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We investigate determinants of Koszul complexes of holomorphic functions of
a commuting tuple of bounded operators acting on a Hilbert space. Our main
result shows that the analytic joint torsion, which compares two such determi-
nants, can be computed by a local formula which involves a tame symbol of the
involved holomorphic functions. As an application we are able to extend the
classical tame symbol of meromorphic functions on a Riemann surface to the
more involved setting of transversal functions on a complex analytic curve. This
follows by spelling out our main result in the case of Toeplitz operators acting
on the Hardy space over the polydisc.
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1. Introduction

The main theme of this paper, which is a continuation of the work begun in [Kaad
and Nest 2015; 2019], is the study of the algebraic structure of a Hilbert space H

as a module over an algebra of holomorphic functions of a finite family of bounded
commuting operators on H .

The simplest example is the case of the Toeplitz operator Tz acting on the Hardy
space over the open unit disc H 2(D). Here z denotes the complex coordinate
in C. The holomorphic functional calculus of bounded operators furnishes the
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Hilbert space H 2(D) with the structure of a module over the ring O(D) of germs
of functions holomorphic in a neighborhood of the closed unit disc, and analysis
of Toeplitz operators is closely related to the algebraic properties of this module
structure.

The prototype of results of the type we are interested in is the following:

Theorem 1.1 (Fritz Noether). Given a holomorphic function f on a neighborhood
of D and invertible on its boundary ∂D, the Toeplitz operator T f is Fredholm and
its index is given by (minus) the winding number of f ,

Ind(T f )=−
1

2π i

∫
T

f −1 d f =−
∑
|λ|<1

resλ( f −1 d f ). (1.2)

A way of interpreting this result is to notice that the left-hand side of this equality
is an analytic object, the Euler characteristic of the cochain complex

0→ H 2(D)
T f
−→ H 2(D)→ 0,

while the right-hand side has an algebraic K-theory interpretation. Indeed, let K

denote the field of fractions of O(D). Then an element f ∈O(D) whose restriction
to the unit circle is invertible determines an element

[ f ] ∈ K alg
1 (K )

and, in this situation, the right-hand side of (1.2) becomes the residue of −d log f .
This residue should be thought of as the result of the composition of the regulator
map

K alg
1 (K ) 3 [ f ] 7→ [log f ] ∈ lim

−−→
S⊆D

H 1
D(D \ S,Z(1))

from algebraic K-theory of K to the Deligne cohomology lim
−−→S⊆D

H∗D(D \ S)
(where the direct limit is taken over finite subsets S ⊆ D) with the residue map
(in fact minus the exterior derivative followed by the residue; see, for example,
[Brylinski 2008]).

While this particular case does not really justify the reference to algebraic K-
theory, the corresponding computations in the case of K alg

2 become much more
demanding. In their work on algebraic K-theory of the quotient of the algebra
of bounded operators by the ideal of trace class operators, Carey and Pincus in-
troduced an analytic object, the joint torsion JT(A, B) of a pair of commuting
Fredholm operators A and B. In the particular case of a pair of Toeplitz operators
T f and Tg on the Hardy space H 2(D) and with symbols f, g ∈O(D), they proved
the following theorem (in fact, Carey and Pincus work more generally with symbols
in H∞(D)).
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Theorem 1.3 [Carey and Pincus 1999, Proposition 1]. Suppose that both T f and
Tg are Fredholm. Then

JT(T f , Tg)=
∏
λ∈D

(−1)mλ(g)·mλ( f ) lim
z→λ

g(z)mλ( f )

f (z)mλ(g)
∈ C∗, (1.4)

where mλ( f ) is the multiplicity of a zero of f at λ.

The left-hand side of this equality is a certain analytic invariant of the pair of
operators (T f , Tg), while the right-hand side is again best understood via evaluat-
ing the regulator map, this time on the Steinberg symbol [ f, g] ∈ K alg

2 (K ). The
regulator map provides a class

K alg
2 (K ) 3 [ f, g] 7→ [log f ] ∪ [log g] ∈ lim

−−→
S⊆D

H 2
D(D \ S,Z(2)),

where the element [log f ]∪[log g] in the direct limit of Deligne cohomology groups
lim
−−→S⊆D

H 2
D(D \ S,Z(2)) is determined by the cup product in Deligne cohomol-

ogy. The right-hand side of (1.4) then agrees with the residue map applied to
the cohomology class [log f ] ∪ [log g]; see [Bloch 1981; Esnault and Viehweg
1988]. The right-hand side of (1.4) is known as the Tate tame symbol of the class
[ f, g] ∈ K alg

2 (K ); see [Tate 1968; Deligne 1991]. A related construction in the
case of a compact Riemann surface was considered in [Gustafsson and Tkachev
2009].

The subject of this paper is the generalization of these results to the case of a
commuting n-tuple A = (A1, . . . , An) of bounded operators on a Hilbert space H .
The basic idea is to replace the single Toeplitz operator Tz by the Koszul com-
plex K (A,H ) of our arbitrary n-tuple; see Section 3A. The generalization of the
closed unit disc in the Toeplitz case becomes the Taylor spectrum Sp(A) ⊆ Cn ,
the set of λ ∈ Cn for which K (A − λ,H ), the Koszul complex of A − λ =
(A1− λ1, . . . , An − λn), is not contractible. The notions of essential (resp. Fred-
holm) spectrum correspond to the values of λ for which K (A− λ,H ) has infinite-
dimensional (resp. nontrivial finite-dimensional) cohomology. In the case that λ
belongs to the Fredholm spectrum of A, the index Ind(A− λ) stands for the Euler
characteristic of the cohomology of the Koszul complex K (A− λ,H ).

By a theorem of Taylor [1970a], the standard holomorphic functional calculus
extends to a multivariable holomorphic functional calculus of such an n-tuple A,
i.e.,

H is a module over the ring O(Sp(A)) of germs of functions holomor-
phic in a neighborhood of Sp(A).

Our goal is to study the algebraic structure of this module.
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The analogue of the Fritz Noether index theorem was dealt with in [Kaad and
Nest 2015; Eschmeier and Putinar 1996]. Since it is needed to formulate the results
of this paper, we recall the statement.

Theorem 1.5. Let f1, . . . , fn ∈O(Sp(A)). The n-tuple

f (A)= ( f1(A1, . . . , An), . . . , fn(A1, . . . , An))

is Fredholm if and only if the set Z( f )⊆ Sp(A) of common zeroes of the fi has no
intersection with the essential spectrum of A. If f (A) is Fredholm, the following
hold:

(1) The set Z( f ) of common zeroes is finite.

(2) We have

Ind( f (A))=
∑

λ∈Z( f )

Indλ( f ), Indλ( f )= mλ( f ) · Ind(A− λ). (1.6)

Here mλ( f ) are the multiplicities of the points λ ∈ Z( f ) given by the dimen-
sions

mλ( f )= dimC(Oλ/〈 f 〉λ),

where 〈 f 〉λ is the ideal generated by f in the stalk Oλ of convergent power
series near λ.

The joint torsion, the generalization of the torsion invariant of Carey and Pincus,
is defined in the following context. First a bit of notation. A complex C of Hilbert
spaces is Fredholm if it has finite-dimensional cohomology and, if C is Fredholm,
its determinant line is the one-dimensional vector space

|C| =3top H+(C)⊗ (3top H−(C))†

(see Section 2B for more details).

Definition 1.7. Let C be a complex of Hilbert spaces and f, g : C → C be two
commuting morphisms of complexes. Suppose that the mapping cones C f and Cg

of f and g are both Fredholm. Then the long exact cohomology sequences of the
mapping cone of f acting on Cg and of g acting on C f provide two trivializations
of the determinant line of C f,g and the joint torsion JT(C; f, g) is the quotient
of these two trivializations. See [Kaad 2012, Section 3.3] and Section 2A3 for
details.1

The notion of joint torsion for the O(Sp(A))-module H appears in the follow-
ing situation. Let h1, . . . , hn−1, f, g be holomorphic functions defined in a neigh-
borhood of Sp(A) and suppose that the zero sets Z(h)∩ Z( f ) and Z(h)∩ Z(g)
do not intersect the essential spectrum of A. In this case the commuting tuples

1The choice of signs in this paper is not standard, but is dictated by Theorem 2.17.
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(h1(A), . . . , hn−1(A), f (A)) and (h1(A), . . . , hn−1(A), g(A)) are Fredholm and
the joint torsion JT(K (h,H ); f, g) ∈ C∗ is well-defined. The main result of this
paper is as follows.

Theorem 1.8 (Theorem 5.9). Joint torsion is multiplicative, i.e.,

JT(K (h,H ); f, g)=
∏

λ∈Z(h)∩(Z( f )∪Z(g))

cλ(h; f, g)Ind(A−λ),

where the local terms cλ(h; f, g) ∈ C∗ (which are given explicitly in Theorem 1.9)
only depend on the image of the functions f, g, hi , i = 1, . . . , n− 1 in the stalk Oλ.

