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Coassembly is a homotopy limit map

Cary Malkiewich and Mona Merling

In memory of Bruce Williams

We prove a claim by Williams that the coassembly map is a homotopy limit map.
As an application, we show that the homotopy limit map for the coarse version
of equivariant A-theory agrees with the coassembly map for bivariant A-theory
that appears in the statement of the topological Riemann–Roch theorem.
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1. Introduction

In the celebrated paper [Dwyer et al. 2003], Dwyer, Weiss, and Williams give index-
theoretic conditions that are necessary and sufficient for a perfect fibration E→ B
to be equivalent to a fiber bundle with fibers compact topological (or smooth)
manifolds. Williams [2000] defines a bivariant version of A-theory for fibrations,
which is contravariant in one variable and therefore comes with a coassembly map.
He then reinterprets the condition from [Dwyer et al. 2003] as the condition that
a certain class in bivariant A-theory (the Euler characteristic), after applying the
coassembly map, lifts either along the assembly map or the inclusion of stable
homotopy into A(X).

In this paper, we show that coassembly maps in general agree with homotopy
limit maps, the latter being more amenable to computations. In particular, this
shows that the target of Williams’ coassembly can be interpreted as a homotopy
fixed point spectrum, which has an associated homotopy fixed point spectral se-
quence that computes its homotopy groups. Together with well known formulas

MSC2010: 19D10, 55P42, 55P91.
Keywords: coassembly, A-theory, equivariant A-theory, homotopy limit, bivariant A-theory.
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374 CARY MALKIEWICH AND MONA MERLING

for the assembly map, e.g., in [Malkiewich 2017, Definition 6.2], this means we get
combinatorial formulas for each of the maps used in the statement of the bivariant
topological and smooth Riemann–Roch theorems from [Williams 2000].

In general, the homotopy limit map is defined for any topological group G and
G-space or G-spectrum X as the map from fixed points to homotopy fixed points,

X G
→ XhG .

Atiyah proved that for KU with C2-action induced by complex conjugation the
homotopy limit map is an equivalence. In general, this is not the case, and the ho-
motopy limit problem, beautifully described in [Thomason 1983], asks how close
the homotopy limit map is to being an equivalence. Some of the classical examples
of interest are Segal’s conjecture where X = SG , the sphere spectrum for G finite,
the Atiyah–Segal completion theorem, where X = KUG , equivariant topological
K -theory for G compact Lie, and Thomason’s theorem, where X = K E , the alge-
braic K -theory of a finite Galois extension with Galois group action. In all of these
cases, the homotopy limit map is shown to become an equivalence after suitable
completion or inversion of an element in the homotopy groups of the fixed point
spectrum. More recent solutions of homotopy limit problems appear in [Hu et al.
2011; Röndigs et al. 2018; Heard 2017], which study the homotopy limit problem
for K GL , the motivic spectrum representing algebraic K -theory, with C2-action.

On the other hand, the coassembly map considered in [Williams 2000] is defined
for any reduced contravariant homotopy functor F , whose domain is the category
of spaces over BG. It is a natural transformation F→ F%, one that universally ap-
proximates F by a functor that sends homotopy pushouts to homotopy pullbacks. It
is formally dual to the assembly map of [Weiss and Williams 1995; Davis and Lück
1998], which by [Hambleton and Pedersen 2004; Davis and Lück 1998] coincides
with the assembly map of the Farrell–Jones conjecture [1993]. A comprehensive
recent survey on assembly maps is given in [Lück 2019]. The coassembly map is
also a close analog of the linear approximation map of embedding calculus [Weiss
1999; Goodwillie and Weiss 1999]. Further applications of the coassembly map
appear in [Cohen and Klein 2009; Raptis and Steimle 2014; Malkiewich 2017].

Our first result is a precise correspondence between these two constructions. We
only consider topological groups G that are the realization of a simplicial group G•,
and we focus on the case where F takes values in spectra, because the correspond-
ing result for spaces is similar and a little easier. Without loss of generality, we
assume that the homotopy functor F is enriched in simplicial sets, so that F(EG)
carries a continuous left action by G, and F(BG) maps to its fixed points. We may
then make F(EG) into a G-spectrum whose fixed points are F(BG). An analog
of this result for the assembly map can be found in [Davis and Lück 1998, §5.2].
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Theorem A (Theorem 3.6). Let G be a group that is the realization of a simplicial
group G•. The coassembly map on the terminal object F(BG) → F%(BG) is
equivalent to the homotopy limit map of this G-spectrum, F(BG)→ F(EG)hG .

This is similar to a claim in [Williams 2000], when F is a contravariant form of
algebraic K -theory and G '�X . Giving a precise proof amounts to showing that
diagrams on a suitable category of contractible spaces over BG correspond to G-
objects, plus a little more structure. Our version of the argument uses parametrized
spectra to form a bridge between the two settings.

Our second result applies Theorem A to Williams’ bivariant A-theory functor
A(E→ B) to fibrations of the form EG×G X→ BG where G is a finite group. This
gives the homotopy limit map of the “coarse” equivariant A-theory G-spectrum
from [Malkiewich and Merling 2019], equivalently the K -theory of group actions
from [Barwick et al. 2020] applied to retractive spaces over X .

Theorem B (Theorem 4.2). In the stable homotopy category, the homotopy limit
map for Acoarse

G (X) is isomorphic to the coassembly map for bivariant A-theory:

Acoarse
G (X)H

∼8
��

// Acoarse
G (X)h H

∼

��

A(EG×H X→ B H) // A%(EG×H X→ B H)

This is not quite a direct consequence of Theorem A because we have to show
that the equivalence between the two theories preserves the G-actions and inclu-
sions of fixed points, up to some coherent homotopies.

Remark. This provides one half of an argument that would significantly generalize
the main theorem of [Malkiewich 2017]. The other half relies on a conjectural
connection between assembly maps and the Adams isomorphism, which we do
not pursue here.

Remark. This paper does not consider the homotopy limit problems for profinite
groups, which involve a modified definition of homotopy fixed points that are asso-
ciated to the continuous cohomology of the profinite group [Devinatz and Hopkins
2004]. Our homotopy limit map is the usual one from, e.g., [Bousfield and Kan
1972, Chapter XI, §3.5], and we only consider those topological groups that are geo-
metric realizations of simplicial groups. The main example we have in mind is �X .

Conventions. Throughout, all of our topological spaces are compactly generated
weak Hausdorff (CGWH) [Lewis 1978, Appendix A; Strickland 2009]. Unless
otherwise noted, the term “spectra” can be interpreted to mean prespectra, symmet-
ric spectra, or orthogonal spectra. See [Mandell et al. 2001] for more information
about how to pass between these different models. The term “naïve G-spectrum”
refers to a spectrum with an action by the group G, up to maps that are equivalences
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on all of the categorical fixed point spectra X H subgroups H ≤ G. Equivalently,
this can be viewed as a diagram of spectra on the orbit category O(G)op. In fact, we
will only be concerned with diagrams restricted to the trivial orbit G/G and the full
orbit G/e, corresponding to the data of the G-fixed points of a naïve G-spectrum
and its underlying spectrum with G-action.

2. Review of coassembly

Let B be an unbased space and let UB denote the comma category of spaces over B.
A commuting square in UB is a homotopy pushout square if it is such when we
forget the maps to B. A contravariant functor F from UB to spectra is

• reduced if it sends ∅→ B to a weakly contractible spectrum,
• a homotopy functor if it sends weak equivalences of spaces to stable equiva-

lences of spectra, and
• excisive if it is a reduced homotopy functor that sends coproducts and homo-

topy pushout squares of spaces to products and homotopy pullback squares of
spectra, respectively.

Note that this last condition can be stated in several equivalent ways, the simplest
of which is that F takes all homotopy colimits to homotopy limits.

If F is a contravariant reduced homotopy functor from UB to spectra, consider
the comma category of excisive functors P with natural transformations F→ P .
Define a weak equivalence of such functors to be a natural transformation P→ P ′

(under F) that is a stable equivalence at every object. Inverting these equivalences
gives the homotopy category of excisive functors under F .

Proposition 2.1 [Cohen and Klein 2009; Malkiewich 2017, Proposition 5.4; 2015,
§7]. The homotopy category of excisive functors under F has an initial object F%,
in other words a universal approximation of F by an excisive functor. The natural
transformation F→ F% can be given by the formula

F(X→ B)→ holim
(1n→X)∈1op

X

F((1n
q B)→ B).

Here 1X = 1Sing X is the category of simplices in the simplicial set Sing X .
Concretely, it has an object for every continuous map 1n

→ X and a morphism
for every factorization 1p

→1q
→ X where 1p

→1q is a composite of inclu-
sions of a face. There is a natural “last vertex” operation that gives an equivalence
|1X | −→

∼ X [Goerss and Jardine 2009, Chapter III, §4; Malkiewich 2017, §5].
We could alternatively describe F%(X → B) as the spectrum of sections of a

parametrized spectrum over X whose fiber over x is F((x q B)→ B). See [Weiss
and Williams 1995; Williams 2000; Cohen and Klein 2009; Malkiewich 2015;
2017] for more details and other explicit constructions of the coassembly map.
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3. Proof of Theorem A

The first step is to interpret both the homotopy limit map and the coassembly map
as the unit of an adjunction.

Let G• be a simplicial group with realization G = |G•|, and let BG be the
topological bar construction of G. It will be convenient for us to let UBG refer
to the category of unbased spaces over BG that are homotopy equivalent to cell
complexes, as opposed to all spaces over BG. Recall that 1BG ⊆ UBG is the
subcategory of spaces over BG consisting only of the simplices 1p

→ BG for
varying p ≥ 0 and the compositions of face maps. Note that a homotopy functor
on this subcategory must send every map to a weak equivalence.

Proposition 3.1. For reduced homotopy functors on spaces over BG, the coassem-
bly map is the unit of the adjunction of homotopy categories

reduced homotopy functors
F :Uop

BG→ Sp

restrict
..

⊥

homotopy functors
F :1op

BG→ Sp
holim
1p→X

F(1p)

nn

Proof. We first examine the larger homotopy category of all functors. It is standard
that the homotopy right Kan extension is the right adjoint of restriction. Further-
more, the canonical map of F into the extension of the restriction of F is the unit
of this adjunction. By [Cohen and Klein 2009, §5] or [Malkiewich 2015, §7], this
particular model for the homotopy right Kan extension sends homotopy functors
to reduced homotopy functors, so the adjunction descends to these subcategories,
with the same unit. �

Let BG• be the simplicially enriched category with one object [e] and morphism
space G•. Note that BG ∼= |BG•|. Let C(BG•) be the “cone” category with one
additional object [G] and one additional nontrivial morphism [G] → [e]. This is
isomorphic to the full subcategory of the enriched orbit category O(G)op on the
orbits G/e and G/G. Let ι :BG•→ C(BG•) be the inclusion.

Remark. If X is a G-space or naïve G-spectrum, then X G and X = X {e} form a
diagram over C(BG•). If X is a genuine orthogonal G-spectrum, the same is true
for the genuine fixed points X G , by taking a fibrant replacement, then passing to
the underlying naïve G-spectrum.

Proposition 3.2. For naïve G-spectra, the map (−)G→ (−)hG is equivalent to the
unit of the adjunction of homotopy categories

enriched C(BG•)
diagrams of spectra

ι∗
..

⊥

enriched BG•
diagrams of spectra

(i.e., spectra with G-action)enriched homotopy
right Kan extension

nn

evaluated at [G].
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Proof. This is immediate from the local formula for an enriched homotopy right
Kan extension [Riehl 2014, Example 7.6.6]. �

The next step is to relate the categories on the left-hand side of these adjunctions
together. Morally, we take each homotopy functor F to the diagram on C(BG•)
given by F(BG) and F(EG).

There are two problems to address here. The first problem is that this is not an
equivalence of homotopy categories, but we can fix that by localizing the category
of homotopy functors along the maps that are equivalences on BG and EG. The
second problem is that G will not act on F(EG) unless we make F simplicially
enriched. We fix the second problem using the following result.

Lemma 3.3. Every contravariant homotopy functor F to spaces or spectra can be
replaced by a simplicially enriched functor, by a zig-zag of equivalences of functors

F ∼←− F ′ −→∼ F̃ ′

that is itself functorial in F.

Proof. This is by a variant of the trick used in [Waldhausen 1985] to replace
functors by homotopy functors. It adapts from covariant to contravariant functors
by replacing Map(1p,−) with 1p

×−.
If F lands in orthogonal spectra, regard it as landing in prespectra or symmetric

spectra, and replace the spectrum F(X) at each level by F ′(X)= |Sing F(X)|. The
effect of this is that each degeneracy map 1p

→1q induces a levelwise cofibration
F ′(1q

× X)→ F ′(1p
× X). Then pass back up to orthogonal spectra if desired,

and replace F ′(X) again by the realization

F̃ ′(X)= |n 7→ F ′(1n
× X)|.

This defines a functor that receives a map from F ′ by inclusion of simplicial level 0.
The map is an equivalence on each spectrum level, because F ′ is a homotopy func-
tor and the simplicial space defined above is good and therefore Reedy cofibrant
[Lillig 1973]. We extend the functor structure on F̃ ′ to a simplicial enrichment by
taking each map |Y•| × X→ Z to the realization of the map that at level k is

Yk × F ′(1k
× X)→ F ′(1k

× Z),

obtained from the map of spaces

Yk ×1
k
× X→1k

× Z

whose coordinates are the action Yk ×1
k
× X→ Z and the projection to 1k . �

Proposition 3.4. The forgetful functors in the following diagram are equivalences
of homotopy categories. Here “enriched” means simplicially enriched:
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reduced homotopy functors
F :Uop

BG→ Sp (localized)

enriched reduced homotopy functors
F :Uop

BG→ Sp (localized)

∼

OO

∼

��

enriched reduced functors
F :Uop

BG→ Sp (localized)

∼

��

enriched functors
C(BG•)→ Sp

Proof. The construction of Lemma 3.3 gives an inverse to the first equivalence.
Note this is still well defined after localizing because the construction preserves
the property of a map of functors F→ F ′ being an equivalence on one particular
space X . For the second pair of categories, by Whitehead’s theorem any enriched
functor is a homotopy functor on the cofibrant and fibrant objects. Hence we can
invert the forgetful functor by composing each F with a fibrant replacement in UBG .
To check this respects the localization, we note that when we turn an enriched func-
tor into a homotopy functor, it will have equivalent values on EG and BG, because
these two spaces are already fibrant. For the final pair of categories, the restriction
functor has the enriched homotopy right Kan extension as its right adjoint, and
this adjunction clearly descends to the localization. In fact, since C(BG•) is a full
subcategory of U

op
BG , the counit is an equivalence, and therefore by the definition

of our localization, the unit is also an equivalence; hence we get an equivalence of
categories. �

Next we relate the categories on the right-hand side in Propositions 3.2 and 3.1
using parametrized spectra. To be definite, we will now assume that Sp means
orthogonal spectra. The category of parametrized orthogonal spectra is defined
in [May and Sigurdsson 2006, Definition 11.2.3], and its homotopy category is
obtained by inverting the π∗-isomorphisms from [May and Sigurdsson 2006, Def-
inition 12.3.4].

The first part of the equivalence is as follows. Given a diagram F of orthogonal
spectra over C, at each spectrum level we can take its Bousfield–Kan homotopy
colimit as a diagram of unbased spaces, giving a retractive space over |C|. In total
this gives a parametrized spectrum hocolimC F over |C| [Lind and Malkiewich
2018, §4]. See the diagram
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homotopy functors
F :1op

BG→ Sp

hocolim
1

op
BG

F(1p)
∼

��

parametrized spectra
over |1op

BG |

enriched functors BG•→ Sp
(spectra with left G-action)

l!(QE×G−)∼

OO

The second part of the equivalence is the Borel construction EG×G−, followed
by pullback along the equivalence |1op

BG | −→
∼ BG. Alternatively, we make the

following construction. Let E be any weakly contractible space with a free right
G-action, with a map E/G→|1op

BG |. Let QE be its cofibrant replacement as a free
G-space, so that there is an equivalence l : QE/G −→∼ BG. If X is a spectrum with
G-action, take a cofibrant replacement if necessary so that its levels are well based,
then take QE ×G X , which is a parametrized spectrum over QE/G, and push it
forward along l to |1op

BG |. We will see in the next proposition that this is always
equivalent to the Borel construction, but it is convenient to allow ourselves to pick
a particular space E with this property, rather than having to use the pullback of
EG to |1op

BG |.

Proposition 3.5. These are equivalences of homotopy categories, and the second
is independent of the choice of E , up to isomorphism.

Proof. For the first one, the homotopy category of homotopy functors on 1op
BG

is equivalent to the homotopy category of functors that are fibrant in the aggre-
gate model structure of [Lind and Malkiewich 2018, Theorem 4.4]. Therefore,
hocolim1

op
BG

F(1p) is naturally isomorphic as a map of homotopy categories to
the left Quillen equivalence of [Lind and Malkiewich 2018, Theorem 4.5], and is
thus an equivalence. On the other hand, for a G-space X the horizontal maps in
the following square are equivalences:

QE ×G X

��

∼
// EG×G X

��

|1
op
BG |

∼
// BG

Hence the functor QE ×G − is equivalent to the Borel construction EG ×G −

(which lands in spectra over BG) followed by the pullback from BG to |1op
BG |.

(Under the cofibrancy assumptions on X , the same is also true if we push QE×G X
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forward along l.) This factorization into Borel-then-pullback also holds at the level
of homotopy categories, since the Borel construction preserves all equivalences and
outputs a fibration, on which the pullback preserves equivalences. Then the Borel
construction is an equivalence by [Ando et al. 2018, Appendix B] or [Lind and
Malkiewich 2018, Theorem 4.5], and the derived pullback is an equivalence by
[May and Sigurdsson 2006, Proposition 12.6.7]. �

Now we may finish the proof of Theorem A.

Theorem 3.6. For any reduced homotopy functor F : Uop
BG → Sp, the coassem-

bly map on BG is isomorphic in the homotopy category to the map F(BG)→
F(EG)hG induced by the functoriality of F.

Proof. The adjunction from Proposition 3.1 descends to the localization we de-
scribed above; hence we get the following diagram of adjunctions and equivalences
of homotopy categories. It remains to check that the equivalences and left adjoints
in this figure commute up to some natural isomorphism, so that the figure is an
“equivalence of adjunctions”:

reduced homotopy functors
F :Uop

BG→ Sp (localized)

restrict
..

⊥

homotopy functors
F :1op

BG→ Sp
X 7→holim

1
op
X

F(1p)

nn

hocolim
1

op
BG

F(1p)
∼

��

enriched reduced
homotopy functors

F :Uop
BG→ Sp (localized)

∼

OO

∼

��

enriched reduced functors
F :Uop

BG→ Sp (localized)

∼

��

parametrized spectra
over |1op

BG |

enriched functors
C(BG•)→ Sp

restrict
..

⊥
enriched functors BG•→ Sp

(spectra with left G-action)
homotopy right
Kan extension

nn

QE×G−∼

OO

To form this natural isomorphism, we assume that F is an enriched reduced
homotopy functor on UBG . Composing with fibrant replacement, then reenriching
by the equivalences in Proposition 3.4, we may assume that F sends equivalences
of spaces to level equivalences of spectra. We may also compose with |Sing−|
so that it is enriched in topological spaces. These manipulations are natural in F ;
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hence we can make these assumptions even if what we are after is an isomorphism
that is natural in F .

We define
E = hocolim

1
op
BG

MapBG(1
p, EG)

with G acting on the right on EG. By Lemma 3.7 below, E is weakly contractible.
Form the following diagram at each spectrum level, in which the second map along
the top uses the enriched functoriality of F :

QE × F(EG)

��

// hocolim
1p∈1

op
BG

MapBG(1
p, EG)× F(EG)

��

// hocolim
1p∈1

op
BG

F(1p)

QE ×G F(EG) // hocolim
1p∈1

op
BG

MapBG(1
p, EG)×G F(EG)

55

This map of spaces induces a map of parametrized spectra over QE/G→ |1op
BG |,

or a map from the pushforward of the first to the second over |1op
BG |. To argue that

the above map is an equivalence of parametrized spectra, it suffices to argue it is
an equivalence at each spectrum level.

To check the composite along the bottom is an equivalence, it suffices to examine
the induced map on their homotopy fibers over |1op

BG |. In the target, by a variant
of Quillen’s theorem B [Meyer 1986; Grayson 1976], the map to |1op

BG | is a quasi-
fibration, so the fiber F(1p) is equivalent to the homotopy fiber. In the source, we
pick a single G-orbit of QE and check that the inclusion of G×G F(EG) into the
homotopy fiber of QE×G F(EG)→ QE/G is an equivalence, by replacing E by
a space that is fibrant, then comparing to EG. Therefore the above map induces on
homotopy fibers a map equivalent to F(EG)→ F(1p), which is an equivalence
because F is a homotopy functor. This proves that the left adjoints commute up to
isomorphism. �

Lemma 3.7. The space E = hocolim1
op
BG

MapBG(1
p, EG) is weakly contractible.

Proof. We first rearrange the colimit using the string of weak equivalences

hocolim
Tw(1BG)op

1p
×BG EG ∼

// hocolim
1BG

1p
×BG EG

hocolim
Tw(1BG)op

1p
×MapBG(1

q , EG)

∼

OO

∼

��

hocolim
Tw(1BG)op

MapBG(1
q , EG) ∼

// hocolim
1

op
BG

MapBG(1
q , EG)

(3.8)
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Here Tw(1BG)
op denotes (the opposite of) the twisted arrow category of 1BG .

The objects are arrows in 1BG , and a morphism from 1p
→1q

→ BG to 1p′
→

1q ′
→ BG is a factorization

1p

��

// 1p′

��

1q

��

1q ′oo

��

BG BG

In general, for a category C, the twisted arrow category Tw(C)op is equipped with
a “source” functor s : Tw(C)op

→ C that remembers just the source of each arrow,
and a “target” functor t : Tw(C)op

→ Cop that remembers the target of the arrow.
It is straightforward to define the diagrams on the left-hand side of (3.8). The

top horizontal map is the pullback of a diagram on 1BG along the source func-
tor. Similarly, the horizontal diagram on the bottom is a pullback along the target
functor. The bottom vertical arrow arises by collapsing 1p to a point and is thus a
levelwise equivalence. The top vertical arrow arises from the levelwise maps

1p
×MapBG(1

q , EG)→1p
×BG EG

defined by sending (x, f ) 7→ (x, f (g(x))), where g is the given map 1p
→ 1q .

We check from the definition that this is indeed a map of Tw(1BG)
op-diagrams.

It is also an equivalence on each term, since restricting the 1p or 1q to a single
point is an equivalence, and after this substitution we get a homeomorphism

MapBG({∗}, EG)
∼=
−→ {∗}×BG EG.

The next step is to show that these four maps of colimits are weak equivalences.
For the vertical maps, this follows because the two maps of diagrams are an equiv-
alence on each term. For the horizontal arrows, this follows because the source
and target functors are homotopy terminal. For the source functor, this means that
for any object j ∈ C , the overcategory ( j ↓ s) is contractible. To prove this, we
note that the overcategory consists of pairs of arrows j→ a→ b and morphisms
of the form

j

��

j

��
a

��

// c

��

b doo
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The inclusion of the subcategory of all arrows of the form j = j→ b has a right
adjoint, so that subcategory has an equivalent nerve. Furthermore, this subcategory
has a terminal object j = j = j , so it is contractible. All together, this proves that
s is homotopy terminal. A similar proof works for the target functor t .

We have now reduced to proving that hocolim1BG (1
p
×BG EG) is weakly

contractible. Since geometric realization commutes with finite limits, we get a
homeomorphism

hocolim
1BG

(1p
×BG EG)∼=

(
hocolim
1BG

1p)
×BG EG.

Clearly BG×BG EG ∼= EG is contractible, so it is enough to prove that the map

φ : hocolim
1BG

1p
→ BG,

which arises from all the individual maps 1p
→ BG, is an equivalence. There is

an immediate equivalence

hocolim
1BG

1p
−→∼ hocolim

1BG
∗
∼=
−→ |1BG | −→

∼ BG (3.9)

but that is a different map. To show that φ is an equivalence, we extend it to a
natural transformation of functors on unbased spaces

hocolim
1X

1p
→ X.

It is clearly an equivalence when X is empty or contractible. Furthermore, using
(3.9), both sides are equivalent to the identity functor and are therefore excisive.
A standard inductive argument then shows that φ is an equivalence on all spaces.
This finishes the proof. �

4. Review of coarse and bivariant A-theory

Let G be a finite group and X a G-space. Let R(X) be the category of retractive
spaces

X
i
−→ Y

r
−→ X, ri = id,

with weak equivalences given by the weak homotopy equivalences and cofibrations
given by maps that have the fiberwise homotopy extension property (FHEP). The
category R(X) has a G-action through exact functors induced by conjugation from
the G-action on X [Malkiewich and Merling 2019, §3.1]. For taking K -theory, we
restrict to the subcategory Rh f (X)⊆ R(X) of retractive spaces that are homotopy
finite. These are the spaces that, in the homotopy category of retractive spaces, are
a retract of a finite cell complex relative to X . We note the action respects this
condition.
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For each subgroup H ≤ G, the homotopy fixed points are defined as

Rh f (X)h H
:= Cat(EG, Rh f (X))H ,

where EG is the G-category with one object for each element of G and a unique
morphism between any two objects, and Cat(EG, Rh f (X)) is the category of all
functors and natural transformations, with G acting by conjugation [Malkiewich
and Merling 2019, Definition 2.2].

The homotopy fixed point category Rh f (X)h H is equivalent to the Waldhausen
category whose objects are H -spaces Y containing X as an H -equivariant retract,
whose underlying space is homotopy finite [Malkiewich and Merling 2019, Propo-
sition 3.1]. The morphisms are the H -equivariant maps of retractive spaces Y→ Y ′.
The cofibrations are the H -equivariant maps which are nonequivariantly cofibra-
tions and the weak equivalences are the H -equivariant maps which are nonequiv-
ariantly weak equivalences.

We define Acoarse
G (X) to be the naïve G-spectrum obtained by applying S• to the

Waldhausen G-category Cat(EG, Rh f (X)). This is equivalent to the underlying
naïve G-spectrum of a genuine �-G-spectrum [Malkiewich and Merling 2019,
Theorem 2.21].

For a Hurewicz fibration p : E→ B, the bivariant A-theory A(p) is defined to be
the K -theory of the Waldhausen category of retractive spaces X over E , with the
property that X→ B is a fibration, and the map of fibers Eb→ Xb is a retract up
to homotopy of a relative finite complex. See [Williams 2000; Raptis and Steimle
2014].

In the present section we extend the following result of [Malkiewich and Merling
2019] to the coassembly map.

Proposition 4.1. There is a natural equivalence of symmetric spectra

Acoarse
G (X)H

' A(EG×H X→ B H).

The equivalence is induced by the functor

8 : Rh f (X)h H
→ Rh f (EG×H X

p
−→ B H)

that applies EG ×H − to the retractive space (Y, iY , pY ) over X , obtaining a re-
tractive space over EG×H X :

EG×H X
EG×H iY
−−−−−→ EG×H Y

EG×H pY
−−−−−→ EG×H X.

To define the coassembly map, we observe that while bivariant A-theory is a
functor of fibrations, it can be regarded as a contravariant functor on UB in the
following way. Fix a fibration p : E→ B. Then UB is equivalent to the category
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whose objects are pullback squares

E ′ //

p′
��

E
p
��

B ′ // B

and whose maps are commuting squares (necessarily pullback squares)

E ′′ //

p′′
��

E ′

p′
��

B ′′ // B ′

Along this equivalence, bivariant A-theory is a reduced homotopy functor from U
op
B

to spectra, so it has a coassembly map

cα : A(E ′
p′
−→ B ′)→ A%(E ′

p′
−→ B ′).

We emphasize that the coassembly map depends on the choice of fibration E
p
−→ B

and map B ′→ B. Different choices give rise to different coassembly maps.
Fix the fibration EG×H X→ B H and the pullback square

EG×H X =
//

p
��

EG×H X
p
��

B H =
// B H

and consider the resulting coassembly map. Our last remaining goal is to prove:

Theorem 4.2. In the stable homotopy category, the map from fixed points to homo-
topy fixed points is isomorphic to the coassembly map for bivariant A-theory:

Acoarse
G (X)H

∼

��

// Acoarse
G (X)h H

∼

��

A(EG×H X→ B H) cα
// A%(EG×H X→ B H)

Furthermore the left-hand map in the above diagram can be taken to be the equiv-
alence of Proposition 4.1.

5. Proof of Theorem B

Note that without loss of generality we may take H = G. Since G is finite, we may
ignore issues of enrichment. By Theorem 3.6, the coassembly map for bivariant A-
theory is equivalent to the homotopy limit map for the diagram on C(BG) given by
bivariant A-theory on EG and BG. So it remains to compare the resulting diagram
on C(BG) to the one defined by coarse A-theory.
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Proposition 5.1. The equivalence of Proposition 4.1 can be extended to an equiv-
alence of diagrams of symmetric spectra over C(BG).

We expect it is possible to compare these two as diagrams over O(G)op, but this
raises additional coherence issues, and is not necessary to prove Theorem 4.2.

Proof. We start by describing the O(G)op-action on bivariant A-theory. To each
map of G-sets f : G/H → G/K and G-space X we assign the pullback square

B(∗,G,G×H X) //

��

B(∗,G,G×K X)

��

B(∗,G,G/H)
EG×G f

// B(∗,G,G/K )

The vertical maps collapse X to a point, and the top horizontal map

G×H X→ G×K X

sends (γ, x) to (γ g−1, gx), where g is any element such that f (eH)= g−1K . Note
that this formula is well defined because g is unique up to left multiplication by K .
It is easy to check that these formulas give a functor from O(G) into the category
of pullbacks of the fibration EG×G X→ BG, and therefore define the action of
O(G)op on the bivariant A-theory spectra A(EG×H X→ EG/H). This action is
strict by functoriality of bivariant A-theory [Raptis and Steimle 2014, Remark 3.5].

Now we restrict to C(BG), where we wish to prove that the functor 8 of
Proposition 4.1 gives a map of C(BG) diagrams, in other words that the two
squares below commute:

Acoarse
G (X)G 8

∼
//

include
��

A(EG×G X→ EG/G)

include
��

Acoarse
G (X){e} 8

∼
//

g·
��

A(EG× X→ EG)

g·

��

Acoarse
G (X){e} 8

∼
// A(EG× X→ EG)

This turns out to be false, but only because the relevant functors of Waldhausen
categories agree up to canonical isomorphism, rather than strictly. We therefore
replace our two diagrams over C(BG) by equivalent ones on which the map 8
strictly commutes with the C(BG) action.

First we make the following reduction. We first show that in order to get a
strictly commuting zig-zag of equivalences of C(BG)-diagrams, it is enough to
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define a square of G-equivariant functors

C
F1
//

I
��

C′

I ′
��

D
F2

// D′

such that C and C′ have trivial G-action, and such that the square commutes up to
a G-fixed natural isomorphism η. Given such a square, we may replace D by the
category DI defined as follows:

• the objects DI are ob Cq ob D, and

• the morphisms are given by DI (d, d ′)= D(d, d ′), DI (d, c)= D(d, I c), and
DI (c, d)= D(I c, d) if c is an object of C and d, d ′ are objects of D.

We define a new functor DI →D′ using F2 on the full subcategory on ob D, I ′ ◦ F1

on the full subcategory on ob C, and on each morphism f between c ∈ ob C and
d ∈ ob D, the composite

I ′ ◦ F1(c)
∼=
←→
η

F2 ◦ I (c)←−−→
F2( f )

F2(d).

It is easy to check this is indeed a functor and is G-equivariant. It is then straight-
forward to define the rest of the following diagram so that every functor is equi-
variant and every square of functors commutes strictly, giving a zig-zag of C(BG)-
diagrams of categories

C

I
��

C
F1
//

��

C′

I ′
��

D DI∼
oo // D′

Note that if C and D are Waldhausen categories and all functors I, I ′, F1, F2 are
exact, then the resulting diagram above is also a diagram of Waldhausen categories,
where DI has the Waldhausen structure inherited from computing maps in D. With
this reduction in hand, it is enough to make a square of functors of Waldhausen
G-categories, in which the top row has trivial G-action, that commutes up to a
G-fixed natural isomorphism. We will construct the square

Cat(EG, Rh f (X))G
8

//

I

��

Rh f (EG×G X→ BG)

q∗
��

Rh f (EG× X→ EG)

const
��

Cat(EG, Rh f (X))
8̃
// Cat(EG, Rh f (EG× X→ EG))
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The map 8 along the top is the one from Proposition 4.1 that applies EG×H − to
the retractive space (Y, iY , pY ) over X , obtaining a retractive space over EG×H X .

The left-hand vertical map I includes the fixed points into the whole category,
i.e., takes a retractive G-space (Y, i, p) to the G-tuple of retractive spaces (Y, i ◦ g−1,

g ◦ p) with isomorphisms of retractive spaces

φg,h : (Y, i ◦ g−1, g ◦ p)
h−1g·−
−−−−→ (Y, i ◦ h−1, h ◦ p)

over the identity map of X . Along the right-hand edge, the first functor pulls back
along the quotient map

q : EG× X→ EG×G X.

The left action of g ∈ G on the target is by pullback along the map

ρg : EG× X
−·g×g−1

·−

−−−−−−→ EG× X

and note that q∗ lands in the G-fixed points because the composite function q ◦ ρg

is equal to q . The second functor on the right-hand edge pulls back along the map
of categories EG→∗. To define the functor on the bottom, first form the functor

8 : Rh f (X)→ Rh f (EG× X→ EG),

8(Z , i, p)= EG× (Z , i, p)= (EG× Z , id× i, id× p).

Then pick the isomorphisms

θg :8 ◦ g→ g ◦8,

EG× (Z , i ◦ g−1, g ◦ p)→ ρ∗g(EG× (Z , i, p))

arising from the commuting diagram

EG× X
·g,g−1

·

ρg
//

id,i◦g−1

��

EG× X

id,i
��

EG× Z
·g,id

//

id,g◦p
��

EG× Z

id,p
��

EG× X
·g,g−1

·

ρg
// EG× X

We check the cocycle condition gθh ◦ θg = θgh , which reduces to the equality
(− · g) · h =− · (gh) as self-maps of EG × Z , and ρh ◦ ρg = ρgh as self-maps of
EG × X . Therefore by [Malkiewich and Merling 2019, Definition 2.5], the iso-
morphisms θg make 8 a pseudoequivariant functor. By [Malkiewich and Merling
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2019, Proposition 2.10], after applying Cat(EG,−) we get a strictly equivariant
functor 8̃.

