ANNALS OF
K-THEORY

vol.5 no.1 2020

Hausdorffified algebraic K;-groups and
invariants for C*-algebras with the ideal property

Guihua Gong, Chunlan Jiang and Liangqing Li

:'msp

A JOURNAL OF THE K-THEORY FOUNDATION






ANNALS OF K-THEORY
Vol. 5, No. 1, 2020

dx.doi.org/10.2140/akt.2020.5.43

Hausdorffified algebraic K;-groups and
invariants for C*-algebras with the ideal property

Guihua Gong, Chunlan Jiang and Liangqing Li

Dedicated to the memory of Professor Ronald G. Douglas

A C*-algebra A is said to have the ideal property if each closed two-sided ideal
of A is generated as a closed two-sided ideal by the projections inside the ideal.
C*-algebras with the ideal property are a generalization and unification of real
rank zero C*-algebras and unital simple C*-algebras. It was long expected that
an invariant that we call Inv’(A), consisting of the scaled ordered total K-group
(K(A); K(A)T; A), (used in the real rank zero case), along with the tracial
state spaces T (pAp) for each cut-down algebra pAp, as part of the Elliott
invariant of pAp (for each [p] € £ A), with certain compatibility conditions,
is the complete invariant for a certain well behaved class of C*-algebras with
the ideal property (e.g., AH algebras with no dimension growth). In this paper,
we construct two nonisomorphic AT algebras A and B with the ideal property
such that Inv’(A) = Inv®(B), disproving this conjecture. The invariant to dis-
tinguish the two algebras is the collection of Hausdorffified algebraic K;-groups
U(pAp)/DU (pAp) (for each [p] € £ A), along with certain compatibility con-
ditions. We will prove in a separate article that, after adding this new ingredient,
the invariant becomes the complete invariant for AH algebras (of no dimension
growth) with the ideal property.

1. Introduction

A C*-algebra A is called an AH algebra [Blackadar 1993] if it is the inductive limit

C*-algebra of b s
1—)A2—)A3—)—)An—)

with A = limn_)oo(A,, = 69?:1 Py iMpy i1(C(X.i)) Pai, q‘)n,m), where X, ; are com-
pact metric spaces, #, and [n, i] are positive integers, and P, ; € M, ;1(C(X,,;)) are
projections. An AH algebra is called of no dimension growth, if one can choose
the spaces X, ; such that sup, ; dim(X, ;) < +oo. If all the spaces X, ; can be
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chosen to be the single point space {pt}, then A is called an AF algebra. If all the
spaces can be chosen to be the interval [0, 1] or circle T = {z € C: |z| = 1}, then
A is called an Al algebra or AT algebra, respectively.

G. Elliott [1993b] initiated the classification program by classifying all real rank
zero AT algebras (without the condition of simplicity), and he conjectured that the
scaled ordered K,-group (K,(A); K. (A)T; £ A), where K,(A) = Ko(A) ® K (A),
is a complete invariant for separable nuclear C*-algebras of real rank zero and
stable rank one. Elliott [1993a] also successfully classified all unital simple A/
algebras by the so called Elliott invariant

Ell(A) = (Ko(A); Ko(A)*; ZA, K1(A); T(A); pa),

where T (A) is the space of all unital traces on A, and pj4 is the nature map from
Ko(A) to AffT(A) (the ordered Banach space of all affine maps from 7°(A) to R).

Later, Gong [1998] constructed two nonisomorphic (not simple) real rank zero
AH algebras (with 2-dimensional local spectra) A and B such that

(K+(A); K.(A)T; TA) = (K«(B); K+(B)"; TB),

which disproved the conjecture of Elliott for C*-algebras of real rank zero and
stable rank one. This result led to a sequence of research by Dadarlat and Loring
[1996a; 1996b] and Eilers [1996] culminating with Dadarlat and Gong’s [1997]
complete classification of real rank zero AH algebras by scaled ordered total K-
theory (K (A); K(A)T; ZA)A, where K(A) = K, (A) ® @3022 K.(A,Z/pZ) and
A is the system of Bockstein operations; see also [Dadarlat 1995a; 1995b; Elliott
and Gong 1996a; 1996b; Elliott et al. 1996; 1998; Gong 1997; 1998; Gong and
Lin 2000; Lin 1996; 2001]. Elliott, Gong, and Li [Elliott et al. 2007] completely
classified simple AH algebras of no dimension growth by Elliott invariant; see also
[Elliott 1997; Elliott et al. 2005; 1997; Gong 2002; Li 1997; 1999; Lin 2007;
Nielsen and Thomsen 1996; Thomsen 1994; 1997]. A natural generalization and
unification of real rank zero C*-algebras and unital simple C*-algebras is the class
of C*-algebras with the ideal property: each closed two-sided ideal of the C*-
algebra is generated as a closed two-sided ideal by the projections inside the ideal.
It was long expected that a combination of scaled ordered total K-theory (used in
the classification of real rank zero C*-algebras) and the Elliott invariant (used in
the classification of simple C*-algebras), including tracial state spaces T (pAp) —
part of the Elliott invariant of cut-down algebras {pAp}(,jexa With certain compat-
ibility conditions, called Inv%(A) (see [Jiang 2011, 2.18]), is a complete invariant
for certain well behaved C*-algebras (e.g., AH algebras of no dimension growth
or Z-stable C*-algebras, where Z is the Jiang—Su algebra of [Jiang and Su 1999])
with the ideal property; see [Stevens 1998; Pasnicu 2000; Ji and Jiang 2011; Jiang
and Wang 2012; Jiang 2011].
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The main purpose of this paper is to construct two unital Z-stable AT alge-
bras A and B with the ideal property such that Inv’(A) = Inv’(B), but A % B.
The invariant to distinguish these two C*-algebras is the Hausdorffified algebraic
Ki-groups U(pAp)/DU (pAp) of the cut-down algebra pAp (for each element
x € ¥ A, we chose one projection p € A such that [p] = x) along with a certain
compatibility condition, where DU (A) is the group generated by commutators
{uvu*v* : u, v € U(A)}. In this paper, we introduce the invariant Inv’(A) and its
simplified version Inv(A), by adding these new ingredients — the Hausdorffified
algebraic K-groups of cut-down algebras along with certain compatibility condi-
tions — to Inv®(A).

In [Gong et al. 2016], we will prove that Inv(A) is a complete invariant for AH
algebras (of no dimension growth) with the ideal property.

Note that for the above C*-algebras A and B, we have that Cu(A) = Cu(B) and
Cu(A®C(SYHY) = Cu(B® C(S")). That is, the new invariant can not be detected
by the Cuntz semigroup.

In Section 2, we define Inv(A) and discuss its properties. These properties
will be used in [Gong et al. 2016]. In Section 3, we present the construction
of AT algebras A and B with the ideal property such that Inv(A) Z Inv(B) but
Inv?(A) = Inv?(B).

2. The invariant

In this section, we recall the definition of Inv®(A) from [Jiang 2011] (also see
[Stevens 1998; Ji and Jiang 2011; Jiang and Wang 2012]), and then introduce the
invariant Inv(A). Furthermore, we discuss the properties of Inv(A) in the context
of AH algebras and AHD algebras (for the definition of AHD algebras, see 2.3
below), which will be used in [Gong et al. 2016].

2.1. In the notation for an inductive limit system lim(A,, ¢, ), we understand
that

¢n,m = ¢m—1,m o ¢m—2,m—1 0--+0 ‘pn,n—Ha

where all ¢, ,, : A, — A, are homomorphisms.

We assume that, for any summand Al in the direct sum A, = @}, A%, nec-
essarily ¢ n+1(14i) # 0, since otherwise, we could simply delete Al from A,
without changing the limit algebra. N

If A, =@; Al Ay = EBj Ay, We use ¢, to denote the partial map of ¢,
from the i-th block A; of A, to the j-th block A}, of Ap. Also, we use qﬁ,,_,,{ to
denote the partial map of ¢, , from A, to A},. That is, ¢n_,,{ =@, ¢ﬁ,{n =TT p,m»
where 77; : A,, — Ajy, is the canonical projection. Sometimes, we also use qbf;’;” to
denote ¢y m| i : Al — Ay,
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2.2. As in [Elliott and Gong 1996b], let Ty be the 2-dimensional connected
simplicial complex with H 1(TH,k) =0and H 2(TH,k) = Z/kZ, and let I; be the
subalgebra of M;(C[O0, 1]) = C([0, 1], M (C)) consisting of all functions f with
the properties f(0) € C-1; and f(1) € C- 1; (this algebra is called an Elliott
dimension drop interval algebra). Denote by HD the class of algebras consisting
of direct sums of the building blocks of the forms M;(I;) and PM, (C (X)) P, with
X being one of the spaces {pt}, [0, 1], S!, and Tk, and with P € M, (C (X)) being
a projection. (In [Dadarlat and Gong 1997], this class is denoted by SH (2), and
in [Jiang 2011] by B). We call a C*-algebra an AHD algebra if it is an inductive
limit of the algebras in HD.

For each basic building block A =PM,,(C (X)) P, where X ={pt}, [0, 11, S, Ti1 1,
or A = M;(Iy), we have Ko(A) =Z or Z/kZ (for the case A = PM,,(C(Tux))P).
Hence there is a natural map rank : Ko(A) — Z. This map also gives a map from
{p € (Mx(A)) : pis a projection} to Z. For example, if p € A = PM,(C(X))P,
then rank(p) is the rank of projection p(x) € P(x)M,(C)P(x) = Mk p)(C)
for any x € X; and if p € A = M;(l;), then rank(p) is the rank of projection
p(0) € M;(C). (Note that we regard p(0) as in M;(C) = 1; ® M;(C), not Mj;(C).)

