebra C∗(HF1) is canonically Morita equivalent to the map-
ping cone of hC∗ : C∗(G0)→ C∗(G1).

Denote by E the Morita (C∗(HF1),C∗(Ch)) bimodule and [E] its KK-class. Let
[σ1] : C∗(H)→ C∗(HF1) be the evaluation.

Definition 5.8. Assume further that the manifolds Mi are classifying spaces for
the proper actions of Gi . With the notation above, the topological K-theory of the
groupoid Cπ is K∗(C∗(HF0)) and the Baum–Connes morphism is the composition
[σ0]

−1
⊗[σ1]⊗ [E].

5.B.6. Justifying why this is a Baum–Connes map. Let us explain why this is a
“good” definition. First of all, for v ∈

[
0, 1

2

]
, the K-theory of the C∗-algebra

C∗(H(0,v)) = C∗(ker p0 o G0) = C0((ker p0)
∗)o G0 is the topological K-group

for G0. Also, for u ∈ (0, 1), the C∗-algebra C∗(H(u,0))= C∗
(
(ker p1 oG1)

q ′

q ′
)

is
Morita equivalent to C∗(ker p1 o G1) = C0((ker p1)

∗)o G1, whose K-theory is
the topological K-theory for G1.

We may then write a diagram:

0 // C∗(HZ1∩F0)
// C∗(HF0)

// C∗(HQ∩F0)
// 0

0 // C∗(HZ1)
//

σ1,0

OO

σ1,1
��

C∗(H) //

σ0

OO

σ1
��

C∗(HQ) //

σ0,0

OO

σ0,1
��

0

0 // C∗(HZ1∩F1)
//

E1

C∗(HF1)
//

E

C∗(HQ∩F1)
//

E0

0

0 // C∗(G1)(0, 1) // ChC∗
// C∗(G0) // 0

In this diagram all sequences are semisplit, the morphisms σ0, σi,0 are KK-equiv-
alences and the compositions [σi,0]

−1
⊗[σi,1]⊗ [Ei ] are indeed the Baum–Connes

maps for G1× (0, 1) and G0.
It follows also that the class in KK 1(C∗(HQ∩F0),C∗(HZ1∩F0)) for the first se-

quence corresponds to the class of [hC∗] ∈ KK (C∗(G0),C∗(G1)).
From the discussion in Section 5.A.4, it follows that the K-theory of C∗(HF0)

and the morphism is indeed the right one, and that the composition [σ0]
−1
⊗[σ1]⊗[E]

is indeed a Baum–Connes map.

Remark 5.9. The groupoid HF0 is a semidirect product 3 o Cπ , where 3 is a
groupoid obtained by gluing DNC[0,1)

(
M0, (ker dp1)

q ′

q ′
)

with ker dp0×
[
0, 1

2

]
.

One may give a generalized notion of proper algebras on a longitudinally smooth
groupoid G by saying that G(0) is an increasing union

⋃
�k of saturated open

subsets such that the restriction of G to �k \�k−1 is Hausdorff. We may say that
an action of G on an algebra A is proper if its restriction to each�k \�k−1 is proper.
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In this generalized sense, the Cπ -algebra C∗(3) is a proper Cπ -algebra. Its re-
striction to Q ∩ F0 is indeed a proper G0-algebra and its restriction to Z1 ∩ F0 is a
proper G1× (0, 1)-algebra.

It may be interesting to look for a way to say that the C∗
(
DNC[0,1)(M0, (M1)

q ′

q ′)
)

is somehow a universal proper algebra.

5.C. Baum–Connes map for the telescopic algebra. Since a mapping telescope
is a mapping cylinder which, in turn, is a mapping cone (cf. Remarks 3.5) we can
just proceed and construct the “left-hand side” for the telescopic algebra — and
therefore for the foliation one.

We are given a nicely decomposable foliation (M,F), a decomposition given
by an increasing sequence �k of saturated sets — we put Yk =�k \�0, a sequence
of Lie groupoids Gk −→−→Wk ⊂�k such that Yk ⊂Wk and Wk ∩�k−1 ⊂Wk−1; we
put G′k = (Gk)|Wk∩�k−1 and assume that we have a groupoid morphism which is a
submersion πk : G′k→ Gk−1.

We further assume that we have submersions of manifolds pk : Mk→Wk which
are classifying spaces for proper actions of Gk . For k ≥ 1, the restriction p−1

k (�k−1)

of Mk is a classifying space for G′k but we may need to modify it: we choose a
classifying space given by a submersion p′k : M

′

k→�k−1 ⊂ Wk−1 in such a way
that the maps qk : M ′k→ Mk−1 and q̂k : M ′k→ Mk are submersions.

We then construct the classifying groupoids

• Hk associated to the morphism πk :G′k→Gk−1 and the submersion qk :M ′k→Mk−1

of classifying spaces;

• Ĥk associated to the morphism jk : G′k→ Gk and the submersion q̂k : M ′k→ Mk

of classifying spaces.

We then glue the groupoids Hk and Ĥk in their common part (Hk){1/2}×[0,1/2] =

(Ĥk){1/2}×[0,1/2] (cf. Remarks 5.5) and obtain a groupoid H̃k .
For a locally closed part Y of Z0=[0, 1)]×

[
0, 1

2

]
we set (H̃k)Y = (Hk)Y ∪(Ĥk)Y .

Recall that Q =
{
(u, v) : 0 ≤ u ≤ v ≤ 1

2

}
and Z1 = Z0 \ Q. We define diffeo-

morphisms ϑk : Z1→[0, 1]× (k−1, k) and ϑ̂k : Z1→[0, 1]× (k, k+1) by setting

ϑk(u, v)=
(

2v, k− u−v
1−v

)
and ϑ̂k(u, v)=

(
2v, k+ u−v

1−v

)
,

respectively. Thanks to this diffeomorphism, we obtain identifications of

• 2k : (Hk)Z1

∼
−→

(
DNC

(
(Gk−1)

pk−1
pk−1

,Mk−1 oGk−1
)
[0,1]

)q ′k
q ′k
× (k− 1, k)

where q ′k : Mk−1 tM ′k→ Mk−1 is the identity on Mk−1 and qk on M ′k ;

• 2̂k : (Ĥk)Z1

∼
−→

(
DNC

(
(Gk)

pk
pk
,Mk oGk

)
[0,1]

)q̂ ′k
q̂ ′k
× (k, k+ 1)

where q̂ ′k : Mk tM ′k→ Mk is the identity on Mk and q̂k on M ′k .
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Define q ′′k : Mk tM ′k tM ′k+1→ Mk to be the map coinciding with the identity
over Mk , q̂k on M ′k and qk+1 on M ′k+1 — with the convention M ′0 = ∅ and, if
n 6= +∞, M ′n+1 =∅.

Definition 5.10. We define the adiabatic telescopic groupoid G to be the union⋃n
k=1(H̃k)Q × {k} with

⋃n
k=0
(
DNC((Gk)

pk
pk ,Mk o Gk)[0,1]

)q ′′k
q ′′k
× (k, k + 1). The

gluing is obtained by mapping Hk→ G:

• We map (H̃k)Q to G by the map γ 7→ (γ, k) ∈ G.

• Using 2k+1 we map (Hk+1)Z1 to
n⋃

k=0

(
DNC((Gk)

pk
pk
,Mk oGk)[0,1]

)q ′k
q ′k
× (k, k+ 1),

which is a subset of
n⋃

k=0

(
DNC((Gk)

pk
pk
,Mk oGk)[0,1]

)q ′′k
q ′′k
× (k, k+ 1)⊂ G.

• Using 2̂k we map (Ĥk)Z1 to

((Mk ×pk Mk)ad oGk)
q̂ ′k
q̂ ′k
× (k, k+ 1),

which is a subset of

((Mk ×pk Mk)ad oGk)
q ′′k
q ′′k
× (k, k+ 1)⊂ G.

We define the obvious map χ :G(0)
→ (0, n+1) (using the convention+∞+1=+∞

of course). Thanks to χ , the (full) C∗-algebra C∗(G) is a C0(0, n+ 1)-algebra.

Define a map ξ : Z→[0,1] by setting ξ(u,v)= 2min(u,v). Let ξ̂ :G(0)
→[0,1]

be defined as the composition

G(0)
→ Q

ξ
−→ [0, 1]

on (H̃k)Q×{k} and let ξ̂ to be the parameter in the adiabatic deformation (Mk×pk Mk)ad
on n⋃

k=0

((Mk ×pk Mk)ad oGk)
q ′′k
q ′′k
× (k, k+ 1).

We then define the subgroupoids G0 and G1 of G, restrictions of G to the closed
saturated set ξ̂−1({i}). We then have:

Proposition 5.11. (a) The algebra C∗(G0) is nuclear.

(b) The kernel of the evaluation ρ0 : C∗(G)→ C∗(G0) is KK-contractible.

(c) The algebra C∗(G1) is Morita equivalent to the telescopic algebra.
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Proof. (a) In fact C∗(G0) sits in an exact sequence

0→
n⊕

k=0

C∗
(
((ker pk)

∗oGk)
q ′k
q ′k
× (0, 1)

)
→ C∗(G0)

→

n⊕
k=1

C∗((ker p′k)
∗oG′k ×[0, 1])→ 0

and the Lie groupoids ((ker pk)
∗oGk)

q ′k
q ′k

and (ker p′k)
∗oG′k are proper. It follows

that C∗(G0) is in fact a type I algebra.

(b) We have a semisplit exact sequence

0→ C0((0, 1]× (0, 1))⊗ B→ ker ρ0→ C0(Q \ F0)⊗ B ′→ 0→ 0,

where

B =
n⊕

k=0

C∗
(
((Mk ×pk Mk)oGk)

q ′′k
q ′′k

)
and B ′ =

n⊕
k=1

C∗((M ′k ×p′k M ′k)oG′k).

The algebras C0((0, 1]× (0, 1)) and C0(Q \ F0) are contractible.

(c) Actually the groupoid G1 is Morita equivalent to the telescopic groupoid. �

Definition 5.12. Let (M,F) be a nicely decomposable foliation. Assume that the
classifying spaces of all the groupoids Gk −→−→Wk involved in this decomposition
are manifolds. With the above construction,

• we define the “left-hand side”, i.e., the topological K-theory (of this decom-
position) to be the K-theory of C∗(G0);

• we define the Baum–Connes map for the telescope to be the composition
[ρ0]

−1
⊗[ρ1]⊗ [E];

• we define the Baum–Connes map for (M,F) to be the Baum–Connes map for
the telescope composed with the isomorphism K∗(T )→ K∗+1(C∗(M,F)).

Let ρ1 : C∗(G)→ C∗(G1) be evaluation. The kernel of ρ1 is a C0(0, n + 1)-
algebra. It follows from the inductive limit construction that if (ker ρ1)(k,k+1) and
(ker ρ1)k are E-contractible for all k, then so is ker ρ1. We thus obtain:

Theorem 5.13. Let (M,F) be a nicely decomposable foliation such that the clas-
sifying spaces of all the groupoids Gk −→−→Wk involved in this decomposition are
manifolds. If the full Baum–Connes conjecture holds for all of them, then the full
Baum–Connes map of Definition 5.12 is an isomorphism.

Corollary 5.14. Let (M,F) be a nicely decomposable foliation. If all the groupoids
Gk −→−→ Wk involved in this decomposition are amenable and their classifying
spaces are manifolds, then the Baum–Connes map is an isomorphism.
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Appendix: When the classifying spaces are not manifolds

We finally explain how one should be able to get rid of the assumption on the
classifying spaces: we just assume that the foliation F has a nice decomposition
with Hausdorff Lie groupoids Gi but the classifying spaces Ei for proper actions
are not manifolds.

To construct a topological K-theory and a Baum–Connes map for C∗(M,F), we
just need to construct a topological K-theory for a mapping cone of a morphism
π : G→ G ′ of Hausdorff Lie groupoids which is a submersion and the identity
at the level of objects. As in the particular cases considered here, we then may
construct topological K-theory for mapping tori and then of telescopic algebras.

In fact, given such a morphism π : G→ G ′ we just have to show that

(i) we may express the topological K-theory of G and G ′ as the K-theory of
C∗-algebras T and T ′;

(ii) the Baum–Connes maps are given by elements µ and µ′ in KK (T,C∗(G))
and KK (T ′,C∗(G ′)), respectively;

(iii) we may construct an element x ∈ KK (T, T ′) such that π∗(µ)= x ⊗µ′.

We then write x = [ f ]−1
⊗ [g], where f : D → T and g : D → T ′ are mor-

phisms with f a K-equivalence. A topological K-theory for Cπ is then the cone
Cg of g. As f ∗(π∗(µ))= [ f ]⊗µ⊗[π ] = [g]⊗µ′, we may construct an element
µ̃ ∈ KK (Cg,Cπ ) as in Lemma 5.2 which defines the desired Baum–Connes map.

To do so, recall that if G is a Hausdorff Lie groupoid, then the topological K-
theory for the Baum–Connes map can be described in the Baum–Douglas way
[Baum and Douglas 1982a; 1982b; Baum and Connes 2000; Baum et al. 1994;
Tu 1999; 2000]: there is an inductive limit of manifolds (Mk)k∈N with maps
hk : Mk → Mk+1 forming a sequence of approximations of E . We may assume
that the maps qk : Mk → G(0) are K-oriented in a G-equivariant way, and there-
fore so are the maps hk . We also assume that the dimensions of all the Mk are
equal modulo 2. Then the topological K-theory K top

∗ (G) is the inductive limit
lim
−−→k(K∗(C0(Mk)oG), (hk)!).

The Baum–Connes map on the image of K∗(C0(Mk)oG) is given by the ele-
ment (qk)!. Put Ak = C0(Mk)o G. The same construction is then given for the
groupoid G ′, yielding proper G ′-manifolds M ′k , maps h′k : M

′

k→ M ′k+1, algebras
A′k = C0(M ′k)oG ′, etc.

We may (and do) also assume that hk+1(Mk)/G is relatively compact in Mk+1/G.
As in Section 5.A.3, let 0 = kerπ . As G ′ acts properly on Mk+1/0 and by the
relative compactness assumption, we may embed hk(Mk−1)/0 in a manifold ap-
proximating the classifying space for proper actions E ′ of G ′. Using a subsequence
of the M ′k we may assume that we are given equivariant smooth maps `k :Mk→M ′k .
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Up to taking again a subsequence, we may further assume that the maps h′k ◦ `k

and `k+1 ◦ hk are homotopic (where h′k : M
′

k→ M ′k+1). Note that the maps `k are
automatically K-oriented, and thus we obtain KK-elements (`k)! ∈ KK (Ak, A′k)=
KK (C0(Mk)oG,C0(M ′k)oG ′) satisfying (`k)! ⊗ (h′k)! = (hk)! ⊗ (`k+1)! .

Now, using [Lafforgue 2007, Appendix A], we find (explicit) algebras Dk and
morphisms fk : Dk→ Ak which are K-equivalences and gk : Dk→ A′k such that
(`k)! = [ fk]

−1
⊗[gk].

Put then xk = [ fk]⊗ (hk)! ⊗ [ fk+1]
−1
∈ KK (Dk, Dk+1). We find

(gk+1)∗(xk)= [ fk]⊗ (hk)! ⊗ [ fk+1]
−1
⊗[gk+1]

= [ fk]⊗ (hk)! ⊗ (`k+1)! = [ fk]⊗ (`k)! ⊗ (h′k)!

= [gk]⊗ (h′k)! .

As shown in Section 5.B, using precise homotopies between Kasparov bimodules
representing these elements, we can then construct elements yk ∈ KK (Cgk ,Cgk+1).
Note also, that we have the equalities π∗((qk)!)= (`k)! ⊗ (q ′k)! ∈ KK (Ak,C∗(G ′))
as in Proposition 5.1, yielding an element zk ∈ KK (Cgk ,Cπ ).

In order to construct the topological K-theory for the mapping cone we need to
make the following assumption — which could be true in general:

Assumption A.1. We assume that the homotopies used in the constructions of yk

and zk are well matching, so that we have the equality yk ⊗ zk+1 = zk .

We can then construct, for each k, C∗-algebras Bk and B ′k , morphisms uk :Bk→Dk

and u′k :Bk→A′k which are KK-equivalences and vk :Bk→Dk+1 and v′k :Bk→Dk+1

such that xk = [uk]
−1
⊗ [vk] and (h′k)! = [u

′

k]
−1
⊗ [v′k] (using [Lafforgue 2007,

Appendix A]).
For the topological K-theory of G and G ′ (up to a shift of dimension by 1) we

can then use the infinite telescopic algebras T = T (v, u) and T ′ = T (v′, u′). These
algebras are mapping tori T (ǔ, v̌) and T (ǔ′, v̌′), where

ǔ, v̌ : qB =
+∞⊕
k=1

Bk→ qD =
+∞⊕
k=0

Dk and ǔ′, v̌′ : qB ′ =
+∞⊕
k=1

B ′k→ qA′ =
+∞⊕
k=0

A′k

are the maps given by

ǔ(x1, . . . , xk, . . .)= (0, u1(x1), . . . , uk(xk), . . .),

v̌(x1, . . . , xk, . . .)= (v1(x1), . . . , vk(xk), . . .),

and analogous formulae for ǔ′ and v̌′.
The families of (qk)! and (q ′k)! give elements q̌! and q̌ ′! in KK ( qD,C∗(G)) and

KK ( qA′,C∗(G ′)), respectively.
The homotopy between [ǔ]⊗q! and [v̌]⊗q! (resp. [ǔ′]⊗q ′! and [v̌′]⊗q ′!) gives

rise to the element µG ∈ KK (T,C∗(G)) (resp. µ′G ∈ KK (T ′,C∗(G ′))).
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We may now do the same construction at the mapping cone level: writing
yk = [αk]

−1
⊗ [βk], where αk : Vk → Cgk and βk : Vk → Cgk+1 are morphisms,

we may consider the infinite telescope T (β, α) = T (α̌, β̌) as a topological K-
theory K∗,top(π) for Cπ . The element ž defined by the zk’s gives an element of
KK

(⊕
Cgk ,Cπ

)
; a homotopy between [α̌]⊗ ž and [β̌]⊗ ž (based on our assump-

tion) gives rise to the Baum–Connes element µπ ∈ KK (T (β, α),Cπ ) and thus a
morphism µπ : K∗,top(π)→ K∗(Cπ ).

Remark A.2. One may push a little further the above calculations. Indeed one
needs to check that we have an exact sequence

K∗,top(G)
π∗

// K∗,top(G ′)

vv

K∗,top(π)

gg

compatible with the mapping cone exact sequence. It then follows that if G and
G ′ satisfy the (full version of the) Baum–Connes conjecture, then so does Cπ .
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Witt groups of abelian categories and perverse sheaves

Jörg Schürmann and Jon Woolf

We study the Witt groups W±(PervX) of perverse sheaves on a finite-dimensional
topologically stratified space X with even-dimensional strata. We show that
W±(PervX) has a canonical decomposition as a direct sum of the Witt groups of
shifted local systems on strata. We compare this with another “splitting decom-
position” for Witt classes of perverse sheaves obtained inductively from our main
new tool, a “splitting relation” which is a generalisation of isotropic reduction.

The Witt groups W±(PervX) are identified with the (nontrivial) Balmer–Witt
groups of the constructible derived category Db

c(X) of sheaves on X , and also
with the corresponding cobordism groups defined by Youssin.

Our methods are primarily algebraic and apply more widely. The general
context in which we work is that of a triangulated category with duality, equipped
with a self-dual t-structure with noetherian heart, glued from self-dual t-structures
on a thick subcategory and its quotient.

1. Introduction

The signature of a compact, oriented manifold is a basic topological invariant. It
is an obstruction to the existence of a null-bordism, and plays a key role in surgery
theory and the classification of manifolds. The signature can be extended to sin-
gular spaces by using intersection cohomology — a compact Witt space W is a
space whose rational intersection cohomology satisfies Poincaré duality and σ(W )

is defined to be the signature of the associated intersection form. For example,
any irreducible complex analytic or algebraic variety is a Witt space. A more
refined invariant is the Witt class w(W ) of the intersection form in the rational Witt
group W(Q). This determines the signature but also contains torsion information
which is localised on the singularities of the space. For manifolds, and more gener-
ally for spaces with integral Poincaré duality such as integral homology manifolds
and intersection Poincaré spaces [Pardon 1990], this torsion information vanishes
and the Witt class is simply the signature. The Witt class is the obstruction to
the existence of a Witt null-bordism [Siegel 1983]. It plays an analogous role in

MSC2010: primary 32S60; secondary 18E30, 19G99.
Keywords: Witt group, perverse sheaf, triangulated category with duality.
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stratified surgery theory and the classification of stratified spaces to that played by
the signature for manifolds.

In this paper we study the Witt group W (Perv(X)) of perverse sheaves. Here X
is a finite-dimensional topologically stratified space with even-dimensional strata,
and Perv(X) the category of perverse sheaves, constructible with respect to the
stratification, with rational coefficients. A proper stratified map f :W → X from a
Witt space W with dim W ≡ 0 (4) determines a class [ f∗ IW ] ∈W (Perv(X)) whose
pushforward to W (Perv(pt))∼=W (Q) for X compact is w(W ). Here

IW : IC(W )→ DIC(W )

is the symmetric intersection form of the corresponding intersection cohomology
complex of W , with D the Verdier duality for constructible sheaf complexes. Thus
W (Perv(X)) is the natural home for relative invariants of spaces over X .

The category Perv(X) is constructed by “gluing together” categories of shifted
local systems on the strata of X . As a consequence W (Perv(X)) decomposes as
a direct sum of the Witt groups of shifted local systems — see Corollary 3.2. We
refer to the associated decomposition of a class as the canonical decomposition.
In Section 3 we give an algorithm, starting from a top-dimensional open stratum
(see (3.9)) for computing the canonical decomposition of a class. The algorithm
relies on the ability to identify maximal isotropic subobjects of forms on local
systems, so its feasibility depends on the complexity of the fundamental groups of
the strata of X . We are also interested in the structure of the Witt group W (Perv(X))
itself, which by the above can be reduced to the simpler and more classical case
of Witt groups of local systems; for instance, see Example 3.4 for the case of real
coefficients and all strata orientable. If for example all strata S of X are simply
connected, therefore orientable, then Corollary 3.2 implies

W (Perv(X))∼=
⊕

S:dim S≡0 (4)

W (Q). (1.1)

In particular W (Perv(X)) = 0 when all strata S of X are simply connected with
dim S ≡ 2 (4). In the above mapping situation this implies [ f∗ IW ] = 0 and hence
w(W ) = 0 ∈ W (Q). See [Cappell and Shaneson 1991a, Theorem 6.1] for the
corresponding vanishing of the signature σ(W ).

Cappell and Shaneson [1991b, Theorem 2.1] state an expression for a Witt
class as a sum of classes of forms on intersection cohomology complexes; see
[Banagl 2007, Chapter 8]. To be a little more precise, they obtain a decomposition
for a class in their cobordism group �C S(X) of symmetric self-dual complexes,
but we show the latter is isomorphic to the Witt group of perverse sheaves — see
Proposition 2.14 and Corollary 2.15:

W (Perv(X))∼=�C S(X).
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They view this decomposition as an up-to-cobordism topological analogue of the
following famous decomposition theorem:

Theorem 1.2. Let f :W→ X be a proper stratified morphism of complex algebraic
varieties, with W irreducible and all strata S of X also complex algebraic.

(1) Decomposition: R f∗IC(W ) ∼=
⊕

i
pRi f∗IC(W ) is isomorphic to the direct

sum of the corresponding perverse direct image sheaves.

(2) Strict support: Each perverse direct image sheaf for i ∈ Z is a direct sum
pRi f∗IC(W )∼=

⊕
S IC(S;Li,S) of twisted intersection cohomology sheaf com-

plexes on the closures S of the strata S.

(3) Semisimplicity: The local system Li,S on S is semisimple for all i and S.

Remark 1.3. This decomposition theorem is due to Beilinson, Bernstein, Deligne
and Gabber [Beilinson et al. 1982, Théorème 6.2.5] via arithmetic techniques and
results for perverse sheaves on schemes over a finite base field. Another proof
and far reaching extension, even applying for a projective morphism of complex
analytic varieties, was given by M. Saito [1988; 1990] via his theory of pure and
mixed Hodge modules. Finally, in the complex algebraic context a more geometric
proof was found by de Cataldo and Migliorini [2005]. We refer to the beautiful
survey [de Cataldo and Migliorini 2009] for more details, as well as to [Budur
and Wang 2017, Introduction] for a short overview of the recent extension of the
decomposition theorem to semisimple perverse sheaf complexes.

In our topological context we obtain, in analogy to (2) and (3) above, a decompo-
sition up to isomorphism for anisotropic forms on perverse sheaves, but only up to
Witt equivalence in general. In fact the perverse sheaves underlying an anisotropic
form are semisimple (see Corollary 2.12 for the corresponding algebraic result in
a noetherian abelian category with duality). The perverse sheaves underlying pure
algebraic Hodge modules automatically carry anisotropic forms coming from polar-
isations [Saito 1988, §5.2]. Similarly, polarisations of Hodge structures for suitable
topological intersection pairings appear inductively in the proof of [de Cataldo and
Migliorini 2005]. This explains why one has a stronger result when working in the
algebraic as opposed to in our topological context.

In our notation the Cappell–Shaneson decomposition is (1.6) below. Since
intersection cohomology complexes are precisely the intermediate extensions of
local systems on the strata it makes sense to compare the canonical and Cappell–
Shaneson decompositions. Before doing so though, we should mention that there
is an error in their proof, and (1.6) needs correcting for stratifications of depth
greater than or equal to two. The depth one results cited in [Brasselet et al. 2010,
Theorem 4.2] and [Levikov 2011] are correct. An explicit counterexample for a
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depth two stratification is provided in Section 3C using a quiver description for
perverse sheaves on rank stratifications [Braden and Grinberg 1999].

Using a different method of proof we obtain a new, more complicated, expres-
sion (3.10) which reduces to Cappell and Shaneson’s in certain cases, e.g., for
anisotropic forms on perverse sheaves (see Proposition 3.11). The key ingredient
in the proof is the following “splitting relation” for Witt classes: Let ı : Y ↪→ X be
the inclusion of a closed stratified subspace, in other words Y is a closed union of
strata of X , with  :U = X −Y ↪→ X the complementary open inclusion. Suppose
β : B→ DB is a nondegenerate symmetric form in Perv(X). Then

[β] = [ı∗ı !∗β] + [!∗∗β] (1.4)

in the Witt group W (Perv(X)). Here

!∗ = im(p!→
p∗) and ı !∗ = im(pı !→ pı∗)

are the intermediate extension and restriction, respectively. In the depth one case
in which Y and U are topological manifolds and the strata are their connected
components, this reduces to the Cappell–Shaneson decomposition (1.6) below. In
this case the perverse truncation used to define the intermediate restriction

ı !∗ = im(pı !→ pı∗)

is just truncation of a sheaf complex with respect to the standard t-structure. In
general however, the intermediate restriction uses the more complicated perverse
truncation, which cannot be expressed easily in geometric terms. By iterated ap-
plication of the “splitting relation” (1.4) we end up with our new decomposition
(3.10), which we refer to as the splitting decomposition. This involves iterated
intermediate restrictions. It turns out that the splitting decomposition (3.10) is
not the canonical decomposition in general. Moreover, it can depend upon the
choice of representative for the Witt class and on a choice of ordering of the strata
of X . The reason for these negative results is that intermediate extension is not an
exact functor. When it is, one obtains stronger results. In particular, we have the
following (see also Corollary 3.16).

Corollary 1.5. If each stratum has finite fundamental group, or if certain (twisted)
intersection cohomology groups of links vanish, then the splitting decomposition
(3.10) is the canonical one. Moreover, under the second vanishing condition it
simplifies to Cappell and Shaneson’s decomposition

[β] =
∑

strata S

[ıS∗S !∗
∗

S ı !∗S β], (1.6)

where ıS : S ↪→ X and S : S ↪→ S are the inclusions.
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Remark 1.7. In the complex algebraic context the results of this paper don’t con-
tribute any new information to the decomposition theorem, except that the decom-
position of pR0 f∗IC(W ) in Theorem 1.2 fits with the Cappell–Shaneson decom-
position as well as with our canonical and splitting decompositions, because the
induced form f∗ IW on pR0 f∗IC(W ) is anisotropic.

In our topological context the canonical decomposition comes from the direct
sum decomposition of W (Perv(X)), and is very helpful for understanding the
structure of this Witt group. However, the canonical decomposition of f∗ IW in
the stratified mapping situation f : W → X for a Witt space W is very difficult
to understand in terms of the geometry of f , since one has to find an anisotropic
representative in the Witt class [ f∗ IW ].

Cappell and Shaneson [1991b] give a nice geometric interpretation of their de-
composition (1.6), but this may differ from our canonical decomposition and only
holds under additional assumptions. Our splitting decomposition can be viewed
as a technical tool to relate the Cappell–Shaneson and canonical decompositions,
when the former holds.

Remark 1.8. Cappell and Shaneson introduce the notion of a “locally nonsingu-
lar” self-dual perverse sheaf and show in [Cappell and Shaneson 1991b, Theo-
rem 3.2] that such a “locally nonsingular” self-dual perverse sheaf is isometric to
an orthogonal direct sum of forms on twisted intersection cohomology complexes
IC(S;LS) as in part (2) of Theorem 1.2. This result can also be shown by in-
duction (starting from a closed stratum of smallest dimension) via the “splitting
criterion” of [de Cataldo and Migliorini 2005, Lemma 4.1.3 and Remark 4.1.2]
as in the approach of de Cataldo and Migliorini to the decomposition theorem.
This corresponds to a decomposition of a perverse sheaf as a direct sum of twisted
intersection cohomology complexes IC(S;LS), similar to the “strict support de-
composition” of pure Hodge modules in [Saito 1988, (5.1.3.5) and Lemma 5.1.4].
It implies the Cappell–Shaneson decomposition (1.6) in the Witt group, but it need
not correspond to the canonical decomposition, because here one doesn’t require
the local systems LS to be semisimple; cf. Example 2.21 and (2.25) for abstract
algebraic counterparts. In particular the notion of a “locally nonsingular” self-dual
perverse sheaf is weaker than that of an anisotropic form on a perverse sheaf.

For the purposes of this introduction we have framed the above results in a
geometric context. However, our methods are primarily algebraic and apply more
widely; see Examples 2.16 and 2.17. The general context in which we work is
that of a triangulated category with duality, and a self-dual t-structure glued from
self-dual t-structures on a thick subcategory and its quotient. Our first main result,
Proposition 2.14, identifies W (Perv(X)) with the zeroth Balmer–Witt group of the
constructible derived category Db

c(X) of sheaves on X :
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W (Perv(X))∼=W0(Db
c(X)). (1.9)

This implies many functorial properties of the Witt group W (Perv(X)) of perverse
sheaves. For a stratified map f :W → X from a compact Witt space W it implies

[ f∗ IW ] = f∗[IW ] ∈W (Perv(X))∼=W0(Db
c(X))

is the direct image of the symmetric intersection form

[IW ] ∈W0(Db
c(W ))

under the pushforward f∗ = f!, which commutes with Verdier duality. In a sense
this is the substitute for part (1) of Theorem 1.2 in our topological context.

When X is compact and admits a triangulation compatible with the stratification,
for instance when X is a compact Whitney or subanalytic stratified space, then we
can pass to the zeroth Balmer–Witt group of the PL-constructible derived cate-
gory. With Q coefficients, these Witt groups form a generalised homology theory
isomorphic to symmetric L-theory [Woolf 2008, Corollary 4.10]. Our splitting
decomposition therefore induces formulæ for the L-theoretic fundamental classes
[β]L of self-dual perverse sheaves

W (Perv(X))∼=W0(Db
c(X))→W0(Db

pl−c(X)) : [β] 7→ [β]L

as sums of forms on simple perverse sheaves. In our approach it is important to start
with the constructible derived category with respect to a fixed stratification, with
its self-dual perverse t-structure, since the latter is not visible in the PL context.
Such formulæ for L-theoretic fundamental classes of self-dual perverse sheaves
were foreseen in [Cappell and Shaneson 1991b] as natural improvements of their
formulæ for homological L-classes of self-dual perverse sheaves. This simple def-
inition of the L-theoretic fundamental classes of self-dual perverse sheaves needs
the identification (1.9) with Balmer-Witt groups, and not just the cobordism groups
�C S(X) of [Cappell and Shaneson 1991b] (or [Youssin 1997]).

