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A C∗-algebra A is said to have the ideal property if each closed two-sided ideal
of A is generated as a closed two-sided ideal by the projections inside the ideal.
C∗-algebras with the ideal property are a generalization and unification of real
rank zero C∗-algebras and unital simple C∗-algebras. It was long expected that
an invariant that we call Inv0(A), consisting of the scaled ordered total K-group
(K (A); K (A)+;6A)3 (used in the real rank zero case), along with the tracial
state spaces T (p Ap) for each cut-down algebra p Ap, as part of the Elliott
invariant of p Ap (for each [p] ∈ 6A), with certain compatibility conditions,
is the complete invariant for a certain well behaved class of C∗-algebras with
the ideal property (e.g., AH algebras with no dimension growth). In this paper,
we construct two nonisomorphic AT algebras A and B with the ideal property
such that Inv0(A) ∼= Inv0(B), disproving this conjecture. The invariant to dis-
tinguish the two algebras is the collection of Hausdorffified algebraic K1-groups
U (p Ap)/DU (p Ap) (for each [p] ∈6A), along with certain compatibility con-
ditions. We will prove in a separate article that, after adding this new ingredient,
the invariant becomes the complete invariant for AH algebras (of no dimension
growth) with the ideal property.

1. Introduction

A C∗-algebra A is called an AH algebra [Blackadar 1993] if it is the inductive limit
C∗-algebra of

A1
φ1,2
−−→ A2

φ2,3
−−→ A3 −→ · · · −→ An −→ · · ·

with A= limn→∞
(

An =
⊕tn

i=1 Pn,i M[n,i](C(Xn,i ))Pn,i , φn,m
)
, where Xn,i are com-

pact metric spaces, tn and [n, i] are positive integers, and Pn,i ∈M[n,i](C(Xn,i )) are
projections. An AH algebra is called of no dimension growth, if one can choose
the spaces Xn,i such that supn,i dim(Xn,i ) < +∞. If all the spaces Xn,i can be
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chosen to be the single point space {pt}, then A is called an AF algebra. If all the
spaces can be chosen to be the interval [0, 1] or circle T = {z ∈ C : |z| = 1}, then
A is called an AI algebra or AT algebra, respectively.

G. Elliott [1993b] initiated the classification program by classifying all real rank
zero AT algebras (without the condition of simplicity), and he conjectured that the
scaled ordered K∗-group (K∗(A); K∗(A)+;6A), where K∗(A)= K0(A)⊕K1(A),
is a complete invariant for separable nuclear C∗-algebras of real rank zero and
stable rank one. Elliott [1993a] also successfully classified all unital simple AI
algebras by the so called Elliott invariant

Ell(A)= (K0(A); K0(A)+;6A, K1(A); T (A); ρA),

where T (A) is the space of all unital traces on A, and ρA is the nature map from
K0(A) to AffT(A) (the ordered Banach space of all affine maps from T (A) to R).

Later, Gong [1998] constructed two nonisomorphic (not simple) real rank zero
AH algebras (with 2-dimensional local spectra) A and B such that

(K∗(A); K∗(A)+;6A)∼= (K∗(B); K∗(B)+;6B),

which disproved the conjecture of Elliott for C∗-algebras of real rank zero and
stable rank one. This result led to a sequence of research by Dadarlat and Loring
[1996a; 1996b] and Eilers [1996] culminating with Dadarlat and Gong’s [1997]
complete classification of real rank zero AH algebras by scaled ordered total K-
theory (K (A); K (A)+;6A)3, where K (A)= K∗(A)⊕

⊕
∞

p=2 K∗(A,Z/pZ) and
3 is the system of Bockstein operations; see also [Dadarlat 1995a; 1995b; Elliott
and Gong 1996a; 1996b; Elliott et al. 1996; 1998; Gong 1997; 1998; Gong and
Lin 2000; Lin 1996; 2001]. Elliott, Gong, and Li [Elliott et al. 2007] completely
classified simple AH algebras of no dimension growth by Elliott invariant; see also
[Elliott 1997; Elliott et al. 2005; 1997; Gong 2002; Li 1997; 1999; Lin 2007;
Nielsen and Thomsen 1996; Thomsen 1994; 1997]. A natural generalization and
unification of real rank zero C∗-algebras and unital simple C∗-algebras is the class
of C∗-algebras with the ideal property: each closed two-sided ideal of the C∗-
algebra is generated as a closed two-sided ideal by the projections inside the ideal.
It was long expected that a combination of scaled ordered total K-theory (used in
the classification of real rank zero C∗-algebras) and the Elliott invariant (used in
the classification of simple C∗-algebras), including tracial state spaces T (p Ap)—
part of the Elliott invariant of cut-down algebras {p Ap}[p]∈6A with certain compat-
ibility conditions, called Inv0(A) (see [Jiang 2011, 2.18]), is a complete invariant
for certain well behaved C∗-algebras (e.g., AH algebras of no dimension growth
or Z-stable C∗-algebras, where Z is the Jiang–Su algebra of [Jiang and Su 1999])
with the ideal property; see [Stevens 1998; Pasnicu 2000; Ji and Jiang 2011; Jiang
and Wang 2012; Jiang 2011].
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The main purpose of this paper is to construct two unital Z-stable AT alge-
bras A and B with the ideal property such that Inv0(A) ∼= Inv0(B), but A 6∼= B.
The invariant to distinguish these two C∗-algebras is the Hausdorffified algebraic
K1-groups U (p Ap)/DU (p Ap) of the cut-down algebra p Ap (for each element
x ∈ 6A, we chose one projection p ∈ A such that [p] = x) along with a certain
compatibility condition, where DU (A) is the group generated by commutators
{uvu∗v∗ : u, v ∈ U (A)}. In this paper, we introduce the invariant Inv′(A) and its
simplified version Inv(A), by adding these new ingredients — the Hausdorffified
algebraic K1-groups of cut-down algebras along with certain compatibility condi-
tions — to Inv0(A).

In [Gong et al. 2016], we will prove that Inv(A) is a complete invariant for AH
algebras (of no dimension growth) with the ideal property.

Note that for the above C∗-algebras A and B, we have that Cu(A)∼=Cu(B) and
Cu(A⊗C(S1))∼= Cu(B⊗C(S1)). That is, the new invariant can not be detected
by the Cuntz semigroup.

In Section 2, we define Inv(A) and discuss its properties. These properties
will be used in [Gong et al. 2016]. In Section 3, we present the construction
of AT algebras A and B with the ideal property such that Inv(A) 6∼= Inv(B) but
Inv0(A)∼= Inv0(B).

2. The invariant

In this section, we recall the definition of Inv0(A) from [Jiang 2011] (also see
[Stevens 1998; Ji and Jiang 2011; Jiang and Wang 2012]), and then introduce the
invariant Inv(A). Furthermore, we discuss the properties of Inv(A) in the context
of AH algebras and AHD algebras (for the definition of AHD algebras, see 2.3
below), which will be used in [Gong et al. 2016].

2.1. In the notation for an inductive limit system lim(An, φn,m), we understand
that

φn,m = φm−1,m ◦φm−2,m−1 ◦ · · · ◦φn,n+1,

where all φn,m : An→ Am are homomorphisms.
We assume that, for any summand Ai

n in the direct sum An =
⊕tn

i=1 Ai
n , nec-

essarily φn,n+1(1Ai
n
) 6= 0, since otherwise, we could simply delete Ai

n from An

without changing the limit algebra.
If An =

⊕
i Ai

n , Am =
⊕

j A j
m , we use φi, j

n,m to denote the partial map of φn,m

from the i-th block Ai
n of An to the j-th block A j

m of Am . Also, we use φ – , j
n,m to

denote the partial map of φn,m from An to A j
m . That is, φ – , j

n,m =
⊕

i φ
i, j
n,m = π jφn,m ,

where π j : Am→ A j
m is the canonical projection. Sometimes, we also use φi, –

n,m to
denote φn,m |Ai

n
: Ai

n→ Am .
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2.2. As in [Elliott and Gong 1996b], let TII,k be the 2-dimensional connected
simplicial complex with H 1(TII,k) = 0 and H 2(TII,k) = Z/kZ, and let Ik be the
subalgebra of Mk(C[0, 1])= C([0, 1],Mk(C)) consisting of all functions f with
the properties f (0) ∈ C · 1k and f (1) ∈ C · 1k (this algebra is called an Elliott
dimension drop interval algebra). Denote by HD the class of algebras consisting
of direct sums of the building blocks of the forms Ml(Ik) and PMn(C(X))P , with
X being one of the spaces {pt}, [0, 1], S1, and TII,k , and with P ∈ Mn(C(X)) being
a projection. (In [Dadarlat and Gong 1997], this class is denoted by SH(2), and
in [Jiang 2011] by B). We call a C∗-algebra an AHD algebra if it is an inductive
limit of the algebras in HD.

For each basic building block A=PMn(C(X))P , where X={pt}, [0, 1], S1, TII,k ,
or A = Ml(Ik), we have K0(A)= Z or Z/kZ (for the case A = PMn(C(TII,k))P).
Hence there is a natural map rank : K0(A)→ Z. This map also gives a map from
{p ∈ (M∞(A)) : p is a projection} to Z+. For example, if p ∈ A = PMn(C(X))P ,
then rank(p) is the rank of projection p(x) ∈ P(x)Mn(C)P(x) ∼= Mrank(P)(C)

for any x ∈ X ; and if p ∈ A = Ml(Ik), then rank(p) is the rank of projection
p(0) ∈ Ml(C). (Note that we regard p(0) as in Ml(C)∼= 1k ⊗Ml(C), not Mlk(C).)

2.3. By AHD algebra, we mean the inductive limit of

A1
φ1,2
−−→ A2

φ2,3
−−→ A3 −→ · · · −→ · · · ,

where An ∈HD for each n.
For an AHD inductive limit A= lim(An, φnm), we write An =

⊕tn
i=1 Ai

n , where
Ai

n = Pn,i M[n,i](C(Xn,i ))Pn,i or Ai
n = M[n,i](Ikn,i ). For convenience, even for

a block Ai
n = M[n,i](Ikn,i ), we still use Xn,i for Sp(Ai

n)= [0, 1]— that is, Ai
n is

regarded as a homogeneous algebra or a subhomogeneous algebra over Xn,i .

2.4. In [Gong et al. 2010; 2018], joint with Cornel Pasnicu, the authors proved
the reduction theorem for AH algebras with the ideal property provided that the
inductive limit systems have no dimension growth. That is, if A is an inductive
limit of An =

⊕
Ai

n =
⊕

Pn,i M[n,i]C(Xn,i )Pn,i with supn,i dim(Xn,i ) <+∞, and
if we further assume that A has the ideal property, then A can be rewritten as an
inductive limit of Bn =

⊕
B j

n =
⊕

Qn, j M{n, j}C(Yn,i )Qn, j , with Yn,i being one
of {pt}, [0, 1], S1, TII,k , TIII,k , S2. In turn, Jiang [2017] proved (also see [Li 2006])
that the above inductive limit can be rewritten as the inductive limit of the direct
sums of homogeneous algebras over {pt}, [0, 1], S1, TII,k and Ml(Ik). Combining
these two results, we know that all AH algebras of no dimension growth with the
ideal property are AHD algebras. Let us point out that, as proved in [Dadarlat and
Gong 1997], there are real rank zero AHD algebras which are not AH algebras.

