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We investigate determinants of Koszul complexes of holomorphic functions of
a commuting tuple of bounded operators acting on a Hilbert space. Our main
result shows that the analytic joint torsion, which compares two such determi-
nants, can be computed by a local formula which involves a tame symbol of the
involved holomorphic functions. As an application we are able to extend the
classical tame symbol of meromorphic functions on a Riemann surface to the
more involved setting of transversal functions on a complex analytic curve. This
follows by spelling out our main result in the case of Toeplitz operators acting
on the Hardy space over the polydisc.
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1. Introduction

The main theme of this paper, which is a continuation of the work begun in [Kaad
and Nest 2015; 2019], is the study of the algebraic structure of a Hilbert space .7#
as a module over an algebra of holomorphic functions of a finite family of bounded
commuting operators on .7¢.

The simplest example is the case of the Toeplitz operator 7, acting on the Hardy
space over the open unit disc H>(D). Here z denotes the complex coordinate
in C. The holomorphic functional calculus of bounded operators furnishes the
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Hilbert space H?(D) with the structure of a module over the ring O(D) of germs
of functions holomorphic in a neighborhood of the closed unit disc, and analysis
of Toeplitz operators is closely related to the algebraic properties of this module
structure.

The prototype of results of the type we are interested in is the following:

Theorem 1.1 (Fritz Noether). Given a holomorphic function f on a neighborhood
of D and invertible on its boundary 3D, the Toeplitz operator Ty is Fredholm and
its index is given by (minus) the winding number of f,

Ind(Tf):—%/Tfldf:—Z res;, (£~ df). (1.2)

[r<1

A way of interpreting this result is to notice that the left-hand side of this equality
is an analytic object, the Euler characteristic of the cochain complex

0— HXD) - HXD) - 0,

while the right-hand side has an algebraic K-theory interpretation. Indeed, let 2
denote the field of fractions of O(D). Then an element fe O(D) whose restriction
to the unit circle is invertible determines an element

[f1e K (x)

and, in this situation, the right-hand side of (1.2) becomes the residue of —d log f.
This residue should be thought of as the result of the composition of the regulator
map
K1) 3 [f1> [log f1 € lim Hp(D\ S, Z(1))
i)

from algebraic K-theory of % to the Deligne cohomology limg p, H5(D \ S)
(where the direct limit is taken over finite subsets S C D) with the residue map
(in fact minus the exterior derivative followed by the residue; see, for example,
[Brylinski 2008]).

While this particular case does not really justify the reference to algebraic K-
theory, the corresponding computations in the case of K;lg become much more
demanding. In their work on algebraic K-theory of the quotient of the algebra
of bounded operators by the ideal of trace class operators, Carey and Pincus in-
troduced an analytic object, the joint torsion JT(A, B) of a pair of commuting
Fredholm operators A and B. In the particular case of a pair of Toeplitz operators
Ty and T, on the Hardy space H 2(D) and with symbols f, g € O(D), they proved
the following theorem (in fact, Carey and Pincus work more generally with symbols
in H*(D)).
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Theorem 1.3 [Carey and Pincus 1999, Proposition 1]. Suppose that both Ty and
T, are Fredholm. Then

o
T 1yma@ma(f) o 8™ .
JT(Tf,Tg)—J IDl( 1 lim @ € (1.4)
S

where m; (f) is the multiplicity of a zero of f at A.

The left-hand side of this equality is a certain analytic invariant of the pair of
operators (T'r, T,), while the right-hand side is again best understood via evaluat-
ing the regulator map, this time on the Steinberg symbol [ f, g] € K, al §(¢). The
regulator map provides a class

K3(#) 5 [f, g1+ [log f1Ullog g € lim H3(D\ S, Z(2)),

i)
where the element [log f]U[log g] in the direct limit of Deligne cohomology groups
limg H%(ID \ S, Z(2)) is determined by the cup product in Deligne cohomol-
ogy. The right-hand side of (1.4) then agrees with the residue map applied to
the cohomology class [log f] U [log g]; see [Bloch 1981; Esnault and Viehweg
1988]. The right-hand side of (1.4) is known as the Tate tame symbol of the class
[f, gle K;lg(%/ ); see [Tate 1968; Deligne 1991]. A related construction in the
case of a compact Riemann surface was considered in [Gustafsson and Tkachev
2009].

The subject of this paper is the generalization of these results to the case of a
commuting n-tuple A = (A, ..., A,) of bounded operators on a Hilbert space ..
The basic idea is to replace the single Toeplitz operator 7, by the Koszul com-
plex K (A, ) of our arbitrary n-tuple; see Section 3A. The generalization of the
closed unit disc in the Toeplitz case becomes the Taylor spectrum Sp(A) C C",
the set of A € C" for which K(A — X, 7¢), the Koszul complex of A — A =
(A; — A1, ..., A, — Ay), is not contractible. The notions of essential (resp. Fred-
holm) spectrum correspond to the values of A for which K (A — A, ) has infinite-
dimensional (resp. nontrivial finite-dimensional) cohomology. In the case that A
belongs to the Fredholm spectrum of A, the index Ind(A — A) stands for the Euler
characteristic of the cohomology of the Koszul complex K (A — A, J€).

By a theorem of Taylor [1970a], the standard holomorphic functional calculus
extends to a multivariable holomorphic functional calculus of such an n-tuple A,
ie.,

2 is a module over the ring O(Sp(A)) of germs of functions holomor-
phic in a neighborhood of Sp(A).

Our goal is to study the algebraic structure of this module.
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The analogue of the Fritz Noether index theorem was dealt with in [Kaad and
Nest 2015; Eschmeier and Putinar 1996]. Since it is needed to formulate the results
of this paper, we recall the statement.

Theorem 1.5. Let fi, ..., f, € O(Sp(A)). The n-tuple

fA) =(i(Ar, ... A, o (A, Ap))

is Fredholm if and only if the set Z(f) C Sp(A) of common zeroes of the f; has no
intersection with the essential spectrum of A. If f(A) is Fredholm, the following
hold:

(1) The set Z(f) of common zeroes is finite.
(2) We have

Ind(f(A)) = Z Ind;.(f), Ind; (f) =my(f) - Ind(A —2). (1.6)

AEZ(f)

Here m) (f) are the multiplicities of the points A € Z(f) given by the dimen-
sions

m; (f) = dimg(Or/(f)2),

where (), is the ideal generated by f in the stalk O, of convergent power
series near .

The joint torsion, the generalization of the torsion invariant of Carey and Pincus,
is defined in the following context. First a bit of notation. A complex C of Hilbert
spaces is Fredholm if it has finite-dimensional cohomology and, if C is Fredholm,
its determinant line is the one-dimensional vector space

Cl=APH*(C)® (APH™(O)'
(see Section 2B for more details).

Definition 1.7. Let C be a complex of Hilbert spaces and f, g : C — C be two
commuting morphisms of complexes. Suppose that the mapping cones Cy and C,
of f and g are both Fredholm. Then the long exact cohomology sequences of the
mapping cone of f acting on C, and of g acting on Cy provide two trivializations
of the determinant line of C;, and the joint torsion JT(C; f, g) is the quotient
of these two trivializations. See [Kaad 2012, Section 3.3] and Section 2A3 for
details.'

The notion of joint torsion for the O(Sp(A))-module .7 appears in the follow-
ing situation. Let Ay, ..., h,—1, f, g be holomorphic functions defined in a neigh-
borhood of Sp(A) and suppose that the zero sets Z(h) N Z(f) and Z(h) N Z(g)
do not intersect the essential spectrum of A. In this case the commuting tuples

IThe choice of signs in this paper is not standard, but is dictated by Theorem 2.17.