The top route through our diagram of functors takes a retractive G-space Y
over X to the functor EG→ Rh f (EG× X→ EG) with values

g 7→ q∗(EG×G (Y, i, p)), (g→ h) 7→ id.

The bottom route produces the functor with values

g 7→ ρ∗g(EG× (Y, i, p)).

To describe the maps, let us represent the space ρ∗g(EG× (Y, i, p)) by drawing the
span along which we take the pullback to get it:

EG× Y
id,p
−−→ EG× X

·g,g−1
·

←−−−−
ρg

EG× X ρ∗g(EG× (Y, i, p)).

Then our functor out of EG assigns the map g→ h to the composite of the following
isomorphisms:

EG× Y
id,p
//

·g−1,id
��

EG× X

·g−1,g·
��

EG× X
·g,g−1

·

ρg
oo ρ∗g(EG× (Y, i, p))

θ−1
g
��

EG× Y
id,g◦p

//

id,h−1g·
��

EG× X EG× X EG× (Y, i ◦ g−1, g ◦ p)

id,(h−1g·)
��

EG× Y
id,h◦p

//

·h,id
��

EG× X

·h,h−1
·

��

EG× X EG× (Y, i ◦ h−1, h ◦ p)

θh

��

EG× Y
id,p
// EG× X EG× X

·h,h−1
·

ρh
oo ρ∗h (EG× (Y, i, p))

(∗)

Now we will define a natural isomorphism η from the bottom route to the top route.
Continuing to use this span notation, for each g ∈ EG we define an isomorphism ηg

by the map of spans

EG× Y
id,p

//

id,id
��

EG× X

q

��

EG× X
ρg
oo ρ∗g(EG× (Y, i, p))

ηg

��

EG×G Y
id,p
// EG×G X EG× X

q
oo q∗(EG×G (Y, i, p))

This commutes with the maps g→ h of EG because the composite of the three
maps of spans from (∗) commutes with the map of spans just above. Naturality
follows because each G-equivariant map Y → Y ′ induces maps on the source and
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target of ηg that commute with ηg for each g. Finally we check that η is a G-fixed
natural transformation. The map γ ηγ−1g := ρ

∗
γ ηγ−1g comes from the map of spans

EG×Y
id,p
//

id,id

��

EG×X

q

��

EG×X
ρ
γ−1g

oo EG×X
ργ
oo

ρg

ss

ρ∗γρ
∗

γ−1g(EG×(Y, i, p))

ρ∗γ ηγ−1g
��

EG×G Y
id,p
// EG×G X EG×X

q
oo EG×X

ργ
oo

q
ll

ρ∗γ q∗(EG×G (Y, i, p))

which is indeed the same map of spans that defines ηg. This finishes the con-
struction of the square of equivariant functors that commutes up to equivariant
isomorphism. In summary, using the reduction cited earlier in the proof, we have
now constructed a strictly commuting zig-zag of C(BG)-diagrams of Waldhausen
categories

Cat(EG, Rh f (X))G // Cat(EG, Rh f (X))

Cat(EG, Rh f (X))G

8

��

// Cat(EG, Rh f (X))I

∼

OO

��

Rh f (EG×G X→ BG)
const◦q∗

// Cat(EG, Rh f (EG× X→ EG))

Rh f (EG×G X→ BG)
q∗

// Rh f (EG× X→ EG)

const ∼

OO

Now we apply the K -theory functor to this diagram. By Proposition 4.1, the left
map 8 induces an equivalence in K -theory. The right maps labeled ∼ are G-maps
which are nonequivariant equivalences. It remains to show that the remaining ver-
tical map gives an equivalence on K -theory. In general, for any pseudoequivariant
functor 8 : C→ D, we have a commutative diagram of nonequivariant categories

Cat(EG,C)

∼

��

8̃
// Cat(EG,D)

∼

��

C
8

// D

where the vertical maps are nonequivariant equivalences. (Note that the diagram
with those equivalences reversed doesn’t commute.) Since8 induces an equivalence
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on K -theory, so does 8̃. Now use the factorization

Cat(EG, Rh f (X))

8̃

33

∼
// Cat(EG, Rh f (X))I // Cat(EG, Rh f (EG× X→ EG))

to conclude that the remaining functor

Cat(EG, Rh f (X))I → Cat(EG, Rh f (EG× X→ EG))

also gives an equivalence in K -theory. Thus we get a strictly commuting zig zag
of equivalences of C(BG) diagrams in spectra. �
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Rational equivalence of cusps

Shouhei Ma

We prove that two cusps of the same dimension in the Baily–Borel compactifi-
cation of some classical series of modular varieties are linearly dependent in the
rational Chow group of the compactification. This gives a higher dimensional
analogue of the Manin–Drinfeld theorem. As a consequence, we obtain a higher
dimensional generalization of modular units as higher Chow cycles on the mod-
ular variety.

1. Introduction

The classical theorem of Manin [1972] and Drinfeld [1973] asserts that the differ-
ence of two cusps is torsion in the Picard group of the modular curve for a congru-
ence subgroup of SL2(Z). This had stimulated the development of the theory of
modular units and cuspidal class groups; see [Kubert and Lang 1981]. The original
proof of Manin and Drinfeld used modular symbols and Hecke operators on the
cohomology of the modular curve. Later, an interpretation in terms of the mixed
Hodge structure of the modular curve minus the cusps was also found [Elkik 1990].

Our purpose in this paper is to prove a generalization of the Manin–Drinfeld
theorem for cusps in the Baily–Borel compactification of some higher dimensional
classical modular varieties. In higher dimensions, cusps are no longer divisors, but
algebraic cycles of various codimension. We wish to clarify their contribution to
the Chow group of the Baily–Borel compactification.

The modular varieties of our object of study are of the following three types:

(1) modular varieties of orthogonal type attached to rational quadratic forms of
signature (2, n), which have only 0-dimensional and 1-dimensional cusps;

(2) Siegel modular varieties attached to rational symplectic forms; and

(3) modular varieties of unitary type, including the Picard modular varieties, at-
tached to Hermitian forms over imaginary quadratic fields.
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In Cartan’s classification of irreducible Hermitian symmetric domains, these cor-
respond to the domains D of type IV, III, and I, respectively. The Baily–Borel
compactification [Baily and Borel 1966] of the modular variety 0\D for an arith-
metic group 0 is obtained by adjoining rational boundary components to D and
then taking the quotient by 0. Below, by a cusp we mean the closure of the image
of a rational boundary component in the Baily–Borel compactification.

Our main results are the following.

Theorem 1.1 (orthogonal case). Let 3 be an integral quadratic lattice of sig-
nature (2, n), 0 a congruence subgroup of the orthogonal group O+(3), and
X0 the Baily–Borel compactification of the modular variety defined by 0. Let
Z1, Z2 be two cusps of X0 of the same dimension, say k ∈ {0, 1}. Assume that
n ≥ 3 if k = 1. Then we have Q[Z1] = Q[Z2] in the rational Chow group
CHk(X0)Q = CHk(X0)⊗Z Q of X0.

Theorem 1.2 (symplectic case). Let 3 be an integral symplectic lattice, 0 a con-
gruence subgroup of the symplectic group Sp(3), and X0 the Satake–Baily–Borel
compactification of the Siegel modular variety defined by 0. If Z1, Z2 are two
cusps of X0 of the same dimension, say k, then Q[Z1] =Q[Z2] in CHk(X0)Q.

Theorem 1.3 (unitary case). Let K be an imaginary quadratic field, 3 a Hermitian
lattice over OK , 0 a congruence subgroup of the unitary group U(3), and X0 the
Baily–Borel compactification of the modular variety defined by 0. If Z1, Z2 are
two cusps of X0 of the same dimension, say k, then Q[Z1] =Q[Z2] in CHk(X0)Q.

Note that the equality Q[Z1] =Q[Z2] in CHk(X0)Q is the same as the equality
N1[Z1] = N2[Z2] in the integral Chow group CHk(X0) for some natural numbers
N1, N2. When k = 0, we must have N1= N2, so [Z1]−[Z2] is torsion in CH0(X0).

In the symplectic case, when 3 has rank ≥ 4, every finite-index subgroup of
Sp(3) is a congruence subgroup by [Mennicke 1965; Bass et al. 1964]. The case
rk(3)= 2 is just the case of modular curves.

The case (n, k)= (2, 1) in the orthogonal case is indeed an exception. We have
self products of modular curves as typical examples of X0 in n = 2, for which two
transversal boundary curves are not homologically equivalent. On the other hand,
we should note that some consideration in the case n = 2 is necessary for our proof
for the case n ≥ 3.

The proof of Theorems 1.1–1.3 is based on the same simple idea. We connect
Z1 and Z2 by a chain of submodular varieties or their products, through the in-
terior or the boundary, and use induction on the dimension of modular varieties.
This eventually reduces the problem to the Manin–Drinfeld theorem for modular
curves. The actual argument requires case-by-case construction depending on the
combinatorics of rational boundary components. We need to argue the three cases
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separately, though the symplectic and the unitary cases are similar. Theorem 1.1
is proved in Section 2, Theorem 1.2 in Section 3, and Theorem 1.3 in Section 4.

In Section 5, as a consequence of these results, we associate an explicit nonzero
element of the higher Chow group CHk(0\D, 1)Q of the modular variety 0\D
(before compactification) to each pair (Z1, Z2) of cusps of maximal dimension k.
This gives a higher dimensional analogue of modular units from the viewpoint of
algebraic cycles. If the span of all such higher Chow cycles on 0\D has dimen-
sion no less than the number of maximal cusps, we would then obtain a nontrivial
subspace of CHk(X0, 1)Q for the Baily–Borel compactification X0.

Throughout the paper 0(N ) stands for the principal congruence subgroup of
SL2(Z) of level N , and X (N ) = 0(N )\H∗ the (compactified) modular curve
for 0(N ). In Section 2 and Section 3, for a free Z-module 3 of finite rank, we
denote by 3∨ = HomZ(3,Z) its dual Z-module and define 3F = 3⊗Z F for
F = Q,R,C. For a Q-vector space V we also write V∨ = HomQ(V,Q) and
VF = V ⊗Q F when no confusion is likely to occur.

2. The orthogonal case

In this section we prove Theorem 1.1. We first recall orthogonal modular varieties;
see [Scattone 1987; Looijenga 2016]. Let 3 be a free Z-module of rank 2+ n
equipped with a nondegenerate symmetric bilinear form ( · , · ) : 3×3→ Z of
signature (2, n). Let

Q3 = {[Cω] ∈ P3C | (ω, ω)= 0}

be the isotropic quadric in P3C. The open set of Q3 defined by the condition
(ω, ω) > 0 consists of two connected components, and the Hermitian symmetric
domain D3 attached to 3 is defined as one of them. This choice is equivalent to
the choice of an orientation of a positive definite plane in 3R.

Let O(3) be the orthogonal group of 3, namely the group of isomorphisms
3→3 preserving the quadratic form. We write O+(3) for the subgroup of O(3)
preserving the component D3. For a natural number N let O+(3, N ) < O+(3) be
the kernel of the reduction map O+(3)→ GL(3/N3). A subgroup 0 of O+(3)
is called a congruence subgroup if it contains O+(3, N ) for some level N . A
typical example is the kernel of the reduction map O+(3)→ GL(3∨/3) for the
discriminant group 3∨/3.

There are two types of rational boundary components of D3: 0-dimensional
and 1-dimensional components. The 0-dimensional components correspond to
isotropic Q-lines I in3Q: we take the point pI =[IC] ∈ Q3, which is in the closure
of D3, for each such I . The 1-dimensional components correspond to isotropic Q-
planes J in 3Q: we take the connected component of PJC−PJR 'HtH, say HJ ,
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that is in the closure of D3. The union

D∗3 = D3 t
⊔

dim J=2

HJ t
⊔

dim I=1

pI

is equipped with the Satake topology [Baily and Borel 1966; Borel and Ji 2005].
By [Baily and Borel 1966], the quotient space X0 = 0\D∗3 has the structure of a
normal projective variety and contains 0\D3 as a Zariski open set.

In Section 2A we prove Theorem 1.1 for 0-dimensional cusps, and in Section 2B
for 1-dimensional cusps. Throughout this section U stands for the rank 2 unimod-
ular hyperbolic lattice with Gram matrix

( 0
1

1
0

)
. The symbol 31 ⊥32 stands for the

orthogonal direct sum of two quadratic lattices (or spaces) 31,32, while 31⊕32

just stands for the direct sum of 31,32 as Z-module (or linear space) and does not
necessarily mean that (31,32)≡ 0.

2A. 0-dimensional cusps. In this subsection we prove Theorem 1.1 for 0-dimen-
sional cusps. Let I1 6= I2 be two isotropic lines in 3Q and p1, p2 ∈ X0 the corre-
sponding 0-dimensional cusps. We consider separately the cases where (I1, I2)≡ 0
or (I1, I2) 6≡ 0. In the former case p1 and p2 are joined by a boundary curve, while
in the latter case they are joined by a modular curve through the interior of X0.

2A1. The case (I1, I2) ≡ 0. We first assume that (I1, I2) ≡ 0. The direct sum
J = I1⊕ I2 is an isotropic plane in 3Q. Let H∗J =HJ t

⊔
I⊂J pI and 0J ⊂ SL(J )

be the image of the stabilizer of J in 0. We have a generically injective mor-
phism f : X J → X0 from the modular curve X J = 0J\H

∗

J whose image is the
1-dimensional cusp associated to J .

Claim 2.1. 0J is a congruence subgroup of SL(JZ), where JZ = J ∩3.

Proof. There exists a rank 2 isotropic sublattice J ′Z in 3Q such that J ′Z ' (JZ)
∨ by

the pairing. The lattice31= JZ⊕ J ′Z is isometric to U ⊥U . We set32= (31)
⊥
∩3

and 3′ =31 ⊥32. Recall that 0 contains O+(3, N ) for some level N . Since both
3 and 3′ are full lattices in 3Q, we can find natural numbers N1, N2 such that

N13
′
⊂ N3⊂3⊂ N−1

2 3′.

If we set N ′ = N1 N2, this tells us that

O+(3′, N ′)⊂ O+(3, N )⊂ 0 (2.2)

inside O(3Q)= O(3′
Q
). Now we have the embedding

SL2(Z)' SL(JZ) ↪→ O+(3′), γ 7→ (γ |JZ
)⊕ (γ ∨|J ′Z)⊕ id32,

whose image is contained in the stabilizer of J . Since this maps 0(N ′) into
O+(3′, N ′)⊂ 0, we see that 0J contains 0(N ′). �
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Let q1, q2 be the cusps of X J corresponding to I1, I2, respectively. By this
claim we can apply the Manin–Drinfeld theorem to X J . Therefore, [q1] = [q2]

in CH0(X J )Q. Since f (q1)= p1 and f (q2)= p2, we obtain

[p1] = f∗[q1] = f∗[q2] = [p2]

in CH0(X0)Q.

2A2. The case (I1, I2) 6≡ 0. Next we assume that (I1, I2) 6≡ 0. In this case I1⊕ I2 is
isometric to UQ. Its orthogonal complement (I1⊕ I2)

⊥ has signature (1, n−1). We
choose a vector v of positive norm from (I1⊕ I2)

⊥ and put3′
Q
= I1⊕ I2⊕Qv. Then

3′
Q

has signature (2, 1). Let D3′ be the Hermitian symmetric domain attached
to 3′

Q
. We have the natural inclusion D∗3′ ⊂ D∗3, which is compatible with the

embedding of orthogonal groups

ι : O+(3′Q) ↪→ O+(3Q), γ 7→ γ ⊕ id(3′
Q
)⊥ .

Claim 2.3. There is a subgroup 0′<O+(3′
Q
) such that ι(0′)⊂0 and X ′=0′\D∗3′

is naturally isomorphic to X (N ) for some level N .

Proof. Let 31 = U ⊥ 〈2〉. Then 3′
Q

is isometric to the scaling of (31)Q by
some positive rational number. This gives natural isomorphisms D∗3′ ' D∗31

and
O+(3′

Q
)' O+((31)Q). The group O+((31)Q) is related to SL2(Q) by the follow-

ing well-known construction (cf. [Maclachlan and Reid 2003, §2.4]). Let V⊂M2(Q)

be the space of 2×2 matrices with trace 0, equipped with the symmetric form
(A, B) = tr(AB). Then V ∩ M2(Z) is isometric to 31. By conjugation SL2(Q)

acts on V . This defines a homomorphism

ϕ : SL2(Q)→ O+(V )= O+((31)Q)

with Ker(ϕ)= {±I }. (We have Im(ϕ)= SO+(V ), but we do not need this fact.) It
is readily checked that ϕ(0(N ))⊂ O+(31, N ) for every level N . Furthermore, ϕ
is compatible with the Veronese isomorphism

H∗→ D∗31
, τ 7→ e+ τv0− τ

2 f,

where e, f are the standard basis of U and v0 is a generator of 〈2〉. Now by the
same argument as (2.2), there exists a level N such that the embedding ι maps
O+(31, N ) into 0. This proves our claim. �

Let q1, q2 be the cusps of X ′ corresponding to the isotropic lines I1, I2 of 3′
Q

.
By this claim we have a finite morphism f : X ′→ X0 which sends q1 to p1 and q2

to p2. By the Manin–Drinfeld theorem for X ′ we have [q1] = [q2] in CH0(X ′)Q.
Applying f∗, we obtain [p1] = [p2] in CH0(X0)Q. This finishes the proof of
Theorem 1.1 for 0-dimensional cusps.
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Remark 2.4. If 3 has Witt index 2, (I1⊕ I2)
⊥ contains an isotropic line, say I3.

Then we could also apply the result of Section 2A1 to I1 vs. I3 and to I3 vs. I2, thus
obtaining [p1] = [p2] via I3. Together with the case of Section 2A1, this shows
that when X0 contains at least one 1-dimensional cusp, then any two 0-dimensional
cusps can be connected by a chain of 1-dimensional cusps of length ≤ 2, which
provides their rational equivalence.

2B. 1-dimensional cusps. In this subsection we prove Theorem 1.1 for 1-dimen-
sional cusps.

2B1. Preliminaries in n=2. Although the case n=2 is not included in Theorem 1.1
for 1-dimensional cusps, we need to study a specific example in n = 2 as prelim-
inaries for the proof for the case n ≥ 3. We consider the lattice 2U = U ⊥ U .
Let e1, f1 be the standard basis of the first copy of U , and e2, f2 be that of the
second U . Let J ′1 =Qe2⊕Qe1 and J ′2 =Q f2⊕Q f1, which are isotropic planes
in 2UQ. We take an arbitrary natural number N and consider the modular surface
S(N )= O+(2U, N )\D∗2U . Let C1,C2 be the boundary curves of S(N ) associated
to J ′1, J ′2, respectively.

Lemma 2.5. We have Q[C1] =Q[C2] in CH1(S(N ))Q.

Proof. Recall that we have the Segre isomorphism

H×H→ D2U , (τ1, τ2) 7→ e1− τ1τ2 f1+ τ1e2+ τ2 f2. (2.6)

This extends to H∗×H∗→D∗2U , and maps the boundary components H× (τ2 = 0),
H× (τ2 = i∞) of H∗×H∗ to the boundary components HJ ′1,HJ ′2 of D∗2U , respec-
tively.

Let J ′3=Q f2⊕Qe1 and J ′4=Qe2⊕Q f1. By the pairing we identify J ′2' (J
′

1)
∨

and J ′4 ' (J
′

3)
∨. Then we define an embedding

SL2(Q)×SL2(Q)= SL(J ′1)×SL(J ′3) ↪→ O+(2UQ)

by sending γ1 ∈ SL(J ′1) to (γ1|J ′1)⊕ (γ
∨

1 |J ′2) and γ3 ∈ SL(J ′3) to (γ3|J ′3)⊕ (γ
∨

3 |J ′4).
This embedding of groups is compatible with the isomorphism (2.6) of domains,
and it maps 0(N )× 0(N ) into O+(2U, N ). We thus obtain a finite morphism
f : X (N )× X (N )→ S(N ) which maps the boundary curves

C ′1 = X (N )× (τ2 = 0), C ′2 = X (N )× (τ2 = i∞)

of X (N )×X (N ) onto C1,C2, respectively. By the Manin–Drinfeld theorem for the
second copy of X (N ), we have [C ′1] = [C

′

2] in CH1(X (N )×X (N ))Q. Applying f∗,
we obtain the assertion. �
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2B2. The case J1 ∩ J2 = {0}. We go back to the proof of Theorem 1.1. Let 3
have signature (2, n) with n ≥ 3. Let J1 6= J2 be two isotropic planes in 3Q and
Z1, Z2 ⊂ X0 the corresponding 1-dimensional cusps. We first consider the case
where J1 ∩ J2 = {0}. In this case the pairing between J1 and J2 is perfect because
J⊥i /Ji is negative definite. The direct sum 3′

Q
= J1⊕ J2 is isometric to 2UQ. We

can take an isometry 2UQ→3′
Q

, which maps J ′1, J ′2 to J1, J2, respectively. This
gives an embedding of orthogonal groups

O+(2UQ)' O+(3′Q) ↪→ O+(3Q), γ 7→ γ ⊕ id(3′
Q
)⊥, (2.7)

which is compatible with the embedding D2U ' D3′ ⊂ D3 of domains. By the
same argument as (2.2), we can find a level N such that the embedding (2.7)
maps O+(2U, N ) into 0. We thus obtain a finite morphism f : S(N )→ X0 with
f (C1)= Z1 and f (C2)= Z2. Sending the equality Q[C1] =Q[C2] of Lemma 2.5
by f∗, we obtain Q[Z1] =Q[Z2] in CH1(X0)Q.

2B3. The case J1 ∩ J2 6= {0}. We next consider the case where J1 ∩ J2 6= {0}. Let
I = J1 ∩ J2 and choose splittings J1 = I ⊕ I1 and J2 = I ⊕ I2. Since (I1, I2) 6≡ 0,
we have I1 ⊕ I2 ' UQ. Let 3′

Q
= I1 ⊕ I2 and 3′′

Q
= (3′

Q
)⊥. Then 3′′

Q
has

signature (1, n− 1). Since n− 1≥ 2 and 3′′
Q

contains at least one isotropic line I ,
we find that 3′′

Q
contains infinitely many isotropic lines. We can choose isotropic

lines I3, I4 in 3′′
Q

such that I, I3, I4 are linearly independent. Put J3 = I4⊕ I2 and
J4 = I3⊕ I1. Then J3, J4 are isotropic of dimension 2 and we have

J1 ∩ J3 = {0}, J3 ∩ J4 = {0}, J4 ∩ J2 = {0}.

If Zi ⊂ X0 is the 1-dimensional cusp associated to Ji , we can apply the result of
Section 2B2 successively and obtain

Q[Z1] =Q[Z3] =Q[Z4] =Q[Z2]

in CH1(X0)Q. This finishes the proof of Theorem 1.1 for 1-dimensional cusps.

3. The symplectic case

In this section we prove Theorem 1.2. We first recall Siegel modular varieties
(see [Hulek et al. 1993; Looijenga 2016]). Let 3 be a free Z-module of rank 2g
equipped with a nondegenerate symplectic form ( · , · ) :3×3→ Z. Let Sp(3) be
the symplectic group of 3, namely the group of isomorphisms 3→3 preserving
the symplectic form. For a natural number N we write Sp(3, N ) for the kernel
of the reduction map Sp(3)→ GL(3/N3). A subgroup 0 of Sp(3) is called a
congruence subgroup if it contains Sp(3, N ) for some level N . When g ≥ 2, every
finite-index subgroup of Sp(3) is a congruence subgroup [Mennicke 1965; Bass
et al. 1964].
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Let
LG3 = {[V ] ∈ G(g,3C) | ( · , · )|V ≡ 0}

be the Lagrangian Grassmannian parametrizing g-dimensional (= maximal) isotropic
C-subspaces of 3C. The Hermitian symmetric domain attached to 3 is defined as
the open locus D3 ⊂ LG3 of those [V ] such that the Hermitian form i( · , ·̄ )|V on
V is positive definite.

Rational boundary components of D3 correspond to isotropic Q-subspaces I
of 3Q. To each such I we associate the locus DI ⊂ LG3 of those [V ] which
contains I and for which i( · , ·̄ )|V is positive semidefinite with kernel IC. If
we consider the rational symplectic space 3′

Q
= I⊥/I , then DI is canonically

isomorphic to the Hermitian symmetric domain D3′ attached to 3′
Q

by mapping
[V ] ∈ DI to [V/IC] ∈ D3′ . The union

D∗3 = D3 t
⊔

I⊂3Q

DI

is equipped with the Satake topology [Baily and Borel 1966; Borel and Ji 2005;
Hulek et al. 1993]. By [Baily and Borel 1966], the quotient space X0 = 0\D∗3 has
the structure of a normal projective variety and contains 0\D3 as a Zariski open set.

Theorem 1.2 is proved by induction on g. The case g = 1 follows from the
Manin–Drinfeld theorem. Let g ≥ 2. Assume that the theorem is proved for every
congruence subgroup of Sp(3′) for every symplectic lattice 3′ of rank < 2g. We
then prove the theorem for 0 < Sp(3) with 3 rank 2g.

Let I1 6= I2 be two isotropic Q-subspaces of 3Q of the same dimension, say g′,
and Z1, Z2 ⊂ X0 the corresponding cusps. If we write g′′ = g− g′, then Zi has
dimension k = g′′(g′′+ 1)/2. We consider the following three cases separately:

(1) I1 ∩ I2 6= {0};

(2) the pairing between I1 and I2 is perfect;

(3) I1 ∩ I2 = {0} but the pairing between I1 and I2 is not perfect.

The case (1) is studied in Section 3A, where Z1 and Z2 are joined by a modular
variety in the boundary. The case (2) is studied in Section 3B, where Z1 and Z2

are joined by a product of two modular varieties (when g′ = 1) or by a chain of
boundary modular varieties (when g′ > 1). The remaining case (3) is considered
in Section 3C, where we combine the results of (1) and (2).

3A. The case I1 ∩ I2 6= {0}. Assume that I1∩ I2 6= {0}. Let I = I1∩ I2. In this case
DI1,DI2 are in the boundary of DI . We set 3′

Q
= I⊥/I , I ′1 = I1/I , and I ′2 = I2/I .

Then I ′1, I ′2 are isotropic subspaces of 3′
Q

. The isomorphism DI → D3′ extends to
D∗I → D∗3′ and maps DIi to DI ′i . The stabilizer of I in 0 acts on 3′

Q
naturally. Let

0I < Sp(3′
Q
) be its image in Sp(3′

Q
). By a similar argument as Claim 2.1, 0I is a
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congruence subgroup of Sp(3′) for some lattice 3′ ⊂3′
Q

. If we put X I = 0I\D∗3′ ,
we have a generically injective morphism f : X I → X0 onto the I -cusp.

Let Z ′1, Z ′2 ⊂ X I be the cusps of X I corresponding to I ′1, I ′2 ⊂ 3
′

Q
, respec-

tively. By the induction hypothesis, we have Q[Z ′1] =Q[Z ′2] in CHk(X I )Q. Since
f (Z ′i )= Zi , applying f∗ gives Q[Z1] =Q[Z2] in CHk(X0)Q.

3B. The case (I1, I2) perfect. Next we consider the case where the pairing be-
tween I1 and I2 is perfect. We distinguish the cases g′ > 1 and g′ = 1 (i.e., top
dimensional cusps).

3B1. The case g′ > 1. First let g′ > 1. We can choose a proper subspace J1 6= {0}
of I1. We put J2 = J⊥1 ∩ I2 and I3 = J1⊕ J2. Then I3 is isotropic of dimension g′.
By construction we have I1∩ I3 6= {0} and I3∩ I2 6= {0}. Therefore we can apply the
result of Section 3A to I1 vs. I3 and to I3 vs. I2. If Z3 is the cusp of X0 associated
to I3, this gives Q[Z1] =Q[Z3] =Q[Z2] in CHk(X0)Q.

3B2. The case g′ = 1. Next let g′ = 1. We set 3′
Q
= I1⊕ I2, which is a nondegen-

erate symplectic space of dimension 2. Then 3′′
Q
:= (3′

Q
)⊥ is also nondegenerate

of dimension 2g−2 and we have 3Q =3
′

Q
⊥3′′

Q
. Let D3′ , D3′′ be the Hermitian

symmetric domains attached to 3′
Q
,3′′

Q
, respectively. We have the embedding of

domains
D3′ ×D3′′ ↪→ D3, (V ′, V ′′) 7→ V ′⊕ V ′′. (3.1)

This is compatible with the embedding of groups

Sp(3′Q)×Sp(3′′Q) ↪→ Sp(3Q), (γ ′, γ ′′) 7→ γ ′⊕ γ ′′. (3.2)

The isotropic lines I1, I2 in 3′
Q

correspond to the respective rational boundary
points [(I1)C], [(I2)C] of D3′ ' H. Then (3.1) extends to D∗3′ ×D∗3′′ ↪→ D∗3 and
maps [(Ii )C]×D3′′ to DIi .

We take some full lattices 3′ ⊂ 3′
Q

and 3′′ ⊂ 3′′
Q

. By the same argument as
(2.2), we can find a level N such that (3.2) maps Sp(3′, N )× Sp(3′′, N ) into 0.
If we put X ′ = Sp(3′, N )\D∗3′ and X ′′ = Sp(3′′, N )\D∗3′′ , we thus obtain a finite
morphism f : X ′ × X ′′→ X0. Let p1, p2 be the cusps of the modular curve X ′

corresponding to I1, I2 ⊂3
′

Q
, respectively. If we set

Z ′i = pi × X ′′ ⊂ X ′× X ′′,

the above consideration shows that f (Z ′i )= Zi .
We have [p1] = [p2] in CH0(X ′)Q by the Manin–Drinfeld theorem. Taking the

pullback by X ′×X ′′→ X ′, we obtain [Z ′1] = [Z
′

2] in CHk(X ′×X ′′)Q. Then, taking
the pushforward by f , we obtain Q[Z1] =Q[Z2] in CHk(X0)Q.
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3C. The remaining case. Finally we consider the remaining case, namely that
I1 ∩ I2 = {0} but the pairing between I1 and I2 is not perfect. Let J1 ⊂ I1 and
J2 ⊂ I2 be the kernels of the pairing between I1 and I2. We choose splittings
I1 = J1⊕ K1 and I2 = J2⊕ K2. Then dim J1 = dim J2 and the pairing between K1

and K2 is perfect. (We may have Ki = {0}. This is the case, e.g., when g′ = 1.)
We set 3′

Q
= K1⊕ K2 and 3′′

Q
= (3′

Q
)⊥, which are nondegenerate subspaces of

3Q with 3Q =3
′

Q
⊥3′′

Q
. By definition J1 and J2 are isotropic subspaces of 3′′

Q

with J1 ∩ J2 = {0} and (J1, J2)≡ 0. We can take another isotropic subspace J0 of
3′′

Q
of the same dimension as J1, J2 such that the pairings (J0, J1) and (J0, J2) are

perfect. We set I3 = J0⊕ K2 and I4 = J0⊕ K1. Then I3, I4 are isotropic subspaces
of 3Q of the same dimension as I1, I2. By construction the pairings (I1, I3) and
(I2, I4) are perfect, and we have I3 ∩ I4 6= {0}. Then we can apply the result of
Section 3B to I1 vs. I3 and to I2 vs. I4, and when Ki 6= {0} the result of Section 3A
to I3 vs. I4. (When Ki = {0}, so that I3 = I4, the latter process is skipped.) If
Z3, Z4 are the cusps of X0 associated to I3, I4, respectively, this shows that

Q[Z1] =Q[Z3] =Q[Z4] =Q[Z2]

in CHk(X0)Q. This completes the proof of Theorem 1.2.

Remark 3.3. Summing up the argument in the case g′ > 1, we see that if Z1 and
Z2 are not top dimensional, we can obtain their rational equivalence through a
chain of higher dimensional cusps of length ≤ 5.

4. The unitary case

In this section we prove Theorem 1.3. We first recall modular varieties of unitary
type; see [Holzapfel 1998; Looijenga 2016]. Let K =Q(

√
−D) be an imaginary

quadratic field with R =OK its ring of integers (or more generally an order in K ).
By a Hermitian lattice over R we mean a finitely generated torsion-free R-module
3 equipped with a nondegenerate Hermitian form ( · , · ) : 3×3→ R. We let
3K =3⊗R K and 3C =3⊗R C, which are Hermitian spaces over K ,C, respec-
tively, and in which 3 is naturally embedded. We may assume without loss of
generality that the signature (p, q) of 3 satisfies p ≤ q.

Let U(3) be the unitary group of 3, namely the group of R-linear isomorphisms
3→3 preserving the Hermitian form. This is the same as K-linear isomorphisms
3K →3K preserving the lattice 3 and the Hermitian form. We write SU(3) for
the subgroup of U(3) of determinant 1. For a natural number N we write U(3, N )
for the kernel of the reduction map U(3)→ GL(3/N3). A subgroup 0 of U(3)
is called a congruence subgroup if it contains U(3, N ) for some level N .

Let G3=G(p,3C) be the Grassmannian parametrizing p-dimensional C-linear
subspaces of 3C. The Hermitian symmetric domain D3 attached to 3 is defined
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as the open locus
D3 = {[V ] ∈ G3 | ( · , · )|V > 0}

of subspaces V to which restriction of the Hermitian form is positive definite.
When p = 0, this is one point; when p = 1, this is a ball in P3C ' Pq .

Rational boundary components of D3 correspond to isotropic K-subspaces I
of 3K . For each such I we associate the locus DI ⊂ G3 of those V which contain
I and for which ( · , · )|V is positive semidefinite with kernel IC. If we consider
3′K = I⊥/I , this is a nondegenerate K-Hermitian space of signature (p− r, q− r),
where r = dimK I , and DI is naturally isomorphic to the Hermitian symmetric
domain D3′ attached to 3′K by sending [V ] ∈ DI to [V/IC]. The union

D∗3 = D3 t
⊔

I⊂3K

DI

is equipped with the Satake topology [Baily and Borel 1966; Borel and Ji 2005].
By [Baily and Borel 1966], the quotient space X0 = 0\D∗3 has the structure of a
normal projective variety and contains 0\D3 as a Zariski open set.

