

# ANNALS OF K-THEORY

vol. 5 no. 1 2020

**Hausdorffified algebraic  $K_1$ -groups and  
invariants for  $C^*$ -algebras with the ideal property**

Guihua Gong, Chunlan Jiang and Liangqing Li



A JOURNAL OF THE K-THEORY FOUNDATION



# Hausdorffified algebraic $K_1$ -groups and invariants for $C^*$ -algebras with the ideal property

Guihua Gong, Chunlan Jiang and Liangqing Li

*Dedicated to the memory of Professor Ronald G. Douglas*

A  $C^*$ -algebra  $A$  is said to have the ideal property if each closed two-sided ideal of  $A$  is generated as a closed two-sided ideal by the projections inside the ideal.  $C^*$ -algebras with the ideal property are a generalization and unification of real rank zero  $C^*$ -algebras and unital simple  $C^*$ -algebras. It was long expected that an invariant that we call  $\text{Inv}^0(A)$ , consisting of the scaled ordered total  $K$ -group  $(\underline{K}(A); \underline{K}(A)^+; \Sigma A)_\Lambda$  (used in the real rank zero case), along with the tracial state spaces  $T(pAp)$  for each cut-down algebra  $pAp$ , as part of the Elliott invariant of  $pAp$  (for each  $[p] \in \Sigma A$ ), with certain compatibility conditions, is the complete invariant for a certain well behaved class of  $C^*$ -algebras with the ideal property (e.g.,  $AH$  algebras with no dimension growth). In this paper, we construct two nonisomorphic  $A\mathbb{T}$  algebras  $A$  and  $B$  with the ideal property such that  $\text{Inv}^0(A) \cong \text{Inv}^0(B)$ , disproving this conjecture. The invariant to distinguish the two algebras is the collection of Hausdorffified algebraic  $K_1$ -groups  $U(pAp)/\overline{DU(pAp)}$  (for each  $[p] \in \Sigma A$ ), along with certain compatibility conditions. We will prove in a separate article that, after adding this new ingredient, the invariant becomes the complete invariant for  $AH$  algebras (of no dimension growth) with the ideal property.

## 1. Introduction

A  $C^*$ -algebra  $A$  is called an  $AH$  algebra [Blackadar 1993] if it is the inductive limit  $C^*$ -algebra of

$$A_1 \xrightarrow{\phi_{1,2}} A_2 \xrightarrow{\phi_{2,3}} A_3 \longrightarrow \cdots \longrightarrow A_n \longrightarrow \cdots$$

with  $A = \lim_{n \rightarrow \infty} (A_n = \bigoplus_{i=1}^{t_n} P_{n,i} M_{[n,i]}(C(X_{n,i})) P_{n,i}, \phi_{n,m})$ , where  $X_{n,i}$  are compact metric spaces,  $t_n$  and  $[n, i]$  are positive integers, and  $P_{n,i} \in M_{[n,i]}(C(X_{n,i}))$  are projections. An  $AH$  algebra is called of no dimension growth, if one can choose the spaces  $X_{n,i}$  such that  $\sup_{n,i} \dim(X_{n,i}) < +\infty$ . If all the spaces  $X_{n,i}$  can be

The research of the first two authors is supported by NSFC grant 11771117.

*MSC2010:* 19K14, 19K35, 46L35, 46L80.

*Keywords:*  $C^*$ -algebra,  $AH$  algebras, ideal property, Elliott invariant, Hausdorffified algebraic  $K_1$ -group.

chosen to be the single point space  $\{\text{pt}\}$ , then  $A$  is called an  $AF$  algebra. If all the spaces can be chosen to be the interval  $[0, 1]$  or circle  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , then  $A$  is called an  $AI$  algebra or  $A\mathbb{T}$  algebra, respectively.

G. Elliott [1993b] initiated the classification program by classifying all real rank zero  $A\mathbb{T}$  algebras (without the condition of simplicity), and he conjectured that the scaled ordered  $K_*$ -group  $(K_*(A); K_*(A)^+; \Sigma A)$ , where  $K_*(A) = K_0(A) \oplus K_1(A)$ , is a complete invariant for separable nuclear  $C^*$ -algebras of real rank zero and stable rank one. Elliott [1993a] also successfully classified all unital simple  $AI$  algebras by the so called Elliott invariant

$$\text{Ell}(A) = (K_0(A); K_0(A)^+; \Sigma A, K_1(A); T(A); \rho_A),$$

where  $T(A)$  is the space of all unital traces on  $A$ , and  $\rho_A$  is the nature map from  $K_0(A)$  to  $\text{AffT}(A)$  (the ordered Banach space of all affine maps from  $T(A)$  to  $\mathbb{R}$ ).

Later, Gong [1998] constructed two nonisomorphic (not simple) real rank zero  $AH$  algebras (with 2-dimensional local spectra)  $A$  and  $B$  such that

$$(K_*(A); K_*(A)^+; \Sigma A) \cong (K_*(B); K_*(B)^+; \Sigma B),$$

which disproved the conjecture of Elliott for  $C^*$ -algebras of real rank zero and stable rank one. This result led to a sequence of research by Dadarlat and Loring [1996a; 1996b] and Eilers [1996] culminating with Dadarlat and Gong's [1997] complete classification of real rank zero  $AH$  algebras by scaled ordered total  $K$ -theory  $(\underline{K}(A); \underline{K}(A)^+; \Sigma A)_\Lambda$ , where  $\underline{K}(A) = K_*(A) \oplus \bigoplus_{p=2}^\infty K_*(A, \mathbb{Z}/p\mathbb{Z})$  and  $\Lambda$  is the system of Bockstein operations; see also [Dadarlat 1995a; 1995b; Elliott and Gong 1996a; 1996b; Elliott et al. 1996; 1998; Gong 1997; 1998; Gong and Lin 2000; Lin 1996; 2001]. Elliott, Gong, and Li [Elliott et al. 2007] completely classified simple  $AH$  algebras of no dimension growth by Elliott invariant; see also [Elliott 1997; Elliott et al. 2005; 1997; Gong 2002; Li 1997; 1999; Lin 2007; Nielsen and Thomsen 1996; Thomsen 1994; 1997]. A natural generalization and unification of real rank zero  $C^*$ -algebras and unital simple  $C^*$ -algebras is the class of  $C^*$ -algebras with the ideal property: each closed two-sided ideal of the  $C^*$ -algebra is generated as a closed two-sided ideal by the projections inside the ideal. It was long expected that a combination of scaled ordered total  $K$ -theory (used in the classification of real rank zero  $C^*$ -algebras) and the Elliott invariant (used in the classification of simple  $C^*$ -algebras), including tracial state spaces  $T(pAp)$ —part of the Elliott invariant of cut-down algebras  $\{pAp\}_{[p] \in \Sigma A}$  with certain compatibility conditions, called  $\text{Inv}^0(A)$  (see [Jiang 2011, 2.18]), is a complete invariant for certain well behaved  $C^*$ -algebras (e.g.,  $AH$  algebras of no dimension growth or  $\mathcal{Z}$ -stable  $C^*$ -algebras, where  $\mathcal{Z}$  is the Jiang–Su algebra of [Jiang and Su 1999]) with the ideal property; see [Stevens 1998; Pasnicu 2000; Ji and Jiang 2011; Jiang and Wang 2012; Jiang 2011].

The main purpose of this paper is to construct two unital  $\mathcal{Z}$ -stable  $A\mathbb{T}$  algebras  $A$  and  $B$  with the ideal property such that  $\text{Inv}^0(A) \cong \text{Inv}^0(B)$ , but  $A \not\cong B$ . The invariant to distinguish these two  $C^*$ -algebras is the Hausdorffified algebraic  $K_1$ -groups  $U(pAp)/DU(pAp)$  of the cut-down algebra  $pAp$  (for each element  $x \in \Sigma A$ , we chose one projection  $p \in A$  such that  $[p] = x$ ) along with a certain compatibility condition, where  $DU(A)$  is the group generated by commutators  $\{uvu^*v^* : u, v \in U(A)\}$ . In this paper, we introduce the invariant  $\text{Inv}'(A)$  and its simplified version  $\text{Inv}(A)$ , by adding these new ingredients — the Hausdorffified algebraic  $K_1$ -groups of cut-down algebras along with certain compatibility conditions — to  $\text{Inv}^0(A)$ .

In [Gong et al. 2016], we will prove that  $\text{Inv}(A)$  is a complete invariant for  $AH$  algebras (of no dimension growth) with the ideal property.

Note that for the above  $C^*$ -algebras  $A$  and  $B$ , we have that  $Cu(A) \cong Cu(B)$  and  $Cu(A \otimes C(S^1)) \cong Cu(B \otimes C(S^1))$ . That is, the new invariant can not be detected by the Cuntz semigroup.

In Section 2, we define  $\text{Inv}(A)$  and discuss its properties. These properties will be used in [Gong et al. 2016]. In Section 3, we present the construction of  $A\mathbb{T}$  algebras  $A$  and  $B$  with the ideal property such that  $\text{Inv}(A) \not\cong \text{Inv}(B)$  but  $\text{Inv}^0(A) \cong \text{Inv}^0(B)$ .

## 2. The invariant

In this section, we recall the definition of  $\text{Inv}^0(A)$  from [Jiang 2011] (also see [Stevens 1998; Ji and Jiang 2011; Jiang and Wang 2012]), and then introduce the invariant  $\text{Inv}(A)$ . Furthermore, we discuss the properties of  $\text{Inv}(A)$  in the context of  $AH$  algebras and  $A\mathcal{HD}$  algebras (for the definition of  $A\mathcal{HD}$  algebras, see 2.3 below), which will be used in [Gong et al. 2016].

**2.1.** In the notation for an inductive limit system  $\lim(A_n, \phi_{n,m})$ , we understand that

$$\phi_{n,m} = \phi_{m-1,m} \circ \phi_{m-2,m-1} \circ \cdots \circ \phi_{n,n+1},$$

where all  $\phi_{n,m} : A_n \rightarrow A_m$  are homomorphisms.

We assume that, for any summand  $A_n^i$  in the direct sum  $A_n = \bigoplus_{i=1}^{t_n} A_n^i$ , necessarily  $\phi_{n,n+1}(\mathbb{1}_{A_n^i}) \neq 0$ , since otherwise, we could simply delete  $A_n^i$  from  $A_n$  without changing the limit algebra.

If  $A_n = \bigoplus_i A_n^i$ ,  $A_m = \bigoplus_j A_m^j$ , we use  $\phi_{n,m}^{i,j}$  to denote the partial map of  $\phi_{n,m}$  from the  $i$ -th block  $A_n^i$  of  $A_n$  to the  $j$ -th block  $A_m^j$  of  $A_m$ . Also, we use  $\phi_{n,m}^{-,j}$  to denote the partial map of  $\phi_{n,m}$  from  $A_n$  to  $A_m^j$ . That is,  $\phi_{n,m}^{-,j} = \bigoplus_i \phi_{n,m}^{i,j} = \pi_j \phi_{n,m}$ , where  $\pi_j : A_m \rightarrow A_m^j$  is the canonical projection. Sometimes, we also use  $\phi_{n,m}^{i,-}$  to denote  $\phi_{n,m}|_{A_n^i} : A_n^i \rightarrow A_m$ .

**2.2.** As in [Elliott and Gong 1996b], let  $T_{\text{II},k}$  be the 2-dimensional connected simplicial complex with  $H^1(T_{\text{II},k}) = 0$  and  $H^2(T_{\text{II},k}) = \mathbb{Z}/k\mathbb{Z}$ , and let  $I_k$  be the subalgebra of  $M_k(C[0, 1]) = C([0, 1], M_k(\mathbb{C}))$  consisting of all functions  $f$  with the properties  $f(0) \in \mathbb{C} \cdot \mathbb{1}_k$  and  $f(1) \in \mathbb{C} \cdot \mathbb{1}_k$  (this algebra is called an Elliott dimension drop interval algebra). Denote by  $\mathcal{HD}$  the class of algebras consisting of direct sums of the building blocks of the forms  $M_l(I_k)$  and  $PM_n(C(X))P$ , with  $X$  being one of the spaces  $\{\text{pt}\}$ ,  $[0, 1]$ ,  $S^1$ , and  $T_{\text{II},k}$ , and with  $P \in M_n(C(X))$  being a projection. (In [Dadarlat and Gong 1997], this class is denoted by  $SH(2)$ , and in [Jiang 2011] by  $\mathcal{B}$ ). We call a  $C^*$ -algebra an  $A\mathcal{HD}$  algebra if it is an inductive limit of the algebras in  $\mathcal{HD}$ .

For each basic building block  $A = PM_n(C(X))P$ , where  $X = \{\text{pt}\}$ ,  $[0, 1]$ ,  $S^1$ ,  $T_{\text{II},k}$ , or  $A = M_l(I_k)$ , we have  $K_0(A) = \mathbb{Z}$  or  $\mathbb{Z}/k\mathbb{Z}$  (for the case  $A = PM_n(C(T_{\text{II},k}))P$ ). Hence there is a natural map  $\text{rank} : K_0(A) \rightarrow \mathbb{Z}$ . This map also gives a map from  $\{p \in (M_\infty(A)) : p \text{ is a projection}\}$  to  $\mathbb{Z}_+$ . For example, if  $p \in A = PM_n(C(X))P$ , then  $\text{rank}(p)$  is the rank of projection  $p(x) \in P(x)M_n(\mathbb{C})P(x) \cong M_{\text{rank}(P)}(\mathbb{C})$  for any  $x \in X$ ; and if  $p \in A = M_l(I_k)$ , then  $\text{rank}(p)$  is the rank of projection  $p(0) \in M_l(\mathbb{C})$ . (Note that we regard  $p(0)$  as in  $M_l(\mathbb{C}) \cong \mathbb{1}_k \otimes M_l(\mathbb{C})$ , not  $M_{lk}(\mathbb{C})$ .)

**2.3.** By  $A\mathcal{HD}$  algebra, we mean the inductive limit of

$$A_1 \xrightarrow{\phi_{1,2}} A_2 \xrightarrow{\phi_{2,3}} A_3 \longrightarrow \cdots \longrightarrow \cdots,$$

where  $A_n \in \mathcal{HD}$  for each  $n$ .

For an  $A\mathcal{HD}$  inductive limit  $A = \lim(A_n, \phi_{nm})$ , we write  $A_n = \bigoplus_{i=1}^{t_n} A_n^i$ , where  $A_n^i = P_{n,i}M_{[n,i]}(C(X_{n,i}))P_{n,i}$  or  $A_n^i = M_{[n,i]}(I_{k_{n,i}})$ . For convenience, even for a block  $A_n^i = M_{[n,i]}(I_{k_{n,i}})$ , we still use  $X_{n,i}$  for  $\text{Sp}(A_n^i) = [0, 1]$ —that is,  $A_n^i$  is regarded as a homogeneous algebra or a subhomogeneous algebra over  $X_{n,i}$ .

**2.4.** In [Gong et al. 2010; 2018], joint with Cornel Pasnicu, the authors proved the reduction theorem for  $AH$  algebras with the ideal property provided that the inductive limit systems have no dimension growth. That is, if  $A$  is an inductive limit of  $A_n = \bigoplus A_n^i = \bigoplus P_{n,i}M_{[n,i]}C(X_{n,i})P_{n,i}$  with  $\sup_{n,i} \dim(X_{n,i}) < +\infty$ , and if we further assume that  $A$  has the ideal property, then  $A$  can be rewritten as an inductive limit of  $B_n = \bigoplus B_n^j = \bigoplus Q_{n,j}M_{\{n,j\}}C(Y_{n,i})Q_{n,j}$ , with  $Y_{n,i}$  being one of  $\{\text{pt}\}$ ,  $[0, 1]$ ,  $S^1$ ,  $T_{\text{II},k}$ ,  $T_{\text{III},k}$ ,  $S^2$ . In turn, Jiang [2017] proved (also see [Li 2006]) that the above inductive limit can be rewritten as the inductive limit of the direct sums of homogeneous algebras over  $\{\text{pt}\}$ ,  $[0, 1]$ ,  $S^1$ ,  $T_{\text{II},k}$  and  $M_l(I_k)$ . Combining these two results, we know that all  $AH$  algebras of no dimension growth with the ideal property are  $A\mathcal{HD}$  algebras. Let us point out that, as proved in [Dadarlat and Gong 1997], there are real rank zero  $A\mathcal{HD}$  algebras which are not  $AH$  algebras.

**2.5.** Let  $A$  be a  $C^*$ -algebra. Then  $K_0(A)^+ \subset K_0(A)$  is defined to be the semigroup of  $K_0(A)$  generated by  $[p] \in K_0(A)$ , where  $p \in M_\infty(A)$  are projections. For all

$C^*$ -algebras considered in this paper—for example,  $A \in \mathcal{HD}$ , or  $A$  is an  $A\mathcal{HD}$  algebra, or  $A = B \otimes C(T_{\text{II},k} \times S^1)$ , where  $B$  is an  $\mathcal{HD}$  or  $A\mathcal{HD}$  algebra—we always have

$$K_0(A)^+ \cap (-K_0(A)^+) = \{0\} \quad \text{and} \quad K_0(A)^+ - K_0(A)^+ = K_0(A). \quad (*)$$

Therefore  $(K_0(A), K_0(A)^+)$  is an ordered group. Define  $\Sigma A \subset K_0(A)^+$  to be

$$\Sigma A = \{[p] \in K_0(A)^+ : p \text{ is a projection in } A\}.$$

Then  $(K_0(A), K_0(A)^+, \Sigma A)$  is a scaled ordered group. (Note that for purely infinite  $C^*$ -algebras or stable projectionless  $C^*$ -algebras, condition  $(*)$  does not hold.)

**2.6.** Let  $\underline{K}(A) = K_*(A) \oplus (\bigoplus_{k=2}^{+\infty} K_*(A, \mathbb{Z}/k\mathbb{Z}))$  be as in [Dadarlat and Gong 1997]. Let  $\wedge$  be the Bockstein operation on  $\underline{K}(A)$  (see [Dadarlat and Gong 1997, 4.1]). It is well known that  $K_*(A, \mathbb{Z} \oplus \mathbb{Z}/k\mathbb{Z}) = K_0(A \otimes C(W_k \times S^1))$ , where  $W_k = T_{\text{II},k}$ .

As in [Dadarlat and Gong 1997], let  $K_*(A, \mathbb{Z} \oplus \mathbb{Z}/k\mathbb{Z})^+ = K_0(A \otimes C(W_k \times S^1))^+$  and let  $\underline{K}(A)^+$  be the semigroup generated by  $\{K_*(A, \mathbb{Z} \oplus \mathbb{Z}/k\mathbb{Z})^+ : k = 2, 3, \dots\}$ .