TATE TAME SYMBOL AND THE JOINT TORSION OF COMMUTING OPERATORS 185

(hi(A), ..., hy—_1(A), f(A)) and (h;(A), ..., h,—1(A), g(A)) are Fredholm and
the joint torsion JT(K (h, 57); f, g) € C* is well-defined. The main result of this
paper is as follows.

Theorem 1.8 (Theorem 5.9). Joint torsion is multiplicative, i.e.,

ITK(h,2); f9)= ] e fi9m?,
AEZ(INN(Z(FHVZ(8)

where the local terms c; (h; f, g) € C* (which are given explicitly in Theorem 1.9)
only depend on the image of the functions f, g, h;,i =1,...,n— 1 in the stalk O,.

The local terms in the product above are given by the following result. Notice
that the quantities m M(hk, gb) (and m, (h*, f*)) appearing in the statement are
multiplicities of the points u € Z (N Z (g5 = Z(h*, g*) that are common ze-
roes of the n-tuple of holomorphic functions h~, ..., h’;l_l, g%); see the statement
of Theorem 1.5. In particular, we see that a combination of Theorem 1.8 and
Theorem 1.9 recovers Theorem 1.3 by specializing to the case where n = 1 and
A:=T.: H*(D) — H?*(D) is just given by the single Toeplitz operator with symbol
the inclusion z : S' — C and spectrum Sp(A) = D.

Theorem 1.9 (Theorem 5.6). Let U € C" be open with compact closure U and
consider hy, ..., hy_1, f, g € OU). Suppose that ) € U satisfies

Z(h) N (Z(fHUZ(g)) < {A}.

Then the sequence of quotients

k /’lk, k
[cvnzamnzet £ (p)ymu -8

k. ck _k
C)»(h ’f > 8 )= Bk, £5)

HueUﬁZ(hk)ﬂZ(f") gkym

converges to c,(h; f, g) for any sequences {hf}, {F*}, {g*} in OU) which con-
verge uniformly to h;, f, g and for which

ZEHNZ(HNZEgH =2 forallk eN.

Remark 1.10. The assumptions of Theorem 1.8 can be weakened. In fact it is suf-
ficient for the functions f and g to be defined and holomorphic in a neighborhood
of X = Z(h) NSp(A). Using the methods of [Miiller 2002], Taylor holomorphic
calculus can be extended to define operators f(A) and g(A) acting on the Koszul
complex K (h, #¢) and the conclusions of the theorem still hold.

Remark 1.11. One can also define the “local joint torsion” by localizing the Hilbert
space at the prime ideal p; of functions in O(Sp(A)) vanishing at A. The resulting
numbers are conjecturally the same as the local joint torsion c; (h; f, g)"4A—% as
defined above.
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As an application of our main results we are able to extend the definition of
the Tate tame symbol from Riemann surfaces to more general complex analytic
curves. More precisely, we work with a complex analytic curve (X, Ox) and a
fixed point x € X such that there exists a local model (Z(h), O/ (h)|z)) near x
which is determined by a holomorphic map

h=hi,...,hy_)):U— C",

where U C C" is an open set. In other words, X is a complete intersection in a
neighborhood of x. For any two holomorphic functions f, g € Ox (V) which are
transversal to the curve near x € X, we may then define the Tate tame symbol

cx(X; f,g) eC*

by applying the local description of Theorem 1.9. This invariant satisfies the prop-
erties which define a symbol in arithmetic; see [Tate 1971].

Remark 1.12. The conditions on the specific type of local model near x € X can
be removed by working with more general resolutions than the Koszul complex.
In particular, we will be able to study tame symbols of general complex analytic
curves. We plan to carry out the details in a future publication.

The structure of the paper is a follows.

Section 2 is devoted to basic definitions involving determinants and torsion of
Fredholm complexes. The definition essential to this paper, that of joint torsion, is
given in Section 2A3.

The notion underlying these constructions is a determinant functor on the trian-
gulated category of Fredholm complexes but, since this more abstract context is
not necessary to understand what follows, we have avoided this language.

Section 3 is devoted to the generalities involving Koszul complexes of commut-
ing families of bounded operators. After recalling the basic definitions (Section 3A)
we describe the localization procedure involved in the computation of local indices
and state the local index theorem (see Section 3C).

Section 4 contains the basic technical computations involving the joint torsion.
The main result of this section, Theorem 4.3, gives a formula for joint torsion in
the case when the (n + 1)-tuple (4, f, g) has no common zeroes in Sp(A). The
proof is based on the observation that in this case the joint torsion is given by the
quotient of two determinants, both of which can be computed explicitly.

2The fact that the joint torsion of two Fredholm operators (A, Ay) whose Koszul complex is
contractible can be given as a quotient of two determinants holds in fact in a more general context. It
is sufficient to assume that A and A, commute up to a trace class operator and that, moreover, one
can construct an acyclic complex /7 % # @& N2 , where the boundary maps are trace class
perturbations of (A1, A>)? (and (A5, —A1)); see [Migler 2014].
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Section 5 contains the proofs of the main theorems listed above. This section
relies heavily on the continuity properties of the joint torsion as investigated by the
authors in [Kaad and Nest 2019].

Section 6 contains the application of our results to the setting of complex analytic
curves.

2. Determinants, torsion and joint torsion
Throughout this section T is a fixed field of characteristic zero.

2A. Determinants of vector spaces.
2A1. Picard category of graded lines.

Definition 2.1. £ denotes the category of Z-graded lines over F. The objects of £
are thus pairs (V, n), where V is a one-dimensional vector space over [ and n € Z.
The set of morphisms Mor((V, n), (W, m)) is the set of isomorphisms V — W
when n = m and empty when n # m.

The category £ becomes a Picard category when equipped with the bifunctor
Q:((V,n),(W,m)) = (VRW,n+m),

which satisfies the obvious associativity constraint and the commutativity con-
straint

Yy, wm: (V,n)@W,m)— W,m)®(V,n), £@n— (—D)""n®E.
Let § : £ — £ denote the covariant functor:
$(V,n):=(V*, —n) onobjects and () := (e~ )* on morphisms,

where the superscript (-)* denotes the linear dual (resp. transpose) of a vector space
(resp. linear transformation). Below we often use the notation (V/, n) =1V, n)
and o' := F(a).
Together with the natural isomorphisms
.oyt (Vom)' @ (W,m)T — ((V,n) @ (W, m))",
(cqv,m,(w,m A @u)(E®n) :=1() n(m - (=H"™,

the covariant functor | becomes a monoidal functor. Furthermore, for any graded
line (V, n), the image (V, n)" = (V*, —n), together with the isomorphism

v VOV = F, ewvn: @@L A(E),

is a fixed right inverse. Here the ground field ([, 0) and the obvious isomorphisms
V®F=V =F® YV play the role of a fixed unit.



188 JENS KAAD AND RYSZARD NEST

2A2. Graded vector spaces.

Definition 2.2. 2J denotes the abelian category of finite-dimensional vector spaces
over [ and Ujs, denotes the subcategory of 2J with the same objects as 2 and

where
Morg;,  (V, W) = {A € Morg(V, W) | A is invertible}.

We let | - | denote the determinant functor given by
Vo2 V= (A'PV,dimV) € £

on objects and by f — A"P(f) on morphisms (invertible linear transformations),
where A (V) denotes the exterior algebra over V.

The basic property of the determinant functor is the following simple observa-
tion. Given a short exact sequence of finite-dimensional vector spaces

A0>VSWE Z->0,

there exists an associated canonical isomorphism

Al W] — [VI®I|Z] (2.3)
given as follows: Let vy, ..., vgim v be a linear basis of the image of V in W and
wi, ..., Wqim z its completion to a linear basis of W. Then

[A[(VI A+ AVdimv AWL A -+ A Wdim Z)
= (= DImVAmZ =Gy A AT Waim v) @ (T(Wi) A - - AT (Waim 2))-

It is straightforward to check that |A| is independent of the choices made. Remark
that the extra sign (—1)4mV-dimZ i nonstandard.