Pushing forward to a point one obtains corresponding formulæ for signatures and
Witt classes of self-dual perverse sheaves. These generalise the classical Chern–
Hirzebruch–Serre formula for the signature of a smooth fibre bundle to singular
spaces and perverse sheaves on them. Since this is not the subject of this paper,
we only illustrate it by the following simple example of a compact oriented base
manifold X as a one stratum space. Let f : W → X be a proper stratified map
from a Witt space W with dim W ≡ 0 (4) to a compact oriented manifold X of
even dimension. The fibre F of f is also a Witt space. Assume pR0 f∗IC(W ) is
a constant local system on X , i.e., π1 X acts trivially on the middle-dimensional
intersection cohomology IH (dim W−dim X)/2(F). Then

w(W )= σ(X) ·w(F) ∈W (Q).
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The main tool we use is the aforementioned “splitting relation” (Theorem 2.19),
which is a generalisation of isotropic reduction. This is expressed most naturally
in terms of degenerate forms, and so in Section 2 we review the construction of the
Witt group of an abelian category explaining how to treat degenerate forms on an
equal footing with nondegenerate ones. The Witt class of a degenerate form is the
class of the induced nondegenerate form on its image; for this reason it is essential
that we work with abelian categories rather than in the broader context of exact
categories, where there is no notion of image.

Our main results are consequences of the splitting relation. Firstly, it implies

W(A)∼=
⊕
[s∼=Ds]

W(〈s〉),

where A is a noetherian abelian category, 〈s〉 is the full Serre subcategory generated
by the self-dual simple object s ∼= Ds, and the sum is over isomorphism classes of
such objects. This is well-known; see for example [Quebbemann et al. 1979, §6]
or [Sheiham 2001, Chapter 5], although the usual proof uses Hermitian dévissage
rather than our splitting relation. See also [Youssin 1997, Corollary 4.13], but note
that the W(〈s〉) need not be freely generated as claimed there. Secondly, when

A
ı∗
−→ B

∗

−→ C

is an exact triple of triangulated categories with duality and the self-dual t-structure
on B is glued from t-structures on A and C, the splitting relation yields a formula

[β] = [ı∗ı !∗β] + [!∗∗β]

in W (B0), where B0 is the self-dual heart of the t-structure. In general this formula
depends upon the representative form β.

In Section 3 we apply these algebraic results to categories of perverse sheaves
on a topologically stratified space with finitely many strata. The splitting decom-
position (3.10) is obtained by iteratively applying the splitting relation: we choose
an ordering of the strata and split off terms on an open stratum one-by-one. In
Sections 3C and 3D we provide some explicit examples and counterexamples using
the quiver description of perverse sheaves on a rank stratification given in [Braden
and Grinberg 1999] and on Schubert-stratified projective spaces given in [Braden
2002].

In the final section we turn our attention to algebraically constructible perverse
sheaves Pervalg(X) on a complex algebraic variety X . If f : X → C is an alge-
braic map then the unipotent nearby and vanishing cycles formalism of [Beilinson
1987] provides an equivalence between this and a “gluing category” built from
Pervalg( f −1(0)) and Pervalg(X − f −1(0)). In this situation too the Witt group
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decomposes as a direct sum

W (Pervalg(X))∼=W (Pervalg(X − f −1(0)))⊕W (Pervalg( f −1(0))).

The projection is given by restriction along  : X − f −1(0) ↪→ X and the per-
verse unipotent vanishing cycles functor 8un

f , and the inclusions are given by the
maximal extension functor 4un

f and extension by zero along ı : f −1(0) ↪→ X .
Corollary 3.34 relates this decomposition to the terms in the splitting formula,
specifically

[ı !∗β] =8un
f [β] − [9

un
f (
∗β) ◦ N ],

[!∗γ ] =4
un
f [γ ] + ı∗[9un

f γ ◦ N ],

where 9un
f is the perverse unipotent nearby cycles functor, and N :9un

f →9un
f (−1)

is, up to a Tate twist, the logarithm of the monodromy µ acting on 9un
f .

2. Witt groups

2A. Categories with duality. A category with duality is a triple (A, D, χ) in which
A is a category, D is a functor Aop

→ A, and χ is a natural isomorphism id→ D2

such that the morphisms

Da
χDa
−−→ D3a and D3a

Dχa
−−→ Da

are mutually inverse for any object a ∈ A.

Examples 2.1. We are principally interested in abelian categories with duality.
These arise in many contexts in topology, geometry and representation theory,
usually related to finite-dimensional representations of some (graded) algebra with
involution. Prominent examples include

(1) local systems on a topological manifold M (in the connected case these are
modules over the group ring of the fundamental group π1 M , with involution
induced by the group inverse);

(2) finite-dimensional representations of a quiver with involution (as in [Young
2016, §3.2]);

(3) finitely generated torsion modules over a Dedekind ring R.

In each case the duality is given by morphisms into a dualising object: in the first
case this is the orientation sheaf orM of M — if M is connected and oriented this
is the trivial representation of the fundamental group; in the second case it is the
constant one-dimensional representation; in the third case it is Q(R)/R, where
Q(R) is the quotient field.
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A bilinear form on an object a ∈ A is a morphism α : a → Da. A form is
nondegenerate if α is an isomorphism, and it is ε-symmetric, where ε is either +1
or −1, if the diagram

a Da

D2a

α

χ(a) εDα

commutes. To make sense of ε-symmetry we need A to be additive. In fact it
suffices to consider the case ε = 1 since we may always absorb the sign into the
definition of the natural transformation χ , i.e., antisymmetric forms are symmetric
forms for a different duality.

Fix a bilinear form β : b→ Db. Given a morphism f : a→ b, the restriction
β| f is the composite D f ◦ β ◦ f on a. When f is a monomorphism we often
abuse notation and denote the restriction by β|a . The restriction β| f is symmetric
whenever β is.

Bilinear forms α and β are isometric, written α ∼= β, if there is an isomorphism
f : a→ b such that α = β| f . For example, when α : a→ Da is nondegenerate
then (Dα)−1

= εχ(a)α−1 is a symmetric form and is isometric to α because

a Da

Da D2a

α

α

(Dα)−1

Dα

commutes. Isometry is an equivalence relation which preserves nondegeneracy
and symmetry. The Witt monoid of degenerate forms M̃W(A) is the set of isometry
classes of symmetric forms under direct sum. The nondegenerate symmetric forms
constitute a submonoid, the Witt monoid MW(A).

Suppose (A, DA, χA) and (B, DB, χB) are categories with duality, and F :A→B
a functor. We say that F commutes with duality if there is a natural isomorphism
η : FDA→ DB F such that

F FD2
A

D2
B F DB FDA

Fχ

χF ηDA

DBη

commutes. This ensures that ηa Fα is symmetric for DB whenever α : a→ Da
is symmetric for DA. Such a functor induces a morphism M̃W(A)→ M̃W(B)
which restricts to a morphism between the submonoids of nondegenerate forms.
We suppress the natural transformation ηa and simply write Fα for the image form.

2B. Witt groups of abelian categories. Suppose that A is an abelian category with
exact duality D. It follows that if ker f ↪→ a is a kernel of f : a → b then
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Da � D ker f is a cokernel of D f : Db→ Da. Therefore there is a canonical
isomorphism D ker f ∼= coker D f , and similarly D coker f ∼= ker D f . In practice
we suppress these identifications.

Fix a symmetric form β : b→ Db. A subobject ı : a ↪→ b is

(1) β-isotropic if the restriction β|ı is 0;

(2) β-lagrangian if the sequence 0→ a
ı
−→ b

Dıβ
−−→ Da→ 0 is exact;

(3) and β-null if β ◦ ı = 0.

When the form β is understood we suppress it from the notation. Null and la-
grangian subobjects are isotropic, but not necessarily vice versa. Isotropic sub-
objects are also known, for instance in [Balmer 2005], as sublagrangians because
any subobject of a lagrangian is isotropic. If a form has no nonzero isotropic
subobjects we say it is anisotropic.

The orthogonal complement of a subobject ı : a ↪→b is defined to be the subobject

aβ = ker(Dıβ).

A subobject ı : a ↪→ b is isotropic if and only if it factors through aβ , lagrangian if
and only if the factorisation is an isomorphism a ∼= aβ and null if and only if the
inclusion is an isomorphism aβ ∼= b.

A nondegenerate form η which has a lagrangian is called metabolic. Nondegen-
erate forms β0 and β1 are Witt-equivalent if they are stably isometric by metabolic
forms, i.e., if there exist metabolic forms η0 and η1 such that

β0⊕ η0 ∼= β1⊕ η1.

This defines an equivalence relation on MW(A).

Definition 2.2. The Witt group W(A) of A is the set of Witt-equivalence classes
in MW(A) under ⊕. This is a group, not just a monoid, because β ⊕−β is Witt
equivalent to 0. The class of a nondegenerate symmetric form β is denoted [β].

Remark 2.3. Making the analogous definitions with antisymmetric forms in place
of symmetric ones or, as explained above, working with symmetric forms in the cat-
egory with duality (A, D,−χ), we obtain the Witt group W−(A) of antisymmetric
forms.

If F : A→ B is an exact functor which commutes with duality then it preserves
metabolic forms and so induces homomorphisms

W±(F) :W±(A)→W±(B).

We will see shortly that in some cases we can weaken the requirement that F is
exact.
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2C. Isotropic reduction. Fix a symmetric form β : b→ Db. Given a null sub-
object ı : a ↪→ b there is an induced symmetric form on the cokernel of ı such that

b coker ı

Db ker Dı

β

commutes; symmetry follows from the uniqueness of the induced morphism. In
particular, kerβ is always null and the symmetric form β : imβ → coim Dβ is
nondegenerate.

This is a special case of a more general construction starting from an isotropic
subobject ı : a ↪→ b. Note that the factorisation a ↪→ aβ is always null for the
restriction β|aβ because

D(aβ)= D ker(Dıβ)∼= coker(DβD2ı)∼= coker(βı).

It is a kernel of β|aβ when β is nondegenerate. The isotropic reduction β C a is
defined to be the induced symmetric form on the cokernel of a ↪→ aβ . We note
some special cases: when β is nondegenerate β C a = β|aβ , when a is a null
subobject β C a is the induced symmetric form on the quotient, and in particular
β C kerβ = β. The isotropic reduction is the zero form on the zero object if, and
only if, ı : a→ b is lagrangian. If β is nondegenerate then so is any reduction of
β (but not vice versa).

Isotropic reduction is compatible with restriction to a subobject in the following
sense.

Lemma 2.4. Suppose we have a commutative diagram

a b c

Da Db Dc

ı

0



β γ

Dı D

in which γ : c→ Dc is symmetric (so that β = γ | and a is an isotropic subobject
of both β and γ ). Then there is a monomorphism  C a : aβ/a→ aγ /a such that

(γ | )C a = (γ C a)|Ca.

Proof. Taking successive pullbacks we obtain a commutative diagram:

a aβ aγ

a b cı 
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Hence there is an induced monomorphism  C a : aβ/a→ aγ /a such that the top
(and dual bottom) inner squares of the following diagram commute:

aβ/a aγ /a

aβ aγ

Daβ Daγ

D(aβ/a) D(aγ /a)

Ca

βCa γCaβ|aβ γ |aγ

D(Ca)

The remaining internal squares commute by definition. Hence the outer square
commutes. �

Reduction by the kernel of a degenerate form is compatible with isotropic re-
ductions in the following sense.

Lemma 2.5. Suppose ı : a ↪→ b is isotropic for symmetric β : b→ Db. Then

β C a ∼= β C a,

where a is the image of a ↪→ b� imβ.

Proof. Let b = imβ and a = im(a ↪→ b� imβ). Then there is a commutative
diagram

a b aβ aβ/a

a b aβ aβ/a

Da Db Daβ D(aβ/a)

Da Db Daβ D(aβ/a)

0 βCaβ βCa

The result follows by considering the right-hand square and recalling that β C a is
an isomorphism. �

Loosely we can say that “reduction by the kernel commutes with all other
isotropic reductions”.

The proof of the next lemma is an elementary diagram chase, which we omit.
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Lemma 2.6. Let γ : c→ Dc be symmetric and a ↪→ c isotropic. Then quotienting
by a induces a one-to-one correspondence between factorisations a ↪→ b ↪→ c with
b isotropic and isotropic subobjects of the reduced form γ C a. Furthermore,

γ C b ∼= (γ C a)C (b/a).

Since the reduction of a nondegenerate form is nondegenerate, isotropic reduc-
tion generates an equivalence relation on MW(A).

Theorem 2.7 (see, e.g., [Balmer 2005, Theorem 1.1.32 and Remark 1.1.33]). The
equivalence relation on MW(A) generated by isotropic reduction is Witt-equivalence.
Hence the set of equivalence classes is W(A).

Although isotropic reduction is often only considered for nondegenerate forms,
it is a natural operation on degenerate forms too. Let W̃(A) be the set of equivalence
classes of the relation generated by isotropic reduction on M̃W(A). Reduction by
the kernel defines a map of monoids

M̃W(A)→MW(A) : β 7→ β.

By Lemma 2.5 this map preserves the equivalence relation generated by isotropic
reduction. Hence there are maps

W(A)→ W̃(A)→W(A)

induced by MW(A) ↪→ M̃W(A) and reduction by the kernel, respectively.

Corollary 2.8. These maps are inverse to one another. Hence W̃(A) is also a
group under ⊕ and it is isomorphic to the Witt group W(A).

Proof. In one direction the composition is the identity on representatives, and in
the other it is isotropic reduction by the kernel. Both induce the identity on Witt
groups. �

Thus one can define the Witt group by using the isotropic reduction relation on
either degenerate or on nondegenerate forms.

2D. The splitting relation. In this section we introduce a more general relation
which allows us to split forms into two pieces. Isotropic reduction corresponds to
the special case when one of these pieces is trivial.

Proposition 2.9. Suppose β : b → Db is a nondegenerate symmetric form and
that 0→ a

ı
−→ b

q
−→ c→ 0 is a short exact sequence in A. Then there are induced

symmetric forms α = β|ı : a→ Da and γ = β|β−1 Dq : Dc→ D2c and

[β] = [α] + [γ ]

in the Witt group W(A).
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Proof. There is a unique isomorphism f : kerα→ ker γ such that

kerα ker γ

a b Dc

Da Db D2c

f

α

ı

β γ

β−1 Dq

Dı χ(c)qβ−1

commutes. Let k = kerα ∼= ker γ . We can apply Lemma 2.4 simultaneously to
both lower squares of the above diagram to obtain a new diagram

imα kβ/k im γ

coim Dα D(kβ/k) coim Dγ

α βCk γ

in which the vertical arrows are isomorphisms. Furthermore we can check from
the construction of Lemma 2.4 that the diagonal

imα ↪→ kβ/k� coim Dγ

of this new diagram is still short exact (and the other diagonal is the dual short
exact sequence).

Thus we can reduce to the special case in which α and γ are nondegenerate. In
this case ( ı β−1 Dq ) : a⊕ Dc→ b is an isomorphism and(

Dı
D2q Dβ−1

)
β( ı β−1 Dq )=

(
α 0
0 γ

)
.

So β ∼= α ⊕ γ and [β] = [α] + [γ ]. More generally this argument shows that
[β] = [β C k] = [α] + [γ ]. �

Remarks 2.10. (1) In the situation of the above lemma aβ ∼= Dc and the restricted
form γ is isometric to β|aβ . Hence the splitting relation can be written in
W̃(A) as

[β] = [β|a] + [β|aβ ].

(2) The proposition shows that the splitting relation holds in W(A). Conversely
we could define W(A) using the splitting relation, for both the relation of
isometry and that arising from isotropic reduction are special cases obtained
by putting c = 0 and α = 0, respectively.

(3) If β is anisotropic then the proof provides an isometry β ∼= α⊕γ ; in particular
α and γ are also nondegenerate and anisotropic.
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The following result is a minor generalisation of the splitting relation.

Corollary 2.11. Suppose β : b→ Db is a nondegenerate symmetric form and that
a

f
−→ b

g
−→ c is exact at the middle term. Then there are induced symmetric forms

α = β| f : a→ Da and γ = β|β−1 Dg : Dc→ D2c such that [β] = [α] + [γ ] in the
Witt group W(A).

Proof. Replacing α by αC ker f and γ by γ C ker Dg, we are in the situation of
Proposition 2.9. Hence, using Lemma 2.5,

[β] =
[
αC ker f

]
+
[
γ C ker Dg

]
=
[
αC ker f

]
+
[
γ C ker Dg

]
= [α] + [γ ]. �

In the presence of an exact duality the following are equivalent (the last two by
the Jordan–Hölder theorem):

(1) A is noetherian;

(2) A is artinian;

(3) A is artinian and noetherian;

(4) A is a length category, i.e., each object has a finite composition series with
simple factors.

Under these conditions the Witt group has a more explicit description.

Corollary 2.12. Suppose A is noetherian. Then the Witt group W(A) is the set of
isometry classes of anisotropic forms. The group operation is given by choosing an
anisotropic representative for the direct sum. Any anisotropic form is isometric to a
direct sum of nondegenerate symmetric forms on simple objects of A. In particular
the Witt group is generated by forms on simple objects.

Proof. If β : b→ Db is a symmetric form then Lemma 2.6 and the noetherian
property guarantee that there is a maximal isotropic subobject a ↪→ b. The reduc-
tion β C a is thus an anisotropic representative for [β]. Youssin [1997, Theorem
4.9] shows that anisotropic forms represent the same Witt class if and only if they
are isometric. (In other words, even though the Witt cancellation theorem may not
hold, its conclusion remains true for anisotropic forms.) Finally, by the third part
of Remarks 2.10, and another application of the noetherian property, we can write
an anisotropic form as a finite direct sum of forms on simple objects. �

The Witt group is not necessarily freely generated by forms on simple objects
(as claimed in [Youssin 1997]) as can be seen by considering, for example, the
categories of vector spaces over Q or C whose Witt groups have torsion. However,
it does have a canonical direct sum decomposition into Witt groups of the Serre
subcategories generated by self-dual simple objects. This is well-known; see for
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example [Quebbemann et al. 1979, §6] or [Sheiham 2001, Chapter 5], although
the usual proof uses Hermitian dévissage rather than our splitting relation.

Corollary 2.13. Suppose A is noetherian. Then there is an isomorphism

W(A)∼=
⊕
[s∼=Ds]

W(〈s〉)

where the direct sum is over isomorphism classes of self-dual simple objects and
〈s〉 denotes the full Serre subcategory generated by self-extensions of s.

Proof. Suppose s is a self-dual simple object. Then the duality D restricts to a du-
ality on the full Serre subcategory 〈s〉 and the inclusion ıs is an exact functor which
commutes with duality. Hence there are induced maps W(ıs) :W(〈s〉)→W(A)
and combining these a map ⊕

[s∼=Ds]

W(〈s〉)→W(A).

It is surjective by the last part of Corollary 2.12. Moreover, the description of the
Witt group as isometry classes of anisotropic forms shows that it is injective; an
isometry must preserve the summand consisting of forms on self-extensions of a
given simple object. �

2E. Balmer–Witt groups of triangulated categories. A triangulated category B
with duality has 4-periodic Balmer–Witt groups. Proposition 2.14 below expresses
the Witt groups of the abelian heart of a self-dual t-structure on B in terms of the
Balmer–Witt groups of B. This is closely related to [Balmer 2001, Theorem 4.3],
which treats the special case in which the triangulated category is the bounded
derived category of the heart (but which works in the more general setting of the
derived category of an exact category). See also [Youssin 1997, Theorem 7.4],
where the analogous result is proved for a slightly different definition of triangu-
lated Witt group.

Suppose B is triangulated with shift functor [1]. Exact triangles in B are denoted
either by a→ b→ c→ a[1] or by a diagram

a b

c

where the dotted arrow denotes a map c→ a[1]. In order that the Balmer–Witt
groups of B are defined and well-behaved we always assume that

(1) B is essentially small, so that isomorphism classes of objects form a set;

(2) B satisfies the enriched octahedral axiom;

(3) 2 is invertible in B, i.e., given α ∈ Hom(a, b) there exists α′ with α = 2α′.
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As noted in [Beilinson et al. 1982, Remarque 1.1.13] and [Balmer 2000], the second
property is satisfied by all commonly met triangulated categories, in particular by
derived categories. It also passes to triangulated subcategories and to localisations.

Suppose D is a triangulated duality on B with natural transformation χ : id→ D2.
Then one can define Balmer–Witt groups Wi (B) for i ∈ Z; see [Balmer 2000] but
note that we use homological indexing rather than cohomological so that our Wi (B)
corresponds to Balmer’s W−i (B). The group W0(B) is the quotient of the Witt
monoid by the submonoid generated by metabolic forms (or neutral forms in the
terminology of [Balmer 2000]), i.e., nondegenerate forms β : b→ Db for which
there is a lagrangian α : a→ b such that the triangle

a
α
−→ b

Dα·β
−−−→ Da

γ
−→ a[1]

is exact and γ is symmetric, i.e., (Dγ )[1] = χa[1]γ . The group Wi (B) is defined
similarly but using the shifted duality c 7→ (Dc)[−i] with natural isomorphism

(−1)i(i−1)/2χ : id→ (D[−i])2.

Although the shifted duality is not triangulated when i is odd, it is still a δ-functor,
and this suffices for the construction. In contrast to the abelian case, [β] = 0 if
and only if β is metabolic [Balmer 2000, Theorem 3.5]. There are natural isomor-
phisms Wi (B)∼=Wi+4(B) given by [β] 7→ [β[−2]] so that the groups are 4-periodic.
The Balmer–Witt groups are functorial under triangulated functors which commute
with duality since these preserve metabolic forms.

Recall that a t-structure on B is a strict, full subcategory B≤0
⊂ B such that

B≤0
[1] ⊂ B≤0 and for each c ∈ B there is an exact triangle

τ≤0c→ c→ τ>0c→ τ≤0c[1]

with τ≤0c ∈ B≤0 and τ>0c ∈ B>0, where the latter is the full subcategory on those
objects c such that Hom(b, c)= 0 for all b ∈ B≤0. Indeed, the existence of these
triangles implies that B≤0 is right admissible with right adjoint τ≤0 to its inclusion,
and that B>0 is left admissible with left adjoint τ>0 to its inclusion. These adjoints
are referred to as truncation functors. The exact triangle associated to an object c
is unique (up to isomorphism) and the first two maps in it come respectively from
the counit and unit of the adjunctions.

Let B≤n
= B≤0

[−n] with left adjoint τ≤n to its inclusion, and define B≥n and
the right adjoint τ≥n to its inclusion similarly. The subcategory B0

= B≤0
∩B≥0

is abelian [Beilinson et al. 1982, Théorème 1.3.6] and is known as the heart of the
t-structure. The functor H 0

= τ≤0τ≥0
: B→ B0 is cohomological, i.e., takes exact

triangles to long exact sequences.
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A triangulated functor F :B→C between categories with respective t-structures
B≤0 and C≤0 is left t-exact if FB≥0

⊂ C≥0, right t-exact if FB≤0
⊂ C≤0 and t-

exact if it is both left and right t-exact. The induced functor p F := H 0 F between
the abelian hearts — the peculiar notation arises from the original occurrence in
[Beilinson et al. 1982] of these notions in the context of perverse sheaves — is
respectively left exact, right exact and exact accordingly.

If D is an exact duality on B then one can check that D(B≥0) is also a t-
structure. We refer to this as the dual t-structure, and say a t-structure is self-dual
if B≤0

= D(B≥0). The duality D restricts to an exact duality on the heart of a self-
dual t-structure. Conversely, if the t-structure is bounded and the heart is invariant
under duality then the t-structure is self-dual. If in addition the heart is a length
category then this is equivalent to the set of simple objects being invariant under
duality.

Proposition 2.14. Suppose B is a triangulated category with exact duality D and
B0 is the heart of a self-dual t-structure on B. Then

Wi (B)∼=


W (B0) if i = 0 (mod 4),
W−(B0) if i = 2 (mod 4),
0 if i = 1 (mod 2).

Proof. We treat the case i = 0 first. The inclusion B0 ↪→ B commutes with duality
and preserves metabolic forms. Therefore it induces a map W (B0)→W0(B). The
functor H 0

: B → B0 also commutes with duality. Whenever α : a → b is a
lagrangian for β there is an exact sequence

· · · → H 0a→ H 0b→ H 0 Da→ · · · .

Hence we can apply Corollary 2.11 to deduce that [H 0β] = 0 ∈W (B0). Therefore
there is an induced map W0(B) → W (B0) : [β] 7→ [H 0β]. It is clear that the
composite

W (B0)→W0(B)→W (B0)

is the identity (in fact on representatives). We also claim that [β] = [H 0β] in W (B),
from which it follows immediately that W (B0) ∼= W0(B). To establish the claim
we use the sublagrangian construction of [Balmer 2000, §4], which is an analogue
of isotropic reduction for the triangulated setting.

Given a nondegenerate symmetric form β : b → Db in B we observe that
ı : τ<0b→ b is isotropic (or, in the terminology of [Balmer 2000], sublagrangian)
because Dıβı = 0. Furthermore, the natural morphism  : τ<0b→ τ≤0b is a “good
morphism” in the sense of [Balmer 2000, Definition 4.3] because there exist mor-
phisms q and r such that the diagram (in which we omit some natural morphisms)
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τ<0b b τ≥0 Db τ<0b[1]

τ≤0b Db τ>0 Db τ≤0b[1]



ı

β

q

D

r [1]

 [1]

Dq Dı Dr

is commutative. Indeed by applying the enhanced octahedral axiom to the octahe-
dron below (which for ease of reading we draw as upper and lower halves with
dotted arrows indicating the boundary morphisms of the exact triangles and labels
on morphisms omitted)

H 0 Db τ<0b[1] H 0 Db τ<0b[1]

τ≥0 Db τ≤0b[1]

τ>0 Db Db[1] τ>0 Db Db[1]

we obtain the required triangle which shows that  is a “very good morphism” in the
sense of [Balmer 2000, Definition 4.11]. Applying [Balmer 2000, Theorem 4.20]
we deduce that [β] = [H 0β] as required.

The other cases follow more easily: the group W1(B) vanishes because each
representative b→ (Db)[−1] has a lagrangian, namely τ≤0b→ b; the case i = 2
is similar to i = 0, but with symmetric forms replaced by antisymmetric ones, and
the case i = 3 is similar to i = 1. We omit the details. �

Corollary 2.15. Suppose B is a triangulated category with exact duality D and B0

is the heart of a self-dual t-structure on B. Then there are canonical isomorphisms

W0(B)∼=�+(B) and W2(B)∼=�−(B)

between the nonvanishing Balmer–Witt groups and the Youssin cobordism groups
�±(B) of symmetric and antisymmetric self-dual complexes (introduced in [Youssin
1997]).

Proof. There are canonical surjective homomorphisms

W0(B)→�+(B) and W2(B)→�−(B);

see [Brasselet et al. 2010, p. 31]. These are compatible with the isomorphisms to
W±(B0) provided by Proposition 2.14 and [Youssin 1997, Theorem 7.4]. �

Examples 2.16. The results above apply in various interesting examples:

(1) The bounded derived category of an abelian category with duality, with its
evident induced duality and standard t-structure.
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(2) The constructible derived category of sheaves of vector spaces on a finite-
dimensional topologically stratified space, with only even-dimensional strata,
equipped with Verdier duality and the self-dual perverse t-structure; see for
example [Beilinson et al. 1982, §2; Schürmann 2003, §4.2]. Here, by topo-
logically stratified space we mean a locally cone-like stratified space in the
sense of Siebenmann; see for example [Schürmann 2003, §4.2].

(3) The constructible derived category of sheaves of torsion modules over a Dede-
kind ring R on a finite-dimensional topologically stratified space, with only
even-dimensional strata, as studied in [Cappell and Shaneson 1991a]. The
torsion condition is preserved by push-forward along open inclusions because
the stalks of the push-forward can be expressed in terms of the compact link
[Schürmann 2003, Remark 4.4.2], and by the Künneth formula they vanish
after tensoring with Q(R). It follows from [Beilinson et al. 1982, §3.3] that
the perverse t-structure is self-dual for shifted Verdier duality.

(4) Let f : X→ Y be a proper morphism of complex algebraic varieties, of fibre
dimension at most 1 and with R f∗OX = OY . Then the standard t-structure
restricts to a t-structure on the null category C f , i.e., the full category of
Db Coh(X) on objects E with R f∗E = 0; see [Bridgeland 2002, Lemma 3.1].
If in addition f is an isomorphism outside a subvariety of dimension 0 then the
heart C f ∩Coh(X) is stable under shifted Grothendieck duality by [Bodzenta
and Bondal 2015, Proposition 9.7 and Theorem 9.8].

2F. Gluing and splitting. Suppose that A
ı∗
−→ B

∗

−→ C is an exact triple of triangu-
lated categories, i.e., ı∗ is the inclusion of a full, thick triangulated subcategory A of
a triangulated category B, and C is the quotient category obtained by localising at
all morphisms in A. If B has a triangulated duality which preserves the subcategory
A then both A and C inherit triangulated dualities such that the inclusion ı∗ and
quotient ∗ commute with duality. Theorem 6.2 of [Balmer 2000] states that there
is then a long exact sequence

· · · →Wi (A)→Wi (B)→Wi (C)→Wi−1(A)→ · · ·

of Balmer–Witt groups in which the first two maps are induced from ı∗ and ∗,
respectively (the hypothesis in [Balmer 2000] that C is weakly cancellative is un-
necessary; see [Balmer and Walter 2002, Theorem 2.1]).

For the remainder of this section we suppose further that

(1) ı∗ has respective left and right adjoints ı∗ and ı !;

(2) ∗ has respective left and right adjoints ! and ∗;

(3) there exist natural transformations ı∗ı∗→ !
∗
[1] and ∗∗→ ı∗ı ![1] such that

there are natural exact triangles
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ı∗ı !→ id→ ∗
∗
→ ı∗ı ![1] and !

∗
→ id→ ı∗ı∗→ !

∗
[1]

whose other morphisms are units or counits of the relevant adjunctions;

(4) the units of the adjunctions ı∗ a ı ! and ! a ∗ are isomorphisms, as are the
counits of ı∗ a ı∗ and ∗ a ∗.

Some of these conditions are redundant: the existence of any one of the adjoints
guarantees the existence of the other three, the triangles in the third condition are
dual to one another and the final condition follows from the fact that ı∗, ∗ and !
are fully faithful.

Under these conditions [Beilinson et al. 1982, Théorème 1.4.10] states that one
can glue given t-structures A≤0

⊂ A and C≤0
⊂ C to obtain a t-structure

B≤0
=
〈
b ∈ B | ı∗b ∈ A≤0, ∗b ∈ C≤0〉

on B. This glued t-structure is self-dual whenever the given ones on A and C are
so. With respect to these t-structures

(1) ı∗ and ∗ are t-exact;

(2) ı ! and ∗ are left t-exact;

(3) ı∗ and ! are right t-exact.

The adjunctions give rise to natural morphisms !→ ∗ and ı !→ ı∗. The interme-
diate extension is defined to be the functor !∗ = im(p!→

p∗) and similarly the
intermediate restriction is defined to be ı !∗ = im(pı !→ pı∗). By construction both
!∗ and ı !∗ commute with duality.

If  and k are composable quotient functors then (k)!∗ = !∗k!∗; see [Beilinson
et al. 1982, 2.1.7.1]. The analogue for composable inclusion functors is false in gen-
eral; see Example 3.23. Intermediate extensions are neither left nor right exact, but
do preserve injections, surjections and images; intermediate restrictions need not
have any exactness properties. Finally, intermediate extensions are fully faithful.

Examples 2.17. There are various examples of this gluing situation:

(1) The bounded derived category of a highest weight category B0 with dual-
ity in the sense of [Cline et al. 1989]. The simple objects of B0 are the
elements of a poset; each is fixed by duality. The functor ı∗ is given by
the inclusion of Db(A0), where A0 is the Serre subcategory generated by a
downward-closed subset of simple objects. The functor ∗ is the induced
quotient Db(B0)→ Db(B0/A0).

(2) The constructible derived category of sheaves of vector spaces on a finite-
dimensional topologically stratified space, with only even-dimensional strata,
equipped with Verdier duality and the self-dual perverse t-structure. In this
case ı is the inclusion of a closed union of strata and  the complementary
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inclusion of an open union of strata, and ı∗ and ∗ the respective induced
functors.