**2.7.** Let  $\text{Hom}_\wedge(\underline{K}(A), \underline{K}(B))$  be the set of homomorphisms between  $\underline{K}(A)$  and  $\underline{K}(B)$  compatible with the Bockstein operations  $\wedge$ . There is a surjective map (see [Dadarlat and Gong 1997])

$$\Gamma : KK(A, B) \rightarrow \text{Hom}_\wedge(\underline{K}(A), \underline{K}(B)).$$

Following Rørdam [1995], we write  $KL(A, B) \triangleq KK(A, B) / \text{Pext}(K_*(A), K_{*+1}(B))$ , where  $\text{Pext}(K_*(A), K_{*+1}(B))$  is identified with  $\ker \Gamma$  by [Dadarlat and Loring 1996b]. The triple  $(\underline{K}(A); \underline{K}(A)^+; \Sigma A)$  is part of our invariant. For two  $C^*$ -algebras  $A$  and  $B$ , by a “homomorphism”

$$\alpha : (\underline{K}(A); \underline{K}(A)^+; \Sigma A) \rightarrow (\underline{K}(B); \underline{K}(B)^+; \Sigma B)$$

we mean a system of maps

$$\alpha_k^i : K_i(A, \mathbb{Z}/k\mathbb{Z}) \rightarrow K_i(B, \mathbb{Z}/k\mathbb{Z}), \quad i = 0, 1, \quad k = 0, 2, 3, \dots$$

which are compatible with the Bockstein operations and  $\alpha = \bigoplus_{k,i} \alpha_k^i$  satisfies  $\alpha(\underline{K}(A)^+) \subset \underline{K}(B)^+$ . And finally,  $\alpha_0^0(\Sigma A) \subset \Sigma B$ .

**2.8.** For a unital  $C^*$ -algebra  $A$ , let  $T(A)$  denote the space of tracial states of  $A$ , i.e.,  $\tau \in T(A)$  if and only if  $\tau$  is a positive linear map from  $A$  to  $\mathbb{C}$  with  $\tau(xy) = \tau(yx)$ , and  $\tau(\mathbb{1}) = 1$ . Endow  $T(A)$  with the weak-\* topology, that is, for any net  $\{\tau_\alpha\}_\alpha \subset T(A)$  and  $\tau \in T(A)$ ,  $\tau_\alpha \rightarrow \tau$  if and only if  $\lim_\alpha \tau_\alpha(x) = \tau(x)$  for any  $x \in A$ . Then  $T(A)$  is a compact Hausdorff space with convex structure, that is, if  $\lambda \in [0, 1]$  and  $\tau_1, \tau_2 \in T(A)$ , then  $\lambda\tau_1 + (1 - \lambda)\tau_2 \in T(A)$ .  $\text{AffT}(A)$  is the collection of all continuous affine maps from  $T(A)$  to  $\mathbb{R}$ , which is a real Banach space with

$\|f\| = \sup_{\tau \in T(A)} |f(\tau)|$ . Let  $(\text{AffT}(A))_+$  be the subset of  $\text{AffT}(A)$  consisting of all nonnegative affine functions. An element  $\mathbb{1} \in \text{AffT}(A)$ , defined by  $\mathbb{1}(\tau) = 1$  for all  $\tau \in T(A)$ , is called the order unit (or scale) of  $\text{AffT}(A)$ . Note that any  $f \in \text{AffT}(A)$  can be written as  $f = f_+ - f_-$  with  $f_1, f_2 \in \text{AffT}(A)_+$ ,  $\|f_1\| \leq \|f\|$  and  $\|f_2\| \leq \|f\|$ . Therefore  $(\text{AffT}(A), \text{AffT}(A)_+, \mathbb{1})$  forms a scaled ordered real Banach space. If  $\phi : \text{AffT}(A) \rightarrow \text{AffT}(B)$  is a unital positive linear map, then  $\phi$  is bounded and therefore continuous.

There is a natural homomorphism  $\rho_A : K_0(A) \rightarrow \text{AffT}(A)$  defined by setting  $\rho_A([p])(\tau) = \sum_{i=1}^n \tau(p_{ii})$  for  $\tau \in T(A)$  and  $[p] \in K_0(A)$  represented by the projection  $p = (p_{ij}) \in M_n(A)$ .

If  $\phi : A \rightarrow B$  is a unital homomorphism, then  $\phi$  induces a continuous affine map  $T\phi : T(B) \rightarrow T(A)$ , which, in turn, induces a unital positive linear map  $\text{AffT}\phi : \text{AffT}(A) \rightarrow \text{AffT}(B)$ .

If  $\phi : A \rightarrow B$  is not unital, we still use  $\text{AffT}\phi$  to denote the unital positive linear map

$$\text{AffT}\phi : \text{AffT}(A) \rightarrow \text{AffT}(\phi(\mathbb{1}_A)B\phi(\mathbb{1}_A))$$

by regarding  $\phi$  as the unital homomorphism from  $A$  to  $\phi(\mathbb{1}_A)B\phi(\mathbb{1}_A)$ —that is, for any  $l \in \text{AffT}(A)$  represented by  $x \in A_{s.a}$  as  $l(t) = t(x)$  for any  $t \in T(A)$ , we define

$$((\text{AffT}\phi)(l))(\tau) = \tau(\phi(x)) \quad \text{for any } \tau \in T(\phi(\mathbb{1}_A)B\phi(\mathbb{1}_A)),$$

where  $\phi(x)$  is regarded as an element in  $\phi(\mathbb{1}_A)B\phi(\mathbb{1}_A)$ . In the above equation, if we regard  $\phi(x)$  as element in  $B$  (rather than in  $\phi(\mathbb{1}_A)B\phi(\mathbb{1}_A)$ ), the homomorphism  $\phi$  also induces a positive linear map, denoted by  $\phi_T$  to avoid confusion, from  $\text{AffT}(A)$  to  $\text{AffT}(B)$ —that is, for the  $l$  as above,

$$((\phi_T)(l))(\tau) = \tau(\phi(x)) \quad \text{for any } \tau \in T(B),$$

where  $\phi(x)$  is now regarded as an element in  $B$ . But this map does not preserve the unit  $\mathbb{1}$ . It has the property that  $\phi_T(\mathbb{1}_{\text{AffT}(A)}) \leq \mathbb{1}_{\text{AffT}(B)}$ .

In this paper, we often use the notation  $\phi_T$  for the following situation: if  $p_1 < p_2$  are two projections in  $A$ , and  $\phi = \iota : p_1Ap_1 \rightarrow p_2Ap_2$  is the inclusion, then  $\iota_T$  denotes the (not necessarily unital) map from  $\text{AffT}(p_1Ap_1)$  to  $\text{AffT}(p_2Ap_2)$  induced by  $\iota$ .

**2.9.** If  $\alpha : (\underline{K}(A); \underline{K}(A)^+; \Sigma A) \rightarrow (\underline{K}(B); \underline{K}(B)^+; \Sigma B)$  is a homomorphism as in 2.7, then for each projection  $p \in A$ , there is a projection  $q \in B$  such that  $\alpha([p]) = [q]$ .

Since  $I_k$  has stable rank one and the spaces  $X$  involved in the definition of  $\mathcal{HD}$  class (see  $PM_n(C(X))P$  in 2.2) are of dimension at most two, we know that for all  $C^*$ -algebras  $A$  considered in this paper,  $\mathcal{HD}$  class or  $A\mathcal{HD}$  algebra, the following

statement is true: if  $[p_1] = [p_2] \in K_0(A)$ , then there is a unitary  $u \in A$  such that  $up_1u^* = p_2$ . Therefore,  $\text{AffT}(pAp)$  and  $\text{AffT}(qBq)$  depend only on the classes  $[p] \in K_0(A)$  and  $[q] \in K_0(B)$ , respectively. Furthermore, if  $[p_1] = [p_2]$ , then the identification of  $\text{AffT}(p_1Ap_1)$  and  $\text{AffT}(p_2Ap_2)$  via the unitary equivalence  $up_1u^* = p_2$  is canonical—that is, it does not depend on the choice of unitary  $u$ . For classes  $[p] \in \Sigma A (\subset K_0(A)^+ \subset K_0(A))$ , we also take  $\text{AffT}(pAp)$  as part of our invariant. We consider a system of unital positive linear maps

$$\xi^{p,q} : \text{AffT}(pAp) \rightarrow \text{AffT}(qBq)$$

associated with all pairs of two classes  $[p] \in \Sigma A$  and  $[q] \in \Sigma B$ , with  $\alpha([p]) = [q]$ . Such a system of maps is said to be compatible if for any  $p_1 \leq p_2$  with  $\alpha([p_1]) = [q_1]$ ,  $\alpha([p_2]) = [q_2]$ , and  $q_1 \leq q_2$ , the diagram

$$\begin{array}{ccc} \text{AffT}(p_1Ap_1) & \xrightarrow{\xi^{p_1,q_1}} & \text{AffT}(q_1Bq_1) \\ \iota_T \downarrow & & \downarrow \iota_T \\ \text{AffT}(p_2Ap_2) & \xrightarrow{\xi^{p_2,q_2}} & \text{AffT}(q_2Bq_2) \end{array} \quad (2.10)$$

commutes, where the vertical maps are induced by the inclusions. (See [Ji and Jiang 2011] and [Stevens 1998].)

**2.11.** In this paper, we denote

$$(\underline{K}(A); \underline{K}(A)^+; \Sigma A; \{\text{AffT}(pAp)\}_{[p] \in \Sigma A})$$

by  $\text{Inv}^0(A)$ , where  $\text{AffT}(pAp)$  are scaled ordered Banach spaces as in 2.8. By a map between the invariants  $\text{Inv}^0(A)$  and  $\text{Inv}^0(B)$ , we mean a map

$$\alpha : (\underline{K}(A); \underline{K}(A)^+; \Sigma A) \rightarrow (\underline{K}(B); \underline{K}(B)^+; \Sigma B)$$

as in 2.7, and for each pair  $[p] \in \Sigma A$ ,  $[q] \in \Sigma B$  with  $\alpha[p] = [q]$ , there is an associated unital positive linear map

$$\xi^{p,q} : \text{AffT}(pAp) \rightarrow \text{AffT}(qBq)$$

(which is automatically continuous, as pointed out in 2.8). These maps are compatible in the sense of 2.9 (that is, the diagram (2.10) is commutative for any pair of projections  $p_1 \leq p_2$ ).

**2.12.** Let  $[p] \in \Sigma A$  be represented by  $p \in A$ . Let  $\alpha([p]) = [q]$  for  $q \in B$ . Then  $\alpha$  induces a map (still denoted by  $\alpha$ )  $\alpha : K_0(pAp) \rightarrow K_0(qBq)$ . Note that the natural map  $\rho := \rho_{pAp} : K_0(pAp) \rightarrow \text{AffT}(pAp)$ , defined in 2.8, satisfies  $\rho(K_0(pAp)^+) \subseteq \text{AffT}(pAp)_+$  and  $\rho([p]) = \mathbb{1} \in \text{AffT}(pAp)$ . By [Ji and Jiang 2011, 1.20], the compatibility in 2.9 (diagram (2.10)) implies that the following diagram commutes:

$$\begin{array}{ccc}
K_0(pAp) & \xrightarrow{\rho} & \text{AffT}(pAp) \\
\alpha \downarrow & & \downarrow \xi^{p,q} \\
K_0(qBq) & \xrightarrow{\rho} & \text{AffT}(qBq)
\end{array} \tag{2.13}$$

For  $p = \mathbb{1}_A$ , this compatibility (the commutativity of diagram (2.13)) is included as a part of the Elliott invariant for unital simple  $C^*$ -algebras. But this information is contained in our invariant  $\text{Inv}^0(A)$ , as pointed out in [Ji and Jiang 2011].

**2.14.** Let  $A$  be a unital  $C^*$ -algebra,  $B \in \mathcal{HD}$  and  $\{p_i\}_{i=1}^n \subset B$  be mutually orthogonal projections with  $\sum p_i = \mathbb{1}_B$ . Write  $B = \bigoplus_{j=1}^m B^j$  with  $B^j$  being either  $PM_\bullet(C(X))P$  or  $M_l(I_k)$ , and for any  $i = 1, 2, \dots, n$  write  $p_i = \bigoplus_{j=1}^m p_i^j$  with  $p_i^j \in B^j$ , for  $j = 1, 2, \dots, m$ . Note that for all  $\tau \in T(B^j)$ ,

$$\tau(p_i^j) = \frac{\text{rank}(p_i^j)}{\text{rank}(\mathbb{1}_{B^j})}$$

(see 2.2 for the definition of the rank function), which is independent of  $\tau \in T(B^j)$ .

Let  $\xi_i = (\xi_i^1, \xi_i^2, \dots, \xi_i^m) : \text{AffT}(A) \rightarrow \text{AffT}(p_i B p_i) = \bigoplus_{j=1}^m \text{AffT}(p_i^j B^j p_i^j)$  be unital positive linear maps. Then we can define  $\xi = (\xi^1, \xi^2, \dots, \xi^m) : \text{AffT}(A) \rightarrow \text{AffT}(B) = \bigoplus_{j=1}^m \text{AffT}(B^j)$  as below:

$$\xi^j(f)(\tau) = \sum_{\{i: \tau(p_i^j) \neq 0\}} \tau(p_i^j) \xi_i^j(f) \left( \frac{\tau|_{p_i^j B^j p_i^j}}{\tau(p_i^j)} \right) \quad \text{for } f \in \text{AffT}(A) \text{ and } \tau \in T(B^j).$$

Note that  $\tau|_{p_i^j B^j p_i^j} / \tau(p_i^j) \in T(p_i^j B^j p_i^j)$ . So  $\xi_i^j(f)$  can evaluate at  $\tau|_{p_i^j B^j p_i^j} / \tau(p_i^j)$ . Since the value of  $\tau(p_i^j)$  is independent of  $\tau \in T(B^j)$ , it is straightforward to verify that  $\xi^j \in \text{AffT}(B^j)$ . We denote such  $\xi$  by  $\bigoplus \xi_i$ . (For the case that  $B$  is general stably finite unital simple  $C^*$ -algebras with mutually orthogonal projections  $\{p_i\}$  with sum  $\mathbb{1}_B$ , this kind of construction can be carried out by using of [Lin 2017, Lemma 6.4].)

If  $\phi_i : A \rightarrow p_i B p_i$  are unital homomorphisms and  $\phi = \bigoplus \phi_i : A \rightarrow B$ , then

$$(\text{AffT } \phi)^j(f)(\tau) = \sum_{\{i: \tau(p_i^j) \neq 0\}} \tau(p_i^j) \text{AffT } \phi_i^j(f) \left( \frac{\tau|_{p_i^j B^j p_i^j}}{\tau(p_i^j)} \right),$$

where  $\phi_i^j : A \rightarrow p_i^j B^j p_i^j$  is the  $j$ -th component of  $\phi_i$ . That is,  $\text{AffT } \phi = \bigoplus \text{AffT } \phi_i$ . In particular, if  $\|\text{AffT } \phi_i(f) - \xi_i(f)\| < \varepsilon$  for all  $i$ , then

$$\|\text{AffT } \phi(f) - \xi(f)\| < \varepsilon.$$

**2.15.** Now we introduce the new ingredient of our invariant, a simplified version of  $U(pAp)/\overline{DU(pAp)}$  for any  $[p] \in \Sigma A$ , where  $DU(pAp)$  is the commutator

subgroup of  $U(pAp)$ . Some notations and preliminary results are quoted from [Thomsen 1997; 1995; Nielsen and Thomsen 1996].

**2.16.** Let  $A$  be a unital  $C^*$ -algebra. Let  $U(A)$  denote the group of unitaries of  $A$  and  $U_0(A)$  the connected component of  $\mathbb{1}_A$  in  $U(A)$ . Let  $DU(A)$  and  $DU_0(A)$  denote the commutator subgroups of  $U(A)$  and  $U_0(A)$ , respectively. (Recall that the commutator subgroup of a group  $G$  is the subgroup generated by all elements of the form  $aba^{-1}b^{-1}$ , where  $a, b \in G$ .) One can introduce the following metric  $D_A$  on  $U(A)/\overline{DU(A)}$  (see §3 of [Nielsen and Thomsen 1996]). For  $u, v \in U(A)/\overline{DU(A)}$

$$D_A(u, v) = \inf\{\|uv^* - c\| : c \in \overline{DU(A)}\},$$

where, on the right-hand side of the equation, we use  $u, v$  to denote any elements in  $U(A)$  which represent the elements  $u, v \in U(A)/\overline{DU(A)}$ .

**Remark 2.17.** Obviously,  $D_A(u, v) \leq 2$ . Also, if  $u, v \in U(A)/\overline{DU(A)}$  define two different elements in  $K_1(A)$ , then  $D_A(u, v) = 2$ . (This fact follows from the fact that  $\|u - v\| < 2$  implies  $uv^* \in U_0(A)$ .)

**2.18.** Let  $A$  be a unital  $C^*$ -algebra. Let  $\text{AffT}(A)$  and  $\rho_A : K_0(A) \rightarrow \text{AffT}(A)$  be as defined as in 2.8. For simplicity, we use  $\rho K_0(A)$  to denote the set  $\rho_A(K_0(A))$ . The metric  $d_A$  on  $\text{AffT}(A)/\overline{\rho K_0(A)}$  is defined as follows (see §3 of [Nielsen and Thomsen 1996]).

Let  $d'$  denote the quotient metric on  $\text{AffT}(A)/\overline{\rho K_0(A)}$ . That is, for  $f, g$  in  $\text{AffT}(A)/\overline{\rho K_0(A)}$ , let

$$d'(f, g) = \inf\{\|f - g - h\| : h \in \overline{\rho K_0(A)}\}.$$

Define  $d_A$  by

$$d_A(f, g) = \begin{cases} 2 & \text{if } d'(f, g) \geq \frac{1}{2}, \\ |e^{2\pi i d'(f, g)} - 1| & \text{if } d'(f, g) < \frac{1}{2}. \end{cases}$$

Obviously,  $d_A(f, g) \leq 2\pi d'(f, g)$ .

**2.19.** For  $A = PM_k(C(X))P$ , let  $SU(A)$  be the set of unitaries  $u \in PM_k(C(X))P$  such that for each  $x \in X$ ,  $u(x) \in P(x)M_k(\mathbb{C})P(x) \cong M_{\text{rank}(P)}(\mathbb{C})$  has determinant 1 (note that the determinant of  $u(x)$  does not depend on the identification of  $P(x)M_k(\mathbb{C})P(x) \cong M_{\text{rank}(P)}(\mathbb{C})$ ). For  $A = M_l(I_k)$ , by  $u \in SU(A)$  we mean that  $u \in SU(M_{lk}(C[0, 1]))$ , where we consider  $A$  to be a subalgebra of  $M_{lk}(C[0, 1])$ . For all basic building blocks  $A \neq M_l(I_k)$ , we have  $SU(A) = \overline{DU(A)}$ . But for  $A = M_l(I_k)$ , this is not true (see 2.20 and 2.21 below).

In [Elliott et al. 2007], the authors also defined  $SU(A)$  for  $A$  a homogeneous algebra and a certain  $AH$  inductive limit  $C^*$ -algebra. This definition cannot be generalized to a more general class of  $C^*$ -algebras, but we define  $\widetilde{SU}(A)$  for any unital  $C^*$  algebra  $A$ . Later, in our definition of  $\text{Inv}(A)$ , we only make use of  $\widetilde{SU}(A)$  (rather than  $SU(A)$ ).