2.3. By AHD algebra, we mean the inductive limit of
A]ﬂi}Azﬁ)A:;—)...—)...’
where A, € HD for each n.

For an AHD inductive limit A = lim(A,,, ¢,;n), We write A, = G};”zl A;, where
AZ = P,,,,-'M[n,i](C(Xn,i))Pn’[ or AZ = My, (Ik,,;)- For convenience, even'for
a block Aj, = My, i1(I, ), we still use X, ; for Sp(A;) = [0, 1] —that is, A; is
regarded as a homogeneous algebra or a subhomogeneous algebra over X, ;.

2.4. In [Gong et al. 2010; 2018], joint with Cornel Pasnicu, the authors proved
the reduction theorem for AH algebras with the ideal property provided that the
inductive limit systems have no dimension growth. That is, if A is an inductive
limit of A, =@ A, =@ P, Mn,i)C(Xpi) Py,i with sup,, ; dim(X, ;) < 400, and
if we further assume that A has the ideal property, then A can be rewritten as an
inductive limit of B, = @ B = D 0n, M, j;C(Yn,i) Qn, j, With Y, ; being one
of {pt}, [0, 1], st Ty, Thmn ks S2. In turn, Jiang [2017] proved (also see [Li 2006])
that the above inductive limit can be rewritten as the inductive limit of the direct
sums of homogeneous algebras over {pt}, [0, 1], S 1 Tiy ;. and M;(I;). Combining
these two results, we know that all AH algebras of no dimension growth with the
ideal property are AHD algebras. Let us point out that, as proved in [Dadarlat and
Gong 1997], there are real rank zero AHD algebras which are not AH algebras.

2.5. Let A be a C*-algebra. Then Ko(A)* C K¢(A) is defined to be the semigroup
of Ko(A) generated by [p] € Ko(A), where p € M (A) are projections. For all
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C*-algebras considered in this paper — for example, A € HD, or A is an AHD
algebra, or A = B ® C(Tix x S1), where B is an HD or AHD algebra—we
always have

Ko(ATN(=Ko(A)T)={0} and Ko(A)" —Ko(A)" = Ko(A). (%)
Therefore (Ko(A), Ko(A)™) is an ordered group. Define ©A C Ko(A)™ to be
YA ={[ple Ko(A)T : pis a projection in A}.

Then (K¢(A), Ko(A)*, £ A) is a scaled ordered group. (Note that for purely infi-
nite C*-algebras or stable projectionless C*-algebras, condition (x) does not hold.)

2.6. Let K(A) = K.(A) ® ({5 K«(A, Z/kZ)) be as in [Dadarlat and Gong
1997]. Let A be the Bockstein operation on K (A) (see [Dadarlat and Gong 1997,
4.1]). It is well known that K.(A, Z ® Z/kZ) = Ko(A ® C(W; x S1)), where
Wi = Ty k.

As in [Dadarlat and Gong 1997], let K. (A, Z®Z/kZ)* = Ko(AQC (Wi x SH)1)
and let K (A)™ be the semigroup generated by {K, (A, Z®Z/kZ)" :k=2,3,...}.
2.7. Let Hom, (K (A), K(B)) be the set of homomorphisms between K (A) and

K (B) compatible with the Bockstein operations A. There is a surjective map (see
[Dadarlat and Gong 1997])

I': KK(A, B) > Hom,(K(A), K(B)).

Following Rgrdam [1995], we write KL(A, B) £ KK(A, B)/Pext(K.(A), K.11(B)),
where Pext(K.(A), K.+1(B)) is identified with ker I' by [Dadarlat and Loring
1996b]. The triple (K(A); K(A)*; £ A) is part of our invariant. For two C*-
algebras A and B, by a “homomorphism”

a:(K(A); K(A)*; £A) — (K(B); K(B)"; £B)
we mean a system of maps
oz,i :Ki(A,Z/kZ) — K;(B,Z/kZ), i=0,1, k=0,2,3,...

which are compatible with the Bockstein operations and o = (P of satisfies
a(K(A)T) C K(B)". And finally, o) (£ A) C B.

2.8. For a unital C*-algebra A, let T (A) denote the space of tracial states of A, i.e.,
T € T(A) if and only if 7 is a positive linear map from A to C with t(xy) = 7(yx),
and 7(1)=1. Endow T (A) with the weak-* topology, that is, for any net {t,}o CT(A)
and 7 € T(A), 1, — 1 if and only if lim, 7,(x) = 7(x) for any x € A. Then
T (A) is a compact Hausdorff space with convex structure, that is, if A € [0, 1]
and 11,7 € T(A), then Aty + (1 — M), € T(A). AffT(A) is the collection of
all continuous affine maps from 7 (A) to R, which is a real Banach space with
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I f1I = sup,er(ay [ f(T)]. Let (AffT(A)) be the subset of AffT(A) consisting of
all nonnegative affine functions. An element 1 € AffT(A), defined by 1(r) =1
for all T € T(A), is called the order unit (or scale) of AffT(A). Note that any
f € AffT(A) can be written as f = f — f_ with fi, o € AffT(A) 4, | fill < I £
and || 2|l < |l fIl. Therefore (AffT(A), AffT(A)y, 1) forms a scaled ordered real
Banach space. If ¢ : AffT(A) — AffT(B) is a unital positive linear map, then ¢ is
bounded and therefore continuous.

There is a natural homomorphism p4 : Kg(A) — AffT(A) defined by setting
poa(lph(r) = Z;’:l T(p;;) for T € T(A) and [p] € Ko(A) represented by the
projection p = (p;;) € M, (A).

If ¢ : A — B is a unital homomorphism, then ¢ induces a continuous affine
map T¢ : T(B) — T(A), which, in turn, induces a unital positive linear map
AffT ¢ : AffT(A) — AffT(B).

If ¢ : A — B is not unital, we still use AffT ¢ to denote the unital positive linear

map
AffT ¢ : AffT(A) — AFFT(d(14) B (L))

by regarding ¢ as the unital homomorphism from A to ¢(14)B¢(1,) — that is,
for any [/ € AffT(A) represented by x € A;, as [(t) =t(x) for any t € T(A), we
define

(AT @) (D) (1) = (P (x)) forany T € T(¢(14)Bp(14)),

where ¢ (x) is regarded as an element in ¢(14)B¢@(14). In the above equation, if
we regard ¢ (x) as element in B (rather than in ¢(14)B¢@(14)), the homomorphism
¢ also induces a positive linear map, denoted by ¢ to avoid confusion, from
AffT(A) to AffT(B) —that is, for the [ as above,

(@r)D)(r) =1(p(x)) forany v € T(B),

where ¢ (x) is now regarded as an element in B. But this map does not preserve
the unit 1. It has the property that ¢7 (1afrr(a)) < lasT(B)-

In this paper, we often use the notation ¢ for the following situation: if p; < p»
are two projections in A, and ¢ =1 : pjAp; — p2Ap» is the inclusion, then
17 denotes the (not necessarily unital) map from AffT(p;Ap;) to AffT(prAps)
induced by 1.

29. Ifa: (K(A); K(A)T; TA) — (K(B); K(B)*; ¥B) is a homomorphism as
in 2.7, then for each projection p € A, there is a projection g € B such that
a([p]) =Iql.

Since I; has stable rank one and the spaces X involved in the definition of HD
class (see PM,(C(X))P in 2.2) are of dimension at most two, we know that for all
C*-algebras A considered in this paper, HD class or AHD algebra, the following
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statement is true: if [p;] = [p2] € Ko(A), then there is a unitary u € A such that
upiu® = p,. Therefore, AffT(pAp) and AffT(g Bq) depend only on the classes
[p] € Ko(A) and [g] € Ko(B), respectively. Furthermore, if [p;] = [p2], then
the identification of AffT(p;Ap;) and AffT(p,Ap;) via the unitary equivalence
upiu® = p, is canonical — that is, it does not depend on the choice of unitary u.
For classes [p] € ZA(C Ko(A)T C Ko(A)), we also take AffT(pAp) as part of
our invariant. We consider a system of unital positive linear maps

EP9 AffT(pAp) — AffT(gBq)

associated with all pairs of two classes [p] € £ A and [¢] € X B, with «([p]) = [¢].
Such a system of maps is said to be compatible if for any p; < p, with a([p1]) =[q1],
a([p2]) = [g2], and g1 < g2, the diagram

Sl’l*ql
AffT(p1Ap1) —— AffT(q1Bq1)

l l (2.10)
P2.92

£
AffT(p2Apr) —— AffT(q2Bq2)

commutes, where the vertical maps are induced by the inclusions. (See [Ji and
Jiang 2011] and [Stevens 1998].)

2.11. In this paper, we denote
(K(A); K(A)"; SA; {AfT(pAp)}iplesa)

by Inv’(A), where AffT(pAp) are scaled ordered Banach spaces as in 2.8. By a
map between the invariants Inv’(A) and Inv®(B), we mean a map

a:(K(A); K(A)'; TA) — (K(B); K(B)"; ©B)

as in 2.7, and for each pair [p] € X A, [¢q] € £ B with ¢[p] = [q], there is an
associated unital positive linear map

P9 AffT(pAp) — AffT(gBq)

(which is automatically continuous, as pointed out in 2.8). These maps are com-
patible in the sense of 2.9 (that is, the diagram (2.10) is commutative for any pair
of projections p; < p»).

2.12. Let [p] € XA be represented by p € A. Let a([p]) = [¢q] for ¢ € B.
Then o induces a map (still denoted by o) o : Ko(pAp) — Ko(qBg). Note that
the natural map p := ppa, : Ko(pAp) — AffT(pAp), defined in 2.8, satisfies
p(Ko(pAp)") € AffT(pAp)+ and p([p]) = 1 € AffT(pAp). By [Ji and Jiang
2011, 1.20], the compatibility in 2.9 (diagram (2.10)) implies that the following
diagram commutes:
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Ko(pAp) —— AffT(pAp)

al Wl 2.13)

Ko(gBq) 2 AffT(gBq)

For p =14, this compatibility (the commutativity of diagram (2.13)) is included
as a part of the Elliott invariant for unital simple C*-algebras. But this information
is contained in our invariant Inv®(A), as pointed out in [Ji and Jiang 2011].