The proof of Theorem 1.3 proceeds by induction on q. The case q = 1 is the
Manin–Drinfeld theorem; we explain this in Section 4A. The inductive argument
is done in Section 4B. Since this is similar to the symplectic case, we will be brief
in Section 4B.

4A. The case q = 1. Let q = 1. Then r = p = q = 1, so 3K is the (unique) K-
Hermitian space of signature (1, 1) containing an isotropic vector, and D3 is the
unit disc in P3C 'P1. The group SU(3K ) is naturally isomorphic to SL2(Q), and
0 ∩ SU(3) is mapped to a conjugate of a congruence subgroup of SL2(Z) under
this isomorphism. This is a classical fact, but since we could not find a suitable
reference for the second assertion, we give below a self-contained account for the
reader’s convenience. Theorem 1.3 in the case q = 1 then follows from the Manin–
Drinfeld theorem, because we have a natural finite morphism from X0∩SU(3) to X0 .

We embed K =Q(
√
−D) into the matrix algebra M2(Q) by sending

√
−D to

JD =
( 0

1
−D

0

)
. Left multiplication by JD makes M2(Q) a 2-dimensional K-linear

space. We have a K-Hermitian form on M2(Q) defined by

(A, B)= tr(AB∗)+
√
−D

−1
tr(JDAB∗), A, B ∈ M2(Q),

where for B =
(a

c
b
d

)
we write B∗ =

( d
−c
−b

a

)
. We denote 3K = M2(Q) when

we want to stress this K-Hermitian structure. Then 3K has signature (1, 1) and
contains an isotropic vector, e.g.,

( 1
0

0
0

)
. Right multiplication by SL2(Q) on M2(Q)

is K-linear and preserves this Hermitian form. This defines a homomorphism

SL2(Q)→ SU(3K ) (4.1)

which in fact is an isomorphism; see, e.g., [Shimura 1964, §2].
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Let 3⊂3K be a full R-lattice. We shall show that for every level N the image
of SU(3, N )= SU(3K )∩U(3, N ) by (4.1) is conjugate to a congruence subgroup
of SL2(Z). Let

O = {X ∈ M2(Q) |3X ⊂3}.

This is an order in M2(Q); see [Maclachlan and Reid 2003, §2.2]. Then SU(3)=O1,
where for any subset S of M2(Q) we write S1

= S∩SL2(Q). Take a maximal order
Omax of M2(Q) containing O. Since O is of finite index in Omax, there exists a
natural number N0 such that N0Omax ⊂O. Therefore,

I +NN0Omax ⊂ I + NO ⊂O ⊂Omax.

Since (I + NO)1 ⊂ SU(3, N ), this implies that

(I +NN0Omax)
1
⊂ SU(3, N )⊂ SU(3)⊂O1

max.

Since every maximal order of M2(Q) is conjugate to M2(Z), there exists g∈GL2(Q)

such that

0(NN0)⊂ Adg(SU(3, N ))⊂ Adg(SU(3))⊂ SL2(Z).

This proves our claim.

4B. Inductive step. Let q ≥ 2. Suppose that Theorem 1.3 is proved for all Hermit-
ian lattices of signature (p′, q ′) with p′ ≤ q ′ < q. We then prove the theorem for
Hermitian lattices of signature (p, q) with p ≤ q . Since the argument is similar to
the symplectic case, we will just indicate the outline. Let I1 6= I2 be two isotropic
K-subspaces of 3K of the same dimension, say r , and Z1, Z2 ⊂ X0 the associated
cusps. We make the following classification:

(1) I1 ∩ I2 6= {0};

(2) the pairing between I1 and I2 is perfect;

(3) I1 ∩ I2 = {0} but the pairing between I1 and I2 is not perfect.

(1) This is similar to Section 3A. In this case Z1 and Z2 are joined by the cusp
associated to I1 ∩ I2, to which we can apply the induction hypothesis.

(2) The case r = 1 is similar to Section 3B2. If we set 3′K = I1 ⊕ I2 and
3′′K = (3

′

K )
⊥, these are nondegenerate of signature (1, 1) and (p − 1, q − 1),

respectively. Then Z1 and Z2 are joined by the embedding D3′ ×D3′′ ↪→ D3. We
can apply the Manin–Drinfeld theorem to D3′ .

The case r > 1 is similar to Section 3B1. We can interpolate Z1 and Z2 by a
third cusp by taking a proper subspace J1 6= {0} of I1 and setting I3= J1⊕(J⊥1 ∩ I2).
Then we can apply the result of case (1) to I1 vs. I3 and to I3 vs. I2.
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(3) This is similar to Section 3C. We take splittings I1 = J1⊕K1 and I2 = J2⊕K2

such that (J1, I2)≡ 0, (J2, I1)≡ 0 and (K1, K2) is perfect. We choose an isotropic
subspace J0 from (K1⊕K2)

⊥ with (J1, J0) and (J2, J0) perfect, and put I3= J0⊕K2

and I4 = J0⊕ K1. Then we apply case (2) to I1 vs. I3 and to I4 vs. I2, and case (1)
to I3 vs. I4 when Ki 6= {0}. This proves Theorem 1.3.

Remark 4.2. As in the symplectic case, we see that when Z1, Z2 are not top di-
mensional, their rational equivalence can be obtained through a chain of higher
dimensional cusps of length ≤ 5.

5. Modular units and higher Chow cycles

Let 0, D3, and X0 be as in the previous sections. As a consequence of Theo-
rems 1.1–1.3, we can associate to each pair of maximal cusps of X0 a nonzero
higher Chow cycle of the modular variety Y0 = 0\D3. This gives a higher dimen-
sional analogue of modular units [Kubert and Lang 1981] from the viewpoint of
algebraic cycles.

Let Z1 6= Z2 be two cusps of X0 of the same dimension, say k. By our result,
we have [Z1] = α[Z2] in CHk(X0)Q for some α 6= 0 ∈Q. On the other hand, we
can also view Z1, Z2 as k-cycles on the boundary ∂X0 = X0 − Y0, which is an
equidimensional reduced closed subscheme of X0.

Lemma 5.1. When the cusps Z1, Z2 are not top dimensional, [Z1] = α[Z2] holds
already in CHk(∂X0)Q.

Proof. When Z1, Z2 are not top dimensional, the proofs of Theorems 1.1–1.3 and
Remarks 2.4, 3.3, and 4.2 show that we can connect Z1 and Z2 by a chain of higher
dimensional cusps. To be more precise, we have (congruence) modular varieties
X1, . . . , X N , their cusps Z+i , Z−i ⊂ X i of dimension k, and a finite morphism
fi : X i → X0 onto a cusp of X0, such that fi (Z−i ) = fi+1(Z+i+1) for each i and
f1(Z+1 )= Z1, fN (Z−N )= Z2. By induction on dimension, we have [Z+i ] = αi [Z−i ]
in CHk(X i )Q for some αi ∈Q. Since fi factors through

X i → ∂X0 ⊂ X0,

we have
[ fi (Z+i )] = α

′

i [ fi (Z−i )]

in CHk(∂X0)Q for some α′i ∈Q. It follows that

[Z1] =

(∏
i

α′i

)
[Z2]

in CHk(∂X0)Q. �
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Consider the localization exact sequence of higher Chow groups [Bloch 1986;
1994] for the Baily–Borel compactification

Y0
j
↪→ X0

i
←↩ ∂X0.

The first few terms of this sequence are written as

· · · → CHk(X0, 1)Q
j∗
→ CHk(Y0, 1)Q

δ
→ CHk(∂X0)Q

i∗
→ CHk(X0)Q→ · · · ,

where δ is the connecting map. By Lemma 5.1, the Q-linear subspace of CHk(∂X0)Q
generated by the k-dimensional cusps has dimension 1 if k is not the maximal
dimension of cusps. On the other hand, when k = dim ∂X0, the k-dimensional
(= maximal) cusps are irreducible components of ∂X0, so CHk(∂X0)Q is freely
generated over Q by those cusps. Let t be the number of maximal cusps of X0.
Since the image of i∗ : CHk(∂X0)Q → CHk(X0)Q has dimension 1 by Theo-
rems 1.1–1.3, we find that

dim Im(δ)= dim Ker(i∗)= t − 1.

Let us construct some explicit elements of CHk(Y0, 1)Q whose images by δ gener-
ate Im(δ)= Ker(i∗).

Let Z1 6= Z2 be two maximal cusps of X0, say of dimension k = dim ∂X0. As
above, we have i∗(Z1 − αZ2) = 0 in CHk(X0)Q for some α ∈ Q. We construct
an element of CHk(Y0, 1)Q whose image by δ is Z1−αZ2 in CHk(∂X0)Q. (Such
an element must be nonzero because Z1−αZ2 is nonzero in CHk(∂X0)Q.) Recall
from the proof of Theorems 1.1–1.3 that, in a basic case, we have a compactified
modular curve X ′ = X0′ , its two cusps p1, p2 ∈ X ′, a k-dimensional compactified
modular variety X ′′ = X0′′ , and a finite morphism f : X ′ × X ′′→ X0 such that
f (pi × X ′′) = Zi . (In the orthogonal case X ′′ is one point when k = 0 and a
modular curve when k = 1; in the symplectic case X ′′ is a Siegel modular variety
of genus g− 1; in the unitary case X ′′ is associated to a unitary group of signature
(p− 1, q − 1).) The general case is a chain of such basic cases. For simplicity we
assume that (Z1, Z2) is such a basic pair.

By the Manin–Drinfeld theorem for X ′, there exists a modular function F on
X ′ such that div(F) = β(p1 − p2) for some natural number β. Let Y ′ ⊂ X ′ and
Y ′′ ⊂ X ′′ be the modular varieties before compactification. We can view F as an
element of O∗(Y ′)= CH0(Y ′, 1). Then δ(F)= β(p1− p2) for the connecting map
δ :CH0(Y ′, 1)→CH0(∂X ′). Let π :Y ′×Y ′′→Y ′ be the projection and, by abuse of
notation, f :Y ′×Y ′′→Y0 be the restriction of f : X ′×X ′′→ X0 . We can pullback
the higher Chow cycle F by the flat morphism π and then take its pushforward by
the finite morphism f . The result, f∗π∗F , is an element of CHk(Y0, 1).

Proposition 5.2. We have Qδ( f∗π∗F)=Q(Z1−αZ2) in CHk(∂X0)Q.



RATIONAL EQUIVALENCE OF CUSPS 409

Proof. We take a desingularization X̃ ′′→ X ′′ of X ′′, and let Ỹ ′′ ⊂ X̃ ′′ be the inverse
image of Y ′′. We have the commutative diagram

O∗(Y ′) π̃∗

'

// O∗(Y ′× X̃ ′′)
j̃∗

// O∗(Y ′× Ỹ ′′)

CH0(Y ′, 1) π̃∗

'

//

δ

��

CHk(Y ′× X̃ ′′, 1)
j̃∗
//

δ
��

CHk(Y ′× Ỹ ′′, 1)
f̃∗
//

δ
��

CHk(Y0, 1)

δ

��

CH0(∂X ′) π̃∗

'

// CHk(∂X ′× X̃ ′′)
ĩ∗
// CHk(∂(X ′× X̃ ′′))

f̃∗
// CHk(∂X0)

The various δ are the connecting maps of each localization sequence, π̃:X ′×X̃ ′′→X ′

the projection, ∂(X ′× X̃ ′′)= X ′× X̃ ′′−Y ′× Ỹ ′′, j̃ : Y ′× Ỹ ′′ ↪→ Y ′× X̃ ′′ the open
immersion, ĩ :∂X ′× X̃ ′′ ↪→∂(X ′× X̃ ′′) the closed embedding, and f̃ : X ′× X̃ ′′→ X0
the proper morphism induced from f . If we send QF ⊂ CH0(Y ′, 1)Q through this
diagram to CHk(∂X0)Q, the image is Q(Z1 − αZ2). The assertion follows by
noticing that f̃∗ j̃∗π̃∗ = f∗π∗. �

In this way, as a “lift” from the modular unit F , we obtain an explicit nonzero
element of CHk(Y0, 1)Q whose image by δ is Z1−αZ2. If we run (Z1, Z2) over all
basic pairs of maximal cusps, we obtain a set of nonzero elements of CHk(Y0, 1)Q
whose image by δ generate Im(δ) = Ker(i∗). In general, by this construction we
could obtain more than t − 1 higher Chow cycles on Y0. This is because

(1) the choice of X ′ × X ′′ → X0 is not necessarily unique for the given pair
(Z1, Z2), and

(2) the number of basic pairs could be larger than t − 1.

The point (1) amounts to the situation that two pairs (I1, I2), (I ′1, I ′2) of isotropic
subspaces are not 0-equivalent as pairs, although I1 is 0-equivalent to I ′1 and I2

is 0-equivalent to I ′2, respectively. A typical situation of (2) is that for three cusps
Z1, Z2, Z3, all pairs (Z1, Z2), (Z2, Z3), (Z3, Z1) are basic.

If the span V ⊂ CHk(Y0, 1)Q of all higher Chow cycles constructed in this way
has dimension ≥ t , the kernel of δ : V → CHk(∂X0)Q would then give rise to a
nontrivial subspace of CHk(X0, 1)Q.
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from real motivic stable homotopy
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We give a method for computing the C2-equivariant homotopy groups of the
Betti realization of a p-complete cellular motivic spectrum over R in terms of
its motivic homotopy groups. More generally, we show that Betti realization
presents the C2-equivariant p-complete stable homotopy category as a localiza-
tion of the p-complete cellular real motivic stable homotopy category.
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1. Introduction

Let SH(K ) denote the∞-category of motivic spectra over a field K [Morel and
Voevodsky 1999], whose equivalences are given by the stable A1-equivalences.
This∞-category has a bigraded family of spheres

Si, j
:= Si− j

∧G j
m

of topological degree i and motivic weight j . These lead to bigraded homotopy
groups

πK
i, j X := [Si, j , X ]K .
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A motivic spectrum is cellular if it is built from the spheres Si, j using cofiber
sequences and filtered homotopy colimits. A map between cellular spectra is a
stable A1-equivalence if and only if it is a πK

∗,∗-isomorphism [Dugger and Isaksen
2005]. We shall let SHcell(K ) denote the full subcategory of cellular spectra.

Complex and real Betti realization. If Z is a smooth scheme over C, then its C-
points, or Betti realization

Be(Z) := Z(C),

form a topological space when endowed with the complex analytic topology. The
resulting Betti realization functor

Be : SH(C)→ Sp

(where Sp denotes the∞-category of spectra) is called Betti realization [Morel and
Voevodsky 1999]. Since Be(Si, j )= Si , Betti realization induces a map

Be : πC
i, j X→ πi Be(X).

This map was well studied by Dugger and Isaksen [2010] (at the prime 2) and
by Stahn [2016] (at odd primes). For a prime p, the p-complete motivic stable
stems have an element

τ ∈ πC
0,−1(S

0,0)∧p .

The following result is a direct corollary of the results of Dugger and Isaksen and
of Stahn (here, B̂ep(−) denotes p-completed Betti realization).

Theorem 1.1 (see Theorem 8.18). Let X ∈ SH(C) be p-complete and cellular.
Then Betti realization induces an isomorphism of abelian groups

πC
i, j X [τ−1

]
∼=−→ πi B̂ep(X),

and thus an equivalence of∞-categories

B̂ep : SHcell(C)
∧

p [τ
−1
]
'
−→ Sp∧p .

In the real case, there is a real Betti realization functor

BeR : SH(R)→ Sp

which arises from associating to a smooth scheme Z over R its topological space
of R-points Z(R), endowed with the real analytic topology. The inclusion

ρ : {±1} ↪→ Gm

gives an element ρ ∈ πR
−1,−1S0,0, which becomes an equivalence after real Betti

realization. Bachmann [2018] proved the following:



C2-EQUIVARIANT STABLE HOMOTOPY FROM REAL MOTIVIC STABLE HOMOTOPY 413

Theorem 1.2 (see Theorem 8.10). For all X ∈ SH(R), real Betti realization in-
duces an isomorphism of abelian groups

BeR : π
R
i, j X [ρ−1

]
∼=−→ πi− j BeR(X),

and moreover1 an equivalence of∞-categories

SH(R)[ρ−1
]
'
−→ Sp.

Statement of results. The results discussed above demonstrate that the homotopy
groups of the complex and real Betti realizations of a cellular motivic spectrum
can be obtained by localizing its motivic homotopy groups, and each of these Betti
realization functors is a localization.

The purpose of this paper is to prove a similar result about the C2-Betti realiza-
tion functor

BeC2 : SH(R)→ SpC2 .

Here, SpC2 denotes the∞-category of genuine C2-spectra. This functor arises from
associating to a smooth scheme Z over R the C2-topological space Z(C), with the
C2-action given by complex conjugation.

For Y ∈ SpC2 , the RO(C2)-graded equivariant homotopy groups are bigraded
by setting

π
C2
i, j Y := [S(i− j)+ jσ , Y ]C2,

where σ is the sign representation. In G-equivariant homotopy theory, one takes the
stable equivalences to be the πH

∗
-isomorphisms, where πH

∗
denotes the Z-graded

H -equivariant homotopy groups, and H ranges over the subgroups of G. However,
in the case of G=C2, a map in SpC2 is a stable equivalence if and only if it is a πC2

∗,∗-
isomorphism (see the discussion following (6.1)). The C2-equivariant homotopy
groups of Y can be effectively analyzed from the homotopy pullback (isotropy
separation square) [Greenlees and May 1995]

Y //

��

Y8

��

Y h // Y t

(1.3)

where2

Y h
:= F((EC2)+, Y ) (homotopy completion),

Y8 := Y ∧ ẼC2 (geometric localization),

Y t
:= (Y h)8 (equivariant Tate spectrum).

1Bachmann’s methods do not rely upon cellularity hypotheses.
2The terminology here comes from the fact that the fixed points Y hC2 , Y8C2 , and Y tC2 are the

homotopy fixed points, geometric fixed points, and Tate spectrum of Y , respectively.
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We let SphC2 denote the full subcategory of SpC2 consisting of homotopically com-
plete spectra, and let Sp8C2 denote the full subcategory consisting of geometrically
local spectra. The C2-geometric fixed points functor gives an equivalence of∞-
categories Sp8C2 ' Sp.

Bachmann’s theorem (Theorem 1.2) effectively describes the homotopy theory
of the geometric localization of C2-Betti realization BeC2(−)8. This is because

(1) for all X ∈ SH(R), we have

BeR(X)= BeC2(X)8C2,

(2) geometric localization is given by inverting a := BeC2(ρ) ∈ π
C2
−1,−1S0,0:

Y8 ' Y [a−1
]. (1.4)

Thus, Bachmann’s theorem (Theorem 1.2) can be restated in the following way.

Theorem 1.5 (see Theorem 8.24). For all X ∈ SH(R), C2-Betti realization induces
an isomorphism

πR
∗,∗X [ρ

−1
]
∼=−→ πC2

∗,∗ BeC2(X)8,

and an equivalence
BeC2 : SH(R)[ρ−1

]
'
−→ Sp8C2 .

We are thus left to describe the homotopy theory of the homotopy completion
of the C2-Betti realization.

We first note that a map
f : Y1→ Y2

in SphC2 is an equivalence if and only if the underlying map

f e
: Y e

1 → Y e
2

of spectra is a nonequivariant equivalence. We therefore first study BeC2(−)e. Con-
sider the diagram of adjoint functors

SH(R)
BeC2

//

ζ ∗

��

SpC2

SingC2

oo

Res
C2
e

��

SH(C)
Be

//

ζ∗

OO

Sp

Ind
C2
e

OO

Sing
oo

(1.6)

where (ζ ∗, ζ∗) are the base change functors associated to the morphism

ζ : Spec(C)→ Spec(R)
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and (ResC2
e , IndC2

e ) are the change of group functors associated to the inclusion

e ↪→ C2.

We will prove the following theorem, which has also been independently obtained
by Isaksen, Kong, Wang, and Xu.

Theorem 1.7 (see Corollary 8.2). Under the equivalence

ζ∗ζ
∗S0
'6∞

+
Spec(C)

the adjunction (ζ ∗, ζ∗) induces an equivalence

SH(C)'ModSH(R)(6
∞

+
Spec(C)).

Let Cρ ∈ SH(R) denote the cofiber of ρ ∈ πR
−1,−1S0,0. Since ζ ∗(ρ) is null in

πC
−1,−1S0,0, there is a map

C(ρ)→6∞
+

Spec(C) (1.8)

which we show is a πR
∗,∗-isomorphism after p-completion (Proposition 8.3). The

real motivic spectrum 6∞
+

Spec(C) is not cellular (Remark 8.4), so Cρ may be re-
garded as its p-complete cellular approximation. We deduce the following (which
was also independently observed by Isaksen, Kong, Wang, and Xu):

Corollary 1.9 (see Corollary 8.6). The adjunction (ζ ∗, ζ∗) and equivalence (1.8)
induces an equivalence

SHcell(C)
∧

p 'ModSHcell(R)∧p
(C(ρ)).

In particular, for X ∈ SHcell(R)
∧
p there is an isomorphism

πC
∗,∗(ζ

∗X)∼= πR
∗,∗(X ∧Cρ).

Combining Corollary 1.9 with Theorem 1.1, we deduce that for X ∈ SHcell(R)
∧
p ,

πi (B̂eC2
p (X)

e)∼= π
R
i, j (X ∧Cρ[τ−1

]).

In particular, τ exists as a self map

τ :60,−1C(ρ)∧p → C(ρ)∧p .

Let C(ρi ) denote the cofiber of ρi
∈ πR
−i,−i S0,0. We will prove:

Theorem 1.10 (see Theorem 7.10 and Proposition 7.11). For each i ≥ 1, there
exists a j so that C(ρi )∧p has a τ j -self map

τ j
:60,− j C(ρi )∧p → C(ρi )∧p .
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Our proof of the existence of these τ -self maps at the prime 2 relies on first prov-
ing the existence of their C2-Betti realizations, and then using a theorem of Dugger
and Isaksen [2017b] to lift the self maps to the real motivic category. Because this
approach involves some analysis of the C2-equivariant stable stems, it may be of
independent interest.

We shall let C(ρi )∧p [τ
−1
] denote the telescope of this τ j -self map. Define, for

X ∈ SH(R)∧p ,3

X∧ρ [τ
−1
] := holim

i
X ∧C(ρi )[τ−1

].

Our main theorem is the following:

Theorem 1.11 (see Corollary 8.21 and Theorem 8.26). For X ∈ SHcell(R)
∧
p , the

p-completed C2-Betti realization functor B̂eC2
p induces an isomorphism

πR
∗,∗X

∧

ρ [τ
−1
]
∼=−→ πC2

∗,∗ B̂eC2
p (X)

h

and the right adjoint

Cell SingC2 : (SphC2)∧p → SHcell(R)
∧

p

of p-complete, homotopy complete C2-Betti realization is fully faithful.

Thus, Theorems 1.5 and 1.11 combine to express the RO(C2)-graded equivari-
ant homotopy groups of B̂eC2

p (X)
8 and B̂eC2

p (X)
h in terms of the real motivic

homotopy groups of X . By the isotropy separation square (1.3), we just need to
be able to compute πC2

∗,∗ B̂eC2
p (X)

t (and the maps on homotopy groups) to recover
π

C2
∗,∗ B̂eC2

p (X), but this is easily accomplished by combining Theorem 8.26 with
(1.3) to deduce (for X cellular and p-complete) an isomorphism4

πC2
∗,∗ B̂eC2

p (X)
t ∼= π

R
∗,∗X

∧

ρ [τ
−1
][ρ−1

].

Finally, we will show that the isotropy separation square (1.3) implies that
Theorems 1.5 and 1.11 combine to show that p-complete C2-equivariant stable
homotopy is a localization of real motivic cellular stable homotopy.

Theorem 1.12 (see Theorem 8.22). The right adjoint to p-complete cellular C2-
Betti realization

Cell SingC2 : (SpC2)∧p → SHcell(R)
∧

p

is fully faithful.

We will apply our techniques to compute πC2
∗,∗ B̂eC2

2 X from πR
∗,∗X , for X equal to

3For p odd, it turns out that independently of i , one can take j = 2 in Theorem 1.10 (see
Proposition 7.11). Consequently, X∧ρ has a τ2-self map, and the spectrum X∧ρ [τ

−1
] can be simply

taken to be the telescope of this τ2-self map on X∧ρ .
4For p odd, the situation is much simpler, as this Tate spectrum is contractible since 2= |C2| is

invertible.



C2-EQUIVARIANT STABLE HOMOTOPY FROM REAL MOTIVIC STABLE HOMOTOPY 417

(1) (HF2)R, the real motivic mod 2 Eilenberg–MacLane spectrum, with

B̂eC2
2 (HF2)R ' HF2,

the C2-equivariant Eilenberg–MacLane spectrum associated to the constant
Mackey functor F2,

(2) (HZ∧2 )R, the real motivic 2-adic Eilenberg–MacLane spectrum, with

B̂eC2
2 (HZ∧2 )R ' HZ∧2 ,

the C2-equivariant Eilenberg–MacLane spectrum associated to the constant
Mackey functor Z∧2 ,

(3) kgl∧2 , the 2-complete effective cover of the real motivic K -theory spectrum
K GL , with

B̂eC2
2 kgl∧2 ' k R∧2 ,

the 2-complete connective Real K -theory spectrum.

In the case of (HF2)R, the homotopy groups of the C2-Betti realization differ from
the motivic homotopy groups of the original spectrum through the addition of a
notorious “negative cone” (see, e.g., [Dugger and Isaksen 2017b, Figure 1]). From
the perspective of the mod 2 Adams spectral sequence, the presence of this “neg-
ative cone” makes the equivariant homotopy of the Betti realizations of the other
examples similarly more complicated than the motivic homotopy of the original
spectra. Our theory organically predicts the presence of the negative cone through
a mechanism of local duality such as that studied in [Barthel et al. 2018], and thus
gives a more direct route to these equivariant computations by starting with the
simpler motivic analogs. This connection with local duality deserves further study.

Relationship to the work of Heller and Ormsby. Heller and Ormsby [2016; 2018]
also study the relationship between real motivic and C2-equivariant spectra (and
their results extend to other real closed fields), but their analysis centers around the
adjoint pair

c∗R : SpC2 −→
←− SH(R) : (cR)∗

where c∗R is the equivariant generalization of the constant functor (Definition 8.11).
Namely, Heller and Ormsby show that SpC2 is a colocalization of SH(R) by

showing that c∗R is fully faithful. Their results allow them to compute, for X ∈ SpC2 ,
integer graded motivic homotopy groups of c∗R X in terms of the integer graded
equivariant homotopy groups of X .

Our results, by contrast, show that C2-Betti realization exhibits (SpC2)∧p as a
localization of SHcell(R)

∧
p , and this allows us to compute, for X ∈ SHcell(R)

∧
p , the

equivariant RO(C2)-graded homotopy groups of B̂eC2
p (X) in terms of the bigraded
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motivic homotopy groups of X . Nevertheless, we use the functor c∗R to prove our
localization theorem.

Organization of the paper. The first four sections of this paper are formal. In
Section 2, we recall some facts concerning limits of presentable ∞-categories.
In Section 3, we study both Bousfield localizations of symmetric monoidal ∞-
categories and their relation to completion, and we discuss the interaction of these
localizations with a monoidal Barr–Beck theorem of Mathew, Naumann, and Noel
[Mathew et al. 2017]. In Section 4, we summarize some facts regarding cellu-
larization in the∞-categorical context, and the interaction of cellularization with
localization and symmetric monoidal structures.

In Section 5, we recall the notion of a recollement of∞-categories, which is a
formalism for decomposing an∞-category using two complementary localizations.
We show that to prove an adjunction between two recollements is a localization, it
suffices to check fully faithfulness on the constituents of the recollements.

In Section 6, we turn to the case of interest and recall some facts about motivic
and equivariant homotopy theory that we will need later.

In Section 7, we show that James periodicity in the 2-primary equivariant stable
stems results from the existence of u-self maps on C(ai )∧2 , where a is the Euler
class of the sign representation. We then use an isomorphism theorem of Dugger
and Isaksen [2017b] to lift these u-self maps to τ -self maps on C(ρi )∧2 . For an
odd prime p, we explain how the work of Stahn [2016] implies that every (p, ρ)-
complete R-motivic spectrum has a τ 2-self map.

Section 8 contains all of our main theorems, and their proofs, concerning the
localizations induced by Betti realization.

Section 9 contains examples, where we take various real motivic spectra, and
use our theory to compute the 2-primary RO(C2)-graded C2-equivariant homotopy
groups of their Betti realizations from their 2-primary motivic homotopy groups.
We also explain how to do these kinds of computations at an odd prime, where the
story is much simpler.

2. Limits of presentable ∞-categories

We collect some necessary facts about limits in the∞-category PrL of presentable
∞-categories.

Suppose C• : J → PrL is a diagram and let

X=
∫

C•→ J

be the presentable fibration [Lurie 2009, Definition 5.5.3.2] classified by C•. By
[Lurie 2009, Proposition 5.5.3.13, Corollary 3.3.3.2], we have an equivalence

C := lim C• ' Sect(X) := Funcocart
/J (J,X)
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between the limit C of C• and the∞-category of cocartesian sections of X. Let D

be another presentable∞-category and suppose that we have an extension

C• : JC→ PrL

with the cone point sent to D. Then we have an induced adjunction

F : D−→←− C : R.

Let

X→ JC

be the presentable fibration classified by C•. In terms of the description of C as
Sect(X), we may describe F and R more explicitly as follows:

(1) The functor

F : D' lim C•→ C' lim C•

is given by the contravariant functoriality of limits for the inclusion J ⊂ JC.
Thus, under the equivalences Sect(X)' D and Sect(X)' C, the functor F :
D→ C corresponds to the functor

F : Sect(X)→ Sect(X)

given by restriction of cocartesian sections. In particular, an object x ∈ D

corresponds to the cocartesian section

σ : JC→ X

determined up to contractible choice by σ(v) = x for v the cone point, and
then F(x)= σ |J .

(2) Let

p : X⊂ X→ Xv ' D

be the cartesian pushforward to the fiber over the initial object v ∈ JC. Then
for any object σ ∈ C viewed as a cocartesian section of X and x ∈D, we have
the sequence of equivalences

MapD(x, lim pσ)' lim MapD(x, pσ(−))

' lim MapC•(F•x, σ (−))

'MapC(Fx, σ ),

so there is an equivalence R(σ )' lim pσ .
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3. Localization of symmetric monoidal ∞-categories
with respect to a commutative algebra

Let C, D be presentable stable symmetric monoidal∞-categories, where we by
default assume that the tensor product commutes with colimits separately in each
variable.

Adjunctions and limits. We say that an adjunction

F : C−→←− D : R

is monoidal if F is (strong) symmetric monoidal, in which case R is lax monoidal.
Given a diagram of commutative algebras in C

p : L→ CAlg(C),

we have a canonical monoidal adjunction in PrL

φ : ModC(lim
L

p)−→←− lim
L

ModC(p(−)) :ψ. (3.1)

Let R = limL p. For X ∈ModC(R), the unit map η : X→ ψφX may be identified
with the canonical map

X→ lim
i∈L

X ⊗R p(i)

in view of the material in Section 2.
Moreover, for any functor f : K → L , by functoriality of limits we have a

commutative diagram in PrL

ModC(limL p)
φ
//

��

limL ModC(p(−))

��

ModC(limK p f )
φ
// limK ModC(p f (−))

Bousfield localization. Recall [Lurie 2009, Definition 5.2.7.2] that a localization
of an∞-category X is an adjunction

L : X−→←− X0 : R

where the right adjoint R is fully faithful. The left adjoint L is the localization
functor.

When X = C is our presentable stable symmetric monoidal ∞-category, we
will be concerned with the special case of Bousfield localization with respect to an
object E ∈ C. We briefly recall this notion to fix terminology.

A map
X→ Y
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in C is an E-equivalence if
E ⊗ X→ E ⊗ Y

is an equivalence. An object X ∈ C is E-null if

X ⊗ E ' 0.

An object X ∈ C is E-local if for every E-equivalence

f : Y → Z
the map

f ∗ : HomC(Z , X)→ HomC(Y, X)

is an equivalence, i.e., for every E-null object W ,

HomC(W, X)' 0.

Let CE ⊆C denote the full subcategory consisting of the E-local objects. Then CE

is again a presentable stable∞-category and we have the localization adjunction

L E : C−→←− CE : iE .

With the tensor product on CE defined by L E(−⊗−), CE is a symmetric monoidal
∞-category and L E a iE is a monoidal adjunction.

Example 3.2. Suppose E = C(x) is the cofiber of a map

x : I → 1

for 1 ∈ C the unit. Then we also write C∧x for CE and call this ∞-category the
x-completion of C.

Derived completion. If we further suppose that E is a dualizable E∞-algebra A ∈
CAlg(C), then Bousfield localization can be computed as the A-completion. Specif-
ically, we have the following:

(1) Let C•(A) be the Amitsur complex on A [Mathew et al. 2017, Construction
2.7]. By [Mathew et al. 2017, Proposition 2.21], for any X ∈ C we have an
equivalence

L A(X)' Tot(X ⊗C•(A))' lim
n∈1

(X ⊗ A⊗n+1).

(2) By [Mathew et al. 2017, Theorem 2.30],5 this equivalence of objects promotes
to an equivalence of symmetric monoidal∞-categories

CA ' Tot ModC(C•(A))' lim
n∈1

ModC(A⊗n+1).

5Note that even though [Mathew et al. 2017, Hypotheses 2.26] are otherwise in effect in that
section of the paper, the proof of [Mathew et al. 2017, Theorem 2.30] only uses that A ∈ CAlg(C) is
dualizable.



422 MARK BEHRENS AND JAY SHAH

Let I denote the fiber of the unit

I
ι
−→ 1→ A

and define
C(ιn) := cofib(ιn : I⊗n

→ 1).

Then there is an equivalence [Mathew et al. 2017, Proposition 2.14]

C(ιn+1)' Totn(C•(A)).

Note that because the cosimplicial object C•(A) in C canonically lifts to a cosim-
plicial object in CAlg(C), the cofiber C(ιn) obtains the structure of an E∞-algebra
as a limit and the maps

C(ιn+1)→ C(ιn)

are maps of E∞-algebras.