2.5. Let A be a C∗-algebra. Then K0(A)+ ⊂ K0(A) is defined to be the semigroup
of K0(A) generated by [p] ∈ K0(A), where p ∈ M∞(A) are projections. For all
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C∗-algebras considered in this paper — for example, A ∈ HD, or A is an AHD
algebra, or A = B ⊗ C(TII,k × S1), where B is an HD or AHD algebra — we
always have

K0(A)+ ∩ (−K0(A)+)= {0} and K0(A)+− K0(A)+ = K0(A). (∗)

Therefore (K0(A), K0(A)+) is an ordered group. Define 6A ⊂ K0(A)+ to be

6A = {[p] ∈ K0(A)+ : p is a projection in A}.

Then (K0(A), K0(A)+, 6A) is a scaled ordered group. (Note that for purely infi-
nite C∗-algebras or stable projectionless C∗-algebras, condition (∗) does not hold.)

2.6. Let K (A) = K∗(A) ⊕
(⊕
+∞

k=2 K∗(A,Z/kZ)
)

be as in [Dadarlat and Gong
1997]. Let ∧ be the Bockstein operation on K (A) (see [Dadarlat and Gong 1997,
4.1]). It is well known that K∗(A, Z ⊕ Z/kZ) = K0(A ⊗ C(Wk × S1)), where
Wk = TII,k .

As in [Dadarlat and Gong 1997], let K∗(A, Z⊕Z/kZ)+= K0(A⊗C(Wk×S1)+)

and let K (A)+ be the semigroup generated by {K∗(A,Z⊕Z/kZ)+ : k = 2, 3, . . . }.

2.7. Let Hom∧(K (A), K (B)) be the set of homomorphisms between K (A) and
K (B) compatible with the Bockstein operations ∧. There is a surjective map (see
[Dadarlat and Gong 1997])

0 : KK (A, B)→ Hom∧(K (A), K (B)).

Following Rørdam [1995], we write KL(A,B),KK(A,B)/Pext(K∗(A),K∗+1(B)),
where Pext(K∗(A), K∗+1(B)) is identified with ker0 by [Dadarlat and Loring
1996b]. The triple (K (A); K (A)+;6A) is part of our invariant. For two C∗-
algebras A and B, by a “homomorphism”

α : (K (A); K (A)+;6A)→ (K (B); K (B)+;6B)

we mean a system of maps

αi
k : Ki (A,Z/kZ)→ Ki (B,Z/kZ), i = 0, 1, k = 0, 2, 3, . . .

which are compatible with the Bockstein operations and α =
⊕

k,i α
i
k satisfies

α(K (A)+)⊂ K (B)+. And finally, α0
0(6A)⊂6B.

2.8. For a unital C∗-algebra A, let T (A) denote the space of tracial states of A, i.e.,
τ ∈ T (A) if and only if τ is a positive linear map from A to C with τ(xy)= τ(yx),
and τ(1)=1. Endow T(A)with the weak-* topology, that is, for any net {τα}α⊂T(A)
and τ ∈ T (A), τα → τ if and only if limα τα(x) = τ(x) for any x ∈ A. Then
T (A) is a compact Hausdorff space with convex structure, that is, if λ ∈ [0, 1]
and τ1, τ2 ∈ T (A), then λτ1 + (1 − λ)τ2 ∈ T (A). AffT(A) is the collection of
all continuous affine maps from T (A) to R, which is a real Banach space with
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‖ f ‖ = supτ∈T (A) | f (τ )|. Let (AffT(A))+ be the subset of AffT(A) consisting of
all nonnegative affine functions. An element 1 ∈ AffT(A), defined by 1(τ ) = 1
for all τ ∈ T (A), is called the order unit (or scale) of AffT(A). Note that any
f ∈AffT(A) can be written as f = f+− f− with f1, f2 ∈AffT(A)+, ‖ f1‖ ≤ ‖ f ‖
and ‖ f2‖ ≤ ‖ f ‖. Therefore (AffT(A), AffT(A)+, 1) forms a scaled ordered real
Banach space. If φ : AffT(A)→ AffT(B) is a unital positive linear map, then φ is
bounded and therefore continuous.

There is a natural homomorphism ρA : K0(A)→ AffT(A) defined by setting
ρA([p])(τ ) =

∑n
i=1 τ(pi i ) for τ ∈ T (A) and [p] ∈ K0(A) represented by the

projection p = (pi j ) ∈ Mn(A).
If φ : A→ B is a unital homomorphism, then φ induces a continuous affine

map Tφ : T (B) → T (A), which, in turn, induces a unital positive linear map
AffTφ : AffT(A)→ AffT(B).

If φ : A→ B is not unital, we still use AffTφ to denote the unital positive linear
map

AffTφ : AffT(A)→ AffT(φ(1A)Bφ(1A))

by regarding φ as the unital homomorphism from A to φ(1A)Bφ(1A)— that is,
for any l ∈ AffT(A) represented by x ∈ As.a as l(t) = t (x) for any t ∈ T (A), we
define

((AffTφ)(l))(τ )= τ(φ(x)) for any τ ∈ T (φ(1A)Bφ(1A)),

where φ(x) is regarded as an element in φ(1A)Bφ(1A). In the above equation, if
we regard φ(x) as element in B (rather than in φ(1A)Bφ(1A)), the homomorphism
φ also induces a positive linear map, denoted by φT to avoid confusion, from
AffT(A) to AffT(B)— that is, for the l as above,

((φT )(l))(τ )= τ(φ(x)) for any τ ∈ T (B),

where φ(x) is now regarded as an element in B. But this map does not preserve
the unit 1. It has the property that φT (1AffT(A))≤ 1AffT(B).

In this paper, we often use the notation φT for the following situation: if p1 < p2

are two projections in A, and φ = ı : p1 Ap1 → p2 Ap2 is the inclusion, then
ıT denotes the (not necessarily unital) map from AffT(p1 Ap1) to AffT(p2 Ap2)

induced by ı .

2.9. If α : (K (A); K (A)+;6A)→ (K (B); K (B)+;6B) is a homomorphism as
in 2.7, then for each projection p ∈ A, there is a projection q ∈ B such that
α([p])= [q].

Since Ik has stable rank one and the spaces X involved in the definition of HD
class (see PMn(C(X))P in 2.2) are of dimension at most two, we know that for all
C∗-algebras A considered in this paper, HD class or AHD algebra, the following
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statement is true: if [p1] = [p2] ∈ K0(A), then there is a unitary u ∈ A such that
up1u∗ = p2. Therefore, AffT(p Ap) and AffT(q Bq) depend only on the classes
[p] ∈ K0(A) and [q] ∈ K0(B), respectively. Furthermore, if [p1] = [p2], then
the identification of AffT(p1 Ap1) and AffT(p2 Ap2) via the unitary equivalence
up1u∗ = p2 is canonical — that is, it does not depend on the choice of unitary u.
For classes [p] ∈ 6A(⊂ K0(A)+ ⊂ K0(A)), we also take AffT(p Ap) as part of
our invariant. We consider a system of unital positive linear maps

ξ p,q
: AffT(p Ap)→ AffT(q Bq)

associated with all pairs of two classes [p] ∈6A and [q] ∈6B, with α([p])= [q].
Such a system of maps is said to be compatible if for any p1≤ p2 with α([p1])=[q1],
α([p2])= [q2], and q1 ≤ q2, the diagram

AffT(p1 Ap1)
ξ p1,q1

//

ıT

��

AffT(q1 Bq1)

ıT

��

AffT(p2 Ap2)
ξ p2,q2

// AffT(q2 Bq2)

(2.10)

commutes, where the vertical maps are induced by the inclusions. (See [Ji and
Jiang 2011] and [Stevens 1998].)

2.11. In this paper, we denote

(K (A); K (A)+;6A; {AffT(p Ap)}[p]∈6A)

by Inv0(A), where AffT(p Ap) are scaled ordered Banach spaces as in 2.8. By a
map between the invariants Inv0(A) and Inv0(B), we mean a map

α : (K (A); K (A)+;6A)→ (K (B); K (B)+;6B)

as in 2.7, and for each pair [p] ∈ 6A, [q] ∈ 6B with α[p] = [q], there is an
associated unital positive linear map

ξ p,q
: AffT(p Ap)→ AffT(q Bq)

(which is automatically continuous, as pointed out in 2.8). These maps are com-
patible in the sense of 2.9 (that is, the diagram (2.10) is commutative for any pair
of projections p1 ≤ p2).

2.12. Let [p] ∈ 6A be represented by p ∈ A. Let α([p]) = [q] for q ∈ B.
Then α induces a map (still denoted by α) α : K0(p Ap)→ K0(q Bq). Note that
the natural map ρ := ρp Ap : K0(p Ap) → AffT(p Ap), defined in 2.8, satisfies
ρ(K0(p Ap)+) ⊆ AffT(p Ap)+ and ρ([p]) = 1 ∈ AffT(p Ap). By [Ji and Jiang
2011, 1.20], the compatibility in 2.9 (diagram (2.10)) implies that the following
diagram commutes:
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K0(p Ap)
ρ
//

α

��

AffT(p Ap)

ξ p,q

��

K0(q Bq)
ρ
// AffT(q Bq)

(2.13)

For p = 1A, this compatibility (the commutativity of diagram (2.13)) is included
as a part of the Elliott invariant for unital simple C∗-algebras. But this information
is contained in our invariant Inv0(A), as pointed out in [Ji and Jiang 2011].

2.14. Let A be a unital C∗-algebra, B ∈ HD and {pi }
n
i=1 ⊂ B be mutually or-

thogonal projections with 6pi = 1B . Write B =
⊕m

j=1 B j with B j being either
PM•(C(X))P or Ml(Ik), and for any i = 1, 2, . . . , n write pi =

⊕m
j=1 p j

i with
p j

i ∈ B j , for j = 1, 2, . . . ,m. Note that for all τ ∈ T (B j ),

τ(p j
i )=

rank(p j
i )

rank(1B j )

(see 2.2 for the definition of the rank function), which is independent of τ ∈ T (B j ).
Let ξi = (ξ

1
i , ξ

2
i , . . . , ξ

m
i ) :AffT(A)→AffT(pi Bpi )=

⊕m
j=1 AffT(p j

i B j p j
i ) be

unital positive linear maps. Then we can define ξ = (ξ 1, ξ 2, . . . , ξm) : AffT(A)→
AffT(B)=

⊕m
j=1 AffT(B j ) as below:

ξ j ( f )(τ )=
∑

{i :τ(p j
i ) 6=0}

τ(p j
i )ξ

j
i ( f )

(
τ |p j

i B j p j
i

τ(p j
i )

)
for f ∈ AffT(A) and τ ∈ T (B j ).

Note that τ |p j
i B j p j

i
/τ(p j

i ) ∈ T (p j
i B j p j

i ). So ξ j
i ( f ) can evaluate at τ |p j

i B j p j
i
/τ(p j

i ).
Since the value of τ(p j

i ) is independent of τ ∈ T (B j ), it is straightforward to verify
that ξ j

∈ AffT(B j ). We denote such ξ by
⊕
ξi . (For the case that B is general

stably finite unital simple C∗-algebras with mutually orthogonal projections {pi }

with sum 1B , this kind of construction can be carried out by using of [Lin 2017,
Lemma 6.4].)