Remark 2.4. Note that the above rules determine a determinant functor as defined
for example in [Breuning 2011, Definition 2.3]; see also [Deligne 1987] or [Knud-
sen 2002, Definition 1.4].

This determinant functor extends to the category of Z/27Z-graded finite-dimen-
sional vector spaces. First some notation.

Notation 2.5. (1) 0%/?Z denotes the category of finite dimensional Z/27Z-graded
vector spaces with objects V = V* @& V~ and morphisms

+
a:(a 0_>:V—)W,
0 o

where oF : V¥ — W are linear maps.
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(2) The map [1]:0%/?? — 5%/Z is the self-equivalence of 0%/?Z given by change
p q g y g
of grading:

V[1]¥ = VT on objects and «[1]* = & on morphisms.

A3) iﬁiézz is the category with the same objects as 0%/> and morphisms given
_faT 0O
~\0 a”

by
7/27

is0

with a® invertible.

Definition 2.6. The functor |- | : 0 — £ is given by

IVI=|VY®|V~|" onobjects and |a|=|a"|® |e~|" on morphisms.

2A3. Torsion. The analogue of the isomorphism (2.3) in the context of Z (or Z/27)
graded vector spaces has the following form.

Let V be a finite-dimensional vector space. The degree map ¢ : A(V) — Ny on
the exterior algebra over V is defined on homogeneous elements by v A- - - Avg > k.
Suppose that L is a one-dimensional vector space and ¢ € L a nonzero vector. Then
t* € L* denotes the unique vector such that t*(¢) = 1.

Suppose that V; = Vi+ @V (fori=1,2)and V=Vt @V~ are Z/27Z-graded
vector spaces and that we are given grading-preserving linear maps

f:Vi— Vy, Vo=V, p:V — Vi[l]
such that the following six-term sequence of finite dimensional vector spaces is
exact:

+ ST it
vt L v

V: ol lp* (2.7)
Vie—V /W
4
For future use, let us introduce the following.

Notation 2.8. We write the six-term exact sequence ) above as the triangle
Vi —> Va

SN

and refer to it as an exact triangle of Z/27-graded vector spaces.
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Definition 2.9. Suppose that we are given a six-term exact sequence )V of the
form (2.7). Set

(V")) :=Ker(f 1), (V;)0) :=Ker(iT), (V5 ) :=Ker(p™h),

(Vi )o :=Ker(f7), (V, ) :=Ker(i™), (V7)) :=Ker(p™).

For i =1, 2, choose subspaces (Vii)(l) - Vl-i (resp. (Vi)(l) cvh complementary
to (Vii)(o) - Vii (resp. (Vi)(o)) and nonzero vectors

Fel(VEml, i=1,2 (esp.rfe|(VH))
The torsion isomorphism of V is the isomorphism
WV|: Vol = VI ®|V]

defined by
VI((FHEH A @ (f(7) Aty)¥)

=DV P )AH @ (PTENH A @ (T () AtH® (1) At .
The sign exponent is defined by
u(V) = (S(IQL) +1)-(e(@)) +8(t1+)) +e(t;)- (e +et7))

+e(tT) (e +et;)) +e™) eNo.

It is a consequence of [Kaad 2012, Lemma 2.1.3] that the torsion isomorphism
does not depend on the choices made. For future reference let us note the following
simple fact:

Lemma 2.10. Suppose that we are given a six-term exact sequence V of the form

The torsion isomorphism of V is given by

| | ( l)dlm(W+)+d1m(W ). detf_
det f+

Proof. This is a straightforward consequence of the definitions. O
2B. Fredholm complexes.

Definition 2.11. A Fredholm complex X is a finite cochain complex of (possibly
infinite-dimensional) vector spaces

k+1
X RN Xk Xk+1 d Xk+2
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such that the cohomology groups
H*(x) =Kerd"/Imd*~!
are finite-dimensional.
The determinant of the Fredholm complex X is the graded line
X = HH ()| @ |1H™ (D),

where HT(X) := @, H*(X) and H™(X) := @y H* T (X). The index of X
is the integer
Ind(X) = dim(H (X)) —dim(H ~ (X)).

We let X[1] denote the shift of the Fredholm complex X'. X[1] is again a Fred-
holm complex with cochains X [1]F := A%+ and with differentials

di1]f = =gt xS X2 ke

Definition 2.12. Let X’ and ) be finite cochain complexes and let f : X — ) be
a cochain map. The mapping cone of f is the cochain complex C; defined by
C’}i = X1 @ Yk and

k. _d§c+] 0\ . i+t k k+2 k+1
df.:(karl dk).X QY - X"y .
Y
Suppose that f : X — ) is a cochain map of Fredholm complexes. The mapping
cone is again a Fredholm complex and it fits into the mapping cone triangle
Arix Lyl oo,

where the cochain maps i : ) — Cy and p : Cy — X[1] are given by the inclusions
ik .= ((1)) :Y* — X1 @ y* and the projections pf := (1 0): X1 @ yk » x+1
fork e Z.

By passing to cohomology, the mapping cone triangle associated to f yields an
exact triangle of Z/27-graded vector spaces:

+ +(i
a0 25 w0y 2w e

H(Aj): H’(p)T | 2.13)
H(Cp) e H ) e H ()

Definition 2.14. Let f : X — ) be a cochain map of Fredholm complexes. The
torsion isomorphism of f is the torsion isomorphism of H (A f),

IHA PV = X |Cl

(compare with Definition 2.9).
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2C. Joint torsion. Let X be a finite cochain complex and let f : X — X and
g: X — X be two commuting endomorphisms of X'. Remark that X is not assumed
to be a Fredholm complex. Instead, we assume that the mapping cones Cy and C,
are Fredholm complexes. Since f and g commute we then obtain two cochain
maps of Fredholm complexes:

8(8)=(g 2>1Cf—>Cf and S(f):(g 2>:Cg—>cg‘

Note that the two mapping cones Cs(ry and Cs(,) are in fact isomorphic: the iso-
morphism is given by the cochain map ® : Cs(,) — Cs(r) defined by

-1000
oF = 8 (1) (1) 8 X2 g xkH g xkHL g xk
0001 - X2 g xMH g xHl e xt (215
forall k € Z.

Definition 2.16. Let X be a finite cochain complex and let f : X — X and
g : X - X be two commuting morphisms of X" such that both Cy and C, are
Fredholm complexes. The joint torsion of f and g is the nonzero number inducing
the automorphism

IT(X; £, ) i= (=)D GH (A55)| ™ 0 [®] 0 |H (Asg)] : F— F,
where we have used the canonical isomorphisms
ICAI@ICHT = 1C| ®IC, " =F
to identify the torsion isomorphisms of §(g) and §(f) with maps
|H(As))| : F— [Cseyl and  |H(Asip)|:F— [Csipl

2C1. Analyticity of joint torsion. Let {X*};cz be a fixed and finite family of Hilbert
spaces; thus X* = {0} for all indices outside a finite subset of Z.

Let us for future reference state the following result, which is a consequence of
[Kaad and Nest 2019, Theorem 9.1].