The completion tower. For our dualizable E∞-algebra A, we wish to reexpress the
above descent description of CA in terms of an inverse limit over the∞-categories
ModC(C(ιn)).

By (3.1), for all n we have canonical monoidal adjunctions

φn : ModC(C(ιn))−→←− Totn−1 ModC(C•(A)) :ψn

where the left adjoints φn are compatible with restriction along 1≤n ⊂1≤m . Pas-
sage to the limit then yields the monoidal adjunction

φ∞ : lim ModC(C(ιn))−→←− Tot ModC(C•(A)) :ψ∞,

where φ∞{Xn} = {φn Xn}. By the universal property of the limit, and using that
C(ιn)-modules are A-local, we also have the monoidal adjunctions

φ : CA −→←− lim ModC(C(ιn)) :ψ,

φ′ : CA −→←− Tot ModC(C•(A)) :ψ ′,

where the second adjunction is the adjoint equivalence of [Mathew et al. 2017,
Theorem 2.30]. These adjunctions fit into a commutative diagram

CA
φ
//

φ′

,,

lim ModC(C(ιn))
φ∞

// Tot ModC(C•(A)).

Proposition 3.3. Both φ a ψ and φ∞ a ψ∞ are adjoint equivalences of symmetric
monoidal∞-categories.

Proof. It suffices to prove the first statement. We need to show that
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(1) the unit id→ ψφ is an equivalence,

(2) ψ is conservative.

For (1), given any A-local object X , the unit map

X→ ψφX ' lim X ⊗C(ιn)' Tot X ⊗C•(A)

is already known to be an equivalence. For (2), we first note that φn is fully faithful,
i.e., the unit map id→ψnφn is an equivalence. Indeed, for any finite∞-category K
and functor p : K → CAlg(C), if R = limK p and X ∈ModC(R), then there is an
equivalence

X ' lim
K

X ⊗R p(−).

Now suppose that {Xn} is a object in lim ModC(C(ιn)) such that

ψ{Xn} = lim Xn ' 0.

Note that since φ∞{Xn} = {φn Xn}, for the cosimplicial object φ•X• we have that
Totn(φ•X•)' ψnφn Xn ' Xn , so

ψ ′(φ∞{Xn})= Totφ•X• ' lim
n

Totn(φ•X•)' lim
n

Xn ' 0.

Therefore, because ψ ′ is an equivalence, φ∞{Xn} ' 0. This means that for all n,
φn Xn ' 0, so Xn ' ψnφn Xn ' 0 and {Xn} ' 0. �

Remark 3.4. We have a commutative diagram of right adjoints

lim ModC(C(ιn))

��

Tot ModC(C•(A))

��

ψ∞

oo

Fun(Zop
≥0,C) Fun(1,C)

DK
oo

where DK is the functor that sends a cosimplicial object to its tower of partial
totalizations. DK implements the equivalence of the∞-categorical Dold–Kan cor-
respondence [Lurie 2017, Theorem 1.2.4.1]. We may thus interpret Proposition 3.3
as a monoidal refinement of the Dold–Kan correspondence, with φ∞ providing an
explicit inverse.

We also record a useful corollary of the proof of Proposition 3.3. This result is
a companion to the fact that

−⊗ A : CA→ModC(A)

is conservative.
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Lemma 3.5. For every n, the base change functor

ModC(C(ιn))→ModC(C(ι))=ModC(A)

is conservative.

Proof. We showed that the functor φn is fully faithful, and the restriction functor

Totn−1 ModC(C•(A))→ModC(A)

is clearly conservative. �

The monoidal Barr–Beck theorem. Throughout, let

F : C−→←− D : R

be a monoidal adjunction between our presentable symmetric monoidal stable∞-
categories C and D. We recall the monoidal Barr–Beck theorem of [Mathew et al.
2017], which will be a key technical device to many of the formal results of this
paper.

Theorem 3.6 [Mathew et al. 2017, Theorem 5.29]. Suppose that F a R satisfies
the following conditions:

(1) R is conservative,

(2) R preserves colimits,

(3) (F, R) satisfies the projection formula: the natural map

R(X)⊗ Y → R(X ⊗ F(Y ))

is an equivalence for all X ∈ D and Y ∈ C.

Then there is an equivalence

D'ModC(R(1D))

and F a R is equivalent to the free-forgetful adjunction.

We may descend Theorem 3.6 to subcategories of local objects.

Lemma 3.7. Let C and D be presentable symmetric monoidal stable∞-categories,
let

F : C−→←− D : R

be a monoidal adjunction, let E ∈ C be any object, and let E ′ = F(E). Then the
adjunction F a R induces a monoidal adjunction

F ′ : CE −→←− DE ′ : R′

between the∞-categories of E-local and E ′-local objects. Moreover:
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(1) If R is conservative, then R′ is conservative.

(2) Suppose that (F, R) satisfies the projection formula. Then there is an equiva-
lence

L E R ' R′L E ′

and (F ′, R′) satisfies the projection formula. Moreover, if R in addition pre-
serves colimits, then R′ preserves colimits.

Therefore, we have

ModC(R(1D))E ′ 'ModCE (L E R(1D))

and F ′ a R′ is the free-forgetful adjunction.

Proof. Because the functor F is strong monoidal, F sends E-equivalences to E ′-
equivalences. Therefore, if X is E ′-local, then R(X) is E-local, so we may define

R′ : DE ′→ CE

to be the restriction of R. We may then define

F ′ : CE → DE ′

by F ′ := L E ′F to obtain the induced monoidal adjunction

F ′ : CE −→←− DE ′ : R′.

For (1), if R is conservative, then because iE R′ = RiE ′ , R′ is conservative. For
(2), if (F, R) satisfies the projection formula, then we have that for any E ′-null
object X ,

R(X)⊗ E ' R(X ⊗ E ′)' 0,

so R sends E ′-equivalences to E-equivalences. Therefore, we have L E R ' R′L E ′ .
To see that (F ′, R′) satisfies the projection formula, we use the sequence of equiv-
alences

R′(X ⊗DE ′
F ′(Y ))' R′(L E ′(iE ′X ⊗D F(Y )))

' L E R(iE ′X ⊗D F(Y ))

' L E(R(iE ′X)⊗C Y )

' R′X ⊗CE Y.

Now suppose that R preserves colimits. To see that R′ preserves colimits, suppose
being given a diagram X• : J → DE ′ . Then we have

colim X• ' L E ′ colim iE ′X•,
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and we have the sequence of equivalences

R′(colim X•)' R′L E ′ colim iE ′X•

' L E R colim iE ′X•

' colim L E RiE ′X•

' colim R′L E ′ iE ′X•

' colim R′X•.

Finally, the last statement is a consequence of Theorem 3.6. �

Example 3.8. In Lemma 3.7, let E = C(x) for x as in Example 3.2. Then we see
that

ModC(R(1D))
∧

x 'ModC∧x (R(1D)
∧

x ).

We also note a similar result when passing to module categories.

Lemma 3.9. Let A ∈ CAlg(C) and A′ = F(A), and let

F ′ : ModC(A)−→←−ModD(A′) : R′

denote the induced monoidal adjunction. Then:

(1) If R is conservative, then R′ is conservative.

(2) If R preserves colimits, then R′ preserves colimits.

(3) If R preserves colimits and (F, R) satisfies the projection formula, then (F ′, R′)
satisfies the projection formula.

Proof. Because F ′ and R′ are computed by F and R after forgetting the module
structure, the first two results are clear. For the projection formula, under our
assumptions the natural map

RM ⊗A N → R(M ⊗A′ F N )

is equivalent to the geometric realization of the map of simplicial diagrams

RM ⊗ A⊗•⊗ N → R(M ⊗ (A′)⊗•⊗ F N ),

which is an equivalence in view of the projection formula for (F, R). �

Lifting localizations. For A ∈ CAlg(C) dualizable and

C(ιn+1)= Totn C•(A)
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as before, let A′= F(A) and j = F(ι), so that F(C(ιn))'C( jn). We have induced
monoidal adjunctions

Fn : ModC(C(ιn))−→←−ModD(C( jn)) : Rn,

F∞ : CA −→←− DA′ : R∞.

We end this section with a result that allows us to lift the property of R1 being
fully faithful to Rn and R∞.

Proposition 3.10. Suppose that R preserves colimits, (F, R) satisfies the projec-
tion formula, and R1 is fully faithful. Then Rn is fully faithful for all 1≤ n ≤∞.

Proof. First suppose n <∞ and let X ∈ ModD(C( jn)). We need to prove that
the counit εn

X is an equivalence. Because the base change functor −⊗C jn A′ is
conservative by Lemma 3.5, it suffices to show that εn

X ⊗C jn A′ is an equivalence.
But by the projection formula for (Fn, Rn) established in Lemma 3.9, this map is
equivalent to the counit εn

(X⊗C jn A′). Because X ⊗C jn A′ is an A′-module, εn
(X⊗C jn A′)

is lifted by the counit ε1
(X⊗C jn A′), which is an equivalence by assumption. The proof

for the case n =∞ is similar, where we instead use that

−⊗ A′ : DA′→ModD(A′)

is conservative and the projection formula for (F∞, R∞) by Lemma 3.7. �

4. Cellularization

In this section, we collect a few technical lemmas that will be applied to study
the ∞-category SHcell(S) of cellular motivic spectra. To begin with, we have
the following variant of [Mathew et al. 2017, Proposition 2.27] (with the same
conclusion), where we do not assume that E is an algebra object of C.

Lemma 4.1. Suppose C is a presentable symmetric monoidal stable∞-category
and E is a dualizable object in C.

(1) For any object X ∈ C, E∨⊗ X is E-local. If E∨ ' E ⊗ κ , then E ⊗ X is also
E-local.

(2) For any compact object X ∈ C, E∨ ⊗ X is compact in CE . If E∨ ' E ⊗ κ ,
then E ⊗ X is also compact in CE .

(3) If {X i } is a set of compact generators of C, then {E∨ ⊗ X i } is a set of com-
pact generators of CE . Therefore, if C is compactly generated, then CE is
compactly generated.

Proof. (1) Let Z be an E-null object. Then

HomC(Z , E∨⊗ X)' HomC(Z ⊗ E, X)' 0,
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so E∨⊗ X is E-local. If E∨ ' E ⊗ κ , then

HomC(Z , E ⊗ X)' HomC(Z ⊗ E∨, X)' HomC(Z ⊗ E ⊗ κ, X)' 0,

so E ⊗ X is E-local.

(2) Observe that the functor

CE → C

given by Y 7→ Y ⊗ E preserves colimits [Mathew et al. 2017, Remark 2.20]. Let

Y• : J → CE

be a functor and let us write colim Y j for the colimit in C and L E(colim Y j ) for the
colimit in CE . Then we have

HomC(E∨⊗ X, L E(colim Y j ))' HomC(X, E ⊗ L E(colim Y j ))

' HomC(X, colim(E ⊗ Y j ))

' colim HomC(X, E ⊗ Y j )

' colim HomC(E∨⊗ X, Y j ),

so E∨⊗ X is compact. The second assertion is similar.

(3) This follows as in the proof of [Mathew et al. 2017, Proposition 2.27]. �

The following concerns the existence and basic properties of cellularization:

Lemma 4.2. Let C be a compactly generated stable∞-category, let S={Si : i ∈I}

be a small set of compact objects in C, and let C′ be the localizing subcategory
generated by S (i.e., the smallest full stable subcategory containing S that is closed
under colimits).

(1) C′ is compactly generated and is a coreflective subcategory of C (i.e., the
inclusion j : C′ ⊆ C admits a right adjoint). Moreover, if

Cell : C→ C′

denotes this right adjoint, then Cell also preserves colimits.

(2) Suppose in addition that C is closed symmetric monoidal, the unit 1 ∈ C is
compact and in S, and for all i, i ′ ∈ I, we have that Si ⊗ Si ′ ∈ S. Then C′ ⊆ C

is a symmetric monoidal subcategory.

(3) Suppose in addition to the assumptions of (2) that each Si is dualizable. Then
for all X ∈ C and Y ∈ C′, the natural map θ : Cell(X)⊗ Y → Cell(X ⊗ Y ) is
an equivalence.
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Proof. For (1), C′ is compactly generated by definition, so j admits a right adjoint
by the adjoint functor theorem [Lurie 2009, Corollary 5.5.2.9]. Moreover, the set S
furnishes a set of compact generators for C′ that are sent to compact objects under j ,
so Cell preserves colimits. For (2), because the tensor product ⊗ commutes with
colimits separately in each variable, our assumption ensures that if X, Y ∈ C′, then
X ⊗ Y ∈ C′. We may then invoke [Lurie 2017, Remark 2.2.1.2] to see that C′ ⊆ C

is a symmetric monoidal subcategory. For (3), the assumption ensures that C′

is generated by dualizable objects under colimits. Because Cell commutes with
colimits, both the source and target of θ commute with colimits separately in each
variable. We may thus suppose that Y is a dualizable object in C′, with dual Y∨.
Note that Y∨ is also the dual of Y in C. For each generator Si we have that

HomC(Si ,Cell(X)⊗ Y )' HomC(Si ⊗ Y∨,Cell(X))

' HomC(Si ⊗ Y∨, X)

' HomC(Si , X ⊗ Y )

' HomC(Si ,Cell(X ⊗ Y )),

so θ is an equivalence. �

The following two lemmas describe the interaction of cellularization with Bous-
field localization and passage to module categories.

Lemma 4.3. With the setup of Lemma 4.2(2), let E be a dualizable object in C′.
Then:

(1) If X ∈ C is j (E)-local, then Cell(X) ∈ C′ is E-local.

(2) For X ∈ C, the natural map

Cell(X)⊗ E→ Cell(X ⊗ j (E))

is an equivalence. Hence, Cell sends j (E)-equivalences to E-equivalences.

(3) The adjunction

j : C′ −→←− C :Cell

induces a monoidal adjunction

j ′ : C′E −→←− C j (E) :Cell′

such that Cell′(X) ' Cell(X) for X ∈ C j (E), j ′(Y ) ' L j (E) j (Y ) for Y ∈ C′E ,
and the functor j ′ is fully faithful.

(4) The functor Cell′ preserves colimits.
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(5) Suppose in addition the condition of Lemma 4.2(3). Then for all X ∈ C j (E)

and Y ∈ C′E , we have the natural equivalence

L E(Cell′(X)⊗ Y )' Cell′(L E(X ⊗ Y )).

Consequently, the conclusion of Lemma 4.5 holds with j ′ a Cell′ in place of
j a Cell.

Proof. We consider each assertion in turn:

(1) If Y ∈ C′ is E-null, then j (Y ) ∈ C is j (E)-null since the inclusion C′ ⊆ C is
strong monoidal. Then if X ∈ C is j (E)-local, we have for all Y ∈ C′ E-null that
HomC(Y,Cell X)' HomC(Y, X)' 0, so Cell(X) is E-local.

(2) We write j (E) as E for clarity. It suffices to observe that for all i ∈ I,

HomC(Si ,Cell(X)⊗ E)' HomC(Si ⊗ E∨,Cell(X))

' HomC(Si ⊗ E∨, X)

' HomC(Si , X ⊗ E)

' HomC(Si ,Cell(X ⊗ E)).

(3) By (1), Cell : C→ C′ restricts to a functor

Cell′ : C j (E)→ C′E .

Define
j ′ : C′E → C j (E)

to be the composite

C′E ⊆ C
L j (E)
−−−→ C j (E).

Then it is clear that j ′ a Cell′, the adjunction is monoidal with respect to the tensor
products L E(−⊗−) and L j (E)(−⊗−) on C′E and C j (E), and the unit map

η : Y → Cell′ j ′Y

is equivalent to Cell of the unit map

η̂ : Y → L j (E)Y.

Because η̂ is an j (E)-equivalence in C, by (2) we see that Cell(η̂) is an equivalence.

(4) By Lemma 4.1, {Si ⊗ E∨ : i ∈ I} are a set of compact generators for C′E , and
are also compact and j (E)-local objects when regarded as being in C. Therefore,
the left adjoint j ′ sends compact generators to compact objects, which implies that
the right adjoint Cell′ preserves colimits.

(5) With our additional assumption, the Si ⊗ E∨ constitute a set of compact dual-
izable generators of C′E . The proof of Lemma 4.2(3) then applies to j ′ a Cell′. �
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Lemma 4.4. With the setup of Lemma 4.2(3), let A be an E∞-algebra in C and
let A′ := Cell(A) be the resulting E∞-algebra in C′. Then we have an induced
adjunction

j ′ : ModC′(A′)−→←−ModC(A) :Cell′

such that j ′ is fully faithful and identifies ModC′(A′) with the localizing subcate-
gory of ModC(A) generated by SA := {Si ⊗ A : i ∈ I}.

Proof. Note that ModC(A) and ModC′(A′) are compactly generated stable symmet-
ric monoidal∞-categories, and the set SA′ := {Si ⊗ A′} furnishes a set of compact
dualizable generators for ModC′(A′). Because Cell is lax monoidal, it induces a
functor Cell′ :ModC(A)→ModC′(A′) such that the diagram of right adjoints

C′ C
Cell

oo

ModC′(A′)

U ′

OO

ModC(A)
Cell′
oo

U

OO

commutes (where U and U ′ denote the forgetful functors). Since Cell preserves
limits and U,U ′ create limits, Cell′ also preserves limits and therefore admits a
left adjoint j ′ such that the diagram of left adjoints

C′

F ′

��

j
// C

F
��

ModC′(A′)
j ′
// ModC(A)

commutes (where F and F ′ denote the free functors), so j (SA′)= SA. It remains
to show that j ′ is fully faithful, i.e., that the unit map

η : M→ Cell′ j ′M

is an equivalence for all M ∈ModC′(A′). For this, note that Cell′ preserves colimits
since Cell preserves colimits by Lemma 4.2(2) and U,U ′ create colimits, so we
may suppose that M = Si ⊗ A′. But then we have

Cell′ j ′(Si ⊗ A′)= Cell′(Si ⊗ A)' Si ⊗ A′

by Lemma 4.2(3), and it is easily checked that η implements this equivalence. �

Finally, we retain the projection formula after cellularization.

Lemma 4.5. With the setup of Lemma 4.2(3), let D be a presentable symmetric
monoidal stable∞-category and let

F : C−→←− D : R
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be a monoidal adjunction such that R preserves colimits and (F, R) satisfies the
projection formula. Then Cell R preserves colimits and (F j,Cell R) satisfies the
projection formula.

Proof. Cell R preserves colimits by Lemma 4.2(2). For the projection formula, we
note that for all X ∈ D and Y ∈ C′,

(Cell R)(X)⊗ Y ' Cell(R X ⊗ Y )' (Cell R)(X ⊗ LY ),

where the first equivalence is by Lemma 4.2(3) and the second by our assumption
on (L , R). �

5. Recollements

Let X be an ∞-category which admits finite limits. Recall [Lurie 2017, §A.8;
Barwick and Glasman 2016] that an ∞-category X is a recollement of two full
subcategories U and Z if the inclusions j∗, i∗ of these subcategories admit left
adjoints j∗, i∗:

U
j∗
←−
−→

j∗
X

i∗
−→
←−
i∗

Z

such that

(1) the subcategories U,Z⊆ X are stable under equivalence,

(2) the left adjoints j∗, i∗ are left exact,

(3) the functor j∗i∗ is equivalent to the constant functor at the terminal object,

(4) if f is a morphism of X such that j∗ f and i∗ f are equivalences, then f is an
equivalence.

The following lemma shows that if X is a recollement of U and Z, then to test
whether a functor into X is a localization, it suffices to check this on U and Z.

Lemma 5.1. Let C and X be∞-categories that admit finite limits and suppose that
we have a recollement on X

U
j∗
←−
−→

j∗
X

i∗
−→
←−
i∗

Z

and an adjunction F : C−→←− X : R with F also left exact such that

(1) the natural transformation i∗F R j∗⇒ i∗ j∗ induced by the counit of (F, R) is
an equivalence,

(2) the functor j∗F Ri∗ is equivalent to the constant functor at the terminal object,

(3) the two functors R j∗ and Ri∗ are fully faithful.

Then R is fully faithful.
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Proof. We will show that for any X ∈X, the counit ε : F R X→ X is an equivalence.
Because i∗ and j∗ are jointly conservative, it suffices to show that i∗ε and j∗ε are
equivalences. Consider the pullback square

X //

��

i∗i∗X

��

j∗ j∗X // i∗i∗ j∗ j∗X

Applying i∗F R and using that Ri∗ is fully faithful and i∗F R j∗ ' i∗ j∗, we obtain
a pullback square

i∗F R X '
//

��

i∗F Ri∗i∗X ' i∗X

��

i∗F R j∗ j∗X ' i∗ j∗ j∗X '
// i∗F Ri∗i∗ j∗ j∗X ' i∗ j∗ j∗X

from which it follows that i∗ε is an equivalence. Applying j∗F R and using that
R j∗ is fully faithful and j∗F Ri∗ ' 0, we obtain a pullback square

j∗F R X //

'

��

j∗F Ri∗i∗X ' 0

'

��

j∗F R j∗ j∗X ' j∗X // j∗F Ri∗i∗ j∗ j∗X ' 0

from which it follows that j∗ε is an equivalence. �

6. Background on motivic and equivariant homotopy theory

The motivic stable homotopy category. Let S be a scheme and let SH(S) denote
the symmetric monoidal∞-category of motivic P1-spectra over S. Let SHcell(S)
be the localizing subcategory of SH(S) generated by the motivic spheres {S p,q

}.
A motivic spectrum E is cellular if it lies inside SHcell(S). Note that the full
hypotheses of Lemma 4.2 apply.

We recall from [Elmanto and Kolderup 2020, §2.2] the following facts concern-
ing compact and dualizable objects and generation in SH(S):

(1) For X an affine smooth scheme over S and q ∈ Z, the motivic P1-spectrum
6q X+ is compact; in particular, the bigraded motivic spheres S p,q are com-
pact. Compactness of the unit then implies that every dualizable object in SH(S)
is compact. Moreover, SH(S) is generated under sifted colimits by 6q X+ and
is thus compactly generated.

(2) If K is a field of characteristic 0, then every compact object in SH(K ) is
dualizable.



434 MARK BEHRENS AND JAY SHAH

We collect a few facts concerning the functoriality of SH(−); see [Hoyois 2017]
for a reference. Let f : T → S be a morphism of schemes. We always have a
monoidal adjunction

f ∗ : SH(S)−→←− SH(T ) : f∗.

The left adjoint f] to f ∗ exists if f is smooth. If f is smooth and proper, we have
the duality equivalence

f∗ ' f]6−� f .

In particular, if f is finite étale, then f∗ ' f] and the adjunction f ∗ a f∗ is am-
bidextrous. On the other hand, if f is separated and of finite type, we have the
adjunction

f! : SH(T )−→←− SH(S) : f !.

Moreover, f! coincides with f∗ if f is proper. If f is finite étale, we have that
f ! ' f ∗. Finally, we have the projection formula

f!(X ∧ f ∗(Y ))' f!(X)∧ Y.

Euler classes. Let
ρ = ρS : S−1,−1

→ S0,0

be the map in SH(S) induced by the inclusion

S0,0
= {±1} ↪→ Gm = S1,1.

The equivariant analog is the element a ∈ πC2
−1,−1S induced by the inclusion

S0 ↪→ Sσ .

The element a is the C2-Betti realization of the element ρ ∈ πR
−1,−1, and also serves

as the Euler class for the representation σ .
For Y ∈ SpC2 , the cofiber sequence

6∞
+

C2→ S0 6σ a
−−→ Sσ (6.1)

yields a long exact sequence

· · · → π
C2
i+1,1Y

a
−→ π

C2
i Y → π e

i Y → · · · .

It follows that a map of C2-spectra is a stable equivalence if and only if it induces
an isomorphism on the bigraded homotopy groups πC2

∗,∗, and that, in contrast to the
R-motivic case, every C2-spectrum is stably equivalent to one built from represen-
tation spheres.

The cofiber sequence (6.1) results in an equivalence

Ca '61−σ6∞
+

C2. (6.2)
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More generally, the cofiber sequences

S(iσ)+→ S0 6iσ ai

−−−→ Siσ

yield equivalences
Cai
'61−iσ S(iσ)+ (6.3)

and, taking Spanier–Whitehead duals, equivalences

Cai
' (S(iσ)+)∨.

We therefore have, for any Y ∈ SpC2 ,

Y h
= F((EC2)+, Y )

' lim
i

F(S(iσ)+, Y )

' lim
i

Y ∧C(ai )

' Y∧a . (6.4)

Since we have
Y8 = Y ∧ ẼC2

' colim
i

Y ∧ Siσ

' Y [a−1
] (6.5)

we deduce that the isotropy separation square (1.3) is equivalent to the a-arithmetic
square

Y //

��

Y [a−1
]

��

Y∧a // Y∧a [a
−1
]

Therefore, C2-Betti realization takes the ρ-arithmetic square to the isotropy sepa-
ration square.

η-completion and η-localization at odd primes. Let K be a perfect field. Bach-
mann [2018, Lemma 39] summarizes relations in πK

∗,∗S
0,0 involving the Hopf map

η ∈ πK
1,1S0,0

and the element ρ ∈ πK
−1,−1S0,0, after 2 is inverted. Namely, the element6

ε := −ηρ− 1

6Here we are following the convention that ρ = [−1]. Bachmann instead takes ρ =−[−1], which
results in the formula ε = ηρ− 1 in his work.
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is the interchange isomorphism

ε : S1,1
∧ S1,1

→ S1,1
∧ S1,1.

Therefore it satisfies ε2
' 1, and hence for any X ∈ SH(K )[1/2], there is a corre-

sponding decomposition into ±1-eigenspaces

πK
∗,∗X ∼= π

K
∗,∗X

−
⊕πK
∗,∗X

+. (6.6)

Here (−)− is the +1 eigenspace, and (−)+ is the −1 eigenspace. We have

πK
∗,∗X

−
= πK
∗,∗X [η

−1
] = πK

∗,∗X [ρ
−1
]

and on πK
∗,∗X

+ multiplication by η and ρ2 is zero.7 We deduce:

Proposition 6.7. For any X ∈ SHcell(K )[1/2], we have

X [η−1
] ' X [ρ−1

]

and the homotopy groups of these spectra are πK
∗,∗X

−, and we have

X∧η ' X∧ρ

and the homotopy groups of these spectra are πK
∗,∗X

+.

Proof. From the discussion above we deduce that the maps

X [η−1
] → X [ρ−1

][η−1
] ← X [ρ−1

],

X∧η → X∧ρ,η← X∧η

induce isomorphisms on bigraded homotopy groups, and hence are equivalences
since the spectra are cellular. �

Finally we note that for X ∈SHcell(K )[1/2], since X∧ρ [ρ
−1
]' 0, the ρ-arithmetic

square

X //

��

X [ρ−1
]

��

X∧ρ // X∧ρ [ρ
−1
]

yields a topological lift of the decomposition (6.6)

X ' X [ρ−1
] ∨ X∧ρ . (6.8)

7When K = R, multiplication by ρ is zero on πR
∗,∗X+. This follows from the presentation of the

Milnor–Witt ring of R in the introduction of [Dugger and Isaksen 2017a].
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On the other hand, for any Y ∈ SpC2[1/2], the Tate spectrum Y t is contractible,
and the isotropy separation square reduces to a splitting

Y ' Y8 ∨ Y h . (6.9)

The discussion from the previous subsection implies that C2-Betti realization car-
ries the splitting (6.8) to (6.9).

Motivic and equivariant cohomology. Let (HFp)K denote the mod p motivic
Eilenberg–MacLane spectrum over K . By [Voevodsky 2003; 2011; Stahn 2016],

πK
∗,∗(HFp)K =


Fp[τ ], K = C,

F2[τ, ρ], K = R, p = 2,
Fp[τ

2
], K = R, p odd.

Here, ρ is the Hurewicz image of ρR (and ρC ' 0).
Eilenberg–MacLane spectra are stable under base change — in particular,

ζ ∗(HFp)R = (HFp)C

and the associated map

πR
∗,∗(HFp)R→ πC

∗,∗(HFp)C

is the quotient by the ideal generated by ρ if p = 2, and the evident inclusion if p
is odd.

The C2-Betti realization of the mod p motivic Eilenberg–MacLane spectrum is
the C2-equivariant Eilenberg–MacLane spectrum HFp associated to the constant
Mackey functor Fp [Heller and Ormsby 2016]:

BeC2(HFp)R ' HFp.

For p = 2 we have

πC2
∗,∗HF2 = F2[u, a]⊕

F2[u, a]
(u∞, a∞)

{θ}

where a is the Hurewicz image of the element a ∈ πC2
−1,−1,

u = BeC2(τ ) ∈ π
C2
0,−1 HF2,

and
θ ∈ π

C2
0,2 HF2.

For p odd we have
πC2
∗,∗HFp = Fp[u±2

]

where
u2
= BeC2(τ 2) ∈ π

C2
0,−2 HFp.
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7. τ -self maps

In this section we will construct τ j -self maps on the spectra C(ρi )∧p . For p = 2,
this will be accomplished in the first three subsections by first constructing the C2-
Betti realizations of the desired self maps, and then by using a theorem of Dugger
and Isaksen [2017b] to lift these equivariant self maps to real motivic self maps.
For p odd, we will observe in the last subsection that the work of Stahn [2016]
implies that every ρ-complete spectrum has a τ 2-self map.

From now until the last subsection of this section, we implicitly assume every-
thing is 2-complete.

R-motivic and C2-equivariant homotopy groups of spheres. For j ∈ Z, let P∞j
denote the stunted projective spectrum given as the Thom spectrum

P∞j := (RP∞) jξ

where ξ is the canonical line bundle. The Segal conjecture for the group C2 (Lin’s
theorem [1980]) implies the following:

Proposition 7.1. There are isomorphisms

π
C2
i, j S0,0 ∼= πi− j ([P∞j ]

∨).

Proof. The Segal conjecture implies that for a finite C2-spectrum Y , the map

Y → Y h
= F((EC2)+, Y )

is a (2-adic) equivalence. Using the equivalence

P∞j ' (S
jσ )hC2,

we have
π

C2
i, j = [S

i− j
∧ S jσ , S]C2

∼= [Si− j
∧ S jσ , F((EC2)+, S)]C2

∼= [Si− j , F((EC2)+ ∧ S jσ , S)]C2

∼= [Si− j , F((EC2)+ ∧C2 S jσ , S)]

= πi− j ([P∞j ]
∨). �

Applying πC2
∗,∗ to the norm cofiber sequence

(EC2)+→ S0
→ ẼC2 (7.2)

gives the long exact sequence

· · · → π s
i− j+1→ λi, j → π

C2
i, j

8C2
−−→ π s

j−i → · · ·
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studied by Landweber8 [1969]. Using the equivalences

[P∞j ]
∨
'6P− j−1

−∞ [Bruner et al. 1986, Theorem V.2.14(iv)],

S−1
' P∞

−∞
[Lin 1980],

there is an isomorphism of long exact sequences

· · · // π s
i− j+1

//

∼=

��

λi, j
∼=

//

∼=

��

π
C2
i, j

8C2
//

∼=

��

π s
j−i

//

∼=

��

· · ·

· · · // πi− j P∞
−∞

// πi− j P∞
− j

// πi− j−1 P− j−1
−∞

// πi− j−1 P∞
−∞

// · · ·

(7.3)

where the bottom long exact sequence is the sequence obtained by applying π∗ to
the cofiber sequence

P− j−1
−∞ → P∞

−∞
→ P∞

− j .

By (6.5), the geometric fixed points map is the a-localization map

π
C2
i, j S //

8C2
$$

π
C2
i, j S[a−1

]

∼=

��

πi− j S

Thus the groups πC2
∗,∗ consist of a-torsion, and a-towers, where the latter are in

bijective correspondence with the nonequivariant stable stems. The generators
of these a-towers correspond to the Mahowald invariants [Bruner and Greenlees
1995].

As explained in [Dugger and Isaksen 2017b], Landweber [1969] uses James
periodicity to show that the a-torsion in πC2

i, j is periodic in the j direction outside
of a certain conic region.

Theorem 7.4 (Landweber). Define

γ (m) := #{k : 0< k ≤ m, k ≡ 0, 1, 2, 4 mod 8}. (7.5)

Outside of the region
j − 1≤ i ≤ 2 j

there are isomorphisms

(π
C2
i, j )a-tors ∼= (π

C2
i, j+2γ (i−1))a-tors.

8Here, we have indexed πi, j and λi, j with respect to our bigrading convention, not Landweber’s.
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Proof. Outside of the region described, the map

λi, j → (π
C2
i, j )a-tors

is an isomorphism, and Landweber [1969, Theorem 2.4, Proposition 6.1] observed
that James periodicity implies that there is an isomorphism

λi, j ∼= λi, j+2γ (i−1) . �

Dugger and Isaksen [2017b] prove the following theorem.9

Theorem 7.6 (Dugger and Isaksen). C2-Betti realization induces an isomorphism

πR
i, j S0,0

→ π
C2
i, j S0,0

for i ≥ 3 j − 5.

Figure 1 depicts the location of the a-torsion and the a-towers in πC2
∗,∗. The

dashed line marks the region where Dugger and Isaksen proved these groups coin-
cide with the groups πR

∗,∗ (Theorem 7.6). This cone in Theorem 7.4 is labeled the
“nonperiodicity cone” in the figure. Outside of this cone, the map

λi, j → (π
C2
i, j )a-tors

is an isomorphism.

u-self maps. Since the C2-spectra S1,0 and S1,1 are nonequivariantly equivalent,
the equivalence (6.2) results in a self-equivalence

u :60,−1Ca→ Ca.

We denote this map u, and shall refer to it as a u-self map, because it induces the
multiplication by u map on the homology groups

(HF2)∗,∗(Ca)∼= F2[u±].

We invite the reader to think of a u-self map as analogous to the vn-self maps
of chromatic homotopy theory [Ravenel 1992]. For instance, the mod 2i Moore
spectrum admits a v j

1 -self map for certain values of j which depend on i . We have
the following analog in the present situation.

Theorem 7.7. The C2-spectrum Cai admits a u-self map

u2γ (i−1) :60,−2γ (i−1)
Cai
→ Cai

and this map is an equivalence.

To prove Theorem 7.7 (and the forthcoming Theorem 7.10) we shall need the
following lemma.

9Belmont, Guillou, and Isaksen [Belmont et al. 2020] have recently improved this isomorphism
theorem to the region i ≥ 2 j − 4.
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Figure 1. The structure of πC2
i, j S0,0.