The example of the constructible derived category of sheaves of torsion
modules over a Dedekind ring R works similarly.

(3) Let g : X → Z and h : Z → Y be proper birational morphisms of smooth
complex algebraic surfaces, and let f = g ◦ h. Then the exact triple of null
categories, as defined in Example 2.16(4) above,

Cg
ı∗
−→ C f

Rg∗
−−→ Ch,

where the first functor is the inclusion of the full subcategory Cg into C f ,
extends to gluing data by [Bodzenta and Bondal 2018, Proposition 3.5]. This
data is compatible as above with shifted Grothendieck duality since we have
restricted to surfaces.

Proposition 2.18. Consider as before a gluing A
ı∗
−→ B

∗

−→ C of self-dual t-struc-
tures, with induced dualities on their hearts A0, B0 and C0. Suppose B0 is noe-
therian, or equivalently that both A0 and C0 are noetherian. Then W(B0) ∼=

W(A0)⊕W(C0). The analogue for antisymmetric forms also holds.

Proof. By [Beilinson et al. 1982, Proposition 1.4.26] each simple object of the
heart B0 is either of the form ı∗a for simple a ∈ A0, or !∗c for simple c ∈ C0.
Furthermore, duality preserves these two classes. Hence by the same argument as
in the proof of Corollary 2.13 we have

W(B0)∼=W(〈ı∗a | simple a ∈ A0
〉)⊕W(〈!∗c | simple c ∈ C0

〉).

It is immediate that ı∗ induces an isomorphism W(A0)∼=W(〈ı∗a | simple a ∈ A0
〉).

It follows from the fact that !∗ is fully faithful that ∗ induces an isomorphism

W(〈!∗c | simple c ∈ C0
〉)∼=W(C0). �

Together with Proposition 2.14 this provides an independent proof of the exis-
tence of the long exact sequence of Balmer–Witt groups in the case when B0 is
noetherian, and furthermore shows that it splits in this case.

The proof shows that the inclusion W(A0) ↪→W(B0) is induced by ı∗ and the
projection W(B0)�W(C0) by ∗. It is harder to obtain explicit descriptions of
the other inclusion and projection.

Theorem 2.19. Suppose β : b → Db is a nondegenerate symmetric form in B.
Then

[β] = [ı∗ı !∗β] + [!∗∗β] (2.20)

in the Witt group W(B0)∼=W(B).
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Proof. There is an exact triangle ı∗ı !b→ b→ ∗
∗b→ ı∗ı !b[1] which gives rise

to a long exact sequence

· · · → ı∗ pı !b→ H 0b→ p∗
∗b→ · · ·

in the heart B0. We apply Corollary 2.11 to write [H 0β] = [β] as a sum of two
terms in the Witt group W(B0)∼=W(B). The requisite two terms are the induced
forms on the images of α and γ in the diagram

ı∗ pı !b H 0b p!
∗Db

ı∗ pı∗Db Dı∗ pı !b DH 0b D p!
∗Db p∗

∗D2b

α β γ

To identify α consider the commutative diagram below in which α is the composite
of the dashed arrows:

DH 0b ı∗ pı∗Db

H 0b ı∗ pı∗b

ı∗ pı !b ı∗ı !∗b

ı∗ pı !Db ı∗ı !∗Db

β ı∗ pı∗β

ı∗ pı !β ı∗ı !∗β

The top and left squares arise from the natural morphisms id→ ı∗ pı∗ and ı∗ pı !→ id,
respectively, and the bottom and right squares from the definition of ı !∗. The central
square commutes because the composite ı∗ pı !→ id→ ı∗ pı∗ is the natural morphism
ı∗(pı !→ pı∗); see [Beilinson et al. 1982, 1.4.21.1]. It follows that α ∼= ı∗ı !∗β. A
similar, slightly more involved, argument shows that γ ∼= !∗∗β. �

Example 2.21. Assume the nondegenerate symmetric form β : b→ Db in B0 is
a direct sum β = ı∗α⊕ !∗γ , with nondegenerate symmetric forms α : a→ Da in
A0 and γ : c→ Dc in C0. Then ı !∗β ∼= α and ∗β ∼= γ , so that (2.20) is the image
of this decomposition of β in the Witt group.

It is natural to assume that, when B0 is noetherian, the sum in (2.20) corre-
sponds to the direct sum decomposition of Proposition 2.18. This is false in general.
The individual terms depend upon the choice of representative β, not just on the
class [β] (see Example 3.19). When !∗ is exact then it induces a map of Witt
groups splitting ∗, and moreover !∗γ is Witt equivalent to a sum of forms on
intermediate extensions of simple objects in C0. Since ı∗ is a monomorphism it



644 JÖRG SCHÜRMANN AND JON WOOLF

follows that the class [ı !∗β] is also well-defined, and so ı !∗ induces a map of Witt
groups too, splitting ı∗. The next corollary summarises these observations.

Corollary 2.22. Suppose B0 is noetherian and the intermediate extension !∗ is
exact. Then the direct sum decomposition of Proposition 2.18 is given by the maps
[β] 7→ ([ı !∗β], ∗[β]) and ([α], [γ ]) 7→ ı∗[α] + [!∗γ ].

Another important case is when the form β is anisotropic.

Corollary 2.23. Suppose B0 is noetherian and β : b→ Db is a nondegenerate
anisotropic symmetric form in B0. Then there is an isometry β ∼= ı∗ı !∗β ⊕ !∗∗β
and (2.20) corresponds to the direct sum decomposition of Proposition 2.18.

Proof. The existence of the isometry follows from Remarks 2.10. As a consequence
ı∗ı !∗β and !∗∗β are also anisotropic. Hence each is a direct sum of nondegenerate
forms on simple objects. It is clear that ı∗ı !∗b has only factors of the form ı∗a for
simple a ∈ A0. Since the intermediate extension !∗∗b cannot have subobjects of
the form ı∗a it follows that no such objects can appear when we write it as a direct
sum of simple objects. Hence,

ı∗ı !∗b ∈ 〈ı∗a | simple a ∈ A0
〉 and !∗

∗b ∈ 〈!∗c | simple c ∈ C0
〉.

The result follows. �

In particular, it follows that the classes [ı !∗β ′] and [!∗γ ′] are well-defined inde-
pendent of the choice of anisotropic representatives β ′ for [β] and γ ′ for [γ ]. Thus
we can define homomorphisms

ı !∗ :W(B0)→W(A0) : [β] 7→ [ı !∗β ′],

!∗ :W(C0)→W(B0) : [γ ] 7→ [!∗γ
′
],

where β ′ and γ ′ are (choices of) anisotropic representatives. The projections and
inclusions of the direct sum decomposition are then the homomorphisms

W(A0) W(B0) W(C0).

ı∗

ı !∗

∗

!∗

(2.24)

In practice it may be difficult to identify maximal isotropic subobjects in B0, but
easier to do so in C0. For instance in the next section B0 will be a category of
perverse sheaves and C0 a category of local systems on a stratum. The follow-
ing approach allows one to compute the canonical direct sum decomposition of
Proposition 2.18 provided one can find maximal isotropic subobjects in C0. Let
c ↪→ ∗b be a maximal isotropic subobject of ∗β. Then !∗c ↪→ !∗

∗b is isotropic
for !∗∗β. Let β ′ = !∗∗β C !∗c be the reduction. Apply Theorem 2.19 to β ′ to
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obtain
[!∗

∗β] = [β ′] = [ı∗ı !∗β ′] + [!∗∗β ′]

and note that ∗β ′ = ∗β C c is anisotropic. It follows that this is the canonical
decomposition of [!∗∗β]. Hence the canonical decomposition of [β] is

[β] =
(
[ı∗ı !∗β] + [ı∗ı !∗β ′]

)
+ [!∗

∗β ′]. (2.25)

It is clear that ı∗ and ∗ preserve anisotropy; the same holds for intermediate
extension and restriction:

Lemma 2.26. If β : b→ Db and γ : c→ Dc are anisotropic symmetric forms in
B and C, respectively, then ı !∗β and !∗γ are also anisotropic.

Proof. For intermediate restrictions this follows from [Beilinson et al. 1982, Propo-
sition 1.4.17] and the fact that ı∗ is t-exact, which together imply that ı∗ pı !b→ b is a
monomorphism. For intermediate extension we note that if c′ ↪→ !∗c is an isotropic
subobject then ∗c′ = 0; otherwise it would be an isotropic subobject of c. Hence
c′ ∼= ı∗ı !c′. But this is impossible unless c′ = 0, as intermediate extensions cannot
have nonzero subobjects of this form [Beilinson et al. 1982, Corollaire 1.4.25]. �

Remark 2.27. The results of this subsection also hold, with essentially the same
proofs, in the context of gluing of abelian categories in the sense of [Franjou and
Pirashvili 2004]. In this context one has the same six functor formalism, but with
exact sequences

0→ ı∗ı !→ id→ ∗
∗ and !

∗
→ id→ ı∗ı∗→ 0

replacing the corresponding exact triangles; see [Franjou and Pirashvili 2004, Propo-
sition 4.2]. As above, the simple objects of the glued abelian category have either
the form ı∗a or !∗c; see [Berest et al. 2008, Lemma 2]. Since we only use exactness
in the middle in the proof of Theorem 2.19, everything works as before.

This is a more general context; there are abelian gluing examples which do not
come from gluing of triangulated categories. In particular, Examples 2.17 (1) and
(3) can be generalised; see [Krause 2017, Lemma 2.5] and [Bodzenta and Bondal
2018, Proposition 3.11], respectively.

3. Application to stratified spaces

3A. Witt groups of local systems. Let X be a locally connected topological space,
and let Loc(X) be the category of local systems on X with coefficients in a field F.
When X is connected this category is equivalent to the category of F-representations
of the fundamental group π1 X . A representation ρ : π1 X → GL(V ) has a dual
representation on the vector space dual V ∗ given by g 7→ ρ(g)−∗ := ρ(g−1)∗.
There is an induced duality on local systems which we denote by L 7→ L∨. Let



646 JÖRG SCHÜRMANN AND JON WOOLF

W (Loc(X)) be the associated Witt group. It is a ring under the tensor product of
local systems, and is covariantly functorial under continuous maps (see also [Bunke
and Ma 2004]). If X is a topological manifold, then there is also a second duality
L 7→ L∨⊗orX obtained by in addition twisting with the orientation sheaf orX of X .
Let W (Loc(X), orX ) be the associated Witt group, which agrees with W (Loc(X))
when X is oriented, i.e., when an isomorphism orX ∼= FX has been chosen.

3B. Witt groups of perverse sheaves. Let X be a finite-dimensional topologically
stratified space, i.e., a locally cone-like stratified space. Let Db

c(X) be the bounded
derived category of constructible sheaves of F-vector spaces on X for a field F.
The Poincaré–Verdier dual D makes this into a category with duality. Suppose that
X has only even-dimensional strata. Then there is a self-dual perversity p(S) =
− dim S/2 which defines a t-structure pD≤0(X) on Db

c(X) whose heart is the cat-
egory Perv(X) of perverse sheaves. This is the full subcategory of Db

c(X) whose
objects obey the vanishing conditions

H j (k∗SA)=0 for j>− dim S/2 and H j (k!SA)=0 for j<− dim S/2,

where kS : S ↪→ X is the inclusion of a stratum. The category Perv(X) is both
artinian and noetherian.

It follows from the fact that the above vanishing conditions are local on X that
tensoring with a local system L is an exact functor

– ⊗L : Perv(X)→ Perv(X).

Moreover, Verdier duality and the duality on local systems are related by

D(A⊗L)∼= DA⊗L∨,

where A is a perverse sheaf and L a local system. Combining these facts we obtain
the following lemma:

Lemma 3.1. Tensor product makes the Witt group W (Perv(X)) of perverse sheaves
into a module over the Witt group W (Loc(X)) of local systems.

Let ı : Y ↪→ X be the inclusion of a closed stratified subspace, in other words Y
is a closed union of strata of X . Let  : U = X − Y ↪→ X be the complementary
open inclusion. Then

Db
c(Y )

ı∗
−→ Db

c(X)
∗
−→ Db

c(U )

is an exact triple of triangulated categories satisfying the conditions of Section 2F.
The perverse t-structure on Db

c(X) is glued from the perverse t-structures on Db
c(Y )

and Db
c(U ). For the remainder of this section we assume that the stratified space X

has only finitely many strata, which is the case, for instance, if it is compact. For
ease of reading we suppress extensions by zero from closed unions of strata.
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Corollary 3.2. There is a direct sum decomposition

W(Perv(X))∼=
⊕
S⊂X

WεS (Loc(S), orS), (3.3)

where εS = (−1)dim S/2.

Proof. The decomposition is obtained by applying Proposition 2.18 repeatedly to
obtain

W(Perv(X))∼=
⊕
S⊂X

W(Perv(S)).

The decomposition in the statement is equivalent: a perverse sheaf on S is a local
system shifted in degree by dim S/2, and this accounts for the signs εS because odd
shifts switch symmetric and antisymmetric forms; see [Balmer 2000, Remark 2.16].
Moreover, Verdier duality corresponds under this identification to the duality of
local systems twisted by the orientation sheaf orS of the stratum S. �

Example 3.4. Assume all strata S are orientable and consider the coefficient field
F=R. Then WεS (Loc(S), orS)∼=WεS (Loc(S)) is by [Bunke and Ma 2004] a direct
sum of a free Z-module and a torsion module whose elements are all of order two.
So the same is true for the Witt group W(Perv(X)) of perverse sheaves.

We now discuss how to compute the associated “canonical decomposition” of
a class in W(Perv(X)) into classes of forms on local systems on the strata, or
equivalently on their intermediate extensions. Let ıS : S ↪→ X and S : S ↪→ S be
the inclusions, so that kS = ıS ◦ S . Let β|S be the restricted form

∗S
pıS
!B→ ∗S

pıS
!DB ∼= ∗S D(pıS

∗B)

induced by a symmetric form β : B→ DB. This restricted form may be degenerate;
the associated nondegenerate form is, by definition, ∗S ı !∗S β.

Lemma 3.5. Suppose β : B→ DB is nondegenerate and anisotropic. Then there
is an isometry

β ∼=
∑
S⊂X

S !∗
∗

S ı !∗S β, (3.6)

and passing to the Witt group we obtain the canonical decomposition of [β].

Proof. The existence of the isometry and the fact that it corresponds to the direct
sum decomposition follow from Corollary 2.23: applying it first to ıS and the com-
plementary open inclusion, and then to S and the complementary closed inclusion
yields an isometry

β ∼= β
′
⊕ S !∗

∗

S ı !∗S β⊕β
′′,

where the middle term is the summand associated to the stratum S. �

The next lemma reduces the problem of identifying an anisotropic form on a
perverse sheaf to the analogous question for local systems.
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Lemma 3.7. A symmetric form β : B→ DB is anisotropic if and only if for each
stratum S the restriction β|S is anisotropic.

Proof. Suppose A ↪→ B is a nonzero isotropic subobject for β. Let S be a maximal
stratum for which A|S 6= 0. Then k∗SA= 

∗

S
pı !SA ↪→ ∗S

pı !SB is a nonzero isotropic
subobject for the restriction β|S .

In the other direction, if C ↪→ ∗S
pı !SB is a nonzero isotropic subobject for β|S

then the image of the composite

pS !C→
pı !SB→ B

is a nonzero isotropic subobject for β. �

We now describe an inductive procedure for computing the canonical decompo-
sition of a general class in W (Perv(X)). In order to do so we extend the partial
order S ≤ T ⇐⇒ S ⊂ T on the strata of X to a total order, and label the strata so
that S1 > · · ·> Sn . For 1≤ k < n let

ık : Sk+1 ∪ · · · ∪ Sn ↪→ Sk ∪ · · · ∪ Sn

be the closed inclusion, and for 1≤ k ≤ n let

k : Sk ↪→ Sk ∪ · · · ∪ Sn

be the (complementary) open inclusion, in particular with n : Sn→ Sn the identity.
Let ı̃k = ı1ı2 · · · ık : Sk+1 ∪ · · · ∪ Sn ↪→ X be the composite.

Lemma 3.8. Suppose β : B→ DB is a nondegenerate symmetric form in Perv(X)
such that β|S1∪···∪Sk−1 is anisotropic. Then β has an isotropic subobject such that
the reduction by it, say β ′ : B′→ DB′, satisfies

(1) β ′|S1∪···∪Sk−1 = β|S1∪···∪Sk−1 ;

(2) β ′|Sk is the reduction of β|Sk by a maximal isotropic subobject.

Note that Lemma 3.7 then implies that β ′|S1∪···∪Sk is anisotropic.

Proof. Let A ↪→ ∗k
p ı̃ !k−1B be a maximal isotropic subobject for β|Sk . Then the

image of the composite pk!A→ p ı̃ !k−1B → B is isotropic for β. Let β ′ be the
reduction. Since pk!A is supported on Sk ∪ · · · ∪ Sn the first condition

β ′|S1∪···∪Sk−1 = β|S1∪···∪Sk−1

is satisfied.
By construction β ′|Sk is anisotropic. Since A was chosen to be a maximal

isotropic subobject β ′|Sk is isometric to the reduction of β|Sk by A. �

The procedure for constructing an anisotropic representative, and for computing
the canonical decomposition is as follows. Set β0 = β. Using Lemma 3.8 we
construct, by successive isotropic reductions, forms β1, . . . , βn such that
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(1) βk |S1∪···∪Sk is anisotropic;

(2) βk |S1∪···∪Sk−1 = βk−1|S1∪···∪Sk−1 ;

(3) βk |Sk is the reduction of βk−1|Sk by a maximal isotropic subobject.

In particular, βn is an anisotropic representative for [β], and the canonical decom-
position is

[β] =

n∑
k=1

[k !∗(βk |Sk )]. (3.9)

The (anti)symmetric local systems of (3.3) are obtained from the βk |Sk by shifting
by dim Sk/2. We now investigate circumstances in which it is possible to find
explicit expressions for the βk |Sk in terms of β.

Applying Theorem 2.19 inductively, starting with the complementary inclusions
(ı1, 1), one obtains a formula

[β] = [1!∗
∗

1 β] +

n∑
k=2

[k !∗
∗

k ı !∗k−1 · · · ı
!∗

1 β]. (3.10)

In general this is not the above canonical decomposition. There are many similar
formulæ, corresponding to different ways of splitting off strata. These formulæ
may differ from one another, and each may depend on β, not merely its class [β].

When β is anisotropic, Corollary 2.23 guarantees that (3.10) is the canonical
decomposition, and so must agree with (3.6). In fact we can verify that the given
representatives of terms in (3.10) are isometric to those in (3.6), not merely Witt-
equivalent.

Proposition 3.11. Suppose β : B→ DB is nondegenerate and anisotropic. Then
there are isometries

k !∗
∗

k ı !∗k−1 · · · ı
!∗

1 β
∼= Sk !∗

∗

Sk
ı !∗Sk
β

for each k = 2, . . . , n so that (3.10) is the image

[β] =
∑
S⊂X

[S !∗
∗

S ı !∗S β] (3.12)

of the isometry (3.6) in the Witt group.

Proof. Let ı : Y ↪→ X be the inclusion of a closed union of strata. Then it follows
from [Beilinson et al. 1982, Proposition 1.4.17] that the (dual) natural morphisms
ı∗ pı !B→ B and DB→ ı∗ pı∗DB are respectively monomorphic and epimorphic.
Hence there is a commutative diagram

kerα ı∗ pı !B B

D(kerα) ı∗ pı∗DB DB

0 α β
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where α is the restriction of β. As β is anisotropic we deduce that kerα = 0,
and hence also cokerα ∼= D(ker Dα) ∼= D(kerα) = 0. Therefore α is an isomor-
phism and pı !B ∼= ı !∗B ∼= pı∗B. By [Beilinson et al. 1982, Proposition 1.3.17]
pı !r

pı !r−1
∼=

p(ır−1ır )
! and similarly pı∗r

pı∗r−1
∼=

p(ır−1ır )
∗. Combining these we see

that ı !∗r ı !∗r−1β
∼= (ır−1ır )

!∗β (as forms not merely as Witt classes). By induction
ı !∗r · · · ı

!∗

1 β = (ı1 · · · ır )
!∗β.

One can then check that k !∗
∗

k (ı1 · · · ık−1)
!∗ ∼= Sk !∗

∗

Sk
ı !∗Sk

are naturally isomor-
phic, so (3.10) becomes (3.12). �

For applications it is more useful to identify geometric conditions under which
(3.10) is the canonical decomposition, and hence is independent of the representa-
tive β and choice of ordering of the strata. We approach this by identifying condi-
tions under which intermediate extensions are exact, and then using Corollary 2.22.

Lemma 3.13. Suppose that S is a stratum with finite fundamental group, and that
the characteristic of F does not divide the order of π1S. Then the intermediate
extension S !∗ is exact.

Proof. If π1S is finite then Perv(S) is semisimple by Maschke’s theorem. The
result follows because S !∗ is additive. �

Lemma 3.14. Let S> T be strata in X , and let L be the link of T in S. Suppose that
the intersection cohomology group IH (dim L−1)/2(L;L)= 0 for any local system L
on the link. Then

Ext1(A,B)= 0= Ext1(B,A),

where A= S !∗M[dim S/2] and B = T !∗N [dim T/2] are the intermediate exten-
sions of (shifted) local systems respectively on S and on T . In fact this holds if the
above intersection cohomology group vanishes for those local systems which arise
as the restriction of a local system on S.

Proof. It suffices to prove that Ext1(A,B) = 0 for any such A and B, since then
by duality Ext1(B,A) ∼= Ext1(DA, DB) = 0. By adjunction and the fact that
B ∈ pD0(T ) and ıT

∗A ∈ pD<0(T ), we have

Ext1(A,B)∼= Ext1(ıT
∗A,B)∼= Hom(H−1(ıT

∗A),B),

where H−1 is cohomology with respect to the standard, not the perverse, t-structure.
Since B has no subobjects supported on T − T , the right-hand group vanishes,
for any such B, if H−1(ı∗TA) is supported on T − T . This is equivalent to the
vanishing of the stalk of H−1(ı∗TA) at some, hence at all, x ∈ T . This stalk is
IH (dim L−1)/2(L;M|L). The result follows. �

The conditions of this lemma are satisfied if, for instance, X is Whitney stratified,
all strata have smooth closures — so that all links of pairs of strata are spheres —
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and all such links have dimension ≥ 3. In particular it holds for subspace arrange-
ments where the dimension of pairs of subspaces differ by at least 3.

Corollary 3.15. Suppose that for each pair of strata S > T in X and local system
L on the link L of T in S the intersection cohomology group IH (dim L−1)/2(L;L)
is 0. Let  : Y ↪→ Y be the inclusion of a locally closed union of strata Y in its
closure. Then the intermediate extension !∗ : Perv(Y )→ Perv(Y ) is exact. In fact it
suffices for the above intersection cohomology group to vanish only for those local
systems L which arise as the restriction of a local system on S.

Proof. The intermediate extension is exact if, and only if, for each A ∈ Perv(Y )
the composition series of !∗A has no factors supported on Y −Y . It is well-known
that the intermediate extension has no nonzero subobjects (or quotients) supported
on Y −Y . However, Lemma 3.14 implies that any factor supported on Y −Y would
appear as a factor of a subobject supported on Y −Y . Hence there are no nonzero
such factors and the intermediate extension is exact. �

Corollary 3.16. Suppose that either

(1) each stratum Sk has finite fundamental group, or

(2) IH (dim L−1)/2(L;L)= 0 for each link L and each local system L on an open
stratum of the link.

Then (3.10) is the canonical decomposition of the class [β]. Moreover, under the
second condition, (3.10) can be more simply written as (3.12).

Proof. By Lemma 3.13 and Corollary 3.15 either one of the conditions implies
that each k !∗ is exact. Then Corollary 2.22 implies that (3.10) is the canonical
decomposition, and hence independent of the choice of representative β.

Now suppose the second condition holds, so that the intermediate extension
along the inclusion of any locally closed union of strata is exact. Choosing an
anisotropic representative β ′, Proposition 3.11 implies that

[β] = [β ′] =
∑
S⊂X

[S !∗
∗

S ı !∗S β
′
].

Then [S !∗
∗

S ı !∗S β
′
] = S !∗

∗

S [ı
!∗

S β
′
] because S !∗ is exact, and

[ı !∗S β
′
] = [β ′] − !∗

∗
[β ′] = [β] − !∗

∗
[β] = [ı !∗S β],

where  : X − S ↪→ X because !∗ is exact. The result follows. �

The conditions of this corollary are strong, but strong conditions are necessary.
Example 3.23 in the next section shows that (3.12) need not hold even when all
strata are simply connected.
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3C. Perverse sheaves on rank stratifications. In this section we use quiver de-
scriptions of perverse sheaves on rank stratifications to illustrate some of our results.
The main reference is [Braden and Grinberg 1999].

We begin with the simplest nontrivial example, in which already one sees that
one needs to take care in describing how Verdier duality translates to quiver descrip-
tions of perverse sheaves. Let X =C be stratified by the origin and its complement,
and let  : C−{0} ↪→ C←↩ {0} : ı be the inclusions. Then the category Perv(X) of
perverse sheaves of vector spaces over a field F of characteristic zero is equivalent
to the category of representations of the quiver

0 1,
c

v

(3.17)

where 1+ cv and 1+ vc are invertible [Verdier 1985a, §4]. Here the vertex 0 corre-
sponds to the perverse nearby cycles 9z and 1 to the perverse vanishing cycles 8z ,
where z is a coordinate on C. The arrow c corresponds to the canonical map and
v to a variation map. In order to define the latter one needs to pick an orientation
of C∗, or equivalently a generator of the fundamental group of C∗. The restriction
of a perverse sheaf E to C∗ is a shifted local system L[1], whose stalk L1 at the
basepoint 1 ∈C∗ is the perverse nearby cycles, and whose monodromy with respect
to the chosen generator is µ = 1+ vc. The restriction of the Verdier dual DE to
C∗ is the dual shifted local system L∨[1] whose monodromy with respect to the
reversed generator is µ∗ = 1+ c∗v∗, where ∗ denotes the vector space dual.

In order to give a simple description of duality, sufficient for the following ex-
amples, we restrict to the Serre subcategory of perverse sheaves with unipotent
monodromy, i.e., for which both n8 = cv and n9 = vc are nilpotent. This allows
us to switch to an alternative description in terms of the logarithms N8 and N9 of
the monodromies, by which we mean

1+ n = eN

in each case. We do so by replacing the variation arrow v by V = f (n9)v= v f (n8),
where

f (t)= ln(1+t)
t
= 1− t

2
+ · · · . (3.18)

Verdier duality for unipotent perverse sheaves then corresponds to the duality

W0 W1

c

V

7−→ W ∗0 W ∗1

−V ∗

c∗

on quiver descriptions. Here we first switch to the reversed generator of the funda-
mental group by changing V to −V , and then dualise. This fits with the duality of
local systems, in which if L has unipotent monodromy eN then L∨ has monodromy
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e−N∗ with respect to the same generator of the fundamental group. If F⊂ C then
under the Riemann–Hilbert correspondence this agrees (up to a Tate twist) with
the description in terms of regular holonomic D-modules as given in [Saito 1989,
Theorem 1.6, Remark 1.7 and Theorem 2.2]. Note that the usual biduality isomor-
phism χ : id→ D2 for quiver representations needs to be modified by a sign at the
vertex 0, so that a symmetric bilinear form on a perverse sheaf corresponds to a
symmetric bilinear form at the vertex 1 and an antisymmetric form at the vertex 0.

Example 3.19. Even in this simple example, intermediate extension does not in-
duce a map of Witt groups. Let β : B→ DB be the nondegenerate symmetric form(

1 1
0 1

)
F2 F2β

(
1 0
1 1

)
, β =

(
0 1
−1 0

)
on a two-dimensional shifted local system on C − {0}. Clearly β is metabolic
with lagrangian the one-dimensional local system A with trivial monodromy, in
particular [β] = 0. The intermediate extensions of A and of B are

F 0 and F2 F,

(0 1)

(1 0)∗

respectively. The subobject !∗A is isotropic for !∗β but no longer lagrangian; the
reduction !∗βC !∗A is the form [1] on the point 0. Applying (3.10) to !∗β we do
not obtain the direct sum decomposition (3.3) into forms on simple local systems.

The intermediate extension !∗ is not exact, and moreover [!∗β] 6= 0 since any
form Witt-equivalent to !∗βC!∗A must be a form on an object with an odd number
of simple factors. Hence the intermediate extension does not induce a map of Witt
groups.

The above description can be generalised to perverse sheaves on a complex line
bundle L over a connected stratified space X . Stratify L by the preimages of the
strata of X intersected with the zero section and its complement. Identify X with
the zero section, and let ı : X ↪→ L be the inclusion and  : L − X ↪→ L its
complement. A perverse sheaf with respect to this stratification is automatically
monodromic in the sense of [Verdier 1985b] in that it is locally constant on the C∗

fibres of the projection L − X→ X . The monodromy of such a perverse sheaf is
an automorphism determined by a choice of orientation of L , or equivalently of
a generator of the fundamental group of C∗. Perverse sheaves on L are equiva-
lent to representations of the quiver (3.17) but with values in the abelian category
Perv(L − X) rather than in vector spaces — see [Verdier 1985b, Proposition 5.5].
When L is a trivial line bundle this description corresponds to the one via perverse
nearby and vanishing cycles for the projection L ∼= X×C→C. The initial example
considered above is the special one in which X is a point.
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A perverse sheaf E on L− X splits as a direct sum Eu
⊕Enu of perverse sheaves

with unipotent and nonunipotent monodromy, respectively. For the nonunipotent
summand,

p!Enu ∼=
p!∗Enu ∼=

p∗Enu,

so that intermediate extension is exact on the full Serre subcategory of perverse
sheaves with nonunipotent monodromy. For this reason we focus on the unipotent
part. For this part Verdier duality can be described just as above, once a generator
for the fundamental group of the C∗ fibres is chosen, and the variation map is
renormalised as before.

Now we consider perverse sheaves on the rank stratification as in [Braden and
Grinberg 1999]. Let V be an n-dimensional complex vector space. Stratify End(V )
by the subspaces of endomorphisms of equal rank — for k = 0, . . . , n let

Sk = {x ∈ End(V ) | rank(x)= n− k}.

Then codim Sk = k2 and each Sk is connected with π1S0 ∼= Z and all other strata
simply connected. For n > 0, [Braden and Grinberg 1999, Theorem 4.6] implies
that the category Perv(Xn) of perverse sheaves on the hypersurface

Xn = {x ∈ End(V ) | rank(x) < n} = S1 ∪ · · · ∪ Sn

of singular endomorphisms, constructible with respect to this stratification and with
coefficients in F, is equivalent to the category of finite-dimensional F-representations
of the quiver with relations

An =

(
1 · · · n

c1

v1

cn−1

vn−1

∣∣∣ v1c1 = 0,
ckvk = vk+1ck+1 for k = 1, . . . , n− 2

)
.

We write µk = 1+ vkck for k = 1, . . . , n − 1 and µn = 1+ cn−1vn−1, and refer
to these as the monodromies of the representation. By the conditions above each
monodromy is unipotent, with µ1 = 1. For n = 1 the quiver A1 corresponding to
Perv(pt) has just one vertex and no arrows.

This equivalence between perverse sheaves and quiver representations is ob-
tained in two steps. First one maps a perverse sheaf to its stratified Morse data,
a vector space associated to each stratum Si together with the (microlocal) mon-
odromy µi ; see [Braden and Grinberg 1999, Theorem 4.6 and Proposition 4.7].
This monodromy depends on a choice of generator of the microlocal fundamental
group, which in each of these cases is infinite cyclic. The theory of microlocal
perverse sheaves is then used in order to obtain the arrows in the quiver descrip-
tion, ultimately by reducing to considering monodromic perverse sheaves on line
bundles; see [Braden and Grinberg 1999, Proposition 2.8]. Since all microlocal
monodromies are unipotent, we can renormalise the variation arrows as above,
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thereby modifying the identification of perverse sheaves with representations of the
same quiver with relations An . Now the microlocal monodromies of the perverse
sheaves correspond to the following monodromies of the representation: µk = eNk

with Nk = Vkck for k = 1, . . . , n− 1 and µn = eNn with Nn = cn−1Vn−1.
For the remainder of this section we work with this modified identification. In

this, Verdier duality on Perv(Xn) corresponds to the functor mapping a representa-
tion

A=
(

A1 · · · An

c1

V1

cn−1

Vn−1

)
to the “dual” representation

A∗ =
(

A∗1 · · · A∗n

−V ∗1

c∗1

−V ∗n−1

c∗n−1

)
.