If φi : A→ pi Bpi are unital homomorphisms and φ =
⊕
φi : A→ B, then

(AffTφ) j ( f )(τ )=
∑

{i :τ(p j
i ) 6=0}

τ(p j
i )AffTφ j

i ( f )
(
τ |p j

i B j p j
i

τ(p j
i )

)
,

where φ j
i : A→ p j

i B j p j
i is the j -th component of φi . That is, AffTφ=

⊕
AffTφi .

In particular, if ‖AffTφi ( f )− ξi ( f )‖< ε for all i , then

‖AffTφ( f )− ξ( f )‖< ε.

2.15. Now we introduce the new ingredient of our invariant, a simplified version
of U (p Ap)/DU (p Ap) for any [p] ∈ 6A, where DU (p Ap) is the commutator
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subgroup of U (p Ap). Some notations and preliminary results are quoted from
[Thomsen 1997; 1995; Nielsen and Thomsen 1996].

2.16. Let A be a unital C∗-algebra. Let U (A) denote the group of unitaries of A
and U0(A) the connected component of 1A in U (A). Let DU (A) and DU0(A) de-
note the commutator subgroups of U (A) and U0(A), respectively. (Recall that the
commutator subgroup of a group G is the subgroup generated by all elements of the
form aba−1b−1, where a, b ∈ G.) One can introduce the following metric DA on
U (A)/DU (A) (see §3 of [Nielsen and Thomsen 1996]). For u, v ∈U (A)/DU (A)

DA(u, v)= inf{‖uv∗− c‖ : c ∈ DU (A)},

where, on the right-hand side of the equation, we use u, v to denote any elements
in U (A) which represent the elements u, v ∈U (A)/DU (A).

Remark 2.17. Obviously, DA(u, v)≤ 2. Also, if u, v ∈U (A)/DU (A) define two
different elements in K1(A), then DA(u, v)= 2. (This fact follows from the fact
that ‖u− v‖< 2 implies uv∗ ∈U0(A).)

2.18. Let A be a unital C∗-algebra. Let AffT(A) and ρA : K0(A)→ AffT(A) be
as defined as in 2.8. For simplicity, we use ρK0(A) to denote the set ρA(K0(A)).
The metric dA on AffT(A)/ρK0(A) is defined as follows (see §3 of [Nielsen and
Thomsen 1996]).

Let d ′ denote the quotient metric on AffT(A)/ρK0(A). That is, for f, g in
AffT(A)/ρK0(A), let

d ′( f, g)= inf{‖ f − g− h‖ : h ∈ ρK0(A)}.
Define dA by

dA( f, g)=
{

2 if d ′( f, g)≥ 1
2 ,

|e2π id ′( f,g)
− 1| if d ′( f, g) < 1

2 .

Obviously, dA( f, g)≤ 2πd ′( f, g).

2.19. For A = PMk(C(X))P , let SU (A) be the set of unitaries u ∈ PMk(C(X))P
such that for each x ∈ X , u(x) ∈ P(x)Mk(C)P(x) ∼= Mrank(P)(C) has determi-
nant 1 (note that the determinant of u(x) does not depend on the identification of
P(x)Mk(C)P(x) ∼= Mrank(P)(C)). For A = Ml(Ik), by u ∈ SU (A) we mean that
u ∈ SU (Mlk(C[0, 1])), where we consider A to be a subalgebra of Mlk(C[0, 1]).
For all basic building blocks A 6= Ml(Ik), we have SU (A) = DU (A). But for
A = Ml(Ik), this is not true (see 2.20 and 2.21 below).

In [Elliott et al. 2007], the authors also defined SU (A) for A a homogeneous
algebra and a certain AH inductive limit C∗-algebra. This definition cannot be
generalized to a more general class of C∗-algebras, but we define S̃U (A) for any
unital C∗ algebra A. Later, in our definition of Inv(A), we only make use of S̃U (A)
(rather than SU (A)).
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2.20. Let A = Ik . Then K1(A)= Z/kZ, which is generated by [u], where u is the
unitary

u =


e2π i t (k−1)/k

e2π i(−t/k)

. . .

e2π i(−t/k)

 ∈ Ik .

(Note that u(0)= 1k , u(1)= e2π i(−1/k)
·1k .)

Note that the above u is in SU (A), but not in U0(A), and therefore not in DU (A).

2.21. By [Thomsen 1995] (or [Gong et al. 2015a]), u ∈ Ml(Ik) is in DU (A) if and
only if for any irreducible representation π : Ml(Ik)→ B(H) (dim H <+∞), we
have det(π(u)) = 1. For the unitary u in 2.20, and irreducible representation π
corresponding to 1, π(u) = e2π i(−1/k), whose determinant is e2π i(−1/k)

6= 1. By
[Thomsen 1997, 6.1] one knows that if A = Ik , then

U0(A)∩ SU (A)= {e2π i( j/k)
: j = 0, 1, . . . , k− 1} · DU (A).

If A = Ml(Ik), then for any j ∈ Z, e2π i( j/ l)
·1A ∈ DU (A). Consequently,

U0(A)∩ SU (A)= {e2π i( j/kl)
: j = 0, 1, . . . , kl − 1} · DU (A).

2.22. Let T= {z ∈ C : |z| = 1}. Then for any A ∈HD, T · DU (A)⊂U0(A). From
2.19 and 2.21, we have either SU (A)= DU (A) or U0(A)∩ SU (A)⊂ T · DU (A).

Lemma 2.23. Let A=PMk(C(X))P∈HD. For any u,v∈U(A), if uv∗∈T·DU (A)
(in particular if both u, v are in T · DU (A)), then DA(u, v)≤ 2π/rank(P).

Let A = Ml(Ik). For any u, v, if uv∗ ∈ T · DU (A), then DA(u, v)≤ 2π/ l .

Proof. There is ω ∈ DU (A) such that uv∗ = λω for some λ ∈ T. Choose λ0 =

e2π i j/rank(P), j ∈N, such that |λ−λ0|< 2π/rank(P). Then λ0 · P ∈ PMk(C(X))P
has determinant 1 everywhere and is in DU (A). And so does λ0ω. Also, we have
|uv∗− λ0ω|< 2π/rank(P).

The case A = Ml(Ik) is similar. �

2.24. Let path(U (A)) denote the set of piecewise smooth paths ξ : [0, 1] →U (A).
Recall that the de la Harp–Skandalis determinant 1 : path(U (A))→ AffT(A) is
defined by

1(ξ)(τ )=
1

2π i

∫ 1

0
τ
(dξ

dt
· ξ∗

)
dt

(see [de la Harpe and Skandalis 1984]). It is proved there (see also [Thomsen
1995]) that 1 induces a map 1◦ : π1(U0(A))→AffT(A). For any two paths ξ1, ξ2

starting at ξ1(0)= ξ2(0)= 1 ∈ A and ending at the same unitary u = ξ1(1)= ξ2(1),
we have that

1(ξ1)−1(ξ2)=1(ξ1 · ξ
∗

2 )⊂1
◦(π1(U0(A))).
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Consequently, 1 induces a map

1 :U0(A)→ AffT(A)/1◦(π1(U0(A)))

(see Section 3 of [Thomsen 1995]). Passing to matrix over A, we have a map
1n :U0(Mn(A))→ AffT(A)/1◦n(π1(U0(Mn(A)))).

If 1 ≤ m < n, then path(U (Mm(A))) (and U0(Mm(A))) can be embedded into
path(U (Mn(A))) (and U0(Mn(A))) by sending u(t) to diag(u(t),1n−m). From the
above definition, and the formula

d
dt
(diag(u(t), 1n−m))= diag

( d
dt
(u(t)), 0n−m

)
,

one gets

1n|U0(Mm(A)) =1m .

Recall that the Bott isomorphism b : K0(A)→ K1(S A) is given by the following:
for any x ∈ K0(A) represented by a projection p ∈ Mn(A), we have

b(x)= [e2π i t p+ (1n − p)] ∈ K1(S A).

If ξ(t)= e2π i t p+ (1n − p), then

(1◦ξ)(τ )=
1

2π i

∫ 1

0
τ
(
(2π ie2π i t p) · (e−2π i t p+ (1− p))

)
dt

=
1

2π i

∫ 1

0
τ(2π i p) dt = τ(p).

Since the Bott map is an isomorphism, it follows that each loop in π1(U0(A)) is
homotopic to a product of loops of the form ξ(t). Consequently,

1◦(π1(U0(Mn(A))))⊂ ρA K0(A).

Hence 1n can be regarded as a map

1n :U0(Mn(A))→ AffT(A)/ρA K0(A).

Proposition 2.25. For A ∈HD or A ∈ AHD, DU0(A)= DU (A).

Proof. Let the determinant function

1n :U0(Mn(A))→ AffT(A)/10
n(π1U0(Mn(A)))

be defined as in §3 of [Thomsen 1995] (see 2.24 above). As observed in [Nielsen
and Thomsen 1996, top of p. 33], Lemma 3.1 of [Thomsen 1995] implies that
DU0(A)=U0(A)∩ DU (A). For the reader’s convenience, we give a brief proof
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of this fact. Namely, the equationuvu−1v−1 0 0
0 1 0
0 0 1

=
u 0 0

0 u−1 0
0 0 1

v 0 0
0 1 0
0 0 v−1

u−1 0 0
0 u 0
0 0 1

v−1 0 0
0 1 0
0 0 v


implies that DU (A)⊂ DU0(M3(A)). Therefore by Lemma 3.1 of [Thomsen 1995],
DU (A)⊂ ker13. If x ∈U0(A)∩ DU (A), then 11 is defined at x . By calculation
in 2.24, 13|U0(A) =11. So we have 11(x)= 0, and thus x ∈ DU0(A)= ker11, by
[Thomsen 1995, Lemma 3.1]. Note if A ∈HD or AHD, then DU (A)⊂U0(A). �

(It is not known to the authors whether it is always true that DU0(A)= DU (A).)

2.26. There is a natural map α : π1(U (A))→ K0(A), or more generally, for each
n ∈ N a map αn : π1(U (Mn(A)))→ K0(A). We need the following notation. For
a unital C∗-algebra A, let Pn K0(A) (see [Gong et al. 2015b]) be the subgroup of
K0(A) generated by the formal difference of projections p, q ∈ Mn(A) (instead
of M∞(A)). Then

Pn K0(A)⊂ image(αn).

In particular, if ρ : K0(A)→ AffT(A) satisfies ρ(Pn K0(A)) = ρK0(A), then by
Theorem 3.2 of [Thomsen 1995],

U0(Mn(A))/DU0(Mn(A))∼=U0(M∞(A))/DU0(M∞(A))∼= AffT(A)/ρK0(A).

Note that for all A ∈ HD, we have ρ(P1K0(A)) = ρK0(A) (see below). Conse-
quently,

U0(A)/DU0(A)∼= AffT(A)/ρK0(A).