**2.20.** Let  $A = I_k$ . Then  $K_1(A) = \mathbb{Z}/k\mathbb{Z}$ , which is generated by  $[u]$ , where  $u$  is the unitary

$$u = \begin{pmatrix} e^{2\pi i t(k-1)/k} & & & \\ & e^{2\pi i (-t/k)} & & \\ & & \ddots & \\ & & & e^{2\pi i (-t/k)} \end{pmatrix} \in I_k.$$

(Note that  $u(0) = \mathbb{1}_k$ ,  $u(1) = e^{2\pi i (-1/k)} \cdot \mathbb{1}_k$ .)

Note that the above  $u$  is in  $SU(A)$ , but not in  $U_0(A)$ , and therefore not in  $DU(A)$ .

**2.21.** By [Thomsen 1995] (or [Gong et al. 2015a]),  $u \in M_l(I_k)$  is in  $\overline{DU(A)}$  if and only if for any irreducible representation  $\pi : M_l(I_k) \rightarrow B(H)$  ( $\dim H < +\infty$ ), we have  $\det(\pi(u)) = 1$ . For the unitary  $u$  in 2.20, and irreducible representation  $\pi$  corresponding to 1,  $\pi(u) = e^{2\pi i (-1/k)}$ , whose determinant is  $e^{2\pi i (-1/k)} \neq 1$ . By [Thomsen 1997, 6.1] one knows that if  $A = I_k$ , then

$$U_0(A) \cap SU(A) = \{e^{2\pi i (j/k)} : j = 0, 1, \dots, k-1\} \cdot \overline{DU(A)}.$$

If  $A = M_l(I_k)$ , then for any  $j \in \mathbb{Z}$ ,  $e^{2\pi i (j/l)} \cdot \mathbb{1}_A \in \overline{DU(A)}$ . Consequently,

$$U_0(A) \cap SU(A) = \{e^{2\pi i (j/kl)} : j = 0, 1, \dots, kl-1\} \cdot \overline{DU(A)}.$$

**2.22.** Let  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ . Then for any  $A \in \mathcal{HD}$ ,  $\mathbb{T} \cdot \overline{DU(A)} \subset U_0(A)$ . From 2.19 and 2.21, we have either  $SU(A) = \overline{DU(A)}$  or  $U_0(A) \cap SU(A) \subset \mathbb{T} \cdot \overline{DU(A)}$ .

**Lemma 2.23.** Let  $A = PM_k(C(X))P \in \mathcal{HD}$ . For any  $u, v \in U(A)$ , if  $uv^* \in \mathbb{T} \cdot \overline{DU(A)}$  (in particular if both  $u, v$  are in  $\mathbb{T} \cdot \overline{DU(A)}$ ), then  $D_A(u, v) \leq 2\pi/\text{rank}(P)$ .

Let  $A = M_l(I_k)$ . For any  $u, v$ , if  $uv^* \in \mathbb{T} \cdot \overline{DU(A)}$ , then  $D_A(u, v) \leq 2\pi/l$ .

*Proof.* There is  $\omega \in \overline{DU(A)}$  such that  $uv^* = \lambda\omega$  for some  $\lambda \in \mathbb{T}$ . Choose  $\lambda_0 = e^{2\pi ij/\text{rank}(P)}$ ,  $j \in \mathbb{N}$ , such that  $|\lambda - \lambda_0| < 2\pi/\text{rank}(P)$ . Then  $\lambda_0 \cdot P \in PM_k(C(X))P$  has determinant 1 everywhere and is in  $\overline{DU(A)}$ . And so does  $\lambda_0\omega$ . Also, we have  $|uv^* - \lambda_0\omega| < 2\pi/\text{rank}(P)$ .

The case  $A = M_l(I_k)$  is similar.  $\square$

**2.24.** Let  $\text{path}(U(A))$  denote the set of piecewise smooth paths  $\xi : [0, 1] \rightarrow U(A)$ . Recall that the de la Harpe–Skandalis determinant  $\Delta : \text{path}(U(A)) \rightarrow \text{AffT}(A)$  is defined by

$$\Delta(\xi)(\tau) = \frac{1}{2\pi i} \int_0^1 \tau \left( \frac{d\xi}{dt} \cdot \xi^* \right) dt$$

(see [de la Harpe and Skandalis 1984]). It is proved there (see also [Thomsen 1995]) that  $\Delta$  induces a map  $\Delta^\circ : \pi_1(U_0(A)) \rightarrow \text{AffT}(A)$ . For any two paths  $\xi_1, \xi_2$  starting at  $\xi_1(0) = \xi_2(0) = 1 \in A$  and ending at the same unitary  $u = \xi_1(1) = \xi_2(1)$ , we have that

$$\Delta(\xi_1) - \Delta(\xi_2) = \Delta(\xi_1 \cdot \xi_2^*) \subset \Delta^\circ(\pi_1(U_0(A))).$$

Consequently,  $\Delta$  induces a map

$$\bar{\Delta} : U_0(A) \rightarrow \text{AffT}(A)/\Delta^\circ(\pi_1(U_0(A)))$$

(see Section 3 of [Thomsen 1995]). Passing to matrix over  $A$ , we have a map  $\bar{\Delta}_n : U_0(M_n(A)) \rightarrow \text{AffT}(A)/\Delta_n^\circ(\pi_1(U_0(M_n(A))))$ .

If  $1 \leq m < n$ , then  $\text{path}(U(M_m(A)))$  (and  $U_0(M_m(A))$ ) can be embedded into  $\text{path}(U(M_n(A)))$  (and  $U_0(M_n(A))$ ) by sending  $u(t)$  to  $\text{diag}(u(t), \mathbb{1}_{n-m})$ . From the above definition, and the formula

$$\frac{d}{dt}(\text{diag}(u(t), \mathbb{1}_{n-m})) = \text{diag}\left(\frac{d}{dt}(u(t)), 0_{n-m}\right),$$

one gets

$$\bar{\Delta}_n|_{U_0(M_m(A))} = \bar{\Delta}_m.$$

Recall that the Bott isomorphism  $b : K_0(A) \rightarrow K_1(SA)$  is given by the following: for any  $x \in K_0(A)$  represented by a projection  $p \in M_n(A)$ , we have

$$b(x) = [e^{2\pi i t} p + (\mathbb{1}_n - p)] \in K_1(SA).$$

If  $\xi(t) = e^{2\pi i t} p + (\mathbb{1}_n - p)$ , then

$$\begin{aligned} (\Delta^\circ \xi)(\tau) &= \frac{1}{2\pi i} \int_0^1 \tau((2\pi i e^{2\pi i t} p) \cdot (e^{-2\pi i t} p + (1 - p))) dt \\ &= \frac{1}{2\pi i} \int_0^1 \tau(2\pi i p) dt = \tau(p). \end{aligned}$$

Since the Bott map is an isomorphism, it follows that each loop in  $\pi_1(U_0(A))$  is homotopic to a product of loops of the form  $\xi(t)$ . Consequently,

$$\Delta^\circ(\pi_1(U_0(M_n(A)))) \subset \rho_A K_0(A).$$

Hence  $\bar{\Delta}_n$  can be regarded as a map

$$\bar{\Delta}_n : U_0(M_n(A)) \rightarrow \text{AffT}(A)/\overline{\rho_A K_0(A)}.$$

**Proposition 2.25.** *For  $A \in \mathcal{HD}$  or  $A \in A\mathcal{HD}$ ,  $\overline{DU_0(A)} = \overline{DU(A)}$ .*

*Proof.* Let the determinant function

$$\bar{\Delta}_n : U_0(M_n(A)) \rightarrow \text{AffT}(A)/\overline{\Delta_n^0(\pi_1 U_0(M_n(A)))}$$

be defined as in §3 of [Thomsen 1995] (see 2.24 above). As observed in [Nielsen and Thomsen 1996, top of p. 33], Lemma 3.1 of [Thomsen 1995] implies that  $\overline{DU_0(A)} = U_0(A) \cap \overline{DU(A)}$ . For the reader's convenience, we give a brief proof

of this fact. Namely, the equation

$$\begin{pmatrix} uvu^{-1}v^{-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} u & 0 & 0 \\ 0 & u^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & v^{-1} \end{pmatrix} \begin{pmatrix} u^{-1} & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v^{-1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & v \end{pmatrix}$$

implies that  $\overline{DU(A)} \subset \overline{DU_0(M_3(A))}$ . Therefore by Lemma 3.1 of [Thomsen 1995],  $\overline{DU(A)} \subset \ker \bar{\Delta}_3$ . If  $x \in U_0(A) \cap \overline{DU(A)}$ , then  $\bar{\Delta}_1$  is defined at  $x$ . By calculation in 2.24,  $\bar{\Delta}_3|_{U_0(A)} = \bar{\Delta}_1$ . So we have  $\bar{\Delta}_1(x) = 0$ , and thus  $x \in \overline{DU_0(A)} = \ker \bar{\Delta}_1$ , by [Thomsen 1995, Lemma 3.1]. Note if  $A \in \mathcal{HD}$  or  $A\mathcal{HD}$ , then  $DU(A) \subset U_0(A)$ .  $\square$

(It is not known to the authors whether it is always true that  $\overline{DU_0(A)} = \overline{DU(A)}$ .)

**2.26.** There is a natural map  $\alpha : \pi_1(U(A)) \rightarrow K_0(A)$ , or more generally, for each  $n \in \mathbb{N}$  a map  $\alpha_n : \pi_1(U(M_n(A))) \rightarrow K_0(A)$ . We need the following notation. For a unital  $C^*$ -algebra  $A$ , let  $\mathcal{P}_n K_0(A)$  (see [Gong et al. 2015b]) be the subgroup of  $K_0(A)$  generated by the formal difference of projections  $p, q \in M_n(A)$  (instead of  $M_\infty(A)$ ). Then

$$\mathcal{P}_n K_0(A) \subset \text{image}(\alpha_n).$$

In particular, if  $\rho : K_0(A) \rightarrow \text{AffT}(A)$  satisfies  $\rho(\mathcal{P}_n K_0(A)) = \rho K_0(A)$ , then by Theorem 3.2 of [Thomsen 1995],

$$U_0(M_n(A)) / \overline{DU_0(M_n(A))} \cong U_0(M_\infty(A)) / \overline{DU_0(M_\infty(A))} \cong \text{AffT}(A) / \overline{\rho K_0(A)}.$$

Note that for all  $A \in \mathcal{HD}$ , we have  $\rho(\mathcal{P}_1 K_0(A)) = \rho K_0(A)$  (see below). Consequently,

$$U_0(A) / \overline{DU_0(A)} \cong \text{AffT}(A) / \overline{\rho K_0(A)}.$$

If  $A$  does not contain building blocks of the form  $PM_n(C(T_{\text{II},k}))P$ , then such  $A$  is the special case of [Thomsen 1997], and the above fact is observed in [Thomsen 1997] (for circle algebras in [Nielsen and Thomsen 1996] earlier)—in this special case, we ever have  $\mathcal{P}_1 K_0(A) = K_0(A)$  (as used in [Nielsen and Thomsen 1996] and [Thomsen 1997] in the form of surjectivity of  $\alpha : \pi_1(U(A)) \rightarrow K_0(A)$ ). For  $A = PM_n(C(T_{\text{II},k}))P$ , we do not have the surjectivity of  $\alpha : \pi_1(U(A)) \rightarrow K_0(A)$  anymore. But  $K_0(A) = \mathbb{Z} \oplus \mathbb{Z}/k\mathbb{Z}$  and  $\text{image}(\alpha) = \mathcal{P}_1 K_0(A)$  contains at least one element which corresponds to a rank one projection (any bundle over  $T_{\text{II},k}$  has a subbundle of rank 1)—that is,

$$\rho(\mathcal{P}_1 K_0(A)) = \rho K_0(A) (\subseteq \text{AffT}(A))$$

consisting of all constant functions from  $T_{\text{II},k}$  to  $(1/\text{rank}(P))\mathbb{Z}$ .

As in [Nielsen and Thomsen 1996, Lemma 3.1; Thomsen 1997, Lemma 6.4], the map  $\bar{\Delta} : U_0(A) \rightarrow \text{AffT}(A) / \overline{\rho K_0(A)}$  (see 2.24) has  $\ker \bar{\Delta} = \overline{DU(A)}$  and the following lemma holds.

**Lemma 2.27.** *Suppose that a unital  $C^*$ -algebra  $A$  satisfies  $\rho(\mathcal{P}_1 K_0(A)) = \rho K_0(A)$  and  $\overline{DU_0(A)} = \overline{DU(A)}$  (see 2.26 and 2.25), and in particular, that  $A \in \mathcal{HD}$  or  $A \in A\mathcal{HD}$ . Then the following hold:*

(1) *There is a split exact sequence*

$$0 \rightarrow \text{AffT}(A)/\overline{\rho K_0(A)} \xrightarrow{\lambda_A} U(A)/\overline{DU(A)} \rightarrow K_1(A) \rightarrow 0.$$

(2)  $\lambda_A$  *is an isometry with respect to the metrics  $d_A$  and  $D_A$ .*

**2.28.** Recall from §3 of [Thomsen 1995], the de la Harpe–Skandalis determinant (see [de la Harpe and Skandalis 1984]) can be used to define

$$\bar{\Delta} : U_0(A)/\overline{DU(A)} \rightarrow \text{AffT}(A)/\overline{\rho K_0(A)}.$$

With the condition of Lemma 2.27 above, this map is an isometry with respect to the metrics  $d_A$  and  $D_A$ . In fact, the inverse of this map is  $\lambda_A$  in Lemma 2.27.

It follows from the definition of  $\bar{\Delta}$  [Thomsen 1995, §3] that

$$\bar{\Delta}(e^{2\pi i t p}) = t \cdot \rho([p]) \pmod{(\overline{\rho K_0(A)})}, \quad (2.29)$$

where  $[p] \in K_0(A)$  is the element represented by projection  $p \in A$ .

It is convenient to introduce the extended commutator group  $DU^+(A)$ , which is generated by  $DU(A) \subset U(A)$  and the set

$$\{e^{2\pi i t p} = e^{2\pi i t} p + (\mathbb{1} - p) \in U(A) : t \in \mathbb{R}, p \in A \text{ is a projection}\}.$$

Let  $\widetilde{DU(A)}$  denote the closure of  $DU^+(A)$ . That is,  $\widetilde{DU(A)} = \overline{DU^+(A)}$ .

Let us use  $\widetilde{\rho K_0(A)}$  to denote the real vector space spanned by  $\overline{\rho K_0(A)}$ . That is,

$$\widetilde{\rho K_0(A)} := \{\sum \lambda_i \phi_i : \lambda_i \in \mathbb{R}, \phi_i \in \overline{\rho K_0(A)}\}.$$

Suppose that  $\overline{\rho K_0(A)} = \overline{\rho(\mathcal{P}_1 K_0(A))}$ . It follows from (2.29) that the image of  $\widetilde{DU(A)}/\overline{DU(A)}$  under the map  $\bar{\Delta}$  is exactly  $\widetilde{\rho K_0(A)}/\overline{\rho K_0(A)}$ . Therefore,  $\lambda_A$  takes  $\widetilde{\rho K_0(A)}/\overline{\rho K_0(A)}$  to  $\widetilde{DU(A)}/\overline{DU(A)}$ . Hence  $\bar{\Delta} : U_0(A)/\overline{DU(A)} \rightarrow \text{AffT}(A)/\overline{\rho K_0(A)}$  also induces a quotient map (still denoted by  $\bar{\Delta}$ )

$$\bar{\Delta} : U_0(A)/\widetilde{DU(A)} \rightarrow \text{AffT}(A)/\widetilde{\rho K_0(A)},$$

which is an isometry using the quotient metrics of  $d_A$  and  $D_A$ . The inverse of this quotient map  $\bar{\Delta}$  gives rise to the isometry

$$\tilde{\lambda}_A : \text{AffT}(A)/\widetilde{\rho K_0(A)} \rightarrow U_0(A)/\widetilde{DU(A)} \hookrightarrow U(A)/\widetilde{DU(A)},$$

which is an isometry with respect to the quotient metrics  $\tilde{d}_A$  and  $\overline{D_A}$  as described below.

For any  $u, v \in U(A)/\widetilde{DU(A)}$ ,

$$\overline{D_A}(u, v) = \inf\{\|uv^* - c\| : c \in \widetilde{DU(A)}\}.$$

Let  $\tilde{d}'$  denote the quotient metric on  $\text{AffT}(A)/\rho\widetilde{K_0}(A)$  of  $\text{AffT}(A)$ , that is,

$$\tilde{d}'(f, g) = \inf\{\|f - g - h\| : h \in \rho\widetilde{K_0}(A)\} \quad \text{for all } f, g \in \text{AffT}(A)/\rho\widetilde{K_0}(A).$$

Define  $\tilde{d}_A$  by

$$\tilde{d}_A(f, g) = \begin{cases} 2 & \text{if } \tilde{d}'(f, g) \geq \frac{1}{2}, \\ |e^{2\pi i \tilde{d}'(f, g)} - 1| & \text{if } \tilde{d}'(f, g) < \frac{1}{2}. \end{cases}$$

The following result is a consequence of Lemma 2.27.

**Lemma 2.30.** *Suppose that a unital  $C^*$ -algebra  $A$  satisfies  $\rho(\mathcal{P}_1 K_0(A)) = \rho K_0(A)$  and  $\overline{DU_0(A)} = \overline{DU(A)}$  (see 2.26 and 2.25), and in particular, that  $A \in \mathcal{HD}$  or  $A \in A\mathcal{HD}$ . Then we have the following:*

(1) *There is a split exact sequence*

$$0 \rightarrow \text{AffT}(A)/\rho\widetilde{K_0}(A) \xrightarrow{\tilde{\lambda}_A} U(A)/\widetilde{DU(A)} \xrightarrow{\pi_A} K_1(A) \rightarrow 0.$$

(2)  $\tilde{\lambda}_A$  is an isometry with respect to  $\tilde{d}_A$  and  $\overline{D_A}$ .

*Proof.* As we mentioned in 2.28, the map  $\lambda_A$  in Lemma 2.27 takes  $\rho\widetilde{K_0}(A)/\rho\widetilde{K_0}(A)$  to  $\widetilde{DU(A)}/\overline{DU(A)}$ . From the exact sequence in Lemma 2.27, passing to quotient, one gets the exact sequence in (1).