Let .# denote the set of triples (X; f, g), where

k k+1
X xR kel T k2

is a cochain complex with each d* : X*¥ — X**! a bounded operator and with
f, g : X = X commuting cochain maps such that f*, g€ : X* — X* are bounded
operators and such that Cr and C,, are Fredholm. We can realize the elements of .7
as a set of bounded operators (d, f, g) on the Z-graded Hilbert space X =P, ., X k
and hence endow .# with the induced topology coming from the operator norm.
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More precisely, .% can be viewed as a subset of the C*-algebra of bounded op-
erators on X & X & X, Z(X & X & X), by mapping a triple (d, f, g) € & to

the bounded operator given by «(d, f, g) : (&, n1, &m) = (d* (&), f'(n). g™ (i)
for all & € X¥, n; € X! and ¢,, € X™. We emphasize that the individual Hilbert

spaces XX, k € Z, are fixed so that only the coboundary maps and cochain maps
are allowed to vary. For an open subset U C C we then say thatamap o : U — #
is analytic when the associated map toa : U — Z(X @ X & X) is analytic.

Theorem 2.17. The map
T > (X; f,8) > IT(X; f,g) e C*
is analytic. Thus, for any analytic map o : U — % defined on an open subset
U C Cwe have that JToa : U — C* is analytic.
The following variant of Theorem 2.17 also holds:

Theorem 2.18. The map

Fo(X; f,8) > IT(X; f,g)eC”

is continuous.

Remark 2.19. We could have defined the joint torsion in the context of Z/27-
graded Fredholm complexes instead of in the more restricted context of finite Z-
graded Fredholm complexes. The reason for staying with finite Z-graded Fredholm
complexes is that we do not have a proof of Theorem 2.17 for Z/27-graded Fred-
holm complexes.

3. Joint torsion of commuting operators

Throughout this section A = (Ay, ..., Ay) € L ()" denotes a commuting n-
tuple of bounded operators on a Hilbert space 5. Thus, we have the relation
AjA;j—AjA;=0foralli, je{l,...,n}. Given A € C", A — X denotes the n-tuple
(A — Ay, ..., Ay — Ay). We start by recalling some basic constructions and facts.

3A. The Koszul complex. Let A(C") denote the exterior algebra over C on n gen-
erators ey, ..., €.
For each subset I = {iy, ..., it} C{1,...,n} withi; <--- <y, let

ey i=ej N---Ne¢j, € A(Cn),

where A : A(C") x A(C") — A(C") denotes the wedge product.
The exterior algebra is then a Z-graded algebra with respect to the decomposition

A€ =P Afeh,

keZ
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where
Ak(@ﬂ) ‘= i {0} fork¢ {O, ...,I/l},
spanc{e; | I € {1,...,n},|I|=k} forke{0,...,n}
For each j € {1, ..., n}, the interior multiplication with the j-th generator is
denoted by

8;‘? cACH = ACY,
0 for j ¢ 1,

ef e~ . _ .
(=D" ej, A---Nej, Nej, N Nej Tor j=ip.

~. %

This linear map has degree —1 with respect to the above Z-grading.

Definition 3.1. By the Koszul complex of the commuting n-tuple A we understand
the finite cochain complex of Hilbert spaces given by the following data:

(1) The Hilbert space K*(A, ) := # ®c A~*(C") for each k € Z.
(2) The differential of degree one,

n
dy:=) A;j@er: KA, ) > KA, ).
j=1

We use the notation K (A, ) for the Koszul complex and the notation H kKA, ),
k € Z for the cohomology groups of K (A, J¢).

Remark 3.2. One may equally well define the Koszul complex of a commuting
n-tuple T = (T, T, . . ., T,)) of endomorphisms of a fixed vector space V, and we
shall need this later on in the text; see Proposition 3.8.

Definition 3.3. We say that a commuting n-tuple A is Fredholm when the Koszul
complex K (A, 5¢) is Fredholm. In this case, the index of A is the Euler character-
istic (or Fredholm index) of the Fredholm complex K (A, 5¢),

Ind(A) ==Y (=D¥dime (H*(A, ).
keZ

When A is Fredholm we have that df‘ : K¥(A, #) — KFT1(A, #) has closed
image for all k € Z. This is a consequence of [Curto 1981, Corollary 6.2].

The above Definition 3.1 is not quite the conventional definition of the Koszul
complex. The reason for using interior instead of exterior multiplication on the
exterior algebra stems from the fact that we want the mapping cone of a bounded
operator B : ## — 2 to be isomorphic to the Koszul complex K (B, ) (without
the dimension shift). Indeed, with the present convention, we have the following;
see [Kaad and Nest 2015, Lemma 2.3].
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Lemma 3.4. Let B : # — % be a bounded operator such that BA; = A;B for
all j € {1, ..., n}. Then the mapping cone of the cochain map

K*(B):=B®1:K*(A, #)— K*(A, 5¢)
is cochain isomorphic to the Koszul complex K*((B, A), 57).
Recall that the Taylor spectrum of A is the set

Sp(A) :={h e C" | H*(A — A, #) # {O}}.

The Taylor spectrum is a compact nonempty subset of C" [Taylor 1970b, Theo-
rem 3.1]. The essential Taylor spectrum of A is the set

Speis(A) := {1 € C" | A — X is not Fredholm}.

The unital commutative ring of germs of holomorphic functions on neighbor-
hoods of Sp(A) is denoted by O(Sp(A)). The elements in O(Sp(A)) are thus
equivalence classes of holomorphic functions f : U — C, where U is an open
subset of C" containing Sp(A).

The commuting tuple of bounded operators A = (Ay, ..., A,) on the Hilbert
space ¢ provides us with a holomorphic functional calculus. To be more precise,
the following holds; see [Taylor 1970a, Theorem 4.8].

Theorem 3.5. Let A C £ () denote the smallest unital C-algebra which con-
tains the bounded operators Ay, ..., A,. There exists a unital homomorphism
O(Sp(A)) — A" (the double commutant of A), f + [f(A) such that z; — A;.
Furthermore, whenever f = (fi,..., fm) : Sp(A) — C™ is holomorphic (i.e.,
Jr € OSp(A)), k=1, ..., m) the following identity holds:

Sp(f(A)) = f(Sp(A)).

In particular, the above holomorphic functional calculus allows us to consider
the Hilbert space 5 as a left module over O(Sp(A)).

Notation 3.6. (1) Given f € O(Sp(A)), we denote the operator f(A) on J# by f.
Given g € O(Sp(A))™, K*(g, #) denotes the Koszul complex of g(A) =
(g1(A), ..., gm(A)) and H*(g, ##) denotes the cohomology of K*(g, 7).

(2) Foreach A € Sp(A), 4, denotes the localization of the module s with respect
to the prime ideal p, :={f € O(Sp(A4)) | f(1) =0} S O(Sp(A)). More explic-
itly, the subset S, := (O(Sp(A)) \ p,) € O(Sp(A)) is a multiplicatively closed
subset and we put 77 =S, ' 2. For a vector & € 2 and an element 5 € S,
weleté/s €S, L denote the associated equivalence class in the localization.
In particular, since the unit 1 lies in S) we obtain the map J# — S, Lo# given
by & — & /1. We emphasize that 77 is not a Hilbert space but that /7 remains
a left module over O(Sp(A)) and a vector space over C.
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(3) Let m € N and suppose that we are given g = (g1, ..., gm) € O(Sp(A))". We

set
Z(g) :==1{reSp(A) | g1(M) =---=gu(}) =0}.
Example 3.7 [Curto 1981]. Let H*(D") be the Hardy-space over the polydisc
D"={zeC"||zj|<1forall j=1,...,n},and A= (T, ..., T;,) be the n-tuple
of multiplication operators by the coordinate functions zj, ..., z, on C". Then

(1) Sp(A) =D";

(2) for a function f holomorphic in a neighborhood of D", f(A) coincides with
the Toeplitz operator T of multiplication by f;

(3) Speg(A) =0D";
4) forre D", Ind(A—A) =1;
(5) for x € D", H*(A — 1, H*(D")) = {0} for all k € Z \ {0}.
The next result is a consequence of [Kaad and Nest 2015, Proposition 4.5]. No-
tice that the cohomology groups involving the localizations 77, are again Koszul

cohomology groups but this time in the sense of Remark 3.2 (considering each 73
as a vector space equipped with a commuting m-tuple of linear endomorphisms).