If A does not contain building blocks of the form PMn(C(TII,k))P , then such A is
the special case of [Thomsen 1997], and the above fact is observed in [Thomsen
1997] (for circle algebras in [Nielsen and Thomsen 1996] earlier) — in this special
case, we ever have P1K0(A) = K0(A) (as used in [Nielsen and Thomsen 1996]
and [Thomsen 1997] in the form of surjectivity of α : π1(U (A))→ K0(A)). For
A = PMn(C(TII,k))P , we do not have the surjectivity of α : π1(U (A))→ K0(A)
anymore. But K0(A)= Z⊕Z/kZ and image(α)= P1K0(A) contains at least one
element which corresponds to a rank one projection (any bundle over TII,k has a
subbundle of rank 1) — that is,

ρ(P1K0(A))= ρK0(A)(⊆ AffT(A))

consisting of all constant functions from TII,k to (1/ rank(P))Z.
As in [Nielsen and Thomsen 1996, Lemma 3.1; Thomsen 1997, Lemma 6.4],

the map 1 : U0(A)→ AffT(A)/ρA(K0(A)) (see 2.24) has ker1 = DU (A) and
the following lemma holds.
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Lemma 2.27. Suppose that a unital C∗-algebra A satisfies ρ(P1K0(A))=ρK0(A)
and DU0(A) = DU (A) (see 2.26 and 2.25), and in particular, that A ∈ HD or
A ∈ AHD. Then the following hold:

(1) There is a split exact sequence

0→ AffT(A)/ρK0(A)
λA
−→U (A)/DU (A)→ K1(A)→ 0.

(2) λA is an isometry with respect to the metrics dA and DA.

2.28. Recall from §3 of [Thomsen 1995], the de la Harpe–Skandalis determinant
(see [de la Harpe and Skandalis 1984]) can be used to define

1 :U0(A)/DU (A)→ AffT(A)/ρK0(A).

With the condition of Lemma 2.27 above, this map is an isometry with respect to
the metrics dA and DA. In fact, the inverse of this map is λA in Lemma 2.27.

It follows from the definition of 1 [Thomsen 1995, §3] that

1(e2π i tp)= t · ρ([p]) (mod (ρK0(A))), (2.29)

where [p] ∈ K0(A) is the element represented by projection p ∈ A.
It is convenient to introduce the extended commutator group DU+(A), which

is generated by DU (A)⊂U (A) and the set

{e2π i tp
= e2π i t p+ (1− p) ∈U (A) : t ∈ R, p ∈ A is a projection}.

Let D̃U (A) denote the closure of DU+(A). That is, D̃U (A)= DU+(A).
Let us use ˜ρK0(A) to denote the real vector space spanned by ρK0(A). That is,

˜ρK0(A) := {6λiφi : λi ∈ R, φi ∈ ρK0(A)}.

Suppose that ρK0(A) = ρ(P1K0(A)). It follows from (2.29) that the image
of D̃U (A)/DU (A) under the map 1 is exactly ˜ρK0(A)/ρK0(A). Therefore,
λA takes ˜ρK0(A)/ρK0(A) to D̃U (A)/DU (A). Hence 1 : U0(A)/DU (A) →
AffT(A)/ρK0(A) also induces a quotient map (still denoted by 1)

1 :U0(A)/D̃U (A)→ AffT(A)/ ˜ρK0(A),

which is an isometry using the quotient metrics of dA and DA. The inverse of this
quotient map 1 gives rise to the isometry

λ̃A : AffT(A)/ ˜ρK0(A)→U0(A)/D̃U (A) ↪→U (A)/D̃U (A),

which is an isometry with respect to the quotient metrics d̃A and DA as described
below.

For any u, v ∈U (A)/D̃U (A),

DA(u, v)= inf{‖uv∗− c‖ : c ∈ D̃U (A)}.
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Let d̃ ′ denote the quotient metric on AffT(A)/ ˜ρK0(A) of AffT(A), that is,

d̃ ′( f, g)= inf{‖ f − g− h‖ : h ∈ ˜ρK0(A)} for all f, g ∈ AffT(A)/ ˜ρK0(A).

Define d̃A by

d̃A( f, g)=
{

2 if d̃ ′( f, g)≥ 1
2 ,

|e2π i d̃ ′( f,g)
− 1| if d̃ ′( f, g) < 1

2 .

The following result is a consequence of Lemma 2.27.

Lemma 2.30. Suppose that a unital C∗-algebra A satisfies ρ(P1K0(A))=ρK0(A)
and DU0(A) = DU (A) (see 2.26 and 2.25), and in particular, that A ∈ HD or
A ∈ AHD. Then we have the following:

(1) There is a split exact sequence

0→ AffT(A)/ ˜ρK0(A)
λ̃A
−→U (A)/D̃U (A)

πA
−→ K1(A)→ 0.

(2) λ̃A is an isometry with respect to d̃A and DA.

Proof. As we mentioned in 2.28, the map λA in Lemma 2.27 takes ˜ρK0(A)/ρK0(A)
to D̃U (A)/DU (A). From the exact sequence in Lemma 2.27, passing to quotient,
one gets the exact sequence in (1).

Note that d̃A on AffT(A)/ ˜ρK0(A) is the quotient metric induced by dA on
AffT(A)/ρK0(A) and DA on U (A)/D̃U (A) is the quotient metric induced by DA

on U (A)/DU (A). Hence λ̃A is an isometry, since so is λA. �

2.31. Instead of D̃U (A), we need the group

S̃U (A) := {x ∈U (A) : xn ∈ D̃U (A) for some n ∈ Z+\{0}}.

For A ∈ HD, say A = PMl(C(X))P (X = [0, 1], S1 or TII,k) or A = Ml(Ik),
S̃U (A) is the set of all unitaries u ∈ P(MlC(X))P or u ∈ Ml(Ik) such that the
determinant function

X 3 x 7→ det(u(x)) or (0, 1) 3 t 7→ det(u(t))

is a constant function. Comparing with the set SU (A) in [Elliott et al. 2007] or
2.19 above (which only defines for HD blocks), where the function will be constant
1, here we allow the function to be an arbitrary constant in T. Hence for a basic
building block A = PMn(C(X))P ∈HD or A = Ml(Ik),

S̃U (A)= T · SU (A).

The notations ˜ρK0(A), D̃U (A) and S̃U (A) reflect that they are constructed
from ρK0(A), DU (A) and SU (A), respectively. To make the notation simpler,
from now on we use ρ̃K0(A) to denote ˜ρK0(A) = ˜ρA(K0(A)), D̃U (A) to denote
D̃U (A), and S̃U (A) to denote S̃U (A).
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Lemma 2.32. Let α, β :K1(A)→U (A)/D̃U (A) be splittings of πA in Lemma 2.30.
Then

α|tor K1(A) = β|tor K1(A)

and α(tor K1(A)) ⊂ S̃U (A)/D̃U (A). Furthermore, α identifies tor(K1(A)) with
S̃U (A)/D̃U (A).

Proof. For any z ∈ tor K1(A), with kz = 0 for some integer k > 0, we have

πAα(z)= z = πAβ(z).

By the exactness of the sequence, there is an element f ∈ AffT(A)/ρ̃K0(A) such
that

α(z)−β(z)= λ̃A( f ).

Since kα(z)− kβ(z) = α(kz)− β(kz) = 0, we have λ̃A(k f ) = 0. By the injec-
tivity of λ̃A, k f = 0. Note that AffT(A)/ρ̃K0(A) is an R-vector space, f = 0.
Furthermore, kα(z)= 0 in U (A)/D̃U (A) implies that

α(z) ∈ S̃U (A)/D̃U (A).

Thus we get α(tor K1(A))⊂ S̃U (A). If u ∈ S̃U (A)/D̃U (A) then α(πA(u))= u. �

2.33. Let Utor(A) denote the set of unitaries u ∈ A such that [u] ∈ tor K1(A). For
any C∗-algebra A we have S̃U (A) ⊂ Utor(A). If we further assume DU0(A) =
DU (A), then

D̃U (A)=U0(A)∩ S̃U (A) and Utor(A)=U0(A) · S̃U (A).

We have U0(A)/D̃U (A)∼=Utor(A)/S̃U (A). The metric DA on U (A)/D̃U (A) in-
duces a metric D̃A on U (A)/S̃U (A). And the above identification U0(A)/D̃U (A)
with Utor(A)/S̃U (A) is an isometry with respect to DA and D̃A. Hence λ̃A in 2.28
can be regarded as a map (still denoted by λ̃A):

λ̃A : AffT(A)/ρ̃K0(A)→Utor(A)/S̃U (A) ↪→U (A)/S̃U (A).

Similar to Lemma 2.30, we have the following.

Lemma 2.34. Suppose that a unital C∗-algebra A satisfies ρ(P1K0(A))=ρK0(A)
and DU0(A) = DU (A) (see 2.26 and 2.25), and in particular, that A ∈ HD or
A ∈ AHD. Then the following hold:

(1) There is a split exact sequence

0→ AffT(A)/ρ̃K0(A)
λ̃A
−→U (A)/S̃U (A)

πA
−→ K1(A)/ tor K1(A)→ 0.

(2) λ̃A is an isometry with respect to the metrics d̃A and D̃A.
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2.35. For each pair of projections p1, p2 ∈ A with p1 = up2u∗,

U (p1 Ap1)/S̃U (p1 Ap1)∼=U (p2 Ap2)/S̃U (p2 Ap2).

Also, since in any unital C∗-algebra A and unitaries u, v ∈ U (A), v and uvu∗

represent the same element in U (A)/S̃U (A), the above identification does not
depend on the choice of u to implement p1 = up2u∗. That is, for any [p] ∈ 6A,
the group U (p Ap)/S̃U (p Ap) is well defined, which does not depend on choice of
p ∈ [p]. We include this group (with metric) as part of our invariant. If [p] ≤ [q],
then we can choose p, q such that p ≤ q. In this case, there is a natural inclusion
map ı : p Ap→ q Aq, which induces

ı∗ :U (p Ap)/S̃U (p Ap)→U (q Aq)/S̃U (q Aq),

where ı∗ is defined by

ı∗(u)= u⊕ (q − p) ∈U (q Aq) for all u ∈U (p Ap).

A unital homomorphism φ : A→ B induces a contractive group homomorphism

φ\ :U (A)/S̃U (A)→U (B)/S̃U (B).

If φ is not unital, then the map

φ\ :U (A)/S̃U (A)→U (φ(1A)Bφ(1A))/S̃U (φ(1A)Bφ(1A))

is induced by the corresponding unital homomorphism. In this case, φ also induces
the map ı∗ ◦φ\ :U (A)/S̃U (A)→U (B)/S̃U (B), which is denoted by φ∗ to avoid
confusion. If φ is unital, then φ\ = φ∗. If φ is not unital, then φ\ and φ∗ have differ-
ent codomains. That is, φ\ has codomain U (φ(1A)Bφ(1A))/S̃U (φ(1A)Bφ(1A)),
but φ∗ has codomain U (B)/S̃U (B). (See the last paragraph of 3.8 below for some
further explanation with an example.)

Since U (A)/S̃U (A) is an abelian group, we call the unit [1] ∈U (A)/S̃U (A) the
zero element. If φ : A→ B satisfies φ(U (A))⊂ S̃U (φ(1A)Bφ(1A)), then φ\ = 0.
In particular, if the image of φ is of finite dimension, then φ\ = 0.

2.36. In this paper and [Gong et al. 2016], we denote

(K (A); K (A)+;6A; {AffT(p Ap)}[p]∈6A; {U (p Ap)/S̃U (p Ap)}[p]∈6A)

by Inv(A). By a map from Inv(A) to Inv(B), we mean

α : (K (A); K (A)+;6A)→ (K (B); K (B)+;6B)

as in 2.7, and for each pair ([p], [ p̄]) ∈ 6A×6B with α([p]) = [ p̄], there exist
an associate unital positive (continuous) linear map

ξ p, p̄
: AffT(p Ap)→ AffT( p̄B p̄)
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and an associate contractive group homomorphism

χ p, p̄
:U (p Ap)/S̃U (p Ap)→U ( p̄B p̄)/S̃U ( p̄B p̄)

satisfying the following compatibility conditions. (Note that χ p, p̄ is continuous,
as it is a contractive group homomorphism from a metric group to another metric
group.)