Note that  $\tilde{d}_A$  on  $\text{AffT}(A)/\rho\widetilde{K_0}(A)$  is the quotient metric induced by  $d_A$  on  $\text{AffT}(A)/\rho\widetilde{K_0}(A)$  and  $\overline{D_A}$  on  $U(A)/\widetilde{DU(A)}$  is the quotient metric induced by  $D_A$  on  $U(A)/\overline{DU(A)}$ . Hence  $\tilde{\lambda}_A$  is an isometry, since so is  $\lambda_A$ .  $\square$

**2.31.** Instead of  $\widetilde{DU(A)}$ , we need the group

$$\widetilde{SU(A)} := \overline{\{x \in U(A) : x^n \in \widetilde{DU(A)} \text{ for some } n \in \mathbb{Z}_+ \setminus \{0\}\}}.$$

For  $A \in \mathcal{HD}$ , say  $A = PM_l(C(X))P$  ( $X = [0, 1]$ ,  $S^1$  or  $T_{\text{II},k}$ ) or  $A = M_l(I_k)$ ,  $\widetilde{SU(A)}$  is the set of all unitaries  $u \in P(M_lC(X))P$  or  $u \in M_l(I_k)$  such that the determinant function

$$X \ni x \mapsto \det(u(x)) \quad \text{or} \quad (0, 1) \ni t \mapsto \det(u(t))$$

is a constant function. Comparing with the set  $SU(A)$  in [Elliott et al. 2007] or 2.19 above (which only defines for  $\mathcal{HD}$  blocks), where the function will be constant 1, here we allow the function to be an arbitrary constant in  $\mathbb{T}$ . Hence for a basic building block  $A = PM_n(C(X))P \in \mathcal{HD}$  or  $A = M_l(I_k)$ ,

$$\widetilde{SU(A)} = \mathbb{T} \cdot SU(A).$$

The notations  $\rho\widetilde{K_0}(A)$ ,  $\widetilde{DU(A)}$  and  $\widetilde{SU(A)}$  reflect that they are constructed from  $\rho K_0(A)$ ,  $DU(A)$  and  $SU(A)$ , respectively. *To make the notation simpler, from now on we use  $\rho\widetilde{K_0}(A)$  to denote  $\rho\widetilde{K_0}(A) = \rho_A(\widetilde{K_0}(A))$ ,  $\widetilde{DU}(A)$  to denote  $\widetilde{DU(A)}$ , and  $\widetilde{SU}(A)$  to denote  $\widetilde{SU(A)}$ .*

**Lemma 2.32.** *Let  $\alpha, \beta : K_1(A) \rightarrow U(A)/\widetilde{DU}(A)$  be splittings of  $\pi_A$  in Lemma 2.30. Then*

$$\alpha|_{\text{tor } K_1(A)} = \beta|_{\text{tor } K_1(A)}$$

and  $\alpha(\text{tor } K_1(A)) \subset \widetilde{SU}(A)/\widetilde{DU}(A)$ . Furthermore,  $\alpha$  identifies  $\text{tor}(K_1(A))$  with  $\widetilde{SU}(A)/\widetilde{DU}(A)$ .

*Proof.* For any  $z \in \text{tor } K_1(A)$ , with  $kz = 0$  for some integer  $k > 0$ , we have

$$\pi_A \alpha(z) = z = \pi_A \beta(z).$$

By the exactness of the sequence, there is an element  $f \in \text{AffT}(A)/\widetilde{\rho K}_0(A)$  such that

$$\alpha(z) - \beta(z) = \tilde{\lambda}_A(f).$$

Since  $k\alpha(z) - k\beta(z) = \alpha(kz) - \beta(kz) = 0$ , we have  $\tilde{\lambda}_A(kf) = 0$ . By the injectivity of  $\tilde{\lambda}_A$ ,  $kf = 0$ . Note that  $\text{AffT}(A)/\widetilde{\rho K}_0(A)$  is an  $\mathbb{R}$ -vector space,  $f = 0$ . Furthermore,  $k\alpha(z) = 0$  in  $U(A)/\widetilde{DU}(A)$  implies that

$$\alpha(z) \in \widetilde{SU}(A)/\widetilde{DU}(A).$$

Thus we get  $\alpha(\text{tor } K_1(A)) \subset \widetilde{SU}(A)$ . If  $u \in \widetilde{SU}(A)/\widetilde{DU}(A)$  then  $\alpha(\pi_A(u)) = u$ .  $\square$

**2.33.** Let  $U_{\text{tor}}(A)$  denote the set of unitaries  $u \in A$  such that  $[u] \in \text{tor } K_1(A)$ . For any  $C^*$ -algebra  $A$  we have  $\widetilde{SU}(A) \subset U_{\text{tor}}(A)$ . If we further assume  $\overline{DU_0(A)} = \overline{DU(A)}$ , then

$$\widetilde{DU}(A) = U_0(A) \cap \widetilde{SU}(A) \quad \text{and} \quad U_{\text{tor}}(A) = U_0(A) \cdot \widetilde{SU}(A).$$

We have  $U_0(A)/\widetilde{DU}(A) \cong U_{\text{tor}}(A)/\widetilde{SU}(A)$ . The metric  $\overline{D_A}$  on  $U(A)/\widetilde{DU}(A)$  induces a metric  $\widetilde{D}_A$  on  $U(A)/\widetilde{SU}(A)$ . And the above identification  $U_0(A)/\widetilde{DU}(A)$  with  $U_{\text{tor}}(A)/\widetilde{SU}(A)$  is an isometry with respect to  $\overline{D_A}$  and  $\widetilde{D}_A$ . Hence  $\tilde{\lambda}_A$  in 2.28 can be regarded as a map (still denoted by  $\tilde{\lambda}_A$ ):

$$\tilde{\lambda}_A : \text{AffT}(A)/\widetilde{\rho K}_0(A) \rightarrow U_{\text{tor}}(A)/\widetilde{SU}(A) \hookrightarrow U(A)/\widetilde{SU}(A).$$

Similar to Lemma 2.30, we have the following.

**Lemma 2.34.** *Suppose that a unital  $C^*$ -algebra  $A$  satisfies  $\rho(\mathcal{P}_1 K_0(A)) = \rho K_0(A)$  and  $\overline{DU_0(A)} = \overline{DU(A)}$  (see 2.26 and 2.25), and in particular, that  $A \in \mathcal{HD}$  or  $A \in A\mathcal{HD}$ . Then the following hold:*

(1) *There is a split exact sequence*

$$0 \rightarrow \text{AffT}(A)/\widetilde{\rho K}_0(A) \xrightarrow{\tilde{\lambda}_A} U(A)/\widetilde{SU}(A) \xrightarrow{\pi_A} K_1(A)/\text{tor } K_1(A) \rightarrow 0.$$

(2)  *$\tilde{\lambda}_A$  is an isometry with respect to the metrics  $\widetilde{d}_A$  and  $\widetilde{D}_A$ .*

**2.35.** For each pair of projections  $p_1, p_2 \in A$  with  $p_1 = up_2u^*$ ,

$$U(p_1Ap_1)/\widetilde{SU}(p_1Ap_1) \cong U(p_2Ap_2)/\widetilde{SU}(p_2Ap_2).$$

Also, since in any unital  $C^*$ -algebra  $A$  and unitaries  $u, v \in U(A)$ ,  $v$  and  $uvu^*$  represent the same element in  $U(A)/\widetilde{SU}(A)$ , the above identification does not depend on the choice of  $u$  to implement  $p_1 = up_2u^*$ . That is, for any  $[p] \in \Sigma A$ , the group  $U(pAp)/\widetilde{SU}(pAp)$  is well defined, which does not depend on choice of  $p \in [p]$ . We include this group (with metric) as part of our invariant. If  $[p] \leq [q]$ , then we can choose  $p, q$  such that  $p \leq q$ . In this case, there is a natural inclusion map  $\iota : pAp \rightarrow qAq$ , which induces

$$\iota_* : U(pAp)/\widetilde{SU}(pAp) \rightarrow U(qAq)/\widetilde{SU}(qAq),$$

where  $\iota_*$  is defined by

$$\iota_*(u) = u \oplus (q - p) \in U(qAq) \quad \text{for all } u \in U(pAp).$$

A unital homomorphism  $\phi : A \rightarrow B$  induces a contractive group homomorphism

$$\phi^\natural : U(A)/\widetilde{SU}(A) \rightarrow U(B)/\widetilde{SU}(B).$$

If  $\phi$  is not unital, then the map

$$\phi^\natural : U(A)/\widetilde{SU}(A) \rightarrow U(\phi(\mathbb{1}_A)B\phi(\mathbb{1}_A))/\widetilde{SU}(\phi(\mathbb{1}_A)B\phi(\mathbb{1}_A))$$

is induced by the corresponding unital homomorphism. In this case,  $\phi$  also induces the map  $\iota_* \circ \phi^\natural : U(A)/\widetilde{SU}(A) \rightarrow U(B)/\widetilde{SU}(B)$ , which is denoted by  $\phi_*$  to avoid confusion. If  $\phi$  is unital, then  $\phi^\natural = \phi_*$ . If  $\phi$  is not unital, then  $\phi^\natural$  and  $\phi_*$  have different codomains. That is,  $\phi^\natural$  has codomain  $U(\phi(\mathbb{1}_A)B\phi(\mathbb{1}_A))/\widetilde{SU}(\phi(\mathbb{1}_A)B\phi(\mathbb{1}_A))$ , but  $\phi_*$  has codomain  $U(B)/\widetilde{SU}(B)$ . (See the last paragraph of 3.8 below for some further explanation with an example.)

Since  $U(A)/\widetilde{SU}(A)$  is an abelian group, we call the unit  $[1] \in U(A)/\widetilde{SU}(A)$  the zero element. If  $\phi : A \rightarrow B$  satisfies  $\phi(U(A)) \subset \widetilde{SU}(\phi(\mathbb{1}_A)B\phi(\mathbb{1}_A))$ , then  $\phi^\natural = 0$ . In particular, if the image of  $\phi$  is of finite dimension, then  $\phi^\natural = 0$ .

**2.36.** In this paper and [Gong et al. 2016], we denote

$$(\underline{K}(A); \underline{K}(A)^+; \Sigma A; \{\text{AffT}(pAp)\}_{[p] \in \Sigma A}; \{U(pAp)/\widetilde{SU}(pAp)\}_{[p] \in \Sigma A})$$

by  $\text{Inv}(A)$ . By a map from  $\text{Inv}(A)$  to  $\text{Inv}(B)$ , we mean

$$\alpha : (\underline{K}(A); \underline{K}(A)^+; \Sigma A) \rightarrow (\underline{K}(B); \underline{K}(B)^+; \Sigma B)$$

as in 2.7, and for each pair  $([p], [\bar{p}]) \in \Sigma A \times \Sigma B$  with  $\alpha([p]) = [\bar{p}]$ , there exist an associate unital positive (continuous) linear map

$$\xi^{p, \bar{p}} : \text{AffT}(pAp) \rightarrow \text{AffT}(\bar{p}B\bar{p})$$

and an associate contractive group homomorphism

$$\chi^{p, \bar{p}} : U(pAp)/\widetilde{SU}(pAp) \rightarrow U(\bar{p}B\bar{p})/\widetilde{SU}(\bar{p}B\bar{p})$$

satisfying the following compatibility conditions. (Note that  $\chi^{p, \bar{p}}$  is continuous, as it is a contractive group homomorphism from a metric group to another metric group.)

(a) If  $p < q$ , then the diagrams

$$\begin{array}{ccc} \text{AffT}(pAp) & \xrightarrow{\xi^{p, \bar{p}}} & \text{AffT}(\bar{p}B\bar{p}) \\ \iota_T \downarrow & & \iota_T \downarrow \\ \text{AffT}(qAq) & \xrightarrow{\xi^{q, \bar{q}}} & \text{AffT}(\bar{q}B\bar{q}) \end{array} \quad (\text{I})$$

and

$$\begin{array}{ccc} U(pAp)/\widetilde{SU}(pAp) & \xrightarrow{\chi^{p, \bar{p}}} & U(\bar{p}B\bar{p})/\widetilde{SU}(\bar{p}B\bar{p}) \\ \iota_* \downarrow & & \iota_* \downarrow \\ U(qAq)/\widetilde{SU}(qAq) & \xrightarrow{\chi^{q, \bar{q}}} & U(\bar{q}B\bar{q})/\widetilde{SU}(\bar{q}B\bar{q}) \end{array} \quad (\text{II})$$

commutes, where the vertical maps are induced by inclusions.

(b) The diagram

$$\begin{array}{ccc} K_0(pAp) & \xrightarrow{\rho} & \text{AffT}(pAp) \\ \alpha \downarrow & & \xi^{p, \bar{p}} \downarrow \\ K_0(\bar{p}B\bar{p}) & \xrightarrow{\rho} & \text{AffT}(\bar{p}B\bar{p}) \end{array} \quad (\text{III})$$

commutes, and therefore  $\xi^{p, \bar{p}}$  induces a map (still denoted by  $\xi^{p, \bar{p}}$ )

$$\xi^{p, \bar{p}} : \text{AffT}(pAp)/\widetilde{\rho K}_0(pAp) \rightarrow \text{AffT}(\bar{p}B\bar{p})/\widetilde{\rho K}_0(\bar{p}B\bar{p}).$$

(The commutativity of (III) follows from the commutativity of (I), by [Ji and Jiang 2011, 1.20]. So this is not an extra requirement.)

(c) The diagrams

$$\begin{array}{ccc} \text{AffT}(pAp)/\widetilde{\rho K}_0(pAp) & \longrightarrow & U(pAp)/\widetilde{SU}(pAp) \\ \xi^{p, \bar{p}} \downarrow & & \chi^{p, \bar{p}} \downarrow \\ \text{AffT}(\bar{p}B\bar{p})/\widetilde{\rho K}_0(\bar{p}B\bar{p}) & \longrightarrow & U(\bar{p}B\bar{p})/\widetilde{SU}(\bar{p}B\bar{p}) \end{array} \quad (\text{IV})$$

and

$$\begin{array}{ccc} U(pAp)/\widetilde{SU}(pAp) & \longrightarrow & K_1(pAp)/\text{tor } K_1(pAp) \\ \chi^{p, \bar{p}} \downarrow & & \alpha_1 \downarrow \\ U(\bar{p}B\bar{p})/\widetilde{SU}(\bar{p}B\bar{p}) & \longrightarrow & K_1(\bar{p}B\bar{p})/\text{tor } K_1(\bar{p}B\bar{p}) \end{array} \quad (\text{V})$$

commute, where  $\alpha_1$  is induced by  $\alpha$ .

We denote the map from  $\text{Inv}(A)$  to  $\text{Inv}(B)$  by

$$\begin{aligned} (\alpha, \xi, \chi) : (\underline{K}(A); \{\text{AffT}(pAp)\}_{[p] \in \Sigma A}; \{U(pAp)/\widetilde{SU}(pAp)\}_{[p] \in \Sigma A}) \\ \rightarrow (\underline{K}(B); \{\text{AffT}(\bar{p}B\bar{p})\}_{[\bar{p}] \in \Sigma B}; \{U(\bar{p}B\bar{p})/\widetilde{SU}(\bar{p}B\bar{p})\}_{[\bar{p}] \in \Sigma B}). \end{aligned}$$

Completely similar to [Nielsen and Thomsen 1996, Lemma 3.2] and [Thomsen 1997, Lemma 6.5], we have the following propositions.

**Proposition 2.37.** *Let unital  $C^*$ -algebras  $A, B$  satisfy  $\rho(\mathcal{P}_1 K_0(A)) = \rho K_0(A)$ ,  $\rho(\mathcal{P}_1 K_0(B)) = \rho K_0(B)$  and  $\overline{DU}_0(A) = \overline{DU}(A)$ ,  $\overline{DU}_0(B) = \overline{DU}(B)$ . In particular, let  $A, B \in \mathcal{HD}$  or  $A\mathcal{HD}$  be unital  $C^*$ -algebras. Assume that*

$$\psi_1 : K_1(A) \rightarrow K_1(B) \quad \text{and} \quad \psi_0 : \text{AffT}(A)/\overline{\rho K_0(A)} \rightarrow \text{AffT}(B)/\overline{\rho K_0(B)}$$

are group homomorphisms such that  $\psi_0$  is a contraction with respect to  $d_A$  and  $d_B$ . Then there is a group homomorphism

$$\psi : U(A)/\overline{DU(A)} \rightarrow U(B)/\overline{DU(B)}$$

which is a contraction with respect to  $D_A$  and  $D_B$  such that the diagram

$$\begin{array}{ccccccc} 0 & \longrightarrow & \text{AffT}(A)/\overline{\rho K_0(A)} & \xrightarrow{\lambda_A} & U(A)/\overline{DU(A)} & \xrightarrow{\pi_A} & K_1(A) \longrightarrow 0 \\ & & \downarrow \psi_0 & & \downarrow \psi & & \downarrow \psi_1 \\ 0 & \longrightarrow & \text{AffT}(A)/\overline{\rho K_0(B)} & \xrightarrow{\lambda_B} & U(B)/\overline{DU(B)} & \xrightarrow{\pi_B} & K_1(B) \longrightarrow 0 \end{array}$$

commutes. If  $\psi_0$  is an isometric isomorphism and  $\psi_1$  is an isomorphism, then  $\psi$  is an isometric isomorphism.

**Proposition 2.38.** *Let unital  $C^*$ -algebras  $A, B$  satisfy  $\rho(\mathcal{P}_1 K_0(A)) = \rho K_0(A)$ ,  $\rho(\mathcal{P}_1 K_0(B)) = \rho K_0(B)$  and  $\overline{DU}_0(A) = \overline{DU}(A)$ ,  $\overline{DU}_0(B) = \overline{DU}(B)$ . In particular, let  $A, B \in \mathcal{HD}$  or  $A\mathcal{HD}$  be unital  $C^*$ -algebras. Assume that*

$$\psi_1 : K_1(A) \rightarrow K_1(B) \quad \text{and} \quad \psi_0 : \text{AffT}(A)/\widetilde{\rho K_0}(A) \rightarrow \text{AffT}(B)/\widetilde{\rho K_0}(B)$$

are group homomorphisms such that  $\psi_0$  is a contraction with respect to  $\widetilde{d}_A$  and  $\widetilde{d}_B$ . Then there is a group homomorphism

$$\psi : U(A)/\widetilde{SU}(A) \rightarrow U(B)/\widetilde{SU}(B)$$

which is a contraction with respect to  $\widetilde{D}_A$  and  $\widetilde{D}_B$  such that the diagram

$$\begin{array}{ccccccc} 0 & \longrightarrow & \text{AffT}(A)/\widetilde{\rho K_0}(A) & \xrightarrow{\tilde{\lambda}_A} & U(A)/\widetilde{SU}(A) & \xrightarrow{\tilde{\pi}_A} & K_1(A)/\text{tor } K_1(A) \longrightarrow 0 \\ & & \downarrow \psi_0 & & \downarrow \psi & & \downarrow \psi_1 \\ 0 & \longrightarrow & \text{AffT}(A)/\widetilde{\rho K_0}(B) & \xrightarrow{\tilde{\lambda}_B} & U(B)/\widetilde{SU}(B) & \xrightarrow{\tilde{\pi}_B} & K_1(B)/\text{tor } K_1(B) \longrightarrow 0 \end{array}$$

commutes. If  $\psi_0$  is an isometric isomorphism and  $\psi_1$  is an isomorphism, then  $\psi$  is an isometric isomorphism.