2.14. Let A be a unital C*-algebra, B € HD and {p;};_, C B be mutually or-
thogonal projections with Xp; = 1. Write B = @Tzl B/ with B/ being either
PM,(C(X))P or M;(I;), and for any i = 1,2,...,n write p; = EBTZI pij with
pl € B/, for j =1,2,...,m. Note that for all r € T (B/),

rank(pl.j)

N
vpp) = rank(1p/)

(see 2.2 for the definition of the rank function), which is independent of T € T'(B/).
Let& = (Sil, 51.2, ., EM) I ATT(A) — AffT(p; Bp;) = EB?:] AffT(piijpl-j) be
unital positive linear maps. Then we can define & = (§', &2, ..., £™) : AffT(A) —
AffT(B) = @[_; AffT(B/) as below:
o= Y ) (f)(ﬂ”w;”"l) for f € AFT(A) and 7 & T(BY).
{iT(p))0) )

Note that tlpggfpii/t(pf) € T(p;/ijf). So Sij(f) can evaluate at rlplz'ij{/t(p;/).
Since the value of T(p;]) is independent of T € T (B/), it is straightforward to verify
that £/ € AffT(B/). We denote such & by @ &. (For the case that B is general
stably finite unital simple C*-algebras with mutually orthogonal projections {p;}
with sum 1p, this kind of construction can be carried out by using of [Lin 2017,
Lemma 6.4].)

If ¢; : A — p;Bp; are unital homomorphisms and ¢ = ¢; : A — B, then

(ATOY (HD = Y r(p{)Affw{(f)("Lfi”’),
{iT(p))0) v(ry)

where d)l.j A — pl.j B/ pij is the j-th component of ¢;. That is, AffT ¢ = P AffT ¢;.
In particular, if ||AffT ¢; (f) — & (f)]| < ¢ for all i, then

IAfT o (f) —E(NH)I <e.

2.15. Now we introduce the new ingredient of our invariant, a simplified version
of U(pAp)/DU (pAp) for any [p] € X A, where DU (pAp) is the commutator
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subgroup of U(pAp). Some notations and preliminary results are quoted from
[Thomsen 1997; 1995; Nielsen and Thomsen 1996].

2.16. Let A be a unital C*-algebra. Let U(A) denote the group of unitaries of A
and Uy(A) the connected component of 14 in U(A). Let DU(A) and DUy(A) de-
note the commutator subgroups of U(A) and Uy(A), respectively. (Recall that the
commutator subgroup of a group G is the subgroup generated by all elements of the
form aba~'b~!, where a, b € G.) One can introduce the following metric D4 on
U(A)/DU(A) (see §3 of [Nielsen and Thomsen 1996]). For u, v € U(A)/DU (A)

D4(u,v) =inf{|juv* —c|| : c € DU(A)},

where, on the right-hand side of the equation, we use u, v to denote any elements
in U (A) which represent the elements u, v € U(A)/DU (A).

Remark 2.17. Obviously, D4 (u, v) <2. Also, if u, v € U(A)/DU (A) define two
different elements in K;(A), then D4 (u, v) = 2. (This fact follows from the fact
that ||u — v|| < 2 implies uv* € Up(A).)
2.18. Let A be a unital C*-algebra. Let AffT(A) and p4 : Ko(A) — AffT(A) be
as defined as in 2.8. For simplicity, we use pKo(A) to denote the set p4(Ko(A)).
The metric d4 on AffT(A)/pKo(A) is defined as follows (see §3 of [Nielsen and
Thomsen 1996])).

Let d’ denote the quotient metric on AffT(A)/pKo(A). That is, for f, g in
AffT(A)/pKp(A), let

d'(f.g)=inf{|f —g—h| :h € pKo(A)}.
Define d4 by
2 ifd'(f,g) > 1,
dA(f’g):{ oid . , 1
|2 — 1) ifd'(f, g) < 5.

Obviously, da(f, g) <2nd'(f, g).

2.19. For A = PM;(C(X))P, let SU(A) be the set of unitaries u € PMy(C(X))P
such that for each x € X, u(x) € P(x)My(C)P(x) = Muank(p)(C) has determi-
nant 1 (note that the determinant of u(x) does not depend on the identification of
P(x)Mi(C)P(x) = Mrank(p)(C)). For A = M;(Iy), by u € SU(A) we mean that
u e SU(M;(C[0, 1])), where we consider A to be a subalgebra of My (C[O0, 1]).
For all basic building blocks A # M;(I;), we have SU(A) = DU (A). But for
A = M;(1;), this is not true (see 2.20 and 2.21 below).

In [Elliott et al. 2007], the authors also defined SU(A) for A a homogeneous
algebra and a certain AH inductive limit C*-algebra. This definition cannot be
generalized to a more general class of C*-algebras, but we define W} for any
unital C* algebra A. Later, in our definition of Inv(A), we only make use of m)
(rather than SU (A)).
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2.20. Let A = I;. Then K|(A) = Z/kZ, which is generated by [u], where u is the

unitary e2mit(k=1)/k

o2mi(—t/k)

P2Ti(—t/k)

(Note that u(0) = 1, u(1) = ¥ =1/0 .1, )
Note that the above u is in SU (A), but not in Uy(A), and therefore not in DU (A).

2.21. By [Thomsen 1995] (or [Gong et al. 2015a]), u € M;(Iy) is in DU (A) if and
only if for any irreducible representation 7 : M;(I;) — B(H) (dim H < 400), we
have det(w(#)) = 1. For the unitary « in 2.20, and irreducible representation
corresponding to 1, 7 (u) = €™ ~1/% whose determinant is ¢27!(~1/0 £ 1. By
[Thomsen 1997, 6.1] one knows that if A = I, then

Uo(A)NSU(A) = {e*™U/0 . j=0,1,...,k—1}- DU(A).
If A= M;(I}), then for any j € Z, ¢**'U/D .1, € DU(A). Consequently,
Up(A) N SU(A) = (271U - i =0,1,...,kl — 1} - DU(A).

2.22. Let T={z€C:|z|] =1}. Then forany A € HD, T- DU (A) C Uy(A). From
2.19 and 2.21, we have either SU(A) = DU(A) or Uy(A)NSU(A) C T-DU(A).

Lemma 2.23. Let A=PM;(C(X))P eHD. Forany u,veU(A), ifuv*eT-DU(A)
(in particular if both u, v are in T - DU (A)), then D4 (u, v) < 2m /rank(P).
Let A= M;(Iy). For any u, v, ifuv* € T- DU(A), then Ds(u,v) <2 /1.

Proof. There is w € DU(A) such that uv* = Aw for some A € T. Choose Ao =
e?mij/rank(P) i e N, such that |A — Ag| < 277 /rank(P). Then Ag- P € PM;(C (X)) P
has determinant 1 everywhere and is in DU (A). And so does Aow. Also, we have
luv* — Aow| < 27 /rank(P).

The case A = M;(I;) is similar. O

2.24. Let path(U (A)) denote the set of piecewise smooth paths & : [0, 1] = U(A).
Recall that the de la Harp—Skandalis determinant A : path(U (A)) — AffT(A) is

defined by 1
A(”&)(t):ﬁfo o(% ) ar

(see [de la Harpe and Skandalis 1984]). It is proved there (see also [Thomsen
1995]) that A induces a map A°: w1 (Ug(A)) — AffT(A). For any two paths &1, &
starting at £;(0) = &,(0) = 1 € A and ending at the same unitary u = £;(1) = &,(1),
we have that

A1) — A6) = A1+ &) C A°(mi(Uo(A))).
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Consequently, A induces a map
A Uy(A) — AffT(A)/A° (1 (Up(A)))

(see Section 3 of [Thomsen 1995]). Passing to matrix over A, we have a map
Ay 2 Up(My(A)) — AFET(A)/ A} (w1 (Uo(Mn (A))))-

If 1 <m < n, then path(U(M,,(A))) (and Uy(M,,(A))) can be embedded into
path(U(M,,(A))) (and Uy(M,(A))) by sending u(¢) to diag(u(t), 1,,—,,). From the
above definition, and the formula

d .. . d
< (diag(u(t), Ly-n)) = dlag(a(u(z)), 0 ).
one gets

AnlUo(My(A)) = D

Recall that the Bott isomorphism b : Kg(A) — K[(SA) is given by the following:
for any x € Ko(A) represented by a projection p € M, (A), we have

b(x) = [ p+ (1, — p)l € K1(SA).

If £(t) = e*™" p+ (1, — p), then
1
@60 = 5 [ e(@rie )@ p (1= p)

[ P
_%/0 t2uip)dt = t(p).

Since the Bott map is an isomorphism, it follows that each loop in 7 (Ug(A)) is
homotopic to a product of loops of the form &(¢). Consequently,

A®(1(Uo (M (A)))) C paKo(A).
Hence A, can be regarded as a map

Ay Up(My (A)) — AFET(A)/paKo(A).

Proposition 2.25. For A € HD or A € AHD, DUy(A) = DU (A).