(a) If p < q , then the diagrams

AffT(p Ap)
ξ p, p̄
//

ıT
��

AffT( p̄B p̄)
ıT
��

AffT(q Aq)
ξq,q̄
// AffT(q̄ Bq̄)

(I)

and
U (p Ap)/S̃U (p Ap)

χ p, p̄
//

ı∗
��

U ( p̄B p̄)/S̃U ( p̄B p̄)
ı∗
��

U (q Aq)/S̃U (q Aq)
χq,q̄

// U (q̄ Bq̄)/S̃U (q̄ Bq̄)

(II)

commutes, where the vertical maps are induced by inclusions.

(b) The diagram

K0(p Ap)
ρ
//

α
��

AffT(p Ap)

ξ p, p̄
��

K0( p̄B p̄)
ρ
// AffT( p̄B p̄)

(III)

commutes, and therefore ξ p, p̄ induces a map (still denoted by ξ p, p̄)

ξ p, p̄
: AffT(p Ap)/ρ̃K0(p Ap)→ AffT( p̄B p̄)/ρ̃K0( p̄B p̄).

(The commutativity of (III) follows from the commutativity of (I), by [Ji and Jiang
2011, 1.20]. So this is not an extra requirement.)

(c) The diagrams

AffT(p Ap)/ρ̃K0(p Ap) //

ξ p, p̄
��

U (p Ap)/S̃U (p Ap)

χ p, p̄
��

AffT( p̄B p̄)/ρ̃K0( p̄B p̄) // U ( p̄B p̄)/S̃U ( p̄B p̄)

(IV)

and
U (p Ap)/S̃U (p Ap) //

χ p, p̄
��

K1(p Ap)/ tor K1(p Ap)
α1
��

U ( p̄B p̄)/S̃U ( p̄B p̄) // K1( p̄B p̄)/ tor K1( p̄B p̄)

(V)

commute, where α1 is induced by α.
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We denote the map from Inv(A) to Inv(B) by

(α, ξ, χ) :
(
K (A); {AffT(p Ap)}[p]∈6A; {U (p Ap)/S̃U (p Ap)}[p]∈6A

)
→
(
K (B); {AffT( p̄B p̄)}[ p̄]∈6B; {U ( p̄B p̄)/S̃U ( p̄B p̄)}[ p̄]∈6B

)
.

Completely similar to [Nielsen and Thomsen 1996, Lemma 3.2] and [Thomsen
1997, Lemma 6.5], we have the following propositions.

Proposition 2.37. Let unital C∗-algebras A, B satisfy ρ(P1K0(A)) = ρK0(A),
ρ(P1K0(B))=ρK0(B) and DU0(A)= DU (A), DU0(B)= DU (B). In particular,
let A, B ∈HD or AHD be unital C∗-algebras. Assume that

ψ1 : K1(A)→ K1(B) and ψ0 : AffT(A)/ρK0(A)→ AffT(B)/ρK0(B)

are group homomorphisms such that ψ0 is a contraction with respect to dA and dB .
Then there is a group homomorphism

ψ :U (A)/DU (A)→U (B)/DU (B)

which is a contraction with respect to DA and DB such that the diagram

0 // AffT(A)/ρK0(A)

ψ0
��

λA
// U (A)/DU (A)

ψ
��

πA
// K1(A)

ψ1
��

// 0

0 // AffT(A)/ρK0(B)
λB
// U (B)/DU (B)

πB
// K1(B) // 0

commutes. If ψ0 is an isometric isomorphism and ψ1 is an isomorphism, then ψ is
an isometric isomorphism.

Proposition 2.38. Let unital C∗-algebras A, B satisfy ρ(P1K0(A)) = ρK0(A),
ρ(P1K0(B))=ρK0(B) and DU0(A)= DU (A), DU0(B)= DU (B). In particular,
let A, B ∈HD or AHD be unital C∗-algebras. Assume that

ψ1 : K1(A)→ K1(B) and ψ0 : AffT(A)/ρ̃K0(A)→ AffT(B)/ρ̃K0(B)

are group homomorphisms such that ψ0 is a contraction with respect to d̃A and d̃B .
Then there is a group homomorphism

ψ :U (A)/S̃U (A)→U (B)/S̃U (B)

which is a contraction with respect to D̃A and D̃B such that the diagram

0 // AffT(A)/ρ̃K0(A)

ψ0
��

λ̃A
// U (A)/S̃U (A)

ψ
��

π̃A
// K1(A)/ tor K1(A)

ψ1
��

// 0

0 // AffT(A)/ρ̃K0(B)
λ̃B
// U (B)/S̃U (B)

π̃B
// K1(B)/ tor K1(B) // 0
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commutes. If ψ0 is an isometric isomorphism and ψ1 is an isomorphism, then ψ is
an isometric isomorphism.

Remark 2.39. As in Proposition 2.38 (or Proposition 2.37), for each fixed pair
p ∈ A, p̄ ∈ B with α([p]) = [ p̄], if we have an isometric isomorphism between
the quotients AffT(p Ap)/ρ̃K0(p Ap) and AffT( p̄B p̄)/ρ̃K0( p̄B p̄) (or between
AffT(pAp)/ρK0(pAp) and AffT( p̄B p̄)/ρK0( p̄B p̄)) and an isomorphism between
K1(p Ap) and K1(pBp), then we also have an isometric isomorphism between
U (p Ap)/S̃U (p Ap) and U ( p̄B p̄)/S̃U ( p̄B p̄) (or between U (p Ap)/DU (p Ap)
and U ( p̄B p̄)/DU ( p̄B p̄)) making both diagrams (IV) and (V) commute. This
is the reason U (A)/DU (A) is not included in the Elliott invariant in the clas-
sification of simple C∗-algebras. For our setting, even though for each pair of
projections (p, p̄) with α([p]) = [ p̄], we can find an isometric isomorphism be-
tween U (p Ap)/S̃U (p Ap) and U ( p̄B p̄)/S̃U ( p̄B p̄), provided that the other parts
of invariants Inv0(A) and Inv0(B) are isomorphic, we still cannot make such a
system of isometric isomorphisms compatible — that is, we cannot make the dia-
gram (II) commute for p < q. We present two nonisomorphic C∗-algebras A and
B in our class such that Inv0(A)∼= Inv0(B) in the next section, where Inv0(B) is
defined in 2.11. Hence it is essential to include {U (p Ap)/S̃U (p Ap)}p∈6 with the
compatibility as part of Inv(A).

2.40. Replacing U (p Ap)/S̃U (p Ap), one can also use U (p Ap)/DU (p Ap) as the
part of the invariant. That is, one can define Inv′(A) as(

K (A); K (A)+;6A; {AffT(p Ap)}[p]∈6A; {U (p Ap)/DU (p Ap)}[p]∈6A
)
,

with corresponding compatibility condition — one needs to change diagrams (IV)
and (V) to the corresponding ones. It is not difficult to see that Inv′(A)∼= Inv′(B)
implies Inv(A)∼= Inv(B). We choose the formulation of Inv(A), since it is much
more convenient for the proof of the main theorem in [Gong et al. 2016] and it is
formally a weaker requirement than the one to require the isomorphism between
Inv′(A) and Inv′(B), and the theorem is formally stronger. (Let us point out that, in
the construction of the example (and its proof) in Section 3 of this article, Inv′(A)
is as convenient as Inv(A), and therefore if only for the sake of the example in
Section 3 of this paper, it is not necessary to introduce S̃U (A).)

Furthermore, it is straightforward to check the following proposition:

Proposition 2.41. Let unital C∗-algebras A, B satisfy ρ(P1K0(A)) = ρK0(A),
ρ(P1K0(B))=ρK0(B) and DU0(A)= DU (A), DU0(B)= DU (B). In particular,
let A, B ∈HD or AHD be unital C∗-algebras. Suppose that K1(A)= tor(K1(A))
and K1(B)= tor(K1(B)). Then Inv0(A)∼= Inv0(B) implies Inv(A)∼= Inv(B).
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Proof. It follows from the fact that any isomorphism

ξ p, p̄
: AffT(p Ap)/ρ̃K0(p Ap)→ AffT( p̄B p̄)/ρ̃K0( p̄B p̄)

induces a unique isomorphism

χ p, p̄
:U (p Ap)/S̃U (p Ap)→U ( p̄B p̄)/S̃U ( p̄B p̄).

(Note that by the split exact sequence in Lemma 2.34, AffT(p Ap)/ρ̃K0(p Ap)∼=
U (p Ap)/S̃U (p Ap).) �

The following calculations and notations will be used in [Gong et al. 2016].

2.42. In general, for A =
⊕

Ai , we have

S̃U (A)=
⊕

i

S̃U (Ai ).

For A = PMl(C(X))P ∈ HD, we have S̃U (A) = D̃U (A), and for A = Ml(Ik),
S̃U (A)= D̃U (A)⊕ K1(A). For both cases, U (A)/S̃U (A) can be identified with
C1(X, S1) := C(X, S1)/{constant functions}, or in the case A = Ml(Ik), with
C1([0, 1], S1)= C([0, 1], S1)/{constant functions}.

Furthermore, C1(X, S1) can be identified as the set of continuous functions from
X to S1 such that f (x0)= 1 for a certain fixed base point x0 ∈ X . For X = [0, 1],
we choose 0 to be the base point. For X = S1, we choose 1 ∈ S1 to be the base
point.

2.43. Let A=
⊕n

i=1 Ai
∈HD, B =

⊕m
j=1 B j

∈HD. In this subsection we discuss
some consequences of the compatibility of the maps between AffT spaces. Let

p =
⊕

pi < q =
⊕

q i
∈ A and p̄ =

m⊕
j=1

p̄ j < q̄ =
m⊕

j=1

q̄ j
∈ B

be projections satisfying α([p])=[ p̄] and α([q])=[q̄]. Suppose two unital positive
linear maps ξ1 : AffT(p Ap)→ AffT( p̄B p̄) and ξ2 : AffT(q Aq)→ AffT(q̄ Bq̄)
are compatible with α (see diagram (2.13)) and compatible with each other (see
diagram (2.10)). Since the (not necessarily unital) maps AffT(p Ap)→AffT(q Aq)
and AffT( p̄B p̄)→ AffT(q̄ Bq̄) induced by inclusions are injective, we know that
the map ξ1 is completely determined by ξ2. Let

ξ
i, j
2 :AffT(q i Aq i )→AffT(q j B j q j ) or ξ

i, j
1 :AffT(pi Api )→AffT(p j B j p j ))

be the corresponding component of the map ξ2 (or ξ1). If pi
6= 0 and p̄ j

6= 0, then
ξ

i, j
1 is given by the following formula: for any f ∈ AffT(pi Ai pi )= CR(Sp(Ai ))

(∼= AffT(q i Aq i )),

ξ
i, j
1 ( f )=

rank q j

rank p j
·

rankαi, j (pi )

rankαi, j (q i )
· ξ

i, j
2 ( f ).
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In particular, if q=1A with q̄=α0[1A], and ξ2=ξ :AffT(A)→Affα0[1A]Bα0[1A]

(note that since AffT(QBQ) only depends on the unitary equivalence class of Q,
it is convenient to denote it as AffT([Q]B[Q])), then we denote ξ1 by ξ |([p],α[p]).
Even for the general case, we can also write ξ1 = ξ2|([p],α[p]), when p< q as above.