Lemma 7.8. The spectra Cρi
∈ SH(R) and Cai

∈ SpC2 are E∞-ring spectra.

Proof. The case of Cρi is explained in Remark 8.5. The case of Cai follows from
the fact that C2-Betti realization is monoidal. �

Proof of Theorem 7.7. Using the equivalence (6.3) and the Adams isomorphism,

π
C2
k,l Cai

= [Sk−l+lσ , 61−iσ S(iσ)+]C2

∼= [Sk−l, 6S(iσ)+ ∧ S(−l−i)σ
]
C2

∼= [Sk−l, 6S(iσ)+ ∧C2 S(−l−i)σ
]

∼= πk−l6P−l−1
−l−i
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and a similar argument yields

(HF2)k,lCai ∼= (HF2)k−l6P−l−1
−l−i . (7.9)

It follows that
(HF2)∗,∗Cai ∼= F2[u±, a]/(ai )

where, under the isomorphism (7.9), the monomial usat is the homology class
coming from the (s− 1)-cell of Ps+t−1

s+t−i .
By Lemma 7.8, to prove the theorem it suffices to prove that there is an element

u2γ (i−1) ∈ π
C2
0,−2γ (i−1)Cai

whose Hurewicz image is

u2γ (i−1)
∈ HC2

0,−2γ (i−1)Cai .

Using the commutative diagram

π
C2
0,−2γ (i−1)Cai ∼=

//

��

π2γ (i−1)6P2γ (i−1)
−1

2γ (i−1)−i

��

HC2
0,−2γ (i−1)Cai

∼=

// H2γ (i−1)6P2γ (i−1)
−1

2γ (i−1)−i

relating equivariant and nonequivariant Hurewicz homomorphisms, the result fol-
lows from the fact [Bruner et al. 1986, Theorem V.2.14(v)] that P2γ (i−1)

−1
2γ (i−1)−i is re-

ducible.
The resulting self map u2γ (i−1) induces multiplication by u2γ (i−1)

on homology,
and therefore is a homology isomorphism, and hence is a equivalence. �

Note that we make no claims that these u-self maps have any uniqueness or
compatibility properties.

τττ -self maps.

Theorem 7.10. The R-motivic spectrum Cρi admits a τ -self map

τ2γ (i−1) :60,−2γ (i−1)
Cρi
→ Cρi .

Proof. By Lemma 7.8, it suffices to prove that there is an element

τ2γ (i−1) ∈ π
C2
0,−2γ (i−1)Cρ

i

whose Hurewicz image is

τ 2γ (i−1)
∈ (HF2)0,−2γ (i−1)Cρi ∼= F2[τ, ρ]/(ρ

i ).
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By Theorem 7.6, there are isomorphisms in the map of long exact sequences

πR
i,i−2γ (i−1)

ρi
//

∼=

��

πR
0,−2γ (i−1)

//

∼=

��

πR
0,−2γ (i−1)Cρi //

��

πR
i−1,i−2γ (i−1)

ρi
//

∼=

��

πR
−1,−2γ (i−1)

∼=

��

π
C2
i,i−2γ (i−1)

ai
// π

C2
0,−2γ (i−1)

// π
C2
0,−2γ (i−1)Cai // π

C2
i−1,i−2γ (i−1)

ai
// · · ·π

C2
−1,−2γ (i−1)

which, by the 5-lemma, allow us to deduce that there is an isomorphism

πR
0,−2γ (i−1)Cρi ∼=−→ π

C2
0,−2γ (i−1)Cai .

The desired element τ2γ (i−1) can be taken to be an element which corresponds, under
this isomorphism, to the element u2γ (i−1) of Theorem 7.7. �

τ -self maps at an odd prime. In this subsection, everything is implicitly p-complete
for a fixed odd prime p.

Consider the homotopy complete (p-complete) C2-equivariant sphere Sh . We
have

π
C2
0,k Sh

= [Skσ−k, F((EC2)+, S)]C2

∼= [(EC2)+ ∧ Skσ , Sk
]
C2

∼= [(EC2)+ ∧C2 Skσ , Sk
]

∼= [P∞k , Sk
]

∼=

{
Zp, k even,
0, k odd,

where the last isomorphism comes from the fact that P∞k is p-adically contractible
if k is odd, and inclusion of the bottom cell

Sk ↪→ P∞k

is a p-adic equivalence if k is even. Define u2 to be a generator of πC2
0,−2Sh . Then

the above calculation implies that

π
C2
0,∗S

h ∼= Zp[u±2
].

Thus the homotopy groups of any p-complete homotopy complete C2-equivariant
spectrum are u2-periodic.

Proposition 7.11. We have
πR

0,∗S
∧

ρ
∼= Zp[τ

2
]

and every (p-complete) ρ-complete real motivic spectrum has a τ 2-self map. More-
over, we have

B̂eC2
p (τ

2)= u2.
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Proof. Let B PGL be the odd primary real motivic Brown–Peterson spectrum
constructed in [Stahn 2016]. By [Stahn 2016, Proposition 2.5], we have

πR
∗,∗B PGL = Zp[τ

2, v1, v2, . . . ]

with |vi | = (2pi
− 2, pi

− 1). Consider the associated (p-complete) real motivic
Adams–Novikov spectral sequence10

ExtB PGL∗,∗B PGL(B PGL∗,∗, B PGL∗,∗)⇒ πR
∗,∗S

∧

η .

Stahn [2016] explains the odd primary analog of a recipe of Dugger and Isaksen
[2010], which allows one to completely construct the motivic Adams–Novikov
spectral sequence from the classical Adams–Novikov spectral sequence. In partic-
ular, using Proposition 6.7, we are able to deduce the first statement. The second
statement follows by considering the composite (arising from the Hurewicz homo-
morphism, the map of [Hoyois 2015], and Betti realization)

Zp[τ
2
] = πR

0,∗S
∧

ρ → πR
0,∗B PGL→ πR

0,∗(HFp)R→ π
C2
0,∗HFp = Fp[u±2

].

Theorem 4.18 of [Heller and Ormsby 2016] implies that C2-Betti realization maps
τ 2 to u2. We deduce that

B̂eC2
p (τ

2)= λu2

with λ ∈ Z×p . Without loss of generality, we may choose the generator τ 2 so that
λ= 1. �

8. The equivariant-motivic situation

The monoidal Barr–Beck theorem for étale base change. For a subgroup H ≤G,
the restriction-induction adjunction

ResG
H : SpG −→

←− SpH
: IndG

H

satisfies the hypotheses of Theorem 3.6 (cf. [Mathew et al. 2017, Theorem 5.32]).
Let ζ denote the map

ζ : Spec C→ Spec R

and consider the induced adjunction

ζ ∗ : SH(R)−→←− SH(C) : ζ∗.

10For convergence, the argument of [Dugger and Isaksen 2010, §8] shows that this spectral se-
quence converges to the (HFp)R-completion of the motivic sphere spectrum, which by [Hu et al.
2011], is the (p, η)-completion.
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Note that since the adjunction ζ ∗ a ζ∗ is monoidal, we have

Spec C+ = ζ∗1 ∈ CAlg(SH(R)).

With the adjunction ζ ∗ a ζ∗ being our main situation of interest, we now make the
analogous observation in the motivic context.

Proposition 8.1. If f : T → S is finite étale, then f ∗ a f∗ satisfies the hypotheses
of Theorem 3.6, and we have

SH(T )'ModSH(S)( f∗1).

Proof. In view of the properties of the base change functors outlined in Section 6,
it only remains to show that f∗ is conservative, so suppose X ∈ SH(T ) such that
f∗X ' 0. Consider the pullback square

T ×S T
g
//

g
��

T

f
��

T
f
// S

Then f ∗ f∗x ' g∗g∗x ' 0. But g∗g∗x is a finite coproduct of copies of x , using
that f is finite étale. Hence, x ' 0. �

Corollary 8.2. SH(C)'ModSH(R)(Spec C+).

The following is the key calculational observation behind this paper:

Proposition 8.3. There is a noncanonical map

C(ρ)→ Spec C+

which becomes an equivalence after p-completion and cellularization.

Proof. Let
ξ : S0,0

R → Spec C+

be the unit map, which is adjoint to the identity in SH(C). By adjunction, we have

[S−1,−1,Spec C+]R ∼= [S−1,−1, S0,0
]C.

But since ρ ' 0 in SH(C), ξ ◦ ρ is null homotopic. Making a choice of null
homotopy, we obtain a comparison map

α : C(ρ)→ Spec C+

that we wish to show is a p-complete cellular equivalence. Using the motivic
Adams spectral sequence, it suffices to show that

β : (HFp)
R
∗,∗(C(ρ))→ (HFp)

R
∗,∗(Spec C+)∼= π

C
∗,∗(HFp)C
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is an isomorphism (for p odd, the motivic Adams spectral sequence only converges
to the (p, η)-completion [Heller and Ormsby 2016], but both C(ρ) and Spec C+

are η-complete by Proposition 6.7).
For p= 2, πR

∗,∗ of the map (HF2)R→ ζ∗(HF2)C is computed to be the surjection
F2[τ, ρ] → F2[τ ], which identifies β as the isomorphism F2[τ, ρ]/ρ ∼= F2[τ ].

For p odd, πR
∗,∗ of the map (HFp)R → ζ∗(HFp)C is computed [Stahn 2016,

Proposition 1.1] to be the injection Fp[τ
2
] → Fp[τ ]. Using the fact that ρ acts

trivially, we deduce

(HFp)
R
∗,∗Cρ ∼= Fp[τ

2
]{1, τ }

and we conclude that β is an isomorphism. �

Remark 8.4. We claim that Spec C+ is not cellular in SH(R). Indeed, upon apply-
ing ζ ∗, the cofiber sequence

S−1,−1 ρ
−→ S0,0

→ C(ρ)

becomes

S−1,−1 0
−→ S0,0

→ ζ ∗(C(ρ))

and thus we have

ζ ∗(Cρ)' S0,0
∨ S0,−1.

But

ζ ∗ Spec C+ = ζ
∗ζ∗1= S0,0

∨ S0,0.

In effect, the presence of the motivic weight forbids Spec C+ from being cellular.

Remark 8.5. Via Proposition 8.3 and Cell being lax monoidal, C(ρ)∧p and there-
fore C(ρn)∧p obtain the structure of E∞-algebras in SH(R)∧p .

Corollary 8.6. There is an equivalence

SHcell(C)
∧

p 'ModSHcell(R)∧p
(C(ρ))

and we have a diagram of commuting left adjoints

SHcell(R)
∧
p

ζ ∗

��

� � // SH(R)∧p

ζ ∗

��

SHcell(C)
∧
p

'

��

� � // SH(C)∧p

'

��

ModSHcell(R)∧p
(C(ρ)) �

�
// ModSH(R)∧p (Spec C+)
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where the horizontal right adjoints are given by the cellularization functor. In
particular, for X ∈ Sp(R)∧p , we have an induced isomorphism

πR
∗,∗X ∧C(ρ)∼= πC

∗,∗ζ
∗X.

Proof. Combine Proposition 8.3, Proposition 8.1, Lemma 4.4 with A = Spec(C)+,
and Lemma 4.3 for the p-completion. �

Warning 8.7. Cell is not strong monoidal, and indeed one may show that

Cell(Spec C+ ∧Spec C+) 6' C(ρ)∧2.

Therefore, we don’t have an induced adjunction between Spec C+-local objects in
SH(R)∧p and C(ρ)-local objects in SHcell(R)

∧
p .

Betti realization. We next relate the motivic to the C2-equivariant situation. We
begin by recalling the Betti realization and constant functors, for which an ∞-
categorical reference is [Bachmann and Hoyois 2018, §10.2, §11].

Definition 8.8. The complex Betti realization functor

Be : SH(C)→ Sp

is the unique colimit preserving functor that sends the complex motivic spectrum
6∞
+

X to 6∞
+

X (C) for X a smooth quasiprojective C-variety, where X (C) is en-
dowed with the analytic topology. Likewise, the C2-Betti realization functor

BeC2 : SH(R)→ SpC2

is the unique colimit preserving functor that sends the real motivic spectrum 6∞
+

X
to 6∞

+
X (C) for X a smooth quasiprojective R-variety, where X (C) has C2-action

given by complex conjugation. We define p-complete Betti realization functors by

B̂ep(−) := Be(−)∧p ,

B̂eC2
p (−) := BeC2(−)∧p .

Both Be and BeC2 are symmetric monoidal functors. Let Sing and SingC2 denote
their respective right adjoints, so we have the following diagram of adjoint functors:

SH(R)
BeC2

//

ζ ∗

��

SpC2

SingC2

oo

Res
C2
e

��

SH(C)
Be

//

ζ∗

OO

Sp

Ind
C2
e

OO

Sing
oo

(8.9)
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We also have the real Betti realization functor

BeR : SH(R)→ Sp

that sends 6∞X+ to 6∞
+

X (R). By definition, 8C2 BeC2 ' BeR. Bachmann [2018,
§10] has also identified his real-étale localization functor

SH(R)→ Sp

with BeR. If we let
i∗ : Sp→ SpC2

denote the right adjoint to geometric fixed points (−)8C2 , then it follows that
SingC2 i∗ is fully faithful.

Consider the ρ-inverted motivic sphere S0,0
[ρ−1
] and the associated localization

SH(S)[ρ−1
]. The following main theorem of [Bachmann 2018] is essential.

Theorem 8.10 [Bachmann 2018]. There is an equivalence of∞-categories

SH(S)[ρ−1
] ' Sp(Shv(Sper(S))),

where Sper(S) is the real spectrum of S [Bachmann 2018, §3]. In particular, we
have

SH(R)[ρ−1
] ' Sp

and the following diagram commutes

SH(R)
BeR

//

&&

Sp

SH(R)[ρ−1
]

'

99

Thus, real Betti realization is localization with respect to ρ.

We recall the definition of the constant functor, and Heller and Ormsby’s equi-
variant generalization [2016].

Definition 8.11. The constant functor

c∗C : Sp→ SH(C)

is the unique colimit preserving functor that sends S0 to S0,0. The C2-equivariant
constant functor

c∗R : SpC2 → SH(R)

is the unique colimit preserving functor that sends S0
=C2/C2+ to S0,0

= Spec R+

and C2/1+ to Spec C+.



C2-EQUIVARIANT STABLE HOMOTOPY FROM REAL MOTIVIC STABLE HOMOTOPY 449

Lemma 8.12. Betti realization splits the constant functor. In other words, we have
equivalences

Be ◦ c∗C ' id,

BeC2 ◦ c∗R ' id.

Proof. The functors in question preserve colimits, so it suffices to observe that:

(Be c∗C)(S
0)= S0,

(BeC2 c∗R)(S
0)= S0,

(BeC2 c∗C)(C2/1+)= C2/1+. �

Lemma 8.13. The monoidal adjunctions

Be : SH(C)−→←− Sp :Sing,

BeC2 : SH(R)−→←− SpC2 :SingC2

satisfy the hypotheses of Theorem 3.6. Therefore, we have

Sp'ModSH(C)(Sing S0),

SpC2 'ModSH(R)(SingC2 S0).

Proof. We verify the second statement; the first will follow by a similar argument.
Let us consider the hypotheses in turn:

(1) In view of Lemma 8.12, SingC2 is conservative as it is split by the right adjoint
to the constant functor c∗R.

(2) Note that for X a smooth quasiprojective R-variety, X (R) and X (C) have the
homotopy types of finite CW-complexes; hence, BeC2(6∞

+
X) is compact in SpC2 .

Because the collection of motivic spectra {6∞
+

X} furnish a set of compact genera-
tors for SH(R), we deduce that SingC2 preserves colimits. To verify the projection
formula

SingC2(A)∧ B ' SingC2(A∧BeC2 B),

because both sides preserve colimits in the B variable, it suffices to check for
B =6∞

+
X . In this case, we need to show that for any W ∈ SH(R), the comparison

map
[W,SingC2(A)∧ B]R→ [W,SingC2(A∧BeC2 B)]R

is an isomorphism. Using that B is dualizable, under adjunction this is equivalent
to

[BeC2(W )∧BeC2(B∨), A]C2 → [BeC2(W ), A∧BeC2 B]C2
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where the conclusion follows because BeC2 B is also dualizable with dual given by
BeC2(B∨). �

Using Lemma 3.7, we deduce the following p-complete variant.

Corollary 8.14. For a prime p, we have

Sp∧p 'ModSH(C)∧p ([Sing S0
]
∧

p),

[SpC2]
∧

p 'ModSH(R)∧p ([SingC2 S0
]
∧

p).

We may also deduce the following cellular variant, which highlights an impor-
tant difference between the R- and C-motivic settings.

Corollary 8.15. The adjunction

Be : SHcell(C)−→←− Sp :Cell Sing

satisfies the hypotheses of Theorem 3.6, and therefore Betti realization gives an
equivalence

ModSHcell(C)(Cell Sing S0)' Sp.

In particular, we have an equivalence

ModSHcell(C)(Cell Sing S0)'ModSH(C)(Sing S0).

In the real case, the adjunction

BeC2 : SHcell(R)−→←− SpC2 :Cell SingC2

satisfies these hypotheses after p-completion, giving

ModSHcell(R)∧p
([Cell SingC2 S0

]
∧

p)' (SpC2)∧p . (8.16)

Proof. Lemma 4.5 implies every hypotheses of Theorem 3.6 holds for the cellular
adjunctions except for the conservativity hypothesis. In the complex case, because
c∗

C
has essential image in SHcell(C), Cell Sing is conservative. However, in the real

case,
c∗R(C2/1+)= Spec C+

is not cellular. Nonetheless, because

(Cell Spec C+)
∧

p ' C(ρ)∧p → (Spec C+)
∧

p

is sent to an equivalence in (SpC2)∧p , it follows that Cell SingC2 is conservative after
p-completion. �
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Remark 8.17. The observation (8.16) is not new — Ricka [2017, Theorem 2.4]
proves this. However, Ricka’s version does not have the p-completion. We believe
the subtlety mentioned in the proof above may have been overlooked in his proof,
however, and we do not know if (8.16) holds without the p-completion.

Betti realization as a localization. We will now show that in the p-complete set-
ting, both Cell Sing and Cell SingC2 are fully faithful, implying B̂ep and B̂eC2

p are
localizations when restricted to p-complete cellular motivic spectra.

The complex case, summarized in the following theorem, was essentially proven
by Dugger and Isaksen [2010] (in the case of p = 2) and Stahn [2016] (in the case
of p odd).

Theorem 8.18. The functor

Cell Sing : Sp∧p → SHcell(C)
∧

p

is fully faithful with essential image consisting of those objects in SHcell(C)
∧
p on

which multiplication by τ is an equivalence. Therefore, given X ∈ SHcell(C)
∧
p ,

2-complete Betti realization induces an isomorphism

πC
i, j X [τ−1

]
∼=−→ πi B̂ep(X).

Proof. Because we already know that Be a Cell Sing satisfies the hypotheses of
Theorem 3.6, it suffices to compute (S0,0)∧p [τ

−1
] ' Cell Sing(S0)∧p . But the natural

map
(S0,0)∧p [τ

−1
] → Sing(S0)∧p

is a cellular equivalence by the results of [Dugger and Isaksen 2010; Stahn 2016].�

Our strategy will be to formally derive the real case from this, by lifting this local-
ization up the ρ-completion tower, and combining with Bachmann’s Theorem 8.10.

To this end, we consider the isotropy separation recollement on SpC2 given by

SphC2
(−)h

←−−
−−→

j∗
SpC2

(−)8C2
−−−−→
←−−−−

i∗
Sp.

Lemma 8.19. We have equivalences of functors

(BeC2 SingC2 i∗(−))h ' 0,

(BeC2 Cell SingC2 i∗(−))h ' 0.

Proof. Because S0,0
[ρ−1
] is cellular, the essential image of

SingC2 i∗ : Sp→ SH(R)

is cellular as it is generated as a localizing subcategory by S0,0
[ρ−1
]. Therefore,

Cell SingC2 i∗ ' SingC2 i∗,
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so we may ignore cellularization in the proof. Because for E ∈ SpC2 , Eh
' 0 if

and only if ResC2
e E ' 0, it suffices to show that

ResC2
e BeC2 SingC2 i∗ ' 0.

Because ResC2
e BeC2 ' Be ζ ∗ for

ζ : Spec C→ Spec R,

this follows from the observation that

ζ ∗ : SH(R)→ SH(C)

vanishes on ρ-inverted objects. �

Lemma 8.20. The natural transformations

(BeC2 SingC2 j∗(−))8C2 → ( j∗(−))8C2,

(BeC2 Cell SingC2 j∗(−))8C2 → ( j∗(−))8C2

induced by the counits of the adjunctions

ε : BeC2 SingC2 → id,

ε′ : Cell BeC2 SingC2 → id

are equivalences.

Proof. We first consider the noncellular assertion. Let X ∈ SphC2 and Y = j∗X .
Since i∗ is fully faithful, it suffices to prove that

i∗([BeC2 SingC2 Y ]8C2)= ẼC2 ∧BeC2 SingC2 Y → i∗(Y8C2)= ẼC2 ∧ Y

is an equivalence. For this, first note that because ẼC2 = BeC2(S0,0
[ρ−1
]), using

that BeC2 is strong monoidal and the projection formula we have equivalences

ẼC2 ∧BeC2 SingC2 j∗(X)' BeC2(SingC2(X)∧ S0,0
[ρ−1
])

' BeC2 SingC2(X ∧ ẼC2)

under which ẼC2 ∧ εY is identified with εY∧ẼC2
. Next, by Lemma 8.19 and the

fact that SingC2 i∗ is fully faithful, for any Z ∈ Sp the fiber sequence of functors

(EC2)+ ∧−→ id→ ẼC2 ∧−

applied to BeC2 SingC2 i∗Z yields the equivalence

BeC2 SingC2 i∗Z→ ẼC2 ∧BeC2 SingC2 i∗Z ' i∗Z .

In particular, the counit

BeC2 SingC2(X ∧ ẼC2)→ X ∧ ẼC2

is an equivalence.
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Finally, the cellular assertion is proven in the same way, using now that S0,0
[ρ−1
]

is cellular and BeC2 a Cell SingC2 is a monoidal adjunction that satisfies the pro-
jection formula by Lemma 4.5. �

We have almost assembled all of the ingredients needed to prove Theorem 8.22.
In view of Lemma 5.1, it only remains to prove the fully faithfulness of SingC2 on
the Borel part of the recollement, which we turn to now.

Because we have BeC2(C(ρ))= C(a) for the Euler class

a : S−σ → S0

and (SpC2)∧a ' SphC2 (6.4), we obtain the induced adjunction

B̂ehC2
p : SHcell(R)

∧

p,ρ
−→
←− (SphC2)∧p :Cell SinghC2

as in Lemma 3.7.

Corollary 8.21. The functor Cell SinghC2 is fully faithful.

Proof. Combine Theorem 8.18, Corollary 8.6, and Proposition 3.10. �

We may now deduce the categorical half of our main theorem, which states
that C2-equivariant Betti realization, when restricted to p-complete cellular real
motivic spectra, is a localization.

Theorem 8.22. Cell SingC2 : (SpC2)∧p → SHcell(R)
∧
p is fully faithful.

Proof. The conditions of Lemma 5.1 apply in view of Lemma 8.19, Lemma 8.20,
Bachmann’s Theorem 8.10, and Corollary 8.21. �

Computing Betti localization. In the complex case, Theorem 8.18 implies that
Betti realization can be computed on p-complete cellular complex motivic spectra
by inverting τ ∈ πC

0,−1(S
0,0)∧p .

We would like a similar result for the C2-Betti realization of a p-complete cellu-
lar real motivic spectrum. In the real case, for X ∈ SH(R), the isotropy separation
recollement implies that the homotopy type of the p-complete C2-equivariant Betti
realization can then be recovered by the pullback:

B̂eC2
p (X) //

��

B̂eC2
p (X)

8

��

B̂eC2
p (X)

h // B̂eC2
p (X)

t

(8.23)

Therefore, it suffices to compute B̂eC2
p (X)

8, B̂eC2
p (X)

h , B̂eC2
p (X)

t , and the map

B̂eC2
p (X)

8
→ B̂eC2

p (X)
t .
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For the geometric localization B̂eC2
p (X)

8, Bachmann’s Theorem 8.10 has the
following immediate consequence (which does not require p-completion or cellu-
larization).

Theorem 8.24. For X ∈ SH(R), equivariant Betti realization induces an isomor-
phism

πR
∗,∗X [ρ

−1
]
∼=−→ πC2

∗,∗ BeC2(X)8.

Proof. Using Bachmann’s Theorem 8.10, we have

πR
i, j X [ρ−1

] ∼= πi− j BeR(X)
∼= πi− j BeC2(X)8C2

∼= π
C2
i, j BeC2(X)8. �

We will now show that if X is p-complete and cellular, the p-complete homo-
topy completion B̂eC2

p (X)
h can be computed by inverting τ on the ρ-completion

tower. The Tate spectrum B̂eC2
p (X)

t may then computed by inverting ρ on the
τ -inverted ρ-completion.

Let us now describe in detail how to invert τ on the ρ-completion tower. For
every n, we have adjunctions

B̂eC2,n
p : ModSHcell(R)∧p

(C(ρn))−→←−Mod(SpC2 )∧p
(C(an)) :SingC2,n

where SingC2,n is fully faithful by Theorem 8.18 and Proposition 3.10. The self
map τN of C(ρn)∧p constructed in Section 7 (where we take τN := τ

2 there in the
case of p odd) allows us to explicitly compute the resulting localization functor in
terms of τN -localization, as stated in the next lemma.

Lemma 8.25. For X ∈ModSHcell(R)∧p
(C(ρn)), we have

SingC2,n B̂eC2,n
p X ' X [τ−1

N ].

Thus, the image of the fully faithful right adjoint

SingC2,n :Mod(SpC2 )∧p
(C(an))→ModSHcell(R)∧p

(C(ρn))

consists of those p-complete cellular C(ρn)-modules on which multiplication by
τN is an equivalence.

Proof. For brevity, we implicitly assume everything is p-complete in this proof.
We claim the self maps τN satisfy

(1) B̂eC2,n
p (τN )= uN is an self-equivalence of C(an),

(2) C(ρn)[τ−1
N ] ∧C(ρn) C(ρ)' C(ρ)[τ−1

].
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Statement (1) is proven in Theorem 7.7 (for p = 2) and Proposition 7.11 (for p
odd). For statement (2), it suffices to show that the composite

60,−N C(ρ)'60,−N C(ρn)∧C(ρn) C(ρ)
τN∧1
−−−→ C(ρn)∧C(ρn) C(ρ)' C(ρ)

is equal to τ N , up to multiplication by a unit. However, by Corollary 8.6, we have

πR
0,∗C(ρ)∼= π

C
0,∗(S

0,0)∧p
∼= Zp[τ ].

In particular, the Hurewicz homomorphism

πR
0,∗C(ρ)→ (HFp)

R
0,∗Cρ ∼= Fp[τ ]

is given by the obvious surjection, and the result follows from the fact that τN

induces multiplication by τ N on homology.
By (1), we have a comparison map

C(ρn)[τ−1
N ] → SingC2,n(C(an))

adjoint to the equivalence

C(an)[u−1
N ] ' C(an).

After base change to C(ρ), this map is an equivalence by (2), hence is an equiva-
lence as −∧C(ρn) C(ρ) is conservative. Because the adjunctions in question also
satisfy the hypotheses of Theorem 3.6, we have that

SingC2,n B̂eC2,n
p X ' SingC2,n((B̂eC2,n

p X)∧C(an) C(an))

' SingC2,n(C(an))∧C(ρn) X

' X [τ−1
N ]. �

For p odd, every X ∈ SH(R)∧p has a τ 2-self map on its ρ-completion, and we
can therefore form the telescope

X∧ρ [τ
−1
] := X∧ρ [τ

−2
].

For p = 2, because the periodicity of the elements τN increases as n→∞, we
do not have an analogous construction. Nevertheless, given X ∈ SHcell(R)

∧
p , the

equivalences of Lemma 8.25 allow us to define maps

X ∧C(ρn)[τ−1
N ] ' SingC2,n B̂eC2,n

p X ∧C(ρn)

→ SingC2,n−1 B̂eC2,n−1
p X ∧C(ρn−1)

' X ∧C(ρn−1)[τ−1
N ′ ].
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We may therefore define

X∧ρ [τ
−1
] := lim

n
X ∧C(ρn)[τ−1

N ].

We are now ready to deduce the computational half of our main theorem.

Theorem 8.26. For X ∈ SHcell(R)
∧
p , we have

Cell SinghC2 B̂ehC2
p X∧ρ ' X∧ρ [τ

−1
]

and C2-Betti realization induces an isomorphism

πR
∗,∗X

∧

ρ [τ
−1
]
∼=−→ πC2

∗,∗ B̂eC2
p (X)

h .

Proof. Since

Cell SinghC2 B̂ehC2
p X∧ρ ' lim

n
SingC2,n B̂eC2,n

p X ∧C(ρn),

we deduce the first statement from Lemma 8.25. The second statement follows
from the adjunction

π
C2
i, j (B̂eC2

p (X)
h)= [BeC2 Si, j , B̂eC2

p (X)
h
]
C2

∼= [Si, j ,Cell SingC2 B̂eC2
p (X)

h
]R

∼= π
R
i, j X∧ρ [τ

−1
]. �

9. Examples

We now demonstrate the effectiveness of our theory by computing the C2-equivariant
homotopy groups of the C2-Betti realizations of some p-complete cellular real
motivic spectra from their motivic homotopy groups.

For p odd, the computational implementation of our theory is straightforward.
Given X ∈ SHcell(R)

∧
p , we have (6.8)

X ' X [ρ−1
] ∨ X∧ρ

and we have
πC2
∗,∗ B̂eC2

p (X)' π
R
∗,∗X [ρ

−1
]⊕πR

∗,∗X
∧

ρ [τ
−2
].

In the case of p = 2, the computations are more interesting, and we illustrate
this with some examples. In each of these cases, the motivic homotopy groups are
less complicated than the corresponding C2-equivariant homotopy groups.11

11It is worth pointing out that in each of these examples the actual determination of these mo-
tivic homotopy groups is often the result of deep results in motivic homotopy theory, whereas the
corresponding equivariant computations do not depend on similarly deep input.
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We point out that the use of isotropy separation to organize the equivariant ho-
motopy of the examples in this section is not new — see, for example, [Greenlees
2018].

mod 2 motivic cohomology. Let (HF2)R ∈ SH(R) denote the mod 2 real motivic
Eilenberg–MacLane spectrum. Dugger and Isaksen [2005] proved that the motivic
complex cobordism spectrum MGL is cellular. Work of Hopkins and Morel and
of Hoyois [2015] implies that (HZ)R (and hence (HF2)R) is a regular quotient of
MGL, and is therefore cellular. Finally, Heller and Ormsby [2016, Theorem 4.17]
prove that for any abelian group, the C2-Betti realization of (H A)R is H A, the
C2-equivariant Eilenberg–MacLane spectrum associated to the constant Mackey
functor A, so we have

BeC2(HF2)R ' HF2.

We may therefore apply our theory to compute πC2
∗ HF2.

Recall again that we have [Voevodsky 2003]

πR
∗,∗(HF2)R = F2[τ, ρ].

Using Theorem 8.10, we have

πC2
∗,∗HF2

8 ∼= π
R
∗,∗(HF2)R[ρ

−1
]

= F2[τ, ρ
±
].

Using Theorem 8.26, we have

πC2
∗,∗HF2

h ∼= π
R
∗,∗(HF2)R[τ

−1
]

= F2[τ
±, ρ].

Because the Tate spectrum is the geometric localization of the homotopy comple-
tion, we may apply Theorem 8.10 to the above to deduce

πC2
∗,∗HF2

t ∼= π
R
∗,∗(HF2)R[τ

−1
][ρ−1

]

= F2[τ
±, ρ±].

We may then use the Mayer–Vietoris sequence

· · · → π
C2
∗+1,∗HF2

t ∂
−→ πC2

∗,∗HF2→ πC2
∗,∗HF2

h
⊕πC2
∗,∗HF2

8
→ · · ·

associated to the isotropy separation square (8.23) to deduce

πC2
∗,∗HF2 = F2[τ, ρ]⊕

F2[τ, ρ]

(τ∞, ρ∞)
{∂ρ−1τ−1

}.

The calculation is displayed in Figure 2. The motivic homotopy πR
∗,∗(HF2)R

is displayed in the shaded region. In this figure, a dot represents a factor of F2,
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Figure 2. Computing πC2
∗,∗HF2 from πR

∗,∗(HF2)R.
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and a line represents multiplication by the element ρ. The other three quadrants
are then obtained from this motivic homotopy by inverting τ , ρ, or both τ and ρ.
The resulting equivariant homotopy, deduced from the Mayer–Vietoris sequence, is
displayed in the upper-left-hand chart (the combination of the shaded and unshaded
regions).

2-adic motivic cohomology. The discussion of the previous subsection also estab-
lishes that the 2-adic real motivic Eilenberg–MacLane spectrum (HZ2)R is cellular
(and it is clearly 2-complete). The coefficients of (HZ2)R are given by (see, for
example [Hill 2011]12)

πR
∗,∗(HZ2)R =

Z2[ρ, τ
2
]

(2ρ)
.

Again, [Heller and Ormsby 2016, Theorem 4.17] implies that

BeC2(HZ2)R ' HZ2.

We therefore deduce

πC2
∗,∗HZ2

8 ∼= π
R
∗,∗(HZ2)R[ρ

−1
]

= F2[τ
2, ρ±],

πC2
∗,∗HZ2

h ∼= π
R
∗,∗(HZ2)R[τ

−2
]

=
Z2[τ

±2, ρ]

(2ρ)
,

πC2
∗,∗HZ2

t ∼= π
R
∗,∗(HZ2)R[τ

−2
][ρ−1

]

= F2[τ
±2, ρ±].

We therefore deduce from the Mayer–Vietoris sequence

πC2
∗,∗HZ2 ∼=

Z2[τ
2, ρ, 2τ−2k

]

(2ρ)
⊕

F2[τ
2, ρ]

(τ∞, ρ∞)
{∂ρ−1τ−2

}.

Note that there are implicitly defined relations in the above presentation, such as
τ 2(2τ−2k)= 2τ−2k+2 and ρ(2τ−2k)= 0.

The calculation is displayed in Figure 3. Everything is analogous to the nota-
tion of Figure 2, except that there are now boxes in addition to solid dots, which
represent factors of Z2.