Proof. Let the determinant function

Ay Up(My(A)) — AFT(A)/AY (11 Uo (M (A)))

be defined as in §3 of [Thomsen 1995] (see 2.24 above). As observed in [Nielsen
and Thomsen 1996, top of p. 33], Lemma 3.1 of [Thomsen 1995] implies that
DUy(A) = Uyp(A)N DU (A). For the reader’s convenience, we give a brief proof
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of this fact. Namely, the equation

uvuv=1 00 u 0 O\/v 0 O w00\ /v' 00
0 10]l=lo0outo]lO1 O 0 uo 0 10
0 01 0 0 1/\0 0 v! 0 01 0 0v

implies that DU (A) C DUy(M3(A)). Therefore by Lemma 3.1 of [Thomsen 1995],
DU (A) C ker As. If x € Up(A) N DU (A), then A is defined at x. By calculation
in 2.24, A3|yya) = A1. So we have Aj(x) =0, and thus x € DUy(A) = ker Ay, by
[Thomsen 1995, Lemma 3.1]. Note if A € HD or AHD, then DU (A) C Up(A). I

(It is not known to the authors whether it is always true that DUy(A) = DU (A).)

2.26. There is a natural map « : w1 (U(A)) — Ko(A), or more generally, for each
neNamap«, : 1 (U(M,(A))) - Ko(A). We need the following notation. For
a unital C*-algebra A, let P,,Ko(A) (see [Gong et al. 2015b]) be the subgroup of
Ky(A) generated by the formal difference of projections p, g € M,(A) (instead
of My (A)). Then

P.Ko(A) C image(,,).

In particular, if p : Ko(A) — AffT(A) satisfies p(P,Ko(A)) = pKo(A), then by
Theorem 3.2 of [Thomsen 1995],

Uo(M,(A))/ DUy(M, (A)) = Up(Moo(A))/DUp(Moo(A)) = AffT(A)/ pKo(A).

Note that for all A € HD, we have p(P1Ky(A)) = pKy(A) (see below). Conse-

quently,
Uo(A)/DUo(A) = AfT(A)/pKo(A).

If A does not contain building blocks of the form PM,,(C (Ti1x)) P, then such A is
the special case of [Thomsen 1997], and the above fact is observed in [Thomsen
1997] (for circle algebras in [Nielsen and Thomsen 1996] earlier) —in this special
case, we ever have P Kyg(A) = Ko(A) (as used in [Nielsen and Thomsen 1996]
and [Thomsen 1997] in the form of surjectivity of « : m (U(A)) — Ko(A)). For
A = PM,(C(Ti1x)) P, we do not have the surjectivity of « : 71 (U(A)) — Ko(A)
anymore. But Kg(A) =Z & Z/kZ and image(a) = P; Ko(A) contains at least one
element which corresponds to a rank one projection (any bundle over Tiy has a
subbundle of rank 1) — that is,

p(P1Ko(A)) = pKo(A)(S AHT(A))

consisting of all constant functions from 7y x to (1/rank(P))Z.

As in [Nielsen and Thomsen 1996, Lemma 3.1; Thomsen 1997, Lemma 6.4],
the map A : Up(A) — AffT(A)/pa(Ko(A)) (see 2.24) has ker A = DU (A) and
the following lemma holds.
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Lemma 2.27. Suppose that a unital C*-algebra A satisfies p(P1Ko(A)) = pKo(A)
and DUy(A) = DU (A) (see 2.26 and 2.25), and in particular, that A € HD or
A € AHD. Then the following hold:

(1) There is a split exact sequence
0 — AffT(A)/pKo(A) N U(A)/DU(A) — Ki(A) — 0.

(2) Aa is an isometry with respect to the metrics dy and D 4.

2.28. Recall from §3 of [Thomsen 1995], the de la Harpe—Skandalis determinant
(see [de la Harpe and Skandalis 1984]) can be used to define

A : Up(A)/DU(A) — AffT(A)/pKo(A).

With the condition of Lemma 2.27 above, this map is an isometry with respect to
the metrics d4 and D 4. In fact, the inverse of this map is A4 in Lemma 2.27.
It follows from the definition of A [Thomsen 1995, §3] that

A"y =t-p(lp]) (mod (pKo(A))), (2.29)

where [p] € Ko(A) is the element represented by projection p € A.
It is convenient to introduce the extended commutator group DU (A), which

is generated by DU (A) C U(A) and the set
(¥ =¥l p 4 (1—p)eU(A): 1 €R, p € A is a projection}.

Let m) denote the closure of DUT(A). That is, m) = DU*(A).
Let us use pKo(A) to denote the real vector space spanned by pKo(A). That is,

pKo(A) := (Thidi : i € R, ¢; € pKo(A)}.

Suppose that pKy(A) = p(P1Kp(A)). It follows from (2.29) that the image
of DU(A)/DU(A) under the map / A is exactly pKo(A)/,oKO(A) Therefore,
Aa takes ,oKO(A)/,oKO(A) to DU(A)/DU(A) Hence A : Uy(A)/DU(A) —
AffT(A)/pKy(A) also induces a quotient map (still denoted by A)

A : Uy(A)/DU(A) — AffT(A)/pKo(A),

which is an isometry using the quotient metrics of d4 and Dy4. The inverse of this
quotient map A gives rise to the isometry

Ja : ATT(A)/pKo(A) — Uo(A)/DU(A) < U(A)/DU(A),

which is an isometry with respect to the quotient metrics da and Dy as described
below.
For any u,v € U(A)/DU (A),

Dau, v) = inf{|luv* —c|| : c € DU(A)).



56 GUIHUA GONG, CHUNLAN JIANG AND LIANGQING LI

Let d’ denote the quotient metric on AffT(A)/ ,o?a(/A) of AffT(A), that is,
d'(f.g) =inf{| f —g—hll:hepKo(A)} forall f,g e AffT(A)/pKo(A).
Define d4 by N
ifd'(f,8) = 3,
{|e2”f‘7’<f>g> —1| ifdi(fig) <}
The following result is a consequence of Lemma 2.27.

Lemma 2.30. Suppose that a unital C*-algebra A satisfies p(P1Ko(A)) = pKo(A)
and DUy(A) = DU (A) (see 2.26 and 2.25), and in particular, that A € HD or
A € AHD. Then we have the following:

da(f, g) =

(1) There is a split exact sequence
0 — AffT(A)/pKo(A) 22 U(A)/DUA) X5 Ki(A) — 0.

) x A Is an isometry with respect to d 4 and Dy.

Proof As we mentioned in 2.28, the map A4 in Lemma 2.27 takes ,oKo(A)/,oKO(A)
to DU (A) /DU (A). From the exact sequence in Lemma 2.27, passing to quotient,
one gets the exact sequence in (1)

Note that dA on AffT(A)/ pKo(A) is the quotient metric induced by d4 on
AffT(A)/,oKo(A) and Dy on U(A)/DU(A) is the quotient metric induced by D4
on U(A)/DU(A) Hence AA is an isometry, since S0 is A 4. |

2.31. Instead of DU(A (A), we need the group

SU(A) := {x € U(A) : x" € DU(A) for some n € Z,.\{0}}.

For A € HD, say A = PM;(C(X))P (X = [0, 1], St or Tunx) or A = M(Iy),
SU(A) is the set of all unitaries u € P(M;C(X))P or u € M;(I;) such that the
determinant function

X 3x > det(u(x)) or (0,1)>¢+ det(u(r))

is a constant function. Comparing with the set SU (A) in [Elliott et al. 2007] or
2.19 above (which only defines for #D blocks), where the function will be constant
1, here we allow the function to be an arbitrary constant in T. Hence for a basic
building block A = PM,,(C(X))P € HD or A = M;(Iy),

SU(A) =T -SU(A).

The notations pﬁ) m) and W) reflect that they are constructed
from pKy(A), DU (A) and SU(A), respectlvely To make the notanon simpler,
from now on we use ,()Ko(A) to deno denote pKo(A) = pA(Ko(A)) DU(A) to denote
DU(A) and SU(A) to denote SU(A)
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Lemma2.32. Leto, f: K (A) — U(A)/ﬁf](A) be splittings of w4 in Lemma 2.30.
Then
®ltor k1 (A) = Blior ky(A)

and a(tor Ki(A)) C SU(A)/DU(A) Furthermore, o identifies tor(K(A)) with
SU(A)/DU(A)

Proof. For any z € tor K|(A), with kz = 0 for some integer £ > 0, we have
mae(z) =z =maB(2).

By the exactness of the sequence, there is an element f € AffT(A)/ p’T(/o(A) such
that ~
a(z) = B(2) = ra(f).

Since koz(z) kB(z) = a(kz) — B(kz) =0, we have AA(kf) = 0. By the injec-
tivity of *as kf = 0. Note that AffT(A)/pKO(A) is an R-vector space, f = 0.
Furthermore, ka(z) =0in U(A)/ DU (A) implies that

a(z) € SU(A)/DU(A).
Thus we get ae(tor K1(A)) C SU(A). If u € SU(A)/DU(A) then ae(rrs () =u. O

2.33. Let Ui, (A) denote the set of unitaries u € A such that [u] € tor K;(A). For
any C*-algebra A we have SU(A) C Ur(A). If we further assume DUy(A) =
DU (A), then

DU(A) = Up(A)NSU(A) and Upr(A) = Uy(A) - SU(A).

We have Uy(A) /ﬁfJ(A) Uior(A) /SU(A). The metric Ds on U(A) /EfJ(A) in-
duces a metric D > Dy on U(A)/ SU (A). And the above identification Uy (A) / DU (A)
with Utor(A)/SU(A) is an isometry with respect to Dy and DA Hence A4 in 2.28
can be regarded as a map (still denoted by A 4):

ha: AET(A)/pKo(A) = Uior(A)/SUTA) = U(A)/SU(A).
Similar to Lemma 2.30, we have the following.

Lemma 2.34. Suppose that a unital C*-algebra A satisfies p(P1Ko(A)) = pKo(A)
and DUy(A) = DU (A) (see 2.26 and 2.25), and in particular, that A € HD or
A € AHD. Then the following hold:

(1) There is a split exact sequence
0 — AffT(A)/pKo(A) 225 U(A)/SU(A) 5 K (A)/ tor K1 (A) — 0.