The local terms in the product above are given by the following result. Notice
that the quantities mµ(hk, gk) (and mν(hk, f k)) appearing in the statement are
multiplicities of the points µ ∈ Z(hk)∩ Z(gk) = Z(hk, gk) that are common ze-
roes of the n-tuple of holomorphic functions (hk

1, . . . , hk
n−1, gk); see the statement

of Theorem 1.5. In particular, we see that a combination of Theorem 1.8 and
Theorem 1.9 recovers Theorem 1.3 by specializing to the case where n = 1 and
A := Tz : H 2(D)→ H 2(D) is just given by the single Toeplitz operator with symbol
the inclusion z : S1

→ C and spectrum Sp(A)= D.

Theorem 1.9 (Theorem 5.6). Let U ⊆ Cn be open with compact closure U and
consider h1, . . . , hn−1, f, g ∈O(U ). Suppose that λ ∈U satisfies

Z(h)∩ (Z( f )∪ Z(g))⊆ {λ}.

Then the sequence of quotients

cλ(hk
; f k, gk)=

∏
µ∈U∩Z(hk)∩Z(gk) f k(µ)mµ(hk ,gk)∏
ν∈U∩Z(hk)∩Z( f k) gk(ν)mν(hk , f k)

converges to cλ(h; f, g) for any sequences {hk
i }, { f k

}, {gk
} in O(U ) which con-

verge uniformly to hi , f, g and for which

Z(hk)∩ Z( f k)∩ Z(gk)=∅ for all k ∈ N.

Remark 1.10. The assumptions of Theorem 1.8 can be weakened. In fact it is suf-
ficient for the functions f and g to be defined and holomorphic in a neighborhood
of X = Z(h)∩ Sp(A). Using the methods of [Müller 2002], Taylor holomorphic
calculus can be extended to define operators f (A) and g(A) acting on the Koszul
complex K (h,H ) and the conclusions of the theorem still hold.

Remark 1.11. One can also define the “local joint torsion” by localizing the Hilbert
space at the prime ideal pλ of functions in O(Sp(A)) vanishing at λ. The resulting
numbers are conjecturally the same as the local joint torsion cλ(h; f, g)Ind(A−λ) as
defined above.
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As an application of our main results we are able to extend the definition of
the Tate tame symbol from Riemann surfaces to more general complex analytic
curves. More precisely, we work with a complex analytic curve (X,OX ) and a
fixed point x ∈ X such that there exists a local model

(
Z(h),O/〈h〉|Z(h)

)
near x

which is determined by a holomorphic map

h = (h1, . . . , hn−1) :U → Cn−1,

where U ⊆ Cn is an open set. In other words, X is a complete intersection in a
neighborhood of x . For any two holomorphic functions f, g ∈OX (V ) which are
transversal to the curve near x ∈ X , we may then define the Tate tame symbol

cx(X; f, g) ∈ C∗

by applying the local description of Theorem 1.9. This invariant satisfies the prop-
erties which define a symbol in arithmetic; see [Tate 1971].

Remark 1.12. The conditions on the specific type of local model near x ∈ X can
be removed by working with more general resolutions than the Koszul complex.
In particular, we will be able to study tame symbols of general complex analytic
curves. We plan to carry out the details in a future publication.

The structure of the paper is a follows.
Section 2 is devoted to basic definitions involving determinants and torsion of

Fredholm complexes. The definition essential to this paper, that of joint torsion, is
given in Section 2A3.

The notion underlying these constructions is a determinant functor on the trian-
gulated category of Fredholm complexes but, since this more abstract context is
not necessary to understand what follows, we have avoided this language.

Section 3 is devoted to the generalities involving Koszul complexes of commut-
ing families of bounded operators. After recalling the basic definitions (Section 3A)
we describe the localization procedure involved in the computation of local indices
and state the local index theorem (see Section 3C).

Section 4 contains the basic technical computations involving the joint torsion.
The main result of this section, Theorem 4.3, gives a formula for joint torsion in
the case when the (n + 1)-tuple (h, f, g) has no common zeroes in Sp(A). The
proof is based on the observation that in this case the joint torsion is given by the
quotient of two determinants, both of which can be computed explicitly.2

2The fact that the joint torsion of two Fredholm operators (A1, A2) whose Koszul complex is
contractible can be given as a quotient of two determinants holds in fact in a more general context. It
is sufficient to assume that A1 and A2 commute up to a trace class operator and that, moreover, one
can construct an acyclic complex H

d1
−→H ⊕H

d2
−→H , where the boundary maps are trace class

perturbations of (A1, A2)
t (and (A2,−A1)); see [Migler 2014].
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Section 5 contains the proofs of the main theorems listed above. This section
relies heavily on the continuity properties of the joint torsion as investigated by the
authors in [Kaad and Nest 2019].

Section 6 contains the application of our results to the setting of complex analytic
curves.

2. Determinants, torsion and joint torsion

Throughout this section F is a fixed field of characteristic zero.

2A. Determinants of vector spaces.

2A1. Picard category of graded lines.

Definition 2.1. L denotes the category of Z-graded lines over F. The objects of L
are thus pairs (V, n), where V is a one-dimensional vector space over F and n ∈ Z.
The set of morphisms Mor((V, n), (W,m)) is the set of isomorphisms V → W
when n = m and empty when n 6= m.

The category L becomes a Picard category when equipped with the bifunctor

⊗ : ((V, n), (W,m)) 7→ (V ⊗W, n+m),

which satisfies the obvious associativity constraint and the commutativity con-
straint

ψ(V,n),(W,m) : (V, n)⊗ (W,m)→ (W,m)⊗ (V, n), ξ ⊗ η 7→ (−1)n·mη⊗ ξ.

Let † : L→ L denote the covariant functor:

†(V, n) := (V ∗,−n) on objects and † (α) := (α−1)∗ on morphisms,

where the superscript ( ·)∗ denotes the linear dual (resp. transpose) of a vector space
(resp. linear transformation). Below we often use the notation (V, n)† := †(V, n)
and α†

:= †(α).
Together with the natural isomorphisms

c(V,n),(W,m) : (V, n)†⊗ (W,m)†→ ((V, n)⊗ (W,m))†,

(c(V,n),(W,m)(λ⊗µ))(ξ ⊗ η) := λ(ξ) ·µ(η) · (−1)n·m,

the covariant functor † becomes a monoidal functor. Furthermore, for any graded
line (V, n), the image (V, n)† = (V ∗,−n), together with the isomorphism

ε(V,n) : V ⊗ V ∗→ F, ε(V,n) : ξ ⊗ λ 7→ λ(ξ),

is a fixed right inverse. Here the ground field (F, 0) and the obvious isomorphisms
V ⊗ F∼= V ∼= F⊗ V play the role of a fixed unit.
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2A2. Graded vector spaces.

Definition 2.2. V denotes the abelian category of finite-dimensional vector spaces
over F and Viso denotes the subcategory of V with the same objects as V and
where

MorViso(V,W )= {A ∈MorV(V,W ) | A is invertible}.

We let | · | denote the determinant functor given by

Viso 3 V → (3topV, dim V ) ∈ L

on objects and by f →3top( f ) on morphisms (invertible linear transformations),
where 3(V ) denotes the exterior algebra over V .

The basic property of the determinant functor is the following simple observa-
tion. Given a short exact sequence of finite-dimensional vector spaces

1 : 0→ V ι
−→W π

−→ Z→ 0,

there exists an associated canonical isomorphism

|1| : |W | → |V | ⊗ |Z | (2.3)

given as follows: Let v1, . . . , vdim V be a linear basis of the image of V in W and
w1, . . . , wdim Z its completion to a linear basis of W . Then

|1|(v1 ∧ · · · ∧ vdim V ∧w1 ∧ · · · ∧wdim Z )

= (−1)dim V ·dim Z (ι−1(v1)∧ · · · ∧ ι
−1(vdim V ))⊗ (π(w1)∧ · · · ∧π(wdim Z )).

It is straightforward to check that |1| is independent of the choices made. Remark
that the extra sign (−1)dim V ·dim Z is nonstandard.

Remark 2.4. Note that the above rules determine a determinant functor as defined
for example in [Breuning 2011, Definition 2.3]; see also [Deligne 1987] or [Knud-
sen 2002, Definition 1.4].

This determinant functor extends to the category of Z/2Z-graded finite-dimen-
sional vector spaces. First some notation.

Notation 2.5. (1) VZ/2Z denotes the category of finite dimensional Z/2Z-graded
vector spaces with objects V = V+⊕ V− and morphisms

α =

(
α+ 0
0 α−

)
: V →W,

where α± : V±→W± are linear maps.
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(2) The map [1] :VZ/2Z
→VZ/2Z is the self-equivalence of VZ/2Z given by change

of grading:

V [1]± = V∓ on objects and α[1]± = α∓ on morphisms.