2.44. As in 2.43, let A=
⊕n

i=1 Ai , B =
⊕m

j=1 B j and p< q ∈ A, p̄< q̄ ∈ B, with
α0[p] = [ p̄] and α0[q] = [q̄]. If

γ1 :U (p Ap)/S̃U (p Ap)→U ( p̄B p̄)/S̃U ( p̄B p̄)

is compatible with

γ2 :U (q Aq)/S̃U (q Aq)→U (q̄ Bq̄)/S̃U (q̄ Bq̄),

then γ1 is completely determined by γ2 (since both maps

U (p Ap)/S̃U (p Ap)→U (q Aq)/S̃U (q Aq),

U ( p̄B p̄)/S̃U ( p̄B p̄)→U (q̄ Bq̄)/S̃U (q̄ Bq̄)

are injective). Therefore we can denote γ1 by γ2|([p],α[p]).

2.45. Let us point out that, in 2.43 and 2.44, if A ∈ AHD and B ∈ AHD, ξ1 is not
completely determined by ξ2 and γ1 is not completely determined by γ2.

3. The counterexample

3.1. In this section, we present an example of AT algebras to prove that Inv′(A) or
Inv(A) is not completely determined by Inv0(A). That is, the Hausdorffified alge-
braic K1-groups {U (p Ap)/DU (p Ap)}p∈proj(A) or {U (p Ap)/S̃U (p Ap)}p∈proj(A)

with the corresponding compatibilities are indispensable as a part of the invariant
for Inv′(A) or Inv(A). This is one of the essential differences between the simple
C∗-algebras and the C∗-algebras with the ideal property. In fact, for all the unital
C∗-algebras A satisfying a reasonable condition (e.g., ρ(P1K0(A))= ρK0(A) and
DU0(A)= DU (A)), we have

U (p Ap)/DU (p Ap)∼= AffT(p Ap)/ρK0(p Ap)⊕ K1(p Ap),

U (p Ap)/S̃U (p Ap)∼= AffT(p Ap)/ρ̃K0(p Ap)⊕ K1(p Ap)/ tor K1(p Ap),

i.e., the metric groups U (p Ap)/DU (p Ap) and U (p Ap)/S̃U (p Ap) themselves
are completely determined by AffT(p Ap) and K1(p Ap), which are included in
other parts of the invariants, i.e., they are determined by Inv0(A), but the com-
patibilities make the difference. The point is that the above isomorphisms are not
natural and therefore the isomorphisms corresponding to the cutting down algebras
p Ap and q Aq (p < q) may not be chosen to be compatible.
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As pointed out in 2.40, Inv′(A)∼= Inv′(B) implies Inv(A)∼= Inv(B). For the C∗-
algebras A and B constructed in this paper, we only need to prove Inv0(A)∼= Inv0(B)
but Inv(A) 6∼= Inv(B). Consequently, Inv′(A) 6∼= Inv′(B).

3.2. Let p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, . . . , pn be the first n prime
numbers, and let 1< k1 < k2 < k3 < · · · be a sequence of positive integers. Let

A1 = B1 = C(S1),

A2 = B2 = M
p

k1
1
(C[0, 1])⊕M

p
k1
1
(C(S1))= A1

1⊕ A2
1 = B1

1 ⊕ B2
1 ,

A3 = B3 = M
p

k1
1 p

k2
1
(C[0, 1])⊕M

p
k1
1 p

k2
2
(C[0, 1])⊕M

p
k1
1 p

k2
2
(C(S1)),

A4 = B4 = M
p

k1
1 p

k2
1 p

k3
1
(C[0, 1])⊕M

p
k1
1 p

k2
2 p

k3
2
(C[0, 1])

⊕M
p

k1
1 p

k2
2 p

k3
3
(C[0, 1])⊕M

p
k1
1 p

k2
2 p

k3
3
(C(S1)).

In general, let

An = Bn =

n−1⊕
i=1

M
p

k1
1 p

k2
2 ···p

ki
i p

ki+1
i ···p

kn−1
i

(C[0, 1])⊕M
p

k1
1 p

k2
2 ···p

kn−1
n−1

(C(S1))

=

n−1⊕
i=1

M∏i
j=1 p

k j
j ·
∏n−1

j=i+1 p
k j
i
(C[0, 1])⊕M∏n−1

i=1 p
ki
i
(C(S1)).

For 1≤ i ≤ n− 1, let [n, i] =
∏i

j=1 pk j
j ·
∏n−1

j=i+1 pk j
i and [n, n] = [n, n− 1]. Then

An = Bn =

n−1⊕
i=1

M[n,i](C[0, 1])⊕M[n,n](C(S1)).

(Note that the last two blocks have the same size [n, n] = [n, n− 1].)
Note that [n+1, i] = [n, i] · pkn

i for all i ∈ {1, 2, . . . , n−1} and [n+1, n+1] =
[n+ 1, n] = [n, n] · pkn

n .

3.3. Let {tn}∞n=1 be a dense subset of [0, 1] and {zn}
∞

n=1 be a dense subset of S1. In
this subsection, we define the connecting homomorphisms

φn,n+1 : An→ An+1 and ψn,n+1 : Bn→ Bn+1.

For i ≤ n − 1, define φi,i
n,n+1 = ψ

i,i
n,n+1 : M[n,i](C[0, 1]) → M[n+1,i](C[0, 1])

(= M
[n,i]·pkn

i
(C[0, 1])) by

φ
i,i
n,n+1( f )(t)= ψ i,i

n,n+1( f )(t)

= diag( f (t), f (t), . . . , f (t)︸ ︷︷ ︸
pkn

i −1

, f (tn)) for all f ∈ M[n,i](C[0, 1]).
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Define φn,n+1
n,n+1 =ψ

n,n+1
n,n+1 :M[n,n](C(S

1))→M[n+1,n+1](C(S1))=M
[n,n]·pkn

n
(C(S1))

by

φ
n,n+1
n,n+1( f )(z)= ψn,n+1

n,n+1 ( f )(z)

= diag( f (z), f (zn), f (zn), . . . , f (zn)︸ ︷︷ ︸
pkn

n −1

) for all f ∈M[n,n](C(S1)).

But φn,n
n,n+1 and ψn,n

n,n+1 are defined differently — this is the only nonequal compo-
nent of φn,n+1 and ψn,n+1.

Let l = pkn
n − 1. Then

φ
n,n
n,n+1( f )(t)= diag

(
f (e2π i t), f (e−2π i t), f (e2π i/ l), . . . , f (e2π i(l−1)/ l)

)
,

ψ
n,n
n,n+1( f )(t)= diag

(
f (e2π iln t), f (e−2π i ·0/ l), f (e2π i/ l), . . . , f (e2π i(l−1)/ l)

)
for any f ∈ M[n,n](C(S1)), where ln = 4n

· [n+ 1, n] ∈ N.
Let all other parts φi, j

n,n+1, ψ
i, j
n,n+1 of φn,n+1, ψn,n+1 (except i = j ≤ n or i = n,

j = n+1, as defined above) be zero. Note that all φi, j
n,n+1, ψ

i, j
n,n+1 are either injective

or zero.
Let A = lim(An, φn,m), B = lim(Bn, ψn,m). Then it follows from the density

of the sets {tn}∞n=1 and {zn}
∞

n=1 that both A and B have the ideal property (see the
characterization theorem for AH algebras with the ideal property [Pasnicu 2000]).

Proposition 3.4. There is an isomorphism between Inv0(A) and Inv0(B) (see 2.11),
that is, there is an isomorphism

α : (K (A); K (A)+;6A)→ (K (B); K (B)+;6B)

which is compatible with Bockstein operations, and for pairs (p, q) with p ∈6A,
q ∈6B and α([p])= [q], there are associated unital positive linear maps

ξ p,q
: AffT(p Ap)→ AffT(q Bq)

which are compatible in the sense of 2.9 (see diagram (2.10)).

Proof. As KK (φn,m)=KK (ψn,m) and φn,m∼hψn,m , the identity maps ηn : An→ Bn

induce a shape equivalence between A = lim(An, φn,m) and B = lim(Bn, ψn,m),
and therefore induce an isomorphism

α : (K (A); K (A)+;6A)→ (K (B); K (B)+;6B).

Note that φi,i
n,n+1 = ψ

i,i
n,n+1 for i ≤ n− 1, φn,n+1

n,n+1 = ψ
n,n+1
n,n+1 , and∥∥AffTφn,n

n,n+1( f )−AffTψn,n
n,n+1( f )

∥∥≤ 2

pkn
n
‖ f ‖
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(see the definition of φn,n+1 and ψn,n+1). Therefore,

AffT ηn : AffT(An)→ AffT(Bn) and AffT η−1
n : AffT(Bn)→ AffT(An)

induce the approximately intertwining diagram

AffT(A1) //

��

AffT(A2) //

��

· · · // AffT(A)

AffT(B1) //

OO

AffT(B2) //

OO

· · · // AffT(B)

in the sense of [Elliott 1993b]. Therefore, there is a unital positive isomorphism

ξ : AffT(A)→ AffT(B).

Also, for any projection [P]∈K0(A), there is a projection Pn ∈ An= Bn (for n large
enough) with P i

n = diag(1, . . . , 1, 0, . . . , 0) ∈ M[n,i](C(Xn,i )), where Xn,i = [0, 1]
for i ≤ n− 1, and Xn,n = S1, such that φn,∞([Pn])= [P] ∈ K0(A). Note that for
any constant functions f ∈ Ai

n = Bi
n (e.g., P i

n above) and for any j , φi, j
n,n+1( f ) and

ψ
i, j
n,n+1( f ) are still constant functions, and φi, j

n,n+1( f ) = ψ i, j
n,n+1( f ). That is, we

have
φn,n+1(Pn)= ψn,n+1(Pn) (denoted by Pn+1),

φn,m(Pn)= ψn,m(Pn) (denoted by Pm).

Let P∞ = φn,∞(Pn) and Q∞ = ψn,∞(Pn). Then the identity maps {ηm}m>n also
induce the approximate intertwining diagram

AffT(Pn An Pn) //

��

AffT(Pn+1 An+1 Pn+1) //

��

· · · // AffT(P∞AP∞)

AffT(Pn Bn Pn) //

OO

AffT(Pn+1 Bn+1 Pn+1) //

OO

· · · // AffT(Q∞B Q∞)

and hence induce a positive linear isomorphism

ξ [P],α[P] : AffT(P∞AP∞)→ AffT(Q∞B Q∞).

(Note that [P∞] = [P] and [Q∞] = α[P] in K0(A) and K0(B), respectively.)
Evidently those maps are compatible since, they are induced by the same sequence
of homomorphisms {ηn} and {η−1

n }. �

Definition 3.5 and Proposition 3.6 are inspired by [Elliott 1997].

Definition 3.5. Let C = lim(Cn, φn,m) be an AHD inductive limit. We say the sys-
tem (Cn, φn,m) has the uniformly varied determinant if for any C i

n = M[n,i](C(S1))
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(that is, C i
n has spectrum S1), C j

n+1, and f ∈ C i
n defined by

f (z)=


z

1
. . .