(2) A4 is an isometry with respect to the metrics d, 4 and D A
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2.35. For each pair of projections pi, p» € A with p; = upru™,

U(p1Ap)/SU(p1Ap)) = U(paAp)/SU(prApy).

Also, since in any unital C*-algebra A and unitaries u, v € U(A), v and uvu*
represent the same element in U (A)/ SU (A), the above identification does not
depend on the choice of u to implement p; = upou*. That is, for any [p] € A,
the group U(pAp)/ SU (pAp) is well defined, which does not depend on choice of
p € [p]. We include this group (with metric) as part of our invariant. If [p] < [q],
then we can choose p, g such that p < g. In this case, there is a natural inclusion
map it : pAp — gAq, which induces

L U(pAp)/SU(pAp) — U(gAq)/SU(gAq),
where 1, is defined by
L,(w)=u®(q@—p)eclU(gAq) forallu e U(pAp).
A unital homomorphism ¢ : A — B induces a contractive group homomorphism
#":U(A)/SU(A) — U(B)/SU(B).
If ¢ is not unital, then the map

¢": U(A)/SU(A) — U(p(14)B$(14))/SU($(14)B$(14))

is induced by the corresponding unital homomorphism. In this case, ¢ also induces
the map 1, o " U(A)/:S-’T](A) — U(B)/S‘T](B), which is denoted by ¢, to avoid
confusion. If ¢ is unital, then ¢* = ¢,. If ¢ is not unital, then ¢° and ¢, have differ-
ent codomains. That is, ¢* has codomain U(¢(1A)B¢(1A))/§T](¢(1A)B¢(1A)),
but ¢, has codomain U (B)/ SU (B). (See the last paragraph of 3.8 below for some
further explanation with an example.)

Since U(A)/flj(A) is an abelian group, we call the unit [1] € U(A)/.?lj(A) the
zero element. If ¢ : A — B satisfies ¢ (U(A)) C @(¢(1A)B¢(1A)), then ¢% = 0.
In particular, if the image of ¢ is of finite dimension, then ¢* = 0.

2.36. In this paper and [Gong et al. 2016], we denote
(K(A): K(A)": SA; (ART(pAp)}ipiesa: (U(pAp)/SU(pAp)}ipieza)
by Inv(A). By a map from Inv(A) to Inv(B), we mean
@ (K(A); K(A)"; ZA) — (K(B); K(B)"; £B)

as in 2.7, and for each pair ([p], [p]) € A x ¥ B with a([p]) = [p], there exist
an associate unital positive (continuous) linear map

EPP  AffT(pAp) — AffT(pBp)
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and an associate contractive group homomorphism
x"?:U(pAp)/SU(pAp) — U(pBp)/SU (B p)

satisfying the following compatibility conditions. (Note that x ”*? is continuous,
as it is a contractive group homomorphism from a metric group to another metric

group.)
(a) If p < g, then the diagrams

PP
ART(pAp) —— AFFT(5B p)

Al — M

AffT(gAq) ——— AFFT(B3)
and o
U(pAp)/SU(pAp) X U(pBp)/SU(pBp)

,*l l*l 1)

U(gAq)/ST(qAq) -~ U(GB)/STGBY)
commutes, where the vertical maps are induced by inclusions.
(b) The diagram

Ko(pAp) —— AfT(pAp)

al Wl (II1)

MY o
Ko(pBp) —— AffT(pBp)
commutes, and therefore £7-7 induces a map (still denoted by EP-P)
£P'7 : AfET(pAp)/pKo(pAp) — AfT(5B5)/pKo(pBp).

(The commutativity of (III) follows from the commutativity of (I), by [Ji and Jiang
2011, 1.20]. So this is not an extra requirement.)

(c) The diagrams
AfT(pAp)/pKo(pAp) — U(pAp)/SU(pAp)
gp,ﬁl Xp,fal (IV)
AffT(pBp)/pKo(pBp) — U(pBp)/SU(pBp)

and
U(pAp)/SU(pAp) —— Ki(pAp)/tor Ki(pAp)

17| @ | V)

U(pBp)/SU(pBp) — K\(pBp)/tor Ki(pBp)

commute, where o is induced by «.
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We denote the map from Inv(A) to Inv(B) by

(., &, x) 1 (K(A); {AffT(pAp)}ipresa; {U(PAP)/ﬁ?(PAP)}[p]ezA)
— (K(B); {AffT(pBp)Yprexs; (U(PBP)/SU(PBP)}plexs)-

Completely similar to [Nielsen and Thomsen 1996, Lemma 3.2] and [Thomsen
1997, Lemma 6.5], we have the following propositions.

Proposition 2.37. Let unital C*-algebras A, B satisfy p(P1Ko(A)) = pKo(A),

p(P1Ky(B))=pKy(B) and DUy(A)= DU (A), DUy(B) = DU (B). In particular,
let A, B € HD or AHD be unital C*-algebras. Assume that

V1 Ki(A) = Ki(B) and Vo : AffT(A)/pKo(A) — AHfT(B)/pKo(B)

are group homomorphisms such that Vg is a contraction with respect to da and dp.
Then there is a group homomorphism

v :U(A)/DU(A) - U(B)/DU(B)

which is a contraction with respect to D o and Dp such that the diagram

0 —— AFfT(A)/ pKo(A) —2 U(A)/DU(A) —“ K1 (A) —— 0

Js P s

0 —— AfT(A)/pKo(B) —2 U(B)/DU(B) - K1 (B) —— 0

commutes. If Vg is an isometric isomorphism and | is an isomorphism, then \r is
an isometric isomorphism.

Proposition 2.38. Ler unital C*-algebras A, B satisfy p(P1Ko(A)) = pKo(A),
p(P1Ky(B))=pKy(B)and DUy(A)= DU (A), DUy(B) = DU (B). In particular,
let A, B € HD or AHD be unital C*-algebras. Assume that

Y1 :Ki(A) = Ki(B) and o : AffT(A)/pKo(A) — AFT(B)/pKo(B)

are group homomorphisms such that v is a contraction with respect to da and dg.
Then there is a group homomorphism

¥ : U(A)/SU(A) — U(B)/SU(B)

which is a contraction with respect to D 4 and D B such that the diagram

0 — AffT(A)/pKo(A) a, U(A)/ST(A) 25 K\ (A)/ tor K1 (A) — 0

lw v K2

0 — AFT(A)/pKo(B) =25 U(B)/SU(B) =5 K, (B)/tor K{(B) — 0
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commutes. If Vg is an isometric isomorphism and | is an isomorphism, then \r is
an isometric isomorphism.

Remark 2.39. As in Proposition 2.38 (or Proposition 2.37), for each fixed pair
p € A, p € B with a([p]) = [p], if we have an isometric isomorphism between
the quotients AffT(pAp)/,oKo(pAp) and AffT(po)/pKo(po) (or between
AffT(pAp)/pKo(pAp) and AffT(pBp)/pKo(pBp)) and an isomorphism between
Ki(pAp) ggd Ki(pBp), then we alsig) have an isometric isomorphism between
U(pAp)/SU(pAp) and U(pBp)/SU(pBp) (or between U(pAp)/DU(pAp)
and U(pBp)/DU (pBp)) making both diagrams (IV) and (V) commute. This
is the reason U(A)/DU (A) is not included in the Elliott invariant in the clas-
sification of simple C*-algebras. For our setting, even though for each pair of
projections (p, p) with a([p]) = [p], we can find an isometric isomorphism be-
tween U(pAp)/SU(pAp) and U(po)/SU(po) provided that the other parts
of invariants IIIVO(A) and IHVO(B) are isomorphic, we still cannot make such a
system of isometric isomorphisms compatible — that is, we cannot make the dia-
gram (II) commute for p < g. We present two nonisomorphic C*-algebras A and
B in our class such that Inv®(A) = Inv’(B) in the next section, where Inv®(B) is
defined in 2.11. Hence it is essential to include {U(pAp)/S‘?j(pAp)},,Ez with the
compatibility as part of Inv(A).

2.40. Replacing U(pAp)/S’\lj(pAp), one can also use U(pAp)/DU (pAp) as the
part of the invariant. That is, one can define Inv'(A) as

(K (A); K(A); ZA; (AfT(pAP)}iprexas {U(pAp)/ DU (pAp)}ipieza).

with corresponding compatibility condition — one needs to change diagrams (IV)
and (V) to the corresponding ones. It is not difficult to see that Inv'(A) = Inv'(B)
implies Inv(A) = Inv(B). We choose the formulation of Inv(A), since it is much
more convenient for the proof of the main theorem in [Gong et al. 2016] and it is
formally a weaker requirement than the one to require the isomorphism between
Inv’(A) and Inv'(B), and the theorem is formally stronger. (Let us point out that, in
the construction of the example (and its proof) in Section 3 of this article, Inv'(A)
is as convenient as Inv(A), and therefore if only for the sake of the example in
Section 3 of this paper, it is not necessary to introduce SU (A).)

Furthermore, it is straightforward to check the following proposition:

Proposition 2.41. Let unital C*-algebras A, B satisfy p(P1Ko(A)) = pKo(A),
p(P1Ko(B))=pKo(B)and DUy(A)= DU (A), DUy(B)= DU (B). In particular,
let A, B € HD or AHD be unital C*-algebras. Suppose that Ki(A) = tor(K(A))
and K1(B) = tor(K(B)). Then Inv°(A) = Inv’(B) implies Inv(A) = Inv(B).
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Proof. It follows from the fact that any isomorphism
PP . AffT(pAp)/pKo(pAp) — AFT(5Bp)/pKo(pB p)
induces a unique isomorphism
xPP:U(pAp)/SU(pAp) — U(pBp)/SU(PBP).
(Note that by the split exact sequence in Lemma 2.34, AffT(pAp)/ ,07(/0( pAp) =
U(pAp)/SU(pAp).) O
The following calculations and notations will be used in [Gong et al. 2016].