Proposition 3.8. Suppose g € O(Sp(A))" is such that g(A) = (g1(A), ..., gn(A))
is Fredholm. Then Z(g) is finite and the morphism of modules 7 — @, 7(g) Yo
& > {§/1}rez(g), induces an isomorphism of cohomology groups,

H*(g’ %) = H*(ga @XGZ(g) %M) = @AEZ(g) H*(gv %»)'

3B. Joint torsion transition numbers. Let m € N and let (m) := {1, ..., m}. Fix
an element g = (g1, ..., gm) € O(Sp(A))™. For a subset J = {ji, ..., jk} C (m)
with 1 < j; <--- < jir <m, we define

87 = (8jis -+ 8j) € O(Sp(AN*.
The following assumption remains in effect throughout this subsection:

Let i, j € (m) and suppose that the commuting (m — 1)-tuples g m\(iy(A)
and gny\{j)(A) are Fredholm.

It then follows by Lemma 3.4 that the mapping cones of the commuting cochain
maps

K*(gi) and K*(g;) : K*(gmn\(i.j}» ) = K*(8umy\ii.j)> 7€) (3.9)
are Fredholm complexes. In particular, the following definition makes sense:

Definition 3.10. The joint torsion transition number of g(A) (in position i, j) is
defined as the joint torsion of the cochain maps in (3.9). It is denoted by

7, (8(A)) = IT(K* (gum\ji. j1» H); &i» &) € C*.
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3B1. The torsion line bundle. As in the last subsection, let g = (g1, ..., gn) be a
fixed element of O(Sp(A))™. Recall that (m) := {1, ..., m}.
Foreachi € {1, ..., m}, define the open subset

Ui ={neC"|(g— 1) m\i)(A) is Fredholm}.

For each i, j € {1,...,m} and each u € U; N U}, we then have the joint torsion
transition number

7, (g(A) () =1, ;(g(A) — ) € C*.

See Definition 3.10.
As a consequence of [Kaad 2012, Lemma 3.3.3] these functions satisfy the tran-
sition identities of a line bundle. Thus

7, ;(8(A) - Tjx(g(A) =Tk (g(A)) and 7 ;(g(A) =1;,;(g(A)",

foralli, j,ke{l,..., m}.
Furthermore, by Theorem 2.17, each 7; ;(g(A)) : U; NU; — C* is analytic.
Hence the following makes sense:

Definition 3.11. The forsion line bundle of g(A) is the analytic line bundle on
U :=J/L, U; € C™" with transition functions

7,j(g(A):UiNU; - C*, i, j=1,...,m.

3C. Localindices. Let 2:=Sp(A)° denote the interior of the Taylor spectrum and

let O denote the sheaf of analytic functions on Q2. Fix an element g = (g1, ..., &)
of O(Sp(A))". Notice that the number of holomorphic functions in g coincides
with the number of operators in the n-tuple A = (Ay, ..., A,).

Throughout this subsection we suppose that the commuting n-tuple g(A) =
(g1(A), ..., g,(A)) is Fredholm.

This means precisely that the intersection Z(g) N Sp.(A) is the trivial set. In
particular, there is a well-defined index Ind(A — A) € Z for each A € Z(g).

Now, applying Proposition 3.8, it also follows from the Fredholmness of g(A)
that the set of common zeroes Z(g) € Sp(A) is finite. In particular, each element
A € Q2N Z(g) is an isolated zero for the holomorphic map g|g : @ — C". This is
equivalent to the finite dimensionality of the quotient vector space O, /(g), where
(g)s € O; is the ideal generated by the analytic functions gj, ..., g, : 2 — Cin
the stalk O, of the sheaf O at A. See [Grauert and Remmert 1984, Chapter 5, §1.2].

Definition 3.12. The local degree or (multiplicity) of g at A € Q is the dimension
dimc(0,/(g)») € NU{0}. The local degree is denoted by m, (g).
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Definition 3.13. The local index of g(A) at A € Sp(A) is the Euler characteristic
of the Koszul complex K (g, #%.). The local index is denoted by Ind; (g(A)) € Z.
Thus . _
Ind; (g(A)) := Y (1) dimg(H' (g, 74)).
ieZ

Note that the finite dimensionality of the cohomology groups H' (g, 74),i € Z
is nonobvious. This is a consequence of Proposition 3.8 which also implies the
identity ' '

dime H'(g(A), )= Y dime(H' (g, 74)).
reZ(g)

In particular we have that

Ind(g(A)) = ) Ind;(g(A)).

reZ(g)

The following “local” index theorem therefore yields the “global” index theorem
of [Eschmeier and Putinar 1996, Theorem 10.3.13].

Theorem 3.14 (see [Kaad and Nest 2015, Theorem 8.5]). Suppose that g(A) is
Fredholm and that ). € Z(g). The local index at )\ is then given by

Ind; (g(A)) = m;(g) -Ind(A —2).

Remark 3.15. By homotopy invariance of the Fredholm index, Ind(A — 1) =0
when A € 9(Sp(A)) N (C" \ Sp.(A)). The right-hand side of the equation in the
above theorem should therefore be understood as O in this case, even though the
local degree, m; (g), is not defined.

4. Multiplicative Lefschetz numbers

Let X be a Fredholm complex over a fixed field F of characteristic 0, and let
f : X = X be a cochain map.

Suppose that the induced maps H(f) : HY(X) — H™(X) and
H=(f): H (X) — H™(X) are invertible.

Definition 4.1. The multiplicative Lefschetz number of f : X — X is the invertible

element det(H*(f))

MX; f):=——= €l
det(H=(f))
4A. Lefschetz numbers of Koszul complexes. Let A = (A},..., A,;) be a com-
muting n-tuple of bounded operators on a Hilbert space 77, and lethy, ..., h,—1, f, 8

be in O(Sp(A)). We use the notation

(h, f):=(h1, ..., hy—1, [) € O(Sp(A))"
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(and similarly for (%, g)). Throughout this subsection we suppose the following:
The sets Z(h, f)NSpes(A) and Z(h,g)NSp..(A) and Z(h, f,g) are empty.

It follows from this assumption that the Koszul complexes K ((h, f), 5¢) and
K((h, g), s) are Fredholm. Furthermore, we have that the cohomology of the
Koszul complex K ((h, f, g), 7€) is trivial.

Notice now that f and g induce cochain maps

[=K"(f):K((h,g), #)— K((h, 8), ),

4.2)
g:=K"(g): K((h, f), ) — K((h, f), )

of Koszul complexes by means of the holomorphic functional calculus. As a con-
sequence of the exactness of K ((h, f, g), #¢) we obtain that the induced maps
H*(f):H*((h, 8), #) — H*((h, g), ),

H*(g) : H*((h, f), #) — H*((h, [), )
are invertible.
The quantities involved in the next proposition are therefore well-defined.