(3) V
Z/2Z

iso is the category with the same objects as VZ/2Z and morphisms given
by

α =

(
α+ 0
0 α−

)
with α± invertible.

Definition 2.6. The functor | · | :VZ/2Z

iso → L is given by

|V | = |V+| ⊗ |V−|† on objects and |α| = |α+| ⊗ |α−|† on morphisms.

2A3. Torsion. The analogue of the isomorphism (2.3) in the context of Z (or Z/2Z)
graded vector spaces has the following form.

Let V be a finite-dimensional vector space. The degree map ε :3(V )→N0 on
the exterior algebra over V is defined on homogeneous elements by v1∧· · ·∧vk 7→ k.
Suppose that L is a one-dimensional vector space and t ∈ L a nonzero vector. Then
t∗ ∈ L∗ denotes the unique vector such that t∗(t)= 1.

Suppose that Vi = V+i ⊕ V−i (for i = 1, 2) and V = V+⊕ V− are Z/2Z-graded
vector spaces and that we are given grading-preserving linear maps

f : V1→ V2, i : V2→ V, p : V → V1[1]

such that the following six-term sequence of finite dimensional vector spaces is
exact:

V :

V+1
f +
// V+2

i+
// V+

p+
��

V−
p−
OO

V−2i−
oo V−1f −

oo

(2.7)

For future use, let us introduce the following.

Notation 2.8. We write the six-term exact sequence V above as the triangle

V :
V1

f
// V2

i~~

V
p[1]

``

and refer to it as an exact triangle of Z/2Z-graded vector spaces.
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Definition 2.9. Suppose that we are given a six-term exact sequence V of the
form (2.7). Set

(V+1 )(0) := Ker( f +), (V+2 )(0) := Ker(i+), (V+)(0) := Ker(p+),

(V−1 )(0) := Ker( f −), (V−2 )(0) := Ker(i−), (V−)(0) := Ker(p−).

For i = 1, 2, choose subspaces (V±i )(1)⊂ V±i (resp. (V±)(1)⊂ V±) complementary
to (V±i )(0) ⊂ V±i (resp. (V±)(0)) and nonzero vectors

t±i ∈ |(V
±

i )(1)|, i = 1, 2 (resp. t± ∈ |(V±)(1)|)

The torsion isomorphism of V is the isomorphism

|V| : |V2| → |V1| ⊗ |V |

defined by

|V|
(
( f +(t+1 )∧ t+2 )⊗ ( f −(t−1 )∧ t−2 )

∗
)

= (−1)µ(V)(p−(t−)∧ t+1 )⊗ (p
+(t+)∧ t−1 )

∗
⊗ (i+(t+2 )∧ t+)⊗ (i−(t−2 )∧ t−)∗.

The sign exponent is defined by

µ(V) := (ε(t+2 )+ 1) · (ε(t−1 )+ ε(t
+

1 ))+ ε(t
−

1 ) · (ε(t
+)+ ε(t−))

+ ε(t−) · (ε(t+2 )+ ε(t
−

2 ))+ ε(t
+) ∈ N0.

It is a consequence of [Kaad 2012, Lemma 2.1.3] that the torsion isomorphism
does not depend on the choices made. For future reference let us note the following
simple fact:

Lemma 2.10. Suppose that we are given a six-term exact sequence V of the form

V :
W

f
// W

||
0

bb

The torsion isomorphism of V is given by

|V| = (−1)dim(W+)+dim(W−)
·

det f −

det f +
.

Proof. This is a straightforward consequence of the definitions. �

2B. Fredholm complexes.

Definition 2.11. A Fredholm complex X is a finite cochain complex of (possibly
infinite-dimensional) vector spaces

X : · · · → X k dk
−→ X k+1 dk+1

−−→ X k+2
→ · · ·
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such that the cohomology groups

H k(X )= Ker dk/ Im dk−1

are finite-dimensional.
The determinant of the Fredholm complex X is the graded line

|X | = |H+(X )| ⊗ |H−(X )|†,

where H+(X ) :=
⊕

k∈Z H 2k(X ) and H−(X ) :=
⊕

k∈Z H 2k+1(X ). The index of X
is the integer

Ind(X )= dim(H+(X ))− dim(H−(X )).

We let X [1] denote the shift of the Fredholm complex X . X [1] is again a Fred-
holm complex with cochains X [1]k := X k+1 and with differentials

d[1]k := −dk+1
: X k+1

→ X k+2, k ∈ Z.

Definition 2.12. Let X and Y be finite cochain complexes and let f : X → Y be
a cochain map. The mapping cone of f is the cochain complex C f defined by
Ck

f := X k+1
⊕ Y k and

dk
f :=

(
−dk+1

X 0
f k+1 dk

Y

)
: X k+1

⊕ Y k
→ X k+2

⊕ Y k+1.

Suppose that f :X → Y is a cochain map of Fredholm complexes. The mapping
cone is again a Fredholm complex and it fits into the mapping cone triangle

1 f : X
f
−→ Y i

−→ C f
p
−→ X [1],

where the cochain maps i : Y→C f and p :C f →X [1] are given by the inclusions
ik
:=
( 0

1

)
: Y k
→ X k+1

⊕Y k and the projections pk
:= ( 1 0 ) : X k+1

⊕Y k
→ X k+1

for k ∈ Z.
By passing to cohomology, the mapping cone triangle associated to f yields an

exact triangle of Z/2Z-graded vector spaces:

H(1 f ) :

H+(X )
H+( f )

// H+(Y)
H+(i)

// H+(C f )

H+(p)
��

H−(C f )

H−(p)
OO

H−(Y)
H−(i)
oo H−(X )

H−( f )
oo

(2.13)

Definition 2.14. Let f : X → Y be a cochain map of Fredholm complexes. The
torsion isomorphism of f is the torsion isomorphism of H(1 f ),

|H(1 f )| : |Y| → |X | ⊗ |C f |

(compare with Definition 2.9).
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2C. Joint torsion. Let X be a finite cochain complex and let f : X → X and
g :X→X be two commuting endomorphisms of X . Remark that X is not assumed
to be a Fredholm complex. Instead, we assume that the mapping cones C f and Cg

are Fredholm complexes. Since f and g commute we then obtain two cochain
maps of Fredholm complexes:

δ(g)=
(

g 0
0 g

)
: C f → C f and δ( f )=

(
f 0
0 f

)
: Cg→ Cg.

Note that the two mapping cones Cδ( f ) and Cδ(g) are in fact isomorphic: the iso-
morphism is given by the cochain map 8 : Cδ(g)→ Cδ( f ) defined by

8k
:=


−1 0 0 0

0 0 1 0
0 1 0 0
0 0 0 1

 : X k+2
⊕ X k+1

⊕ X k+1
⊕ X k

→ X k+2
⊕ X k+1

⊕ X k+1
⊕ X k (2.15)

for all k ∈ Z.

Definition 2.16. Let X be a finite cochain complex and let f : X → X and
g : X → X be two commuting morphisms of X such that both C f and Cg are
Fredholm complexes. The joint torsion of f and g is the nonzero number inducing
the automorphism

JT(X ; f, g) := (−1)Ind(C f )+Ind(Cg) · |H(1δ( f ))|
−1
◦ |8| ◦ |H(1δ(g))| : F→ F,

where we have used the canonical isomorphisms

|C f | ⊗ |C f |
† ∼= |Cg| ⊗ |Cg|

† ∼= F

to identify the torsion isomorphisms of δ(g) and δ( f ) with maps

|H(1δ(g))| : F→ |Cδ(g)| and |H(1δ( f ))| : F→ |Cδ( f )|.

2C1. Analyticity of joint torsion. Let {X k
}k∈Z be a fixed and finite family of Hilbert

spaces; thus X k
= {0} for all indices outside a finite subset of Z.

Let us for future reference state the following result, which is a consequence of
[Kaad and Nest 2019, Theorem 9.1].

Let F denote the set of triples (X ; f, g), where

X : · · · X k dk

−→ X k+1 dk+1

−−→ X k+2
→ · · ·

is a cochain complex with each dk
: X k
→ X k+1 a bounded operator and with

f, g : X → X commuting cochain maps such that f k, gk
: X k
→ X k are bounded

operators and such that C f and Cg are Fredholm. We can realize the elements of F

as a set of bounded operators (d, f, g) on the Z-graded Hilbert space X =
⊕

k∈Z X k

and hence endow F with the induced topology coming from the operator norm.
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More precisely, F can be viewed as a subset of the C∗-algebra of bounded op-
erators on X ⊕ X ⊕ X , L (X ⊕ X ⊕ X), by mapping a triple (d, f, g) ∈ F to
the bounded operator given by ι(d, f, g) : (ξk, ηl, ζm) 7→ (dk(ξk), f l(ηl), gm(ηm))

for all ξk ∈ X k , ηl ∈ X l and ζm ∈ Xm . We emphasize that the individual Hilbert
spaces X k , k ∈ Z, are fixed so that only the coboundary maps and cochain maps
are allowed to vary. For an open subset U ⊆ C we then say that a map α :U →F

is analytic when the associated map ι ◦α :U →L (X ⊕ X ⊕ X) is analytic.