**Remark 2.39.** As in Proposition 2.38 (or Proposition 2.37), for each fixed pair  $p \in A$ ,  $\bar{p} \in B$  with  $\alpha([p]) = [\bar{p}]$ , if we have an isometric isomorphism between the quotients  $\text{AffT}(pAp)/\rho\widetilde{K}_0(pAp)$  and  $\text{AffT}(\bar{p}B\bar{p})/\rho\widetilde{K}_0(\bar{p}B\bar{p})$  (or between  $\text{AffT}(pAp)/\rho\overline{K}_0(pAp)$  and  $\text{AffT}(\bar{p}B\bar{p})/\rho\overline{K}_0(\bar{p}B\bar{p})$ ) and an isomorphism between  $K_1(pAp)$  and  $K_1(pBp)$ , then we also have an isometric isomorphism between  $U(pAp)/\widetilde{SU}(pAp)$  and  $U(\bar{p}B\bar{p})/\widetilde{SU}(\bar{p}B\bar{p})$  (or between  $U(pAp)/\overline{DU}(pAp)$  and  $U(\bar{p}B\bar{p})/\overline{DU}(\bar{p}B\bar{p})$ ) making both diagrams (IV) and (V) commute. This is the reason  $U(A)/\overline{DU}(A)$  is not included in the Elliott invariant in the classification of simple  $C^*$ -algebras. For our setting, even though for each pair of projections  $(p, \bar{p})$  with  $\alpha([p]) = [\bar{p}]$ , we can find an isometric isomorphism between  $U(pAp)/\widetilde{SU}(pAp)$  and  $U(\bar{p}B\bar{p})/\widetilde{SU}(\bar{p}B\bar{p})$ , provided that the other parts of invariants  $\text{Inv}^0(A)$  and  $\text{Inv}^0(B)$  are isomorphic, we still cannot make such a system of isometric isomorphisms compatible—that is, we cannot make the diagram (II) commute for  $p < q$ . We present two nonisomorphic  $C^*$ -algebras  $A$  and  $B$  in our class such that  $\text{Inv}^0(A) \cong \text{Inv}^0(B)$  in the next section, where  $\text{Inv}^0(B)$  is defined in 2.11. Hence it is essential to include  $\{U(pAp)/\widetilde{SU}(pAp)\}_{p \in \Sigma}$  with the compatibility as part of  $\text{Inv}(A)$ .

**2.40.** Replacing  $U(pAp)/\widetilde{SU}(pAp)$ , one can also use  $U(pAp)/\overline{DU}(pAp)$  as the part of the invariant. That is, one can define  $\text{Inv}'(A)$  as

$$(\underline{K}(A); \underline{K}(A)^+; \Sigma A; \{\text{AffT}(pAp)\}_{[p] \in \Sigma A}; \{U(pAp)/\overline{DU}(pAp)\}_{[p] \in \Sigma A}),$$

with corresponding compatibility condition—one needs to change diagrams (IV) and (V) to the corresponding ones. It is not difficult to see that  $\text{Inv}'(A) \cong \text{Inv}'(B)$  implies  $\text{Inv}(A) \cong \text{Inv}(B)$ . We choose the formulation of  $\text{Inv}(A)$ , since it is much more convenient for the proof of the main theorem in [Gong et al. 2016] and it is formally a weaker requirement than the one to require the isomorphism between  $\text{Inv}'(A)$  and  $\text{Inv}'(B)$ , and the theorem is formally stronger. (Let us point out that, in the construction of the example (and its proof) in Section 3 of this article,  $\text{Inv}'(A)$  is as convenient as  $\text{Inv}(A)$ , and therefore if only for the sake of the example in Section 3 of this paper, it is not necessary to introduce  $\widetilde{SU}(A)$ .)

Furthermore, it is straightforward to check the following proposition:

**Proposition 2.41.** *Let unital  $C^*$ -algebras  $A, B$  satisfy  $\rho(\mathcal{P}_1 K_0(A)) = \rho K_0(A)$ ,  $\rho(\mathcal{P}_1 K_0(B)) = \rho K_0(B)$  and  $\overline{DU}_0(A) = \overline{DU}(A)$ ,  $\overline{DU}_0(B) = \overline{DU}(B)$ . In particular, let  $A, B \in \mathcal{HD}$  or  $A\mathcal{HD}$  be unital  $C^*$ -algebras. Suppose that  $K_1(A) = \text{tor}(K_1(A))$  and  $K_1(B) = \text{tor}(K_1(B))$ . Then  $\text{Inv}^0(A) \cong \text{Inv}^0(B)$  implies  $\text{Inv}(A) \cong \text{Inv}(B)$ .*

*Proof.* It follows from the fact that any isomorphism

$$\xi^{p, \bar{p}} : \text{AffT}(pAp)/\rho \widetilde{K}_0(pAp) \rightarrow \text{AffT}(\bar{p}B\bar{p})/\rho \widetilde{K}_0(\bar{p}B\bar{p})$$

induces a unique isomorphism

$$\chi^{p, \bar{p}} : U(pAp)/\widetilde{SU}(pAp) \rightarrow U(\bar{p}B\bar{p})/\widetilde{SU}(\bar{p}B\bar{p}).$$

(Note that by the split exact sequence in Lemma 2.34,  $\text{AffT}(pAp)/\rho \widetilde{K}_0(pAp) \cong U(pAp)/\widetilde{SU}(pAp)$ .)  $\square$

The following calculations and notations will be used in [Gong et al. 2016].

**2.42.** In general, for  $A = \bigoplus A^i$ , we have

$$\widetilde{SU}(A) = \bigoplus_i \widetilde{SU}(A^i).$$

For  $A = PM_l(C(X))P \in \mathcal{HD}$ , we have  $\widetilde{SU}(A) = \widetilde{DU}(A)$ , and for  $A = M_l(I_k)$ ,  $\widetilde{SU}(A) = \widetilde{DU}(A) \oplus K_1(A)$ . For both cases,  $U(A)/\widetilde{SU}(A)$  can be identified with  $C_1(X, S^1) := C(X, S^1)/\{\text{constant functions}\}$ , or in the case  $A = M_l(I_k)$ , with  $C_1([0, 1], S^1) = C([0, 1], S^1)/\{\text{constant functions}\}$ .

Furthermore,  $C_1(X, S^1)$  can be identified as the set of continuous functions from  $X$  to  $S^1$  such that  $f(x_0) = 1$  for a certain fixed base point  $x_0 \in X$ . For  $X = [0, 1]$ , we choose 0 to be the base point. For  $X = S^1$ , we choose 1  $\in S^1$  to be the base point.

**2.43.** Let  $A = \bigoplus_{i=1}^n A^i \in \mathcal{HD}$ ,  $B = \bigoplus_{j=1}^m B^j \in \mathcal{HD}$ . In this subsection we discuss some consequences of the compatibility of the maps between AffT spaces. Let

$$p = \bigoplus p^i < q = \bigoplus q^i \in A \quad \text{and} \quad \bar{p} = \bigoplus_{j=1}^m \bar{p}^j < \bar{q} = \bigoplus_{j=1}^m \bar{q}^j \in B$$

be projections satisfying  $\alpha([p]) = [\bar{p}]$  and  $\alpha([q]) = [\bar{q}]$ . Suppose two unital positive linear maps  $\xi_1 : \text{AffT}(pAp) \rightarrow \text{AffT}(\bar{p}B\bar{p})$  and  $\xi_2 : \text{AffT}(qAq) \rightarrow \text{AffT}(\bar{q}B\bar{q})$  are compatible with  $\alpha$  (see diagram (2.13)) and compatible with each other (see diagram (2.10)). Since the (not necessarily unital) maps  $\text{AffT}(pAp) \rightarrow \text{AffT}(qAq)$  and  $\text{AffT}(\bar{p}B\bar{p}) \rightarrow \text{AffT}(\bar{q}B\bar{q})$  induced by inclusions are injective, we know that the map  $\xi_1$  is completely determined by  $\xi_2$ . Let

$$\xi_2^{i,j} : \text{AffT}(q^i A q^i) \rightarrow \text{AffT}(\bar{q}^j B^j \bar{q}^j) \quad \text{or} \quad \xi_1^{i,j} : \text{AffT}(p^i A p^i) \rightarrow \text{AffT}(\bar{p}^j B^j \bar{p}^j)$$

be the corresponding component of the map  $\xi_2$  (or  $\xi_1$ ). If  $p^i \neq 0$  and  $\bar{p}^j \neq 0$ , then  $\xi_1^{i,j}$  is given by the following formula: for any  $f \in \text{AffT}(p^i A^i p^i) = C_{\mathbb{R}}(\text{Sp}(A^i))$  ( $\cong \text{AffT}(q^i A q^i)$ ),

$$\xi_1^{i,j}(f) = \frac{\text{rank } \bar{q}^j}{\text{rank } \bar{p}^j} \cdot \frac{\text{rank } \alpha^{i,j}(p^i)}{\text{rank } \alpha^{i,j}(q^i)} \cdot \xi_2^{i,j}(f).$$

In particular, if  $q = \mathbb{1}_A$  with  $\bar{q} = \alpha_0[\mathbb{1}_A]$ , and  $\xi_2 = \xi : \text{AffT}(A) \rightarrow \text{Aff } \alpha_0[\mathbb{1}_A]B\alpha_0[\mathbb{1}_A]$  (note that since  $\text{AffT}(QBQ)$  only depends on the unitary equivalence class of  $Q$ , it is convenient to denote it as  $\text{AffT}([Q]B[Q])$ ), then we denote  $\xi_1$  by  $\xi|_{([p], \alpha[p])}$ . Even for the general case, we can also write  $\xi_1 = \xi_2|_{([p], \alpha[p])}$ , when  $p < q$  as above.

**2.44.** As in 2.43, let  $A = \bigoplus_{i=1}^n A^i$ ,  $B = \bigoplus_{j=1}^m B^j$  and  $p < q \in A$ ,  $\bar{p} < \bar{q} \in B$ , with  $\alpha_0[p] = [\bar{p}]$  and  $\alpha_0[q] = [\bar{q}]$ . If

$$\gamma_1 : U(pAp)/\widetilde{SU}(pAp) \rightarrow U(\bar{p}B\bar{p})/\widetilde{SU}(\bar{p}B\bar{p})$$

is compatible with

$$\gamma_2 : U(qAq)/\widetilde{SU}(qAq) \rightarrow U(\bar{q}B\bar{q})/\widetilde{SU}(\bar{q}B\bar{q}),$$

then  $\gamma_1$  is completely determined by  $\gamma_2$  (since both maps

$$\begin{aligned} U(pAp)/\widetilde{SU}(pAp) &\rightarrow U(qAq)/\widetilde{SU}(qAq), \\ U(\bar{p}B\bar{p})/\widetilde{SU}(\bar{p}B\bar{p}) &\rightarrow U(\bar{q}B\bar{q})/\widetilde{SU}(\bar{q}B\bar{q}) \end{aligned}$$

are injective). Therefore we can denote  $\gamma_1$  by  $\gamma_2|_{([p], \alpha[p])}$ .

**2.45.** Let us point out that, in 2.43 and 2.44, if  $A \in A\mathcal{HD}$  and  $B \in A\mathcal{HD}$ ,  $\xi_1$  is not completely determined by  $\xi_2$  and  $\gamma_1$  is not completely determined by  $\gamma_2$ .

### 3. The counterexample

**3.1.** In this section, we present an example of  $A\mathbb{T}$  algebras to prove that  $\text{Inv}'(A)$  or  $\text{Inv}(A)$  is not completely determined by  $\text{Inv}^0(A)$ . That is, the Hausdorffified algebraic  $K_1$ -groups  $\{U(pAp)/\overline{DU(pAp)}\}_{p \in \text{proj}(A)}$  or  $\{U(pAp)/\widetilde{SU}(pAp)\}_{p \in \text{proj}(A)}$  with the corresponding compatibilities are indispensable as a part of the invariant for  $\text{Inv}'(A)$  or  $\text{Inv}(A)$ . This is one of the essential differences between the simple  $C^*$ -algebras and the  $C^*$ -algebras with the ideal property. In fact, for all the unital  $C^*$ -algebras  $A$  satisfying a reasonable condition (e.g.,  $\rho(\mathcal{P}_1 K_0(A)) = \rho K_0(A)$  and  $\overline{DU_0(A)} = \overline{DU(A)}$ ), we have

$$U(pAp)/\overline{DU(pAp)} \cong \text{AffT}(pAp)/\overline{\rho K_0(pAp)} \oplus K_1(pAp),$$

$$U(pAp)/\widetilde{SU}(pAp) \cong \text{AffT}(pAp)/\widetilde{\rho K_0(pAp)} \oplus K_1(pAp)/\text{tor } K_1(pAp),$$

i.e., the metric groups  $U(pAp)/\overline{DU(pAp)}$  and  $U(pAp)/\widetilde{SU}(pAp)$  themselves are completely determined by  $\text{AffT}(pAp)$  and  $K_1(pAp)$ , which are included in other parts of the invariants, i.e., they are determined by  $\text{Inv}^0(A)$ , but the compatibilities make the difference. The point is that the above isomorphisms are not natural and therefore the isomorphisms corresponding to the cutting down algebras  $pAp$  and  $qAq$  ( $p < q$ ) may not be chosen to be compatible.

As pointed out in 2.40,  $\text{Inv}'(A) \cong \text{Inv}'(B)$  implies  $\text{Inv}(A) \cong \text{Inv}(B)$ . For the  $C^*$ -algebras  $A$  and  $B$  constructed in this paper, we only need to prove  $\text{Inv}^0(A) \cong \text{Inv}^0(B)$  but  $\text{Inv}(A) \not\cong \text{Inv}(B)$ . Consequently,  $\text{Inv}'(A) \not\cong \text{Inv}'(B)$ .

**3.2.** Let  $p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, p_5 = 11, \dots, p_n$  be the first  $n$  prime numbers, and let  $1 < k_1 < k_2 < k_3 < \dots$  be a sequence of positive integers. Let

$$\begin{aligned} A_1 &= B_1 = C(S^1), \\ A_2 &= B_2 = M_{p_1^{k_1}}(C[0, 1]) \oplus M_{p_1^{k_1}}(C(S^1)) = A_1^1 \oplus A_1^2 = B_1^1 \oplus B_1^2, \\ A_3 &= B_3 = M_{p_1^{k_1} p_1^{k_2}}(C[0, 1]) \oplus M_{p_1^{k_1} p_2^{k_2}}(C[0, 1]) \oplus M_{p_1^{k_1} p_2^{k_2}}(C(S^1)), \\ A_4 &= B_4 = M_{p_1^{k_1} p_1^{k_2} p_1^{k_3}}(C[0, 1]) \oplus M_{p_1^{k_1} p_2^{k_2} p_1^{k_3}}(C[0, 1]) \\ &\quad \oplus M_{p_1^{k_1} p_2^{k_2} p_3^{k_3}}(C[0, 1]) \oplus M_{p_1^{k_1} p_2^{k_2} p_3^{k_3}}(C(S^1)). \end{aligned}$$

In general, let

$$\begin{aligned} A_n &= B_n = \bigoplus_{i=1}^{n-1} M_{p_1^{k_1} p_2^{k_2} \dots p_i^{k_i} p_i^{k_{i+1}} \dots p_i^{k_{n-1}}}(C[0, 1]) \oplus M_{p_1^{k_1} p_2^{k_2} \dots p_{n-1}^{k_{n-1}}}(C(S^1)) \\ &= \bigoplus_{i=1}^{n-1} M_{\prod_{j=1}^i p_j^{k_j} \cdot \prod_{j=i+1}^{n-1} p_i^{k_j}}(C[0, 1]) \oplus M_{\prod_{i=1}^{n-1} p_i^{k_i}}(C(S^1)). \end{aligned}$$

For  $1 \leq i \leq n-1$ , let  $[n, i] = \prod_{j=1}^i p_j^{k_j} \cdot \prod_{j=i+1}^{n-1} p_i^{k_j}$  and  $[n, n] = [n, n-1]$ . Then

$$A_n = B_n = \bigoplus_{i=1}^{n-1} M_{[n, i]}(C[0, 1]) \oplus M_{[n, n]}(C(S^1)).$$

(Note that the last two blocks have the same size  $[n, n] = [n, n-1]$ .)

Note that  $[n+1, i] = [n, i] \cdot p_i^{k_n}$  for all  $i \in \{1, 2, \dots, n-1\}$  and  $[n+1, n+1] = [n+1, n] = [n, n] \cdot p_n^{k_n}$ .

**3.3.** Let  $\{t_n\}_{n=1}^\infty$  be a dense subset of  $[0, 1]$  and  $\{z_n\}_{n=1}^\infty$  be a dense subset of  $S^1$ . In this subsection, we define the connecting homomorphisms

$$\phi_{n, n+1} : A_n \rightarrow A_{n+1} \quad \text{and} \quad \psi_{n, n+1} : B_n \rightarrow B_{n+1}.$$

For  $i \leq n-1$ , define  $\phi_{n, n+1}^{i, i} = \psi_{n, n+1}^{i, i} : M_{[n, i]}(C[0, 1]) \rightarrow M_{[n+1, i]}(C[0, 1])$  ( $= M_{[n, i] \cdot p_i^{k_n}}(C[0, 1])$ ) by

$$\begin{aligned} \phi_{n, n+1}^{i, i}(f)(t) &= \psi_{n, n+1}^{i, i}(f)(t) \\ &= \text{diag}(\underbrace{f(t), f(t), \dots, f(t)}_{p_i^{k_n}-1}, f(t_n)) \quad \text{for all } f \in M_{[n, i]}(C[0, 1]). \end{aligned}$$

Define  $\phi_{n,n+1}^{n,n+1} = \psi_{n,n+1}^{n,n+1} : M_{[n,n]}(C(S^1)) \rightarrow M_{[n+1,n+1]}(C(S^1)) = M_{[n,n] \cdot p_n^{k_n}}(C(S^1))$  by

$$\begin{aligned} \phi_{n,n+1}^{n,n+1}(f)(z) &= \psi_{n,n+1}^{n,n+1}(f)(z) \\ &= \text{diag}(f(z), \underbrace{f(z_n), f(z_n), \dots, f(z_n)}_{p_n^{k_n}-1} \quad \text{for all } f \in M_{[n,n]}(C(S^1)). \end{aligned}$$

But  $\phi_{n,n+1}^{n,n}$  and  $\psi_{n,n+1}^{n,n}$  are defined differently — this is the only nonequal component of  $\phi_{n,n+1}$  and  $\psi_{n,n+1}$ .

Let  $l = p_n^{k_n} - 1$ . Then

$$\begin{aligned} \phi_{n,n+1}^{n,n}(f)(t) &= \text{diag}(f(e^{2\pi i t}), f(e^{-2\pi i t}), f(e^{2\pi i/l}), \dots, f(e^{2\pi i(l-1)/l})), \\ \psi_{n,n+1}^{n,n}(f)(t) &= \text{diag}(f(e^{2\pi i l_n t}), f(e^{-2\pi i \cdot 0/l}), f(e^{2\pi i/l}), \dots, f(e^{2\pi i(l-1)/l})) \end{aligned}$$

for any  $f \in M_{[n,n]}(C(S^1))$ , where  $l_n = 4^n \cdot [n+1, n] \in \mathbb{N}$ .