2.42. In general, for A =P A', we have

SUA) =P ST AD.

For A = PM;(C(X))P € HD, we have .?(j(A) = Ef/(A), and for A = M;(Iy),
SU(A) = DU(A) ® K1 (A). For both cases, U(A)/SU(A) can be identified with
Ci(X,SY = C(X, Sl)/{constant functions}, or in the case A = M;(l;), with
C1([0, 11, SY = C([0, 1], S')/{constant functions}.

Furthermore, C (X, S!) can be identified as the set of continuous functions from
X to S! such that f(xp) =1 for a certain fixed base point xg € X. For X = [0, 1],
we choose 0 to be the base point. For X = S!, we choose 1 € S! to be the base
point.

243. Let A=@]_ A" e HD, B=@_| B/ € HD. In this subsection we discuss
some consequences of the compatibility of the maps between AffT spaces. Let

m m
r=Pr<qs=Pq'cA and j=Pp' <=3 B
j=1 j=1

be projections satisfying o ([ p]) = [p] and @ ([g]) = [g]. Suppose two unital positive
linear maps &; : AffT(pAp) — AffT(pBp) and &, : AffT(qAq) — AffT(gBq)
are compatible with « (see diagram (2.13)) and compatible with each other (see
diagram (2.10)). Since the (not necessarily unital) maps AffT(pAp) — AffT(gAq)
and AffT(pB p) — AffT(gBg) induced by inclusions are injective, we know that
the map &; is completely determined by &,. Let

£ AffT(q' Aq') — AffT(g/ B/ g7) or &1 AffT(p' Ap') — AFT(pi B/ pi))

be the corresponding component of the map &, (or &1). If p' #0and p’/ #0, then
g, is given by the following formula: for any f € AffT(p'A'p') = Cr(Sp(A'))
(= AffT(q' Ag)),

rank g; rank o’/ (p')

Hf) = EV ().

rank p; ranka’/(g")
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In particular, if g =14 withg =ag[1l4], and &, =& : AffT(A) > Aff ap[14]Bap[l4]
(note that since AffT(QB Q) only depends on the unitary equivalence class of Q,
it is convenient to denote it as AffT([Q]B[Q])), then we denote &; by &|(p).a[p])-
Even for the general case, we can also write &1 = &|((p},«[p))» When p < g as above.

2.44. Asin243,let A=P"_| A", B= D= B/and p<q € A, p <g e B, with
aolpl =[p] and aplg] = [g]. If

y1:U(pAp)/SU(pAp) — U(pBp)/SU(pBp)

is compatible with

y2:U(gAq)/SU(qAq) — UGB)/SUGBY),
then y, is completely determined by y» (since both maps
U(pAp)/SU(pAp) — UqAq)/SU(qAq),
U(pBp)/SU(pBp) — U(GB3)/SUGBY)
are injective). Therefore we can denote y1 by v2|((p1.alp)-

2.45. Let us point out that, in 2.43 and 2.44, if A € AHD and B € AHD, & is not
completely determined by &, and y; is not completely determined by y5.

3. The counterexample

3.1. In this section, we present an example of AT algebras to prove that Inv'(A) or
Inv(A) is not completely determined by Inv’(A). That is, the Hausdorffified alge-
braic Ky-groups {U(pAp)/DU(pAp)}peprojia) or {U(pAp)/SU(pAP)} peproja)
with the corresponding compatibilities are indispensable as a part of the invariant
for Inv’(A) or Inv(A). This is one of the essential differences between the simple
C*-algebras and the C*-algebras with the ideal property. In fact, for all the unital
C*-algebras A satisfying a reasonable condition (e.g., p(P1Ko(A)) = pKo(A) and
DUy(A) = DU(A)), we have

U(pAp)/DU (pAp) = AffT(pAp)/pKo(pAp) ® K1(pAp),
U(pAp)/SU(pAp) = AffT(pAp)/pKo(pAp) ® Ki(pAp)/ tor K1 (pAp),

i.e., the metric groups U(pAp)/DU(pAp) and U(pAp)/ﬁ](pAp) themselves
are completely determined by AffT(pAp) and K;(pAp), which are included in
other parts of the invariants, i.e., they are determined by Inv’(A), but the com-
patibilities make the difference. The point is that the above isomorphisms are not
natural and therefore the isomorphisms corresponding to the cutting down algebras
pAp and gAqg (p < g) may not be chosen to be compatible.
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As pointed out in 2.40, Inv'(A) = Inv/(B) implies Inv(A) = Inv(B). For the C*-
algebras A and B constructed in this paper, we only need to prove Inv’(A) = Inv®(B)
but Inv(A) 2 Inv(B). Consequently, Inv'(A) 2 Inv'(B).

32. Let py =2, pp=3,p3=5,pa=7,ps = 11,..., p, be the first n prime
numbers, and let 1 < k| < ky < k3 < --- be a sequence of positive integers. Let

Ay =B =C(ShH,

Ay=By =My (CLO, 1) @ My, (C($") =A@ A} = B| @ B,

1 1
Ay = B3 =M o (CI0, 1D ® M, 1o(CIO, 1) D My, 1o (C(S)),
Ay =By = Mp’lflplfzp’;_z (C[o, 1) & Mpll(lplzfzp;% (C[0, 1]
OM o o (CL0, 1D @ My o s (C(S1)).

In general, let

An=B, @Mh o it (CLO TN @ Moty iy (C(S1)

—EBM gttt (L0 1D @ Myt 1 (C(SH).

i=1 =i+1Pi
Forl<i<n-—1,let|[n, z]_]_[i D k’ ]_[J l+1pl " and [n, n] = [n, n — 1]. Then

n—1

An= By =P Myy.i)(CIO, 11) & My (C(SM)).
i=1

(Note that the last two blocks have the same size [n, n] = [n,n — 1].)
Note that [n 41, i]=[n, i]- p" foralli € {1,2,...,n— 1} and [n+1,n+1] =
[n+1,n]=[n,nl py.

3.3. Let {t,}°2, be a dense subset of [0, 1] and {z,}> , be a dense subset of S!. In
this subsection, we define the connecting homomorphlsms

Onn+l i Ay = Ayyr and Yy uq1 0 By = By

Fori <n-—1, deﬁne¢
(= M, 1., (CIO, 11)) by

= Ul M (CI0, 11) = Mig1,11(CIO, 17)

[n,i]-p
o (OO =yl (OO
= diag(f (1), f(©)..... f(1), f(t,)) forall f € M, ;(C[O, 1]).

kn

P -1
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Define ¢/ F1 =y My (C(S)) = Mipg1,011(C(SH)) =M
by

PN =Y (@)
= diag(f(2). £ @n). f@n)s ... f(zn)) forall f€Mpm(C(Sh)).

[n,n]- pkﬂ (C(S ))

pa=1
But d)n a1 and 1//n 141 are defined differently — this is the only nonequal compo-
nent of ¢n n+1 and wn n+1-
Let/ = — 1. Then

¢,’;;2+1<f><z) =diag(f ("), (™2™, (&™), ..., f(@TDD),

Vo ()@ =diag(f (@), fe72 ), £/, f@m D)
for any f € M, n](C(S ), where [, =4" - [n+1,n] e N.

Let all other parts ¢ ’+1, wl ’+1 of ¢n.nt1, ¥n, n+l (exceptz =j<nori=n,
J =n+1, as defined above) be zero. Note that all q‘)n nils K/In’ 41 are either injective
or Zero.

Let A =1lim(A,, ¢,.m), B =lim(B,, ¥, ,»). Then it follows from the densit

. . y

of the sets {#,}-2, and {z,,},2 , that both A and B have the ideal property (see the
characterization theorem for AH algebras with the ideal property [Pasnicu 2000]).

Proposition 3.4. There is an isomorphism between Inv’(A) and Inv®(B) (see 2.11),
that is, there is an isomorphism

a: (K(A); K(A)"; 2A) — (K(B); K(B)"; £B)

which is compatible with Bockstein operations, and for pairs (p, q) with p € £ A,
q € LB and a([p]) = [q], there are associated unital positive linear maps

EP4: AffT(pAp) — AffT(gBq)
which are compatible in the sense of 2.9 (see diagram (2.10)).

Proof. As KK (¢n m) = KK (Y1) and @y, 1y ~1 ¥ m, the identity maps n, : A, — B,
induce a shape equivalence between A = lim(A,, ¢, ») and B = lim(B,, ¥ m),
and therefore induce an isomorphism

a:(K(A); K(A)"; £A) — (K(B); K(B)"; £B).

n,n+1 _wn,n+l and

Note that ¢n nal = 1/fn n+1 fori <n—1, ¢n,n+1 — Yn.n+1°

2
|AFET ¢y () = ATy (O] < —= I f
p n
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(see the definition of ¢, ,+1 and ¥, ,+1). Therefore,

AffT n, : AffT(A,) — AffT(B,) and AffT n;l : AffT(B,) — AffT(A,)
induce the approximately intertwining diagram

AffT(A;) — AffT(Ay) — - -- — AFfT(A)

I Il

AffT(B)) —— AffT(By) —— - - - —— AffT(B)
in the sense of [Elliott 1993b]. Therefore, there is a unital positive isomorphism
& AffT(A) — AffT(B).