The usual biduality isomorphism χ : id→ D2 for quiver representations needs to
be modified by a sign (−1)n

2
−k2
= (−1)n−k at the vertex k, as for quivers with an

involution [Young 2016, §3.2], since the vector space associated to each stratum
Sk is given as a normal Morse datum shifted by the complex dimension n2

− k2

of the stratum; see [Schürmann 2003, Corollary 5.1.4]. Then a symmetric bilinear
form on a perverse sheaf corresponds to a symmetric bilinear form at the vertex k
when n− k is even and an antisymmetric form when n− k is odd.

This differs from the description of duality in [Braden and Grinberg 1999, Propo-
sition 4.8], where the reversal of the generator of the fundamental group is over-
looked (as one can check in the n = 1 case, which is the example considered at the
beginning of this section). A further difference is that [Braden and Grinberg 1999]
state their results for perverse sheaves of complex vector spaces, however their
methods apply more generally to perverse sheaves of vector spaces over any field F.
For the theory of microlocal perverse sheaves in this generality see [Waschkies
2004]. We must restrict to fields of characteristic zero in order to take logarithms
of unipotent monodromies.

We now explain how to understand intermediate extension and restriction in the
quiver description of Perv(Xn).

Lemma 3.20. Under the above identification the diagram

Perv(Sk ∪ · · · ∪ Sn) Perv(Xn)

Perv(Sk ∪ · · · ∪ Sl) Perv(S1 ∪ · · · ∪ Sl)

in which horizontal arrows are extensions by zero from closed unions of strata and
vertical ones restriction to open unions, corresponds to the diagram



656 JÖRG SCHÜRMANN AND JON WOOLF

〈A ∈ Rep(An) | Ai = 0 for i = 1, . . . , k− 1〉 Rep(An)

〈A ∈ Rep(Al) | Ai = 0 for i = 1, . . . , k− 1〉 Rep(Al)

for 0< k ≤ l ≤ n. Here the horizontal arrows are inclusions of full subcategories of
quiver representations and the vertical ones arise from restricting a representation
to the subquiver on vertices 1, . . . , l.

Proof. By [Braden and Grinberg 1999, Proposition 4.8] the restriction of a perverse
sheaf to a normal slice to the stratum Sl (and shifted by the complex dimension
of Sl) corresponds under the equivalence to the restriction of a representation of An

to the subquiver on the vertices 1, . . . , l. In particular perverse sheaves on a normal
slice can be identified with perverse sheaves on Xl . This remains the same under
our modified identification. Perverse sheaves on the union S1 ∪ · · · ∪ Sl can also be
identified with those on a normal slice to Sl — both are naturally equivalent to the
category obtained by quotienting Perv(Xn) by the Serre subcategory of perverse
sheaves with vanishing Morse data on the strata S1, . . . , Sl . These correspond
to representations A of the quiver An with Ai = 0 for i = 1, . . . , l. The latter
subcategory of perverse sheaves is the image of the extension by zero along the
closed inclusion Sl+1 ∪ · · · ∪ Sn ↪→ X . The result follows. �

Lemma 3.21. Let ı : Sk∪· · ·∪Sl ↪→ S1∪· · ·∪Sl and  : Sk∪· · ·∪Sl ↪→ Sk∪· · ·∪Sn

be the inclusions, where 0< k ≤ l ≤ n. Identify the representation

A=
(

A1 A2 · · · Al

c1 c2

V1 V2

cl

Vl

)
with a perverse sheaf on S1 ∪ · · · ∪ Sl , and the representation

B =
(

Bk Bk+1 · · · Bl

ck+1 ck+2

Vk+1 Vk+2

cl

Vl

)
with a perverse sheaf on Sk ∪ · · · ∪ Sl . Then

(1) pı !A=
(

ker Vk · · · ker(Vk · · · Vl)

)
,

(2) pı∗A=
(

coker ck · · · coker(cl · · · ck)

)
,

(3) p!B =
(

Bk · · · Bl · · · Bl
Nl Nl

)
,

(4) p∗B =
(

Bk · · · Bl · · · Bl

Nl Nl
)

.
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In each case the unlabelled upper and lower arrows are naturally induced from the
ci and the Vi , respectively. The natural morphisms pı !A→ A→ pı∗A are given
respectively by the evident inclusions and quotients, and the natural morphism
p!B→ p∗B by the identity maps. The intermediate restriction therefore has

(ı !∗A)k+i = im
(
ker(Vk · · · Vk+i )→ Ak+i → coker(ck+i · · · ck)

)
for i = 0, . . . , l − k, and the intermediate extension !∗A is the representation

Ak · · · Al im(Nl) · · · im(Nl)
n−l .

Nl Nl Nl

Proof. These results follow from the description of pı !A and pı∗A as the maximal
subobject and quotient of A supported on Sk ∪ · · · ∪ Sl , respectively, and of p!B
and p∗B as initial and terminal objects amongst all extensions of B to a perverse
sheaf on Sk ∪ · · · ∪ Sn , respectively. �

Example 3.22. Intermediate extension from a union of strata need not be an exact
functor, even when all strata are simply connected. Consider the rank stratification
for n = 3, and specifically the inclusion  : S1 ∪ S2 ↪→ S1 ∪ S2 ∪ S3. On the left
below is a short exact sequence in Perv(S1 ∪ S2), and on the right is the result of
applying the intermediate extension !∗ to it:

F F F F 0

F F2 F F2 F

0 F 0 F 0

1

1
0

(1 0)∗

1

1
0

(1 0)∗

(1 0)∗

(0 1)
(0 1)

(1 0)∗

(0 1)

(0 1)

(0 1)
(1 0)∗

It is evident from the final column that the sequence on the right is no longer exact
in the middle.

Example 3.23. Let B be the perverse sheaf on S1 ∪ S2 ∪ S3 in the middle row
of the right-hand diagram of Example 3.22 above, and let β : B → DB be the
nondegenerate symmetric form

F F2 F

F F2 F

(1 0)∗

1
(0 1)

(0 1)

α
(1 0)∗

−1
(0−1)∗

(1 0)

(−1 0)

(0 1)∗

where α =
(

0 1
−1 0

)
.
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This has an evident isotropic subobject given by the simple object supported on
the middle vertex. The corresponding isotropic reduction is the direct sum

IS1∪S2∪S3 ⊕−IS3 = IX3 ⊕−Ipt,

where we identify perverse sheaves and quiver descriptions, and write IY for the
intersection form on the intersection cohomology complex, with coefficients in F,
of a stratified space Y .

As before, let S3
ı2
−→ S2 ∪ S3

ı1
−→ S1 ∪ S2 ∪ S3 be the closed inclusions, and let

1 : S1 ↪→ S1∪ S2∪ S3 and 2 : S2 ↪→ S2∪ S3 be the complementary open inclusions,
and 3 : S3→ S3 be the identity. Then

ı !∗1 β =

(
0 F

0 F

−1

)
=−IS3,

so that ı !∗2 ı !∗1 β =−IS3 too. In contrast, (ı1 ◦ ı2)
!∗β = 0. Hence (3.10) is

[β] = [1!∗
∗

1 β] + [2!∗
∗

2 ı !∗1 β] + [3!∗
∗

3 ı !∗2 ı !∗1 β]

= [IS1∪S2∪S3] + [0] + [−IS3]

= [IX3] − [Ipt],

in agreement with the isotropic reduction. However, the formula (3.12) is false in
this case: ∑

S⊂X

[S !∗
∗

S ı !∗S β] = [IX3]

because ı !∗S3
β = (ı1 ◦ ı2)

!∗β = 0 and ı !∗S2
β = (ı1 ◦ 2)

!∗β = ∗2 ı !∗1 β = 0 by the above
calculations. Since [Ipt] 6= 0 this does not agree with [β] = [IX3]− [Ipt]. Therefore
(3.12) does not hold without further assumptions on the form, for instance that it
is anisotropic.

3D. Perverse sheaves on Schubert-stratified projective spaces. We consider a sim-
ilar example but where the total space and the closures of each stratum are smooth.
The main reference is [Braden 2002], although we consider only the special case of
projective spaces rather than all Grassmannians. The quiver description of perverse
sheaves on Schubert-stratified projective spaces is well-known in the literature —
e.g., [Khovanov and Seidel 2002, alternative proof of Proposition 2.9; Stroppel
2006, Example 1.1] — however, we need Braden’s geometric approach in order to
identify the action of Verdier duality.

Let W be an n-dimensional complex vector space with a complete flag

W0 ⊂ · · · ⊂Wn =W
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of linear subspaces where dimC Wi = i . Let X = P(W ) be the corresponding
(n−1)-dimensional complex projective space with the Schubert stratification with
strata Si = P(Wn−i+1)− P(Wn−i )∼= Cn−i for i = 1, . . . , n.

The category Perv(X) of perverse sheaves with coefficients in the field F con-
structible with respect to the Schubert stratification is equivalent to the category of
finite-dimensional F-representations of the quiver with relations

A′n =

(
1 · · · n

c1

v1

cn−1

vn−1

∣∣∣∣ v1c1 = 0,
ckvk = vk+1ck+1 for k = 1, . . . , n− 2,

ckck−1 = 0= vk−1vk for k = 2, . . . , n− 1

)
.

We write µk = 1+ vkck for k = 1, . . . , n − 1 and µn = 1+ cn−1vn−1, and refer
to these as the monodromies of the representation. By the conditions above, each
monodromy is unipotent, with µ1= 1. This equivalence is a special case of [Braden
2002, Theorem 1.4.1]. The general quiver description for Grassmannians given in
[Braden 2002, §1.3] reduces to the description above in our case.

The equivalence is obtained by a similar procedure as for the rank stratification
case, except that one has to consider microlocal perverse sheaves through codi-
mension 0, 1 and now also 2. The argument for codimensions 0 and 1 is as before:
first one maps a perverse sheaf to its stratified Morse data, a vector space at each
stratum Si together with the (microlocal) monodromy µi ; see [Braden 2002, Propo-
sition 4.3.1]. This monodromy depends on a choice of generator of the microlocal
fundamental group, which in each of these cases is again infinite cyclic. There is
an arrow between vertices i and j if and only if the conormal spaces of Si and S j

intersect in codimension 1 [Braden 2002, Corollary 2.5.2], which for us is if and
only if |i − j | = 1.

The relations v1c1 = 0 and ckvk = vk+1ck+1 for k = 1, . . . , n− 2 are deduced
in the same way as for the rank stratification discussed in the previous section.
The key technique is again to reduce to considering monodromic perverse sheaves
on line bundles; see [Braden 2002, Lemma 3.4.1]. The third type of relations
ckck−1 = 0 = vk−1vk for k = 2, . . . , n− 1 — see [Braden 2002, (4) on p. 497] —
are obtained by considering codimension 2 intersections of conormal spaces, i.e.,
for strata Si and S j with |i − j | = 2 [Braden 2002, Proposition 2.6.2].

In order to describe Verdier duality in the quiver description we renormalise as
in the rank stratification example. This is possible because as before all microlocal
monodromies are unipotent. The quiver with relations A′n is unchanged, however
the description of the (microlocal) monodromies is now µk = eNk with Nk = Vkck

for k = 1, . . . , n− 1 and µn = eNn with Nn = cn−1Vn−1. Note that as before the
usual biduality isomorphism χ : id→ D2 for quiver representations needs to be
modified by a sign (−1)n−k at the vertex k corresponding to a stratum Sk of complex
dimension n − k. The descriptions of the six functors and of the intermediate
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extension and restriction remain the same because, as before, the description is
compatible with restriction to a normal slice; see [Braden 2002, §4.2]. We now
work only with this modified identification.

Example 3.23 transfers without change to this example in the n = 3 case, i.e., for
the Schubert stratification of CP2. Here, not only are all three strata contractible
but also their closures are smooth and simply connected. Even under these strong
conditions (3.12) does not hold.

Remark 3.24. The path algebras of the quivers with relations An and A′n , or their
representation categories, appear in various other contexts:

(1) as the Auslander algebra of C[x]/〈xn
〉 [Hille and Ploog 2017];

(2) in the braid group actions on categories studied in [Khovanov and Seidel
2002];

(3) as convolution algebras related to hyperplane arrangements [Braden et al.
2010, Example 4.6 and Theorem 4.8];

(4) as “hypertoric enveloping algebras” [Braden et al. 2012, Example 4.11].

As explained in these references, the representation categories of An and A′n are
Koszul dual. The Koszul grading for A′n , and more generally for Braden’s quiver
description of perverse sheaves on Grassmannians, becomes visible only after a
renormalisation similar to the one we use to understand Verdier duality, but this
time using the square root of the power series (3.18); see [Stroppel 2009, §5.7].

3E. Relation to Cappell and Shaneson’s work. The paper [Cappell and Shaneson
1991b] introduces a notion of cobordism of self-dual complexes of sheaves of vec-
tor spaces, that is, of objects B∈Db

c(X) equipped with an isomorphism β :B→ DB,
which is not assumed to have any symmetry properties. (Their definition of self-
dual isomorphism involves a shift by [dim X ], but we omit this because we are
using the conventions of [Beilinson et al. 1982] for indexing perverse sheaves rather
than those of [Goresky and MacPherson 1983].) Let �±CS(X) denote the set of
cobordism classes of constructible sheaf complexes with an (anti)symmetric self-
duality. The cobordism relation is generated by “elementary cobordisms” which
arise from isotropic morphisms ı :A→B. In the special case in which A,B∈Perv(X)
and ı is a monomorphism, β and β CA are elementarily cobordant. Thus there is
a homomorphism

W±(Perv(X))→�±CS(X).

(Cappell and Shaneson do not discuss the structure of the set of cobordism classes,
but [Yokura 1995] shows that it is an abelian group under direct sum.) Moreover,
the homomorphism above is an isomorphism by [Youssin 1997, Theorem 7.4].
This understood, their Theorem 2.1 states that the image of (3.12) holds in �CS(X).
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Example 3.23 above shows that this is incorrect — in that case there is a missing
term corresponding to the class of the intersection form of a point — and therefore
that further conditions are required for their result. (Cappell and Shaneson work
with compact spaces, so to be absolutely precise one should use the counterpart of
Example 3.23 for Schubert-stratified projective spaces.) On [Cappell and Shaneson
1991b, p. 534], in order to apply their (1.3), Cappell and Shaneson assume that
pı !kA= 0 implies pı∗k ı !k+1A= 0. It is this which fails in Example 3.23.

Cappell and Shaneson’s decomposition is valid, and even lifts to the Witt group
of perverse sheaves, when the form β is anisotropic. It is also valid for any
form β on a sufficiently nice space X , for instance when the second condition of
Corollary 3.16 is satisfied. Another case in which it is valid is when the depth of X
is one, although in this case it may not correspond to the canonical decomposition.

Let us suppose that we are in one of these “good” cases in which (3.12) holds.
Suppose further that f : Y → X is a proper stratified map — i.e., a proper map
such that the preimage of any stratum is a union of strata, and the restriction
f |S : S→ f (S) to any stratum is a locally trivial fibre bundle — of Whitney strat-
ified spaces with only even-dimensional strata. Assume Y has a dense top-dimen-
sional stratum which is oriented. Then the intersection form IY : IC(Y )→ DIC(Y )
of the corresponding intersection cohomology complex is nondegenerate in Perv(Y )
and is symmetric for dim Y ≡ 0 (4) and antisymmetric for dim Y ≡ 2 (4). Proper
push-forward f∗ = f! commutes with duality and so induces a map of Witt groups
W±(Perv(Y ))→W±(Perv(X)). Hence (3.12) yields

[ f∗ IY ] =
∑

S

[S !∗
∗

S ı !∗S f∗ IY ].

By proper base change, ı !S f∗ = f∗`!S and ı∗S f∗ = f∗`∗S , where `S : f −1S ↪→ X .
Hence

ı !∗S f∗ = im(H 0 f∗`!S IY → H 0 f∗`∗S IY ).

Section 4 of [Cappell and Shaneson 1991b] uses this identification to interpret the
local system ∗S ı !∗S f∗ IY on S geometrically. The stalk is the middle-dimensional
intersection cohomology of f −1 Nx/ f −1L x , where Nx is a normal slice to S at
x ∈ X and L x = ∂Nx is the link. In this way one can obtain formulæ for the Witt
class, and thence the signature and L-class, of Y as a sum of terms indexed by the
strata of X , each with a natural geometric interpretation.

3F. Families of stratifications. We make some brief remarks about Witt groups of
perverse sheaves constructible with respect to a family of stratifications, rather than
a fixed one. Let S be a collection of stratifications of X with only even-dimensional
strata, and such that any two stratifications admit a common refinement in S. Let
PervS(X) be the category of S-constructible perverse sheaves of F-vector spaces
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on X . For example, S might consist of a single stratification, or more interestingly
X might be a complex algebraic or analytic variety and S the collection of all
algebraic, respectively analytic, stratifications.

We make S into a poset with the ordering S ≤ S ′⇐⇒ S ′ is a refinement of S,
i.e., the strata of S are unions of strata of S ′. There is a fully faithful inclusion

PervS(X) ↪→ PervS ′(X)

whenever S ≤ S ′. Moreover this inclusion commutes with duality and so induces
a map of Witt groups.

Proposition 3.25. Elements of the Witt group of S-constructible perverse sheaves
W (PervS(X)) are represented by elements of W (PervS(X)) for some stratification
S ∈ S; two such represent the same element if and only if they agree in the Witt
group of perverse sheaves constructible with respect to a common refinement. In
other words,

W (PervS(X))∼= colimS∈S W (PervS(X)).

Proof. The universal property of the colimit induces a map

colimS∈S W (PervS(X))→W (PervS(X)).

It is surjective since each class in W (PervS(X)) is represented by a form on a
perverse sheaf which is constructible with respect to some particular stratification
in S. If two such forms are equivalent, then the equivalence is realised by a finite
sequence of isotropic reductions. So the forms are already equivalent in the Witt
group of perverse sheaves constructible with respect to any sufficiently refined
stratification for which all objects in this sequence are constructible. Hence the
map is also injective. �

Say that S is artinian if the poset of closed unions of strata, considered as sub-
spaces of X ordered by inclusion, of all stratifications in S is artinian. For example
this holds if we work in the complex algebraic (respectively analytic) context with
the collection of all algebraic (respectively analytic) Whitney stratifications (on
a compact analytic space). When this is the case the category PervS(X) is both
artinian and noetherian — for algebraic stratifications this is [Beilinson et al. 1982,
Théorème 4.3.1], and the general case is proved in a similar fashion. A simple
object is an intermediate extension of an irreducible local system L on a stratum S.
Two such, L on S, and L′ on S′ are isomorphic if and only if there is a stratum S′′,
dense and open in both S and S′, such that L|S′′ ∼= L′|S′′ . Applying Corollary 2.12
we obtain another corollary.

Corollary 3.26. If S is artinian then each class in W (PervS(X)) has a decom-
position into a sum of classes represented by forms on simple objects. The sum
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of terms represented by forms on a given isomorphism class of simple objects is
well-defined.

Irrespective of whether S is artinian or not, one can apply Theorem 2.19 induc-
tively to obtain formulæ like (3.10). If one decomposes in this way according to
a stratification with respect to which a representative for the class is constructible,
then the summands will be represented by forms on intermediate extensions of local
systems. In “good” cases (anisotropic forms or exact intermediate extensions) this
sum will correspond to the canonical decomposition of the above corollary.

3G. Unipotent nearby and vanishing cycles. Let X be a complex algebraic vari-
ety. Let Pervalg(X) denote the algebraically constructible perverse sheaves on X .
Fix an algebraic map f : X→C and let ı :Y = f −1(0) ↪→ X and  :U = X−Y ↪→ X
be the inclusions. An important feature of this situation is that the open inclusion
 :U ↪→ X is an affine morphism, which implies that p! = ! and p∗ = ∗.

There are exact functors

Pervalg(U ) Pervalg(X)

Pervalg(Y )

4un
f

9un
f 8un

f

constructed in [Beilinson 1987]; see also the notes [Reich 2010]. The functor 4un
f

is the maximal extension, 9un
f the unipotent nearby cycles and 8un

f the unipotent
vanishing cycles. Here we follow the presentation of [Morel 2018], which is better
adapted for the discussion of Verdier duality

Remark 3.27. In this section we work in the complex algebraic context without
fixing a complex algebraic Whitney stratification. However, all results apply to
the case of a fixed Whitney stratification of X in the complex algebraic or analytic
context (with the same arguments), if Y = f −1(0) is a closed union of strata. In
that situation the corresponding constructible derived categories as well as the cat-
egories of perverse sheaves are stable under the functors p! = ! and p∗ = ∗, as
well as under 9un

f and 8un
f ; see [Schürmann 2003, §4.2.2 and §6.0.4].

Let Z(1) denote the orientation sheaf orC∗ of C∗ and, by abuse of notation, also
its stalk orC∗,1 ∼= 2π iZ at the chosen base point 1 ∈ C∗. There is a natural repre-
sentation t of π1(C

∗, 1) on Z(1). A choice of orientation of C∗, equivalently of a
generator g ∈π1(C

∗, 1), identifies Z(1)∼=Z with the constant sheaf of integers with
t (g)= 1. As previously discussed, Verdier duality switches the chosen orientation
to the opposite one with t (g−1) = −t (g). In the following we therefore want to
work without choosing an orientation.

For n ≥ 0 let Z(n) = Z⊗n and Z(−n) = Z(−1)⊗n , where Z(−1) = Z(1)∗ is
the dual local system. Again we use the same notation for their stalks at the base
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point 1 ∈ C∗, as well as for the corresponding local systems on U = X − Y pulled
back via f :U→C∗. Similarly, −(n)=−⊗Z Z(n) denotes the corresponding Tate-
twists of sheaves or stalks of F-vector spaces, with F our base field of characteristic
zero.

Consider for p ≥ 1 the p-dimensional F-vector space

L p
= F⊕ F(−1)⊕ · · ·⊕ F(1− p)

together with the nilpotent morphism N : L p
→ L p(−1) given by the matrix

N =


0 1 0
0 0 1
0 0 0

...

 .
Let Lp be the corresponding local system on C∗, with stalk L p in 1 ∈ C∗, and
monodromy action

µ(g)= et (g)·N
: L p
→ L p

for g ∈ π1(C
∗, 1) any generator. For p+ q = n there is a short exact sequence

0→ Lp
→ Ln

→ Lq(−p)→ 0, (3.28)

where the maps are inclusion of the first p coordinates and projection onto the last
q coordinates.

The unipotent nearby cycles of a perverse sheaf A on U are defined by

ı∗9un
f A= lim

n→∞
ker[!(A⊗ f ∗Ln)→ ∗(A⊗ f ∗Ln)],

where the map on the right-hand side is the natural one. The kernel of this map
stabilises for sufficiently large n, and the limit denotes this stable kernel; see [Morel
2018, Corollary 3.2]. The maximal extension of A is constructed similarly as

4un
f A= lim

n→∞
ker[!(A⊗ f ∗Ln)→ ∗(A⊗ f ∗Ln−1)(−1)],

where the map on the right is induced from the quotient in (3.28) with q = n− 1,
and once again the kernel stabilises for sufficiently large n; see [Morel 2018, Propo-
sition 5.1]. The action of N : L→ L(−1) induces actions 9un

f A→9un
f A(−1) and

4un
f A→4un

f A(−1), respectively, which we also denote by N , and the same holds
for the induced monodromy action µ(g)= et (g)·N of a generator g of π1(C

∗, 1) on
9un

f A and 4un
f A.

Whereas the maximal extension functor commutes with Verdier duality [Morel
2018, Corollary 5.4], the unipotent nearby cycle functor commutes with Verdier
duality only up to a Tate-twist [Morel 2018, Corollary 4.2]:

D(9un
f A)∼=9un

f (D(A))(−1). (3.29)
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Moreover, there are two natural short exact sequences

0−→ !A
α−
−−→4un

f A
β−
−−→ ı∗9un

f A(−1)−→ 0 (3.30)

and
0−→ ı∗9un

f A
β+
−−→4un

f A
α+
−−→ ∗A−→ 0 (3.31)

which are exchanged by duality [Morel 2018, Proposition 5.1, Corollary 5.4]. The
maps are induced from those in (3.28) for (p, q)= (1, n− 1) and (n− 1, 1). The
composite α+ ◦α− is the natural map, and β− ◦β+ = N [Morel 2018, Remark 5.6].
In particular the action N :9un

f A→9un
f A(−1) commutes with the duality isomor-

phism above: D ◦ N ∼= N ◦ D. This also holds without Tate-twists, if one chooses
opposite generators of π1(C

∗, 1) on both sides of this identification. Otherwise a
minus sign shows up, e.g., if one chooses on both sides the complex orientation of
C∗ as in [Saito 1989].

The perverse unipotent vanishing cycles 8un
f B of B ∈ Pervalg(X) are defined to

be (the restriction of) the cohomology ı∗H 0( – ) of the complex

!
∗B

(α−,γ−)
t

−−−−−→4un
f 
∗B⊕B

(α+,−γ+)
−−−−−−→ ∗

∗B

sitting in degrees −1 to 1, where γ± are the unit and counit of the adjunctions. Note
that the first (respectively last) morphism in this complex is injective (respectively
surjective) with its cohomology H 0( – ) supported on Y (since its restriction to the
complement X − Y is vanishing). That 8un

f commutes with duality follows from
the fact that duality interchanges the above two short exact sequences [Morel 2018,
Remark 6.1]. One also gets induced morphisms

9un
f 
∗B can
−−→8un

f B
Var
−−→9un

f 
∗B(−1)

of perverse sheaves on Y with N = Var ◦ can, so that can and Var are exchanged
by duality [Morel 2018, Remark 6.1]. Moreover, the category Pervalg(X) can be
described in terms of the gluing data [Morel 2018, Theorem 8.1]:

B 7→ (∗B,8un
f B, can,Var).

For example !∗A has the following gluing data description (see also [Reich 2010,
Proposition 4.7]): (

A, im(N :9un
f A→9un

f A(−1)), N , incl
)
, (3.32)

with N :9un
f (
∗!∗A)=9un

f A→9un
f A(−1)=9un

f (
∗!∗A)(−1) factorised as

9un
f A N
−→ im(N )

incl
−−→9un

f A(−1).
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Since the unipotent vanishing cycles and the maximal extension commute with
duality they induce maps of Witt groups. We abuse notation by using the functors
to denote these induced maps.

Lemma 3.33. The map [β] 7→ (∗[β],8un
f [β]) is an isomorphism

W (Pervalg(X))∼=W (Pervalg(U ))⊕W (Pervalg(Y ))

with inverse ([β], [β ′]) 7→4un
f [β] + ı∗[β ′].

Proof. From the constructions, 8un
f ◦ ı∗ and ∗ ◦4un

f are the identity. Therefore

4un
f [β] = ı∗[β ′]

implies [β] = ∗4un
f [β] = 0, and hence [β ′] =8un

f ı∗[β ′] = 0 too.
Given [β] ∈ W (Pervalg(X)), the form β ⊕4un

f 
∗(−β) is metabolic when re-

stricted to U . Using ! we can construct an isotropic subobject for this form from
a lagrangian for the restriction. The reduction by this isotropic subobject will be
supported on Y , so that

[β] −4un
f 
∗
[β] = ı∗[β ′]

for some [β ′] ∈W (Pervalg(Y )). We now show that [β ′] =8un
f [β], or equivalently

that 8un
f ◦4

un
f = 0 on Witt groups. To see this recall that there is a functorial short

exact sequence [Morel 2018, Corollary 7.2]

0→9un
f →8un

f 4
un
f →9un

f (−1)→ 0,

so that the induced form 8un
f 4

un
f [β] is metabolic. Therefore 8un

f 4
un
f [β] = 0 in the

Witt group as claimed. �

We can relate the above decomposition to our earlier splitting results.

Corollary 3.34. For [β :A→ D(A)] ∈W (Pervalg(U )) the composite

9un
f β ◦ N :9un

f A→9un
f A(−1)→ D9un

f A

is symmetric and [!∗β]=4un
f [β]+ı∗[9un

f β◦N ]. Similarly, for [β ′]∈W(Pervalg(X))
we have

[ı !∗β ′] =8un
f [β
′
] − [9un

f (
∗β ′) ◦ N ].

Proof. It is easy to verify that

9un
f β ◦ N :9un

f A→9un
f A(−1)→9un

f (D(A))(−1)∼= D9un
f A

is symmetric, since N : 9un
f A→ 9un

f A(−1) commutes with duality. Moreover,
from the description of intermediate extensions in terms of gluing data (3.32), one
gets

8un
f [!∗β] = [9

un
f β ◦ N ].
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Hence by Lemma 3.33 [!∗β] =4un
f [β] + ı∗[9un

f β ◦ N ], so that

[ı !∗β ′] = [β ′] − [!∗∗β ′] =8un
f [β
′
] − [9un

f (
∗β ′) ◦ N ]

as claimed. �

Remark 3.35. An alternative method of proof is to verify that the first equation is
the splitting relation arising from the short exact sequences (3.30) and (3.31). The
second is the splitting relation for the following two exact sequences of perverse
sheaves which are exchanged by duality [Morel 2018, Proposition 6.2]:

9un
f (
∗B) can
−−→8un

f B −→ H 0(ı∗B)−→ 0

and
0−→ H 0(ı !B)−→8un

f B
Var
−−→9un

f (
∗B)(−1),

with H 0 the corresponding perverse cohomology.
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A generalized Vaserstein symbol

Tariq Syed

Let R be a commutative ring. For any projective R-module P0 of constant rank 2
with a trivialization of its determinant, we define a generalized Vaserstein symbol
on the orbit space of the set of epimorphisms P0⊕ R→ R under the action of the
group of elementary automorphisms of P0⊕ R, which maps into the elementary
symplectic Witt group. We give criteria for the surjectivity and injectivity of the
generalized Vaserstein symbol and deduce that it is an isomorphism if R is a
regular Noetherian ring of dimension 2 or a regular affine algebra of dimension
3 over a perfect field k with c.d.(k)≤ 1 and 6 ∈ k×.
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1. Introduction

In this paper, we provide a generalized construction of the Vaserstein symbol,
which was originally introduced by Andrei Suslin and Leonid Vaserstein in [Vaser-
stein and Suslin 1976]. We let R be a commutative ring and we let Umn(R)
denote the set of unimodular rows of length n, i.e., row vectors (a1, a2, , . . . , an)

such that 〈a1, a2, . . . , an〉 = R. Such row vectors obviously correspond to epimor-
phisms Rn

→ R. Therefore the group GLn(R) of invertible n×n-matrices acts
on the right on Umn(R) (by precomposition); consequently the same holds for
any subgroup of GLn(R), e.g., the group SLn(R) of invertible n×n-matrices with
determinant 1 or its subgroup En(R) generated by elementary matrices. Note that
the set Umn(R) has a canonical basepoint given by the row e1 = (1, 0, . . . , 0).
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Now let n = 3 and let (a1, a2, a3) be a unimodular row of length 3. By defini-
tion, there exist elements b1, b2, b3 ∈ R such that

∑3
i=1 ai bi = 1. Therefore the

alternating matrix

V (a, b)=


0 −a1 −a2 −a3

a1 0 −b3 b2

a2 b3 0 −b1

a3 −b2 b1 0


has Pfaffian 1 and represents an element of the so-called elementary symplectic
Witt group WE(R). It was shown in [Vaserstein and Suslin 1976, Lemma 5.1] that
this element is independent of the choice of the elements b1, b2, b3. Furthermore,
it follows from [Vaserstein and Suslin 1976, Theorem 5.2(a)] that this assignment
is invariant under the action of E3(R) on Um3(R). Therefore one obtains a well-
defined map

V : Um3(R)/E3(R)→WE(R)

called the Vaserstein symbol. Suslin and Vaserstein also found criteria for this map
to be surjective or injective in terms of the right action of En(R) on Umn(R) men-
tioned above. More precisely, they proved that the Vaserstein symbol is surjective if
Um2n+1(R)= e1 E2n+1(R) for n ≥ 2 [Vaserstein and Suslin 1976, Theorem 5.2(b)]
and injective if e1 E2n=e1(E(R)∩GL2n(R)) for n≥3 and E(R)∩GL4(R)= E4(R)
[Vaserstein and Suslin 1976, Theorem 5.2(c) and proof of Corollary 7.4].