Let all other parts  $\phi_{n,n+1}^{i,j}$ ,  $\psi_{n,n+1}^{i,j}$  of  $\phi_{n,n+1}$ ,  $\psi_{n,n+1}$  (except  $i = j \leq n$  or  $i = n$ ,  $j = n+1$ , as defined above) be zero. Note that all  $\phi_{n,n+1}^{i,j}$ ,  $\psi_{n,n+1}^{i,j}$  are either injective or zero.

Let  $A = \lim(A_n, \phi_{n,m})$ ,  $B = \lim(B_n, \psi_{n,m})$ . Then it follows from the density of the sets  $\{t_n\}_{n=1}^\infty$  and  $\{z_n\}_{n=1}^\infty$  that both  $A$  and  $B$  have the ideal property (see the characterization theorem for  $AH$  algebras with the ideal property [Pasnicu 2000]).

**Proposition 3.4.** *There is an isomorphism between  $\text{Inv}^0(A)$  and  $\text{Inv}^0(B)$  (see 2.11), that is, there is an isomorphism*

$$\alpha : (\underline{K}(A); \underline{K}(A)^+; \Sigma A) \rightarrow (\underline{K}(B); \underline{K}(B)^+; \Sigma B)$$

which is compatible with Bockstein operations, and for pairs  $(p, q)$  with  $p \in \Sigma A$ ,  $q \in \Sigma B$  and  $\alpha([p]) = [q]$ , there are associated unital positive linear maps

$$\xi^{p,q} : \text{AffT}(pAp) \rightarrow \text{AffT}(qBq)$$

which are compatible in the sense of 2.9 (see diagram (2.10)).

*Proof.* As  $KK(\phi_{n,m}) = KK(\psi_{n,m})$  and  $\phi_{n,m} \sim_h \psi_{n,m}$ , the identity maps  $\eta_n : A_n \rightarrow B_n$  induce a shape equivalence between  $A = \lim(A_n, \phi_{n,m})$  and  $B = \lim(B_n, \psi_{n,m})$ , and therefore induce an isomorphism

$$\alpha : (\underline{K}(A); \underline{K}(A)^+; \Sigma A) \rightarrow (\underline{K}(B); \underline{K}(B)^+; \Sigma B).$$

Note that  $\phi_{n,n+1}^{i,i} = \psi_{n,n+1}^{i,i}$  for  $i \leq n-1$ ,  $\phi_{n,n+1}^{n,n+1} = \psi_{n,n+1}^{n,n+1}$ , and

$$\|\text{AffT } \phi_{n,n+1}^{n,n}(f) - \text{AffT } \psi_{n,n+1}^{n,n}(f)\| \leq \frac{2}{p_n^{k_n}} \|f\|$$

(see the definition of  $\phi_{n,n+1}$  and  $\psi_{n,n+1}$ ). Therefore,

$$\text{AffT } \eta_n : \text{AffT}(A_n) \rightarrow \text{AffT}(B_n) \quad \text{and} \quad \text{AffT } \eta_n^{-1} : \text{AffT}(B_n) \rightarrow \text{AffT}(A_n)$$

induce the approximately intertwining diagram

$$\begin{array}{ccccccc} \text{AffT}(A_1) & \longrightarrow & \text{AffT}(A_2) & \longrightarrow & \cdots & \longrightarrow & \text{AffT}(A) \\ \downarrow \uparrow & & \downarrow \uparrow & & & & \\ \text{AffT}(B_1) & \longrightarrow & \text{AffT}(B_2) & \longrightarrow & \cdots & \longrightarrow & \text{AffT}(B) \end{array}$$

in the sense of [Elliott 1993b]. Therefore, there is a unital positive isomorphism

$$\xi : \text{AffT}(A) \rightarrow \text{AffT}(B).$$

Also, for any projection  $[P] \in K_0(A)$ , there is a projection  $P_n \in A_n = B_n$  (for  $n$  large enough) with  $P_n^i = \text{diag}(1, \dots, 1, 0, \dots, 0) \in M_{[n,i]}(C(X_{n,i}))$ , where  $X_{n,i} = [0, 1]$  for  $i \leq n-1$ , and  $X_{n,n} = S^1$ , such that  $\phi_{n,\infty}([P_n]) = [P] \in K_0(A)$ . Note that for any constant functions  $f \in A_n^i = B_n^i$  (e.g.,  $P_n^i$  above) and for any  $j$ ,  $\phi_{n,n+1}^{i,j}(f)$  and  $\psi_{n,n+1}^{i,j}(f)$  are still constant functions, and  $\phi_{n,n+1}^{i,j}(f) = \psi_{n,n+1}^{i,j}(f)$ . That is, we have

$$\phi_{n,n+1}(P_n) = \psi_{n,n+1}(P_n) \quad (\text{denoted by } P_{n+1}),$$

$$\phi_{n,m}(P_n) = \psi_{n,m}(P_n) \quad (\text{denoted by } P_m).$$

Let  $P_\infty = \phi_{n,\infty}(P_n)$  and  $Q_\infty = \psi_{n,\infty}(P_n)$ . Then the identity maps  $\{\eta_m\}_{m>n}$  also induce the approximate intertwining diagram

$$\begin{array}{ccccccc} \text{AffT}(P_n A_n P_n) & \longrightarrow & \text{AffT}(P_{n+1} A_{n+1} P_{n+1}) & \longrightarrow & \cdots & \longrightarrow & \text{AffT}(P_\infty A P_\infty) \\ \downarrow \uparrow & & \downarrow \uparrow & & & & \\ \text{AffT}(P_n B_n P_n) & \longrightarrow & \text{AffT}(P_{n+1} B_{n+1} P_{n+1}) & \longrightarrow & \cdots & \longrightarrow & \text{AffT}(Q_\infty B Q_\infty) \end{array}$$

and hence induce a positive linear isomorphism

$$\xi^{[P], \alpha[P]} : \text{AffT}(P_\infty A P_\infty) \rightarrow \text{AffT}(Q_\infty B Q_\infty).$$

(Note that  $[P_\infty] = [P]$  and  $[Q_\infty] = \alpha[P]$  in  $K_0(A)$  and  $K_0(B)$ , respectively.) Evidently those maps are compatible since, they are induced by the same sequence of homomorphisms  $\{\eta_n\}$  and  $\{\eta_n^{-1}\}$ .  $\square$

Definition 3.5 and Proposition 3.6 are inspired by [Elliott 1997].

**Definition 3.5.** Let  $C = \lim(C_n, \phi_{n,m})$  be an  $A\mathcal{HD}$  inductive limit. We say the system  $(C_n, \phi_{n,m})$  has the uniformly varied determinant if for any  $C_n^i = M_{[n,i]}(C(S^1))$

(that is,  $C_n^i$  has spectrum  $S^1$ ),  $C_{n+1}^j$ , and  $f \in C_n^i$  defined by

$$f(z) = \begin{pmatrix} z & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}_{[n,i] \times [n,i]} \quad \text{for all } z \in S^1,$$

we have either that  $\det(\phi_{n,n+1}^{i,j}(f)(x))$  is constant for  $x \in \text{Sp}(C_{n+1}^j) \neq S^1$  or that  $\det(\phi_{n,n+1}^{i,j}(f)(z)) = \lambda z^k$  ( $\lambda \in \mathbb{C}$ ) for  $z \in \text{Sp}(C_{n+1}^j) = S^1$ , where  $j$  satisfies  $\phi_{n,n+1}^{i,j} \neq 0$  and the determinant is taken inside  $\phi_{n,n+1}^{i,j}(\mathbb{1}_{C_n^i})C_{n+1}^j\phi_{n,n+1}^{i,j}(\mathbb{1}_{C_n^i})$ .

**Proposition 3.6.** *If the inductive limit system  $C = (C_n, \phi_{n,m})$  has the uniformly varied determinant, then for any elements  $[p] \in \sum C$ , there are splitting maps*

$$K_1(pCp)/\text{tor } K_1(pCp) \xrightarrow{S_{pCp}} U(pCp)/\widetilde{SU}(pCp)$$

of the exact sequences

$$0 \rightarrow \text{AffT}(pCp)/\rho\widetilde{K}_0(pCp) \rightarrow U(pCp)/\widetilde{SU}(pCp) \xrightarrow{\pi_{pCp}} K_1(pCp)/\text{tor } K_1(pCp) \rightarrow 0$$

(that is,  $\pi_{pCp} \circ S_{pCp} = \text{id}$  on  $K_1(pCp)/\text{tor } K_1(pCp)$ ) such that the system of maps  $\{S_{pCp}\}_{[p] \in \sum C}$  are compatible in the following sense: if  $p < q$ , then the diagram

$$\begin{array}{ccc} K_1(pCp)/\text{tor } K_1(pCp) & \xrightarrow{S_{pCp}} & U(pCp)/\widetilde{SU}(pCp) \\ \downarrow & & \downarrow \\ K_1(qCq)/\text{tor } K_1(qCq) & \xrightarrow{S_{qCq}} & U(qCq)/\widetilde{SU}(qCq) \end{array} \quad (3.7)$$

commutes, where the vertical maps are induced by the inclusions  $pCp \rightarrow qCq$ .

*Proof.* Fix  $p \in C$ . Let  $x \in K_1(pCp)/\text{tor } K_1(pCp)$ . There exist a  $C_n$  and  $p_n \in C_n$  such that  $[\phi_{n,\infty}(p_n)] = [p] \in K_0(C)$ . Without loss of generality, we can assume  $\phi_{n,\infty}(p_n) = p$ . By increasing  $n$  if necessary, we can assume that there is an element  $x_n \in K_1(p_nC_n p_n)/\text{tor } K_1(p_nC_n p_n)$  such that

$$(\phi_{n,\infty})_*(x_n) = x \in K_1(pCp)/\text{tor } K_1(pCp).$$

Write  $p_nC_n p_n = D = \bigoplus D^i$ . Let  $I = \{i : \text{Sp}(D^i) = S^1\}$ . For  $i \in I$ ,  $D^i$  can be identified with  $M_{l_i}(C(S^1))$ . Let  $u_i \in D^i$  be defined by

$$u_i(z) = \begin{pmatrix} z & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}_{l_i \times l_i} \quad \text{for all } z \in S^1,$$

which represents the standard generator of  $K_1(D^i)$ . Then  $x_n$  can be represented by

$$u = \bigoplus_{i \in I} u_i^{k_i} \oplus \bigoplus_{j \notin I} \mathbb{1}_{D^j} \in \bigoplus_{i \in I} D^i \oplus \bigoplus_{j \notin I} D^j = D \subseteq p_n C_n p_n.$$

Define  $S(x) = [\phi_{n,\infty}(u)] \in U(pCp)/\widetilde{SU}(pCp)$ . Note that all unitaries with constant determinants are in  $\widetilde{SU}$ , and that the inductive system has the uniformly varied determinant. It is routine to verify that  $S(x)$  is well defined and the system  $\{S_{pCp}\}_{[p] \in \sum C}$  makes the diagram (3.7) commute.  $\square$

**3.8.** Let  $\mathcal{A}$  be a unital  $C^*$ -algebra. Then  $\text{AffT}(\mathcal{A})$  is a real Banach space with quotient space  $\text{AffT}(\mathcal{A})/\rho\widetilde{K}_0(\mathcal{A})$ . Let us use  $\|\cdot\|^\sim$  to denote the quotient norm. Note that  $\tilde{\lambda}_{\mathcal{A}}$  identifies  $U_{\text{tor}}(\mathcal{A})/\widetilde{SU}(\mathcal{A})$  with  $\text{AffT}(\mathcal{A})/\rho\widetilde{K}_0(\mathcal{A})$ . Thus,  $U_{\text{tor}}(\mathcal{A})/\widetilde{SU}(\mathcal{A})$  is regarded as a real Banach space, whose norm is also denoted by  $\|\cdot\|^\sim$ . In general, we have

$$U(\mathcal{A})/\widetilde{SU}(\mathcal{A}) \cong U_{\text{tor}}(\mathcal{A})/\widetilde{SU}(\mathcal{A}) \times K_1(\mathcal{A})/\text{tor } K_1(\mathcal{A}),$$

but the identification is not canonical. Even though  $U(\mathcal{A})/\widetilde{SU}(\mathcal{A})$  is not a Banach space, it is an abelian group: for  $[u], [v] \in U(\mathcal{A})/\widetilde{SU}(\mathcal{A})$ , define  $[u] - [v] = [uv^*]$ .

The norm  $\|\cdot\|^\sim$  is related to the metrics  $\tilde{d}_{\mathcal{A}}$  (on  $\text{AffT}(\mathcal{A})/\rho\widetilde{K}_0(\mathcal{A})$ ; see 2.28) and  $\tilde{D}_{\mathcal{A}}$  (on  $U_{\text{tor}}(\mathcal{A})/\widetilde{SU}(\mathcal{A})$ ; see 2.33) as below. Let  $\varepsilon < 1$ . For  $f, g \in \text{AffT}(\mathcal{A})/\rho\widetilde{K}_0(\mathcal{A})$ ,

$$\|f - g\|^\sim < \frac{\varepsilon}{2\pi} \implies \tilde{d}_{\mathcal{A}}(f, g) < \varepsilon \implies \|f - g\|^\sim < \frac{\varepsilon}{4}.$$

And for any  $[u], [v] \in U(\mathcal{A})/\widetilde{SU}(\mathcal{A})$  with  $[u] - [v] = [uv^*] \in U_{\text{tor}}(\mathcal{A})/\widetilde{SU}(\mathcal{A})$ ,

$$\|[u] - [v]\|^\sim < \frac{\varepsilon}{2\pi} \implies \tilde{D}_{\mathcal{A}}([u], [v]) < \varepsilon \implies \|[u] - [v]\|^\sim < \frac{\varepsilon}{4}.$$

For  $\mathcal{A} = PM_l(C(X))P \in \mathcal{HD}$  or  $\mathcal{A} = M_l(I_k)$  (in this case we also denote  $[0, 1]$  by  $X$ ), there are canonical identifications

$$U_{\text{tor}}(\mathcal{A})/\widetilde{SU}(\mathcal{A}) \cong \text{AffT}(\mathcal{A})/\rho\widetilde{K}_0(\mathcal{A}) \cong C(X, \mathbb{R})/\{\text{constant functions}\}$$

(see 2.42). Choose a base point  $x_0 \in X$ . Let  $C_{x_0}(X, \mathbb{R})$  be the set of functions  $f \in C(X, \mathbb{R})$  with  $f(x_0) = 0$ . Then  $C(X, \mathbb{R})/\{\text{constant functions}\} \cong C_{x_0}(X, \mathbb{R})$ . For  $[f] \in \text{AffT}(\mathcal{A})/\rho\widetilde{K}_0(\mathcal{A})$  (or  $[f] \in U_{\text{tor}}(\mathcal{A})/\widetilde{SU}(\mathcal{A})$ ) identified with a function  $f \in C_{x_0}(X, \mathbb{R})$ , we have

$$\|[f]\|^\sim = \frac{1}{2} \left( \max_{x \in X} (f(x)) - \min_{x \in X} (f(x)) \right)$$

(rather than  $\sup_{x \in X} \{|f(x)|\}$ ).

In the above case, if  $p \in \mathcal{A}$  is a nonzero projection, then  $U_{\text{tor}}(pAp)/\widetilde{SU}(pAp) \cong \text{AffT}(pAp)/\rho\widetilde{K}_0(pAp)$  is also identified with  $C_{x_0}(X, \mathbb{R})$ . Consider the inclusion map  $\iota : pAp \rightarrow \mathcal{A}$ . Then the map  $\iota_*$  as a map from  $U_{\text{tor}}(pAp)/\widetilde{SU}(pAp) \cong$

$\text{AffT}(pAp)/\rho\widetilde{K}_0(pAp)$  to  $U_{\text{tor}}(\mathcal{A})/\widetilde{SU}(\mathcal{A})$  can be described as follows: if

$$u \in U_{\text{tor}}(pAp)/\widetilde{SU}(pAp) \cong \text{AffT}(pAp)/\rho\widetilde{K}_0(pAp)$$

is identified with  $f \in C_{x_0}(X, \mathbb{R})$ , then  $\iota_*(u) \in U_{\text{tor}}(\mathcal{A})/\widetilde{SU}(\mathcal{A})$  is identified with

$$\frac{\text{rank}(p)}{\text{rank}(\mathbb{1}_{\mathcal{A}})} f.$$

But  $\iota^\natural$  is the identity map from  $U_{\text{tor}}(pAp)/\widetilde{SU}(pAp) \cong \text{AffT}(pAp)/\rho\widetilde{K}_0(pAp)$  to itself (not to  $U_{\text{tor}}(\mathcal{A})/\widetilde{SU}(\mathcal{A})$ ).

**3.9.** It is easy to see that  $K_1(A) = K_1(B) = \mathbb{Z}$ .

In the definition of  $A_n = \bigoplus_{i=1}^n A_n^i$ , only one block  $A_n^n = M_{[n,n]}(C(S^1))$  has spectrum  $S^1$ , and only two partial maps  $\phi_{n,n+1}^{n,j}$  for  $j = n, j = n+1$  (of  $\phi_{n,n+1}$  from  $A_n^n$ ) are nonzero. Let  $f \in A_n^n$  be defined as in Definition 3.5. Then  $\det(\phi_{n,n+1}^{n,n+1}(f)(z)) = z$  and  $\det(\phi_{n,n+1}^{n,n}(f)(t)) = e^{2\pi it} e^{-2\pi it} e^{2\pi i/l} e^{2\pi i(2/l)} \dots e^{2\pi i(l-1)/l} = \pm 1$  (see 3.3). So the inductive limit system  $(A_n, \phi_{n,m})$  has the uniformly varied determinant, and therefore the limit algebra  $A$  has compatible splitting maps  $S_p : K_1(pAp) \rightarrow U(pAp)/\widetilde{SU}(pAp)$ .

We prove that  $B = \lim(B_n, \psi_{n,m})$  does not have such a compatible system of splitting maps  $\{K_1(pBp) \rightarrow U(pBp)/\widetilde{SU}(pBp)\}_{[p] \in \sum B}$ .