Theorem 2.17. The map

F 3 (X ; f, g)→ JT(X ; f, g) ∈ C∗

is analytic. Thus, for any analytic map α : U → F defined on an open subset
U ⊆ C we have that JT ◦α :U → C∗ is analytic.

The following variant of Theorem 2.17 also holds:

Theorem 2.18. The map

F 3 (X ; f, g)→ JT(X ; f, g) ∈ C∗

is continuous.

Remark 2.19. We could have defined the joint torsion in the context of Z/2Z-
graded Fredholm complexes instead of in the more restricted context of finite Z-
graded Fredholm complexes. The reason for staying with finite Z-graded Fredholm
complexes is that we do not have a proof of Theorem 2.17 for Z/2Z-graded Fred-
holm complexes.

3. Joint torsion of commuting operators

Throughout this section A = (A1, . . . , An) ∈ L (H )n denotes a commuting n-
tuple of bounded operators on a Hilbert space H . Thus, we have the relation
Ai A j − A j Ai = 0 for all i, j ∈ {1, . . . , n}. Given λ ∈Cn , A−λ denotes the n-tuple
(A1− λ1, . . . , An − λn). We start by recalling some basic constructions and facts.

3A. The Koszul complex. Let 3(Cn) denote the exterior algebra over C on n gen-
erators e1, . . . , en .

For each subset I = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < · · ·< ik , let

eI := ei1 ∧ · · · ∧ eik ∈3(C
n),

where ∧ :3(Cn)×3(Cn)→3(Cn) denotes the wedge product.
The exterior algebra is then a Z-graded algebra with respect to the decomposition

3(Cn)=
⊕
k∈Z

3k(Cn),
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where

3k(Cn) :=

{
{0} for k /∈ {0, . . . , n},

spanC{eI | I ⊆ {1, . . . , n}, |I | = k} for k ∈ {0, . . . , n}.

For each j ∈ {1, . . . , n}, the interior multiplication with the j-th generator is
denoted by

ε∗j :3(C
n)→3(Cn),

ε∗j : eI 7→

{
0 for j /∈ I,

(−1)m−1ei1 ∧ · · · ∧ êim ∧ eim+1 ∧ · · · ∧ eik for j = im .

This linear map has degree −1 with respect to the above Z-grading.

Definition 3.1. By the Koszul complex of the commuting n-tuple A we understand
the finite cochain complex of Hilbert spaces given by the following data:

(1) The Hilbert space K k(A,H ) :=H ⊗C3
−k(Cn) for each k ∈ Z.

(2) The differential of degree one,

dA :=

n∑
j=1

A j ⊗ ε
∗

j : K
k(A,H )→ K k+1(A,H ).

We use the notation K (A,H ) for the Koszul complex and the notation H k(A,H ),
k ∈ Z for the cohomology groups of K (A,H ).

Remark 3.2. One may equally well define the Koszul complex of a commuting
n-tuple T = (T1, T2, . . . , Tn) of endomorphisms of a fixed vector space V , and we
shall need this later on in the text; see Proposition 3.8.

Definition 3.3. We say that a commuting n-tuple A is Fredholm when the Koszul
complex K (A,H ) is Fredholm. In this case, the index of A is the Euler character-
istic (or Fredholm index) of the Fredholm complex K (A,H ),

Ind(A) :=
∑
k∈Z

(−1)k dimC(H k(A,H )).

When A is Fredholm we have that dk
A : K

k(A,H )→ K k+1(A,H ) has closed
image for all k ∈ Z. This is a consequence of [Curto 1981, Corollary 6.2].

The above Definition 3.1 is not quite the conventional definition of the Koszul
complex. The reason for using interior instead of exterior multiplication on the
exterior algebra stems from the fact that we want the mapping cone of a bounded
operator B :H →H to be isomorphic to the Koszul complex K (B,H ) (without
the dimension shift). Indeed, with the present convention, we have the following;
see [Kaad and Nest 2015, Lemma 2.3].



TATE TAME SYMBOL AND THE JOINT TORSION OF COMMUTING OPERATORS 195

Lemma 3.4. Let B :H →H be a bounded operator such that B A j = A j B for
all j ∈ {1, . . . , n}. Then the mapping cone of the cochain map

K ∗(B) := B⊗ 1 : K ∗(A,H )→ K ∗(A,H )

is cochain isomorphic to the Koszul complex K ∗((B, A),H ).

Recall that the Taylor spectrum of A is the set

Sp(A) := {λ ∈ Cn
| H∗(A− λ,H ) 6= {0}}.

The Taylor spectrum is a compact nonempty subset of Cn [Taylor 1970b, Theo-
rem 3.1]. The essential Taylor spectrum of A is the set

Spess(A) := {λ ∈ Cn
| A− λ is not Fredholm}.

The unital commutative ring of germs of holomorphic functions on neighbor-
hoods of Sp(A) is denoted by O(Sp(A)). The elements in O(Sp(A)) are thus
equivalence classes of holomorphic functions f : U → C, where U is an open
subset of Cn containing Sp(A).

The commuting tuple of bounded operators A = (A1, . . . , An) on the Hilbert
space H provides us with a holomorphic functional calculus. To be more precise,
the following holds; see [Taylor 1970a, Theorem 4.8].

Theorem 3.5. Let A ⊆ L (H ) denote the smallest unital C-algebra which con-
tains the bounded operators A1, . . . , An . There exists a unital homomorphism
O(Sp(A))→ A′′ (the double commutant of A), f 7→ f (A) such that zi 7→ Ai .
Furthermore, whenever f = ( f1, . . . , fm) : Sp(A) → Cm is holomorphic (i.e.,
fk ∈O(Sp(A)), k = 1, . . . ,m) the following identity holds:

Sp( f (A))= f (Sp(A)).

In particular, the above holomorphic functional calculus allows us to consider
the Hilbert space H as a left module over O(Sp(A)).

Notation 3.6. (1) Given f ∈O(Sp(A)), we denote the operator f (A) on H by f .
Given g ∈ O(Sp(A))m , K ∗(g,H ) denotes the Koszul complex of g(A) =
(g1(A), . . . , gm(A)) and H∗(g,H ) denotes the cohomology of K ∗(g,H ).

(2) For each λ∈ Sp(A), Hλ denotes the localization of the module H with respect
to the prime ideal pλ := { f ∈O(Sp(A)) | f (λ)= 0} ⊆O(Sp(A)). More explic-
itly, the subset Sλ := (O(Sp(A))\pλ)⊆O(Sp(A)) is a multiplicatively closed
subset and we put Hλ := S−1

λ H . For a vector ξ ∈H and an element s ∈ Sλ
we let ξ/s ∈ S−1

λ H denote the associated equivalence class in the localization.
In particular, since the unit 1 lies in Sλ we obtain the map H → S−1

λ H given
by ξ 7→ ξ/1. We emphasize that Hλ is not a Hilbert space but that Hλ remains
a left module over O(Sp(A)) and a vector space over C.
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(3) Let m ∈N and suppose that we are given g = (g1, . . . , gm) ∈O(Sp(A))m . We
set

Z(g) := {λ ∈ Sp(A) | g1(λ)= · · · = gm(λ)= 0}.

Example 3.7 [Curto 1981]. Let H 2(Dn) be the Hardy-space over the polydisc
Dn
= {z ∈Cn

| |z j |< 1 for all j = 1, . . . , n}, and A= (Tz1, . . . , Tzn ) be the n-tuple
of multiplication operators by the coordinate functions z1, . . . , zn on Cn . Then

(1) Sp(A)= Dn;

(2) for a function f holomorphic in a neighborhood of Dn , f (A) coincides with
the Toeplitz operator T f of multiplication by f ;

(3) Spess(A)= ∂Dn;

(4) for λ ∈ Dn , Ind(A− λ)= 1;

(5) for λ ∈ Dn , H k(A− λ, H 2(Dn))= {0} for all k ∈ Z \ {0}.

The next result is a consequence of [Kaad and Nest 2015, Proposition 4.5]. No-
tice that the cohomology groups involving the localizations Hλ are again Koszul
cohomology groups but this time in the sense of Remark 3.2 (considering each Hλ

as a vector space equipped with a commuting m-tuple of linear endomorphisms).

Proposition 3.8. Suppose g ∈O(Sp(A))m is such that g(A)= (g1(A), . . . , gm(A))
is Fredholm. Then Z(g) is finite and the morphism of modules H →

⊕
λ∈Z(g) Hλ,

ξ 7→ {ξ/1}λ∈Z(g), induces an isomorphism of cohomology groups,

H∗(g,H )∼= H∗
(
g,
⊕

λ∈Z(g) Hλ

)
∼=
⊕

λ∈Z(g) H∗(g,Hλ).