Theorem 4.3. The following identities hold:

MK ((h, 8), 7); ) Tlhezpg [0 mIAY
M(K((h, f), 7); g) l_[ueZ(h,f) g(,u)m"(h’f)'lnd(A_M)
Proof. The first identity is an immediate consequence of the definition of the joint

torsion and of Lemma 2.10; see also [Kaad 2012, Theorem 3.4.1].
To prove the second identity, it suffices to show that

M(K((h,g), 200 =[] roymdeida,
reZ(h)NZ(g)
Leti e {—n,...,0}. Since Z(h)NZ(g) NSp..(A) =, the Koszul cohomology
group H'((h, g), #) is finite-dimensional over C. Let

JT(K(h, 2); f,8) =

H'(A):= (H'(A)), ..., H(A,))

denote the commuting n-tuple of linear operators on H'((h, g), ) induced by
A=(Ay,..., A,). ForeachAeC", let H ((h, g), #)(A\) C H ((h, g), ) denote
the generalized eigenspace of the commuting n-tuple H'(A). Thus,
H'((h, 8), 2)(M)

={§€H ((h,g),#)|ImeN:Vje(l,....n}, H (A; —i))"(§) =0}

Recall now that the finite dimensionality of H'((h, g), ) implies that

D H((h.9). 7)) = H (. g). 7)
reZ(h,g)
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and furthermore that each component H'((h, g), #)(A) € H'((h, g), »¢) admits
a basis in which each of the restrictions

H'(A)(\) : H' ((h, g), )W) — H'((h, ), #)(\)

is upper triangular with only A; on the diagonal.
Foreach A € Z(h)N Z(g), let

H'(f(A)\) : H ((h, 8), )W) — H' ((h, g), #)()) (4.4

be the restriction of the isomorphism H'(f(A)): H ((h, g), #) — H'((h, g), 7).
It then follows immediately from the above that

det(H' (F(A) =[] det(H (F(A)G)). 4.5)
rAEZMNZ(g)
The next lemma gives a computation of the determinant det(H'(f(A))(A)) for
eachA e Z(h)NZ(g).

Lemma 4.6. Let A € Z(h) N\ Z(g). The isomorphism (4.4) can be represented by an
upper triangular matrix having f (1) € C* as its only diagonal entry. In particular,

det(H' (f (A))(2)) = f () &me /(e 700),

Proof. Suppose first that f € O(Sp(A)) is the restriction of a polynomial p in
the variables z;,...,z, : C" — C. In this case (4.4) is given by the polyno-
mial p(H I(A)(1)), where each variable z ; has been replaced by the linear op-
erator H"(A.,-)()\) :Hi((h,g), #)(\) — H'((h, g), #)(A). Choose a basis for
H'((h, g), #)()) in which each of the operators H' (A j)(A) is represented by an
upper triangular matrix having A; as the only diagonal entry. Represented in this
basis p(H'(A)(X)) is an upper triangular matrix with p(X) as its only diagonal
entry. This proves the claim of the lemma in this case.

To treat the general case, note that the action of O(Sp(A)) on H' ((h, g), 7)(})
given by k — H'(k(A))(A) factorizes through the local C-algebra O, of convergent
power series near A by [Kaad and Nest 2015, Proposition 4.4]. Since the endomor-
phisms Hi(Aj —A)A): Hi((h, g), #)(\) = Hi((h, g), #)()) are nilpotent for
Jj € {1, ..., n}, this yields the existence of a polynomial p € C|zy, ..., z,] with
Hi(f(A)(\) = H (p(A))(}) and with p(L) = f(1). To see this, remark that the
nilpotency implies that the action of O on H'(A j — Aj) (1) factorizes through the
quotient ring O, /(m,)" O, for some m € N, where m; C O, denotes the unique
maximal ideal in the local C-algebra O,. But each element in O, /(m, )" O, can
be represented by a polynomial.

Since it now has been established that H (f(A))(A) = H! (p(A))()) for some
polynomial with p(X) = f(4), the first part of the proof yields the general result
of the lemma. ([l
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Let A € Z(h) N Z(g) be fixed. To continue the proof of Theorem 4.3, remark
that it follows by [Kaad and Nest 2015, Proposition 4.5], that the vector spaces
H'((h,g), #)(A) and H'((h, g), 74, are isomorphic. Recall in this respect that
4, denotes the localization of the module 57 over O(Sp(A)) at the prime ideal
P, :={k € O(Sp(A)) | k(1) = 0}. In particular, it follows from Theorem 3.14 that
dime H* ((h, 8), #)(1) —dimg H™((h, g), #) (%)

=1Ind, ((h, g)(A)) =m;(h, g)-Ind(A—2). (4.7)

The desired multiplicative Lefschetz number M (K ((h, g), ##); f) € C* can

now be computed as follows:
M(K((h, 8), 7); [)
= det(H" (f))-det(H~ ()~

= J] (detH(F)()-det(H (/HW))

reZ(h)NZ(g)

= l_[ (f()»)dim@ H((h,8),0)(M) -f()»)_dimf H*((h,g),:;f)()\))
reZ(h)NZ(g)

= l‘[ £ (1) (he)(A) 1—[ £y inda—)
reZ(MNZ(g) reZ(MNZ(g)

where the second identity follows from (4.5), the third identity from Lemma 4.6,
and the final two identities from (4.7). This proves the claim of Theorem 4.3. [
5. Localization of the joint torsion

Let n € N. For each open set U € C" we let O(U) denote the unital C-algebra of
holomorphic functions on U with values in C.

For each compact set K C U, we let ¥ (K) denote the unital C-algebra of con-
tinuous functions f : K — C such that the restriction to the interior f|g.: K° — C
is holomorphic. The unital C-algebra %’ (K) becomes a Banach algebra when
equipped with the supremum norm || - | : f > sup,cg | f(2)]. We let

rg : OWU) - ¥(K)
denote the restriction homomorphism.

Definition 5.1. Let m € N and let V C C". We say thatamap o : V — O(U) is
holomorphic when the composition

rgoa:V — €(K)

is holomorphic for each compact set K C U.
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Let us fix a commuting n-tuple A = (Ay, ..., A,) of bounded operators on the
Hilbert space .77

Proposition 5.2. Let U O Sp(A) be an open set and o : V — O(U) be holomorphic.
Then the map V. — Z£(), w — a(w)(A) is holomorphic in operator norm.

Proof. Choose a compact set K € U such that Sp(A) € K°. By [Taylor 1970a,
Theorem 4.3] the map ¢ (K) - £ (), f — f(A) is a bounded operator. Since
the composition rg o : V — % (K) is holomorphic by definition, this proves the
proposition. ([

Let us write
Q:=Sp(A)°

for the interior of the spectrum of A.

In the next theorem, we are using holomorphic maps V — O(U)"*! with cer-
tain properties, to approximate the tuple (%, f, g) and circumvent the existence of
common zeroes for the n-tuples (4, f) and (4, g). In the very beginning of the
proof of Theorem 5.3, we argue that this kind of approximation does in fact exist.

Theorem 5.3. Let U D Sp(A) be an open setand leth:U — C" ' and f, g:U — C
be holomorphic maps. Suppose that Z(h, ) NSpe(A) and Z(h, g) N Sp..(A) are
empty. Then the joint torsion of (K (h, J€); f, g) is given by

f, (A)mx(hw,gw)~lnd(A—k)
<HA€Z(hw,gw)ﬂQ w (54)

)mu(hwufw)'lnd(A_ﬂ)

IT(K (h, #); f, g) = lim

ez, fins 8wk
for any holomorphic map V. — OU)"t', w — (hy, fu, gw) satisfying

(1) 0 €V and (ho, fo, &) = (h, f, &);

(2) Z(hw, fw, ) NSp(A) =& forall w € V\ {0};

(3) Z(hy, fuw) NSpe(A) and Z(hy,, ) N Speys(A) are empty forall w € V.
Proof. We first prove the existence of a holomorphic map V — O(U)"*! with the
properties (1), (2), and (3).