These criteria immediately enabled them to deduce that the Vaserstein symbol is
a bijection for a Noetherian ring of Krull dimension 2 [Vaserstein and Suslin 1976,
Corollary 7.4]. Using local-global principles, Rao and van der Kallen [1994, Corol-
lary 3.5] proved that the Vaserstein symbol is also a bijection for a 3-dimensional
regular affine algebra over a field k with c.d.(k)≤ 1, which is supposed to be perfect
if char(k)= 2, 3.

The Vaserstein symbol plays an important role in the study of stably free mod-
ules of rank 2 [Bass 1975; Fasel 2011]. Indeed, the orbit space Um3(R)/E3(R)
naturally surjects onto the set of isomorphism classes of projective R-modules
of rank 2 which become free after adding a free direct summand of rank 1 (see
Section 2D). In [Fasel et al. 2012, Theorem 7.5], the Vaserstein symbol was cru-
cially used in order to prove that stably free modules of rank d − 1 over smooth
affine k-algebras of dimension d ≥ 3 are free whenever k is algebraically closed
and (d − 1)! ∈ k×: By reducing to the case of a threefold and by using the result
of Rao and van der Kallen mentioned in the previous paragraph, it was proven that
any unimodular row of length d can be transformed via elementary matrices to a
row of the form (a1, a2, . . . , a(d−1)!

d ). Then Suslin’s theorem that any such row can
be completed to an invertible matrix [Suslin 1977b, Theorem 2] implied the result.

While projective modules of rank ≥ d are cancellative in the situation of [Fasel
et al. 2012, Theorem 7.5], the same is not true in general for projective modules
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of rank d − 2 [Mohan Kumar 1985]. In particular, stably isomorphic projective
modules of rank 2 over smooth affine fourfolds over algebraically closed fields
need not be isomorphic in general.

Our work on the generalization of the Vaserstein symbol is substantially moti-
vated by the study of projective modules as described in the previous paragraphs:
The generalized Vaserstein symbol will lead to a conceptual explanation for the
failure of the cancellation property of projective modules of rank 2 with trivial
determinant over smooth affine fourfolds over algebraically closed fields. By gen-
eralizing the approach in [Fasel et al. 2012], we also foresee that the generalized
Vaserstein symbol will be an important tool in order to study the cancellation prop-
erty of projective modules of rank d−1 with trivial determinant over smooth affine
algebras of dimension d over an algebraically closed field k with (d − 1)! ∈ k×. To
keep the length of this paper reasonable, the discussion of these major applications
is deferred to subsequent work. Our results in this paper are as follows.

First, recall from [Vaserstein and Suslin 1976] that the elementary symplectic
Witt group WE(R) is defined as a subgroup of a larger group usually denoted W ′E(R),
which we will define in Section 3A. The group W ′E(R) is generated by alternating
invertible matrices and WE(R) then corresponds to its subgroup generated by ma-
trices with Pfaffian 1. It is known that the group W ′E(R) is isomorphic to the
higher Grothendieck–Witt group GW3

1(R) and also to the group V (R) [Fasel et al.
2012] (see Section 3B below). The latter group is generated by isometry classes of
triples (P, g, f ), where P is a finitely generated projective R-module and f and
g are alternating isomorphisms on P (or, equivalently, nondegenerate alternating
forms on P). Under the isomorphism W ′E(R) ∼= V (R), the group WE(R) then
corresponds to a subgroup of V (R). We denote this subgroup by Ṽ (R).

Now let P0 be a finitely generated projective R-module of rank 2 with a fixed
trivialization θ0 : R

∼=
−→ det(P0) of its determinant. We denote by Um(P0 ⊕ R)

the set of epimorphisms P0⊕ R→ R and by E(P0⊕ R) the group of elementary
automorphisms of P0 ⊕ R. Any element a : P0 ⊕ R→ R of Um(P0 ⊕ R) has a
section s : R→ P0⊕ R, which canonically induces an isomorphism

i : P0⊕ R
∼=
−→ P(a)⊕ R,

where P(a) = ker(a). We let χ0 be the alternating form on P0 which sends a
pair (p, q) to the element θ−1

0 (p ∧ q) of R; similarly, there is an isomorphism
θ : R

∼=
−→ det(P(a)) obtained as the composite of θ0 and the isomorphism det(P0)∼=

det(P(a)) induced by a and s. We then denote by χa the alternating form on P(a)
which sends (p, q) to the element θ−1(p∧ q) of R. We then consider the element

V (a)= [P0⊕ R2, χ0 ⊥ ψ2, (i ⊕ 1)t(χa ⊥ ψ2)(i ⊕ 1)]

of V (R). Our first result is the following:
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Theorem 1 (Theorem 4.1, Lemma 4.2 and Theorem 4.3). The element V (a) is
independent of the choice of a section s of a ∈ Um(P0⊕ R) and is an element of
Ṽ (R). Furthermore, we have V (a) = V (aϕ) in V (R) for all a ∈ Um(P0 ⊕ R)
and ϕ ∈ E(P0⊕ R). Thus, the assignment above descends to a well-defined map
V : Um(P0⊕ R)/E(P0⊕ R)→ Ṽ (R), which we call the generalized Vaserstein
symbol (associated to the trivialization θ0 of det(P0)).

The terminology is justified by the following observation: If we take P0 = R2

and let e1 = (1, 0) and e2 = (0, 1), then it is well-known that there is a canonical
isomorphism θ0 : R

∼=
−→ det(R2) given by 1 7→ e1 ∧ e2. Then the generalized

Vaserstein symbol associated to −θ0 coincides with the usual Vaserstein symbol
via the identification Ṽ (R)∼=WE(R) mentioned above.

Of course, any two trivializations of det(P0) are equal up to multiplication by
a unit of R. We actually make precise how the generalized Vaserstein symbol
depends on the choice of a trivialization of det(P0) by means of a canonical R×-
action on V (R).

We also generalize the criteria found by Suslin and Vaserstein on the injectivity
and surjectivity of the Vaserstein symbol. For this, let Pn = P0 ⊕ Rn−2 for all
n ≥ 3 and let E∞(P0) be the direct limit of the groups E(Pn) for n ≥ 3. Note that
Um(Pn) has a canonical basepoint given by the projection πn,n onto the “last” free
direct summand of rank 1. We then prove:

Theorem 2 (Theorems 4.5 and 4.14). The Vaserstein symbol

V : Um(P0⊕ R)/E(P0⊕ R)→ Ṽ (R)

is surjective if Um(P2n+1) = π2n+1,2n+1 E(P2n+1) for all n ≥ 2. Furthermore,
it is injective if π2n,2n E(P2n) = π2n,2n(E∞(P0) ∩ Aut(P2n)) for all n ≥ 3 and
E∞(P0)∩Aut(P4)= E(P4).

Using local-global principles for transvection groups [Bak et al. 2010], we may
then prove the following result:

Theorem 3 (Theorems 2.15, 2.16 and 4.15). The equality

E∞(P0)∩Aut(P4)= E(P4)

holds if R is a 2-dimensional regular Noetherian ring or a 3-dimensional regular
affine algebra over a perfect field k such that c.d.(k)≤ 1 and 6∈ k×. In particular, it
follows that the generalized Vaserstein symbol V :Um(P0⊕R)/E(P0⊕R)→ Ṽ (R)
is a bijection in these cases.

As indicated above, the corresponding result by Rao and van der Kallen for the
usual Vaserstein symbol in dimension 3 and Suslin’s theorem on the completability
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of unimodular rows were crucially used in the proof of [Fasel et al. 2012, The-
orem 7.5]. As a special case of Suslin’s theorem, one obtains that unimodular
rows of the form (a1, a2, a2

3) are completable to invertible matrices. An explicit
completion of such a unimodular row is given, e.g., in [Krusemeyer 1976]. In
fact, we can translate this result to our setting: Any epimorphism a : P0⊕ R→ R
can be written as (a0, aR), where a0 and aR are the restrictions of a to P0 and
R, respectively. Then we can generalize Krusemeyer’s construction in order to
give an explicit completion of an epimorphism of the form a = (a0, a2

R) to an
automorphism of P0⊕ R (see Proposition 4.18).

While it should be possible to define a Vaserstein symbol without the assumption
of a trivial determinant of P0, it is by no means obvious that our methods in this
paper can be adjusted in order to prove the same results without this assumption.

The organization of the paper is as follows: In Section 2, we prove the techni-
cal ingredients for the proofs of the main results of this paper. In particular, we
prove some lemmas on elementary automorphisms of projective modules and use
local-global principles for transvection groups in order to derive stability results
for automorphism groups of projective modules. Section 3 basically covers the
definition of the elementary symplectic Witt group WE(R) and the identifications
of W ′E(R), V (R) and GW3

1(R). In Section 4, we motivate and give the definition
of the generalized Vaserstein symbol and begin to study its basic properties. We
then use all the technical lemmas proven in the previous sections in order to deduce
the theorems stated above.

Notation and conventions. In this paper, a ring R is always commutative with unit.
If k is a perfect field, we denote by H(k) the A1-homotopy category as defined by
Morel and Voevodsky and by H•(k) its pointed version. If X and Y are spaces (resp.
pointed spaces), we write [X ,Y]A1 (resp. [X ,Y]A1,•) for the set of morphisms from
X to Y in H(k) (resp. H•(k)).

2. Preliminaries on projective modules

In this section, we recall some basic facts on projective modules over commutative
rings and prove some technical lemmas on elementary automorphisms which will
be crucially used in the proofs of the main results of this paper. We also recall the
local-global principle for transvection groups in [Bak et al. 2010] in order to prove a
stability result on automorphisms of projective modules. At the end of this section,
we briefly recall how projective modules stably isomorphic to a given projective
module P can be classified in terms of the orbit space of the set of epimorphisms
P ⊕ R→ R under the action of the groups of automorphisms of P ⊕ R.

2A. Local trivializations and alternating isomorphisms on projective modules.
Let R be a commutative ring and P be any projective R-module. For any prime
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ideal p of R, the localized Rp-module Pp is again projective and therefore free
(because projective modules over local rings are free). In this weak sense, projec-
tive modules are locally free. If the rank of Pp as an Rp-module is finite for every
prime p, then we say that P is a projective module of finite rank. In this case, there
is a well-defined map rankP : Spec(R)→ Z which sends a prime ideal p of R to
the rank of Pp as an Rp-module. It is not true in general that projective modules
of finite rank are finitely generated; nevertheless, this is true if rankP is a constant
map [Weibel 2013, Chapter I, Exercise 2.14]. We say that P is locally free of finite
rank (in the strong sense) if it admits elements f1, . . . , fn ∈ R generating the unit
ideal such that the localizations Pfk are free Rfk -modules of finite rank. In fact, it
is well-known that this is true if and only if P is a finitely generated projective
module. The following lemma follows from [Weibel 2013, Chapter I, Lemma 2.4]
and [Weibel 2013, Chapter I, Exercise 2.11]:

Lemma 2.1. Let R be a ring and M be an R-module. Then the following state-
ments are equivalent:

(a) M is a finitely generated projective R-module;

(b) M is locally free of finite rank (in the strong sense);

(c) M is a finitely presented R-module and Mp is a free Rp-module for every
prime ideal p of R;

(d) M is a finitely generated R-module, Mp is a free Rp-module for every prime
ideal p of R and the induced map rankM : Spec(R)→ Z is continuous.

For any projective R-module P of finite rank, there is a canonical isomorphism

can : P→ P∨∨, p 7→ (evp : P∨→ R, a 7→ a(p))

induced by evaluation. A symmetric isomorphism on P is an isomorphism f :P→P∨

such that the diagram
P

f
//

can
��

P∨

id

P∨∨
f ∨
// P∨

is commutative. Similarly, a skew-symmetric isomorphism on P is an isomorphism
f : P→ P∨ such that the diagram

P
f
//

− can
��

P∨

id

P∨∨
f ∨
// P∨

is commutative. Finally, an alternating isomorphism on P is an isomorphism
f : P→ P∨ such that f (p)(p)= 0 for all p ∈ P .
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A symmetric form on a projective R-module P of finite rank is an R-bilinear
map χ : P × P → R such that χ(p, q) = χ(q, p) for all p, q ∈ P . Similarly, a
skew-symmetric form on a projective R-module P of finite rank is an R-bilinear
map χ : P× P→ R such that χ(p, q)=−χ(q, p) for all p, q ∈ P . Moreover, an
alternating form on a projective R-module P of finite rank is an R-bilinear map
χ : P × P → R such that χ(p, p) = 0 for all p ∈ P . Note that any alternating
form on P is automatically skew-symmetric. If 2 ∈ R×, any skew-symmetric form
is alternating as well. A (skew-)symmetric or alternating form χ is nondegenerate
if the induced map P→ P∨, q 7→ (p 7→ χ(p, q)) is an isomorphism. Obviously,
the data of a nondegenerate (skew-)symmetric form is equivalent to the data of a
(skew-)symmetric isomorphism. Analogously, the data of a nondegenerate alter-
nating form is equivalent to the data of an alternating isomorphism.

Now let χ : M × M → R be any R-bilinear form on M . This form induces
a homomorphism M ⊗R M → R. For any prime p of R, there is an induced
homomorphism Mp⊗Rp Mp

∼= (M ⊗R M)p→ Rp. This gives an R-bilinear form
χp : Mp×Mp→ Rp on Mp. The following lemma shows that these localized forms
completely determine χ .

Lemma 2.2. Suppose χ1 and χ2 are R-bilinear forms on an R-module M. Then
χ1 = χ2 if and only if χ1p = χ2p for every prime ideal p of R.

Proof. The forms χ1 and χ2 agree if and only if χ1(p, q)− χ2(p, q) = 0 for all
p, q ∈ M . Therefore the lemma follows immediately from the fact that being 0 is
a local property for elements of any R-module. �

2B. Elementary automorphisms and unimodular elements. Again, let R be a
ring and let M ∼=

⊕n
i=1 Mi be an R-module which admits a decomposition into

a direct sum of R-modules Mi , i = 1, . . . , n. An elementary automorphism ϕ

of M with respect to the given decomposition is an endomorphism of the form
ϕsi j = idM +si j , where si j : M j → Mi is an R-linear homomorphism for some
i 6= j [Bass 1968, Chapter IV, §3]. Any such homomorphism automatically is
an isomorphism with inverse given by ϕ−1

si j
= idM −si j . For M = Rn ∼=

⊕n
i=1 R,

one just obtains the automorphisms given by elementary matrices. We denote by
Aut(M) the group of automorphisms of M and by E(M1, . . . ,Mn) (or simply
E(M) if the decomposition is understood) the subgroup of Aut(M) generated by
elementary automorphisms.

The following lemma gives a list of useful formulas, which can be checked
easily by direct computation.

Lemma 2.3. Let M =
⊕n

i=1 Mi be a direct sum of R-modules. Then we have

(a) ϕsi jϕti j = ϕ(si j+ti j ) for all si j : M j → Mi , ti j : M j → Mi and i 6= j ;
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(b) ϕsi jϕskl = ϕsklϕsi j for all si j : M j → Mi , skl : Ml → Mk , i 6= j , k 6= l, j 6= k
and i 6= l;

(c) ϕsi jϕs jkϕ−si jϕ−s jk = ϕ(si j s jk) for all si j : M j→ Mi , s jk : Mk→ M j and distinct
i, j, k;

(d) ϕsi jϕskiϕ−si jϕ−ski = ϕ(−ski si j ) for all si j :M j→Mi , ski :Mi→Mk and distinct
i, j, k.

If we restrict to the case Mi = Mn for i ≥ 2, we obtain the following result
on E(M):

Corollary 2.4. If Mi = Mn for i ≥ 2, then the group E(M) is generated by the
elementary automorphisms of the form ϕs = idM +s, where s is an R-linear map
Mi → Mn or Mn→ Mi for some i 6= n. The same statement holds if one replaces
n by any other k ≥ 2.

Proof. Since Mi = Mn for all i ≥ 2, we have identities idin : Mn → Mi and
idni : Mi → Mn for all i ≥ 2. Let si j : M j → Mi be a morphism with i 6= j and
therefore either i ≥ 2 or j ≥ 2. We may assume that i, j, n are distinct. If i ≥ 2,
then

ϕsi j = ϕidinϕidni si jϕ− idinϕ(−idni si j )

by the third formula in Lemma 2.3. If j ≥ 2, then

ϕsi j = ϕ(si j id jn)ϕidnjϕ(−si j id jn)ϕ− idnj .

by the third formula in Lemma 2.3. This proves the first part of the corollary. The
last part follows in the same way if n is replaced by k ≥ 2. �

The proof of Corollary 2.4 also shows:

Corollary 2.5. Let M =
⊕n

i=1 Mi be a direct sum of R-modules and also let
s : M j → Mi , i 6= j , be an R-linear map. Assume that there is k 6= i with Mk = Mi

or k 6= j with Mk = M j . Then the induced elementary automorphism ϕs is a
commutator.

The following lemma is a version of Whitehead’s lemma in our general setting:

Lemma 2.6. Let M = M1⊕M2 and let f : M1→ M2, g : M2→ M1 be morphisms.
Assume that idM1+g f is an automorphism of M1. Then

• idM2+ f g is an automorphism of M2 and

• (idM1+g f )⊕ (idM2+ f g)−1 is an element of E(M1⊕M2).

Proof. We have idM1 ⊕(idM2+ f g)=ϕ− f ϕ−g((idM1+g f )⊕idM2)ϕ f ϕg. This shows
the first statement. For the second statement one checks that

(idM1+g f )⊕ (idM2+ f g)−1
= ϕ−gϕ− f ϕgϕ(idM1+g f )−1g−gϕ f g f+ f .

So (idM1+g f )⊕ (idM2+ f g)−1 lies in E(M1⊕M2). �
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Now let P be a finitely generated projective R-module. We denote by Um(P)
the set of epimorphisms P → R. The group Aut(P) of automorphisms of P
then acts on the right on Um(P); consequently, the same holds for any subgroup
of Aut(P). In particular, it holds for the subgroup SL(P) of automorphisms
of determinant 1 and, if we fix a decomposition P ∼=

⊕n
i=1 Pi , for the group

E(P)= E(P1, . . . , Pn) as well.
An element p ∈ P is called unimodular if there is an a ∈ Um(P) such that

a(p)= 1; this means that the morphism R→ P, 1 7→ p defines a section for the
epimorphism a. We denote by Unim.El.(P) the set of unimodular elements of P .
Note that the group Aut(P) and hence also SL(P) and E(P) act on the left on P;
these actions restrict to actions on Unim.El.(P).

The canonical isomorphism can : P → P∨∨ identifies the set of unimodular
elements Unim.El.(P) of P with the set Um(P∨) of epimorphisms P∨→ R, i.e.,
an element p ∈ P is unimodular if and only if evp : P∨→ R is an epimorphism.
Furthermore, if p and q are unimodular elements of P and ϕ ∈ Aut(P) with
ϕ(p)= q, then evp ϕ

∨
= evq : P∨→ R.

We therefore obtain a well-defined map

Unim.El.(P)/Aut(P)→ Um(P∨)/Aut(P∨).

Let us show that this map is actually a bijection. Since the map is automatically
surjective, it only remains to show that it is injective. So let ψ ∈Aut(P∨) such that
evp ψ = evq . One can easily check that the map Aut(P)→ Aut(P∨), ϕ 7→ ϕ∨, is
bijective; hence ψ = ϕ∨ for some ϕ ∈ Aut(P). Thus, we obtain evq = evp ϕ

∨
=

evϕ(p) and therefore ϕ(p) = q, because can : P → P∨∨ is injective. Altogether,
we obtain a bijection

Unim.El.(P)/Aut(P)
∼=
−→ Um(P∨)/Aut(P∨).

In particular, if P ∼= P∨, then Unim.El.(P)/Aut(P)∼= Um(P)/Aut(P).
We introduce some notation. Let P0 be a finitely generated projective R-module.

For any n ≥ 3, let Pn = P0 ⊕ Re3 ⊕ · · · ⊕ Ren be the direct sum of P0 and free
R-modules Rei , 3 ≤ i ≤ n, of rank 1 with explicit generators ei . We denote by
πk,n : Pn→ R the projections onto the free direct summands of rank 1 with index
k = 3, . . . , n. For any nondegenerate alternating form χ on P2n , n ≥ 2, we define
Sp(χ)= {ϕ ∈ Aut(P2n) | ϕ

tχϕ = χ}.
For n ≥ 3, we have embeddings Aut(Pn)→ Aut(Pn+1) and E(Pn)→ E(Pn+1).

We denote by Aut∞(P0) (resp. E∞(P0)) the direct limits of the groups Aut(Pn)

(resp. E(Pn)) via these embeddings.
In the following lemmas, we denote by ψ2 the alternating form on R2 given by

the matrix (
0 1
−1 0

)
.
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Thus, for any nondegenerate alternating form χ on P2n for some n ≥ 2, we obtain
a nondegenerate alternating form on P2n+2 given by the orthogonal sum χ ⊥ ψ2.

With this notation in mind, we may now state and prove a few lemmas which
provide the technical groundwork in the proofs of the main results in this paper.

Lemma 2.7. Let χ be a nondegenerate alternating form on P2n for some n ≥ 2.
Let p ∈ P2n−1 and a : P2n−1→ R. Then there are ϕ,ψ ∈ Aut(P2n−1) such that

• the morphism (ϕ⊕ 1)(idP2n +pπ2n,2n) is an element of E(P2n)∩Sp(χ) and

• the morphism (ψ ⊕ 1)(idP2n +ae2n) is an element of E(P2n)∩Sp(χ).

Proof. We let 8 : P2n → P∨2n be the alternating isomorphism induced by χ and
8−1 be its inverse.

For the first part, we introduce the following homomorphisms: Let d : R→ P2n−1

be the morphism which sends 1 to 8−1(π2n,2n) (note that because 8−1(π2n,2n) sat-
isfies π2n,2n(8

−1(π2n,2n))=χ(8
−1(π2n,2n),8

−1(π2n,2n))=0, it can be considered
an element of P2n−1). Furthermore, let ν = χ(p, – ) : P2n−1→ R. We observe that
νd = 0. By Lemma 2.6, the morphism ϕ = idP2n−1− dν is an automorphism and
ϕ ⊕ 1 is an elementary automorphism. In particular, (ϕ ⊕ 1)(idP2n+ pπ2n,2n) is
an elementary automorphism. In light of the proof of [Vaserstein and Suslin 1976,
Lemma 5.4] and Lemma 2.2, one can check locally that it also lies in Sp(χ).

For the second part, we introduce the following homomorphisms: We denote
c=χ(–, e2n) : P2n−1→ R. Furthermore, we let a⊕0 : P2n→ R be the extension of
a to P2n which sends e2n to 0; then we denote by ϑ the homomorphism R→ P2n−1

which sends 1 to π8−1(a⊕0), where π : P2n→ P2n−1 is the projection. Note that
cϑ = 0. Again by Lemma 2.6, the morphism ψ = idP2n−1−ϑc is an automorphism
and ψ ⊕ 1 is an elementary automorphism. In particular, (ψ ⊕ 1)(idP2n+ ae2n) is
an elementary automorphism as well. Again, in light of the proof of [Vaserstein
and Suslin 1976, Lemma 5.4] and Lemma 2.2, one can check locally that it also
lies in Sp(χ). �

Lemma 2.8. Let χ be a nondegenerate alternating form on the module P2n for
some n ≥ 2. Then E(P2n)e2n = (E(P2n)∩Sp(χ))e2n .

Proof. Let p ∈ E(P2n)e2n . By Corollary 2.4, the group E(P2n) is generated by
automorphisms of the form idP2n+ s, where s is a morphism P2n−1 → Re2n or
Re2n → P2n−1. Hence we can write (α1 · · ·αr )(p) = e2n , where each αi is one
of these generators. We show by induction on r that p ∈ (E(P2n) ∩ Sp(χ))e2n .
If r = 0, there is nothing to show. So let r ≥ 1. Lemma 2.7 shows that there
is γ ∈ Aut(P2n−1) such that (γ ⊕ 1)αr lies in E(P2n) ∩ Sp(χ). We set βi =

(γ ⊕ 1)αi (γ
−1
⊕ 1) for each i < r . Each of the βi lies in E(P2n) and is again one

of the generators of E(P2n) given above. By construction, we furthermore have
(β1 · · ·βr−1(γ ⊕ 1)αr )(p)= e2n . This enables us to conclude by induction. �
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Lemma 2.9. Let χ1 and χ2 be nondegenerate alternating forms on P2n such that
ϕt(χ1⊥ψ2)ϕ=χ2⊥ψ2 for some ϕ ∈ E∞(P0)∩Aut(P2n+2). Now let χ =χ1⊥ψ2.
If (E∞(P0) ∩ Aut(P2n+2))e2n+2 = (E∞(P0) ∩ Sp(χ))e2n+2 holds, then one has
ψ tχ2ψ = χ1 for some ψ ∈ E∞(P0)∩Aut(P2n).

Proof. Let ψ ′′e2n+2 = ϕe2n+2 for some ψ ′′ ∈ E∞(P0) ∩ Sp(χ). Then we sim-
ply define ψ ′ = (ψ ′′)−1ϕ. Since (ψ ′)t(χ1 ⊥ ψ2)ψ

′
= χ2 ⊥ ψ2, the composite

ψ : P2n
ψ ′
−→ P2n+2→ P2n and ψ ′ satisfy the conditions

• ψ tχ1ψ = χ2,

• ψ ′(e2n+2)= e2n+2,

• π2n+1,2n+2ψ
′
= π2n+1,2n+2.

The last two conditions imply that ψ equals ψ ′ up to elementary automorphisms
and ψ ∈ E∞(P0)∩Aut(P2n), which finishes the proof. �

Lemma 2.10. Assume that π2n+1,2n+1(E∞(P0)∩Aut(P2n+1))=Um(P2n+1) holds
for some n ∈ N. Then for any nondegenerate alternating form χ on P2n+2 there is
an automorphism ϕ ∈ E∞(P0)∩Aut(P2n+2) such that ϕtχϕ = ψ ⊥ ψ2 for some
nondegenerate alternating form ψ on P2n .

Proof. Let d = χ( – , e2n+2) : P2n+1→ R. Since d can be locally checked to be
an epimorphism, there is an automorphism ϕ′ ∈ E∞(P0)∩Aut(P2n+1) such that
dϕ′ = π2n+1,2n+1. Then the alternating form χ ′ = (ϕ′ t ⊕ 1)χ(ϕ′ ⊕ 1) satisfies
that χ ′( – , e2n+2) : P2n+1 → R is just π2n+1,2n+1. Now we simply define the
morphism c = χ ′( – , e2n+1) : P2n+1 → R and let ϕc = idP2n+2+ ce2n+2 be the
elementary automorphism on P2n+2 induced by c; then ϕc

tχ ′ϕc = ψ ⊥ ψ2 for
some nondegenerate alternating form ψ on P2n , as desired. �

Lemma 2.11. Let P0 be a finitely generated projective R-module of rank 2. Then
we have E(P0 ⊕ R) ⊂ SL(P0 ⊕ R). Furthermore, if ϕ ∈ SL(P0 ⊕ R), then the
induced morphism ϕ∗ : det(P0⊕ R)→ det(P0⊕ R) is the identity on det(P0⊕ R).

Proof. Use that these properties are local and check them when R is local. �

2C. The local-global principle for transvection groups. We now briefly review
the local-global principle for transvection groups proven in [Bak et al. 2010], and
use it in order to deduce stability results for stably elementary automorphisms
of P0⊕ R2. For this, we only have to assume that R is an arbitrary commutative
ring with unit.

First of all, let P be a finitely generated projective R-module and q ∈ P , ϕ ∈ P∨

such that ϕ(q)= 0. This data naturally determines a homomorphism ϕq : P→ P
by ϕq(p)= ϕ(p)q for all p ∈ P . An automorphism of the form idP+ϕq is called
a transvection if either q ∈ Unim.El.(P) or ϕ ∈ Um(P). We denote by T (P) the
subgroup of Aut(P) generated by transvections.
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Now let Q = P ⊕ R be a direct sum of a finitely generated projective R-module
P of rank ≥ 2 and the free R-module of rank 1. Then the elementary automor-
phisms of P ⊕ R are easily seen to be transvections and are also called elementary
transvections. Consequently, we have E(Q)⊂ T (Q)⊂ Aut(Q).

In the theorem stated below, we denote by R[X ] the polynomial ring in one
variable over R and let Q[X ] = Q ⊗R R[X ]. The evaluation homomorphisms
ev0, ev1 : R[X ] → R induce maps Aut(Q[X ])→ Aut(Q). If α(X) ∈ Aut(Q[X ]),
then we denote its images under these maps by α(0) and α(1), respectively. Sim-
ilarly, the localization homomorphism R → Rm at any maximal ideal m of R
induces a map Aut(Q[X ])→ Aut(Qm[X ]), where Qm[X ] = Q[X ]⊗R[X ] Rm[X ];
if α(X) ∈ Aut(Q[X ]), we denote its image under this map by αm(X).

We will use the following result proven by Bak, Basu and Rao (see [Bak et al.
2010, Theorems 3.6 and 3.10]):

Theorem 2.12. The inclusion E(Q)⊂ T (Q) is an equality. If α(X) ∈ Aut(Q[X ])
satisfies α(0) = idQ ∈ Aut(Q) and αm(X) ∈ E(Qm[X ]) for all maximal ideals m
of R, then α(X) ∈ E(Q[X ]).

In order to prove the desired stability results, we introduce the following prop-
erty: Let C be either the class of Noetherian rings or the class of affine k-algebras
over a fixed field k. Furthermore, let d ≥ 1 be an integer and m ∈ N. We say
that C has the property P(d,m) if for R in C of dimension d and for any finitely
generated projective R-module P of rank m the group SL(P⊕ Rn) acts transitively
on Um(P ⊕ Rn) for all n ≥ 2.

If k is a field, we simply say that k has the property P(d,m) if the class of affine
k-algebras has the property P(d,m).

Of course, if the class of Noetherian rings has the property P(d,m), then the
same holds for every field. The class of Noetherian rings has the property P(d,m)
for m ≥ d . Furthermore, it follows from [Bhatwadekar 2003] that any perfect field
k of cohomological dimension ≤ 1 satisfies property P(d, d − 1) if d! ∈ k×.

In the remainder of this section, we let π be the canonical projection P⊕Rn
→ R

onto the “last” free direct summand of Rn .

Lemma 2.13. Let C be the class of Noetherian rings or affine k-algebras over a
fixed field k. Assume that C has the property P(d,m). Let R be a d-dimensional
ring in C, P a projective R-module of rank m and a ∈ Um(P ⊕ Rn) for some
n ≥ 2. Moreover, assume that there is an element t ∈ R and a homomorphism
w : P ⊕ Rn

→ R such that a−π = tw. Then there is ϕ ∈ SL(P ⊕ Rn) such that
a = πϕ and ϕ(x)≡ idP⊕Rn (x) modulo (t) for all x.

Proof. We set B = R[X ]/〈X2
− t X〉. By assumption, we have a = π + tw. We

lift it to a(X) = π + Xw : (P ⊕ Rn)⊗R B→ B, which can be checked to be an
epimorphism (as in the proof of [Rao and van der Kallen 1994, Proposition 3.3]).
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Therefore we have a(X) ∈ Um((P ⊕ Rn)⊗R B). Since B still is a ring in C of
dimension d , property P(d,m) now gives an element ϕ(X) ∈ SL((P ⊕ Rn)⊗R B)
with a(X)= πϕ(X). Then ϕ = ϕ(0)−1ϕ(t) is the desired automorphism. �

For any n ≥ 2, we say that two automorphisms ϕ,ψ ∈ SL(P ⊕ Rn) are isotopic
if there is an automorphism τ(X) of (P ⊕ Rn)⊗R R[X ] with determinant 1 such
that τ(0)= ϕ and τ(1)= ψ .

Theorem 2.14. Let C be the class of Noetherian rings or affine k-algebras over
a fixed field k. Assume that C has the property P(d + 1,m + 1). Let R be a d-
dimensional ring in C, P a projective R-module of rank m and σ ∈ Aut(P ⊕ Rn)

for some n ≥ 2. Assume that σ ⊕ 1 ∈ E(P ⊕ Rn+1). Then σ is isotopic to idP⊕Rn .