Also, for any projection [ P] € Ko(A), there is a projection P, € A, = B, (for n large
enough) with P,’; =diag(l,...,1,0,...,0) € M, 1(C(X,,;)), where X, ; = [0, 1]
fori <n—1,and X, , = S!, such that ®n.0o([Pu]) = [P] € Ko(A). Note that for
any constant functions f € A; = B,i (e.g., P,{ above) and for any j, ¢;{1 +1(f) and
1//}112 +1(f) are still constant functions, and qb}’ﬂn alH = 1//}112 +1(f). Thatis, we
have st (Pa) = Yunr1(Py)  (denoted by Pyyy),

d’n,m(Pn) = 1;011,m(Pn) (denOted by Pm)-

Let Poo = ¢n.00(Py) and Qoo = V.00 (Py). Then the identity maps {1, };m>n» also
induce the approximate intertwining diagram

AffT(PnAnPn) — AﬂT(Pn+lAn+an+l) — T AffT(PooAPoo)

If i

Affr(PanPn) — AffT(Pn—HBn-H Pn—H) — AffT(QooBQoo)
and hence induce a positive linear isomorphism
gLPLalPT . AT (Py A Poo) = AffT(Qoo BOoo).

(Note that [Px] = [P] and [Qx] = «[P] in Ko(A) and Ko(B), respectively.)
Evidently those maps are compatible since, they are induced by the same sequence
of homomorphisms {n,} and {n, oy U

Definition 3.5 and Proposition 3.6 are inspired by [Elliott 1997].

Definition 3.5. Let C =1im(C,,, ¢,,.,) be an AHD inductive limit. We say the sys-
tem (Cy, ¢n.m) has the uniformly varied determinant if for any C,i = Mp,.i1(C(S )
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(that is, C! has spectrum S'), c’. ., and f € C! defined by

n+1°

Z

f@)= ] forallz e S',

[n,i]1x[n,i]

we have either that det(d)n n+1(f) (x)) is constant for x € Sp(CjH) = S1 or that
det(¢n nH(f)(z)) rzF (L eC)forzeSp(C] +1) =S', where j satisfies ¢n 1 70
and the determinant is taken inside ¢n’n +1ei)C / it 1¢n ni1(ei).

Proposition 3.6. If the inductive limit system C = (Cy,, ¢n.m) has the uniformly
varied determinant, then for any elements [p] € >_ C, there are splitting maps

s —
K1(pCp)/ tor K (pCp) == U(pCp)/STU (pCp)
of the exact sequences

0 — AFfT(pCp)/pKo(pCp) — U(pCp)/SU(pCp)

TTpCp

— K(pCp)/tor K1(pCp) — 0

(that is, wpcp o Spcp =1d on K1 (pCp)/ tor K1 (pCp)) such that the system of maps
{Spcplipiex: ¢ are compatible in the following sense: if p < q, then the diagram

Spcp —~
Ki(pCp)/tor K (pCp) —— U(pCp)/SU(pCp)

l l 3.7

Syc —
K1(gCq)/torKi(qCq) — U(qCq)/SU(¢Cq)
commutes, where the vertical maps are induced by the inclusions pCp — qCq.

Proof. Fix pe C. Let x € K1 (pCp)/tor K1(pCp). There exist a C, and p, € C,
such that [¢,.00(Pn)] = [p] € Ko(C). Without lose of generality, we can assume
®n.00(pn) = p. By increasing n if necessary, we can assume that there is an element
Xn € K1(pnCnpn)/ tor K1(p,Cppy) such that

(Pn,00)+(xn) =x € K1 (pCp)/tor K (pCp).

Write p,Chpn =D =@ D'. Let I ={i : Sp(D’) = S§'}. Fori € I, D' can be
identified with M;, (C(S ). Let u; € D' be defined by

<

u;(z) = ) forall z € S,

[,'Xl,'
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which represents the standard generator of K1(D'). Then x,, can be represented by

M—@M @@1D16@D1®®DJ D € pyCypy.
iel jél iel jél
Define S(x) = [¢n.00(1)] € U(pCp)/S’\lj(pCp). Note that all unitaries with con-
stant determinants are in SU, and that the inductive system has the uniformly var-
ied determinant. It is routine to verify that S(x) is well defined and the system
{Spcplipley: ¢ makes the diagram (3.7) commute. O

3.8. Let A be a unital C*-algebra. Then AffT(A) is a real Banach space with quo-
tient space AffT(A)/pKo (A) Let us use || - ||~ to denote the quotient norm. M Note
that A4 identifies U (A)/ SU (A) with AffT(A)/pKo(A). Thus, User(A)/ SU (A)
is regarded as a real Banach space, whose norm is also denoted by || - ||~. In general,

we have _ N
U(A)/SU(A) = Uior(A)/SU(A) x K1(A)/ tor K1 (A),

but the identification is not canonical. Even though U (A)/ SU (A) is not a Banach
space, it is an abelian group: for [u], [v] € U (A)/ SU (A, deﬁne [u] — [v] = [uv*].

The norm || - ||~ 1s related to the metrics d 4 (on AffT(A)/ ,oKo (A); see 2. 28) and
DA (on Utor(A)/SU(A) see 2.33) asbelow. Lete < 1. For f, g€ AffT(A)/pKO(A)

If—gl™ <i — difie)<e = |f—2gl”
And for any [u], [v] € U<A>/§z7<A> with [u] — [v] = [uv*] € Uior(A) /ST (A),

[~ < 5= = Datulbh<e = |-l <.

For A = PM;(C(X))P € HD or A= M;(I;) (in this case we also denote [0, 1]
by X), there are canonical identifications

Uior(A)/ SU (A) = AfT(A)/ ,07(/0 (A) = C(X, R)/{constant functions}

(see 2.42). Choose a base point xg € X. Let C,,(X, R) be the set of functions
f € C(X,R) with f (xg) = 0. Then C(X, R) / {constant functions} = C,, (X, R).
For [ f] € AffT(A)/p KO(A) (or [ f] € Uier(A)/ SU (A)) identified with a function
f € Cy (X, R), we have

LA™ = 3 (max (£ () = min( £ ()

(rather than sup,.cx{| f(x)|}).

In the above case, if p € A is a nonzero projection, then U (p.Ap)/ SU (pAp) =
AffT(pAp)/ ,07{/0 (pAp) is also identified with C,, (X, R). Consider the inclusion
map ¢ : pAp — A. Then the map 1, as a map from Utor(pAp)/S‘TJ(pAp) =
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AffT(pAp)/ p?o(pAp) to Uior(A)/ SU (A) can be described as follows: if
u € Ui(pAp)/SU (pAp) = AfT(pAp)/pKo(pAp)

is identified with f € C, (X, R), then 1, (u) € U (A)/ SU (A) is identified with

rank(p)
rank(14)”"

But :" is the identity map from Uior (pAp) /SU (pAp) = AffT(pAp)/ pKo(pAp)
to itself (not to Ui (A)/SU(A)).

3.9. It is easy to see that K| (A) = Kl(B) =

In the definition of A, = Q}? LA i only one block A? = M[,,yn](C(Sl)) has spec-
trum S, and only two partial maps ¢n nl for j=n, j=n+1(of ¢, 1 from Al})
are nonzero. Let f € A be defined as in Definition 3.5. Then det( ,': ZI; f) (z)) =z
and det((ﬁZ’ZH(f)(f)) — eZm’te—Znitleri/leZn'i(Z/l) . .6271'1'(1—1)/1 +1 (see 33)
So the inductive limit system (A, ¢,.») has the uniformly varied determinant,
and therefore the limit algebra A has compatible splitting maps S, : K1(pAp) —
U(pAp)/SU(pAp).

We prove that B = lim(B,, ¥, ») does not have such a compatible system of
splitting maps {K(pBp) — U(pBp)/SU(pBp)}ipiey 8-

Before proving the above fact, let us describe the Ko-group of A and B. Let

m
Gi=|%mez ez},
Py
G2: o mEZ,lEZ+},
Py Py
m
P P2p3
m
Gn:  x o mEZ,l€Z+},
PPy P P
m
Py Py -y

where py =2, pp=3,...,pi,... and ki, ko, ..., k; ... are defined in 3.2. Then
Ko(A) = Ko(B)

(e.0]
={(al,ag,...,an,...)eHGn:EINsuchthataNzaNH=---€@}

n=1

23G.
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Furthermore, their positive cones consist of the elements whose coordinates are
nonnegative, and their order units are [14] =[1]=(1,1,...,1,...) € ]_[flo:1 G,.
Let

@0 : (Ko(A), Ko(A) T, [1aD) = (G, G*, (1, 1,...,1,...))
— (Ko(B), Ko(B)", [15D) = (G, G*, (1,1,...,1,...))

be a scaled ordered isomorphism. Then ao((1,1,...,1,...))=(,1,...,1,...).
Note that an element x € G is divisible by power p{ (for any n) of the first
prime number p; = 2 if and only if x = (¢,0,0,...,0,...) € G| C G. Hence
((1,0,0,...,0,...))=(,0,0,...,0,...) for some r € G; with t > 0. Hence

ao(0,1,1,...,1,...))=0—-¢1,1,...,1,...).

Since « preserves the positive cone, we have 1 — ¢t > 0, which implies ¢t < 1.
On the other hand, (og) ! takes (1,0,0,...,0,...) to (1/¢,0,0,...,0,...). But
(ap)~! also preserves the positive cone. Symmetrically, we get ¢ > 1. That is,
0((1,0,0,...,0,...))=(1,0,0,...,0,...). Similarly, using the fact that G is
the subgroup of all elements in G which can be divisible by any power of p; —
the k-th prime number, we can prove that

@((0,...,0,1,0,...,0,...))=(0,...,0,1,0,...,0,...) e Gy C G.
—— ——
k—1 k—1
That is, «g is the identity on G.
Note that Sp(A) = Sp(B) is the one point compactification of {1,2,3...}—or,
in other words, {1,2,3 ..., oo}. If we let I, (or J,,) be the primitive ideal A (or B)
corresponding to n (including n = 00), then

Ko(A/Iy) = Ko(B/Jn) = Gy.