3B. Joint torsion transition numbers. Let m ∈ N and let 〈m〉 := {1, . . . ,m}. Fix
an element g = (g1, . . . , gm) ∈ O(Sp(A))m . For a subset J = { j1, . . . , jk} ⊆ 〈m〉
with 1≤ j1 < · · ·< jk ≤ m, we define

gJ := (g j1, . . . , g jk ) ∈O(Sp(A))k .

The following assumption remains in effect throughout this subsection:

Let i, j ∈ 〈m〉 and suppose that the commuting (m− 1)-tuples g〈m〉\{i}(A)
and g〈m〉\{ j}(A) are Fredholm.

It then follows by Lemma 3.4 that the mapping cones of the commuting cochain
maps

K ∗(gi ) and K ∗(g j ) : K ∗(g〈m〉\{i, j},H )→ K ∗(g〈m〉\{i, j},H ) (3.9)

are Fredholm complexes. In particular, the following definition makes sense:

Definition 3.10. The joint torsion transition number of g(A) (in position i, j) is
defined as the joint torsion of the cochain maps in (3.9). It is denoted by

τi, j (g(A)) := JT(K ∗(g〈m〉\{i, j},H ); gi , g j ) ∈ C∗.
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3B1. The torsion line bundle. As in the last subsection, let g = (g1, . . . , gm) be a
fixed element of O(Sp(A))m . Recall that 〈m〉 := {1, . . . ,m}.

For each i ∈ {1, . . . ,m}, define the open subset

Ui = {µ ∈ Cm
| (g−µ)〈m〉\{i}(A) is Fredholm}.

For each i, j ∈ {1, . . . ,m} and each µ ∈ Ui ∩U j , we then have the joint torsion
transition number

τi, j (g(A))(µ) := τi, j (g(A)−µ) ∈ C∗.

See Definition 3.10.
As a consequence of [Kaad 2012, Lemma 3.3.3] these functions satisfy the tran-

sition identities of a line bundle. Thus

τi, j (g(A)) · τ j,k(g(A))= τi,k(g(A)) and τi, j (g(A))= τ j,i (g(A))−1,

for all i, j, k ∈ {1, . . . ,m}.
Furthermore, by Theorem 2.17, each τi, j (g(A)) : Ui ∩ U j → C∗ is analytic.

Hence the following makes sense:

Definition 3.11. The torsion line bundle of g(A) is the analytic line bundle on
U :=

⋃m
i=1 Ui ⊆ Cm with transition functions

τi, j (g(A)) :Ui ∩U j → C∗, i, j = 1, . . . ,m.

3C. Local indices. Let� :=Sp(A)◦ denote the interior of the Taylor spectrum and
let O denote the sheaf of analytic functions on �. Fix an element g = (g1, . . . , gn)

of O(Sp(A))n . Notice that the number of holomorphic functions in g coincides
with the number of operators in the n-tuple A = (A1, . . . , An).

Throughout this subsection we suppose that the commuting n-tuple g(A)=
(g1(A), . . . , gn(A)) is Fredholm.

This means precisely that the intersection Z(g) ∩ Spess(A) is the trivial set. In
particular, there is a well-defined index Ind(A− λ) ∈ Z for each λ ∈ Z(g).

Now, applying Proposition 3.8, it also follows from the Fredholmness of g(A)
that the set of common zeroes Z(g)⊆ Sp(A) is finite. In particular, each element
λ ∈�∩ Z(g) is an isolated zero for the holomorphic map g|� :�→ Cn . This is
equivalent to the finite dimensionality of the quotient vector space Oλ/〈g〉λ, where
〈g〉λ ⊆ Oλ is the ideal generated by the analytic functions g1, . . . , gn :�→ C in
the stalk Oλ of the sheaf O at λ. See [Grauert and Remmert 1984, Chapter 5, §1.2].

Definition 3.12. The local degree or (multiplicity) of g at λ ∈� is the dimension
dimC(Oλ/〈g〉λ) ∈ N∪ {0}. The local degree is denoted by mλ(g).
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Definition 3.13. The local index of g(A) at λ ∈ Sp(A) is the Euler characteristic
of the Koszul complex K (g,Hλ). The local index is denoted by Indλ(g(A)) ∈ Z.
Thus

Indλ(g(A)) :=
∑
i∈Z

(−1)i dimC(H i (g,Hλ)).

Note that the finite dimensionality of the cohomology groups H i (g,Hλ), i ∈ Z

is nonobvious. This is a consequence of Proposition 3.8 which also implies the
identity

dimC H i (g(A),H )=
∑
λ∈Z(g)

dimC(H i (g,Hλ)).

In particular we have that

Ind(g(A))=
∑
λ∈Z(g)

Indλ(g(A)).

The following “local” index theorem therefore yields the “global” index theorem
of [Eschmeier and Putinar 1996, Theorem 10.3.13].

Theorem 3.14 (see [Kaad and Nest 2015, Theorem 8.5]). Suppose that g(A) is
Fredholm and that λ ∈ Z(g). The local index at λ is then given by

Indλ(g(A))= mλ(g) · Ind(A− λ).

Remark 3.15. By homotopy invariance of the Fredholm index, Ind(A− λ) = 0
when λ ∈ ∂(Sp(A))∩ (Cn

\ Spess(A)). The right-hand side of the equation in the
above theorem should therefore be understood as 0 in this case, even though the
local degree, mλ(g), is not defined.

4. Multiplicative Lefschetz numbers

Let X be a Fredholm complex over a fixed field F of characteristic 0, and let
f : X → X be a cochain map.

Suppose that the induced maps H+( f ) : H+(X )→ H+(X ) and
H−( f ) : H−(X )→ H−(X ) are invertible.

Definition 4.1. The multiplicative Lefschetz number of f :X →X is the invertible
element

M(X ; f ) :=
det(H+( f ))
det(H−( f ))

∈ F∗.

4A. Lefschetz numbers of Koszul complexes. Let A = (A1, . . . , An) be a com-
muting n-tuple of bounded operators on a Hilbert space H , and let h1, . . . ,hn−1, f,g
be in O(Sp(A)). We use the notation

(h, f ) := (h1, . . . , hn−1, f ) ∈O(Sp(A))n
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(and similarly for (h, g)). Throughout this subsection we suppose the following:

The sets Z(h, f )∩Spess(A) and Z(h,g)∩Spess(A) and Z(h, f,g) are empty.

It follows from this assumption that the Koszul complexes K ((h, f ),H ) and
K ((h, g),H ) are Fredholm. Furthermore, we have that the cohomology of the
Koszul complex K ((h, f, g),H ) is trivial.

Notice now that f and g induce cochain maps

f := K ∗( f ) : K ((h, g),H )→ K ((h, g),H ),

g := K ∗(g) : K ((h, f ),H )→ K ((h, f ),H )
(4.2)

of Koszul complexes by means of the holomorphic functional calculus. As a con-
sequence of the exactness of K ((h, f, g),H ) we obtain that the induced maps

H∗( f ) : H∗((h, g),H )→ H∗((h, g),H ),

H∗(g) : H∗((h, f ),H )→ H∗((h, f ),H )

are invertible.
The quantities involved in the next proposition are therefore well-defined.

Theorem 4.3. The following identities hold:

JT(K (h,H ); f, g)=
M(K ((h, g),H ); f )
M(K ((h, f ),H ); g)

=

∏
λ∈Z(h,g) f (λ)mλ(h,g)·Ind(A−λ)∏
µ∈Z(h, f ) g(µ)mµ(h, f )·Ind(A−µ) .

Proof. The first identity is an immediate consequence of the definition of the joint
torsion and of Lemma 2.10; see also [Kaad 2012, Theorem 3.4.1].

To prove the second identity, it suffices to show that

M(K ((h, g),H ); f )=
∏

λ∈Z(h)∩Z(g)

f (λ)mλ(h,g)·Ind(A−λ).

Let i ∈ {−n, . . . , 0}. Since Z(h)∩ Z(g)∩Spess(A)=∅, the Koszul cohomology
group H i ((h, g),H ) is finite-dimensional over C. Let

H i (A) := (H i (A1), . . . , H i (An))

denote the commuting n-tuple of linear operators on H i ((h, g),H ) induced by
A= (A1, . . . , An). For each λ∈Cn , let H i ((h, g),H )(λ)⊆ H i ((h, g),H ) denote
the generalized eigenspace of the commuting n-tuple H i (A). Thus,

H i ((h, g),H )(λ)

:= {ξ ∈ H i ((h, g),H ) | ∃m ∈ N : ∀ j ∈ {1, . . . , n}, H i (A j − λ j )
m(ξ)= 0

}
Recall now that the finite dimensionality of H i ((h, g),H ) implies that⊕

λ∈Z(h,g)

H i ((h, g),H )(λ)∼= H i ((h, g),H )
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and furthermore that each component H i ((h, g),H )(λ)⊆ H i ((h, g),H ) admits
a basis in which each of the restrictions

H i (A j )(λ) : H i ((h, g),H )(λ)→ H i ((h, g),H )(λ)

is upper triangular with only λ j on the diagonal.
For each λ ∈ Z(h)∩ Z(g), let

H i ( f (A))(λ) : H i ((h, g),H )(λ)→ H i ((h, g),H )(λ) (4.4)

be the restriction of the isomorphism H i ( f (A)) : H i ((h, g),H )→ H i ((h, g),H ).
It then follows immediately from the above that

det(H i ( f (A)))=
∏

λ∈Z(h)∩Z(g)

det(H i ( f (A))(λ)). (4.5)

The next lemma gives a computation of the determinant det(H i ( f (A))(λ)) for
each λ ∈ Z(h)∩ Z(g).