Proof. Since σ ⊕ 1 ∈ E(P ⊕ Rn+1), it is clear that there is a natural isotopy
τ(X) ∈ E((P ⊕ Rn+1)⊗R R[X ]) with τ(0) = idP⊕Rn+1 and τ(1) = σ ⊕ 1. Now
apply the previous lemma to R[X ], X2

− X and a = πτ(X) in order to obtain
an automorphism χ(X) ∈ SL((P ⊕ Rn+1)⊗R R[X ]) with πχ(X) = a such that
χ(X)(x)≡ x modulo 〈X2

−X〉. Thus, πτ(X)χ(X)−1
=π . Therefore τ(X)χ(X)−1

equals ρ(X)⊕ 1 for some ρ(X) ∈ SL((P ⊕ Rn)⊗R R[X ]) up to elementary auto-
morphisms. But then ρ(X) is an isotopy from idP⊕Rn to σ . �

We can now use Theorem 2.14 in order to deduce the following stability results:

Theorem 2.15. With the notation of Section 2B, we further assume that P0 has
rank 2. If R is a regular Noetherian ring of dimension 2, then there is an equality
E∞(P0)∩Aut(P4)= E(P4).

Proof. If σ ∈ SL(P4) is stably elementary, then σ ∈ E(Pn+1) for some n ≥ 4.
We can now apply Theorem 2.14 to P = P0 and deduce that there is an isotopy
ρ(X) ∈ SL(Pn[X ]) from idPn to σ .

But since R is regular, we know that ρm(X) is stably elementary (for any max-
imal ideal m of R). In fact, we can deduce that ρm(X) is elementary: Since
dim(R) = 2, the spectrum of the 3-dimensional ring Rm[X ] is the union of a fi-
nite number of subspaces of dimension ≤ 2 (see the last paragraph of [Rao 1988,
Section 1.1]). Hence it follows from [Vaserstein and Suslin 1976, Lemma 7.5] that
the stable rank of Rm[X ] is at most 3. In particular, SLn(Rm[X ])∩ E(Rm[X ]) =
En(Rm[X ]) and ρm(X) is elementary.

Then Theorem 2.12 implies that ρ(X)∈ E(Pn[X ]) and hence σ = ρ(1)∈ E(Pn).
The theorem now follows by inductively repeating this argument and deducing that
σ ∈ E(P4). �

Theorem 2.16. With the notation of Section 2B, we further assume that P0 has
rank 2. Let k be a perfect field with P(4, 3). If R is a regular affine k-algebra of
dimension 3, then E∞(P0)∩Aut(P4)= E(P4).
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Proof. By a famous theorem of Vorst [1981], we know that there is an equality
SLN (Rp[X ]) = EN (Rp[X ]) for any prime p of R and N ≥ 4. We can thus argue
as in the proof of Theorem 2.15. �

Theorem 2.17. With the notation of Section 2B, we further assume that P0 has
rank 2. Let k be a perfect field with P(5, 3). If R is a regular affine k-algebra of
dimension 4, then E∞(P0)∩Aut(P4)= E(P4).

Proof. We can argue as in the proof of Theorem 2.16. �

2D. Classification of stably isomorphic projective modules. We consider the map

φn : Vn(R)→ Vn+1(R), [P] 7→ [P ⊕ R],

from isomorphism classes of rank n projective modules to rank n+ 1 projective
modules, and fix a projective module P ⊕ R representing an element of Vn+1(R)
in the image of this map. An element [P ′] of Vn(R) lies in the fiber over [P ⊕ R]
if and only if there is an isomorphism i : P ′⊕ R

∼=
−→ P⊕ R. Any such isomorphism

yields an element of Um(P ⊕ R) given by the composite

a(i) : P ⊕ R i−1
−→ P ′⊕ R πR

−→ R.

Note that if one chooses another module P ′′ representing the isomorphism class
of P ′ and any isomorphism j : P ′′⊕ R

∼=
−→ P ⊕ R, the resulting element a( j) of

Um(P ⊕ R) still lies in the same orbit of Um(P ⊕ R)/Aut(P ⊕ R): If we choose
an isomorphism k : P ′

∼=
−→ P ′′, then we have an equality

a(i)= a( j) ◦ ( j (k⊕ idR)i−1).

Thus, we obtain a well-defined map

φ−1
n ([P ⊕ R])→ Um(P ⊕ R)/Aut(P ⊕ R).

Conversely, any element a ∈ Um(P ⊕ R) gives an element of Vn(R) lying
over [P ⊕ R], namely [P ′] = [ker(a)]. Note that the kernels of two epimor-
phisms P ⊕ R→ R are isomorphic if these epimorphisms are in the same orbit in
Um(P ⊕ R)/Aut(P ⊕ R). Thus, we also obtain a well-defined map

Um(P ⊕ R)/Aut(P ⊕ R)→ φ−1
n ([P ⊕ R]).

One can easily check that the maps φ−1
n ([P⊕ R])→Um(P⊕ R)/Aut(P⊕ R) and

Um(P⊕ R)/Aut(P⊕ R)→ φ−1
n ([P⊕ R]) are inverse to each other. Note that [P]

corresponds to the class represented by the canonical projection πR : P ⊕ R→ R
under these bijections. In conclusion, we have a pointed bijection between the
sets Um(P ⊕ R)/Aut(P ⊕ R) and φ−1

n ([P ⊕ R]) equipped with [πR] and [P]
as their respective basepoints. Moreover, we also obtain a (pointed) surjection
Um(P ⊕ R)/E(P ⊕ R)→ φ−1

n ([P ⊕ R]).
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3. The elementary symplectic Witt group

In this section, we briefly recall the definition of the so-called elementary sym-
plectic Witt group WE(R). Primarily, it appears as the kernel of a homomorphism
W ′E(R)→ R× induced by the Pfaffian of alternating invertible matrices. As we will
discuss, the group W ′E(R) itself can be identified with a group denoted V (R) and
with GW3

1(R), a higher Grothendieck–Witt group of R. We will also prove some
lemmas on the group V (R), which will be used to prove the main results of this
paper. Furthermore, we introduce a canonical R×-action on V (R) and identify this
action with an action of R× on GW3

1(R) coming from the multiplicative structure
of higher Grothendieck–Witt groups.

3A. The group W ′
E(R). Let R be a commutative ring. For any n ∈N, we denote

by A2n(R) the set of alternating invertible matrices of rank 2n. We inductively
define an element ψ2n ∈ A2n(R) by setting

ψ2 =

(
0 1
−1 0

)
and ψ2n+2 = ψ2n ⊥ ψ2. For any m < n, there is an embedding of A2m(R) into
A2n(R) given by M 7→M ⊥ψ2n−2m . We denote by A(R) the direct limit of the sets
A2n(R) under these embeddings. Two alternating invertible matrices M ∈ A2m(R)
and N ∈ A2n(R) are called equivalent, M ∼ N , if there is an integer s ∈ N and a
matrix E ∈ E2n+2m+2s such that

M ⊥ ψ2n+2s = E t(N ⊥ ψ2m+2s)E .

The set of equivalence classes A(R)/∼ is denoted W ′E(R). Since(
0 ids

idr 0

)
∈ Er+s(R)

for even rs, it follows that the orthogonal sum equips W ′E(R) with the structure
of an abelian monoid. As it is shown in [Vaserstein and Suslin 1976], this abelian
monoid is actually an abelian group. An inverse for an element of W ′E(R) repre-
sented by a matrix N ∈ A2n(R) is given by the element represented by the matrix
σ2n N−1σ2n , where the matrices σ2n are inductively defined by

σ2 =

(
0 1
1 0

)
, σ2n+2 = σ2n ⊥ σ2.

Now recall that one can assign to any alternating invertible matrix M an ele-
ment Pf(M) of R× called the Pfaffian of M . The Pfaffian satisfies the following
formulas:

• Pf(M ⊥ N )= Pf(M)Pf(N ) for all M ∈ A2m(R) and N ∈ A2n(R);
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• Pf(G tNG)= det(G)Pf(N ) for all G ∈ GL2n(R) and N ∈ A2n(R);

• Pf(N )2 = det(N ) for all N ∈ A2n(R);

• Pf(ψ2n)= 1 for all n ∈ N.

Therefore the Pfaffian determines a group homomorphism Pf :W ′E(R)→ R×; its
kernel is denoted WE(R) and is called the elementary symplectic Witt group of R.
Note that the homomorphism Pf : W ′E(R)→ R× is split by the homomorphism
R×→W ′E(R), which assigns to any t ∈ R× the class in W ′E(R) represented by the
matrix (

0 t
−t 0

)
.

Hence W ′E(R)∼=WE(R)⊕ R×.

3B. The group V(R). Again, let R be a commutative ring. Consider the set of
triples (P, g, f ), where P is a finitely generated projective R-module and f, g are
alternating isomorphisms on P . Two such triples (P, f0, f1) and (P ′, f ′0, f ′1) are
called isometric if there is an isomorphism h : P→ P ′ such that fi = h∨ f ′i h for
i = 0, 1. We denote by [P, g, f ] the isometry class of the triple (P, g, f ).

Let V (R) be the quotient of the free abelian group on isometry classes of triples
as above by the subgroup generated by the relations

• [P⊕P ′, g⊥ g′, f ⊥ f ′]= [P, g, f ]+[P ′, g′, f ′] for alternating isomorphisms
f, g on P and f ′, g′ on P ′,

• [P, f0, f1]+ [P, f1, f2] = [P, f0, f2] for alternating isomorphisms f0, f1, f2

on P .

Note that these relations yield the useful identities:

• [P, f, f ] = 0 in V (R) for any alternating isomorphism f on P ,

• [P, g, f ] = −[P, f, g] in V (R) for alternating isomorphisms f, g on P ,

• [P, g, β∨α∨ f αβ] = [P, f, α∨ f α] + [P, g, β∨ fβ] in V (R) for all automor-
phisms α, β of P and alternating isomorphisms f, g on P .

We may also restrict this construction to free R-modules of finite rank. The
corresponding group is denoted Vfree(R). Note that there is an obvious group
homomorphism Vfree(R)→ V (R).

This homomorphism can be seen to be an isomorphism as follows: For any
finitely generated projective R-module P , we call

HP =

(
0 idP∨

− can 0

)
: P ⊕ P∨→ P∨⊕ P∨∨

the hyperbolic isomorphism on P .
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Now let (P, g, f ) be a triple as above. Since P is a finitely generated projective
R-module, there is another R-module Q such that P ⊕ Q ∼= Rn for some n ∈ N.
In particular, P ⊕ P∨⊕ Q⊕ Q∨ is free of rank 2n. Therefore the triple

(P ⊕ P∨⊕ Q⊕ Q∨, g ⊥ can g−1
⊥ HQ, f ⊥ can g−1

⊥ HQ)

represents an element of Vfree(R); this element is independent of the choice of Q.
It follows that the assignment

(P, g, f ) 7→ (P ⊕ P∨⊕ Q⊕ Q∨, g ⊥ can g−1
⊥ HQ, f ⊥ can g−1

⊥ HQ)

induces a well-defined group homomorphism

V (R)→ Vfree(R).
Since

[P, g, f ] = [P ⊕ P∨⊕ Q⊕ Q∨, g ⊥ can g−1
⊥ HQ, f ⊥ can g−1

⊥ HQ]

in V (R), this homomorphism is inverse to the canonical morphism Vfree(R)→V (R).
Thus, Vfree(R)∼= V (R).

In order to discuss the identification of V (R) with the group W ′E(R) described
in the previous section, we first need to prove Lemma 3.1 and Corollaries 3.2 and
3.3 below. They are also used in the proofs of the main results of this paper.

Lemma 3.1. Let P =
⊕n

i=1 Pi be a finitely generated projective module and fi

alternating isomorphisms on Pi , i = 1, . . . , n. Let f = f1 ⊥ · · · ⊥ fn . Then
[P, f, ϕ∨ f ϕ]=0 in V (R) for any element ϕ of the commutator subgroup of Aut(P).
In particular, the same holds for every element of E(P) with respect to the given
decomposition.

Proof. By the third of the useful identities listed above, we have

[P, f, ϕ∨2 ϕ
∨

1 f ϕ1ϕ2] = [P, f, ϕ∨1 f ϕ1] + [P, f, ϕ∨2 f ϕ2].

Therefore, we only have to prove the first statement for commutators. Now if
ϕ = ϕ1ϕ2ϕ

−1
1 ϕ−1

2 is a commutator, then the formula above yields

[P, f, ϕ∨ f ϕ] = [P, f, ϕ∨1 f ϕ1] + [P, f, ϕ∨2 f ϕ2]

+[P, f, (ϕ−1
1 )∨ f ϕ−1

1 ] + [P, f, (ϕ−1
2 )∨ f ϕ−1

2 ] = 0,

which proves the first part of the lemma.
For the second part, observe that by the formula above we only need to prove

the statement for elementary automorphisms. So let ϕs be the elementary automor-
phism induced by s : Pj → Pi . Since we can add the summand [Pi , fi , fi ] = 0,
we may assume that we are in the situation of Corollary 2.5. Therefore we may
assume that ϕs is a commutator and the second statement then follows from the
first part of the lemma. �
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Corollary 3.2. Let P be a finitely generated projective R-module and χ an al-
ternating isomorphism on P. Then [P ⊕ R2n, χ ⊥ ψ2n, ϕ

∨(χ ⊥ ψ2n)ϕ] = 0
in V (R) for any elementary automorphism ϕ of P ⊕ R2n . In particular, if f
is any alternating isomorphism on P ⊕ R2n , it follows that there is an equality
[P ⊕ R2n, χ ⊥ ψ2n, ϕ

∨ f ϕ] = [P ⊕ R2n, χ ⊥ ψ2n, f ] in V (R).

Proof. The first part follows directly from the previous lemma. The second part
is then a direct consequence of the second relation given in the definition of the
group V (R). �

Corollary 3.3. Let E be an arbitrary elementary matrix in E2n(R). Then we
have [R2n, ψ2n, E tψ2n E] = 0 in V (R). In particular, for any alternating matrix
N ∈ GL2n(R), we have [R2n, ψ2n, N ] = [R2n, ψ2n, E t N E] in V (R).

Using the previous corollary, the group Vfree(R) can be identified with W ′E(R) as
follows. If M ∈ A2m(R) represents an element of W ′E(R), then we assign to it the
class in Vfree(R) represented by [R2m, ψ2m,M]. By Corollary 3.3, this assignment
descends to a well-defined homomorphism ν :W ′E(R)→ Vfree(R).

Now let us describe the inverse ξ : Vfree(R)→ W ′E(R) to this homomorphism.
Let (L , g, f ) be a triple with L free and g, f alternating isomorphisms on L . We
can choose an isomorphism α : R2n ∼=

−→ L and consider the alternating isomorphism

(α∨ f α)⊥ σ2n(α
∨gα)−1

σ∨2n : R
2n
⊕ (R2n)∨→ (R2n)∨⊕ R2n.

With respect to the standard basis of R2n and its dual basis of (R2n)∨, we may
interpret this alternating isomorphism as an element of A4n(R) and then consider its
class ξ([L , g, f ]) in W ′E(R). In fact, this class is independent of the choice of the
isomorphism α : R2n ∼=

−→ L . If β : R2n ∼=
−→ L is another isomorphism, then it suffices

to show that the alternating matrix M corresponding to α∨ f α⊥ β∨gβ is equivalent
in W ′E(R) to the alternating matrix corresponding to β∨ fβ ⊥ α∨gα. But there is
an isometry γ = (α−1β)⊥ (β−1α) from α∨ f α ⊥ β∨gβ to β∨ fβ ⊥ α∨gα, which
is an elementary automorphism by Whitehead’s lemma. One then also checks
easily that the defining relations of Vfree(R) are also satisfied by the assignment
above. Hence it follows that this assignment induces a well-defined homomor-
phism ξ : Vfree(R)→ W ′E(R). By construction, ν and ξ are obviously inverse to
each other and therefore identify W ′E(R) with Vfree(R).

To conclude this section, we now describe some group actions on V (R). For any
finitely generated projective R-module P , alternating isomorphism χ : P→ P∨

and u ∈ R×, the morphism u · χ : P → P∨ is again an alternating isomorphism
on P . Note that u · χ is canonically isometric to the alternating isomorphism
u⊗χ : R⊗ P u⊗χ

−−→ R⊗ P∨ ∼= (R⊗ P)∨, and we therefore have an equality

[P, u ·χ2, u ·χ1] = [R⊗ P, u⊗χ2, u⊗χ1] in V (R)
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for all χ1, χ2. One can check easily that the assignment

(u, (P, χ2, χ1)) 7→ (P, u ·χ2, u ·χ1)

descends to a well-defined action of R× on V (R).
Now let us assume that 2∈ R× and, furthermore, let ϕ : Q→ Q∨ be a symmetric

isomorphism on a finitely generated projective R-module Q. Then, for any skew-
symmetric isomorphism χ on a finitely generated projective R-module P as above,
the homomorphism ϕ ⊗ χ : Q ⊗ P → Q∨ ⊗ P∨ ∼= (Q ⊗ P)∨ is again a skew-
symmetric isomorphism on Q⊗ P . One can check easily that the assignment

((Q, ϕ), (P, χ2, χ1)) 7→ (Q⊗ P, ϕ⊗χ2, ϕ⊗χ1)

induces a well-defined action of the Grothendieck–Witt group GW(R)= GW0
0(R)

of R on V (R).

3C. Grothendieck–Witt groups. In this section, we recall some basics about the
theory of higher Grothendieck–Witt groups, which are a modern version of Hermit-
ian K-theory. The general references of the modern theory are [Schlichting 2010a;
2010b; 2017].

We assume R to be a ring such that 2 ∈ R×. Then we consider the cate-
gory P(R) of finitely generated projective R-modules and the category Cb(R)
of bounded complexes of objects in P(R). The category Cb(R) inherits a natural
structure of an exact category from P(R) by declaring C ′

•
→ C•→ C ′′

•
exact if

and only if C ′n→ Cn→ C ′′n is exact for all n. The duality HomR( – , L) associated
to any line bundle L induces a duality #L on Cb(R) and the identification of a
finitely generated projective R-module with its double dual induces a natural iso-
morphism of functors $L : id ∼−→ #L#L on Cb(R). Moreover, the translation functor
T : Cb(R)→ Cb(R) yields new dualities # j

L = T j #L and natural isomorphisms
$

j
L = (−1) j ( j+1)/2$L . We say that a morphism in Cb(R) is a weak equivalence

if and only if it is a quasi-isomorphism, and we denote by qis the class of quasi-
isomorphisms. For all j , the quadruple (Cb(R), qis, # j

L ,$
j

L ) is an exact category
with weak equivalences and strong duality [Schlichting 2010b, §2.3].

Following [Schlichting 2010b], one can associate a Grothendieck–Witt space
GW to any exact category with weak equivalences and strong duality. The (higher)
Grothendieck–Witt groups are then defined to be its homotopy groups:

Definition 3.4. For any i ≥ 0, let GW(Cb(R), qis, # j
L ,$

j
L ) be the Grothendieck–

Witt space associated to the quadruple (Cb(R), qis, # j
L ,$

j
L ) as above. Then we

define
GW j

i (R, L)= πiGW(Cb(R), qis, # j
L ,$

j
L ).

If L = R, then we set GW j
i (R)= GW j

i (R, L).
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The groups GW j
i (R, L) are 4-periodic in j and coincide with Hermitian K-

theory and U-theory as defined by Karoubi [1973; 1980], at least if 2 ∈ R× (see
[Schlichting 2010a, Remark 4.13; 2017, Theorems 6.1–2). In particular, we have
isomorphisms Ki O(R) = GW0

i (R), −1Ui (R) = GW1
i (R), Ki Sp(R) = GW2

i (R)
and i (R)= GW3

i (R).
The group of our particular interest is GW3

1(R)=U1(R). Indeed, it is argued in
[Fasel et al. 2012] that there is a natural isomorphism GW 3

1 (R)∼= Vfree(R)∼= V (R).
The Grothendieck–Witt groups defined as above carry a multiplicative structure.

Indeed, the tensor product of complexes induces product maps

GW j
i (R, L1)×GWs

r (R, L2)→ GW j+s
i+r (R, L1⊗ L2)

for all i, j, r, s and line bundles L1, L2 [Schlichting 2017, §9.2]. In general, it
is (probably) difficult to give explicit descriptions of this multiplicative structure;
nevertheless, if we restrict ourselves to smooth algebras over a perfect field k
(with char(k) 6= 2), then it is known (see [Hornbostel 2005, Theorem 3.1]) that
Grothendieck–Witt groups are representable in the (pointed) A1-homotopy cate-
gory H•(k) as defined by Morel and Voevodsky. As a matter of fact, if we let R be
a smooth affine k-algebra over a perfect field k with char(k) 6= 2 and X = Spec(R),
it is shown that there are spaces GW j such that

[Si
s ∧ X+,GW j

]A1,• = GW j
i (R),

i.e., the spaces GW j represent the higher Grothendieck–Witt groups. In order to
make these spaces more explicit, we consider for all n ∈ N the closed embeddings
GLn→ O2n and GLn→ Sp2n induced by

M 7→
(

M 0
0 (M−1)

t

)
.

These closed embeddings are compatible with the standard stabilization embed-
dings GLn → GLn+1, O2n → O2n+2 and Sp2n → Sp2n+2. Taking direct limits
over all n with respect to the induced maps O2n/GLn → O2n+2/GLn+1 and
Sp2n /GLn → Sp2n+2 /GLn+1, we obtain spaces O/GL and Sp /GL. Similarly,
the natural inclusions Sp2n→ GL2n are compatible with the standard stabilization
embeddings and we obtain a space GL /Sp = colimn GL2n /Sp2n . As proven in
[Schlichting and Tripathi 2015, Theorems 8.2 and 8.4], there are canonical A1-
weak equivalences

GW j ∼=


Z×OGr if j ≡ 0 mod 4,
Sp /GL if j ≡ 1 mod 4,
Z×HGr if j ≡ 2 mod 4,
O/GL if j ≡ 3 mod 4,
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and
R�1

s O/GL∼= GL /Sp,

where OGr is an “infinite orthogonal Grassmannian” and HGr is an “infinite sym-
plectic Grassmannian”. As a consequence of all this, there is an isomorphism
[X,GL /Sp]A1 = GW3

1(R). It is argued in [Asok and Fasel 2017] that the mor-
phisms of schemes GL2n→A2n , M 7→M tψ2n M induce an isomorphism GL/Sp∼= A
of Nisnevich sheaves, where A = colimn A2n (the transition maps are given by
adding ψ2). Altogether, we obtain an isomorphism [X, A]A1 = GW3

1(R) and
[X, A]A1 is precisely A(R)/∼=W ′E(R).

We describe an action of Gm on GL /Sp. For any ring R and any unit u ∈ R×,
we denote by γ2n,u the invertible 2n×2n-matrix inductively defined by

γ2,u =

(
u 0
0 1

)
and γ2n+2,u = γ2n,u ⊥ γ2,u . Conjugation by γ−1

2n,u induces an action of Gm on
GL2n for all n. As Sp2n is preserved by this action, there is an induced action on
GL2n /Sp2n . Since all the morphisms GL2n /Sp2n → GL2n+2 /Sp2n+2 are equi-
variant for this action, we obtain an action of Gm on GL /Sp.

Using the isomorphism GL /Sp ∼−→ A described above, there is an induced action
of R× =Gm(R) on GW3

1(R)∼= A(R)/∼=W ′E(R) for any smooth k-algebra R by
taking A1-homotopy classes of morphisms. If M ∈GL2n(R) represents a morphism
Spec(R)→ GL2n and u is a unit of R, note that the conjugation of M by γ−1

2n,u is
sent via the morphism GL2n→ GL2n /Sp2n

∼=
−→ A2n to

γ−1
2n,u M tγ2n,uψ2nγ2n,u Mγ−1

2n,u = γ
−1
2n,u M t(u ·ψ2n)Mγ−1

2n,u .

Note that the isometry induced by the matrix γ2n,u yields an equality

[R2n, ψ2n, γ
−1
2n,u M t(u ·ψ2n)Mγ−1

2n,u] = [R
2n, u ·ψ2n,M t(u ·ψ2n)M]

in V (R). As a consequence, the action of R× on GW3
1(R) can be described via

the isomorphism GW 3
1 (R)∼= V (R) as follows: If (P, g, f ) is a triple as in the

definition of the group V (R) and u ∈ R×, then the action is given by

(u, (P, g, f )) 7→ (P, u · g, u · f ).

Following [Asok and Fasel 2017], we refer to this action as the conjugation action
of R× on GW3

1(R)∼= V (R). Recall the we have already defined an action of R×

on V (R) for any commutative ring R in Section 3B. The conjugation action is thus
a homotopy-theoretic interpretation of this action in case of a smooth algebra over
a perfect field of characteristic 6= 2.
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Now let us examine the product map

GW0
0(R)×GW3

1(R)→ GW3
1(R)

for smooth k-algebras. As described above, there is a canonical isomorphism
GW0

0 = K0O(R)= GW(R), where GW(R) is the Grothendieck completion of the
abelian monoid of nondegenerate symmetric bilinear forms over R. Furthermore,
there is a canonical map

R×→ GW(R), u 7→ (R× R→ R, (x, y) 7→ uxy),

which induces an action of R× = Gm(R) on GW3
1(R) via the product map men-

tioned above. Again following [Asok and Fasel 2017], we refer to this action as
the multiplicative action of R× = Gm(R) on GW3

1(R) ∼= V (R). It follows from
the proof of [Asok and Fasel 2015, Proposition 3.5.1] that the multiplicative action
coincides with the conjugation action. Therefore we obtain another interpretation
of the R×-action on V (R) given in Section 3B via the multiplicative structure of
higher Grothendieck–Witt groups.

4. Main results

We finally give the definition of the generalized Vaserstein symbol in this section.
As a first step, we recall the definition of the usual Vaserstein symbol introduced
in [Vaserstein and Suslin 1976] and reinterpret it by means of the isomorphism
W ′E(R) ∼= V (R) discussed in the previous section. Then we define the general-
ized symbol and study its basic properties. In particular, we find criteria for the
generalized Vaserstein symbol to be injective and surjective (onto the subgroup
Ṽ (R) of V (R) corresponding to WE(R)), which are the natural generalizations
of the criteria found in [Vaserstein and Suslin 1976, Theorem 5.2]. These criteria
enable us to prove that the generalized Vaserstein symbol is a bijection, e.g., for 2-
dimensional regular Noetherian rings and for 3-dimensional regular affine algebras
over algebraically closed fields such that 6 ∈ k×.

4A. The Vaserstein symbol for unimodular rows. For the rest of the section, let R
be a commutative ring. Let Um3(R) be its set of unimodular rows of length 3, i.e.,
triples a = (a1, a2, a3) of elements in R such that there are elements b1, b2, b3 ∈ R
with

∑3
i=1 ai bi = 1. This data determines an exact sequence of the form

0→ P(a)→ R3 a
−→ R→ 0,

where P(a) = ker(a). The triple b = (b1, b2, b3) gives a section to the epimor-
phism a : R3

→ R and induces a retraction r : R3
→ P(a), ei 7→ ei − ai b, where

e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). One then obtains an isomorphism
i=r+a : R3

→ P(a)⊕R, which induces an isomorphism det(R3)→det(P(a)⊕R).
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Finally, by composing with the canonical isomorphisms det(P(a)⊕R)∼= det(P(a))
and R→ det(R3), 1 7→ e1∧e2∧e3, one obtains an isomorphism θ : R→ det(P(a)).

The matrix

V (a, b)=


0 −a1 −a2 −a3

a1 0 −b3 b2

a2 b3 0 −b1

a3 −b2 b1 0


has Pfaffian 1 and its image in WE(R) does not depend on the choice of the sec-
tion b. We therefore obtain a well-defined map V : Um3(R)→WE(R) called the
Vaserstein symbol.

Now let us reinterpret the Vaserstein symbol map in light of the isomorphism
W ′E(R)∼= V (R) discussed in Section 3B. The symbol V (a) is sent to the element of
V (R) represented by the isometry class [R4, ψ4, V (a, b)]. If we denote by χa the
alternating form P(a)× P(a)→ R, (p, q) 7→ θ−1(p∧q), we obtain an alternating
form on R4 given by (i ⊕ 1)t(χa ⊥ ψ2)(i ⊕ 1). If we set

σ =


0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0

 ∈ E4(R),

then we can check that the form (i ⊕ 1)t(χa ⊥ ψ2)(i ⊕ 1) is given by the matrix
σ t V (a, b)tσ . In particular, if we let M : Um3(R)→ Um3(R) be the map which
sends a unimodular row a = (a1, a2, a3) to M(a) = (−a1,−a2,−a3), then the
map ν ◦ V ◦M is given by a 7→ [R4, ψ4, (i ⊕ 1)t(χa ⊥ ψ2)(i ⊕ 1)]. Since both M
and ν are bijections, these considerations lead to a generalization of the Vaserstein
symbol.

4B. The generalized Vaserstein symbol. Let P0 be a projective R-module of rank 2.
We use the notation of Section 2B. For n ≥ 3, let Pn = P0⊕ Re3⊕ · · · ⊕ Ren be
the direct sum of P0 and free R-modules Rei , 3 ≤ i ≤ n, of rank 1 with explicit
generators ei . We sometimes omit these explicit generators in the notation. We
denote by πk,n : Pn→ R the projections onto the free direct summands of rank 1
with index k = 3, . . . , n.

We assume that P0 admits a trivialization θ0 : R → det(P0) of its determi-
nant. Then we denote by χ0 the nondegenerate alternating form on P0 given by
P0× P0→ R, (p, q) 7→ θ−1

0 (p∧ q).
Now let Um(P0⊕ R) be the set of epimorphisms P0⊕ R→ R. Any element a

of Um(P0⊕ R) gives rise to an exact sequence of the form

0→ P(a)→ P0⊕ R a
−→ R→ 0,
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where P(a) = ker(a). Any section s : R→ P0⊕ R of a determines a canonical
retraction r : P0 ⊕ R → P(a) given by r(p) = p − sa(p) and an isomorphism
i : P0⊕ R→ P(a)⊕ R given by i(p)= a(p)+ r(p).

The exact sequence above yields an isomorphism det(P0)∼= det(P(a)) and there-
fore an isomorphism θ : R→ det(P(a)) obtained by composing with θ0. We denote
by χa the nondegenerate alternating form on P(a) given by P(a)× P(a)→ R,
(p, q) 7→ θ−1(p∧ q).

We now want to define the generalized Vaserstein symbol

Vθ0 : Um(P0⊕ R)→ V (R)

associated to P0 and the fixed trivialization θ0 of det(P0) by

Vθ0(a)= [P0⊕ R2, χ0 ⊥ ψ2, (i ⊕ 1)t(χa ⊥ ψ2)(i ⊕ 1)].

If there is no ambiguity, we usually suppress the fixed trivialization θ0 and denote
Vθ0 simply by V in order to simplify our notation. In order to prove that this gen-
eralized symbol is well-defined, one has to show that our definition is independent
of a section of a:

Theorem 4.1. The generalized Vaserstein symbol is well-defined, i.e., the element
V (a) defined as above is independent of the choice of a section of a.

Proof. Let a ∈ Um(P0⊕ R) with two sections s, t : R→ P0⊕ R. We denote by
is and it the isomorphisms P0⊕ R ∼= P(a)⊕ R induced by the sections s and t ,
respectively. Since the isomorphism det(P(a))∼= det(P0) does not depend on the
choice of a section (because the difference of two sections maps R into P(a)), the
form χa is independent of the choice of a section as well. Thus we have to show
that the elements V (a, s)= [P0⊕ R2, (χ0 ⊥ ψ2), (is ⊕ 1)t(χa ⊥ ψ2)(is ⊕ 1)] and
V (a, t)= [P0⊕ R2, (χ0 ⊥ ψ2), (it ⊕ 1)t(χa ⊥ ψ2)(it ⊕ 1)] are equal in V (R).

We do this in the following three steps:

(1) We define a map d : P0 ⊕ R → R. We get a corresponding automorphism
ϕ ∈ E(P0⊕ R2) defined by ϕ = idP0⊕R2 −de4.

(2) We show that ϕt(is ⊕ 1)t(χa ⊥ ψ2)(is ⊕ 1)ϕ = (it ⊕ 1)t(χa ⊥ ψ2)(it ⊕ 1).

(3) Using Corollary 3.2, we conclude that V (a, s)= V (a, t).