Define the strictly positive numbers
8o :=inf{| £ (2)| | z € Z(h) N Spes(A)},
81 :=inf{| f(2)| | z€ Z(h, £)NSp(A) and f(z) #0}.
Consider the open ball
Bs(0) :={w e C | |w| < §}

of radius 8 := inf{§p, §;} and center 0 € C. It can then be verified that the holomor-
phic map B;(0) — OU)"*!, wi (h, f—w, g) has the properties (1), (2), and (3).
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Let now V — O(U)"*! be any holomorphic map which satisfies (1), (2), and (3).
By Theorem 2.17 and Proposition 5.2 we have that

JT(K (h, ); f,8) = limOJT(K(hw, FH); fuw, 8w)-

However, by Theorem 4.3 we may compute the joint torsion on the right-hand side,

hwa w Ind(A—2
nAeZ(hw,gw)mQ fw(A)MA( gw)-Ind( )

ez, fuyng gu(p)™ s T
for all w € V' \ {0}. This proves the theorem. .
Remark 5.5. It follows from the proof of Theorem 5.3 that JT(K (h, .7¢); f, g)

can be computed more explicitly as the limit

HAeZ(h,g)ﬂQ(f()‘) _ w)m)h(h,g)-lnd(A—)L)
b g(lu)mﬂ(h,ffw){nd(Afu) ’

JT(K (hw, H); fu, 8uw) =

) Ind(A—p)

JI(K(h, ); [, g) = lim
w= nuemzm)mf—'({w
where w € C approaches zero in the Euclidean metric.

For each A € C" and each € > 0, we write
DA :={zeC"||zj —Aj| <eforall je{l,...,n}}

for the open polydisc with radius € > 0 and center A.

Theorem 5.6. Let U C C" be open and leth :U — C" ' and f,g: U — C be
holomorphic. Suppose that ). € U is an isolated point in Z(h, f)U Z(h, g). Then
the limit

L hUJ’ w
ez gm0 00 fu ()™ (s ))

anlh; f.8) = ul)lgl ( () fu)

HveZ(hw,fw)ﬂDg/z(A) 8w
exists for any & > 0 and any holomorphic map V — O(D} W) wis (hy, fu, gu)
such that

(1) Dg@) S U and D (M) N (Z(h, YU Z(h, g)) = {A};
(2) 0 €V and (ho, fo,go) = (h, f. 8);

(3) Z(hy, fuw, gw) N Dg/z(k) = o forw € V\ {0};
@) Z(hy, fu)N 8DZ/2(A) and Z(hy, gw) N BDZ/Z(A) are empty for all w € V.

Furthermore, ¢ (h; f, g) € C* only depends on the image of (h, f, g) € O(U)"*!
in the stalk OZ'H atheU.

Proof. Consider the commuting n-tuple A := (¢/2T,, ..., /2T, ) + A of Toeplitz
operators acting on the Hardy space over the polydisc H>(D"). It then follows
that Sp(A) = D} /2()‘) and that Sp.(A) = dD7 /2()‘)' Furthermore, we have that
Ind(A—p)=1forall u e Dg/z(k); see Example 3.7.
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An application of Theorem 5.3 then yields that the limit c; (k; f, g) exists and
coincides with the joint torsion JT(K (h(A), H?>(D")); f(A), g(A)).

To see that ¢, (h; f, g) only depends on the value of (4, f, g) € O(U) in the
stalk O, it suffices to check that it is independent of ¢ > 0 and of the holomorphic
map V — O(D"(1))" 1.

It follows immediately by Theorem 5.3 that ¢, (h; f, g) is independent of the
choice of holomorphic map V — O(D? (M)t

Let us thus choose an alternative &y > 0 with g9 < . We may then find a
holomorphic map Vy — O(D7 (X)), w = (hy, fw, §w) such that

(Z(hy, fw)UZ(hy, gw)) N Dgo/z()\) = (Z(hw, fw)UZ(hy, gu)) N [DZ/Z()")
and such that (2) is satisfied as well. It is then clear that

hyw,8w
ez, gunms 0y Fu ) )>

cs(h; f,8) = ulgn ( ()" fo)

HveZ(hw,fw)mD'g/z(x) 8w

= lim
w—0

L huh w
HMeZ(hw,ng?O/z(x) S (y™Pro-gw) .
Gty | =6 (B 12 8)-

This proves the theorem. ([

HveZ(hw,fw)mD';o/z(x) 8w

Remark 5.7. The value c; (h; f, g) € C* may be computed more explicitly by the

formula
! (f () — wymh-8)
w0\ ] Yy f=w) |’

veZmn s qwpnos,,) 8V

where w € C approaches zero in Euclidean metric on C and where ¢ > 0 is chosen
such that

D) SU and DyA)N(Z(h,g)UZ(h, ) ={A}.
This is a consequence of the proof of Theorem 5.6 and Remark 5.5.

Remark 5.8. The quantity c; (; f, g) € C* can be expressed as a limit of a se-
quence instead of as a limit point of a holomorphic function; see Theorem 1.9. To
see this it suffices to apply Theorem 2.18 instead of Theorem 2.17 in the proof of
Theorem 5.3 and Theorem 5.6.

The next theorem is the main result of this paper. It provides a local formula for
the joint torsion.

Theorem 5.9. Let A= (Ay, ..., A,) be a commuting n-tuple on the Hilbert space
A and let h : Sp(A) — C" ! and f, g : Sp(A) — C be holomorphic. Suppose that

Z(h, f)NSpy(A) =0 = Z(h, g) NSp.(A).
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Then
IT(K (h, #); f. 8) = I1 cr(hs f, "I,
re(Z(h, fHUZ(h,g))N2
where 2 := Sp(A)°.

Proof. Leth: U — C* ' and f, g : U — C be holomorphic representatives for
h e OSp(A)" ! and f, g € O(Sp(A)) on an open set U D Sp(A).
Choose an & > 0 such that

Dr() €U, D (W) N(Z(h, [V Z(h, g)) = (A}, D (A) NSpegs(A) = &
forall A € Z(h, f)U Z(h, g). We may furthermore arrange that
D; (h) € Q2
for all L € (Z(h, f)U Z(h, g)) N Q. Finally, we may assume that
DM NDY(n) =2

whenever A # pand A, u € Z(h, f)U Z(h, g).
Choose a § > 0 such that

8 <inf{|f(2)| | z € Z(h, g) and f(z) #0},
s<inf{|f(@l]ze () (@©\D,))NZHh)}.

reZ(h,g)UZ(h, f)

The map Bs(0) — OU)*!, w +— (h, f —w, g) is then holomorphic and it
satisfies conditions (1), (2), and (3) of Theorem 5.3. Furthermore, we have that

(Z(h, f —w)UZ(h, )N ( U Dz/zm) = Z(h, f —w)UZ(h, g)
A€Z(h,@)UZ(h, f)
for all w € Bs(0).
An application of Theorem 5.3 now yields that

JT(K (h, 27); ., 8)
] fw (A)mx(h,g)-lnd(A—k)
= ul)lin ( 1_[ G fo)Ind(A—n) |

m
0 reZ(h. 90z f) HveDg/z(k)ﬁZ(h,fw)ﬁQ g)

where f,, ;== f — w for all w € Bs(0).
Since the Fredholm index is a homotopy invariant and D , (1) N Sp.e(A) = &
forall A € Z(h, g) U Z(h, f), we obtain that

JT(K (h, 7); f, g)
A my (h,g)-Ind(A—2X)
= lim l—[ Fu) | |
w— )g(v)mu(h,f"l,)‘lnd(A_)L)

0 re(Z(h,g)UZ(h, £))NQ HVGDZ/z(A)“Z(h’fw
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However, from Theorem 5.6 we know that the limit

Gy
fim o for)
w=0 [Toemy ,aonzan, £, 8™ I

exists and agrees with ¢, (h; f, g) foreach A € (Z(h, g)UZ(h, f))NK2. This proves
the present theorem. U

6. Application: tame symbols of complex analytic curves

6A. Preliminaries on complex analytic spaces. Consider an open set U C C"
together with holomorphic functions 44, ..., h, : U — C. Define the zero-set

Zh):={zeU|hi(x)=--=hyu(z)=0}.