Lemma 4.6. Let λ ∈ Z(h)∩ Z(g). The isomorphism (4.4) can be represented by an
upper triangular matrix having f (λ) ∈ C∗ as its only diagonal entry. In particular,

det(H i ( f (A))(λ))= f (λ)dimC H i ((h,g),H )(λ).

Proof. Suppose first that f ∈ O(Sp(A)) is the restriction of a polynomial p in
the variables z1, . . . , zn : Cn

→ C. In this case (4.4) is given by the polyno-
mial p(H i (A)(λ)), where each variable z j has been replaced by the linear op-
erator H i (A j )(λ) : H i ((h, g),H )(λ)→ H i ((h, g),H )(λ). Choose a basis for
H i ((h, g),H )(λ) in which each of the operators H i (A j )(λ) is represented by an
upper triangular matrix having λ j as the only diagonal entry. Represented in this
basis p(H i (A)(λ)) is an upper triangular matrix with p(λ) as its only diagonal
entry. This proves the claim of the lemma in this case.

To treat the general case, note that the action of O(Sp(A)) on H i ((h, g),H )(λ)

given by k 7→ H i (k(A))(λ) factorizes through the local C-algebra Oλ of convergent
power series near λ by [Kaad and Nest 2015, Proposition 4.4]. Since the endomor-
phisms H i (A j −λ j )(λ) : H i ((h, g),H )(λ)→ H i ((h, g),H )(λ) are nilpotent for
j ∈ {1, . . . , n}, this yields the existence of a polynomial p ∈ C[z1, . . . , zn] with
H i ( f (A))(λ)= H i (p(A))(λ) and with p(λ)= f (λ). To see this, remark that the
nilpotency implies that the action of Oλ on H i (A j − λ j )(λ) factorizes through the
quotient ring Oλ/(mλ)mOλ for some m ∈ N, where mλ ⊆ Oλ denotes the unique
maximal ideal in the local C-algebra Oλ. But each element in Oλ/(mλ)mOλ can
be represented by a polynomial.

Since it now has been established that H i ( f (A))(λ)= H i (p(A))(λ) for some
polynomial with p(λ)= f (λ), the first part of the proof yields the general result
of the lemma. �
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Let λ ∈ Z(h)∩ Z(g) be fixed. To continue the proof of Theorem 4.3, remark
that it follows by [Kaad and Nest 2015, Proposition 4.5], that the vector spaces
H i ((h, g),H )(λ) and H i ((h, g),Hλ) are isomorphic. Recall in this respect that
Hλ denotes the localization of the module H over O(Sp(A)) at the prime ideal
pλ := {k ∈O(Sp(A)) | k(λ)= 0}. In particular, it follows from Theorem 3.14 that

dimC H+((h, g),H )(λ)− dimC H−((h, g),H )(λ)

= Indλ((h, g)(A))= mλ(h, g) · Ind(A− λ). (4.7)

The desired multiplicative Lefschetz number M(K ((h, g),H ); f ) ∈ C∗ can
now be computed as follows:

M(K ((h, g),H ); f )

= det(H+( f )) · det(H−( f ))−1

=

∏
λ∈Z(h)∩Z(g)

(
det(H+( f )(λ)) · det(H−( f )(λ))−1)

=

∏
λ∈Z(h)∩Z(g)

(
f (λ)dimC H+((h,g),H )(λ)

· f (λ)− dimC H−((h,g),H )(λ)
)

=

∏
λ∈Z(h)∩Z(g)

f (λ)Indλ((h,g)(A)) =
∏

λ∈Z(h)∩Z(g)

f (λ)mλ(h,g)·Ind(A−λ),

where the second identity follows from (4.5), the third identity from Lemma 4.6,
and the final two identities from (4.7). This proves the claim of Theorem 4.3. �

5. Localization of the joint torsion

Let n ∈ N. For each open set U ⊆ Cn we let O(U ) denote the unital C-algebra of
holomorphic functions on U with values in C.

For each compact set K ⊆U , we let C (K ) denote the unital C-algebra of con-
tinuous functions f : K →C such that the restriction to the interior f |K ◦ : K ◦→C

is holomorphic. The unital C-algebra C (K ) becomes a Banach algebra when
equipped with the supremum norm ‖ · ‖∞ : f 7→ supz∈K | f (z)|. We let

rK :O(U )→ C (K )

denote the restriction homomorphism.

Definition 5.1. Let m ∈ N and let V ⊆ Cm . We say that a map α : V → O(U ) is
holomorphic when the composition

rK ◦α : V → C (K )

is holomorphic for each compact set K ⊆U .
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Let us fix a commuting n-tuple A = (A1, . . . , An) of bounded operators on the
Hilbert space H .

Proposition 5.2. Let U ⊇Sp(A) be an open set and α : V→O(U ) be holomorphic.
Then the map V →L (H ), w 7→ α(w)(A) is holomorphic in operator norm.

Proof. Choose a compact set K ⊆ U such that Sp(A) ⊆ K ◦. By [Taylor 1970a,
Theorem 4.3] the map C (K )→L (H ), f 7→ f (A) is a bounded operator. Since
the composition rK ◦α : V → C (K ) is holomorphic by definition, this proves the
proposition. �

Let us write
� := Sp(A)◦

for the interior of the spectrum of A.
In the next theorem, we are using holomorphic maps V →O(U )n+1 with cer-

tain properties, to approximate the tuple (h, f, g) and circumvent the existence of
common zeroes for the n-tuples (h, f ) and (h, g). In the very beginning of the
proof of Theorem 5.3, we argue that this kind of approximation does in fact exist.

Theorem 5.3. Let U ⊇Sp(A) be an open set and let h :U→Cn−1 and f, g :U→C

be holomorphic maps. Suppose that Z(h, f )∩Spess(A) and Z(h, g)∩Spess(A) are
empty. Then the joint torsion of (K (h,H ); f, g) is given by

JT(K (h,H ); f, g)= lim
w→0

( ∏
λ∈Z(hw,gw)∩� fw(λ)mλ(hw,gw)·Ind(A−λ)∏
µ∈Z(hw, fw)∩� gw(µ)mµ(hw, fw)·Ind(A−µ)

)
(5.4)

for any holomorphic map V →O(U )n+1, w 7→ (hw, fw, gw) satisfying

(1) 0 ∈ V and (h0, f0, g0)= (h, f, g);

(2) Z(hw, fw, gw)∩Sp(A)=∅ for all w ∈ V \ {0};

(3) Z(hw, fw)∩Spess(A) and Z(hw, gw)∩Spess(A) are empty for all w ∈ V .

Proof. We first prove the existence of a holomorphic map V →O(U )n+1 with the
properties (1), (2), and (3).

Define the strictly positive numbers

δ0 := inf
{
| f (z)|

∣∣ z ∈ Z(h)∩Spess(A)
}
,

δ1 := inf
{
| f (z)|

∣∣ z ∈ Z(h, f )∩Sp(A) and f (z) 6= 0
}
.

Consider the open ball

Bδ(0) := {w ∈ C | |w|< δ}

of radius δ := inf{δ0, δ1} and center 0 ∈ C. It can then be verified that the holomor-
phic map Bδ(0)→O(U )n+1, w 7→(h, f−w, g) has the properties (1), (2), and (3).
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Let now V →O(U )n+1 be any holomorphic map which satisfies (1), (2), and (3).
By Theorem 2.17 and Proposition 5.2 we have that

JT(K (h,H ); f, g)= lim
w→0

JT(K (hw,H ); fw, gw).

However, by Theorem 4.3 we may compute the joint torsion on the right-hand side,

JT(K (hw,H ); fw, gw)=

∏
λ∈Z(hw,gw)∩� fw(λ)mλ(hw,gw)·Ind(A−λ)∏
µ∈Z(hw, fw)∩� gw(µ)mµ(hw, fw)·Ind(A−µ)

for all w ∈ V \ {0}. This proves the theorem. �

Remark 5.5. It follows from the proof of Theorem 5.3 that JT(K (h,H ); f, g)
can be computed more explicitly as the limit

JT(K (h,H ); f, g)= lim
w→0

( ∏
λ∈Z(h,g)∩�( f (λ)−w)mλ(h,g)·Ind(A−λ)∏

µ∈�∩Z(h)∩ f −1({w}) g(µ)mµ(h, f−w)·Ind(A−µ)

)
,

where w ∈ C approaches zero in the Euclidean metric.