For step (1), first define a map d ′ : P0⊕R→ det(P0⊕R) by p 7→ s(1)∧ t (1)∧ p.
Then d : P0⊕ R→ R is the map obtained from d ′ by composing with the isomor-
phisms det(P0⊕ R)∼= det(P0)∼= R. Let d0 and dR be its restrictions to P0 and R,
respectively. Furthermore, let ϕ0 = idP0⊕R2 −d0e4 and ϕR = idP0⊕R2 −dRe4 be
the elementary automorphisms of P0⊕ R2 defined by −d0 and −dR , respectively.
Moreover, let ϕ = idP0⊕R2 −de4. Note that ϕ = ϕ0ϕR = ϕRϕ0 ∈ E(P0⊕ R2).
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Now let us conduct step (2). By Lemma 2.2, we can check the desired equality
locally. So let p be a prime ideal of R and (ep1, ep2) a basis of the free Rp-module
(P0)p of rank 2. We may further assume (θ−1

0 )p(e
p
1 ∧ ep2)= 1. With respect to the

basis (ep1, ep2, e3) of (P0)p ⊕ Rp, the epimorphism ap can be represented by the
unimodular row (ap

1, ap
2, ap

3) and both sections sp and tp can be represented by the
columns (sp1 , sp2 , sp3)

t and (tp1 , tp2 , tp3 )
t . Using the basis (ep1, ep2, e3, e4) of (P0)p⊕ R2

p ,
we can check the desired equality locally: If we let dp

1 = tp3 sp2−tp2 sp3 , dp
2 = tp1 sp3−tp3 sp1

and dp
3 = tp2 sp1 − tp1 sp2 and

Mp =


1 0 0 0
0 1 0 0
0 0 1 0
−dp

1 −dp
2 −dp

3 1

 ,
this amounts to verifying the equality

M t
p


0 sp3 −sp2 ap

1

−sp3 0 sp1 ap
2

sp2 −sp1 0 ap
3

−ap
1 −ap

2 −ap
3 0

Mp =


0 tp3 −tp2 ap

1

−tp3 0 tp1 ap
2

tp2 −tp1 0 ap
3

−ap
1 −ap

2 −ap
3 0

 .
But this follows from the proof of [Vaserstein and Suslin 1976, Lemma 5.1].

Finally, we conclude by Corollary 3.2: Since ϕ0 and ϕR are elementary auto-
morphisms of P0⊕ R2, the automorphism ϕ = ϕ0ϕR is an element of E(P0⊕ R2).
By Corollary 3.2, we deduce that

V (a, s)= [P0⊕ R2, χ0 ⊥ ψ2, (is ⊕ 1)t(χa ⊥ ψ2)(is ⊕ 1)]

= [P0⊕ R2, χ0 ⊥ ψ2, ϕ
t(is ⊕ 1)t(χa ⊥ ψ2)(is ⊕ 1)ϕ].

But by step (2), we also know that

[P0⊕ R2, χ0 ⊥ ψ2, ϕ
t(is ⊕ 1)t(χa ⊥ ψ2)(is ⊕ 1)ϕ]

= [P0⊕ R2, χ0 ⊥ ψ2, (it ⊕ 1)t(χa ⊥ ψ2)(it ⊕ 1)] = V (a, t).

This finishes the proof. �

We note that there is a homomorphism Pf : V (R)→ R× obtained as the compos-
ite V (R)

∼=
−→ Vfree(R)

ξ
−→W ′E(R)

Pf
−→ R×. We denote its kernel by Ṽ (R). Of course,

the isomorphism V (R)∼=W ′E(R) induces an isomorphism Ṽ (R)∼=WE(R).
As stated in the previous section, the usual Vaserstein symbol of a unimodular

row is an element of WE(R) and is invariant under elementary transformations. We
now prove that the analogous statements also hold for the generalized Vaserstein
symbol:
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Lemma 4.2. The generalized Vaserstein symbol V : Um(P0⊕ R)→ V (R) maps
Um(P0⊕ R) into Ṽ (R).

Proof. For this, we note that the Pfaffian of an element of V (R) is completely
determined by the Pfaffians of all its images under the maps V (R) → V (Rp)

induced by localization at any prime ideal p. But the localization (P0)p at any
prime p is a free Rp-module of rank 2; choosing a basis (ep1, ep2) of (P0)p such that
(θ−1

0 )p(e
p
1 ∧ ep2)= 1 as in the proof of Theorem 4.1, we may calculate the Pfaffian

of any Vaserstein symbol by the usual formula for the Pfaffian of an alternating
4×4-matrix. The lemma then follows immediately. �

Theorem 4.3. Let ϕ be an elementary automorphism of P0 ⊕ R. Then we have
V (a) = V (aϕ) for any a ∈ Um(P0⊕ R). In particular, we obtain a well-defined
map V : Um(P0⊕ R)/E(P0⊕ R)→ Ṽ (R).

Proof. Let ϕ be an elementary automorphism of P0 ⊕ R, a ∈ Um(P0 ⊕ R) and
s : R→ P0⊕ R a section of a. Then ϕ−1s is a section of aϕ. Let i : P0⊕ R→
P(a)⊕R and j : P0⊕R→ P(aϕ)⊕R be the isomorphisms induced by the sections
s and ϕ−1s. We show that

(ϕ⊕ 1)t(i ⊕ 1)t(χa ⊥ ψ2)(i ⊕ 1)(ϕ⊕ 1)= ( j ⊕ 1)t(χ(aϕ) ⊥ ψ2)( j ⊕ 1).

The theorem then follows from Corollary 3.2.
So let us show the equality above. Directly from the definitions, one checks that

(i⊕1)(ϕ⊕1)= ((ϕ⊕1)⊕1)( j⊕1), where by abuse of notation we understand ϕ
as the induced isomorphism P(aϕ)→ P(a). Altogether, it only remains to show
that ϕtχaϕ = χaϕ .

For this, let (p, q) be a pair of elements in P(aϕ); by definition, χaϕ sends
these elements to the image of p ∧ q under the isomorphism det(P(aϕ)) ∼= R.
This element can also be described as the image of p ∧ q ∧ ϕ−1s(1) under the
isomorphism det(P0⊕ R)∼= R.

Analogously, the alternating form ϕtχaϕ sends (p, q) to the image of the el-
ement ϕ(p) ∧ ϕ(q) ∧ s(1) under the isomorphism det(P0 ⊕ R) ∼= R. Therefore
Lemma 2.11 allows us to conclude as desired, which finishes the proof of the
theorem. �

Note that if we equip the set Um(P0⊕ R) with the projection πR : P0⊕ R→ R
onto R as a basepoint, then the generalized Vaserstein symbol is a map of pointed
sets, because V (πR)= [P0⊕ R2, χ0 ⊥ ψ2, χ0 ⊥ ψ2] = 0.

Let us briefly discuss how the generalized Vaserstein symbol depends on the
choice of the trivialization θ0 of the determinant of P0. For this, recall that we
have defined an action of R× on V (R) in Section 3B. In case of a smooth algebra
over a perfect field of characteristic 6= 2, we saw in Section 3C that this action can
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be identified with the multiplicative action induced by a product map in the theory
of higher Grothendieck–Witt groups.

Now let P0 be a projective R-module of rank 2 which admits a trivialization θ0

of its determinant. Furthermore, let a ∈Um(P0⊕ R) with section s and let i, χ0, χa

be as in the definition of the generalized Vaserstein symbol. We consider another
trivialization θ ′0 of det(P0) and let χ ′0 and χ ′a be the corresponding alternating forms
on P0 and P(a). Obviously, there is a unit u ∈ R× such that θ0= u ·θ ′0; in particular,
we have u · χ0 = χ

′

0 and u · χa = χ
′
a . Thus, if we denote the Vaserstein symbol

associated to θ ′0 by Vθ ′0 , then

Vθ ′0 = [P0⊕ R2, (u ·χ0)⊥ ψ2, (i ⊕ 1)t((u ·χa)⊥ ψ2)(i ⊕ 1)].

Finally, the isometry given by P0⊕ R2 idP0 ⊕1⊕u
−−−−−−→ P0⊕ R2 yields an equality

[P0⊕ R2, (u ·χ0)⊥ ψ2, (i ⊕ 1)t((u ·χa)⊥ ψ2)(i ⊕ 1)]

= [P0⊕ R2, u · (χ0 ⊥ ψ2), u · (i ⊕ 1)t(χa ⊥ ψ2)(i ⊕ 1)].

Thus, if we denote the Vaserstein symbol associated to θ0 by Vθ0 , then

Vθ ′0 = u · Vθ0 .

In particular, the property of the generalized Vaserstein symbol to be injective,
surjective or bijective onto Ṽ (R) does not depend on the choice of θ0.

There is another immediate consequence of this: If we let P0 = R2 be the free R-
module of rank 2 and e1 = (1, 0), e2 = (0, 1) ∈ R2, then there is a canonical isomor-
phism θ0 : R

∼=
−→ det(R2) given by 1 7→ e1∧e2. Then recall that the usual Vaserstein

symbol can be described as Vθ0 ◦ M (up to the identification WE(R) ∼= Ṽ (R)).
Now let a be a unimodular row of length 3 over R with section b and V (a, b) the
associated matrix mentioned in Section 4A. By the formula above, it follows that
V−θ0(a) is given by [R4,−ψ4, V (a, b)]. But the matrix

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


lies in E4(R) and gives an isometry between ψ4 and −ψ4. Hence the generalized
Vaserstein symbol V−θ0 associated to the trivialization −θ0 coincides with the usual
Vaserstein symbol via the identification Ṽ (R)∼=WE(R) mentioned above.

4C. Criteria for surjectivity and injectivity of the generalized Vaserstein symbol.
The main purpose of this section is to find some criteria for the generalized Vaser-
stein symbol to be surjective onto Ṽ (R) or injective. We have already seen that
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these properties are independent of the choice of a trivialization of det(P0). So let
us fix such a trivialization θ0 : R

∼=
−→ det(P0).

Recall that a unimodular row of length n is an n-tuple a = (a1, . . . , an) of
elements in R such that there are elements b1, . . . , bn ∈ R with

∑n
i=1 ai bi = 1. We

denote by Umn(R) the set of unimodular rows of length n. For any n ≥ 3, there
are obvious maps Un : Umn−2(R)→ Um(Pn).

As a first step towards our criterion for the surjectivity of the generalized Vaser-
stein symbol (see Theorem 4.5 below), we prove the following statement:

Lemma 4.4. Any element of the form [P4, χ0⊥ψ2, χ] ∈ Ṽ (R) for a nondegenerate
alternating form χ on P4 is in the image of the generalized Vaserstein symbol.

Proof. First of all, we set a = χ( – , e4) : P0⊕ Re3→ R. Since χ is nondegenerate,
there is an element p ∈ P4 such that χ( – , p) : P4 → R is just −π4,4. In fact,
since χ(p, p)= 0, it immediately follows that p ∈ P3. But then a(p)= χ(p, e4)=

−χ(e4, p)= 1. Hence p defines a section s : R→ P3, 1 7→ p, of a : P0⊕ Re3→ R.
The generalized Vaserstein symbol of a may thus be computed by means of this

section: As in the definition of the generalized Vaserstein symbol, we obtain an
isomorphism i : P0⊕ R→ P(a)⊕ R and an alternating form χa on P(a)= ker(a)
induced by a and its section s. The generalized Vaserstein symbol of a is then
given by [P0⊕ R2, χ0 ⊥ ψ2, (i ⊕ 1)t(χa ⊥ ψ2)(i ⊕ 1)]. But one can check easily
that the form (i⊕1)t(χa ⊥ψ2)(i⊕1) locally coincides with χ by construction. By
Lemma 2.2, it thus also coincides with χ globally. Therefore we obtain the desired
equality V (a)= [P0⊕ R2, χ0 ⊥ ψ2, χ]. �

Using Lemma 4.4 and the technical lemmas proven in previous sections, we may
now prove the following criterion for the surjectivity of the generalized Vaserstein
symbol:

Theorem 4.5. Let N ∈ N. Assume that an element β of Ṽ (R) is of the form
[P2N+2, χ0 ⊥ ψ2N , χ] for some nondegenerate alternating form on P2N+2. More-
over, assume that π2n+1,2n+1(E∞(P0)∩Aut(P2n+1))= Um(P2n+1) for any n ∈ N

with 1 < n ≤ N. Then β lies in the image of the generalized Vaserstein symbol.
Thus, the generalized Vaserstein symbol V : Um(P0⊕ R)→ Ṽ (R) is surjective if
π2n+1,2n+1(E∞(P0)∩Aut(P2n+1))= Um(P2n+1) for all n ≥ 2.

Proof. By assumption, β ∈ Ṽ (R) has the form β = [P2N+2, χ0 ⊥ψ2N , χ] for some
nondegenerate alternating form on P2N+2. Furthermore, we may inductively apply
Lemma 2.10 (because of the second assumption) in order to deduce that there is
an elementary automorphism ϕ on P2N+2 such that ϕtχϕ = ψ ⊥ ψ2N−2 for some
nondegenerate alternating form ψ on P4. In particular, β = [P4, χ0 ⊥ ψ2, ψ] by
Corollary 3.2. Finally, any element of this form is in the image of the generalized
Vaserstein symbol by Lemma 4.4. So β is in the image of the generalized Vaserstein
symbol.
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For the last statement, note that any element of Ṽ (R) is of the form [R2n, ψ2n, χ]

for some nondegenerate alternating form on R2n (because of the isomorphism
Ṽ (R) ∼= WE(R)). We may then artificially add a trivial summand [P0, χ0, χ0];
hence any element of Ṽ (R) is of the form [P2n+2, χ0 ⊥ ψ2n, χ0 ⊥ χ ] for some
nondegenerate alternating form on R2n . We can then conclude by the previous
paragraph. �

Theorem 4.6. Let N ∈ N. Assume that the following conditions are satisfied:

• Every element of Ṽ (R) is of the form [R2N , ψ2N , χ] for some nondegenerate
alternating form on R2N .

• One has π2n+1,2n+1(E∞(P0)∩Aut(P2n+1))=Um(P2n+1) for any n ∈N with
1< n < N and U2N+1(Um2N−1(R))⊂ π2N+1,2N+1 E(P2N+1).

Then the generalized Vaserstein symbol V : Um(P0⊕ R)→ Ṽ (R) is surjective.

Proof. We proceed as in the proof of Theorem 4.5. By the first assumption,
any element of Ṽ (R) is of the form [R2N , ψ2N , χ] for some nondegenerate al-
ternating form on R2N . Again adding a trivial summand [P0, χ0, χ0], we see
that any element of Ṽ (R) is of the form [P2N+2, χ0 ⊥ ψ2N , χ0 ⊥ χ ] for some
nondegenerate alternating form on R2N . As in the proof of Theorem 4.5, it then
follows inductively from Lemma 2.10 that any element of Ṽ (R) is of the form
[P0 ⊕ R2, χ0 ⊥ ψ2, χ] for some nondegenerate alternating form χ on P0 ⊕ R2.
The generalized Vaserstein symbol is then surjective by Lemma 4.4. Note that
the condition π2N+1,2N+1 E(P2N+1)= Um(P2N+1) can be replaced by the weaker
condition U2N+1(Um2N−1(R))⊂ π2N+1,2N+1 E(P2N+1) in our situation. �

Corollary 4.7. Assume that the following conditions are satisfied:

• The usual Vaserstein symbol V : Um3(R)→WE(R) is surjective.

• U5(Um3(R))⊂ π5,5(E∞(P0)∩Aut(P5)).

Then the generalized Vaserstein symbol V : Um(P0⊕ R)→ Ṽ (R) is surjective.

Proof. The surjectivity of the usual Vaserstein symbol means that any element of
Ṽ (R) is of the form [R4, ψ4, χ] for some nondegenerate alternating form on R4.
Now the corollary follows from Theorem 4.6. �

In order to prove our criterion for the injectivity of the generalized Vaserstein
symbol, we introduce the following condition: We say that P0 satisfies condition
(∗) if [P0⊕R2, χ0⊥ψ2, χ1]= [P0⊕R2, χ0⊥ψ2, χ2] ∈ Ṽ (R) for alternating forms
χ1, χ2 on P0 ⊕ R2 implies αt(χ1 ⊥ ψ2n)α = χ2 ⊥ ψ2n for some automorphism
α ∈ E∞(P0)∩Aut(P2n+4).

If P0 is a free R-module, condition (∗) is satisfied, which basically follows
from the isomorphism V (R) ∼= W ′E(R). Furthermore, using the isomorphisms
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V (R)∼= Vfree(R)∼=W ′E(R), we see that it is possible to prove that condition (∗) is
always satisfied (see Lemma 4.9).

As a first step towards Lemma 4.9, we observe:

Lemma 4.8. Let χ be a nondegenerate alternating form on a finitely generated pro-
jective R-module P. Then there exists a finitely generated projective R-module P ′

with a nondegenerate alternating form χ ′ on P ′ and an isomorphism τ :R2n ∼=
−→P⊕P ′

such that τ t(χ ⊥ χ ′)τ = ψ2n .

Proof. Let Q be a finitely generated projective R-module such that P ⊕ Q is free.
Then, for Q1 = P∨⊕ Q⊕ Q∨, one has P⊕ Q1 ∼= R2m for some m ≥ 0. Moreover,
for φ1 = canχ−1

⊥ HQ , the form χ ⊥ φ1 is hence isometric to a form φ2 on R2m .
Now let φ3 be a form on R2s for some s ≥ 0 which represents the inverse of
φ2 in W ′E(R). Then φ2 ⊥ φ3 ⊥ ψ2t is isometric to ψ2m+2s+2t for some t ≥ 0.
We set P ′ = Q1 ⊕ R2s+2t and χ ′ = φ1 ⊥ φ3 ⊥ ψ2t . Then there is an isometry
τ : R2m+2s+2n

→ P ′ between ψ2m+2s+2t and χ ⊥ χ ′, as desired. �

Using Lemma 4.8, we may prove:

Lemma 4.9. Any P0 satisfies condition (∗).

Proof. We prove Lemma 4.10 below, which obviously implies Lemma 4.9 for
P = P0⊕ R2 and χ = χ0 ⊥ ψ2. �

Lemma 4.10. If [P, χ, χ1] = [P, χ, χ2] ∈ V (R) for nondegenerate alternating
forms χ , χ1 and χ2 on a finitely generated projective R-module P , then we have
an equality αt(χ1 ⊥ ψ2n)α = χ2 ⊥ ψ2n for some n ∈ N and some automorphism
α ∈ E(P ⊕ R2n).

Proof. The equality [P, χ, χ1] = [P, χ, χ2] means that [P, χ1, χ2] = 0. By
Lemma 4.8, it follows that there is a finitely generated projective R-module P1

with a nondegenerate alternating form χ ′ on P1 and, moreover, with an isomor-
phism τ : R2m ∼=

−→ P ⊕ P1 such that τ t(χ1 ⊥ χ
′)τ = ψ2m . In particular, one

has 0 = [P, χ1, χ2] = [R2m, ψ2m, τ
t(χ2 ⊥ χ

′)τ ] ∈ V (R). Therefore the class of
τ t(χ2 ⊥ χ

′)τ in W ′E(R) is trivial and there exist u ≥ 1 and ζ ∈ E(R2m+2u) such
that ζ t((τ t(χ2 ⊥ χ

′)τ ) ⊥ ψ2u)ζ = ψ2m+2u . Note that ζ lies in the commutator
subgroup of Aut(R2m+2u).

Again by Lemma 4.8, there exists a finitely generated projective R-module
P2 with a nondegenerate alternating form χ ′′ on P2 and with an isomorphism
β : R2v ∼=

−→ P1⊕ R2u
⊕ P2 such that β t(χ ′ ⊥ ψ2u ⊥ χ

′′)β = ψ2v.
But then the composite

ξ = (idP ⊕β
−1)(τ ⊕ idR2u ⊕ idP2)(ζ

−1
⊕ idP2)(τ

−1
⊕ idR2u ⊕ idP2)(idP ⊕β)

is an isometry from χ1 ⊥ ψ2v to χ2 ⊥ ψ2v and lies in the commutator subgroup of
Aut(P ⊕ R2v) because it is a conjugate of ζ−1

⊥ idP2 . In particular, it follows that
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ξ ⊥ idR2w ∈ E(P⊕ R2v+2w) for some w ≥ 0. Finally, if we then set α = ξ ⊥ idR2w

and n = v+w, the lemma is proven. �

Now that we have proven that condition (∗) is always satisfied, we can find con-
ditions which imply that two elements a, b ∈Um(P0⊕ R) with the same Vaserstein
symbol are equal up to a stably elementary automorphism of P0⊕ R:

Theorem 4.11. Assume that E(P2n)e2n= (E∞(P0)∩Aut(P2n))e2n for n≥ 2. Then
the equality V (a) = V (b) for a, b ∈ Um(P0 ⊕ R) implies that b = aϕ for some
ϕ ∈ E∞(P0)∩Aut(P3).

Proof. Let a and b be elements of Um(P0⊕ R) with respective sections s and t
and let i : P0⊕ R→ P(a)⊕ R and j : P0⊕ R→ P(a)⊕ R be the isomorphisms
induced by these sections. Furthermore, we let V (a, s)= (i ⊕ 1)t(χa ⊥ ψ2)(i ⊕ 1)
and V (b, t) = ( j ⊕ 1)t(χb ⊥ ψ2)( j ⊕ 1) be the nondegenerate alternating forms
on P0⊕ R2 appearing in the definition of the generalized Vaserstein symbols of
a and b, respectively. Now assume that V (a) = V (b). Since P0 satisfies condi-
tion (∗), there exist n ∈ N and an automorphism α ∈ E∞(P0)∩Aut(P2n+4) such
that αt(V (a, s) ⊥ ψ2n)α = V (b, t) ⊥ ψ2n . Using Lemma 2.9, we inductively
deduce that β t V (a, s)β = V (b, t) for some β ∈ E∞(P0) ∩Aut(P0 ⊕ R2). Now
by Lemma 2.8 and the second assumption in the theorem, there exists an automor-
phism γ ∈ E(P0⊕ R2)∩Sp(V (a, s)) such that βe4 = γ e4.

We now define δ : P0⊕ R→ P0⊕ R as the composite

P0⊕ Re3→ P0⊕ Re3⊕ Re4
γ−1β
−−−→ P0⊕ Re3⊕ Re4→ P0⊕ Re3.

One can then check that δ is an element of E∞(P0)∩Aut(P0⊕ R). Moreover, we
have

β t(γ−1)t V (a, s)γ−1β = V (b, t)

and in particular aδ = b, as desired. �

Corollary 4.12. Under the hypotheses of Theorem 4.11, furthermore assume that
a(E∞(P0) ∩ Aut(P0 ⊕ R)) = aE(P0 ⊕ R) for all a ∈ Um(P0 ⊕ R). Then the
generalized Vaserstein symbol V : Um(P0⊕ R)/E(P0⊕ R)→ Ṽ (R) is injective.

Proof. By Theorem 4.11, we have that V (a) = V (b) implies b = aϕ′ for some
ϕ′ ∈ E∞(P0)∩Aut(P0⊕ R). Now by the additional assumption, there also exists
an elementary automorphism ϕ of P0⊕ R such that b = aϕ. So the generalized
Vaserstein symbol is injective. �

Regarding the additional assumption in Corollary 4.12, it is possible to adapt
the arguments in the proof of [Vaserstein and Suslin 1976, Corollary 7.4] to show
that the desired equality a(E∞(P0)∩Aut(P0 ⊕ R)) = aE(P0 ⊕ R) holds for all
a ∈ Um(P0⊕ R) if E∞(P0)∩Aut(P0⊕ R2)= E(P4):
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Lemma 4.13. If E∞(P0) ∩ Aut(P0 ⊕ R2) = E(P4), then we have an equality
a(E∞(P0)∩Aut(P0⊕ R))= aE(P0⊕ R) for all a ∈ Um(P0⊕ R).

Proof. Let a ∈Um(P0⊕R) with section s and let ϕ ∈ E∞(P0)∩Aut(P0⊕R). If we
let V (a, s) be the alternating form from the definition of the generalized Vaserstein
symbol, then it follows from the proof of Lemma 4.4 that

(ϕ⊕ 1)t V (a, s)(ϕ⊕ 1)= V (a′, s ′)

for some a′ ∈ Um(P0 ⊕ R) with section s ′. By assumption, the automorphism
ϕ ⊕ 1 of P4 is an elementary automorphism. Moreover, by Corollary 2.4, the
group E(P4) is generated by elementary automorphisms ϕg = idP4 +g, where g is
a homomorphism Re3→ P0, P0→ Re3, Re3→ Re4 or Re4→ Re3. It therefore
suffices to show the following: If ϕt

gV (a, s)ϕg = V (a′, s ′) for some such g, then
a′ = aψ for some ψ ∈ E(P0⊕ R). The only nontrivial case is the last one, i.e., if
g is a homomorphism Re4→ Re3.

So let g : Re4 → Re3 and let ϕg be the induced elementary automorphism
of P4. As explained above, we assume that ϕt

gV (a, s)ϕg = V (a′, s ′) for some
epimorphism a′ : P0 ⊕ Re3 → R with section s ′. Write a = (a0, aR), where a0

and aR are the restrictions of a to P0 and Re3, respectively. Furthermore, let
p = πP0(s(1)). From now on, we interpret the alternating form χ0 in the definition
of the generalized Vaserstein symbol as an alternating isomorphism χ0 : P→ P∨.
Then one can check locally that

a′ = (a0− g(1) ·χ0(p), aR).

Let us define an elementary automorphism ψ as follows: We first define an
endomorphism of P0 by

ψ0 = idP0 −g(1) ·πP0 ◦ s ◦χ0(p) : P0→ P0

and we also define a morphism P0→ Re3 by

ψR =−g(1) ·πR ◦ s ◦χ0(p) : P0→ R.

Then we consider the endomorphism of P0⊕ R given by

ψ =

(
ψ0 0
ψR idR

)
.

First of all, this endomorphism coincides up to an elementary automorphism with(
ψ0 0
0 idR

)
.

Since χ0(p) ◦ πP0 ◦ s = 0, this endomorphism is an element of E(P0 ⊕ R) by
Lemma 2.6. Hence the same holds for ψ . Finally, one can check easily that aψ = a′

by construction. �
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As an immediate consequence, we can finally deduce our criterion for the injec-
tivity of the generalized Vaserstein symbol:

Theorem 4.14. Assume that E(P2n)e2n = (E∞(P0)∩Aut(P2n))e2n for all n ≥ 3
and that E∞(P0) ∩ Aut(P4) = E(P4). Then the generalized Vaserstein symbol
V : Um(P0⊕ R)/E(P0⊕ R)→ Ṽ (R) is injective.

Proof. Combine Corollary 4.12 and Lemma 4.13. �

4D. The bijectivity of the generalized Vaserstein symbol in dimension 2 and 3.
Let us now study the criteria for the surjectivity and injectivity of the generalized
Vaserstein symbol. In [Bass 1968] the conditions of Theorem 4.5 and Theorem 4.14
are studied in a very general framework. If R is a Noetherian ring of Krull di-
mension d, it follows from [Bass 1968, Chapter IV, Theorem 3.4] that actually
Unim.El.(Pn)= E(Pn)en for all n≥d+2 (or Um(Pn)=πn,n E(Pn) for all n≥d+2).
In particular, if dim(R)≤ 4, then the generalized Vaserstein symbol is injective as
soon as E∞(P0) ∩Aut(P4) = E(P4); if dim(R) ≤ 3, it is surjective. Hence the
following results are immediate consequences of our stability results in Section 2C:

Theorem 4.15. Assume R is either a regular Noetherian ring of dimension 2 or a
regular affine algebra of dimension 3 over a perfect field k with c.d.(k) ≤ 1 and
6∈k×. Then the generalized Vaserstein symbol V :Um(P0⊕R)/E(P0⊕R)→ Ṽ(R)
is a bijection.

Theorem 4.16. Let R be a 4-dimensional regular affine algebra over a perfect field
k satisfying the property P(5, 3) (see Section 2C). Then the generalized Vaserstein
symbol V : Um(P0⊕ R)/E(P0⊕ R)→ Ṽ (R) is injective.

Because of the pointed surjection Um(P0⊕R)/E(P0⊕R)→φ−1
2 ([P0⊕R]), the

bijectivity of the generalized Vaserstein symbol always gives rise to a surjection
WE(R)→φ−1

2 ([P0⊕R]); in this case, it seems that the group structure of WE(R)∼=
Um(P0⊕R)/E(P0⊕R) essentially governs the structure of the fiber φ−1

2 ([P0⊕R]).
The following application follows, to some degree, the pattern of the proof of

[Fasel et al. 2012, Theorem 7.5] and illustrates the previous paragraph:

Theorem 4.17. Let R be a ring and P0 be a projective R-module of rank 2 which
admits a trivialization θ0 of its determinant. Assume the following conditions are
satisfied:

(a) The generalized Vaserstein symbol V : Um(P0 ⊕ R)/E(P0 ⊕ R) → Ṽ (R)
induced by θ0 is a bijection.

(b) 2V (a0, aR)= V (a0, a2
R) for (a0, aR) ∈ Um(P0⊕ R).

(c) The group WE(R) is 2-divisible.

Then φ−1
2 ([P0⊕ R]) is trivial.
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Proof. Assume P ′ ⊕ R ∼= P0 ⊕ R. As we have seen in Section 2D, P ′ has an
associated element of Um(P0⊕R)/Aut(P0⊕R). We lift this element to an element
[b] of Um(P0⊕ R)/E(P0⊕ R), where [b] denotes the class of b ∈ Um(P0⊕ R).
Since the generalized Vaserstein symbol is a bijection and WE(R) is a 2-divisible
group by assumption, we get that [b] = 2[a], where [a] denotes the class of an
element a = (a0, aR) of Um(P0⊕ R) in the orbit space Um(P0⊕ R)/E(P0⊕ R).
But then the second assumption shows that 2[a] = [(a0, a2

R)]. It follows from
[Bhatwadekar 2003, Proposition 2.7] or [Suslin 1977a, Lemma 2] that any element
of Um(P0⊕ R) of the form (a0, a2

R) is completable to an automorphism of P0⊕ R,
i.e., πR = aϕ for some automorphism ϕ of P0⊕ R. Altogether, πR and b therefore
lie in the same orbit under the action of Aut(P0⊕ R), and hence P ′ ∼= P . Thus,
φ−1

2 ([P0⊕ R]) is trivial. �

As mentioned in the proof of Theorem 4.16, any element a ∈ Um(P0⊕ R) of
the form a = (a0, a2

R) is completable to an automorphism of P0⊕ R. This follows
directly from [Bhatwadekar 2003, Proposition 2.7] or [Suslin 1977a, Lemma 2],
because P0 has a trivial determinant. We now construct a more concrete completion
of a = (a0, a2

R). For this, let us first look at the case P0 ∼= R2. If (b, c, a2) is a
unimodular row and qb+ rc+ ap = 1, then it follows from [Krusemeyer 1976]
that the matrix −p− qr q2

−c+ 2aq
−r2

−p+ qr b+ 2ar
b c a2


is a completion of (b, c, a2) with determinant 1. We observe that(

−qr q2

−r2 qr

)
=

(
q
r

) (
−r q

)
and also (

−c
b

)
=

(
0 −1
1 0

)(
b
c

)
.

This shows how to generalize the construction of this explicit completion. We
denote by χ0 : P0→ P∨0 the alternating isomorphism from the definition of the
generalized Vaserstein symbol (we now interpret it as an alternating isomorphism
and not as a nondegenerate alternating form). If a = (a0, aR) is an element of
Um(P0⊕ R) with a section s uniquely given by the element s(1)= (q, p)∈ P0⊕ R,
we consider the following morphisms: We define an endomorphism of P0 by

ϕ0 =−(πP0s) ◦χ0(q)− p · idP0 : P0→ P0

and we also define a morphism R→ P0 by

ϕR : R→ P0, 1 7→ 2aR(1) · q +χ−1
0 (a0).
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Then we consider the endomorphism of ϕ : P0⊕ R given by(
ϕ0 ϕR

a0 a2
R

)
.

Essentially by construction, ϕ is a completion of (a0, a2
R):

Proposition 4.18. The endomorphism ϕ of P0⊕ R defined above is an automor-
phism of P0⊕ R of determinant 1 such that πRϕ = (a0, a2

R).