1


[n,i]×[n,i]

for all z ∈ S1,

we have either that det(φi, j
n,n+1( f )(x)) is constant for x ∈ Sp(C j

n+1) 6= S1 or that
det(φi, j

n,n+1( f )(z))=λzk (λ∈C) for z ∈Sp(C j
n+1)= S1, where j satisfies φi, j

n,n+1 6=0
and the determinant is taken inside φi, j

n,n+1(1C i
n
)C j

n+1φ
i, j
n,n+1(1C i

n
).

Proposition 3.6. If the inductive limit system C = (Cn, φn,m) has the uniformly
varied determinant, then for any elements [p] ∈

∑
C , there are splitting maps

K1(pCp)/ tor K1(pCp)
SpCp
−−→U (pCp)/S̃U (pCp)

of the exact sequences

0→ AffT(pCp)/ρ̃K0(pCp)→U (pCp)/S̃U (pCp)
πpCp
−−→ K1(pCp)/ tor K1(pCp)→ 0

(that is, πpCp ◦ SpCp = id on K1(pCp)/ tor K1(pCp)) such that the system of maps
{SpCp}[p]∈

∑
C are compatible in the following sense: if p < q , then the diagram

K1(pCp)/ tor K1(pCp)
SpCp
//

��

U (pCp)/S̃U (pCp)

��

K1(qCq)/ tor K1(qCq)
SqCq

// U (qCq)/S̃U (qCq)

(3.7)

commutes, where the vertical maps are induced by the inclusions pCp→ qCq.

Proof. Fix p ∈ C . Let x ∈ K1(pCp)/ tor K1(pCp). There exist a Cn and pn ∈ Cn

such that [φn,∞(pn)] = [p] ∈ K0(C). Without lose of generality, we can assume
φn,∞(pn)= p. By increasing n if necessary, we can assume that there is an element
xn ∈ K1(pnCn pn)/ tor K1(pnCn pn) such that

(φn,∞)∗(xn)= x ∈ K1(pCp)/ tor K1(pCp).

Write pnCn pn = D =
⊕

Di . Let I = {i : Sp(Di ) = S1
}. For i ∈ I , Di can be

identified with Mli (C(S
1)). Let ui ∈ Di be defined by

ui (z)=


z

1
. . .

1


li×li

for all z ∈ S1,
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which represents the standard generator of K1(Di ). Then xn can be represented by

u =
⊕
i∈I

uki
i ⊕

⊕
j /∈I

1D j ∈

⊕
i∈I

Di
⊕

⊕
j /∈I

D j
= D ⊆ pnCn pn.

Define S(x) = [φn,∞(u)] ∈ U (pCp)/S̃U (pCp). Note that all unitaries with con-
stant determinants are in S̃U , and that the inductive system has the uniformly var-
ied determinant. It is routine to verify that S(x) is well defined and the system
{SpCp}[p]∈

∑
C makes the diagram (3.7) commute. �

3.8. Let A be a unital C∗-algebra. Then AffT(A) is a real Banach space with quo-
tient space AffT(A)/ρ̃K0(A). Let us use ‖ · ‖∼ to denote the quotient norm. Note
that λ̃A identifies Utor(A)/S̃U (A) with AffT(A)/ρ̃K0(A). Thus, Utor(A)/S̃U (A)
is regarded as a real Banach space, whose norm is also denoted by ‖·‖∼. In general,
we have

U (A)/S̃U (A)∼=Utor(A)/S̃U (A)× K1(A)/ tor K1(A),

but the identification is not canonical. Even though U (A)/S̃U (A) is not a Banach
space, it is an abelian group: for [u], [v] ∈U (A)/S̃U (A), define [u]− [v] = [uv∗].

The norm ‖ ·‖∼ is related to the metrics d̃A (on AffT(A)/ρ̃K0(A); see 2.28) and
D̃A (on Utor(A)/S̃U (A); see 2.33) as below. Let ε<1. For f, g∈AffT(A)/ρ̃K0(A),

‖ f − g‖∼ < ε

2π
H⇒ d̃A( f, g) < ε H⇒ ‖ f − g‖∼ < ε

4
.

And for any [u], [v] ∈U (A)/S̃U (A) with [u] − [v] = [uv∗] ∈Utor(A)/S̃U (A),∥∥[u] − [v]∥∥∼ < ε

2π
H⇒ D̃A([u], [v]) < ε H⇒

∥∥[u] − [v]∥∥∼ < ε

4
.

For A= PMl(C(X))P ∈HD or A= Ml(Ik) (in this case we also denote [0, 1]
by X ), there are canonical identifications

Utor(A)/S̃U (A)∼= AffT(A)/ρ̃K0(A)∼= C(X,R)/{constant functions}

(see 2.42). Choose a base point x0 ∈ X . Let Cx0(X,R) be the set of functions
f ∈ C(X,R) with f (x0) = 0. Then C(X,R)/{constant functions} ∼= Cx0(X,R).
For [ f ] ∈ AffT(A)/ρ̃K0(A) (or [ f ] ∈Utor(A)/S̃U (A)) identified with a function
f ∈ Cx0(X,R), we have

‖[ f ]‖∼ = 1
2
(
max
x∈X

( f (x))−min
x∈X

( f (x))
)

(rather than supx∈X {| f (x)|}).
In the above case, if p∈A is a nonzero projection, then Utor(pAp)/S̃U (pAp)∼=

AffT(pAp)/ρ̃K0(pAp) is also identified with Cx0(X,R). Consider the inclusion
map ı : p Ap → A. Then the map ı∗ as a map from Utor(pAp)/S̃U (pAp) ∼=
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AffT(pAp)/ρ̃K0(pAp) to Utor(A)/S̃U (A) can be described as follows: if

u ∈Utor(pAp)/S̃U (pAp)∼= AffT(pAp)/ρ̃K0(pAp)

is identified with f ∈ Cx0(X,R), then ı∗(u) ∈Utor(A)/S̃U (A) is identified with

rank(p)
rank(1A)

f.

But ı \ is the identity map from Utor(pAp)/S̃U (pAp)∼= AffT(pAp)/ρ̃K0(pAp)
to itself (not to Utor(A)/S̃U (A)).

3.9. It is easy to see that K1(A)= K1(B)= Z.
In the definition of An =

⊕n
i=1 Ai

n , only one block An
n =M[n,n](C(S1)) has spec-

trum S1, and only two partial maps φn, j
n,n+1 for j = n, j = n+1 (of φn,n+1 from An

n)
are nonzero. Let f ∈ An

n be defined as in Definition 3.5. Then det
(
φ

n,n+1
n,n+1( f )(z)

)
= z

and det
(
φ

n,n
n,n+1( f )(t)

)
= e2π i t e−2π i t e2π i/ le2π i(2/ l)

· · · e2π i(l−1)/ l
= ±1 (see 3.3).

So the inductive limit system (An, φn,m) has the uniformly varied determinant,
and therefore the limit algebra A has compatible splitting maps Sp : K1(p Ap)→
U (p Ap)/S̃U (p Ap).

We prove that B = lim(Bn, ψn,m) does not have such a compatible system of
splitting maps {K1(pBp)→U (pBp)/S̃U (pBp)}[p]∈∑ B .

Before proving the above fact, let us describe the K0-group of A and B. Let

G1 =

{ m
pl

1
: m ∈ Z, l ∈ Z+

}
,

G2 =

{
m

pk1
1 pl

2

: m ∈ Z, l ∈ Z+

}
,

G3 =

{
m

pk1
1 pk2

2 pl
3

: m ∈ Z, l ∈ Z+

}
,

...

Gn =

{
m

pk1
1 pk2

2 · · · p
kn−1
n−1 pl

n

: m ∈ Z, l ∈ Z+

}
,

G∞ =
{

m

pk1
1 pk2

2 · · · p
kt
t

: t ∈ Z+,m ∈ Z

}
,

where p1 = 2, p2 = 3, . . . , pi , . . . and k1, k2, . . . , ki . . . are defined in 3.2. Then

K0(A)= K0(B)

=

{
(a1, a2, . . . , an, . . . ) ∈

∞∏
n=1

Gn : ∃N such that aN = aN+1 = · · · ∈Q

}
, G̃.
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Furthermore, their positive cones consist of the elements whose coordinates are
nonnegative, and their order units are [1A] = [1B] = (1, 1, . . . , 1, . . . ) ∈

∏
∞

n=1 Gn .
Let

α0 : (K0(A), K0(A)+, [1A])=
(
G̃, G̃+, (1, 1, . . . , 1, . . . )

)
→ (K0(B), K0(B)+, [1B])=

(
G̃, G̃+, (1, 1, . . . , 1, . . . )

)
be a scaled ordered isomorphism. Then α0((1, 1, . . . , 1, . . . ))= (1, 1, . . . , 1, . . . ).
Note that an element x ∈ G̃ is divisible by power pn

1 (for any n) of the first
prime number p1 = 2 if and only if x = (t, 0, 0, . . . , 0, . . . ) ∈ G1 ⊂ G̃. Hence
α0((1, 0, 0, . . . , 0, . . . ))= (t, 0, 0, . . . , 0, . . . ) for some t ∈ G1 with t > 0. Hence

α0((0, 1, 1, . . . , 1, . . . ))= (1− t, 1, 1, . . . , 1, . . . ).

Since α0 preserves the positive cone, we have 1− t ≥ 0, which implies t ≤ 1.
On the other hand, (α0)

−1 takes (1, 0, 0, . . . , 0, . . . ) to (1/t, 0, 0, . . . , 0, . . . ). But
(α0)

−1 also preserves the positive cone. Symmetrically, we get t ≥ 1. That is,
α0((1, 0, 0, . . . , 0, . . . ))= (1, 0, 0, . . . , 0, . . . ). Similarly, using the fact that Gk is
the subgroup of all elements in G̃ which can be divisible by any power of pk —
the k-th prime number, we can prove that

α0
(
(0, . . . , 0︸ ︷︷ ︸

k−1

, 1, 0, . . . , 0, . . . )
)
=
(
0, . . . , 0︸ ︷︷ ︸

k−1

, 1, 0, . . . , 0, . . .
)
∈ Gk ⊂ G̃.

That is, α0 is the identity on G̃.
Note that Sp(A)= Sp(B) is the one point compactification of {1, 2, 3 . . . }— or,

in other words, {1, 2, 3 . . . ,∞}. If we let In (or Jn) be the primitive ideal A (or B)
corresponding to n (including n =∞), then

K0(A/In)= K0(B/Jn)= Gn.

Note also that if m′ >m > n ∈N, then φm,m′(An
m)⊂ An

m′ and ψm,m′(Bn
m)⊂ Bn

m′ .
Hence A/In= limn<m→∞(An

m,φm,m′ |An
m
) (resp. B/Jn= limn<m→∞(Bn

m, ψm,m′ |Bn
m
))

are ideals of A (resp. B). But A/I∞ (or B/J∞) is not an ideal of A (or B).
Let α : (K (A), K (A)+, 6A)→ (K (B), K (B)+, 6B) be an isomorphism. By

3.9 the induced map α0 on K0 group is identity, when both K0(A) and K0(B) are
identified with G̃ as scaled ordered groups. That is, α0 is the same as the α0 induced
by the shape equivalence in the proof of Proposition 3.4. In particular, if there is
an isomorphism ∧ : A→ B, then for all i ≤ n−1, ∧∗[(φn,∞(1Ai

n
))] = [ψn,∞(1Bi

n
)].