Let Oy denote the sheaf of holomorphic functions on U. For each z € Z(h), let

(h); €O,
denote the ideal generated by &y, ..., h, : U — C in the stalk O, of Oy at the
point z € Z(h).
The complex model space associated to hy, ..., h, : U — C is the pair

(Zh), O/ (1)l zaw)

consisting of the Hausdorff space Z (k) and the restriction of the quotient sheaf
O/{h) to Z(h). Thus, for an open set V C C", alocal section s € (O/(h))(VNZ(h))
is a collection

{SZ}ZEVﬂz(h)v sz € Oz/<h>z

such that for each zg € V N Z(h) there exists an open set W C C" with zo € W and
a holomorphic map ¢t : W — C with

s, =[t;] forallze WnNZ(h),
where [#,] denotes image of t € O(W) under the map
OW)— 0, — O,/ {h),.
We recall the following definition from [Grauert and Remmert 1984].

Definition 6.1. A complex analytic space is a pair (X, Ox), where X is a Hausdorff
space and Oy is a sheaf of local C-algebras on X, such that for each x € X there
exist an open neighborhood V € X and a complex model space (Z (h), O/(h)| Z(h))
together with an isomorphism

(9. 9) :(Z(h), O/ (M) z@m)) = (V, Oxly)

of sheaves of local C-algebras. Thus, ¢ : Z(h) — V is an isomorphism of topo-
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logical spaces and ¢(W) : Ox(W) — (O/(h))(¢~"(W)) is an isomorphism of
C-algebras for each open set W C V.
We refer to (Z(h), O/(h) |Z(h)) as a local model for (X, Ox) near the point x € X.

6B. The Tate tame symbol. Let (X, Ox) be a complex analytic space and let us
fix a point x € X.
Suppose that dim, (X) = 1.

Thus, there exists an open neighborhood V € X of x and a section f € Ox (V)
such that f(x) = 0 and such that the quotient Oy . /(fx) is a finite-dimensional
vector space over C, where ( f;) is the ideal generated by f in the stalk Oy ;.

The following assumption also remains valid throughout this subsection.

Assumption 6.2. Suppose that X can be represented as a complete intersection
in a neighborhood of x. Thus there exists a local model (Z (h), 0/ (h)lz(h)) for
(X, Ox) near x € X, where

h=(hy,...,hy_y):U—C"!
is holomorphic and U € C" is open.
We are now ready to define the Tate tame symbol at the point x € X.
Definition 6.3. Take an open neighborhood VC X of x€ X and let f, g€ Ox (V) with
OX,x/(fx) and OX,x/<gx>

of finite dimension over C. Let (Z(h), O/(h)lz(h)) be a local model for (X, Oy)
near x € X as in Assumption 6.2 with associated isomorphism

(. 9): (Z(h), O/ (h)z@m) — (V, Oxlv).
The Tate tame symbol of f, g € Ox(V) at x € X is defined by

cx(X; £, 8) 1= cp100(hla; f. &),

where 2 C U is an open neighborhood of ¢~ '(x) € Z(h) and f g:Q2— Care
holomorphic functions such that the identities

[ful=(V)(f), and [Z]=(V)(u
hold in O, /(h), for all u € QN Z(h).

We need to show that the Tate tame symbol is independent of the various choices.
This is part of the next proposition, which also gives a more concrete expression
for the tame symbol. Let us introduce the notation

mx(f) = dlmC OX,X/(fX)
for any local section f € Ox (V). We remark that m,(f) =0 whenever f(x) # 0.
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Proposition 6.4. Take an open neighborhood V C X of x € X and let f, g € Ox (V)
with
OX,x/(fx) and OX,x/<gx>

finite-dimensional. Then

_ my(g)
er(X: . g) = lim — /=) ,
=0 [Tycon s gy 8ON™Y

where w € C approaches 0 in the Euclidean metric on C, and where ® C V is any
open neighborhood of x such that

(1) ®C Vand O is compact,
2) O©N(Z(HUZ() < {x}.
In particular, we have that c(X; f, g) is well-defined.

Proof. Let us choose a local model (Z(h), O/(h)lz(h)) for (X, Ox) near the point
x € X, and let

(@, ¢) : (Z(h), O/(h)|zay) — (V, Oxlv)

denote the associated isomorphism.
Put A := ¢! (x) and choose lifts

f.g:Q—>C
of the sections ¢(V)(f), (V) (g) € (O/(h))(Z(h)) near A € Q. We remark that

fw) = f@w) and g =g@w)

forall w € QN Z(h).
Furthermore, we notice that (¢, ¢) induces isomorphisms

Ox.¢0/ (fow —w) Z O/ (h, f —w)y,
Ox.¢u/(8pw) = Ou/(h. 8)u
for all u € 2N Z(h) and all w € C. In particular, we have the identities
myu(h, f —w) =mgqo(f —w) and  m;(h, §) =m(g)

forall w € 2N Z(h) and all w € C.
Let us now choose an ¢ > 0 such that

(Z(h, HUZ(h, §)NDAR) C{r} and D) C Q.
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Thus, by Remark 5.7 and the above observations, we obtain that

(f ) = wym®9

ahlas £.8) = limO -
Y20 [ uezann -1 qwnnos 00 8
= lim —
w—0 HMEZ(}’[)H]‘T*I({w})mﬂj):/z()\) g(ep(n))mouw
~ (f (x) — w)™=®
= lim -
w=0 Hye«b(Z(h)an/z(A))mf—'({w}) g(y)m.

)mu(h,f'—w)

(6.5)

This proves the statement of the proposition for the open neighborhood

© 1= ¢(Z() ND! H (1) SV

of x € X.

To prove the general statement, we now let ® C V be an arbitrary open neigh-
borhood of x € X such that the conditions (1) and (2) are satisfied. Since the limit
in (6.5) is independent of the choice of ¢ > 0, we may assume that

¢(Z(h) ND; (1)) € O.
It then suffices to find a § > O such that

ONf(wh S ¢ Zi) ND; )N f~ (wh

for all w € Bs(0). But this property is satisfied with

§:=inf{|f(M| |y €O\ p(Z() ND;, 0N} O
Proposition 6.6. Let V C X be an open neighborhood of x € X and let f; € Ox (V)
for j=1,2,3andt € Ox (V) be local sections over V such that

Oxx/((f)x)s  Oxx/(tc), and Ox./(l —1x)

are finite-dimensional vector spaces over C. Then the Tate tame symbol satisfies
the properties

() cx(X; f1, ) =cx (X5 o, f)7h
(2) cx (X5 f1, [213) = cx (X f1, f2) - cx (X5 f1, f3)s
B) ex(X;t,1—1)=1.

Proof. This is an easy consequence of the definition of the Tate tame symbol; see
Definition 6.3 and Theorem 5.6. ]

For completeness, let us compute the resulting formula in the case when x € X
above is a regular point.
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Proposition 6.7. Let X be a Riemann surface and let f, g be holomorphic func-
tions defined in a neighborhood of x € X. Then

my(g)
(X £, g) = (=)™ Dme®) jim J(w)

w—x g(w)mx(f) ) (6.8)

Proof. Since the computation is local, we can just as well assume that x =0 C
and f and g are two functions holomorphic in a neighborhood of 0. Hence they
can be written in the form

f@=7"D¢) and g(z) =" Y(2),

where both ¢ (0) # 0 and ¥ (0) # 0. Then, since the formula (6.8) has the properties
listed in the proposition above, the computation reduces to checking that

c(@Cz,2)=—1, c(C;¢,2)=¢0), and co(C;¢,¥) =1
But this is obvious by Remark 5.7. ([
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