For each λ ∈ Cn and each ε > 0, we write

Dn
ε (λ) :=

{
z ∈ Cn

∣∣ |z j − λ j |< ε for all j ∈ {1, . . . , n}
}

for the open polydisc with radius ε > 0 and center λ.

Theorem 5.6. Let U ⊆ Cn be open and let h : U → Cn−1 and f, g : U → C be
holomorphic. Suppose that λ ∈U is an isolated point in Z(h, f )∪ Z(h, g). Then
the limit

cλ(h; f, g)= lim
w→0

(∏
µ∈Z(hw,gw)∩Dn

ε/2(λ)
fw(µ)mµ(hw,gw)∏

ν∈Z(hw, fw)∩Dn
ε/2(λ)

gw(ν)mν(hw, fw)

)
exists for any ε>0 and any holomorphic map V→O(Dn

ε (λ))
n+1,w 7→(hw, fw, gw)

such that

(1) Dn
ε (λ)⊆U and Dn

ε (λ)∩ (Z(h, f )∪ Z(h, g))= {λ};

(2) 0 ∈ V and (h0, f0, g0)= (h, f, g);

(3) Z(hw, fw, gw)∩Dn
ε/2(λ)=∅ for w ∈ V \ {0};

(4) Z(hw, fw)∩ ∂Dn
ε/2(λ) and Z(hw, gw)∩ ∂Dn

ε/2(λ) are empty for all w ∈ V .

Furthermore, cλ(h; f, g) ∈ C∗ only depends on the image of (h, f, g) ∈ O(U )n+1

in the stalk On+1
λ at λ ∈U.

Proof. Consider the commuting n-tuple A := (ε/2Tz1, . . . , ε/2Tzn )+ λ of Toeplitz
operators acting on the Hardy space over the polydisc H 2(Dn). It then follows
that Sp(A) = Dn

ε/2(λ) and that Spess(A) = ∂Dn
ε/2(λ). Furthermore, we have that

Ind(A−µ)= 1 for all µ ∈ Dn
ε/2(λ); see Example 3.7.
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An application of Theorem 5.3 then yields that the limit cλ(h; f, g) exists and
coincides with the joint torsion JT(K (h(A), H 2(Dn)); f (A), g(A)).

To see that cλ(h; f, g) only depends on the value of (h, f, g) ∈ O(U ) in the
stalk Oλ, it suffices to check that it is independent of ε > 0 and of the holomorphic
map V →O(Dn

ε (λ))
n+1.

It follows immediately by Theorem 5.3 that cλ(h; f, g) is independent of the
choice of holomorphic map V →O(Dn

ε (λ))
n+1.

Let us thus choose an alternative ε0 > 0 with ε0 < ε. We may then find a
holomorphic map V0→O(Dn

ε (λ)), w 7→ (hw, fw, gw) such that

(Z(hw, fw)∪ Z(hw, gw))∩Dn
ε0/2(λ)= (Z(hw, fw)∪ Z(hw, gw))∩Dn

ε/2(λ)

and such that (2) is satisfied as well. It is then clear that

cελ(h; f, g)= lim
w→0

(∏
µ∈Z(hw,gw)∩Dn

ε/2(λ)
fw(µ)mµ(hw,gw)∏

ν∈Z(hw, fw)∩Dn
ε/2(λ)

gw(µ)mν(hw, fw)

)

= lim
w→0

(∏
µ∈Z(hw,gw)∩Dn

ε0/2
(λ) fw(µ)mµ(hw,gw)∏

ν∈Z(hw, fw)∩Dn
ε0/2

(λ) gw(µ)mν(hw, fw)

)
= cε0

λ (h; f, g).

This proves the theorem. �

Remark 5.7. The value cλ(h; f, g) ∈ C∗ may be computed more explicitly by the
formula

lim
w→0

(
( f (λ)−w)mλ(h,g)∏

ν∈Z(h)∩ f −1({w})∩Dn
ε/2(λ)

g(ν)mν(h, f−w)

)
,

where w ∈ C approaches zero in Euclidean metric on C and where ε > 0 is chosen
such that

Dn
ε (λ)⊆U and Dn

ε (λ)∩ (Z(h, g)∪ Z(h, f ))= {λ}.

This is a consequence of the proof of Theorem 5.6 and Remark 5.5.

Remark 5.8. The quantity cλ(h; f, g) ∈ C∗ can be expressed as a limit of a se-
quence instead of as a limit point of a holomorphic function; see Theorem 1.9. To
see this it suffices to apply Theorem 2.18 instead of Theorem 2.17 in the proof of
Theorem 5.3 and Theorem 5.6.

The next theorem is the main result of this paper. It provides a local formula for
the joint torsion.

Theorem 5.9. Let A = (A1, . . . , An) be a commuting n-tuple on the Hilbert space
H and let h : Sp(A)→ Cn−1 and f, g : Sp(A)→ C be holomorphic. Suppose that

Z(h, f )∩Spess(A)=∅= Z(h, g)∩Spess(A).
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Then
JT(K (h,H ); f, g)=

∏
λ∈(Z(h, f )∪Z(h,g))∩�

cλ(h; f, g)Ind(A−λ),

where � := Sp(A)◦.

Proof. Let h̃ : U → Cn−1 and f̃ , g̃ : U → C be holomorphic representatives for
h ∈O(Sp(A))n−1 and f, g ∈O(Sp(A)) on an open set U ⊇ Sp(A).

Choose an ε > 0 such that

Dn
ε (λ)⊆U, Dn

ε (λ)∩ (Z(h, f )∪ Z(h, g))= {λ}, Dn
ε (λ)∩Spess(A)=∅

for all λ ∈ Z(h, f )∪ Z(h, g). We may furthermore arrange that

Dn
ε (λ)⊆�

for all λ ∈ (Z(h, f )∪ Z(h, g))∩�. Finally, we may assume that

Dn
ε (λ)∩Dn

ε (µ)=∅

whenever λ 6= µ and λ,µ ∈ Z(h, f )∪ Z(h, g).
Choose a δ > 0 such that

δ ≤ inf
{
| f (z)|

∣∣ z ∈ Z(h, g) and f (z) 6= 0
}
,

δ ≤ inf
{
| f (z)|

∣∣ z ∈
⋂

λ∈Z(h,g)∪Z(h, f )

(Cn
\Dn

ε/2(λ))∩ Z(h)
}
.

The map Bδ(0)→ O(U )n+1, w 7→ (h̃, f̃ −w, g̃) is then holomorphic and it
satisfies conditions (1), (2), and (3) of Theorem 5.3. Furthermore, we have that

(Z(h, f −w)∪ Z(h, g))∩
( ⋃
λ∈Z(h,g)∪Z(h, f )

Dn
ε/2(λ)

)
= Z(h, f −w)∪ Z(h, g)

for all w ∈ Bδ(0).
An application of Theorem 5.3 now yields that

JT(K (h,H ); f, g)

= lim
w→0

( ∏
λ∈Z(h,g)∪Z(h, f )

fw(λ)mλ(h,g)·Ind(A−λ)∏
ν∈Dn

ε/2(λ)∩Z(h, fw)∩� g(ν)mν(h, fw)·Ind(A−ν)

)
,

where fw := f −w for all w ∈ Bδ(0).
Since the Fredholm index is a homotopy invariant and Dn

ε/2(λ)∩Spess(A)=∅
for all λ ∈ Z(h, g)∪ Z(h, f ), we obtain that

JT(K (h,H ); f, g)

= lim
w→0

( ∏
λ∈(Z(h,g)∪Z(h, f ))∩�

fw(λ)mλ(h,g)·Ind(A−λ)∏
ν∈Dn

ε/2(λ)∩Z(h, fw) g(ν)mν(h, fw)·Ind(A−λ)

)
.
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However, from Theorem 5.6 we know that the limit

lim
w→0

fw(λ)mλ(h,g)∏
ν∈Dn

ε/2(λ)∩Z(h, fw) g(ν)mν(h, fw)

exists and agrees with cλ(h; f, g) for each λ∈ (Z(h, g)∪Z(h, f ))∩�. This proves
the present theorem. �

6. Application: tame symbols of complex analytic curves

6A. Preliminaries on complex analytic spaces. Consider an open set U ⊆ Cn

together with holomorphic functions h1, . . . , hm :U → C. Define the zero-set

Z(h) := {z ∈U | h1(z)= · · · = hm(z)= 0}.

Let OU denote the sheaf of holomorphic functions on U . For each z ∈ Z(h), let

〈h〉z ⊆Oz

denote the ideal generated by h1, . . . , hm : U → C in the stalk Oz of OU at the
point z ∈ Z(h).