Note also that if m’ > m > n e N, then ¢,, v (A) C A", and ¥, (B},) C B,
Hence A/I, :1imn<m%oo(Arr£,s Lo~ |A§;l) (resp. B/ J, :limn<m*>OO(By’;7 Ym,m' |B,','1))
are ideals of A (resp. B). But A/l (or B/J) is not an ideal of A (or B).

Leta: (K(A), K(A)T,£A) — (K(B), K(B)", £B) be an isomorphism. By
3.9 the induced map «g on K group is identity, when both Ky(A) and Ko(B) are
identified with G as scaled ordered groups. That is, o is the same as the o induced
by the shape equivalence in the proof of Proposition 3.4. In particular, if there is
an isomorphism A: A — B, then foralli <n—1, /\*[(¢,,,oo(lA£1))] = [wn,oo(lgz)].
This implies /\(qbn’oo(lA;)) = wn,oo(lg’l;), since wn,oo(lgi) = 1p/s,, which is in the
center of B (any element in the center of the C*-algebra can only unitary equivalent
to itself). Hence it is also true that /\(qﬁn,oo(lA;)) = 1//,,’00(13’,-1) fori =n.
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3.10. Let Py = 1p = ¥1,00(1p)) and P, = ¥ 0o(1pr) for n > 1. Then we have
P> P, >---> P, >--.. We prove that there are no splittings

Ki(P,BP,) — U(P,BP,)/SU(P,BF,)

which are compatible for all pairs of projections P, > P, (see diagram (3.7)) in
the next subsection. Before doing so, we need some preparations.

Set Q1=P—P,,0,=P,—Ps3,...,0,= P, — P,y1. Then for each n, we
have the inductive limit

QnBQn = mli—>moo(B::“ 1//,',1,',1,,/)

(note that for m > n, ,':lfn 41 = 0if j # n), which is the quotient algebra corre-

sponding to the primitive ideal of n € Sp(B) ={1,2,3..., 0o}. Note that 0, BQ,
is a simple A algebra. The inductive limit of the C*-algebras

B, —> B, > B3>~ 0BO,
induces the inductive limit of the ordered Banach spaces

Ent2.n+3

AffT(By, ) — - = AffT(Q, B Q,),

Ent, LARILEN

AFfT(B!, ) 22,

whose connecting maps &, u+1 : Cr([0, 1]) = Cr([0, 1]) (for m > n) satisfy
1
1Emm1(f) = fil < =N fIl forall feCgl0,1], m >n.
Pn

Hence we have the following approximate intertwining diagram:

Cal0, 11— Cal0. 17 2522 cal0. 1] AFFT(Q,BO,)
Crl0, 11 —4— Cg[0, 11 —4— Cg[0, 1] Cw[0, 1]

Consequently, AffT(Q,B Q,) = Cr[0, 1], and the maps
Em,0 - AffT(B,,) = Cg[0, 1] — AffT(Q,BQ,) = Cg[0, 1]

(under the identification) satisfy

1

pkn+1

16m.00(F) = f||<<pk + ot )IFI = IF1 forall £ € Calo, 1.

Therefore (1§00 ()l = FI/1.
Note that pKo(Q, B Q,) =R = pKy(B],) consists of constant functions on [0, 1].

Take an element 4 € Cg[0, 1] = AffT(B,,). Considering &, »(h) as an element of
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AffT(Q,BQ,)/pKo(QnBQ,), we have

3

16m.00 (NI~ 5 Z( max, h(1) —tg[lén h(1)),

where || - || is defined in 3.8.
3.11. We now prove that no compatible splittings
Sp: K\(P,BP,) — U(P,BP,)/SU(P,BP,)

exist. Suppose such splittings exist. Then consider the generator x € K(B) = Z.
Note that x € K| (P,BP,) = K,(B) for all P,. Note also that the diagram

n+1

Kl(Pn+lBPn+1) —— U(Pn—HBPn+l)/SU(Pn+1BPn+1)

o .|

S —_~
K\(P\BP)) ———— U(P,BP,)/SU(P,BP))
commutes (P} B P} = B). The composition

U(Puy1BPyi1)/SU(Py 1 BP, 1) = U(P BP))/SU (P, BP;)

— P UQiB0)/SUWQiBO)

i=1

is the zero map. (Note that Q; BQ; is an ideal of B and is also the quotient B/ J;.)
Consequently, we have

TH(S1(X)) = 7h (14841 (x)) =0, )

where m, : B — 0,BQ, is the quotient map. Let S;(x) be represented by a
unitary u € U(B). Then there are an n (large enough) and [u,] € U (B,)/SU(B,),
represented by unitary u, € B, such that

Vi o ([ta]) = S1(x) € Uior(By)/SU(By) and [y oo ([ua]) — S1 ()™ < 5.

Note that
(V’nm)* : K1(B,) = K1(Bp)

is the identify map from Z to Z. Let g € M[n,n](C(Sl)) = B be defined by

Z

g(2) = 1

[n,n]x[n,n]
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Then [g_lun] =01in K(B,). By the exactness of the sequence
0 — AffT(B,)/pKo(B,) — U(B,)/SU(B,) — Ki(B1) — 0,
there is an & € @;’:1 Cr[0, 11® Cr(S') = AffT(B,) such that
(] =[g]- (™" - 15,) € U(B,)/SU(B,).

Let ||h|| = M. Choose m > n such that 4"~ > 8M + 8.
Consider

1//"”"_1 . BZ = M[n,n](C(Sl)) — Bnn:_l = M[m,m—ll(c([o’ 1]))’

n,m

which is the composition
Y oyl My (C(SY) = Mim—1.m—11(C(S")) = My m—1(C ([0, 11)).

Let g’ =y~ 1(g). We know that

eZm’lm,lt

g =yrm e = *

* [m,m—1]x[m,m—1]

where the *’s represent constant functions on [0, 1], and therefore
¢ =" (mod SU(B" ™))

lmfl

[m,m—1]
AFfT(B" ")/ pKo(B"~") = Cgl[0, 1]/{constants},

with 7/ (t) = -t - Apn.m—1)- When we identify U (B™~1)/SU (B™') with

g’ is identified with & € C[0, 1], where

m—1

> 8M + 8, we have
[m, m—1]

Since

il =1 ~( max h(r) — min h(t)) >4M +4
2 Mel0,1] 1[0,

(see 3.8). On the other hand,

[un] = [g]+ig, ([h]) € U(B,)/SU(B,).
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where [h] € AffT(B,)/ ,07(/0(3,1) is the element defined by %, and
kg, : AfT(B,)/pKo(By) — U(B,)/SU(B,)
is the map defined in 2.33 (also see 2.28). Consequently,
(Wi~ )P () = AFT Y= () +

2 i ¢ AFET(B"Y)/pRo(B" 1y = U(B™ ) /ST (B" 1)
with

IIf:zll” = ~( max h(t) — m1n h(z)) > 4,

1
2 Mtel0,1] 1€l0,

since ||i|| < M. Therefore,

(-1 0 Yn.00) () €U(Qm-1BOm—1)/SU(Qm-1BOm_1)

= AfFT(Qm—1B Om-1)/pKo(Qm—1B Q1)
satisfies

(-1 0 WYn.00)* (W) |~

;(ferfg’f (TTim—1 0 Yn,00) (1) (1) — min (-1 © Yin.c0) () >% 4=3,

where 7,1 : B — Q,,—1BQ,,— is the quotient map. On the other hand,

7,1 (S1(x)) =0

as calculated in (x). Recall that

(Y, 00) () — S ()|~
We get
[ (Tm—1 0 Yn.0o) @) |~

which is a contradiction. This contradiction proves that such a system of splittings
does not exist. Hence Inv(A) 2 Inv(B) and A Z B.

3.12. One can easily verify that
AffT(A) = AffT(B)
o
= {(fl,fz,...,f,,,...) e [ ] Crl0. 11: 3r € R such that

n=l fn(x) converges to r uniformly},

pKo(A)(= pKo(B))

o.¢]

= {(7‘1,7‘2,...,7'”,...) € l—[R:EIr € R such that r,, converges to r}

n=1

C AffT(A)(= AffT(B)).



HAUSDORFFIFIED ALGEBRAIC K{-GROUPS AND INVARIANTS FOR C*-ALGEBRAS 75

Since pKo(A)(= pKo(B)) is already a vector space, we have p?o(A) =pKo(A)
and pKy(B) = pKo(B). Therefore,

Uior(A)/SU (A) = AFfT(A)/ pKo(A) = AffT(A)/pKo(A) = Up(A)/ DU (A).

On the other hand, U;,;(A) = Uyp(A). Hence :S:T/(A) = DU(A). Furthermore,
the map Ay : AffT(A)/,oKO(A) — U(A)/DU(A) can be identified with the map

AffT(A)/pKO(A) — U(A)/SU(A) That is, Inv'(A) = Inv(A). Similarly,
Inv(B) =Inv'(B).

3.13. A routine calculation (we omit the details) shows that for any finite subset
F C A, and ¢ > 0, there is an m > n and two finite dimensional unital sub-C*-
algebras C, D C A,, with nonabelian central projection such that

{nm(f), cl| <ellell and ||[Wnm(f).dl|<eld| forall feF,ceC,deD.

Consequently, both C*-algebras A and B are approximately divisible in the sense of
[Blackadar et al. 1992, Definition 1.2]. By [Toms and Winter 2008, Theorem 2.3],
both A and B are Z-stable. Thatis, AQ Z = A and B ® Z = B, where Z is
the Jiang—Su algebra (see [Jiang and Su 1999]). Furthermore, by using [Tikuisis
2011] (see also [Coward et al. 2008]), one can prove that Cu(A) = Cu(B) and
Cu(A®C(S") = Cu(BC(Sh).
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