Before proving the above fact, let us describe the  $K_0$ -group of  $A$  and  $B$ . Let

$$\begin{aligned} G_1 &= \left\{ \frac{m}{p_1^l} : m \in \mathbb{Z}, l \in \mathbb{Z}_+ \right\}, \\ G_2 &= \left\{ \frac{m}{p_1^{k_1} p_2^l} : m \in \mathbb{Z}, l \in \mathbb{Z}_+ \right\}, \\ G_3 &= \left\{ \frac{m}{p_1^{k_1} p_2^{k_2} p_3^l} : m \in \mathbb{Z}, l \in \mathbb{Z}_+ \right\}, \\ &\vdots \\ G_n &= \left\{ \frac{m}{p_1^{k_1} p_2^{k_2} \dots p_{n-1}^{k_{n-1}} p_n^l} : m \in \mathbb{Z}, l \in \mathbb{Z}_+ \right\}, \\ G_\infty &= \left\{ \frac{m}{p_1^{k_1} p_2^{k_2} \dots p_t^{k_t}} : t \in \mathbb{Z}_+, m \in \mathbb{Z} \right\}, \end{aligned}$$

where  $p_1 = 2, p_2 = 3, \dots, p_i, \dots$  and  $k_1, k_2, \dots, k_i \dots$  are defined in 3.2. Then

$$\begin{aligned} K_0(A) &= K_0(B) \\ &= \left\{ (a_1, a_2, \dots, a_n, \dots) \in \prod_{n=1}^{\infty} G_n : \exists N \text{ such that } a_N = a_{N+1} = \dots \in \mathbb{Q} \right\} \\ &\triangleq \widetilde{G}. \end{aligned}$$

Furthermore, their positive cones consist of the elements whose coordinates are nonnegative, and their order units are  $[\mathbb{1}_A] = [\mathbb{1}_B] = (1, 1, \dots, 1, \dots) \in \prod_{n=1}^{\infty} G_n$ . Let

$$\begin{aligned}\alpha_0 : (K_0(A), K_0(A)^+, [\mathbb{1}_A]) &= (\tilde{G}, \tilde{G}^+, (1, 1, \dots, 1, \dots)) \\ &\rightarrow (K_0(B), K_0(B)^+, [\mathbb{1}_B]) = (\tilde{G}, \tilde{G}^+, (1, 1, \dots, 1, \dots))\end{aligned}$$

be a scaled ordered isomorphism. Then  $\alpha_0((1, 1, \dots, 1, \dots)) = (1, 1, \dots, 1, \dots)$ . Note that an element  $x \in \tilde{G}$  is divisible by power  $p_1^n$  (for any  $n$ ) of the first prime number  $p_1 = 2$  if and only if  $x = (t, 0, 0, \dots, 0, \dots) \in G_1 \subset \tilde{G}$ . Hence  $\alpha_0((1, 0, 0, \dots, 0, \dots)) = (t, 0, 0, \dots, 0, \dots)$  for some  $t \in G_1$  with  $t > 0$ . Hence

$$\alpha_0((0, 1, 1, \dots, 1, \dots)) = (1 - t, 1, 1, \dots, 1, \dots).$$

Since  $\alpha_0$  preserves the positive cone, we have  $1 - t \geq 0$ , which implies  $t \leq 1$ . On the other hand,  $(\alpha_0)^{-1}$  takes  $(1, 0, 0, \dots, 0, \dots)$  to  $(1/t, 0, 0, \dots, 0, \dots)$ . But  $(\alpha_0)^{-1}$  also preserves the positive cone. Symmetrically, we get  $t \geq 1$ . That is,  $\alpha_0((1, 0, 0, \dots, 0, \dots)) = (1, 0, 0, \dots, 0, \dots)$ . Similarly, using the fact that  $G_k$  is the subgroup of all elements in  $\tilde{G}$  which can be divisible by any power of  $p_k$  — the  $k$ -th prime number, we can prove that

$$\alpha_0\left(\underbrace{(0, \dots, 0)}_{k-1}, 1, 0, \dots, 0, \dots\right) = \underbrace{(0, \dots, 0)}_{k-1}, 1, 0, \dots, 0, \dots \in G_k \subset \tilde{G}.$$

That is,  $\alpha_0$  is the identity on  $\tilde{G}$ .

Note that  $\text{Sp}(A) = \text{Sp}(B)$  is the one point compactification of  $\{1, 2, 3, \dots\}$  — or, in other words,  $\{1, 2, 3, \dots, \infty\}$ . If we let  $I_n$  (or  $J_n$ ) be the primitive ideal  $A$  (or  $B$ ) corresponding to  $n$  (including  $n = \infty$ ), then

$$K_0(A/I_n) = K_0(B/J_n) = G_n.$$

Note also that if  $m' > m > n \in \mathbb{N}$ , then  $\phi_{m,m'}(A_m^n) \subset A_{m'}^n$  and  $\psi_{m,m'}(B_m^n) \subset B_{m'}^n$ . Hence  $A/I_n = \lim_{n < m \rightarrow \infty} (A_m^n, \phi_{m,m'}|_{A_m^n})$  (resp.  $B/J_n = \lim_{n < m \rightarrow \infty} (B_m^n, \psi_{m,m'}|_{B_m^n})$ ) are ideals of  $A$  (resp.  $B$ ). But  $A/I_{\infty}$  (or  $B/J_{\infty}$ ) is not an ideal of  $A$  (or  $B$ ).

Let  $\alpha : (\underline{K}(A), \underline{K}(A)^+, \Sigma A) \rightarrow (\underline{K}(B), \underline{K}(B)^+, \Sigma B)$  be an isomorphism. By 3.9 the induced map  $\alpha_0$  on  $K_0$  group is identity, when both  $K_0(A)$  and  $K_0(B)$  are identified with  $\tilde{G}$  as scaled ordered groups. That is,  $\alpha_0$  is the same as the  $\alpha_0$  induced by the shape equivalence in the proof of Proposition 3.4. In particular, if there is an isomorphism  $\wedge : A \rightarrow B$ , then for all  $i \leq n - 1$ ,  $\wedge_*[(\phi_{n,\infty}(\mathbb{1}_{A_n^i}))] = [\psi_{n,\infty}(\mathbb{1}_{B_n^i})]$ . This implies  $\wedge(\phi_{n,\infty}(\mathbb{1}_{A_n^i})) = \psi_{n,\infty}(\mathbb{1}_{B_n^i})$ , since  $\psi_{n,\infty}(\mathbb{1}_{B_n^i}) = \mathbb{1}_{B/I_i}$ , which is in the center of  $B$  (any element in the center of the  $C^*$ -algebra can only unitary equivalent to itself). Hence it is also true that  $\wedge(\phi_{n,\infty}(\mathbb{1}_{A_n^i})) = \psi_{n,\infty}(\mathbb{1}_{B_n^i})$  for  $i = n$ .

**3.10.** Let  $P_1 = \mathbb{1}_B = \psi_{1,\infty}(\mathbb{1}_{B_1})$  and  $P_n = \psi_{n,\infty}(\mathbb{1}_{B_n^n})$  for  $n > 1$ . Then we have  $P_1 > P_2 > \dots > P_n > \dots$ . We prove that there are no splittings

$$K_1(P_n B P_n) \rightarrow U(P_n B P_n) / \widetilde{SU}(P_n B P_n)$$

which are compatible for all pairs of projections  $P_n > P_m$  (see diagram (3.7)) in the next subsection. Before doing so, we need some preparations.

Set  $Q_1 = P_1 - P_2$ ,  $Q_2 = P_2 - P_3, \dots, Q_n = P_n - P_{n+1}$ . Then for each  $n$ , we have the inductive limit

$$Q_n B Q_n = \lim_{m \rightarrow \infty} (B_m^n, \psi_{m,m'}^{n,n})$$

(note that for  $m > n$ ,  $\psi_{m,m+1}^{n,j} = 0$  if  $j \neq n$ ), which is the quotient algebra corresponding to the primitive ideal of  $n \in \text{Sp}(B) = \{1, 2, 3, \dots, \infty\}$ . Note that  $Q_n B Q_n$  is a simple  $AI$  algebra. The inductive limit of the  $C^*$ -algebras

$$B_{n+1}^n \rightarrow B_{n+2}^n \rightarrow B_{n+3}^n \rightarrow \dots \rightarrow Q_n B Q_n$$

induces the inductive limit of the ordered Banach spaces

$$\text{AffT}(B_{n+1}^n) \xrightarrow{\xi_{n+1,n+2}} \text{AffT}(B_{n+2}^n) \xrightarrow{\xi_{n+2,n+3}} \dots \rightarrow \text{AffT}(Q_n B Q_n),$$

whose connecting maps  $\xi_{m,m+1} : C_{\mathbb{R}}([0, 1]) \rightarrow C_{\mathbb{R}}([0, 1])$  (for  $m > n$ ) satisfy

$$\|\xi_{m,m+1}(f) - f\| \leq \frac{1}{p_n^{k_m}} \|f\| \quad \text{for all } f \in C_{\mathbb{R}}[0, 1], m > n.$$

Hence we have the following approximate intertwining diagram:

$$\begin{array}{ccccccc} C_{\mathbb{R}}[0, 1] & \xrightarrow{\xi_{n,n+1}} & C_{\mathbb{R}}[0, 1] & \xrightarrow{\xi_{n+1,n+2}} & C_{\mathbb{R}}[0, 1] & \longrightarrow & \dots \longrightarrow \text{AffT}(Q_n B Q_n) \\ \downarrow & & \downarrow & & \downarrow & & \\ C_{\mathbb{R}}[0, 1] & \xrightarrow{\text{id}} & C_{\mathbb{R}}[0, 1] & \xrightarrow{\text{id}} & C_{\mathbb{R}}[0, 1] & \longrightarrow & \dots \longrightarrow C_{\mathbb{R}}[0, 1] \end{array}$$

Consequently,  $\text{AffT}(Q_n B Q_n) \cong C_{\mathbb{R}}[0, 1]$ , and the maps

$$\xi_{m,\infty} : \text{AffT}(B_m^n) = C_{\mathbb{R}}[0, 1] \rightarrow \text{AffT}(Q_n B Q_n) \cong C_{\mathbb{R}}[0, 1]$$

(under the identification) satisfy

$$\|\xi_{m,\infty}(f) - f\| \leq \left( \frac{1}{p_n^{k_m}} + \frac{1}{p_n^{k_{m+1}}} + \dots \right) \|f\| \leq \frac{1}{4} \|f\| \quad \text{for all } f \in C_{\mathbb{R}}[0, 1].$$

Therefore  $\|\xi_{m,\infty}(f)\| \geq \frac{3}{4} \|f\|$ .

Note that  $\widetilde{\rho K}_0(Q_n B Q_n) = \mathbb{R} = \widetilde{\rho K}_0(B_m^n)$  consists of constant functions on  $[0, 1]$ . Take an element  $h \in C_{\mathbb{R}}[0, 1] = \text{AffT}(B_m^n)$ . Considering  $\xi_{m,\infty}(h)$  as an element of

$\text{AffT}(Q_n B Q_n)/\rho \widetilde{K}_0(Q_n B Q_n)$ , we have

$$\|\xi_{m,\infty}(h)\|^\sim \geq \frac{1}{2} \cdot \frac{3}{4} \left( \max_{t \in [0,1]} h(t) - \min_{t \in [0,1]} h(t) \right),$$

where  $\|\cdot\|^\sim$  is defined in 3.8.

**3.11.** We now prove that no compatible splittings

$$S_n : K_1(P_n B P_n) \rightarrow U(P_n B P_n)/\widetilde{SU}(P_n B P_n)$$

exist. Suppose such splittings exist. Then consider the generator  $x \in K_1(B) = \mathbb{Z}$ .

Note that  $x \in K_1(P_n B P_n) \cong K_1(B)$  for all  $P_n$ . Note also that the diagram

$$\begin{array}{ccc} K_1(P_{n+1} B P_{n+1}) & \xrightarrow{S_{n+1}} & U(P_{n+1} B P_{n+1})/\widetilde{SU}(P_{n+1} B P_{n+1}) \\ \text{id} \downarrow & & \downarrow \iota_* \\ K_1(P_1 B P_1) & \xrightarrow{S_1} & U(P_1 B P_1)/\widetilde{SU}(P_1 B P_1) \end{array}$$

commutes ( $P_1 B P_1 = B$ ). The composition

$$\begin{aligned} U(P_{n+1} B P_{n+1})/\widetilde{SU}(P_{n+1} B P_{n+1}) &\xrightarrow{\iota_*} U(P_1 B P_1)/\widetilde{SU}(P_1 B P_1) \\ &\rightarrow \bigoplus_{i=1}^n U(Q_i B Q_i)/\widetilde{SU}(Q_i B Q_i) \end{aligned}$$

is the zero map. (Note that  $Q_i B Q_i$  is an ideal of  $B$  and is also the quotient  $B/J_i$ .) Consequently, we have

$$\pi_n^\natural(S_1(x)) = \pi_n^\natural(\iota_* S_{n+1}(x)) = 0, \quad (*)$$

where  $\pi_n : B \rightarrow Q_n B Q_n$  is the quotient map. Let  $S_1(x)$  be represented by a unitary  $u \in U(B)$ . Then there are an  $n$  (large enough) and  $[u_n] \in U(B_n)/\widetilde{SU}(B_n)$ , represented by unitary  $u_n \in B_n$ , such that

$$\psi_{n,\infty}^\natural([u_n]) - S_1(x) \in U_{\text{tor}}(B_n)/\widetilde{SU}(B_n) \quad \text{and} \quad \|\psi_{n,\infty}^\natural([u_n]) - S_1(x)\|^\sim < \frac{1}{16}.$$

Note that

$$(\psi_{n,m})_* : K_1(B_n) \rightarrow K_1(B_m)$$

is the identify map from  $\mathbb{Z}$  to  $\mathbb{Z}$ . Let  $g \in M_{[n,n]}(C(S^1)) = B_n^n$  be defined by

$$g(z) = \begin{pmatrix} z & & & \\ & 1 & & \\ & & 1 & \\ & & & \ddots \\ & & & & 1 \end{pmatrix}_{[n,n] \times [n,n]}$$

Then  $[g^{-1}u_n] = 0$  in  $K_1(B_n)$ . By the exactness of the sequence

$$0 \rightarrow \text{AffT}(B_n)/\rho\widetilde{K}_0(B_n) \rightarrow U(B_n)/\widetilde{SU}(B_n) \rightarrow K_1(B_1) \rightarrow 0,$$

there is an  $h \in \bigoplus_{i=1}^n C_{\mathbb{R}}[0, 1] \oplus C_{\mathbb{R}}(S^1) = \text{AffT}(B_n)$  such that

$$[u_n] = [g] \cdot (e^{2\pi i h} \cdot \mathbb{1}_{B_n}) \in U(B_n)/\widetilde{SU}(B_n).$$

Let  $\|h\| = M$ . Choose  $m > n$  such that  $4^{m-1} > 8M + 8$ .

Consider

$$\psi_{n,m}^{n,m-1} : B_n^n = M_{[n,n]}(C(S^1)) \rightarrow B_m^{m-1} = M_{[m,m-1]}(C([0, 1])),$$

which is the composition

$$\psi_{m-1,m}^{m-1,m-1} \circ \psi_{n,m-1}^{n,m-1} : M_{[n,n]}(C(S^1)) \rightarrow M_{[m-1,m-1]}(C(S^1)) \rightarrow M_{[m,m-1]}(C([0, 1])).$$

Let  $g' = \psi_{n,m}^{n,m-1}(g)$ . We know that

$$g'(t) = \psi_{n,m}^{n,m-1}(g)(t) = \begin{pmatrix} e^{2\pi i l_{m-1} t} & & & \\ * & * & & \\ & * & \ddots & \\ & & & * \end{pmatrix}_{[m,m-1] \times [m,m-1]}$$

where the \*'s represent constant functions on  $[0, 1]$ , and therefore

$$g' = e^{2\pi i h'} \pmod{\widetilde{SU}(B_m^{m-1})}$$

with  $h'(t) = \frac{l_{m-1}}{[m, m-1]} \cdot t \cdot \mathbb{1}_{[m, m-1]}$ . When we identify  $U(B_m^{m-1})/\widetilde{SU}(B_m^{m-1})$  with

$$\text{AffT}(B_m^{m-1})/\rho\widetilde{K}_0(B_m^{m-1}) = C_{\mathbb{R}}[0, 1]/\{\text{constants}\},$$

$g'$  is identified with  $\tilde{h} \in C_{\mathbb{R}}[0, 1]$ , where

$$\tilde{h}(t) = \frac{l_{m-1}}{[m, m-1]} t.$$

Since  $\frac{l_{m-1}}{[m, m-1]} \geq 8M + 8$ , we have

$$\|\tilde{h}\|^\sim = \frac{1}{2} \left( \max_{t \in [0, 1]} \tilde{h}(t) - \min_{t \in [0, 1]} \tilde{h}(t) \right) \geq 4M + 4$$

(see 3.8). On the other hand,

$$[u_n] = [g] + \tilde{\lambda}_{B_n}([h]) \in U(B_n)/\widetilde{SU}(B_n),$$

where  $[h] \in \text{AffT}(B_n)/\rho\widetilde{K}_0(B_n)$  is the element defined by  $h$ , and

$$\tilde{\lambda}_{B_n} : \text{AffT}(B_n)/\rho\widetilde{K}_0(B_n) \rightarrow U(B_n)/\widetilde{SU}(B_n)$$

is the map defined in 2.33 (also see 2.28). Consequently,

$$\begin{aligned} (\psi_{n,m}^{n,m-1})^\natural(u) &= \text{AffT } \psi_{n,m}^{n,m-1}(h) + \tilde{h} \\ &\triangleq \tilde{h} \in \text{AffT}(B_m^{m-1})/\rho\widetilde{K}_0(B_m^{m-1}) \cong U(B_m^{m-1})/\widetilde{SU}(B_m^{m-1}) \end{aligned}$$

with

$$\|\tilde{h}\|^\sim = \frac{1}{2} \left( \max_{t \in [0,1]} \tilde{h}(t) - \min_{t \in [0,1]} \tilde{h}(t) \right) \geq 4,$$

since  $\|h\| \leq M$ . Therefore,

$$\begin{aligned} (\pi_{m-1} \circ \psi_{n,\infty})^\natural(u) &\in U(Q_{m-1}BQ_{m-1})/\widetilde{SU}(Q_{m-1}BQ_{m-1}) \\ &\cong \text{AffT}(Q_{m-1}BQ_{m-1})/\rho\widetilde{K}_0(Q_{m-1}BQ_{m-1}), \end{aligned}$$

satisfies

$$\begin{aligned} &\|(\pi_{m-1} \circ \psi_{n,\infty})^\natural(u)\|^\sim \\ &= \frac{1}{2} \left( \max_{t \in [0,1]} (\pi_{m-1} \circ \psi_{n,\infty})^\natural(u)(t) - \min_{t \in [0,1]} (\pi_{m-1} \circ \psi_{n,\infty})^\natural(u)(t) \right) \geq \frac{3}{4} \cdot 4 = 3, \end{aligned}$$

where  $\pi_{m-1} : B \rightarrow Q_{m-1}BQ_{m-1}$  is the quotient map. On the other hand,

$$\pi_{m-1}^\natural(S_1(x)) = 0$$

as calculated in (\*). Recall that

$$\|(\psi_{n,\infty})^\natural(u) - S_1(x)\|^\sim < \frac{1}{16}.$$

We get

$$\|(\pi_{m-1} \circ \psi_{n,\infty})^\natural(u)\|^\sim < \frac{1}{16},$$

which is a contradiction. This contradiction proves that such a system of splittings does not exist. Hence  $\text{Inv}(A) \not\cong \text{Inv}(B)$  and  $A \not\cong B$ .