12Hill computes the homotopy of B PGL〈0〉∧2 , which, by the work of Hopkins and Morel and of
Hoyois [2015] is equivalent to HZ2.
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The effective cover of 2-adic algebraic K-theory. We now turn our attention to
the spectrum kgl, the effective cover of K GL , the algebraic K -theory spectrum
for the reals. Hill [2011] computes the 2-adic homotopy groups of this spectrum
through the identification

kgl∧2 ' B PGL〈1〉∧2 .

In particular, kgl∧2 is cellular. We have

πR
∗,∗kgl∧2 ∼=

Z2[ρ, 2τ 2, τ 4, v1]

(2ρ, v1ρ3)

with

|v1| = (2, 1).

Note that, just as in the previous subsection, our presentation has implicitly defined
relations, such as (2τ 2)2 = 4τ 4.

It is clear from the definition of K GL that we have

BeC2 K GL = K R

where K R is Atiyah’s Real K -theory spectrum, and from [Heard 2019, Corollary
5.9] we deduce the connective analog

BeC2 kgl ' k R.

We deduce
πC2
∗,∗(k R∧2 )

8 ∼= π
R
∗,∗kgl∧2 [ρ

−1
]

= F2[τ
4, ρ±],

πC2
∗,∗(k R∧2 )

h ∼= π
R
∗,∗kgl∧2 [τ

−4
]

=
Z2[ρ, 2τ 2, τ±4, v1]

(2ρ, v1ρ3)
,

πC2
∗,∗(k R∧2 )

t ∼= π
R
∗,∗(kgl∧2 )[τ

−4
][ρ−1

]

= F2[τ
±4, ρ±].

We therefore deduce

πC2
∗,∗k R∧2 ∼=

Z2[ρ, 2τ 2, τ 4, v1, 2τ−2k, v1τ
−4k
]

(2ρ, v1ρ3)
⊕

F2[τ
4, ρ]

(τ∞, ρ∞)
{∂ρ−1τ−4

}.

The calculation is displayed in Figure 4. In this figure, dotted lines represent
v1-multiplication.
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Groups with Spanier–Whitehead duality

Shintaro Nishikawa and Valerio Proietti

Building on work by Kasparov, we study the notion of Spanier–Whitehead K-
duality for a discrete group. It is defined as duality in the KK-category between
two C∗-algebras which are naturally attached to the group, namely the reduced
group C∗-algebra and the crossed product for the group action on the univer-
sal example for proper actions. We compare this notion to the Baum–Connes
conjecture by constructing duality classes based on two methods: the standard
“gamma element” technique, and the more recent approach via cycles with prop-
erty gamma. As a result of our analysis, we prove Spanier–Whitehead duality
for a large class of groups, including Bieberbach’s space groups, groups acting
on trees, and lattices in Lorentz groups.

Introduction

Alexander duality applies to the homology theory properties of the complement of
a subspace inside a sphere in Euclidean space. More precisely, for a finite complex
X contained in Sn+1, if H̃ denotes reduced homology or cohomology with coeffi-
cients in a given abelian group, there is an isomorphism H̃i (X)∼= H̃ n−i (Sn+1

\ X),
induced by slant product with the pullback of the generator µ∗([Sn

]), via the duality
map µ : X × (Sn+1

\ X)→ Sn , µ(x, y)= (x − y)/‖x − y‖.
Ed Spanier and J. H. C. Whitehead generalized this statement and adapted it to

the context of stable homotopy theory. Their basic intuition was that sphere comple-
ments determine the homology, but not the homotopy type, in general. However,
the stable homotopy type can be deduced and provides a first approximation to
homotopy type [Spanier and Whitehead 1958]. Thus, the modern statement is
phrased in terms of dual objects X,DX in the category of pointed spectra with
the smash product as a monoidal structure, and by taking maps to an Eilenberg–
Mac Lane spectrum one recovers Alexander duality formally.

The modern version of the duality implies Poincaré duality for compact man-
ifolds and extends in a natural way to generalized cohomology theories such as
K-theory. In this setting, a compact spinc-manifold exhibits Poincaré duality in

MSC2010: primary 46L85; secondary 46L80, 55P25.
Keywords: Spanier–Whitehead duality, Poincaré duality, Baum–Connes conjecture, direct splitting

method, noncommutative topology.
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the sense that the K-homology class of the Dirac operator induces by cap product
an isomorphism K ∗(M)→ K∗+n(M), where the shift is given by the dimension
[Kasparov 1988].

More generally, the bivariant version of K-theory introduced by Kasparov, which
we shall use extensively in this paper, showcases a close relationship to Alexander–
Spanier duality; by this we mean that for X, Y finite complexes one has a chain of
isomorphisms [Kaminker and Schochet 2019]

KK∗(C(X),C(Y ))∼= KK∗(C,C(DX ∧ Y ))∼= K∗(C(DX ∧ Y ))∼= K ∗(DX ∧ Y ).

Having introduced C∗-algebras in this way, as they arise naturally in applications
to topology, dynamics, and index theory, and are generally noncommutative, it is
natural to seek for generalizations of Spanier–Whitehead duality in the framework
of noncommutative geometry.

For a separable, nuclear C∗-algebra A represented on a Hilbert space, the com-
mutant of its projection into the Calkin algebra has some of the properties reminis-
cent of a Spanier–Whitehead K-dual. This is the Paschke dual of A, and satisfies
K∗(P(A)) ∼= K ∗(A). However, in general P(A) is neither separable nor nuclear,
the Kasparov product is not defined, so that it seems desirable to explore different
routes for the definition of a K-dual.

A. Connes [1994] introduced the appropriate formalism for this question, which
shall be described shortly, and in [Connes 1996] he showed the first nontrivial ex-
ample of a noncommutative Poincaré duality algebra, in the form of the irrational
rotation algebra. H. Emerson [2003] proved the same result for the crossed product
of a hyperbolic group acting on its Gromov boundary. Examples of pairs of alge-
bras with Spanier–Whitehead duality were also given by Kaminker and Putnam
[1997] in the case of Cuntz–Krieger algebras associated to M and its transpose,
where M is a square {0, 1}-valued matrix. Their result is a special case of a more
general one, in which the stable and unstable Ruelle algebras of a Smale space are
shown to be in duality [Kaminker et al. 2017]. Duality in K-theory also appears in
connection with string theory on noncommutative spacetimes [Brodzki et al. 2008;
2009].

In this paper, G is a discrete group which admits a G-compact model EG of the
classifying space for proper actions [Baum et al. 1994]. We study the question of
Spanier–Whitehead duality for the pair of C∗-algebras C∗r (G) and C0(EG)o G,
where the latter is the crossed product for the group action on EG.

This problem is tightly related to the Baum–Connes conjecture and in particular
to the so-called Dirac dual-Dirac method. This goes back to the seminal work
of Kasparov [1988, Sections 4 and 6] and is further explored in [Kasparov and
Skandalis 1991, Section 6]. In a different direction, the relationship between the
assembly map and Fourier–Mukai duality is discussed in [Block 2010].



GROUPS WITH SPANIER–WHITEHEAD DUALITY 467

The idea of an underlying noncommutative duality whenever Dirac and dual-
Dirac classes are available is well-known to experts; see for example [Brodzki
et al. 2008, Example 2.14; Echterhoff et al. 2008, Theorems 2.9 and 3.1]. In
particular work of Emerson and Meyer [2010] shares many ideas with the present
paper, while working in the context of equivariant KK-theory and groupoids. See
page 472 and Remark 1.18 for more details.

Below are two main results of this paper. More details on statements and termi-
nology are given in the sequel.

Theorem. Suppose the γ -element exists. Then C0(EG)oG is a Spanier–Whitehead
K-dual of C∗r (G) (in a canonical way) if and only if G satisfies the strong Baum–
Connes conjecture.

Corollary. For all a-T-menable groups G which admit a G-compact model of EG,
C0(EG)oG is a Spanier–Whitehead K-dual of C∗r (G).

Noncommutative Spanier–Whitehead duality. Let us see the main notions we will
be working with. In what follows the C∗-tensor product is understood to be spatial.

Definition 0.1 (cf. [Brodzki et al. 2008, Section 2.7]). Let A, B be separable C∗-
algebras. B is called a weak Spanier–Whitehead K-dual of A if there are elements

d ∈ KKi (A⊗ B,C) and δ ∈ KK−i (C, A⊗ B)

such that the induced maps

d j : K j (A)→ K j+i (B), d j (x)= x ⊗̂A d,

δ j : K j (B)→ K j−i (A), δ j (x)= δ ⊗̂B x

are isomorphisms and inverses to each other.

Note that, unlike the case of topological spaces, in the noncommutative context
the existence of d , given δ, is an additional requirement.

Some notation: 1A ∈ KK0(A, A) stands for the ring unit, σ : A⊗ B ∼= B ⊗ A
denotes the flip isomorphism. Recall as well the homomorphism

τB : KK∗(A, A)→ KK∗(A⊗ B, A⊗ B),
given on cycles as

(φ, H, T ) 7→ (φ ⊗̂ 1, H ⊗̂ B, T ⊗̂ 1),

and equally defined via Kasparov product (over the complex numbers) by τB(x)=
x ⊗̂ 1B = 1B ⊗̂ x .

Lemma 0.2 [Emerson 2003, Lemma 9]. In the setting of Definition 0.1, we have
the identities

(δ j+i ◦ d j )(y)= (−1)i j y ⊗̂A 3A and (d j−i ◦ δ j )(y)= (−1)i j3B ⊗̂B y,
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where the elements 3A ∈ KK0(A, A) and 3B ∈ KK0(B, B) are defined as

3A = δ ⊗̂B d = (δ ⊗̂ 1A) ⊗̂A⊗B⊗A (1A ⊗̂ σ
∗(d)),

3B = δ ⊗̂A d = (σ∗(δ) ⊗̂ 1B) ⊗̂B⊗A⊗B (1B ⊗̂ d).

Definition 0.3. Let A, B denote C∗-algebras in weak Spanier–Whitehead duality.
With notation from Lemma 0.2, if we have 3A = 1A and 3B = (−1)i 1B , we say
that A and B satisfy Spanier–Whitehead K-duality.

Note that this definition is symmetric, so that it can equivalently be phrased by
saying that B is a Spanier–Whitehead K-dual of A, in alignment with the weak
form introduced earlier.

Remark 0.4. In the tensor category (KK,⊗), where objects are C∗-algebras and
Hom(A, B) = KK0(A, B), the previous definition (for i = j = 0) can be reinter-
preted as the statement that A is a dualizable object and B is its dual. In other
words the triangle identity

A⊗ B⊗ A
d⊗̂1A

%%
A

1A⊗̂δ
99

1A
// A

(and its analogue swapping A and B) holds up to the unique isomorphisms coming
from braiding and A⊗C∼= A.

The Spanier–Whitehead K-dual respects tensor products in the following sense:
if the dual of A is B and the dual of A′ is B ′, then the dual of A⊗B is KK-equivalent
to A′⊗ B ′, provided it exists; see [Kaminker and Schochet 2019].

Throughout this paper G denotes a countable discrete group admitting a G-
compact model for its universal example for proper actions.

Definition 0.5. G has (weak) Spanier–Whitehead K-duality if C0(EG)o G is a
(weak) dual of C∗r (G).

Remark 0.6. It follows from [Anantharaman-Delaroche 2002, Proposition 2.2]
that the action of G on EG is amenable. Then by [Anantharaman-Delaroche 2002,
Theorem 5.3] the associated full and reduced crossed products are isomorphic. In
particular, any covariant pair of representations for C0(EG) and G gives rise to a
representation of the reduced crossed product C0(EG)oG, namely the integrated
form.

In short, the aim of this paper is identifying an element x belonging to the
“representation ring” KKG

0 (C,C), and constructing classes d and δ as above in
such a way that 3C∗r (G) and 3C0(EG)oG are both expressible in terms of x . Then
the sought duality is reduced to studying the homotopy class of such an element.
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Baum–Connes conjecture: the duality perspective. The Baum–Connes conjec-
ture [Baum et al. 1994] states that the Baum–Connes assembly map

µG
: KKG

∗
(C0(EG),C)→ KK∗(C,C∗r (G)) (0.7)

is an isomorphism of abelian groups. A generalization “with coefficients” can
be introduced by inserting a G-algebra A in the right “slot” of the left-hand side
of (0.7), and by considering the corresponding reduced crossed product in the target
group:

µG
A : KKG

∗
(C0(EG), A)→ KK(C, Aor G). (0.8)

Going back to the case with trivial coefficients (i.e., A=C), since G is a discrete
group, the (dual) Green–Julg isomorphism [Blackadar 1998; Kaad and Proietti
2018; Land 2015]

KKG
∗
(C0(EG),C)∼= KK∗(C0(EG)or G,C)

allows us to view the assembly map as a morphism

KK∗(C0(EG)oG,C)→ KK∗(C,C∗r (G)). (0.9)

We shall see that this map is given by Kasparov product with a certain element

δ ∈ KK(C,C∗r (G)⊗C0(EG)oG)

(see Definition 1.1). Thus, the Baum–Connes conjecture for a discrete group G
admitting a G-compact model EG is equivalent to the assertion that the element δ
induces the isomorphism

δ∗ : K ∗(C0(EG)oG)
∼=
−→ K∗(C∗r (G)).

A priori, this isomorphism itself is not enough to conclude that G has weak Spanier–
Whitehead K-duality. In this paper, under an assumption (see below), we identify
an element

d ∈ KK(C∗r (G)⊗C0(EG)oG,C)

which induces a map

d∗ : K∗(C∗r (G))→ K ∗(C0(EG)oG)

which is the inverse of δ∗ in favorable circumstances, namely if the Baum–Connes
conjecture holds (it is a left inverse in general). Our assumption for constructing
such an element d is the existence of the so-called gamma element, or alternatively
the (γ )-element for G. Let us briefly review these notions.
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The γ -element and the (γ )-element. The following notion of the gamma element
originates in [Kasparov 1988].

Definition 0.10 [Tu 2000]. An element x in KKG(C,C) is called a gamma element
for G if it satisfies the following:

(1) For any finite subgroup F ⊆ G, we have

ResF
G(x)= 1C ∈ KKF (C,C).

(2) For some separable, proper G-C∗-algebra P , we have

x = β ⊗̂P α, where α ∈ KKG(P,C), β ∈ KKG(C, P).

A gamma element for G, if it exists, is a unique idempotent in KKG(C,C) which
is characterized by the listed properties. Thus, we call it the gamma element for
G and denote it by γ . The existence of the gamma element for G implies that
the Baum–Connes assembly map is split-injective for all coefficients A [Tu 2000],
and furthermore that the assembly map µG

A is surjective if and only if γ acts as the
identity on K∗(Aor G) via ring homomorphisms

KKG(C,C)→KKG(A, A)→KK(Aor G, Aor G)→End(K∗(Aor G)). (0.11)

The other composition y = α ⊗̂ β is an idempotent in KK(P, P) which may not
be the identity on P in general. Upon replacing P with its “summand” PC = y P ,
which can be defined as a limit of P y

−→ P y
−→ · · · in the category KKG [Neeman

2001, Proposition 1.6.8], we can arrange α (and β) above to be a weak-equivalence,
meaning that ResF

G(α) is an isomorphism for any finite subgroup F of G. In
this case, the element α in KKG(PC,C) is called the Dirac element and can be
characterized up to equivalence by the fact that α is a weak-equivalence from a
“proper object” PC to C. Meyer and Nest [2006] showed that the Dirac element
always exists for any group G but, in general, it is not known whether PC can
be taken to be a proper C∗-algebra. For most of the known examples, PC can
indeed be assumed to be proper, meaning that we may think P = PC. However,
we emphasize that the algebra P appearing in the definition can be quite arbitrary,
whereas PC is a uniquely characterized object.

In [Nishikawa 2019], the first author introduced a notion called the (γ )-element,
which can be thought of as an alternative description of the gamma element, by-
passing the necessity of a proper algebra P for its definition.

Recall that we assume that G admits a G-compact model for EG. We use [ – , – ]
to denote the commutator.

Definition 0.12 [Nishikawa 2019, Definition 2.2]. A cycle (H, T ) representing
an element [H, T ] in KKG(C,C) is said to have property (γ ) if it satisfies the
following:
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(1) For any finite subgroup F ⊆ G, we have

ResF
G([H, T ])= 1C ∈ KKF (C,C).

(2) There is a nondegenerate G-equivariant representation of C0(EG) on H such
that

(2a) the function
g 7→ [g · f, T ]

belongs to C0(G, K (H)): it vanishes at infinity and is compact-operator-
valued for any f ∈ C0(EG);

(2b) for some cutoff function c ∈ Cc(EG) (i.e., c is nonnegative and satisfies∑
g∈G g(c)2 = 1), we have

T −
∑
g∈G

(g · c)T (g · c) ∈ K (H).

An element x in KKG(C,C) is called a (γ )-element for G if it is represented by
some cycle with property (γ ).

A (γ )-element for G, if it exists, is a unique idempotent in KKG(C,C) which
is characterized by the listed properties. Thus, we call it the (γ )-element for G. If
there is a gamma element γ for G, there is a cycle with property (γ ) representing γ .
Thus the two notions, the γ -element and the (γ )-element for G, coincide when γ
exists. The existence of the (γ )-element x for G implies that the Baum–Connes
assembly map is split-injective for all coefficients A, and furthermore that the as-
sembly map µG

A is surjective if and only if x acts as the identity on K∗(A or G)
via ring homomorphisms (0.11).

Given the existence of the (γ )-element, [Nishikawa 2019] introduced the so-
called (γ )-morphism as a candidate for inverting the assembly map µG . This is
given by Kasparov product with a certain element

x̃ ∈ KKG(C∗r (G)⊗C0(EG),C).

The Green–Julg isomorphism allows us to get the corresponding element

d ∈ KK(C∗r (G)⊗C0(EG)oG,C).

Our proposed strategy aims at realizing weak Spanier–Whitehead duality through
elements δ and d respectively corresponding to the assembly map and the (γ )-
morphism, which seems to be a natural situation. Furthermore, as a result of
Lemma 0.2, the surjectivity and injectivity of the assembly map are controlled
by 3C∗r (G) and 3C0(EG)oG , respectively. This gives yet another interpretation of
these two classes.
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Equivariant Kasparov duality. In [Emerson and Meyer 2010] the authors study
several duality isomorphisms between equivariant bivariant K-theory groups, gen-
eralizing Kasparov’s first and second Poincaré duality isomorphisms. For many
groupoids, both dualities apply to a universal proper G-space, which is the basis
for the Dirac dual-Dirac method. In this setting they explain how to describe the
Baum–Connes assembly map via localization of categories as in [Meyer and Nest
2006].

The main notion in [Emerson and Meyer 2010] is that of equivariant Kas-
parov dual for a G-space X . It involves an X o G-C∗-algebra P , an element
α ∈ KKG(P,C), and an additional class 2 ∈ RKKG(X;C, P) (see [Emerson and
Meyer 2010, Definition 4.1] for more details). Recall that the category RKKG(X)
coincides with the range of the pullback functor p∗X : KKG

→ KKXoG via the
collapsing map p : X→∗.

The case X = EG is particularly relevant for our purposes. The class 2 may be
thought as the “inverse” of α up to restriction to finite subgroups. More precisely,
if a lifting β ∈ KKG(C, P) of 2 exists, then the axioms of equivariant Kasparov
duality guarantee that β ⊗̂P α is the γ -element and α ⊗̂C β = 1P . In particular, we
have P = PC and α is a weak equivalence, and hence a Dirac morphism.

Let Z denote the unit space of G and suppose the moment map from EG→ Z
is proper. Then [Emerson and Meyer 2010, Theorem 5.7] establishes a connection
to what we might call “equivariant” Spanier–Whitehead duality. We summarize it
below for the convenience of the reader (see also Remark 1.18).

Theorem 0.13. The triple (P, α,2) is a Kasparov dual for X if and only if C0(X)
and P are dual objects in KKG (cf. Remark 0.4) with duality unit and counit in-
duced by 2 and α, respectively.

Concerning the connection with the Baum–Connes assembly map, we have:

Theorem 0.14 [Emerson and Meyer 2010, Theorem 6.14]. Suppose EG admits a
local symmetric Kasparov dual. Then the assembly map µG

A is an isomorphism for
all proper coefficient algebras A.

Assuming EG to be G-compact, the proof of the previous theorem roughly
goes as follows: the second Poincaré duality isomorphism [Emerson and Meyer
2010, Section 6] combined with the Green–Julg isomorphism for proper groupoids
[Emerson and Meyer 2009, Theorem 4.2] translate the assembly map µG

A into the
map K∗((P⊗ A)oG)→ K∗(AoG) induced by α. Now it is easy to see from the
definition of equivariant Kasparov dual that the element τA(α) ∈ KKG(P ⊗ A, A)
is invertible when A is a proper C∗-algebra.

Main results. Let us summarize our main results. Recall that G is a countable
discrete group with a G-compact model for EG.
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As we have explained in the previous sections, our main strategy for obtaining
duality relies on (1) the γ -element, or (2) the (γ )-element. The choice of one
over the other does not affect the expression for the unit of Spanier–Whitehead
duality; nevertheless, the descriptions of the counit and the elements 3C∗r (G) and
3C0(EG)oG depend on the method that we are employing. In practice, the latter
elements will be expressible in terms of the γ -element in the first case, and in the
terms of the (γ )-element in the second case.

Along this categorization, Theorem A and Corollary B below fall in the first
scenario, while Theorem D is an instance of the second. Section 3 contains simple
examples of possible applications of duality in K-theory.

Theorem A. Suppose that the γ -element γ ∈ KKG(C,C) exists and let PC be the
source of the Dirac morphism α ∈ KKG(PC,C). Then the C∗-algebra PC o G is
Spanier–Whitehead K-dual to C0(EG)oG.

A few more comments about this theorem. The source of the Dirac morphism
(the “simplicial approximation” in [Meyer and Nest 2006]) can be obtained in a va-
riety of ways: by appealing to the Brown representability theorem, by considering
the left adjoint to the embedding functor of projective objects, or by constructing
the appropriate homotopy colimit from a projective resolution of C (here, “projec-
tive” is to be understood in a relative sense, i.e., with respect to the homological
ideal of weakly contractible objects). Even though PC may not be a proper algebra
in general, its reduced and maximal crossed products are KK-equivalent. This is
because PC belongs to the localizing subcategory of KKG generated by proper
algebras and the reduced and maximal crossed product functors are triangulated
functors and commute with countable direct sums; see [Meyer and Nest 2006].

Theorem A provides a fourth characterization of PC, namely as the Spanier–
Whitehead K-dual of the classifying space for proper actions. Note that even
though our statement is only available after descent — that is, we can only get
PC o G and not PC via duality — this is only a minor drawback in the case of
discrete groups, for the left-hand side of (0.9) retains the full information of the
“topological” K-theory group through the dual Green–Julg isomorphism

KKG(C0(EG),C)∼= KK(C0(EG)oG,C).

In the situation where, at the KK-theory level, the simplicial approximation is
equivalent to the data of G acting on the point, we can replace PC oG with C∗r (G)
and obtain Spanier–Whitehead duality for the group as in the next corollary. If the
γ -element exists, we define the strong Baum–Connes conjecture to be the statement
that G

r (γ )= 1C∗r (G) in KK(C∗r (G),C∗r (G)).

Corollary B. Suppose the γ -element exists. Then G has Spanier–Whitehead dual-
ity if and only if it satisfies the strong Baum–Connes conjecture.
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In light of the result above, we can view the notion of Spanier–Whitehead K-
duality for G as a homotopy-theoretic characterization of the strong Baum–Connes
conjecture (cf. Remark 3.8).

The main application of the previous corollary is summarized in the result below.

Corollary C. All a-T-menable groups which admit a G-compact model of EG
have Spanier–Whitehead K-duality. Examples of a-T-menable groups are the fol-
lowing:

• all groups which act properly, affine-isometrically, and cocompactly on a
finite-dimensional Euclidean space,

• all cocompact lattices of simple Lie groups SO(n, 1) or SU(n, 1),

• all groups which act cocompactly on a tree.

Having such an explicit duality should be useful. For example, in principle,
it allows us to compute the Lefschetz number of an automorphism of C∗r (G), or
more generally of a morphism f in KK(C∗r (G),C∗r (G)); see [Dell’Ambrogio et al.
2014; Emerson 2011].

If a cycle with property (γ ) is found, then we can deduce the duality in complete
analogy with the case of the γ -element (this is how the definition of property (γ )
was designed). However, in this case we do not have information on the local-
ization at the weakly contractible objects [Meyer and Nest 2010]. So we get the
corresponding statement for Corollary B, but not for Theorem A.

Theorem D. Suppose there is a (γ )-element x ∈ KKG(C,C) for G. If G
r (x) =

1C∗r (G) ∈ KKG(C∗r (G),C∗r (G)), then G has Spanier–Whitehead duality.

1. General framework

Let G be a countable discrete group, and EG be a G-compact model of the univer-
sal proper G-space. Let A and B be C∗-algebras equipped with a G-action. If the
G-action on B is trivial, we recall the dual Green–Julg isomorphism [Blackadar
1998; Kaad and Proietti 2018; Land 2015]

GJ : KKG(A, B)∼= KK(AoG, B).

Given a ∈ A, define δa
g ∈ Cc(G, A)⊆ AoG to be the function

δa
g(t)=

{
a if t = g,
0 if t 6= g.

The dual coaction is defined as

1 : AoG→ C∗r (G)⊗ AoG, δa
g 7→ g⊗ δa

g .
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Let c ∈ Cc(EG) be a cutoff function, and consider the associated projection
pc ∈ Cc(G,C0(EG)) ⊆ C0(EG)o G defined by pc(g) = cg(c). This projection
does not depend on c up to homotopy, hence we denote it pG in the sequel.

Definition 1.1. We define the canonical duality unit to be the class

δ = δG = [1(pG)] ∈ KK(C,C∗r (G)⊗C0(EG)oG).

The notational dependence on G shall be dropped when clear from the context.
In this paper, whenever we say that G has Spanier–Whitehead duality, we implicitly
assume that the duality unit is given as above.

Let us recall the definition of Kasparov’s descent homomorphism [1988], which
plays an important role in this paper. It is denoted G below. Suppose (φ, H, T )
is a Kasparov cycle defining an element of KKG(A, B). The G-action on H is
denoted U : G→ EndC(H). The element G([φ, H, T ]) ∈ KK(AoG, B oG) is
defined by the cycle (φ̃, H oG, T̃ ) given as follows.

The Hilbert C∗-module H oG is the completion of Cc(G, H) with respect to
the norm induced by the B oG-valued inner product

〈ξ |ζ 〉(t)=
∑
g∈G

βg−1(〈ξ(g)|ζ(gt)〉),

where ξ, ζ ∈ Cc(G, H), t ∈ G, and β denotes the given G-action on B. The right
action of B oG is uniquely determined by the formula

(ξ · f )(t)=
∑
g∈G

ξ(g)βg( f (g−1t)),

where ξ ∈ Cc(G, H), f ∈ Cc(G, B), and t ∈ G. The representation of A o G on
H oG is determined by

(φ̃( f )(ξ))(t)=
∑
g∈G

φ( f (g))[U (g)(ξ(g−1t))],

where f ∈ Cc(G, A), ξ ∈ Cc(G, H), and t ∈ G. Finally the operator T̃ is defined
by (T̃ ξ)(t) = T (ξ(t)) for ξ ∈ Cc(G, H) and t ∈ G. By using reduced crossed
products everywhere, we can similarly define a “reduced version” of the descent
homomorphism, denoted G

r in the sequel.

Lemma 1.2 [Land 2015, Proposition 4.7]. Kasparov’s descent homomorphism can
be factorized as follows:

KKG(A,C)

GJ
��

G
// KK(AoG,C∗(G))

KK(AoG,C)
τC∗(G)

// KK(C∗(G)⊗ AoG,C∗(G))

1∗

OO
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When the canonical map A o G→ A or G is an isomorphism (e.g., if G acts
properly on A), the version of the previous lemma with reduced crossed products
also holds. See Remark 0.6.

Lemma 1.3 [Kaad and Proietti 2018, Section 2]. Let A and B be G-C∗-algebras
and suppose the G-action on B is trivial. Consider an element x ∈ KKG(A, A).
The following diagram commutes:

KKG(A, B) GJ
//

x⊗̂ –
��

KK(AoG, B)

G(x)⊗̂ –
��

KKG(A, B) GJ
// KK(AoG, B)

It follows from Lemma 1.2 that we have the commutative diagram

KKG(C0(EG), B)

GJ ∼=
��

µG
B

// KK(C, B⊗C∗r (G))

=

��

KK(C0(EG)oG, B)
δ⊗̂C0(EG)oG –

// KK(C, B⊗C∗r (G))

Since the definition of the duality counit requires additional information, and
depends on the choice of “γ -like” element, the rest of this section gets split in two
parts. The torsion-free case is treated in detail at the end of this section.

Argument based on the (γ )-element. Let (H, T ) be a G-equivariant Kasparov cy-
cle with property (γ ). Let x = [H, T ] be the corresponding element in KKG(C,C).
Let

x̃ = [H ⊗ `2(G), ρ⊗π, (g(T ))g∈G] ∈ KKG(C∗r (G)⊗C0(EG),C). (1.4)

Here, π : C0(EG)→ B(H) is the representation witnessing the conditions for
property (γ ) of (H, T ), ρ stands for the right regular representation, and C∗r (G)
has trivial G-action. By means of the Green–Julg isomorphism, we set

d = GJ(x̃) ∈ KK(C∗r (G)⊗C0(EG)oG,C).

We set 3C∗r (G) = δ ⊗̂C0(EG)oG d and 3C0(EG)oG = δ ⊗̂C∗r (G) d . We shall prove

(1) 3C∗r (G) = 
G
r (x) in KK(C∗r (G),C∗r (G));

(2) 3C0(EG)oG = 1C0(EG)oG in KK(C0(EG)oG,C0(EG)oG).

Proposition 1.5. We have the equality 3C∗r (G) = 
G
r (x).

Proof. We claim the Kasparov module

[pG] ⊗̂C0(EG)oG 
G
r (x̃) (1.6)
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is equivalent to G
r (x), i.e., there is an isomorphism of Hilbert C∗-modules inter-

twining the representations and the operators (up to a compact perturbation).
The class in (1.6) is represented by

(H ⊗ `2(G)or G, (ρ⊗π or 1)(pG ⊗ – ), (g(T ))g∈G or 1).

We have an isomorphism of C∗r (G)-modules

H or G ∼= (ρ⊗π or 1)(pG ⊗ 1)(H ⊗ `2(G)or G) (1.7)

given by the assignment

ξ or ug 7→
∑
h∈G

π(c)(h · ξ)⊗ δh or uhg,

where ξ ∈ H , δh ∈ `
2(G), and c is a cutoff function defining pG . The inverse of

the map above is given by the restriction of

(ξ)h∈G or ug 7→
∑
h∈G

h−1
· (π(c)ξh)⊗or uh−1g,

where (ξ)h∈G ∈ H ⊗ `2(G). Under the isomorphism in (1.7), the representation
(ρ⊗π or 1)(pG ⊗ – ) is identified with the left action of C∗r (G) on H or G, and
the compressed operator

(ρ⊗π or 1)(pG ⊗ 1)((g(T ))g∈G or 1)(ρ⊗π or 1)(pG ⊗ 1)

is identified with T ′or 1 on H or G, where we define

T ′ =
∑
g∈G

(g · c)T (g · c).

Hence the claim follows by definition of property (γ ).
By Lemma 1.2, we have

G
r (x̃)=1⊗C0(EG)oG GJ(x̃).

Thus, we have

G
r (x)= [pG] ⊗̂C0(EG)oG 

G
r (x̃)

= [pG] ⊗̂C0(EG)oG 1⊗C0(EG)oG GJ(x̃)

= δ ⊗̂C0(EG)oG d. �

Proposition 1.8. We have the equality 3C0(EG)oG = 1C0(EG)oG .

In order to prove the proposition, a few preliminaries are in order. First we
generalize the construction in (1.4) to include a coefficient algebra. This is easily
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done: simply replace `2(G) with the right Hilbert A-module `2(G, A) and define
the right regular representation ρG

A of Aor G (equipped with trivial G-action)

a 7→ (g(a))g∈G, h 7→ ρh : (ag)g∈G 7→ (agh)g∈G

for a ∈ A, h ∈ G. Thus we get a class x̃A in KKG(A or G ⊗ C0(EG), A). We
define a group homomorphism

νG
A : KK(C, Aor G)→ KKG(C0(EG), A)

as the one induced by the class x̃A via the index pairing

KK(C, Aor G)×KKG(Aor G⊗C0(EG), A)→ KKG(C0(EG), A).

This map is referred to as the (γ )-morphism in [Nishikawa 2019]. Note also that
GJ ◦ νG

C
equals the map d j from Definition 0.1 (choosing B = C0(EG)o G as

usual). The lemma below is about the naturality property of the assembly map and
the (γ )-morphism.

Lemma 1.9. The following diagrams commute for any f ∈ KKG(A, B):

KKG(C0(EG), A)
µG

A
//

– ⊗̂ f
��

KK(C, Aor G)

– ⊗̂G
r ( f )

��

KKG(C0(EG), B)
µG

A
// KK(C, B or G)

KK(C, Aor G)
νG

A
//

– ⊗̂G
r ( f )

��

KKG(C0(EG), A)

– ⊗̂ f
��

KK(C, B or G)
νG

A
// KKG(C0(EG), B)

Proof. The first diagram commutes by functoriality of descent and associativity
of the Kasparov product. By results from [Meyer 2000] any morphism f in
KKG(A, B) can be written as a composition of ∗-homomorphisms and their in-
verses in KK. This means it suffices to check the commutativity of the second
diagram with respect to ∗-homomorphisms f : A → B. We omit this simple
verification. �

Proof of Proposition 1.8. Let B = C0(EG)o G and regard it as a G-C∗-algebra
with the trivial G-action. We have the following diagram:

KKG(C0(EG), B)

GJ ∼=
��

µG
B
// KK(C,C∗r (G)⊗ B)

=

��

νG
B
// KKG(C0(EG), B)

GJ ∼=
��

KK(B, B)
δ⊗̂B –

// KK(C,C∗r (G)⊗ B)
– ⊗̂C∗r (G)

d
// KK(B, B)



GROUPS WITH SPANIER–WHITEHEAD DUALITY 479

If we prove that the composition on the top is the identity, then it follows that
3C0(EG)oG = 1C0(EG)oG . Let DB : PB → B be a weak equivalence as in [Meyer
and Nest 2006]. Because the diagram

KKG(C0(EG), PB)

DB∗
��

µG
PB
// KK(C, PB oG)

G
r (DB∗)

��

νG
PB
// KKG(C0(EG), PB)

DB∗
��

KKG(C0(EG), B)
µG

B
// KK(C, B or G)

νG
B
// KKG(C0(EG), B)

commutes, it suffices to show that νG
PB

is a left inverse of the assembly map µG
PB

.
Now, µG

PB
is invertible, hence it suffices to show that νG

PB
yields a right inverse. A

minor generalization of the proof of Proposition 1.5 shows that µG
PB
◦ νG

PB
coincides

with the induced action of x ∈ KKG(C,C) on K∗(PB o G). Recall that x equals
the identity when restricted to each finite subgroup H ⊆ G, and PB oG belongs
to the localizing subcategory of KK generated by the B o H ’s. Therefore the map
x ⊗̂ – : K∗(PB o G)→ K∗(PB o G) is the identity by [Meyer and Nest 2006,
Theorem 9.3]. �

Remark 1.10. In parallel with Proposition 1.5, one can prove that

3C0(EG)oG = 
G
r (x ⊗̂ 1C0(EG)).