The complex model space associated to h1, . . . , hm :U → C is the pair(
Z(h),O/〈h〉|Z(h)

)
consisting of the Hausdorff space Z(h) and the restriction of the quotient sheaf
O/〈h〉 to Z(h). Thus, for an open set V ⊆Cn , a local section s ∈ (O/〈h〉)(V ∩Z(h))
is a collection

{sz}z∈V∩Z(h), sz ∈Oz/〈h〉z

such that for each z0 ∈ V ∩ Z(h) there exists an open set W ⊆ Cn with z0 ∈W and
a holomorphic map t :W → C with

sz = [tz] for all z ∈W ∩ Z(h),

where [tz] denotes image of t ∈O(W ) under the map

O(W )→Oz→Oz/〈h〉z.

We recall the following definition from [Grauert and Remmert 1984].

Definition 6.1. A complex analytic space is a pair (X,OX ), where X is a Hausdorff
space and OX is a sheaf of local C-algebras on X , such that for each x ∈ X there
exist an open neighborhood V ⊆ X and a complex model space

(
Z(h),O/〈h〉|Z(h)

)
together with an isomorphism

(φ, φ) :
(
Z(h),O/〈h〉|Z(h)

)
→ (V,OX |V )

of sheaves of local C-algebras. Thus, φ : Z(h)→ V is an isomorphism of topo-
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logical spaces and φ(W ) : OX (W ) → (O/〈h〉)(φ−1(W )) is an isomorphism of
C-algebras for each open set W ⊆ V .

We refer to
(
Z(h),O/〈h〉|Z(h)

)
as a local model for (X,OX ) near the point x ∈ X .

6B. The Tate tame symbol. Let (X,OX ) be a complex analytic space and let us
fix a point x ∈ X .

Suppose that dimx(X)= 1.

Thus, there exists an open neighborhood V ⊆ X of x and a section f ∈OX (V )
such that f (x) = 0 and such that the quotient OX,x/〈 fx 〉 is a finite-dimensional
vector space over C, where 〈 fx 〉 is the ideal generated by f in the stalk OX,x .

The following assumption also remains valid throughout this subsection.

Assumption 6.2. Suppose that X can be represented as a complete intersection
in a neighborhood of x . Thus there exists a local model

(
Z(h),O/〈h〉|Z(h)

)
for

(X,OX ) near x ∈ X , where

h = (h1, . . . , hn−1) :U → Cn−1

is holomorphic and U ⊆ Cn is open.

We are now ready to define the Tate tame symbol at the point x ∈ X .

Definition 6.3. Take an open neighborhood V⊆X of x∈X and let f,g∈OX (V)with

OX,x/〈 fx 〉 and OX,x/〈gx 〉

of finite dimension over C. Let
(
Z(h),O/〈h〉|Z(h)

)
be a local model for (X,OX )

near x ∈ X as in Assumption 6.2 with associated isomorphism

(φ, φ) :
(
Z(h),O/〈h〉|Z(h)

)
→ (V,OX |V ).

The Tate tame symbol of f, g ∈OX (V ) at x ∈ X is defined by

cx(X; f, g) := cφ−1(x)(h|�; f̃ , g̃),

where � ⊆ U is an open neighborhood of φ−1(x) ∈ Z(h) and f̃ , g̃ : �→ C are
holomorphic functions such that the identities

[ f̃µ] = φ(V )( f )µ and [g̃µ] = φ(V )(g)µ

hold in Oµ/〈h〉µ for all µ ∈�∩ Z(h).

We need to show that the Tate tame symbol is independent of the various choices.
This is part of the next proposition, which also gives a more concrete expression
for the tame symbol. Let us introduce the notation

mx( f ) := dimC OX,x/〈 fx 〉

for any local section f ∈OX (V ). We remark that mx( f )= 0 whenever f (x) 6= 0.
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Proposition 6.4. Take an open neighborhood V ⊆ X of x ∈ X and let f, g ∈OX (V )
with

OX,x/〈 fx 〉 and OX,x/〈gx 〉

finite-dimensional. Then

cx(X; f, g)= lim
w→0

( f (x)−w)mx (g)∏
y∈2∩ f −1({w}) g(y)m y( f−w) ,

where w ∈ C approaches 0 in the Euclidean metric on C, and where 2⊆ V is any
open neighborhood of x such that

(1) 2⊆ V and 2 is compact;

(2) 2∩ (Z( f )∪ Z(g))⊆ {x}.

In particular, we have that cx(X; f, g) is well-defined.

Proof. Let us choose a local model
(
Z(h),O/〈h〉|Z(h)

)
for (X,OX ) near the point

x ∈ X , and let
(φ, φ) :

(
Z(h),O/〈h〉|Z(h)

)
→ (V,OX |V )

denote the associated isomorphism.
Put λ := φ−1(x) and choose lifts

f̃ , g̃ :�→ C

of the sections φ(V )( f ), φ(V )(g) ∈ (O/〈h〉)(Z(h)) near λ ∈�. We remark that

f̃ (µ)= f (φ(µ)) and g̃(µ)= g(φ(µ))

for all µ ∈�∩ Z(h).
Furthermore, we notice that (φ, φ) induces isomorphisms

OX,φ(µ)/〈 fφ(µ)−w〉 ∼=Oµ/〈h, f̃ −w〉µ,

OX,φ(µ)/〈gφ(µ)〉 ∼=Oµ/〈h, g̃〉µ

for all µ ∈�∩ Z(h) and all w ∈ C. In particular, we have the identities

mµ(h, f̃ −w)= mφ(µ)( f −w) and mλ(h, g̃)= mx(g)

for all µ ∈�∩ Z(h) and all w ∈ C.
Let us now choose an ε > 0 such that

(Z(h, f̃ )∪ Z(h, g̃))∩Dn
ε (λ)⊆ {λ} and Dε(λ)⊆�.
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Thus, by Remark 5.7 and the above observations, we obtain that

cλ(h|�; f̃ , g̃)= lim
w→0

( f̃ (λ)−w)mλ(h,g̃)∏
µ∈Z(h)∩ f̃ −1({w})∩Dn

ε/2(λ)
g̃(µ)mµ(h, f̃−w)

= lim
w→0

( f (x)−w)mx (g)∏
µ∈Z(h)∩ f̃ −1({w})∩Dn

ε/2(λ)
g(φ(µ))mφ(µ)( f−w)

= lim
w→0

( f (x)−w)mx (g)∏
y∈φ(Z(h)∩Dn

ε/2(λ))∩ f −1({w}) g(y)m y( f−w) . (6.5)

This proves the statement of the proposition for the open neighborhood

2 := φ(Z(h)∩Dn
ε/2(λ))⊆ V

of x ∈ X .
To prove the general statement, we now let 2⊆ V be an arbitrary open neigh-

borhood of x ∈ X such that the conditions (1) and (2) are satisfied. Since the limit
in (6.5) is independent of the choice of ε > 0, we may assume that

φ(Z(h)∩Dn
ε/2(λ))⊆2.

It then suffices to find a δ > 0 such that

2∩ f −1({w})⊆ φ(Z(h)∩Dn
ε/2(λ))∩ f −1({w})

for all w ∈ Bδ(0). But this property is satisfied with

δ := inf
{
| f (y)|

∣∣ y ∈2 \φ(Z(h)∩Dn
ε/2(λ))

}
. �

Proposition 6.6. Let V ⊆ X be an open neighborhood of x ∈ X and let f j ∈OX (V )
for j = 1, 2, 3 and t ∈OX (V ) be local sections over V such that

OX,x/〈( f j )x 〉, OX,x/〈tx 〉, and OX,x/〈1− tx 〉

are finite-dimensional vector spaces over C. Then the Tate tame symbol satisfies
the properties

(1) cx(X; f1, f2)= cx(X; f2, f1)
−1;

(2) cx(X; f1, f2 f3)= cx(X; f1, f2) · cx(X; f1, f3);

(3) cx(X; t, 1− t)= 1.

Proof. This is an easy consequence of the definition of the Tate tame symbol; see
Definition 6.3 and Theorem 5.6. �

For completeness, let us compute the resulting formula in the case when x ∈ X
above is a regular point.
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Proposition 6.7. Let X be a Riemann surface and let f, g be holomorphic func-
tions defined in a neighborhood of x ∈ X. Then

cx(X; f, g)= (−1)mx ( f )mx (g) lim
w→x

f (w)mx (g)

g(w)mx ( f ) . (6.8)

Proof. Since the computation is local, we can just as well assume that x = 0 ∈ C

and f and g are two functions holomorphic in a neighborhood of 0. Hence they
can be written in the form

f (z)= zm0( f )φ(z) and g(z)= zm0(g)ψ(z),

where both φ(0) 6= 0 and ψ(0) 6= 0. Then, since the formula (6.8) has the properties
listed in the proposition above, the computation reduces to checking that

c0(C; z, z)=−1, c0(C;φ, z)= φ(0), and c0(C;φ,ψ)= 1.

But this is obvious by Remark 5.7. �
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