Proof. Choosing locally a free basis (ep1, ep2) of (P0)p at any prime p such that
(θ−1

0 )p(e
p
1 ∧ ep2)= 1, we can check locally that this endomorphism is an automor-

phism of determinant 1 (because locally it coincides with the completion given in
[Krusemeyer 1976]); by definition, we also have πRϕ = (a0, a2

R). Thus, ϕ has the
desired properties and generalizes Krusemeyer’s explicit completion. �
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A Dolbeault–Hilbert complex
for a variety with isolated singular points

John Lott

Given a compact Hermitian complex space with isolated singular points, we con-
struct a Dolbeault-type Hilbert complex whose cohomology is isomorphic to the
cohomology of the structure sheaf. We show that the corresponding K-homology
class coincides with the one constructed by Baum, Fulton and MacPherson.

1. Introduction

The program of doing index theory, or more generally elliptic theory, on singu-
lar varieties goes back at least to [Singer 1971, §4]. This program takes various
directions — for example, the relation between L2-cohomology and intersection
homology. In this paper we consider a somewhat different direction, which is
related to the arithmetic genus. This is motivated by work of Baum, Fulton and
MacPherson [Baum et al. 1975; 1979].

Let X be a projective complex algebraic variety and let S be a coherent sheaf
on X . In [Baum et al. 1979], the authors associated to S an element [S]BFM ∈K0(X)
of the topological K-homology of X . This class enters into their Riemann–Roch
theorem for singular varieties. In particular, under the map p : X → pt, the
image p∗[S]BFM ∈ K0(pt) ∼= Z is expressed in terms of sheaf cohomology by∑

i (−1)i dim(Hi (X;S)).
In view of the isomorphism between topological K-homology and analytic K-

homology [Baum and Douglas 1982; Baum et al. 2007], the class [S]BFM can be
represented by an “abstract elliptic operator” in the sense of [Atiyah 1970]. This
raised the question of how to find an explicit cycle in analytic K-homology, even if
X is singular, that represents [S]BFM. The most basic case is when S is the structure
sheaf OX . If X is smooth then the operator representing [OX ]BFM is ∂+ ∂∗. Hence
we are looking for the right analog of this operator when X may be singular.

A second related question is to find a Hilbert complex, in the sense of [Brüning
and Lesch 1992], whose cohomology is isomorphic to H?(X;OX ). We want the
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complex to be intrinsic to X . Also, if X is smooth then we want to recover the
∂-complex on (0, ?)-forms.

In this paper, we answer these questions when X has isolated singular points.
To see the nature of the problem, suppose that X is a complex curve, whose nor-
malization has genus g. In this case, the Riemann–Roch theorem says

dim(H0(X;OX ))− dim(H1(X;OX ))= 1− g−
∑

x∈Xsing

δx , (1.1)

where δx is a certain positive integer attached to the singular point x [Hartshorne
1977, p. 298]. To find the appropriate Hilbert complex, it is natural to start with
the Dolbeault complex �0,0

c (Xreg)
∂
−→�0,1

c (Xreg) of smooth compactly supported
forms on Xreg and look for a closed operator extension, where Xreg is endowed with
the induced Riemannian metric from its projective embedding. For the minimal
closure ∂s , one finds Index(∂s)= 1− g. Taking a different closure can only make
the index go up [Brüning et al. 1990], whereas in view of (1.1) we want the index
to go down. (Considering complete Riemannian metrics on Xreg does not help.)
However, on the level of indices, we can get the right answer by enhancing the
codomain by

⊕
x∈Xsing

Cδx .
Now let X be a compact Hermitian complex space of pure dimension n. For

technical reasons, we assume that the singular set Xsing consists of isolated singu-
larities. (In the bulk of the paper we allow coupling to a holomorphic vector bundle,
but in this introduction we only discuss the case when the vector bundle is trivial.)
Let ∂s be the minimal closed extension of the ∂-operator on Xreg = X − Xsing.
Its domain Dom(∂0,?

s ) can be localized to a complex of sheaves Dom(∂0,?
s ). Let

H0,?(∂s) denote the cohomology, a sum of skyscraper sheaves on X if ? > 0. We
write Os for H0,0(∂s), which is the sheaf of germs of weakly holomorphic functions
on X , the latter being in the sense of [Whitney 1972, Section 4.3]. Then Os/OX

is also a sum of skyscraper sheaves on X . Its vector space of global sections will
be written as (Os/OX )(X). Both H0,?(∂s) and Os/OX can be computed using a
resolution of X [Ruppenthal 2018, Corollary 1.2].

Define vector spaces T ∗ by

T 0
=Dom(∂0,0

s ),

T 1
=Dom(∂0,1

s )⊕ (Os/OX )(X), (1.2)

T ?
=Dom(∂0,?

s )⊕ (H0,?−1(∂s))(X), if 2≤ ?≤ n.

To define a differential on T ∗, let 40,?
s be the Laplacian associated to ∂s . Let

PKer(40,?
s ) be orthogonal projection onto the kernel of40,?

s . As elements of Ker(40,?
s )

are ∂s-closed, for each x ∈ Xsing there is a well-defined map Ker(40,?
s )→(H0,?(∂s))x

to the stalk of H0,?(∂s) at x . For ? > 0, putting these together for all x ∈ Xsing, and
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precomposing with PKer(40,?
s ), gives a linear map γ : Dom(∂0,?

s )→ (H0,?(∂s))(X).
For ?= 0, we similarly define γ :Dom(∂0,0

s )→ (Os/OX )(X). Define a differential
d : T ∗→ T ∗+1 by

d(ω)=(∂sω, γ (ω)), if ?= 0,

d(ω, a)=(∂sω, γ (ω)), if ? > 0.
(1.3)

Theorem 1.4. The cohomology of (T, d) is isomorphic to H∗(X;OX ).

Theorem 1.4 can be seen as an extension of [Ruppenthal 2018, Corollary 1.3],
which implies the result when X is normal and has rational singularities. To prove
Theorem 1.4, we construct a certain resolution of OX by fine sheaves. The coho-
mology of the complex (T̃ , d̃) of global sections is then isomorphic to H∗(X;OX ).
The complex (T̃ , d̃) is not quite the same as (T, d) but we show that they are
cochain-equivalent, from which the theorem follows.

The spectral triple (C(X), T, d + d∗) defines an element [OX ]an ∈ K0(X) of the
analytic K-homology of X .

Theorem 1.5. If X is a projective algebraic variety with isolated singularities then
[OX ]an = [OX ]BFM in K0(X).

There has been some interesting earlier work on the questions addressed in this
paper. Ancona and Gaveau [1994] gave a resolution of the structure sheaf of a
normal complex space X , assuming that the singular locus is smooth, in terms of
differential forms on a resolution of X . The construction depended on the choice
of resolution. Fox and Haskell [2000] discussed using a perturbed Dolbeault op-
erator on an ambient manifold to represent the K-homology class of the structure
sheaf. Andersson and Samuelsson [2012] gave a resolution of the structure sheaf
by certain currents on X that are smooth on Xreg. After this paper was written, Bei
and Piazza [2019] posted a preprint which also has a proof of Proposition 5.1.

The structure of the paper is the following. In Section 2, given a holomorphic
vector bundle V on X , we recall the definition of the minimal closure ∂V,s and show
that ∂V,s + ∂

∗

V,s gives an element of the analytic K-homology group K0(X), in the
unbounded formalism for the Kasparov KK-group KK(C(X);C). In Section 3 we
construct a resolution of the sheaf V by fine sheaves. Their global sections give a
Hilbert complex. In Section 4 we deform this to the complex (TV , dV ). Section 5
has the proof of Theorem 1.5. More detailed descriptions appear at the beginning
of the sections.

2. Minimal closure and compact resolvent

In this section we consider a holomorphic vector bundle V on a compact complex
space X with isolated singularities. We define the minimal closure ∂V,s . We show
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that the spectral triple (C(X), ∂V,s + ∂
∗

V,s, �
0,∗
L2 (Xreg; V )) gives a well-defined ele-

ment of the analytic K-homology group K0(X), in the unbounded formalism. The
main issue is to show that ∂V,s + ∂

∗

V,s has a compact resolvent. When V is trivial,
this was shown in [Øvrelid and Ruppenthal 2014].

Let X be a reduced compact complex space of pure dimension n. For each x ∈ X ,
there is a neighborhood U of x with an embedding of U into some domain U ′⊂CN ,
as the zero set of a finite number of holomorphic functions on U ′.

Let OX be the analytic structure sheaf of X . Let Xsing be the set of singular
points of X and put Xreg = X − Xsing.

We equip X with a Hermitian metric g on Xreg which satisfies the property that
for each x ∈ X , there are U and U ′ as above, along with a smooth Hermitian metric
G on U ′, so that g|Xreg∩U = G|Xreg∩U .

Let V be a finite dimensional holomorphic vector bundle on X or, equivalently,
a locally free sheaf V of OX -modules. For each x ∈ X , there are U and U ′ as
above so that V |U is the restriction of a trivial holomorphic bundle U ′×CN on U ′.
Let h be a Hermitian inner product on V |Xreg which satisfies the property that for
each x ∈ X , there are such U and U ′ so that h|Xreg∩U is the restriction of a smooth
Hermitian metric on U ′×CN .

Let ∂V,s be the minimal closed extension of the ∂V -operator on Xreg. That
is, the domain of ∂V,s is the set of ω ∈ �0,∗

L2 (Xreg; V ) so that there are a se-
quence of compactly supported smooth forms ωi ∈ �

0,∗(Xreg; V ) on Xreg and
some η ∈�0,∗+1

L2 (Xreg; V ) such that

lim
i→∞

ωi = ω in �0,∗
L2 (Xreg; V ),

lim
i→∞

∂V,sωi = η in �0,∗+1
L2 (Xreg; V ).

We then put ∂V,sω = η, which is uniquely defined.
Hereafter we assume that Xsing is finite.

Proposition 2.1. The spectral triple (C(X), ∂V,s + ∂
∗

V,s, �
0,∗
L2 (Xreg; V )) gives a

well-defined element of the analytic K-homology group K0(X).

Proof. Put DV = ∂V,s + ∂
∗

V,s , with dense domain Dom(∂V,s) ∩Dom(∂∗V,s). Put
D = ∂s + ∂

∗
s , the case when V is the trivial complex line bundle. Put

A= { f ∈ C(X) : f (Dom(DV ))⊂ Dom(DV ) and [DV , f ] is bounded}. (2.2)

Using the local trivializations of V , it follows that

A= { f ∈ C(X) : f (Dom(D))⊂ Dom(D) and [D, f ] is bounded}. (2.3)

To satisfy the definitions of unbounded analytic K-homology [Baaj and Julg 1983;
Forsyth et al. 2014; Kaad 2019], we first need to show that A is dense in C(X).
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Given F ∈ C(X) and ε > 0, we can construct f ∈ C(X) such that

• for each x j ∈ Xsing, there is a neighborhood U j ⊂ X of x j on which f is
constant, with f (x j )= F(x j );

• f is smooth on Xreg;

• supx∈X | f (x)− F(x)|< ε.

Then f (Dom(D)) ⊂ Dom(D) and ‖[D, f ]‖ ≤ const. ‖∇h f ‖∞ <∞. It follows
that A is dense in C(X).

To prove the proposition, it now suffices to prove the following lemma.

Lemma 2.4. The operator (DV + i)−1 is compact.

Proof. If V is trivial then the lemma is true [Øvrelid and Ruppenthal 2014]. We
use a parametrix construction to prove it for general V .

Let us first prove the lemma for a special inner product h′ on V . We write
Xsing = {x j }

r
j=1. For each j , let U j be a neighborhood of x j on which V is

trivialized as above, with U j ∩Uk =∅ for j 6= k. Choose open sets with smooth
boundary x j ∈ Z j ⊂ Y j ⊂ W j ⊂ U j , with Z j ⊂ Y j , Y j ⊂ W j and W j ⊂ U j . Let
φ j ∈ C(X) be identically 1 on Y j , with support in W j , and smooth on U j −Y j . Let
η j ∈ C(X) be identically 1 on W j , with support in U j , and smooth on U j − Y j , so
that η j is 1 on the support of φ j .

Define an inner product h′ on V by first taking it to be a trivial inner product
on each U j , in terms of our given trivializations, and then extending it smoothly to
the rest of Xreg. Let V j be the extension of the trivialization U j ×CN to a product
bundle on X ×CN on X , as a smooth vector bundle with trivial inner product. Let
DV j = D⊗ IN be the corresponding operator. As (D+i)−1 is compact [Øvrelid and
Ruppenthal 2014], the same is true for DV j . Let DAPS be the operator ∂V + ∂

∗

V on
X −

⋃
j Z j , with Atiyah–Patodi–Singer boundary conditions [Atiyah et al. 1973].

(The paper [Atiyah et al. 1973] assumes a product structure near the boundary, but
this is not necessary.) Then (DAPS+ i)−1 is compact. Put φ0 = 1−

∑
j φ j , with

support in X −
⋃

j Z j . Pick η0 ∈ C(X) with support in X −
⋃

j Z j , and smooth
on Xreg, such that η0 is one on the support of φ0.

For ω ∈�0,∗
L2 (Xreg; V ), put

Qω = η0(DAPS+ i)−1(φ0ω)+
∑

j

η j (DV j + i)−1(φ jω). (2.5)

Then Q is compact and

(DV+i)Qω
= ω+[D, η0](DAPS+i)−1(φ0ω)+

∑
j

[D, η j ](DV j+i)−1(φ jω), (2.6)
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so

(DV+i)−1

= Q−(DV+i)−1
(
[D, η0](DAPS+i)−1φ0+

∑
j

[D, η j ](DV j+i)−1φ j

)
. (2.7)

As [D, η0], [D, η j ] and (DV + i)−1 are bounded, it follows that (DV + i)−1 is
compact.

As (DV + i)−1 (for the inner product h′) is compact, the spectral theorem for
compact operators and the functional calculus imply that (I + D2

V )
−1 is compact.

Writing 4V,s = D2
V , there is then a Hodge decomposition

�
0,∗
L2 (Xreg; V )= Ker(40,?

V,s)⊕ Im(∂V,s)⊕ Im(∂∗V,s), (2.8)

where the right-hand side is a sum of orthogonal closed subspaces. In particular,

(1) Im(∂V,s) is closed,

(2) Ker(∂V,s)/ Im(∂V,s) is finite dimensional and

(3) the map ∂V,s : �
0,∗
L2 (Xreg; V )/Ker(∂V,s)→ Im(∂V,s) is invertible and the in-

verse is compact, i.e., sends bounded sets to precompact sets.

(The inverse map Im(∂V,s)→�
0,∗
L2 (Xreg; V )/Ker(∂V,s)∼= Im(∂∗V,s) is DG, where

G is the Green’s operator for 4V,s .) As the L2-inner products on �0,∗
L2 (Xreg; V )

coming from h′ and h are relatively bounded, the above three properties also hold
for h. It follows that there is a Hodge decomposition relative to the inner product h,
and (I + D2

V )
−1 is compact. Hence (DV + i)−1 is compact.

This completes the proof of the lemma, and hence the proposition. �

3. Resolution

In this section we construct a certain resolution of the sheaf of holomorphic sections
of a holomorphic vector bundle V on X . To begin, we define a sheaf Dom(∂0,?

V,s)

on X , following [Ruppenthal 2018, Section 2.1].
Given an open set U ⊂ X and a compact subset K ⊂ U , we write Ureg for

U ∩ Xreg and Kreg for K ∩ Xreg.
Let V be a finite dimensional holomorphic vector bundle on X equipped with a

Hermitian metric, in the sense of Section 2. There is a sheaf �0,?
V,L2

loc
on X whose

sections over an open set U ⊂ X are the locally square integrable V -valued forms
of degree (0, ?) on Ureg, i.e., they are square integrable on Kreg for any compact set
K ⊂U . Convergence means L2-convergence on each such Kreg. By definition, the
sections of Dom(∂0,?

V,s) over U are the elements ω ∈�0,?
L2

loc
(Ureg; V ) so that there are

• a sequence fi ∈�
0,?
C∞c
(Ureg; V ) and

• some η ∈�0,?+1
L2

loc
(Ureg; V )
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such that for any compact K ⊂U , we have

• limi→∞ fi = ω in �0,?
L2 (Kreg; V ) and

• limi→∞ ∂V fi = η in �0,?+1
L2 (Kreg; V ).

Then we put ∂Vω = η.
This gives a complex of fine sheaves

. . .
∂V
−→ Dom(∂0,?−1

V,s )
∂V
−→ Dom(∂0,?

V,s)
∂V
−→ Dom(∂0,?+1

V,s )
∂V
−→ · · · . (3.1)

The cohomology of the complex is the sheaf H0,?(∂V,s). For ?> 0, it is a direct sum
of skyscraper sheaves, with support in Xsing. We write V s for H0,0(∂V,s), i.e., the
kernel of ∂V acting on Dom(∂0,0

V,s). Then V s/V is also a direct sum of skyscraper
sheaves with support in Xsing.

Although we do not need it here, there is a description of these skyscraper
sheaves in terms of a resolution of X . Suppose that π : M → X is a resolu-
tion. From [Ruppenthal 2018, Corollary 1.2], if x ∈ X then we can identify the
stalk (H0,q(∂V,s))x with Vx ⊗ (Rqπ∗OM)x . In particular, we can identify V s with
V ⊗OX π∗OM or, more intrinsically, with the sheaf of weakly holomorphic sections
of V , i.e., bounded holomorphic sections of V |Xreg .

There is a quotient morphism of sheaves:

q : Ker(∂0,?
V,s)→ H0,?(∂V,s).

As H0,?(∂V,s) is an injective sheaf for ? > 0, we can extend q to a morphism
α :Dom(∂0,?

V,s)→H0,?(∂V,s). More specifically, if x is a singular point then the stalk
(H0,?(∂V,s))x is a finite dimensional complex vector space, so we are extending the
quotient map qx : (Ker(∂0,?

V,s))x → (H0,?(∂V,s))x from the germs of ∂V -closed V -
valued forms at x , to the germs of forms in the domain of ∂V,s .

Considering H0,?(∂V,s) to be a complex of sheaves with zero differential, α is
a morphism of complexes that is an isomorphism on cohomology in degree ? > 0
by construction. Let cone(αV ) be the mapping cone of αV , with cone0,?(αV ) =

Dom(∂0,?
V,s) ⊕ H0,?−1(∂V,s) and differential dcone(ω, h) = (∂Vω, αV (ω)). It has

vanishing cohomology in degree ? > 1. Define a complex of sheaves C0,?
V by

C0,?
V =


Dom(∂0,0

V,s), ?= 0,

Dom(∂0,1
V,s), ?= 1,

Dom(∂0,?
V,s)⊕H0,?−1(∂V,s), ? > 1,

(3.2)

where the differential in degree ? = 0 is ∂V , the differential in degree ? = 1 is
(∂V , αV ), and the differential in degrees ? > 1 is dcone. Then CV is a resolution of
V s by fine sheaves.
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There is a short exact sequence of sheaves

0→ V → V s→ V s/V → 0. (3.3)

We can think of V s/V as a resolution of itself, when concentrated in degree zero.
Together with the resolution of V s from (3.2), we can construct a resolution of
V as follows. As V s/V is a finite sum of skyscraper sheaves, we can extend the
quotient map V s → V s/V to a morphism βV : Dom(∂0,0

V,s)→ V s/V . Define a
complex of sheaves C̃V by

C̃ 0,?
V =


Dom(∂0,0

V,s), ?= 0,

Dom(∂0,1
V,s)⊕ V s/V , ?= 1,

Dom(∂0,?
V,s)⊕H0,?−1(∂V,s), ? > 1,

(3.4)

where the differential in degree ?= 0 is (∂V , βV ), the differential in degree ?= 1
sends (ω, v) to (∂Vω, αV (ω)), and the differential in degrees ? > 1 is dcone. Then
C̃V is a resolution of V by fine sheaves; see [Iversen 1986, proof of Proposi-
tion I.6.10].

Taking global sections of C̃ 0,?
V gives a cochain complex (T̃V , d̃V ):

0→ Dom(∂0,0
V,s)→ Dom(∂0,1

V,s)⊕ (V s/V )(X)

→ Dom(∂0,2
V,s)⊕ (H

0,1(∂V,s))(X)→ · · ·

→ Dom(∂0,n
V,s)⊕ (H

0,n−1(∂V,s))(X)→ 0. (3.5)

For the last term, we use the fact that in terms of a resolution π : M→ X , we have
(H0,n(∂V,s))x = Vx ⊗ (Rnπ∗OM)x = 0.

Proposition 3.6. The cohomology of (T̃V , d̃V ) is isomorphic to H∗(X; V ).

Proof. This holds because C̃V is a resolution of V by fine sheaves. �

Put arbitrary inner products on the finite dimensional vector spaces (V s/V )(X)
and (H0,∗(∂V,s))(X).

4. Hilbert complex

The differential d̃V in the Hilbert complex (T̃V , d̃V ) of the previous section involved
somewhat arbitrary choices of αV and βV . In this section we replace (T̃V , d̃V ) by
a more canonical Hilbert complex (TV , dV ).

For brevity of notation, we put

A∗V =
{
(V s/V )(X), ?= 0,
(H0,?(∂V,s))(X), ? > 0.

(4.1)
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Then the complex T̃V has entries T̃ 0,?
V =Dom(∂0,?

V,s)⊕A?−1
V . Combining αV and βV ,

we have constructed a linear map γV : Dom(∂0,?
V,s)→ A?V so that the differential of

T̃V is given by
d̃V (ω, a)= (∂Vω, γV (ω)). (4.2)

Note that γV ◦ ∂V,s = 0.
Let PKer(40,?

V,s)
be orthogonal projection onto Ker(40,?

V,s)⊂�
0,?
L2 (Xreg; V ). Define

a new differential dV on T̃V by

dV (ω, a)= (∂Vω, γV (PKer(40,?
V,s)
ω)). (4.3)

Call the resulting cochain complex (TV , dV ).
As in (2.8), there is a Hodge decomposition

Dom(∂0,?
V,s)= Ker(40,?

V,s)⊕ Im(∂V,s)⊕ Im(∂∗V,s). (4.4)

Here the terms on the right-hand side of (4.4) are the intersections of Dom(∂0,?
V,s)

with the corresponding terms in (2.8). In particular, Ker(40,?
V,s) and Im(∂V,s) are

the same, while the elements of Im(∂∗V,s) now lie in an H 1-space. Put

IV = ∂V,s |Im(∂∗V,s)
: Im(∂∗V,s)→ Im(∂V,s), (4.5)

an isomorphism.
Define a linear map mV : Dom(∂0,?

V,s)⊕ A?−1
V → Dom(∂0,?

V,s)⊕ A?−1
V by saying

that if

(h, ω1, ω2, a) ∈ Ker(40,?
V,s)⊕ Im(∂V,s)⊕ Im(∂∗V,s)⊕ A?−1

V , (4.6)
then

mV (h, ω1, ω2, a)= (h, ω1, ω2, a+ γV (I−1(ω1))). (4.7)

Its inverse is given by

m−1
V (h, ω1, ω2, a)= (h, ω1, ω2, a− γV (I−1(ω1))). (4.8)

Proposition 4.9. The linear maps mV and m−1
V are chain maps between (TV , dV )

and (TV , d̃V ), i.e., mV ◦ dV = d̃V ◦mV and m−1
V ◦ d̃V = dV ◦m−1

V .

Proof. We check that mV ◦ dV = d̃V ◦mV ; the proof that m−1
V ◦ d̃V = dV ◦m−1

V is
similar. Given (h, ω1, ω2, a) as in (4.6), we have

dV (h, ω1, ω2, a)= (0, ∂Vω2, 0, γV (h)),

mV (dV (h, ω1, ω2, a))= (0, ∂Vω2, 0, γV (h)+ γV (ω2)),

mV (h, ω1, ω2, a)= (h, ω1, ω2, a+ γV (I−1(ω1))),

d̃V (mV (h, ω1, ω2, a))= (0, ∂Vω2, 0, γV (h)+ γV (ω2)).

(4.10)

This proves the proposition. �

Theorem 4.11. The cohomology of (TV , dV ) is isomorphic to H∗(X; V ).
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Proof. This follows from Propositions 3.6 and 4.9. �

We can now reprove a result from [Fulton 1998, Example 18.3.3 on p. 362].

Proposition 4.12. In terms of a resolution π : M→ X , we have
n∑

i=0

(−1)i dim(Hi (X;OX ))=

∫
M

Td(TM)− dim((π∗OM/OX )(X))

+

n∑
i=1

(−1)i−1 dim((Riπ∗OM)(X)). (4.13)

Proof. Let (T1, d1) denote the complex (TV , dV ) when the vector bundle V is
the trivial bundle. From Theorem 4.11, the left-hand side of (4.13) is the index
of d1 + d∗1 . We can deform the chain complex (T1, d1) to make the differential
equal to ∂s ⊕ 0 without changing the index. The new index is

n∑
i=0

(−1)i dim(Hi (∂s))

− dim((Os/OX )(X))+
n−1∑
i=1

(−1)i−1 dim((H0,i (∂s))(X)). (4.14)

From [Pardon and Stern 1991], we have Hi (∂s)∼= H0,i (M), so
n∑

i=0

(−1)i dim(Hi (∂s))=

n∑
i=0

(−1)i dim(H0,i (M))=
∫

M
Td(TM). (4.15)

From [Ruppenthal 2018, Corollary 1.2], Os ∼= π∗OM and H0,i (∂s)∼= Riπ∗OM . The
proposition follows. �

Remark 4.16. We can write
∫

M Td(TM)=
∫

X π∗ Td(TM), where we are integrat-
ing a top-degree form on Xreg. It is not so clear what the relevant theory of charac-
teristic classes on X should be, for which this would be an example. We have in
mind a Chern–Weil theory on Xreg with control on how the forms behave near Xsing.
We note that there is a rational homology class π∗(PD[Td(TM)]) on X , where
PD[Td(TM)] ∈Heven(M;Q) is the Poincaré dual of [Td(TM)] ∈Heven(M;Q), and
if X is connected then

∫
M Td(TM) can be identified with the degree-zero compo-

nent of π∗(PD[Td(TM)]).

5. K-homology class

In this section we prove Theorem 1.5. We first show that if π : M→ X is a resolu-
tion of singularities, with a simple normal crossing divisor, then the K-homology
class [∂s+∂

∗
s ] ∈K0(X) from Proposition 2.1, with V trivial, equals the pushforward

π∗[∂M + ∂
∗

M ]. We then prove Theorem 1.5.

Proposition 5.1. Let π : M→ X be a resolution of singularities, with π−1(Xsing)

being a simple normal crossing divisor. Then [∂s + ∂
∗
s ] = π∗[∂M + ∂

∗

M ].
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Proof. The method of proof comes from [Haskell 1987]. Consider the following
part of the K-homology exact sequence for the pair (X, Xsing):

K0(Xsing)
α
−→ K0(X)

β
−→ K0(X, Xsing). (5.2)

Lemma 5.3. We have β([∂s + ∂
∗
s ])= β(π∗[∂M + ∂

∗

M ]) in K0(X, Xsing).

Proof. Put D = π−1(Xsing)⊂ M . Since it has simple normal crossings, there is a
small regular neighborhood of D whose closure C ′ is homotopy equivalent to D.
We can also assume that C = π(C ′) is homotopy equivalent to Xsing [Milnor 1968,
Theorem 2.10]. As [∂M + ∂

∗

M ] is independent of the choice of Hermitian metric
on M , we can choose a Hermitian metric on M so that π restricts to an isometry
from M −C ′ to X −C .

Consider the commutative diagram

K0(M) //

π∗
��

K0(M, D)
∼=
//

��

K0(M,C ′)
∼=
//

��

KK(C0(M −C ′);C)

��

K0(X)
β
// K0(X, Xsing)

∼=
// K0(X,C)

∼=
// KK(C0(X −C);C)

(5.4)

Starting with [∂M + ∂
∗

M ] ∈ K0(M) and going along the top row, its image in
KK(C0(M −C ′);C) is the restriction of the analytic K-homology class, i.e., one
only acts by functions that vanish on C ′. The right vertical arrow of the diagram
is an isomorphism coming from the bijection between M − C ′ and X − C . By
the commutativity of the diagram, we now know what β(π∗[∂M + ∂

∗

M ]) is as an
element of KK(C0(X −C);C). However, this is isomorphic to the restriction of
[∂s + ∂

∗
s ] ∈K0(X) to an element of KK(C0(X −C);C) (since π gives an isometry

between M −C ′ and X −C). The latter restriction is the same as β([∂s + ∂
∗
s ]).

This proves the lemma. �

Returning to the proof of Proposition 5.1, we know now that [∂s+∂
∗
s ]−π∗[∂M+∂

∗

M]

lies in the kernel of β, and so lies in the image of α. For the purpose of the proof,
we can assume that X is connected. Let a : pt→ X be an arbitrary fixed embedding
and let a∗ :K0(pt)→K0(X) be the induced homomorphism. The connectedness of
X implies that Im(α)= Im(a∗). Let b : X→ pt be the unique point map. Consider
pt a
−→ X b

−→ pt and the induced homomorphisms K0(pt) a∗
−→ K0(X)

b∗
−→ K0(pt).

Then the map b∗ restricts to an isomorphism between Im(a∗) and K0(pt). Hence,
to prove the proposition, it suffices to show that b∗[∂s + ∂

∗
s ] = b∗(π∗[∂M + ∂

∗

M ])

in K0(pt)∼= Z.
Now b∗[∂s + ∂

∗
s ] is the index of ∂s + ∂

∗
s , i.e.,

∑n
i=0(−1)i dim(Hi (∂s)), while

b∗(π∗[∂M + ∂
∗

M ]) is the index of ∂M + ∂
∗

M , i.e.,
∑n

i=0(−1)i dim(Hi (∂M)). From
[Pardon and Stern 1991], these are equal term-by-term. This proves the proposi-
tion. �
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Proof of Theorem 1.5. Suppose that X is a connected projective algebraic variety.
In terms of the resolution π : M → X , it was pointed out in [Baum et al. 1975,
p. 104] that there is an identity in K0(X):

[OX ]BFM−π∗[OM ]BFM =
∑

j

n j [OV j ]BFM. (5.5)

Here the n j are certain integers and the V j are irreducible subvarieties of the sin-
gular locus of X . In our case of isolated singularities, the V j are just the points x j

in Xsing. As [OM ]BFM = [∂M + ∂
∗

M ], Proposition 5.1 implies that

[OX ]BFM = [∂s + ∂
∗

s ] +
∑

j

n j [OV j ]BFM. (5.6)

Let (T1, d1) denote the complex (TV , dV ) when the vector bundle V is the trivial
bundle. Let [OX ]an ∈ K0(X) be the K-homology class coming from the operator
d1+ d∗1 . We can deform the chain complex (T1, d1) to make the differential equal
to ∂s ⊕ 0 without changing the K-homology class arising from the complex. Then
(5.6) implies that [OX ]an and [OX ]BFM have the same image in K0(X, Xsing); cf.
the proof of Lemma 5.3. Let b : X → pt be the unique point map. As in the
proof of Proposition 5.1, to conclude that [OX ]an = [OX ]BFM in K0(X), it now
suffices to show that b∗[OX ]an = b∗[OX ]BFM in K0(pt) ∼= Z. Now b∗[OX ]an is
the index of d1 + d∗1 which, from Theorem 4.11, equals the arithmetic genus∑n

i=0(−1)i dim(Hi (X;OX )). On the other hand, from [Baum et al. 1979, Sec-
tion 3], we also have b∗[OX ]BFM =

∑n
i=0(−1)i dim(Hi (X;OX )). This proves the

theorem. �

Remark 5.7. We mention some of the issues involved in extending the present
paper to nonisolated singularities. First, it seems to be open whether ∂s + ∂

∗
s

has compact resolvent, so the unbounded KK-formalism may not be applicable.
However, it is known that the unreduced cohomology of the ∂s-complex is finite
dimensional, being isomorphic to the cohomology of a resolution [Pardon and Stern
1991]. Hence the ∂s-complex is Fredholm and one could use the bounded KK-
description of K-homology, although it would be more cumbersome.

We expect that Proposition 5.1 still holds if X has nonisolated singularities. It is
known that taking resolutions π : M→ X , the pushforward π∗[∂M + ∂

∗

M ] ∈K0(X)
is independent of the choice of resolution [Hilsum 2018].

One could ask for an extension of Theorem 4.11 to the case of nonisolated singu-
larities. As an indication, one would expect that taking products of complex spaces
would lead to tensor products of the cochain complexes. In particular, suppose that
Z is a smooth Hermitian manifold and X has isolated singular points. Then the
cochain complex for Z × X would have contributions from differential forms along
the singular locus.
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In a related vein, in principle one can apply (5.5) inductively to get an expression
for [OX ]BFM.
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