Again, we set B = C0(EG)o G and first notice that νG
B ◦µ

G
B = x ⊗̂C0(EG) – . It

is enough to show this when B is replaced by PB , in which case we can invert the
assembly map and write

(G
r (x) ⊗̂ – )= (G

r (x) ⊗̂ – ) ◦µG
B ◦ (µ

G
B )
−1,

µG
B ◦ ν

G
B = µ

G
B ◦ (x ⊗̂C0(EG) – ) ◦ (µG

B )
−1,

νG
B ◦µ

G
B = x ⊗̂C0(EG) – .

To complete the proof one must show that

GJ(x ⊗̂C GJ−1(1B))= 
G
r (x ⊗̂ 1C0(EG)) ⊗̂B 1B,

but this follows from Lemma 1.3.

We now come to the main result of this subsection.

Theorem 1.11. Suppose there is a (γ )-element x ∈ KKG(C,C) for G. If

G
r (x)= 1 ∈ KKG(C∗r (G),C∗r (G)),

then G has Spanier–Whitehead duality.
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Argument based on the γ -element. Suppose there is a gamma element γ as in
Definition 0.10. Following [Guentner et al. 2000, Chapter 15], we define a map sA

for any proper algebra A. This is the G-equivariant ∗-homomorphism

sA : Aor G⊗C0(EG)→ K (A⊗ `2(G)),

where Aor G is equipped with the trivial G-action, defined as the tensor product
of the representation

C0(EG) 3 φ 7→ (φ)g∈G ∈ L(A⊗ `2(G))

of C0(EG) on A⊗ `2(G) and the right regular representation

A 3 a 7→ (g(a))g∈G ∈ L(A⊗ `2(G)), G 3 g 7→ 1⊗ ρg

of Aor G on A⊗ `2(G), where ρg is the right translation by g. Here, the G-action
on the Hilbert module A⊗ `2(G) is given by the tensor product of the action on A
and the left-regular representation. The ∗-homomorphism sA defines an element

sA ∈ KKG(Aor G⊗C0(EG), A).

Proposition 1.12 (see [Guentner et al. 2000, Chapter 15]). For any proper G-
C∗-algebra A, the ∗-homomorphism sA defines the inverse

sA : KK(C, Aor G)→ KKG(C0(EG), A)

of the assembly map

µG
A : KKG(C0(EG), A)→ KK(C, Aor G).

Proof. The assembly map is an isomorphism for any proper algebra. Hence, we
just show that the composition µG

A ◦ sA is the identity. Take a Kasparov cycle
(E, F) for KK(C, Aor G) where E is a graded Aor G-module and F is an odd,
self-adjoint operator on E satisfying 1− F2

≡ 0 modulo compact operators.
By Kasparov’s stabilization theorem, we can assume E is A ⊗ H or G for

some graded Hilbert space H with the trivial G-action. The map sA sends this
cycle (A ⊗ H or G, F) to the G-equivariant cycle (A ⊗ H ⊗ `2(G), π, ρ(F))
for KKG(C0(EG), A), where π is a representation of C0(EG) on A⊗ H ⊗ `2(G)
defined as follows: for φ in C0(EG),

π(φ)(ag ⊗ vg ⊗ δg)= φag ⊗ vg ⊗ δg

and ρ(F) is an operator in L(A⊗ H ⊗ `2(G)) determined by the map

L(A⊗ H or G)= M(A⊗ K (H)or G)
ρ
−→ M(A⊗ K (H ⊗ `2(G)))= L(A⊗ H ⊗ `2(G)),
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which is a natural extension of the right regular representation ρG
A of A or G on

A ⊗ `2(G) described before. Hence, the composition µG
A ◦ sA sends the cycle

(A⊗ H or G, F) to the cycle (pc(A⊗ H ⊗ `2(G)or G), pcρ(F)or 1pc), where
we simply denote by pc the image of a cutoff projection pc in C0(EG)oG by the
representation π or 1.

On the other hand, there is an isomorphism of right Hilbert Aor G-modules

A⊗ H or G→ pc(A⊗ H ⊗ `2(G)or G)

given by
ξ or ug 7→

∑
h∈G

c(h(ξ))⊗ δh or uhg for ξ in A⊗ H .

The inverse map is given by

(ξh)h∈G or ug 7→
∑
h∈G

h−1(cξh)or uh−1g for (ξh)h∈G in A⊗ H ⊗ `2(G).

Under this isomorphism, the restriction pcρ(F)or 1pc of ρ(F)or 1 on the subspace
pc(A⊗H⊗`2(G)or G) of A⊗H⊗`2(G)or G corresponds to the operator F on
A⊗Hor G. In summary, the composition µG

A ◦sA sends the cycle (A⊗H or G, F)
to itself up to the isomorphism described above. �

For any separable G-C∗-algebra B, we have the commutative diagram

µG
B : KKG(C0(EG), B)

– ⊗̂Cβ
��

// KK(C, B or G)

– ⊗̂Bor G
G
r (idB⊗̂β)

��

µG
B⊗P : KKG(C0(EG), B⊗ P)

– ⊗̂Pα
��

∼=
// KK(C, (B⊗ P)or G)

– ⊗̂(B⊗P)or G
G
r (idB⊗̂α)

��

µG
B : KKG(C0(EG), B) // KK(C, B or G)

where the vertical composition on the left is the identity. With this observation and
Proposition 1.12, we see that the element

(G
r (1B ⊗̂β)) ⊗̂(B⊗̂P)or G sB⊗P ⊗̂P α ∈ KKG((B or G)⊗C0(EG), B)

induces the left-inverse of the assembly map µG
B via Kasparov product. We remark

that this is the standard technique for proving the split injectivity of the assembly
map in the presence of a γ -element.

Now, we set d ′ to be the element in KK(C∗r (G)⊗C0(EG)oG,C) which cor-
responds to

d ′′ = (G
r (β)) ⊗̂Por G sP ⊗̂P α ∈ KKG(C∗r (G)⊗C0(EG),C).
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Let
δ = δG ∈ KK(C,C0(EG)oG⊗C∗r (G))

as before. We set 3′C∗r (G) = δ ⊗̂C0(EG)oG d ′, 3′C0(EG)oG = δ ⊗̂C∗r (G) d ′.

Proposition 1.13. We have

3′C∗r (G)
= G

r (γ ) ∈ KK(C∗r (G),C∗r (G))

and
3′C0(EG)oG = 1C0(EG)oG ∈ KK(C0(EG)oG,C0(EG)oG).

Before giving a proof of Proposition 1.13, let us obtain our main results as its
direct consequences:

Theorem 1.14. If G
r (γ )= 1C∗r (G), then G has Spanier–Whitehead duality.

The previous result has a converse; see Theorem 3.3 for further details.

Theorem 1.15. If µG
C

is an isomorphism, G has weak Spanier–Whitehead duality.

Theorem 1.16. In general, if γ ∈KKG(C,C) exists, then C0(EG)oG is a Spanier–
Whitehead K-dual of PC oG.

Proof. Note that PC o G is a direct summand (in the category KK) of C∗r (G)
corresponding to the idempotent G

r (γ ) ∈KK(C∗r (G),C∗r (G)) (see [Neeman 2001,
Proposition 1.6.8]). Namely, we have

iPCoG ∈ KK(PC oG,C∗r (G)), qPCoG ∈ KK(C∗r (G), PC oG),

so that qPCoG ◦ iPCoG = 1PCoG and iPCoG ◦ qPCoG = 
G
r (γ ). We set

dPCoG = iPCoG ⊗̂C∗r (G) d ′ ∈ KK(C0(EG)oG⊗ PC oG,C),

δPCoG = δ ⊗̂C∗r (G) qPCoG ∈ KK(C,C0(EG)oG⊗ PC oG).

Then we have

δPCoG ⊗̂C0(EG)oG dPCoG = 1PCoG, δPCoG ⊗̂PCoG dPCoG = 1C0(EG)oG .

This proves the statement. We only prove the first identity; the other one is proved
similarly. For any C∗-algebra D, we have the following commutative diagram:

KK(PC oG, D)

δPCoG⊗̂PCoG –
��

// KK(C∗r (G), D)

δ⊗̂C∗r (G)
–
��

KK(C,C0(EG)oG⊗ D)

– ⊗̂C0(EG)oG dPCoG
��

=
// KK(C,C0(EG)or G⊗ D)

– ⊗̂C0(EG)or G d ′

��

KK(PC oG, D) // KK(C∗r (G), D)
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Here, the top and the bottom horizontal arrows are induced by iPCoG and qPCoG .
The right vertical composition is induced by G

r (γ ). It follows that the left vertical
composition is the identity. Taking D = PC oG, we get

δPCoG ⊗̂C0(EG)oG dPCoG = 1PCoG . �

Proof of Proposition 1.13. We directly compute and prove

δ ⊗̂C0(EG)oG d ′ = G
r (γ ) ∈ KK(C∗r (G),C∗r (G)).

For simplicity, we prove this for the case when β is represented by a cycle (P, b)
for b an essential unitary in M(P), and α by a cycle (H, F), where P is represented
on H nondegenerately and F is a G-equivariant essential unitary modulo P . Then
d ′′ is represented by a cycle of the form

(H ⊗ `2(G), ρ⊗π, N (g(b))g∈G +M(g(F))g∈G),

where the G-action on H ⊗ `2(G) is the tensor product of the G-action on H
and the left regular representation on `2(G), π is a representation of C0(EG) on
H⊗`2(G) given by φ 7→ (φ)g∈G , and ρ is a representation of C∗r (G) on H⊗`2(G)
by the right regular representation g 7→ 1⊗ ρg. Here, M and N are given by the
Kasparov technical theorem as usual [Higson 1987; Kasparov 1980; 1995]. If we
compute δ⊗C0(EG)oG d ′, we get the cycle isomorphic to

(H or G, πG, T0 or 1)= G
r ((H, T0))

where (H, T0) is a cycle for KKG(C,C), πG is the natural left multiplication by
C∗r (G), and T0=N0b+M0 F0. Here F0 is the average of F : F0=

∫
G g(c)Fg(c) dµG

and so are N0 and M0. The cycle (H, T0) is (homotopic to) a Kasparov product of
α and β. In other words, the element [H, T0] is the gamma element γ . It follows
that

δ ⊗̂C0(EG)oG d ′ = G
r (γ ).

Now we can prove

δ ⊗̂C∗r (G) d ′ = 1C0(EG)oG ∈ KK(C0(EG)oG,C0(EG)oG)

using a simple trick. We have the following diagram for B = C0(EG)o G with
the trivial G action:

KKG(C0(EG), B)

∼=

��

µG
B
// KK(C,C∗r (G)⊗ B)

=

��

(µG
B )
−1
// KKG(C0(EG), B)

∼=

��

KK(B, B)
δ⊗̂B –

// KK(C,C∗r (G)⊗ B)
– ⊗̂C∗r (G)

d
// KK(B, B)

Here, by (µG
B )
−1 we simply mean the left inverse of µG

B . This shows δ⊗C∗r (G) d ′

acts as the identity on KK(B, B), proving the claim. �
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Remark 1.17. The previous proof also shows that d = d ′, as it is intuitive from
the fact that the γ -element can be represented by a cycle satisfying property (γ )
[Nishikawa 2019].

Remark 1.18. It is natural to use the duality class 2 from page 472 to prove
Theorem 1.16. The argument is based on the following diagram, where we set
d ′ = GJ(sP ⊗̂P α), and µG

PoG,P is a bivariant assembly map (see Section 3):

KK(C, PoG⊗C0(EG)oG)
– ⊗̂C0(EG)oG d ′

// KK(PoG, PoG)

KKG(C0(EG), P⊗C0(EG)oG)

p∗EG ∼=

��

µG
P⊗C0(EG)oG ∼=

OO

– ⊗̂C0(EG)oG d ′
// KKG(C0(EG)⊗PoG, P)

µG
PoG,P

OO

p∗EG∼=

��

RKKG(EG;C0(EG), P⊗C0(EG)oG)
– ⊗̂C0(EG)oG d ′

// RKKG(EG;C0(EG)⊗PoG, P)

Set e=GJ−1(1C0(EG)oG) and consider the element δ0 =2 ⊗̂C0(EG) e in the bottom
left group. Suppressing p∗EG from the notation, we compute

δ0 ⊗̂C0(EG)oG d ′ =2 ⊗̂C0(EG) e ⊗̂C0(EG)oG GJ(sP ⊗̂P α)

= (2 ⊗̂P α) ⊗̂C (e ⊗̂C0(EG)oG GJ(sP))= sP .

Now it is routine to check that µG
PoG,P(sP)= 1PoG . Hence, if we define

δPoG ∈ KK(C, P oG⊗C0(EG)oG)

by sending δ0 through the left vertical isomorphism in the diagram above, we have

δPoG ⊗̂C0(EG)oG d ′ = 1PoG .

The other identity is similarly proved; we skip the details.
Note that this is an improvement over Theorem 1.16, because the existence of

2 is strictly weaker than having a gamma element. A similar argument shows that
in general, if PC is a (categorical) direct summand of some proper algebra, the
conclusion of Theorem 1.16 holds, namely C0(EG)oG is a Spanier–Whitehead
K-dual of PC oG.

The torsion-free case. We treat the torsion-free case separately, partly because it
is particularly simple (e.g., condition (1) of Definition 0.10 reduces to a statement
in nonequivariant K-theory), and partly because it is among the first cases where
the duality classes (i.e., unit and counit) have been identified (albeit in a slightly
different language, cf. [Kasparov 1988, Theorems 6.6 and 6.7]).

We assume that G is a countable, discrete, torsion-free group. In this case,
because proper actions are automatically free, the space EG is identified as the total
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space EG of the classifying space for principal G-bundles, and our assumption that
G admits a G-compact model of EG translates into the assumption that G admits
a compact model of BG. Denote by [MF] the class

[MF] ∈ KK(C,C∗r (G)⊗C(BG))

associated to the module of sections of the Miščenko bundle. This is the Hermitian
bundle of C∗-algebras obtained from the associated bundle construction

EG×G C∗r (G)→ BG,

where G acts diagonally, acting on the reduced group C∗-algebra via the left regular
representation [Miščenko and Fomenko 1979].

Proposition 1.19 ([Connes 1994]; for a proof see [Kaad and Proietti 2018]). The
Miščenko module MF is the finitely generated projective Hilbert C∗-module de-
scribed as the completion of Cc(EG) with respect to the norm induced by the
C∗r (G) ⊗̂C(BG)-valued inner product

〈ξ |ζ 〉(t)(x)=
∑

p(y)=x

ξ̄ (y)ζ(y · t), (1.20)

where ξ, ζ ∈ Cc(EG), t ∈ G, x ∈ BG, and p : EG→ BG is the quotient map. The
right action of C∗r (G) ⊗̂C(BG) on M is defined by

(ξ · f )(y)=
∑
g∈G

f (g)(p(y)) · ξ(y · g−1), (1.21)

where ξ ∈ Cc(EG), f ∈ Cc(G,C(BG)), and y ∈ EG.

We have, for any separable C∗-algebra B with trivial G-action [Land 2015; Kaad
and Proietti 2018],

KK(C(BG), B)

∼=
��

[MF]⊗̂C(BG) –
// KK(C,C∗r (G)⊗ B)

=

��

KKG(C0(EG), B)
µG

B
// KK(C,C∗r (G)⊗ B)

The vertical isomorphism above is implemented by the strong Morita equiva-
lence between C(BG) and C0(EG)oG [Rieffel 1976], whose associated KK-class
is denoted [Y ∗] below (we use [Y ] for the opposite module).

If G admits a compact nonpositively curved manifold as a model for BG, then
the element d was introduced by Kasparov [1988] as a “dual-Dirac” class

d ∈ KK(C∗r (G) ⊗̂C(BG),C).
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To be more consistent with the terminology of this paper, d should be called the
duality counit induced by the γ -element (which exists in this situation). Kasparov
went on to show that d defines a left inverse for the assembly map.

Hence we see that we are in a situation where Spanier–Whitehead duality comes
into play very naturally, with the choice MF= unit and d = counit. Note that, while
the class d requires structural information on the group, the class of the Miščenko
bundle relies on very little structure. This is in complete analogy with the canonical
unit defined previously.

Proposition 1.22. The class MF coincides with δG from Definition 1.1 up to KK-
equivalence. More precisely, we have

δG =MF ⊗̂C∗r (G)⊗̂C(BG) τC∗r (G)([Y
∗
]).

Proof. Let us set Z = GJ−1([Y ]) ∈ KKG(C0(EG),C(BG)). It is shown in [Kaad
and Proietti 2018] that Z is represented by a G-C∗-correspondence satisfying the
isomorphism of Hilbert modules

MF∼= i∗(Y ∗) ⊗̂C0(EG)oG (Z or G)

(we are denoting by i the inclusion C ↪→ C(BG) as constant functions). We want
to prove

[pG] ⊗̂C0(EG)oG [1] = i∗([Y ∗]) ⊗̂C0(EG)oG 
G
r (Z) ⊗̂C∗r (G)⊗̂C(BG) τC∗r (G)([Y

∗
]),

or equivalently, by Lemma 1.2,

[pG] ⊗̂C0(EG)oG [1]

= i∗([Y ∗]) ⊗̂C0(EG)oG
(
[1] ⊗̂ τC∗r (G)(GJ(Z))

)
⊗̂C∗r (G)⊗̂C(BG) τC∗r (G)([Y

∗
]).

It is well-known that [pG] = i∗([Y ∗]) (see for example [Land 2015]), so that by
associativity of the Kasparov product we have reduced the problem to showing

τC∗r (G)(GJ(Z)) ⊗̂ τC∗r (G)([Y
∗
])= τC∗r (G)(GJ(Z) ⊗̂C(BG) [Y ∗])= 1C∗r (G)⊗̂C0(EG)oG .

Now GJ(Z)= [Y ] by construction, and hence the proof is complete. �

Now suppose that G is a general torsion-free group, and that a (γ )-element
x = [H, T ] exists. Inspired by Kasparov’s construction, we define the class d in
KK(C∗r (G)⊗C(BG),C) by setting

d = [Y ] ⊗̂C0(EG)oG d.

The element d admits a simple description in terms of the cycle (H, T ) with prop-
erty (γ ) as follows. The G-equivariant nondegenerate representation π of C0(EG)
on H extends to that of the multiplier algebra Cb(EG). Together with the represen-
tation πG of G on H , it induces the representation πG ⊗π of C∗r (G)⊗C(BG) on
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H . Here, C(BG) is naturally identified as the subalgebra Cb(EG) consisting of G-
invariant functions. The representation πG extends to the representation for C∗r (G)
since πG is weakly contained in the left regular representation. Indeed, πG is
contained in the (amplified) left regular representation as we have a G-equivariant
embedding from H to H ⊗ `2(G) given by

v 7→
∑

h

π(h(c))v⊗ δh .

Proposition 1.23. The triple (H,πG⊗π,T) defines a Kasparov cycle [πG⊗π,H,T ]
for KK(C∗r (G)⊗C(BG),C). We have [πG ⊗π, H, T ] = d.

Proof. We need to show that for any G-invariant continuous function φ on EG, the
commutator [T, φ] is compact. By condition (2b) for property (γ ), we just need to
show that [T ′, φ] is compact, where T ′ =

∑
g∈G g(c)T g(c); c is a cutoff function

on EG. Take any compactly supported function χ on EG so that cχ = c.
We have

[T ′, φ] =
∑
g∈G

g(c)[T, g(χφ)]g(c)=
∑
g∈G

g(c)Tgg(c),

where Tg = [T, g(χφ)] are compact operators whose norms vanish as g goes to in-
finity by condition (2a) for property (γ ). It follows that [T ′, φ]=

∑
g∈G g(c)Tgg(c)

is compact (see [Nishikawa 2019, Lemmas 2.5 and 2.6]).
We leave to the reader the straightforward check that the element [H, πG⊗π, T ]

in KK(C∗r (G)⊗C(BG),C) corresponds to d in KK(C∗r (G)⊗C0(EG)oG,C) by
the Morita equivalence between C(BG) and C0(EG)oG. �

We set

3C∗r (G) = [MF] ⊗̂C(BG) d, 3C(BG) = [MF] ⊗̂C∗r (G) d.

The following conclusions are immediate from the discussion above.

Theorem 1.24. Let G be a torsion-free group and suppose that a (γ )-element
x ∈ KKG(C,C) exists. We have

3C∗r (G) = 
G
r (x), 3C(BG) = 1C(BG).

For example, this is the case when BG is a compact smooth manifold of nonpositive
sectional curvature.

2. Examples

In this section we give a few examples and computations to put into context the
abstract duality results that have been explained previously. We primarily treat the
case of strong Spanier–Whitehead duality, and only briefly discuss the weak case,
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as it is mostly covered by other results in the literature (see, for example, [Brodzki
et al. 2008, Examples 2.14 and 2.17]).

Groups with Spanier–Whitehead K-duality. Let G be a countable discrete group
which satisfies (1) and either (2) or (3) of the following:

(1) G admits a G-compact model of EG;

(2) G admits a γ -element γ such that G
r (γ )= 1C∗r (G), or

(3) G admits a (γ )-element x such that G
r (x)= 1C∗r (G).

We recall that the gamma element γ , if it exists, is represented by a cycle with
property (γ ). Therefore, condition (2) implies (3). Our previous argument shows
that such a group G has Spanier–Whitehead K-duality. Thanks to the Higson–
Kasparov theorem [2001], we obtain the following:

Theorem 2.1. All a-T-menable groups which admit a G-compact model of EG
have Spanier–Whitehead K-duality.

Examples of such a-T-menable groups include the following:

• all groups which act properly, affine-isometrically, and cocompactly on a
finite-dimensional Euclidean space,

• all cocompact lattices of simple Lie groups SO(n, 1) or SU(n, 1),

• all groups which act cocompactly on a tree (or more generally on a CAT(0)-
cube complex).

For any a-T-menable group G listed above, the gamma element γ can be repre-
sented by an explicit cycle with property (γ ). Below, we describe an explicit cycle
with property (γ ) for these groups. As a consequence, we can obtain an explicit
cycle d in KK(C∗r (G)⊗C0(EG)oG,C) which, together with δ, induces the duality
between C∗r (G) and C0(EG)oG.

To begin, we recall from [Kasparov 1988; Valette 2002] that the gamma ele-
ment exists for any group G which acts properly and isometrically on a simply
connected, complete Riemannian manifold M of nonpositive sectional curvature
which is bounded from below. In this case, the gamma element for G is represented
by an unbounded G-equivariant Kasparov cycle

(HM , DM),

where HM is the Hilbert space L2(M,3∗T ∗
C

M) of L2-sections of the complexified
exterior algebra bundles on M and where DM is the self-adjoint operator

DM = d f + d∗f

on M given by the Witten type perturbation

d f = d + d f∧
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of the exterior derivative d; the function f is the squared distance d2
M(x0, x) on M

for some fixed point x0 of M . Let

FM =
DM

(1+ D2
M)

1/2

be the bounded transform of DM . The element [HM , FM ] in KKG(C,C) is the
gamma element for G. We now suppose furthermore that the action of G on M
is cocompact. In this case, G admits a G-compact model of EG, namely the
manifold M .

Proposition 2.2. The cycle (HM , FM) has property (γ ).

Proof. Since [HM , FM ] is the gamma element for G, it satisfies condition (1) of
Definition 0.12. To show that condition (2) holds for [HM , FM ], we shall apply
Theorem 6.1 of [Nishikawa 2019]. We use the natural nondegenerate representa-
tion of C0(M) on HM by pointwise multiplication. We take the dense subalgebra
B of C0(M) consisting of compactly supported smooth functions. Note that B
contains a cutoff function of M . For any function h in B, we have

[DM , g(h)] = [d + d∗, g(h)] = g(c(h)),

where c(h) is the Clifford multiplication by the gradient of h which is bounded and
compactly supported. We can now use [Nishikawa 2019, Theorem 6.1] to conclude
that the bounded transform (HM , FM) satisfies condition (2) of property (γ ). �

Corollary 2.3. For all groups G which act properly, affine-isometrically, and co-
compactly on a finite-dimensional Euclidean space Rn , the G-equivariant cycle
(HRn , FRn ) has property (γ ).

Corollary 2.4. For all cocompact closed subgroups G of a semisimple Lie group L ,
the G-equivariant cycle (HL/K , FL/K ) has property (γ ), where K is a maximal
compact subgroup of L.

Let us look at a few examples.

Poincaré–Langlands duality. In [Niblo et al. 2016] the authors examine the
Baum–Connes correspondence for the (extended) affine Weyl group Wa associated
to a compact connected semisimple Lie group G. This group can be realized as
the group of affine isometries of the Lie algebra t of a maximal torus T ⊆ G. The
structure of Wa is that of a semidirect product 0 o W , where 0 is the lattice of
translations in t, and W is the Weyl group of the root system of G.

Ultimately, it is shown that the Baum–Connes conjecture (which holds in this
case) is equivalent to T -duality for the aforementioned torus T and the Pontryagin
dual 0̂ of the lattice 0. From the viewpoint of Lie groups, 0̂ equivariantly coincides
with the maximal torus T∨ of the Langlands dual G∨ of G. In K-theory this
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is expressed by W-equivariant Spanier–Whitehead duality between the dual tori
T and T∨, which is referred to as “Poincaré–Langlands duality” in [Niblo et al.
2016].

Propositions 1.19–1.23 and Theorem 1.24 can be equivalently applied to get
these results, with C(B0) playing the role of C(T ) and C∗r (0) playing the role of
C(T∨) through the Gelfand transform.

The (γ )-element, which belongs to KKWa (C,C), in this case can be constructed
as explained above with M = t and distance function induced by a W-equivariant
metric. Equivalently, the bounded transform of the Bott–Dirac operator

Bt =

∑
i

(ext(ei )+ int(e1))xi + (ext(ei )− int(ei ))
d

dxi

yields a W-equivariant cycle with property (γ ), provided that interior multiplica-
tion is defined through a W-equivariant metric. The cycle obtained this way is
indeed isomorphic to the one obtained through the Witten type perturbation of the
de Rham operator, and its KK-class coincides with the classical γ -element which
is homotopic to the unit [Higson and Kasparov 2001].

In summary, we obtain equivariant duality classes δW
∈KKW(C,C(t/0)⊗C∗r (0)),

derived from the Miščenko W-bundle associated to the principal 0-bundle t→ T ,
and dW

∈ KKW (C(t/0) ⊗ C∗r (0),C), derived from the (γ )-element described
above. We can prove

δW
⊗̂C(T ) dW

= 0r (γ ),

where on the right-hand side we mean “partial” descent with respect to the normal
subgroup 0 ⊆Wa . As we know, γ = 1C in KK0×W (C,C), so that we get

δW
⊗̂C(T ) dW

= 1, δW
⊗̂C(T∨) dW

= 1

in the equivariant groups KKW (C(T∨),C(T∨)),KKW (C(T ),C(T )), respectively.

Lattices in SO(n, 1) and SU(n, 1). Let G be a cocompact lattice of a simple Lie
group L = SO(n, 1), or L = SU(n, 1). Let K be a maximal compact subgroup of L .
Corollary 2.4 shows that the G-equivariant cycle (HL/K , FL/K ) has property (γ ).
The corresponding element x = [HL/K , FL/K ] is nothing but the gamma element
γ for G, which is shown to be equal to 1G [Higson and Kasparov 2001; Julg and
Kasparov 1995].

Groups acting on trees. Let G be a countable discrete group which acts properly
and cocompactly on a locally finite tree Y . The tree Y is the union of the sets
Y 0, Y 1 of the vertices and edges of the tree. Without loss of generality, we assume
a G-invariant typing on the tree. Namely, we assume a G-invariant decomposition
Y 0
= Y 0

0 t Y 0
1 so that any two adjacent vertices have distinct types. This can be

achieved by the barycentric subdivision of the tree. We take E as the geometric
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realization of the tree. This is a G-compact model of the universal proper G-space.
We denote by d the edge path metric on E and hence on Y 0 such that each edge
has length 1.

The `2 space `2(Y ) is naturally a graded G-Hilbert space with the even and
odd spaces being `2(Y 0), `2(Y 1), respectively. Let HR be the graded Hilbert space
L2(R,3∗

C
(R)) as before, but now with the trivial G-action. We construct a Kas-

parov cycle with the property (γ ) on the graded tensor product

HY = HR ⊗̂ `
2(Y ).

Following [Kasparov and Skandalis 1991], we define a nondegenerate representa-
tion π of C0(E) on HY , which is diagonal with respect to Y . This is given by a
family (πy)y∈Y of representations of C0(E) on HR indexed by y in Y . If y is a
vertex, we define πy by sending φ in C0(E) to the multiplication on HR by the
constant φ(y). If y is an edge with vertices y0, y1 of corresponding types, we
identify y with the interval

[
−

1
2 ,

1
2

]
via the unique isometry sending y j to (−1) j 1

2 .
We define πy by sending φ in C0(E) to the multiplication on HR by the restriction
of φ to the edge y extended to the left and right constantly.

Now, like the operator DM , we define an unbounded, odd, self-adjoint operator
DY with compact resolvent of index 1, which is almost G-equivariant and has nice
compatibility with functions in C0(E). The bounded transform FY of DY will give
us a desired Kasparov cycle (HY , FY ) with property (γ ). For this, we fix a base
point y0 from Y 0. The following construction depends on the choice of y0. We
have the decomposition of HY

HY = HR ⊗̂Cδy0 ⊕

⊕
y∈Y 0\{y0}

(HR ⊗̂ (Cδy ⊕Cδey )),

where for each vertex y 6= y0, ey is the last edge appearing in the geodesic from
y0 to y and where the symbol δ∗ denotes a delta function in `2(Y ). Our operator
DY is block-diagonal with respect to this decomposition. It is given by a family
(Dy)y∈Y 0 of an unbounded, odd, self-adjoint operators with compact resolvent.

For a vertex y ∈ Y 0
j of type j , let BR,y be the Bott–Dirac operator on HR with

“origin shifted”:

BR,y = (ext(e1)+ int(e1))(x − ny)+ (ext(e1)− int(e1))
d

dx
,

where ny = (−1) j
( 1

2 + d(y, y0)
)
. For y = y0, we simply set

Dy0 = BR,y0 ⊗̂ 1 on HR ⊗̂Cδy0 .

For y 6= y0, we set

Dy = BR,y ⊗̂ 1+Mχy ⊗̂

(
0 1
1 0

)
on HR ⊗̂ (Cδy ⊕Cδey ),
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where Mχy is the multiplication on HR by the function χy on R defined as

for y ∈ Y 0
0 , χy(x)=



0, x < 1
2 ,(

x − 1
2

)2
, 1

2 ≤ x < 1,

x − 3
4 , 1≤ x < d(y, y0),

−(x − ny)
2
+ d(y, y0)−

1
2 , d(y, y0)≤ x < ny,

d(y, y0)−
1
2 , ny ≤ x,

for y ∈ Y 0
1 , χy(x)=



d(y, y0)−
1
2 , x < ny,

−(x − ny)
2
+ d(y, y0)−

1
2 , ny ≤ x <−d(y, y0),

−x − 3
4 , −d(y, y0)≤ y <−1,(

x + 1
2

)2
, −1≤ x <−1

2 ,

0, −
1
2 ≤ x .

Note that for each y 6= y0, Dy is a bounded perturbation of a self-adjoint operator
BR,y ⊗̂ 1 with compact resolvent of index 0, and hence so is Dy . All Dy are hence
diagonalizable. Therefore, DY = (Dy)y∈Y 0 is self-adjoint. In order to see that DY

has compact resolvent, we compute

D2
y = B2

R,y ⊗̂ 1+M2
χy
⊗̂ 1+

(
0 −Mχ ′y

Mχ ′y
0

)
⊗̂

(
0 1
1 0

)
,

where χ ′y is the derivative of χy . We see that D2
y has spectrum far away from 0 as

y goes to infinity essentially because the derivatives χ ′y are uniformly bounded in
y and because we have

(x − ny)
2
+χ2

y ≥ 2
( 1

2 d(y, y0)−
1
8

)2

everywhere. It follows that DY indeed has compact resolvent. Let FY be the
bounded transform

FY =
DY

(1+ D2
Y )

1/2
.

Proposition 2.5. A pair (HY , FY ) is a G-equivariant Kasparov cycle with prop-
erty (γ ).