This implies ∧(φn,∞(1Ai
n
))=ψn,∞(1Bi

n
), since ψn,∞(1Bi

n
)= 1B/Ii , which is in the

center of B (any element in the center of the C∗-algebra can only unitary equivalent
to itself). Hence it is also true that ∧(φn,∞(1Ai

n
))= ψn,∞(1Bi

n
) for i = n.
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3.10. Let P1 = 1B = ψ1,∞(1B1) and Pn = ψn,∞(1Bn
n
) for n > 1. Then we have

P1 > P2 > · · ·> Pn > · · · . We prove that there are no splittings

K1(Pn B Pn)→U (Pn B Pn)/S̃U (Pn B Pn)

which are compatible for all pairs of projections Pn > Pm (see diagram (3.7)) in
the next subsection. Before doing so, we need some preparations.

Set Q1 = P1− P2, Q2 = P2− P3, . . . , Qn = Pn − Pn+1. Then for each n, we
have the inductive limit

Qn B Qn = lim
m→∞

(Bn
m, ψ

n,n
m,m′)

(note that for m > n, ψn, j
m,m+1 = 0 if j 6= n), which is the quotient algebra corre-

sponding to the primitive ideal of n ∈ Sp(B)= {1, 2, 3 . . . ,∞}. Note that Qn B Qn

is a simple AI algebra. The inductive limit of the C∗-algebras

Bn
n+1→ Bn

n+2→ Bn
n+3→ · · · → Qn B Qn

induces the inductive limit of the ordered Banach spaces

AffT(Bn
n+1)

ξn+1,n+2
−−−−→ AffT(Bn

n+2)
ξn+2,n+3
−−−−→ · · · → AffT(Qn B Qn),

whose connecting maps ξm,m+1 : CR([0, 1])→ CR([0, 1]) (for m > n) satisfy

‖ξm,m+1( f )− f ‖ ≤ 1
pkm

n
‖ f ‖ for all f ∈ CR[0, 1], m > n.

Hence we have the following approximate intertwining diagram:

CR[0, 1]
ξn,n+1

//

��

CR[0, 1]
ξn+1,n+2

//

��

CR[0, 1] //

��

· · · // AffT(Qn B Qn)

CR[0, 1] id
//

OO

CR[0, 1] id
//

OO

CR[0, 1] //

OO

· · · // CR[0, 1]

Consequently, AffT(Qn B Qn)∼= CR[0, 1], and the maps

ξm,∞ : AffT(Bn
m)= CR[0, 1] → AffT(Qn B Qn)∼= CR[0, 1]

(under the identification) satisfy

‖ξm,∞( f )− f ‖ ≤
( 1

pkm
n
+

1
pkm+1

n
+ · · ·

)
‖ f ‖ ≤ 1

4
‖ f ‖ for all f ∈ CR[0, 1].

Therefore ‖ξm,∞( f )‖ ≥ 3
4‖ f ‖.

Note that ρ̃K0(Qn B Qn)=R= ρ̃K0(Bn
m) consists of constant functions on [0, 1].

Take an element h ∈ CR[0, 1] = AffT(Bn
m). Considering ξm,∞(h) as an element of
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AffT(Qn B Qn)/ρ̃K0(Qn B Qn), we have

‖ξm,∞(h)‖∼ ≥
1
2
·

3
4
(

max
t∈[0,1]

h(t)− min
t∈[0,1]

h(t)
)
,

where ‖ · ‖∼ is defined in 3.8.

3.11. We now prove that no compatible splittings

Sn : K1(Pn B Pn)→U (Pn B Pn)/S̃U (Pn B Pn)

exist. Suppose such splittings exist. Then consider the generator x ∈ K1(B)= Z.
Note that x ∈ K1(Pn B Pn)∼= K1(B) for all Pn . Note also that the diagram

K1(Pn+1 B Pn+1)
Sn+1
//

id
��

U (Pn+1 B Pn+1)/S̃U (Pn+1 B Pn+1)

ı∗
��

K1(P1 B P1)
S1

// U (P1 B P1)/S̃U (P1 B P1)

commutes (P1 B P1 = B). The composition

U (Pn+1 B Pn+1)/S̃U (Pn+1 B Pn+1)
ı∗
−→U (P1 B P1)/S̃U (P1 B P1)

→

n⊕
i=1

U (Qi B Qi )/S̃U (Qi B Qi )

is the zero map. (Note that Qi B Qi is an ideal of B and is also the quotient B/Ji .)
Consequently, we have

π \n(S1(x))= π \n(ı∗Sn+1(x))= 0, (∗)

where πn : B → Qn B Qn is the quotient map. Let S1(x) be represented by a
unitary u ∈U (B). Then there are an n (large enough) and [un] ∈U (Bn)/S̃U (Bn),
represented by unitary un ∈ Bn , such that

ψ\n,∞([un])− S1(x) ∈Utor(Bn)/S̃U (Bn) and ‖ψ\n,∞([un])− S1(x)‖∼ < 1
16 .

Note that
(ψn,m)∗ : K1(Bn)→ K1(Bm)

is the identify map from Z to Z. Let g ∈ M[n,n](C(S1))= Bn
n be defined by

g(z)=


z

1
1
. . .

1


[n,n]×[n,n]
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Then [g−1un] = 0 in K1(Bn). By the exactness of the sequence

0→ AffT(Bn)/ρ̃K0(Bn)→U (Bn)/S̃U (Bn)→ K1(B1)→ 0,

there is an h ∈
⊕n

i=1 CR[0, 1]⊕CR(S1)= AffT(Bn) such that

[un] = [g] · (e2π ih
·1Bn ) ∈U (Bn)/S̃U (Bn).

Let ‖h‖ = M . Choose m > n such that 4m−1 > 8M + 8.
Consider

ψn,m−1
n,m : Bn

n = M[n,n](C(S1))→ Bm−1
m = M[m,m−1](C([0, 1])),

which is the composition

ψ
m−1,m−1
m−1,m ◦ψ

n,m−1
n,m−1 :M[n,n](C(S

1))→M[m−1,m−1](C(S1))→M[m,m−1](C([0, 1])).

Let g′ = ψn,m−1
n,m (g). We know that

g′(t)= ψn,m−1
n,m (g)(t)=


e2π ilm−1t

∗

∗

. . .

∗


[m,m−1]×[m,m−1]

where the ∗’s represent constant functions on [0, 1], and therefore

g′ = e2π ih′ (mod S̃U (Bm−1
m ))

with h′(t)=
lm−1

[m,m− 1]
· t ·1[m,m−1]. When we identify U (Bm−1

m )/S̃U (Bm−1
m ) with

AffT(Bm−1
m )/ρ̃K0(Bm−1

m )= CR[0, 1]/{constants},

g′ is identified with h̃ ∈ CR[0, 1], where

h̃(t)=
lm−1

[m,m− 1]
t.

Since
lm−1

[m,m− 1]
≥ 8M + 8, we have

‖h̃‖∼ = 1
2
(

max
t∈[0,1]

h̃(t)− min
t∈[0,1]

h̃(t)
)
≥ 4M + 4

(see 3.8). On the other hand,

[un] = [g] + λ̃Bn ([h]) ∈U (Bn)/S̃U (Bn),
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where [h] ∈ AffT(Bn)/ρ̃K0(Bn) is the element defined by h, and

λ̃Bn : AffT(Bn)/ρ̃K0(Bn)→U (Bn)/S̃U (Bn)

is the map defined in 2.33 (also see 2.28). Consequently,

(ψn,m−1
n,m )\(u)= AffTψn,m−1

n,m (h)+ h̃

, ˜̃h ∈ AffT(Bm−1
m )/ρ̃K0(Bm−1

m )∼=U (Bm−1
m )/S̃U (Bm−1

m )

with
‖
˜̃h‖∼ = 1

2
(

max
t∈[0,1]

˜̃h(t)− min
t∈[0,1]

˜̃h(t)
)
≥ 4,

since ‖h‖ ≤ M . Therefore,

(πm−1 ◦ψn,∞)
\(u) ∈U (Qm−1 B Qm−1)/S̃U (Qm−1 B Qm−1)

∼= AffT(Qm−1 B Qm−1)/ρ̃K0(Qm−1 B Qm−1),

satisfies

‖(πm−1 ◦ψn,∞)
\(u)‖∼

=
1
2
(

max
t∈[0,1]

(πm−1 ◦ψn,∞)
\(u)(t)− min

t∈[0,1]
(πm−1 ◦ψn,∞)

\(u)(t)
)
≥

3
4
· 4= 3,

where πm−1 : B→ Qm−1 B Qm−1 is the quotient map. On the other hand,

π
\

m−1(S1(x))= 0

as calculated in (∗). Recall that

‖(ψn,∞)
\(u)− S1(x)‖∼ <

1
16
.

We get
‖(πm−1 ◦ψn,∞)

\(u)‖∼ < 1
16
,

which is a contradiction. This contradiction proves that such a system of splittings
does not exist. Hence Inv(A)� Inv(B) and A � B.

3.12. One can easily verify that

AffT(A)= AffT(B)

=

{
( f1, f2, . . . , fn, . . . ) ∈

∞∏
n=1

CR[0, 1] : ∃r ∈ R such that

fn(x) converges to r uniformly
}
,

ρK0(A)(= ρK0(B))

=

{
(r1, r2, . . . , rn, . . . ) ∈

∞∏
n=1

R : ∃r ∈ R such that rn converges to r
}

⊂ AffT(A)(= AffT(B)).
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Since ρK0(A)(= ρK0(B)) is already a vector space, we have ρ̃K0(A)= ρK0(A)
and ρ̃K0(B)= ρK0(B). Therefore,

Utor(A)/S̃U (A)∼= AffT(A)/ρ̃K0(A)= AffT(A)/ρK0(A)∼=U0(A)/DU (A).

On the other hand, Utor(A) = U0(A). Hence S̃U (A) = DU (A). Furthermore,
the map λA : AffT(A)/ρK0(A)→ U (A)/DU (A) can be identified with the map
λ̃A : AffT(A)/ρ̃K0(A)→ U (A)/S̃U (A). That is, Inv′(A) = Inv(A). Similarly,
Inv(B)= Inv′(B).

3.13. A routine calculation (we omit the details) shows that for any finite subset
F ⊂ An and ε > 0, there is an m > n and two finite dimensional unital sub-C∗-
algebras C, D ⊂ Am with nonabelian central projection such that∥∥[φn,m( f ), c]

∥∥<ε‖c‖ and
∥∥[ψn,m( f ), d]

∥∥<ε‖d‖ for all f ∈F, c∈C, d∈D.

Consequently, both C∗-algebras A and B are approximately divisible in the sense of
[Blackadar et al. 1992, Definition 1.2]. By [Toms and Winter 2008, Theorem 2.3],
both A and B are Z-stable. That is, A ⊗ Z ∼= A and B ⊗ Z ∼= B, where Z is
the Jiang–Su algebra (see [Jiang and Su 1999]). Furthermore, by using [Tikuisis
2011] (see also [Coward et al. 2008]), one can prove that Cu(A) ∼= Cu(B) and
Cu(A⊗C(S1))∼= Cu(B⊗C(S1)).
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