**3.12.** One can easily verify that

$$\begin{aligned} \text{AffT}(A) &= \text{AffT}(B) \\ &= \left\{ (f_1, f_2, \dots, f_n, \dots) \in \prod_{n=1}^{\infty} C_{\mathbb{R}}[0,1] : \exists r \in \mathbb{R} \text{ such that } f_n(x) \text{ converges to } r \text{ uniformly} \right\}, \\ \overline{\rho K_0(A)} ( = \overline{\rho K_0(B)}) &= \left\{ (r_1, r_2, \dots, r_n, \dots) \in \prod_{n=1}^{\infty} \mathbb{R} : \exists r \in \mathbb{R} \text{ such that } r_n \text{ converges to } r \right\} \\ &\subset \text{AffT}(A) ( = \text{AffT}(B)). \end{aligned}$$

Since  $\overline{\rho K_0(A)} (= \overline{\rho K_0(B)})$  is already a vector space, we have  $\widetilde{\rho K_0}(A) = \overline{\rho K_0(A)}$  and  $\widetilde{\rho K_0}(B) = \overline{\rho K_0(B)}$ . Therefore,

$$U_{\text{tor}}(A)/\widetilde{SU}(A) \cong \text{AffT}(A)/\widetilde{\rho K_0}(A) = \text{AffT}(A)/\overline{\rho K_0(A)} \cong U_0(A)/\overline{DU(A)}.$$

On the other hand,  $U_{\text{tor}}(A) = U_0(A)$ . Hence  $\widetilde{SU}(A) = \overline{DU(A)}$ . Furthermore, the map  $\lambda_A : \text{AffT}(A)/\overline{\rho K_0(A)} \rightarrow U(A)/\overline{DU(A)}$  can be identified with the map  $\tilde{\lambda}_A : \text{AffT}(A)/\widetilde{\rho K_0}(A) \rightarrow U(A)/\widetilde{SU}(A)$ . That is,  $\text{Inv}'(A) = \text{Inv}(A)$ . Similarly,  $\text{Inv}(B) = \text{Inv}'(B)$ .

**3.13.** A routine calculation (we omit the details) shows that for any finite subset  $F \subset A_n$  and  $\varepsilon > 0$ , there is an  $m > n$  and two finite dimensional unital sub- $C^*$ -algebras  $C, D \subset A_m$  with nonabelian central projection such that

$$\|[\phi_{n,m}(f), c]\| < \varepsilon \|c\| \quad \text{and} \quad \|[\psi_{n,m}(f), d]\| < \varepsilon \|d\| \quad \text{for all } f \in F, c \in C, d \in D.$$

Consequently, both  $C^*$ -algebras  $A$  and  $B$  are approximately divisible in the sense of [Blackadar et al. 1992, Definition 1.2]. By [Toms and Winter 2008, Theorem 2.3], both  $A$  and  $B$  are  $\mathcal{Z}$ -stable. That is,  $A \otimes \mathcal{Z} \cong A$  and  $B \otimes \mathcal{Z} \cong B$ , where  $\mathcal{Z}$  is the Jiang–Su algebra (see [Jiang and Su 1999]). Furthermore, by using [Tikuisis 2011] (see also [Coward et al. 2008]), one can prove that  $Cu(A) \cong Cu(B)$  and  $Cu(A \otimes C(S^1)) \cong Cu(B \otimes C(S^1))$ .

## References

- [Blackadar 1993] B. Blackadar, “Matricial and ultramatricial topology”, pp. 11–38 in *Operator algebras, mathematical physics, and low-dimensional topology* (Istanbul, 1991), edited by R. Herman and B. Tanbay, Res. Notes Math. **5**, A K Peters, Wellesley, MA, 1993. MR Zbl
- [Blackadar et al. 1992] B. Blackadar, A. Kumjian, and M. Rørdam, “Approximately central matrix units and the structure of noncommutative tori”, *K-Theory* **6**:3 (1992), 267–284. MR Zbl
- [Coward et al. 2008] K. T. Coward, G. A. Elliott, and C. Ivanescu, “The Cuntz semigroup as an invariant for  $C^*$ -algebras”, *J. Reine Angew. Math.* **623** (2008), 161–193. MR Zbl
- [Dadarlat 1995a] M. Dadarlat, “Approximately unitarily equivalent morphisms and inductive limit  $C^*$ -algebras”, *K-Theory* **9**:2 (1995), 117–137. MR Zbl
- [Dadarlat 1995b] M. Dadarlat, “Reduction to dimension three of local spectra of real rank zero  $C^*$ -algebras”, *J. Reine Angew. Math.* **460** (1995), 189–212. MR Zbl
- [Dadarlat and Gong 1997] M. Dadarlat and G. Gong, “A classification result for approximately homogeneous  $C^*$ -algebras of real rank zero”, *Geom. Funct. Anal.* **7**:4 (1997), 646–711. MR Zbl
- [Dadarlat and Loring 1996a] M. Dadarlat and T. A. Loring, “Classifying  $C^*$ -algebras via ordered, mod- $p$   $K$ -theory”, *Math. Ann.* **305**:4 (1996), 601–616. MR Zbl
- [Dadarlat and Loring 1996b] M. Dadarlat and T. A. Loring, “A universal multicoefficient theorem for the Kasparov groups”, *Duke Math. J.* **84**:2 (1996), 355–377. MR Zbl
- [Eilers 1996] S. Eilers, “A complete invariant for  $AD$  algebras with real rank zero and bounded torsion in  $K_1$ ”, *J. Funct. Anal.* **139**:2 (1996), 325–348. MR Zbl

[Elliott 1993a] G. A. Elliott, “A classification of certain simple  $C^*$ -algebras”, pp. 373–385 in *Quantum and non-commutative analysis* (Kyoto, 1992), edited by H. Araki et al., Math. Phys. Stud. **16**, Kluwer Acad. Publ., Dordrecht, 1993. MR Zbl

[Elliott 1993b] G. A. Elliott, “On the classification of  $C^*$ -algebras of real rank zero”, *J. Reine Angew. Math.* **443** (1993), 179–219. MR Zbl

[Elliott 1997] G. A. Elliott, “A classification of certain simple  $C^*$ -algebras, II”, *J. Ramanujan Math. Soc.* **12**:1 (1997), 97–134. MR Zbl

[Elliott and Gong 1996a] G. A. Elliott and G. Gong, “On inductive limits of matrix algebras over the two-torus”, *Amer. J. Math.* **118**:2 (1996), 263–290. MR Zbl

[Elliott and Gong 1996b] G. A. Elliott and G. Gong, “On the classification of  $C^*$ -algebras of real rank zero, II”, *Ann. of Math.* (2) **144**:3 (1996), 497–610. MR Zbl

[Elliott et al. 1996] G. A. Elliott, G. Gong, H. Lin, and C. Pasnicu, “Abelian  $C^*$ -subalgebras of  $C^*$ -algebras of real rank zero and inductive limit  $C^*$ -algebras”, *Duke Math. J.* **85**:3 (1996), 511–554. MR Zbl

[Elliott et al. 1997] G. A. Elliott, G. Gong, X. Jiang, and H. Su, “A classification of simple limits of dimension drop  $C^*$ -algebras”, pp. 125–143 in *Operator algebras and their applications* (Waterloo, ON, 1994/1995), edited by P. A. Fillmore and J. A. Mingo, Fields Inst. Commun. **13**, Amer. Math. Soc., Providence, RI, 1997. MR Zbl

[Elliott et al. 1998] G. A. Elliott, G. Gong, and H. Su, “On the classification of  $C^*$ -algebras of real rank zero, IV: Reduction to local spectrum of dimension two”, pp. 73–95 in *Operator algebras and their applications, II* (Waterloo, ON, 1994/1995), edited by P. A. Fillmore and J. A. Mingo, Fields Inst. Commun. **20**, Amer. Math. Soc., Providence, RI, 1998. MR Zbl

[Elliott et al. 2005] G. A. Elliott, G. Gong, and L. Li, “Injectivity of the connecting maps in  $AH$  inductive limit systems”, *Canad. Math. Bull.* **48**:1 (2005), 50–68. MR Zbl

[Elliott et al. 2007] G. A. Elliott, G. Gong, and L. Li, “On the classification of simple inductive limit  $C^*$ -algebras, II: The isomorphism theorem”, *Invent. Math.* **168**:2 (2007), 249–320. MR Zbl

[Gong 1997] G. Gong, “On inductive limits of matrix algebras over higher-dimensional spaces, II”, *Math. Scand.* **80**:1 (1997), 56–100. MR Zbl

[Gong 1998] G. Gong, “Classification of  $C^*$ -algebras of real rank zero and unsuspended  $E$ -equivalence types”, *J. Funct. Anal.* **152**:2 (1998), 281–329. MR Zbl

[Gong 2002] G. Gong, “On the classification of simple inductive limit  $C^*$ -algebras, I: The reduction theorem”, *Doc. Math.* **7** (2002), 255–461. MR Zbl

[Gong and Lin 2000] G. Gong and H. Lin, “Almost multiplicative morphisms and  $K$ -theory”, *Internat. J. Math.* **11**:8 (2000), 983–1000. MR Zbl

[Gong et al. 2010] G. Gong, C. Jiang, L. Li, and C. Pasnicu, “ $A\mathbb{T}$  structure of  $AH$  algebras with the ideal property and torsion free  $K$ -theory”, *J. Funct. Anal.* **258**:6 (2010), 2119–2143. MR Zbl

[Gong et al. 2015a] G. Gong, H. Lin, and Z. Niu, “Classification of finite simple amenable  $\mathcal{Z}$ -stable  $C^*$ -algebras”, preprint, 2015. arXiv

[Gong et al. 2015b] G. Gong, H. Lin, and Y. Xue, “Determinant rank of  $C^*$ -algebras”, *Pacific J. Math.* **274**:2 (2015), 405–436. MR Zbl

[Gong et al. 2016] G. Gong, C. Jiang, and L. Li, “A classification of inductive limit  $C^*$ -algebras with ideal property”, preprint, 2016. arXiv

[Gong et al. 2018] G. Gong, C. Jiang, L. Li, and C. Pasnicu, “A reduction theorem for  $AH$  algebras with the ideal property”, *Int. Math. Res. Not.* **2018**:24 (2018), 7606–7641. MR Zbl

[de la Harpe and Skandalis 1984] P. de la Harpe and G. Skandalis, “Déterminant associé à une trace sur une algébre de Banach”, *Ann. Inst. Fourier (Grenoble)* **34**:1 (1984), 241–260. MR Zbl

[Ji and Jiang 2011] K. Ji and C. Jiang, “A complete classification of  $AI$  algebras with the ideal property”, *Canad. J. Math.* **63**:2 (2011), 381–412. MR Zbl

[Jiang 2011] C. Jiang, “A classification of non-simple  $C^*$ -algebras of tracial rank one: inductive limits of finite direct sums of simple  $TAI$   $C^*$ -algebras”, *J. Topol. Anal.* **3**:3 (2011), 385–404. MR Zbl

[Jiang 2017] C. Jiang, “Reduction to dimension two of the local spectrum for an  $AH$  algebra with the ideal property”, *Canad. Math. Bull.* **60**:4 (2017), 791–806. MR Zbl

[Jiang and Su 1999] X. Jiang and H. Su, “On a simple unital projectionless  $C^*$ -algebra”, *Amer. J. Math.* **121**:2 (1999), 359–413. MR Zbl

[Jiang and Wang 2012] C. Jiang and K. Wang, “A complete classification of limits of splitting interval algebras with the ideal property”, *J. Ramanujan Math. Soc.* **27**:3 (2012), 305–354. MR Zbl

[Li 1997] L. Li, *Classification of simple  $C^*$ -algebras: inductive limits of matrix algebras over trees*, Mem. Amer. Math. Soc. **605**, Amer. Math. Soc., Providence, RI, 1997. MR Zbl

[Li 1999] L. Li, “ $C^*$ -algebra homomorphisms and  $KK$ -theory”, *K-Theory* **18**:2 (1999), 161–172. MR Zbl

[Li 2006] L. Li, “Reduction to dimension two of local spectrum for simple  $AH$  algebras”, *J. Ramanujan Math. Soc.* **21**:4 (2006), 365–390. MR Zbl

[Lin 1996] H. Lin, “On the classification of  $C^*$ -algebras of real rank zero with zero  $K_1$ ”, *J. Operator Theory* **35**:1 (1996), 147–178. MR Zbl

[Lin 2001] H. Lin, “Tracially  $AF$   $C^*$ -algebras”, *Trans. Amer. Math. Soc.* **353**:2 (2001), 693–722. MR Zbl

[Lin 2007] H. Lin, “Simple nuclear  $C^*$ -algebras of tracial topological rank one”, *J. Funct. Anal.* **251**:2 (2007), 601–679. MR Zbl

[Lin 2017] H. Lin, “Homomorphisms from  $AH$ -algebras”, *J. Topol. Anal.* **9**:1 (2017), 67–125. MR Zbl

[Nielsen and Thomsen 1996] K. E. Nielsen and K. Thomsen, “Limits of circle algebras”, *Exposition. Math.* **14**:1 (1996), 17–56. MR Zbl

[Pasnicu 2000] C. Pasnicu, “Shape equivalence, nonstable  $K$ -theory and  $AH$  algebras”, *Pacific J. Math.* **192**:1 (2000), 159–182. MR Zbl

[Rørdam 1995] M. Rørdam, “Classification of certain infinite simple  $C^*$ -algebras”, *J. Funct. Anal.* **131**:2 (1995), 415–458. MR Zbl

[Stevens 1998] K. H. Stevens, “The classification of certain non-simple approximate interval algebras”, pp. 105–148 in *Operator algebras and their applications, II* (Waterloo, ON, 1994/1995), edited by P. A. Fillmore and J. A. Mingo, Fields Inst. Commun. **20**, Amer. Math. Soc., Providence, RI, 1998. MR Zbl

[Thomsen 1994] K. Thomsen, “Inductive limits of interval algebras: the tracial state space”, *Amer. J. Math.* **116**:3 (1994), 605–620. MR Zbl

[Thomsen 1995] K. Thomsen, “Traces, unitary characters and crossed products by  $\mathbb{Z}$ ”, *Publ. Res. Inst. Math. Sci.* **31**:6 (1995), 1011–1029. MR Zbl

[Thomsen 1997] K. Thomsen, *Limits of certain subhomogeneous  $C^*$ -algebras*, Mém. Soc. Math. Fr. (N.S.) **71**, Soc. Math. France, Paris, 1997. MR Zbl

[Tikuisis 2011] A. Tikuisis, *The Cuntz semigroup of  $C(X, A)$* , Ph.D. thesis, 2011, available at <https://search.proquest.com/docview/924161320>. MR

[Toms and Winter 2008] A. S. Toms and W. Winter, “ $\mathcal{Z}$ -stable  $ASH$  algebras”, *Canad. J. Math.* **60**:3 (2008), 703–720. MR Zbl

Received 28 May 2018. Revised 8 Jun 2019. Accepted 24 Jun 2019.

GUIHUA GONG: [guihua.gong@upr.edu](mailto:guihua.gong@upr.edu)

*College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, Hebei, China*

and

*Department of Mathematics, University of Puerto Rico, Rio Piedras, PR, United States*

CHUNLAN JIANG: [c1jiang@hebtu.edu.cn](mailto:c1jiang@hebtu.edu.cn)

*College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, Hebei, China*

LIANGQING LI: [liangqing.li@upr.edu](mailto:liangqing.li@upr.edu)

*Department of Mathematics, University of Puerto Rico, Rio Piedras, PR, United States*

# ANNALS OF K-THEORY

msp.org/akt

## EDITORIAL BOARD

|                     |                                                                                            |
|---------------------|--------------------------------------------------------------------------------------------|
| Joseph Ayoub        | ETH Zürich, Switzerland<br>joseph.ayoub@math.uzh.ch                                        |
| Paul Balmer         | University of California, Los Angeles, USA<br>balmer@math.ucla.edu                         |
| Guillermo Cortiñas  | Universidad de Buenos Aires and CONICET, Argentina<br>gcorti@dm.uba.ar                     |
| Hélène Esnault      | Freie Universität Berlin, Germany<br>liveesnault@math.fu-berlin.de                         |
| Eric Friedlander    | University of Southern California, USA<br>ericmf@usc.edu                                   |
| Max Karoubi         | Institut de Mathématiques de Jussieu – Paris Rive Gauche, France<br>max.karoubi@imj-prg.fr |
| Moritz Kerz         | Universität Regensburg, Germany<br>moritz.kerz@mathematik.uni-regensburg.de                |
| Huaxin Lin          | University of Oregon, USA<br>livehlin@uoregon.edu                                          |
| Alexander Merkurjev | University of California, Los Angeles, USA<br>merkurev@math.ucla.edu                       |
| Birgit Richter      | Universität Hamburg, Germany<br>birgit.richter@uni-hamburg.de                              |
| Jonathan Rosenberg  | (Managing Editor)<br>University of Maryland, USA<br>jmr@math.umd.edu                       |
| Marco Schlichting   | University of Warwick, UK<br>schlichting@warwick.ac.uk                                     |
| Charles Weibel      | (Managing Editor)<br>Rutgers University, USA<br>weibel@math.rutgers.edu                    |
| Guoliang Yu         | Texas A&M University, USA<br>guoliangyu@math.tamu.edu                                      |

## PRODUCTION

|             |                                           |
|-------------|-------------------------------------------|
| Silvio Levy | (Scientific Editor)<br>production@msp.org |
|-------------|-------------------------------------------|

Annals of K-Theory is a journal of the K-Theory Foundation ([ktheoryfoundation.org](http://ktheoryfoundation.org)). The K-Theory Foundation acknowledges the precious support of Foundation Compositio Mathematica, whose help has been instrumental in the launch of the Annals of K-Theory.

---

See inside back cover or [msp.org/akt](http://msp.org/akt) for submission instructions.

---

The subscription price for 2020 is US \$510/year for the electronic version, and \$575/year (+\$25, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

---

Annals of K-Theory (ISSN 2379-1681 electronic, 2379-1683 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

---

AKT peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY  
 **mathematical sciences publishers**  
nonprofit scientific publishing  
<http://msp.org/>  
© 2020 Mathematical Sciences Publishers

# ANNALS OF K-THEORY

2020

vol. 5

no. 1

|                                                                                                      |     |
|------------------------------------------------------------------------------------------------------|-----|
| Twisted iterated algebraic $K$ -theory and topological T-duality for sphere bundles                  | 1   |
| JOHN A. LIND, HISHAM SATI and CRAIG WESTERLAND                                                       |     |
| Hausdorffified algebraic $K_1$ -groups and invariants for $C^*$ -algebras with the ideal property    | 43  |
| GUIHUA GONG, CHUNLAN JIANG and LIANGQING LI                                                          |     |
| On refined metric and hermitian structures in arithmetic, I: Galois–Gauss sums and weak ramification | 79  |
| WERNER BLEY, DAVID BURNS and CARL HAHN                                                               |     |
| Rigidity in equivariant algebraic $K$ -theory                                                        | 141 |
| NIKO NAUMANN and CHARANYA RAVI                                                                       |     |
| Functoriality of the gamma filtration and computations for some twisted flag varieties               | 159 |
| EOIN MACKALL                                                                                         |     |