Proof. Almost G-equivariance follows from

DY − g(DY )= bounded for g ∈ G,

which we leave to the reader. To see that [HY , FY ] = 1F in R(F) for any finite
subgroup F of G, we note that the class [HY , FY ] does not depend on the choice of
the base point y0. Hence, we may assume that y0 is a vertex fixed by the group F . In
this case, it is not hard to see that FY is an odd, F-equivariant, self-adjoint operator
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whose graded index is the one-dimensional trivial representation of F spanned by
ξ0 ⊗̂δy0 in HR ⊗̂Cδy0 , where ξ0= e−x2/2. This shows [HY , FY ] = 1F . To show that
it has condition (2) of property (γ ) with respect to the representation π of C0(E),
we shall apply Theorem 6.1 of [Nishikawa 2019] for the dense subalgebra B of
C0(E) consisting of compactly supported functions which are smooth inside each
edge and constant near the vertices. Note that B contains a cutoff function of E .
First, we can see that for each y 6= y0, the operator Mχy ⊗̂

( 0
1

1
0

)
commutes with

the representation π . This is due to the vanishing of χy for y ∈ Y 0
0 and y ∈ Y 0

1
over x ≤ 1

2 and −1
2 ≤ x , respectively. For φ in B, we compute the commutator

[DY , π(φ)] as

[DY , π(φ)] = [BR,y0 ⊗̂ 1, π(φ)] +
∑

y∈Y 0\{y0}

[
BR,y ⊗̂ 1+Mχy ⊗̂

(
0 1
1 0

)
, π(φ)

]
= [BR,y0 ⊗̂ 1, π(φ)] +

∑
y∈Y 0\{y0}

[BR,y ⊗̂ 1, π(φ)]

=

∑
y∈Y 0\{y0}

[(
0 − d

dx
d

dx 0

)
, πey (φ)

]
⊗̂ 1

= π(φ′)
∑

y∈Y 0\{y0}

(
0 −1
1 0

)
⊗̂ 1,

where in the last two, each summand is an operator on HR ⊗̂Cδey and where φ′ is
the derivative of φ. Note that each summation is a finite sum since φ is compactly
supported. We can now use [Nishikawa 2019, Theorem 6.1] to conclude that the
bounded transform (HY , FY ) satisfies condition (2) of property (γ ). �

Remark 2.6. The construction can be generalized to define a cycle with property
(γ ) for a group which acts properly and cocompactly on a Euclidean building in
the sense of [Kasparov and Skandalis 1991]. In [Brodzki et al. 2019], a different
construction is given which provides us a cycle with property (γ ) for a group which
acts properly and cocompactly on a finite-dimensional CAT(0) cube complex.

Groups with weak Spanier–Whitehead K-duality. Let G be a countable discrete
group satisfying the conditions (1) and either (2)’ or (3)’ below:

(1) G admits a G-compact model of EG;

(2)′ G admits a γ -element γ with G
r (γ ) acting as the identity on K∗(C∗r (G)), or

(3)′ G admits a (γ )-element x with G
r (x) acting as the identity on K∗(C∗r (G)).

Our previous argument shows that such a group G has weak Spanier–Whitehead
K-duality. For any word-hyperbolic group, the gamma element is shown to exist
and the Baum–Connes conjecture has been verified [Lafforgue 2012; Kasparov and
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Skandalis 2003; Mineyev and Yu 2002]. Moreover, any hyperbolic group is known
to admit a G-compact model of EG [Meintrup and Schick 2002]. Hence, we have
the following:

Theorem 2.7. All word-hyperbolic groups G have weak Spanier–Whitehead K-
duality.

As an example of hyperbolic groups, we can take G to be a cocompact lat-
tices of the simple Lie group L = Sp(n, 1). As before, the γ -element for G has
an explicit representative (HL/K , FL/K ) with property (γ ). We remark that the
gamma element γ = [HL/K , FL/K ] is well-known to be not homotopic to 1G due to
Kazhdan’s property (T). Furthermore, Skandalis [1988] showed that G

r (γ ) is not
equal to 1C∗r (G). More precisely, what he showed is that C∗r (G) is not K-nuclear,
which in particular implies that it cannot be KK-equivalent to any nuclear C∗-
algebra. The same remark that G

r (γ ) 6= 1C∗r (G) applies to any infinite hyperbolic
property (T) group [Higson and Guentner 2004, Theorem 5.2]. In general, when
the gamma element γ exists, the equality G

r (γ ) = 1C∗r (G) implies that C∗r (G) is
KK-equivalent to PC oG, which satisfies the UCT [Meyer and Nest 2006, Propo-
sition 9.5]; in particular it is K-nuclear. Therefore, if C∗r (G) is not K-nuclear, we
have G

r (γ ) 6= 1C∗r (G).

3. Some applications

In this section we prove a few results by applying the theory of K-duality developed
in the previous pages. Some of the material presented here has been previously
treated in the literature via possibly different methods [Dadarlat 2009, Section 3;
Emerson and Meyer 2010, Section 5; Kaminker et al. 2017, Section 4.4; Rosen-
berg and Schochet 1987, Section 7]. Nevertheless, we provide a brief account for
completeness, to give a better idea of some applications of our main theorems.

We say a C∗-algebra A is KK-compact if the functor sending D to KK
∗
(A, D)

commutes with filtered colimits. If A is a C∗-algebra with a Spanier–Whitehead
K-dual B, then A is KK-compact because KK

∗
(A, D) is naturally isomorphic to

KK
∗
(C, D⊗ B) and the K-theory functor is continuous.

As explained after Theorem 6.6 of [Meyer and Nest 2006], a C∗-algebra satisfies
the universal coefficient theorem (UCT) [Blackadar 1998, Section 23] if and only if
it belongs to the localizing triangulated subcategory of the KK-category generated
by the complex numbers (this category is denoted as 〈∗〉 in [Meyer and Nest 2006]).
As in [Dell’Ambrogio et al. 2011], let us denote this subcategory by T . It is known
that within this subcategory, an object is dualizable if and only if it is compact:

Proposition 3.1 [Dell’Ambrogio et al. 2011, Proposition 4.1]. In the subcategory
T ⊆ KK, the full triangulated subcategory Tc of compact objects coincides with the
(closed) symmetric monoidal category Td of dualizable objects. Furthermore, both
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these two subcategories are equal to the thick triangulated subcategory generated
by the complex numbers.

Corollary 3.2. If G has Spanier–Whitehead duality then C∗r (G) satisfies the UCT.

Proof. We know that C0(EG)oG satisfies the UCT [Meyer and Nest 2006, Propo-
sition 9.5]. By assumption, C0(EG)oG has a Spanier–Whitehead K-dual C∗r (G).
Thus, C0(EG) o G is KK-compact. By Proposition 3.1, it is dualizable in T .
Namely, it has a Spanier–Whitehead K-dual, say A, which satisfies the UCT. On
the other hand, it is fairly easy to see that a dual object is unique up to equivalence.
Hence, C∗r (G) is KK-equivalent to A. The claim follows from this. �

The strong Baum–Connes conjecture was introduced in [Meyer and Nest 2006]
as the assertion that the canonical Dirac morphism α in KKG(PC,C) induces a
KK-equivalence G

r (α) from PC o G to C∗r (G). In the presence of the gamma
element γ for G, this is equivalent to the assertion that G

r (γ )= 1C∗r (G).

Theorem 3.3. If G has Spanier–Whitehead duality then it satisfies the strong Baum–
Connes conjecture. Moreover, if the γ -element exists and G satisfies the strong
Baum–Connes conjecture, than G has Spanier–Whitehead duality.

Proof. Suppose G has Spanier–Whitehead duality. Then we know that the Baum–
Connes conjecture holds for G, and so the Dirac morphism α induces an isomor-
phism G

r (α)∗ on K-groups from PC o G to C∗r (G). Furthermore, both PC o G
and C∗r (G) satisfy the UCT by [Meyer and Nest 2006, Proposition 9.5] and by
Corollary 3.2, respectively. It follows that G

r (α) is a KK-equivalence [Black-
adar 1998, Theorem 23.10.1]. Conversely, if the strong Baum–Connes conjecture
holds, we have G

r (γ ) = 1C∗r (G). Hence, G has Spanier–Whitehead duality by
Theorem 1.14. �

As in [Blackadar 1998, Theorem 23.10.5], a C∗-algebra A satisfies the UCT
if and only if it is KK-equivalent to a commutative C∗-algebra C0(X). Further-
more, this X can be taken to be a three-dimensional cell complex [Blackadar 1998,
Corollary 23.10.3; Rosenberg and Schochet 1987, Proposition 7.4]. This is be-
cause the range of K-theory on such spaces exhausts all countable Z/(2)-graded
abelian groups. If K∗(A) is finitely generated, then X can be chosen finite, and
a Spanier–Whitehead K-dual exists for such spaces [Emerson and Meyer 2010,
Proposition 5.9].

Lemma 3.4. Suppose A has a Spanier–Whitehead K-dual and satisfies the UCT.
Then it has finitely generated K-theory groups.

Proof. As in the proofs of [Rosenberg and Schochet 1987, Proposition 7.4; Black-
adar 1998, Corollary 23.10.3], let C = C0

⊕ C1 be a commutative C∗-algebra
KK-equivalent to A, where C0 is the mapping cone of a ∗-homomorphism on
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direct sums of C0(R), and C1 is the suspension of such a mapping cone. It is
easy to see that C is the inductive limit of subalgebras Cn , where Cn has finitely
generated K-theory. Since KK

∗
(A, – ) is continuous (since A is KK-compact), the

equivalence A→ C factors through Cn for some n ∈ N. Then K∗(A) is finitely
generated because it is a quotient of K∗(Cn), which enjoys this property. �

Proposition 3.5. Suppose G satisfies the Baum–Connes conjecture and the γ -
element exists. Then C∗r (G) has finitely generated K-theory groups.

Proof. If γ ∈ KKG(C,C) exists, then PC oG is dualizable by Theorem 1.16. It is
known that PC oG satisfies the UCT; see [Meyer and Nest 2006, Proposition 9.5].
Thus, PC o G has finitely generated K-groups by Lemma 3.4. Recall that in the
localization picture the assembly map appears as

K∗(PC oG)→ K∗(C∗r (G)). (3.6)

Therefore, if (3.6) is an isomorphism the right-hand side is finitely generated. �

Remark 3.7. More generally, C∗r (G) has finitely generated K-theory groups if G
satisfies the Baum–Connes conjecture and the source PC of the Dirac morphism is a
(categorical) direct summand of a proper algebra. This is because by Remark 1.18,
PC oG has a Spanier–Whitehead K-dual.

Remark 3.8. By the results in [Dell’Ambrogio et al. 2011], there exists a functor K

from the KK-category to the stable homotopy category satisfying πn(K(A))∼=Kn(A).
This functor specializes to a full and faithful functor on the subcategory of dualiz-
able objects satisfying the UCT, realizing C∗-algebras as perfect KU-modules (in
particular, finite spectra). Hence, the previous results can also be obtained from
the well-known fact that homotopy groups are finitely generated in this context.

Define the n-th dimension-drop algebra as

In = { f ∈ C([0, 1],Mn(C)) | f (0)= 0, f (1) ∈ C1n}.

We can use this to introduce the mod-n K-theory groups as follows:

K∗(B;Z/(n))= KK
∗
(In, B).

It is apparent from this definition that a Baum–Connes conjecture in mod-n K-
theory for B would have to introduce coefficients on the left, and we can take this
as motivation to find a satisfactory formulation for the full bivariant version of the
Baum–Connes conjecture. The approach via localization immediately generalizes
to this context, giving us a map

KK
∗
(A, (PC⊗ B)oG)→ KK

∗
(A, B or G) (3.9)
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defined as y 7→ y⊗ G
r (1B ⊗̂α), where α ∈KK(PC,C) is the Dirac morphism, for

any (separable) C∗-algebra A and G-C∗-algebra B.
The original definition of the left-hand side (following [Baum et al. 2003] and

[Uuye 2011]), what is called the “naive” topological K-group in [Uuye 2011], is
given as

lim
−−→

Y⊆EG
KKG
∗
(C0(Y, A), B),

where the limit ranges as usual over G-invariant G-compact subspaces of EG.
Unlike the simpler case of the conjecture, the definition making use of the naive
topological group is not equivalent to the definition in (3.9). However, [Uuye 2011]
shows that there are natural maps

νY : KKG
∗
(C0(Y, A), B)→ KK

∗
(A, (PC⊗ B)oG), (3.10)

which make the obvious diagram commute. In addition, if A admits a Spanier–
Whitehead K-dual, then (3.10) induces an isomorphism.

Theorem 3.11 [Uuye 2011]. Suppose A has a Spanier–Whitehead K-dual. Then
the comparison map induced by the νY is an isomorphism.
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[Miščenko and Fomenko 1979] A. S. Miščenko and A. T. Fomenko, “The index of elliptic opera-
tors over C∗-algebras”, Izv. Akad. Nauk SSSR Ser. Mat. 43:4 (1979), 831–859, 967. In Russian;
translated in Math. USSR-Izv. 15:1 (1980), 87–112. MR Zbl

[Neeman 2001] A. Neeman, Triangulated categories, Annals of Math. Studies 148, Princeton Univ.
Press, 2001. MR Zbl

[Niblo et al. 2016] G. A. Niblo, R. Plymen, and N. Wright, “Extended Affine Weyl groups, the
Baum–Connes correspondence and Langlands duality”, preprint, 2016. arXiv

[Nishikawa 2019] S. Nishikawa, “Direct splitting method for the Baum–Connes conjecture”, J.
Funct. Anal. 277:7 (2019), 2259–2287. MR Zbl

http://msp.org/idx/arx/1807.05757
http://dx.doi.org/10.1007/s002200050147
http://dx.doi.org/10.1007/s002200050147
http://msp.org/idx/mr/1468312
http://msp.org/idx/zbl/0887.19002
http://dx.doi.org/10.1142/S1793525319500055
http://dx.doi.org/10.1142/S1793525319500055
http://msp.org/idx/mr/3918060
http://msp.org/idx/zbl/1418.46033
http://dx.doi.org/10.1515/crelle-2014-0126
http://dx.doi.org/10.1515/crelle-2014-0126
http://msp.org/idx/mr/3692021
http://msp.org/idx/zbl/1379.37016
http://msp.org/idx/mr/582160
http://msp.org/idx/zbl/0448.46051
http://dx.doi.org/10.1007/BF01404917
http://msp.org/idx/mr/918241
http://msp.org/idx/zbl/0647.46053
http://dx.doi.org/10.1017/CBO9780511662676.007
http://dx.doi.org/10.1017/CBO9780511662676.007
http://msp.org/idx/mr/1388299
http://msp.org/idx/zbl/0957.58020
http://dx.doi.org/10.1007/BF00533989
http://dx.doi.org/10.1007/BF00533989
http://msp.org/idx/mr/1115824
http://msp.org/idx/zbl/0738.46035
http://dx.doi.org/10.4007/annals.2003.158.165
http://dx.doi.org/10.4007/annals.2003.158.165
http://msp.org/idx/mr/1998480
http://msp.org/idx/zbl/1029.19003
http://dx.doi.org/10.4171/JNCG/89
http://dx.doi.org/10.4171/JNCG/89
http://msp.org/idx/mr/2874956
http://msp.org/idx/zbl/1328.19010
http://dx.doi.org/10.4171/JNCG/202
http://msp.org/idx/mr/3359022
http://msp.org/idx/zbl/1343.19001
http://nyjm.albany.edu:8000/j/2002/8_1.html
http://nyjm.albany.edu:8000/j/2002/8_1.html
http://msp.org/idx/mr/1887695
http://msp.org/idx/zbl/0990.20027
http://dx.doi.org/10.1023/A:1026536332122
http://msp.org/idx/mr/1803228
http://msp.org/idx/zbl/0982.19004
http://dx.doi.org/10.1016/j.top.2005.07.001
http://dx.doi.org/10.1016/j.top.2005.07.001
http://msp.org/idx/mr/2193334
http://msp.org/idx/zbl/1092.19004
http://msp.org/idx/mr/2681710
http://msp.org/idx/zbl/1234.18008
http://dx.doi.org/10.1007/s002220200214
http://msp.org/idx/mr/1914618
http://msp.org/idx/zbl/1038.20030
http://msp.org/idx/mr/548506
http://msp.org/idx/zbl/0416.46052
http://dx.doi.org/10.1515/9781400837212
http://msp.org/idx/mr/1812507
http://msp.org/idx/zbl/0974.18008
http://msp.org/idx/arx/1512.06662
http://dx.doi.org/10.1016/j.jfa.2019.05.004
http://msp.org/idx/mr/3989146
http://msp.org/idx/zbl/07089428


500 SHINTARO NISHIKAWA AND VALERIO PROIETTI

[Rieffel 1976] M. Rieffel, “Strong Morita equivalence of certain transformation group C∗-algebras”,
Math. Ann. 222:1 (1976), 7–22. MR Zbl

[Rosenberg and Schochet 1987] J. Rosenberg and C. Schochet, “The Künneth theorem and the
universal coefficient theorem for Kasparov’s generalized K-functor”, Duke Math. J. 55:2 (1987),
431–474. MR Zbl

[Skandalis 1988] G. Skandalis, “Une notion de nucléarité en K-théorie (d’après J. Cuntz)”, K-
Theory 1:6 (1988), 549–573. MR Zbl

[Spanier and Whitehead 1958] E. H. Spanier and J. H. C. Whitehead, “Duality in relative homotopy
theory”, Ann. of Math. (2) 67 (1958), 203–238. MR Zbl

[Tu 2000] J.-L. Tu, “The Baum–Connes conjecture for groupoids”, pp. 227–242 in C∗-algebras
(Münster, 1999), edited by J. Cuntz and S. Echterhoff, Springer, 2000. MR Zbl

[Uuye 2011] O. Uuye, “The Baum–Connes conjecture for KK -theory”, J. K-Theory 8:1 (2011),
3–29. MR Zbl

[Valette 2002] A. Valette, Introduction to the Baum–Connes conjecture, Lectures in Mathematics
ETH Zürich, Birkhäuser, Basel, 2002. MR Zbl

Received 16 Sep 2019. Revised 9 Feb 2020. Accepted 24 Feb 2020.

SHINTARO NISHIKAWA: sxn28@psu.edu
Department of Mathematics, Pennsylvania State University, University Park, PA, United States

VALERIO PROIETTI: proiettivalerio@math.ecnu.edu.cn
Department of Mathematics, East China Normal University, Shanghai, China

msp

http://dx.doi.org/10.1007/BF01418238
http://msp.org/idx/mr/419677
http://msp.org/idx/zbl/0328.22013
http://dx.doi.org/10.1215/S0012-7094-87-05524-4
http://dx.doi.org/10.1215/S0012-7094-87-05524-4
http://msp.org/idx/mr/894590
http://msp.org/idx/zbl/0644.46051
http://dx.doi.org/10.1007/BF00533786
http://msp.org/idx/mr/953916
http://msp.org/idx/zbl/0653.46065
http://dx.doi.org/10.2307/1970004
http://dx.doi.org/10.2307/1970004
http://msp.org/idx/mr/105105
http://msp.org/idx/zbl/0092.15701
http://msp.org/idx/mr/1798599
http://msp.org/idx/zbl/0973.46065
http://dx.doi.org/10.1017/is010003012jkt114
http://msp.org/idx/mr/2826278
http://msp.org/idx/zbl/1243.19004
http://dx.doi.org/10.1007/978-3-0348-8187-6
http://msp.org/idx/mr/1907596
http://msp.org/idx/zbl/1136.58013
mailto:sxn28@psu.edu
mailto:proiettivalerio@math.ecnu.edu.cn
http://msp.org


msp
ANNALS OF K-THEORY

Vol. 5, No. 3, 2020

https://doi.org/10.2140/akt.2020.5.501

Homotopy equivalence in unbounded KK-theory

Koen van den Dungen and Bram Mesland

We propose a new notion of unbounded KK-cycle, mildly generalizing unbounded
Kasparov modules, for which the direct sum is well-defined. To a pair (A, B) of
σ -unital C∗-algebras, we can then associate a semigroup UKK(A, B) of homo-
topy equivalence classes of unbounded cycles, and we prove that this semigroup
is in fact an abelian group. In case A is separable, our group UKK(A, B) is iso-
morphic to Kasparov’s KK-theory group KK(A, B) via the bounded transform.
We also discuss various notions of degenerate cycles, and we prove that the
homotopy relation on unbounded cycles coincides with the relation generated by
operator-homotopies and addition of degenerate cycles.

Introduction

Given two (σ -unital, Z2-graded) C∗-algebras A and B, Kasparov [1980] defined
the abelian group KK(A, B) as a set of homotopy equivalence classes of Kasparov
A-B-modules, equipped with the direct sum. These groups simultaneously gener-
alize K -theory (if A = C) and K -homology (if B = C).

It was shown by Baaj and Julg that every class in KK(A, B) can also be rep-
resented by an unbounded Kasparov module. Many examples of elements in KK-
theory which arise from geometric situations are most naturally described in the
unbounded picture. The prototypical example is a first-order elliptic differential
operator (e.g., the Dirac operator, signature operator, or de Rham operator) on a
complete Riemannian manifold. The unbounded picture is also more suitable in
the context of nonsmooth manifolds. Indeed, while on Lipschitz manifolds there is
no pseudodifferential calculus, it makes perfect sense to consider first-order differ-
ential operators and thus to construct unbounded Kasparov modules on Lipschitz
manifolds (see, e.g., [Teleman 1983; Hilsum 1985; 1989]). Furthermore, the Kas-
parov product is often easier to describe in the unbounded picture. In fact, under
suitable assumptions, the Kasparov product of two unbounded Kasparov modules
can be explicitly constructed [Mesland 2014; Kaad and Lesch 2013; Brain et al.
2016; Mesland and Rennie 2016]. These advantages of the unbounded picture of
KK-theory motivate the following question.
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Question. Can Kasparov’s KK-groups equivalently be defined as the set of homo-
topy equivalence classes of unbounded Kasparov modules?

A similar question is considered in [Kaad 2019], where it is shown that Kas-
parov’s KK-groups can be obtained using the (a priori) weaker equivalence relation
of stable homotopy of unbounded Kasparov modules. In the present paper we will
provide a positive answer to the above question. Moreover, we will prove that the
stable homotopy relation of [Kaad 2019] in fact coincides with ordinary homotopy
equivalence.

The first problem one encounters when trying to answer the above question, is
that the direct sum of unbounded Kasparov modules is not well-defined. To resolve
this issue, we slightly weaken the standard definition of unbounded Kasparov mod-
ules in such a way that the set 91(A, B) of such unbounded A-B-cycles (E,D)

becomes closed under the direct sum operation. By considering the natural notion
of homotopy equivalence on 91(A, B) (completely analogous to homotopies of
bounded Kasparov modules), we thus obtain a semigroup UKK(A, B) given by the
set of homotopy equivalence classes of 91(A, B). We will prove that UKK(A, B)
is in fact a group.

To answer the aforementioned question, we must show that the group UKK(A, B)
is isomorphic to Kasparov’s KK-theory group KK(A, B). The results of Baaj and
Julg already show that the bounded transform

(E,D) 7→ (E, FD := D(1+D2)−1/2)

induces a surjective homomorphism UKK(A, B)→ KK(A, B). This is proven by
explicitly constructing an unbounded lift for any bounded Kasparov module.

The difficulty is to prove injectivity of the bounded transform. To be precise,
given unbounded cycles (E0,D0) and (E1,D1) and a homotopy (E, F) between
their bounded transforms, we can use the lifting results from Baaj and Julg to lift
(E, F) to an unbounded homotopy (E,S). However, it is in general not clear
how the endpoints of (E,S) are related to (E j ,D j ), and the main challenge is
therefore to construct (E,S) in such a way that its endpoints are in fact homotopic
to (E j ,D j ).

For this purpose, we describe a general notion of functional dampening, which
is the transformation D 7→ f (D) for suitable “dampening functions” f : R→ R

which blow up towards infinity at a slow enough rate (such that f (x)(1+ x2)−1/2

vanishes at infinity) and which are compatible with the Lipschitz structure obtained
from D. We prove that (E, f (D)) is operator-homotopic to (E,D) for any damp-
ening function f , generalizing a result in [Kaad 2019].

With a careful adaptation of the lifting construction of [Baaj and Julg 1983;
Kucerovsky 2000], using ideas from [Mesland and Rennie 2016], we then prove
our first main result:
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Theorem A. If A is separable, then any homotopy (E, F) between (E0, FD0)

and (E1, FD1) can be lifted to an unbounded Kasparov A-C([0, 1], B)-module
(E,S) such that, for j = 0, 1, the endpoints ev j (E,S) are unitarily equivalent
to (E j , f j (D j )) for dampening functions f j : R→ R.

As mentioned above, functional dampening provides an operator-homotopy be-
tween (E j ,D j ) and (E j , f j (D j )), and thus we obtain a positive answer to the
above question:

Theorem B. If A is separable, then the bounded transform induces an isomor-
phism

UKK(A, B)
'
−→ KK(A, B).

We continue to provide an alternative description of the homotopy equivalence
relation at the unbounded level. In bounded KK-theory, it is well-known that the
homotopy relation coincides with the relation obtained from unitary equivalences,
operator-homotopies, and addition of degenerate modules. We will prove an anal-
ogous statement in unbounded KK-theory. We consider two notions of degenerate
cycles, namely spectrally degenerate cycles (for which D is invertible and D|D|−1

commutes with A) and algebraically degenerate cycles (for which A is represented
trivially). We then consider the equivalence relation ∼oh+d obtained from unitary
equivalences, operator-homotopies, and addition of algebraically and spectrally
degenerate cycles. Our next main result then reads:

Theorem C. Degenerate cycles are null-homotopic. Furthermore, if A is separa-
ble, then the homotopy equivalence relation ∼h on 91(A, B) coincides with the
equivalence relation ∼oh+d .

We prove the first statement by explicitly constructing a homotopy between
degenerate cycles and the zero cycle. The second statement is then obtained by
combining [Kasparov 1980, §6, Theorem 1] with Theorem A.

Let us briefly compare our work with the existing literature on unbounded Kas-
parov modules. First, we note that, in the usual approach to unbounded KK-theory,
it is necessary to make a fixed choice of a dense ∗-subalgebra A⊂ A, and to con-
sider only those unbounded Kasparov A-B-modules (E,D) for which A⊂ Lip(D),
to ensure that the direct sum is well-defined. This means that any equivalence
relation on unbounded Kasparov A-B-modules only applies to those unbounded
Kasparov modules which are defined using the same choice of A. Thus, it is im-
possible to compare unbounded Kasparov modules which are defined with respect
to different choices of A. One major advantage of our approach is that, instead
of fixing a choice of ∗-subalgebra A, we consider the slightly weaker notion of
unbounded cycles, which only requires that A ⊂ Lip(D). For such cycles the direct
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sum is well-defined in full generality. In particular, the notion of homotopy equiva-
lence can then be used to compare arbitrary unbounded A-B-cycles. Nevertheless,
we will show that Theorems A–C remain valid if we do fix a countably generated
dense ∗-subalgebra A⊂ A, and replace UKK(A, B) by the semigroup UKK(A, B)
given by homotopy equivalence classes of all those unbounded Kasparov modules
(π, E,D) for which π(A)⊂ Lip(D).

Other equivalence relations on unbounded Kasparov modules have already been
considered in the literature, namely the bordism relation [Deeley et al. 2018] and
the stable homotopy relation [Kaad 2019]. Both of these approaches rely on a fixed
choice of a dense ∗-subalgebra A ⊂ A. Let us discuss the relationships between
homotopy equivalence, stable homotopy equivalence, and bordism. The paper
[Deeley et al. 2018] studies a notion of bordism of unbounded Kasparov modules
due to Hilsum [2010], and proves that there is a surjective homomorphism from
the corresponding bordism group �(A, B) to Kasparov’s KK-group KK(A, B). In
particular, from Theorem B we obtain a surjective homomorphism to our UKK-
group, which means that the bordism relation is stronger than the homotopy rela-
tion. However, it remains an open question if these relations coincide or not. One
technical tool appearing in [Deeley et al. 2018] is the notion of weakly degenerate
module, which is shown to be null-bordant. As a spin-off from our study of Clif-
ford symmetric modules, we give a direct proof in Lemma 4.15 that any weakly
degenerate cycle is also null-homotopic (without assuming A to be separable).

After the appearance of [Deeley et al. 2018] as a preprint in 2015, there has been
increased interest within the community regarding equivalence relations on un-
bounded Kasparov modules. Discussions between the authors and Kaad in Novem-
ber 2018 gave the problem new impetus. The subsequent paper [Kaad 2019] pro-
vides a first study of homotopies of unbounded Kasparov modules. The work in the
present paper was initiated independently and the methods developed here are com-
plementary to those in [Kaad 2019]. The main technical results, our Theorem A
and [Kaad 2019, Proposition 6.2], are very distinct in spirit and lend themselves to
different types of applications. Our proofs of Theorems A–C are independent of
the results from [Kaad 2019]. Moreover, it should be noted that our Theorem B is
stronger than the main result in [Kaad 2019] in the sense we now explain.

In [Kaad 2019], a countably generated dense ∗-subalgebra A⊂ A is fixed and
the notion of stable homotopy of unbounded Kasparov A-B-modules is considered.
Stable homotopy is a weakening of the homotopy equivalence relation obtained
from homotopy equivalences and addition of “spectrally decomposable” modules.
It is then proved that the resulting set of equivalence classes of unbounded Kasparov
A-B-modules forms an abelian group which (if A is separable) is isomorphic to
Kasparov’s KK-group. In particular, this group does not depend on the choice of
the dense ∗-subalgebra A⊂ A (up to isomorphism).
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As described above, we avoid in the present paper the need to fix a countably
generated dense ∗-subalgebra A⊂ A in the definition of the unbounded KK-group.
Even more importantly, thanks to our new approach towards lifting a homotopy
in Theorem A (adapting the more refined lifting methods of [Kucerovsky 2000;
Mesland and Rennie 2016]), we overcome the need to weaken the homotopy equiv-
alence relation by addition of spectrally decomposable modules. Furthermore, we
will also show that, in fact, adding spectrally decomposable modules does not
weaken the homotopy equivalence relation after all. Indeed, any spectrally decom-
posable module is just a bounded perturbation of a spectrally degenerate module.
Consequently, it follows from Theorem C that any spectrally decomposable cycle
is null-homotopic, so that the relation of stable homotopy equivalence coincides
with homotopy equivalence. We point out that, combined with the main results
from [Kaad 2019], this provides a second and independent proof of Theorem B.

Finally, let us briefly summarize the layout of this paper. We start in Section 1
with our definition of unbounded cycles, and we show that the direct sum is well-
defined. In Sections 1A and 1B we recall the lifting construction from [Baaj
and Julg 1983], closely following the arguments of [Mesland and Rennie 2016;
Kucerovsky 2000]. We collect some basic facts regarding regular self-adjoint op-
erators in Section 1C.

In Section 2A we introduce the homotopy relation (as well as the special case of
operator-homotopies), and construct the semigroup UKK(A, B). In Section 2B we
show that the notion of functional dampening can be implemented via an operator-
homotopy. In Section 2C we construct the lift of a homotopy and prove Theorem A
(see Theorem 2.11). Combined with the operator-homotopy obtained from func-
tional dampening, we then obtain Theorem B (see Theorem 2.12).

We introduce our notions of algebraically and spectrally degenerate cycles in
Section 3, and we prove that degenerate cycles are null-homotopic (Lemma 3.2
and Proposition 3.7). In Section 3C we then show that any homotopy can be imple-
mented as an operator-homotopy modulo addition of degenerate cycles (Theorem
3.10), which completes the proof of Theorem C.

We give a direct proof that UKK(A, B) is a group (and not just a semigroup)
in Section 4. In the case where A is separable, this follows immediately from
the isomorphism UKK(A, B) ' KK(A, B), but our direct proof works for any
pair (A, B) of σ -unital C∗-algebras. The proof relies on the observation that
the presence of certain symmetries induces homotopical triviality. After a brief
discussion of Lipschitz regular cycles in Section 4A, we introduce the notion of
spectrally symmetric cycles in Section 4B. These cycles are a mild generalization
of the notion of spectrally decomposable modules introduced in [Kaad 2019]. We
prove that any spectrally symmetric cycle is a bounded perturbation of a spectrally
degenerate cycle, and therefore null-homotopic. In Section 4C we introduce the



506 KOEN VAN DEN DUNGEN AND BRAM MESLAND

notion of Clifford symmetric cycles, which are elements of 91(A, B) which extend
to 91(A ⊗̂ Cl1, B). We prove that every Clifford symmetric cycle is operator-
homotopic to a spectrally symmetric cycle and therefore null-homotopic. The
proof is easily generalized to show that in fact every weakly degenerate cycle is
null-homotopic. We exploit such Clifford symmetries to prove in Section 4D that
the semigroup UKK(A, B) is in fact a group.

Finally, the Appendix contains some basic facts regarding localizations of Hilbert
C∗-modules and their dense submodules.

Notation and conventions. Let A and B denote σ -unital Z2-graded C∗-algebras.
By an approximate unit for A we will always mean an even, positive, increasing,
and contractive approximate unit for the C∗-algebra A. For elements a, b ∈ A we
denote by [a, b] the graded commutator. If a and b are homogeneous, we denote by
deg a, deg b ∈ Z2 their degree and [a, b] := ab− (−1)deg a deg bba. For general a, b
we extend the graded commutator by linearity. Let E be a Z2-graded Hilbert C∗-
module over B, or Hilbert B-module for short (for definitions and further details
regarding Hilbert C∗-modules, we refer to the books [Lance 1995; Blackadar
1998]). Throughout this article, we will assume E is countably generated. We
write End∗B(E) for the adjointable operators on E , and End0

B(E) for the compact
operators on E . For any subset W ⊂ End∗B(E), we write W for the closure of W
with respect to the operator-norm of End∗B(E).

1. Unbounded cycles

Kasparov [1980] defined the abelian group KK(A, B) as a set of homotopy equiv-
alence classes of Kasparov A-B-modules. We briefly recall the main definitions
(more details can be found in, e.g., [Blackadar 1998, §17]).

A (bounded) Kasparov A-B-module is a triple (π, E, F) comprising a Z2-graded,
countably generated, right Hilbert B-module E , a (Z2-graded) ∗-homomorphism
π : A→ End∗B(E), and an odd adjointable endomorphism F ∈ End∗B(E) such that,
for all a ∈ A,

π(a)(F − F∗), [F, π(a)], π(a)(F2
− 1) ∈ End0

B(E).

Two Kasparov A-B-modules (π0, E0, F0) and (π1, E1, F1) are called unitarily
equivalent (denoted with ') if there exists an even unitary in HomB(E0, E1) in-
tertwining the π j and F j (for j = 0, 1). A homotopy between (π0, E0, F0) and
(π1, E1, F1) is given by a Kasparov A-C([0, 1], B)-module (π̃, Ẽ, F̃) such that

ev j (π̃, Ẽ, F̃)' (π j , E j , F j ), j = 0, 1.

A homotopy (π̃, Ẽ, F̃) is called an operator-homotopy if there exists a Hilbert
B-module E with a representation π : A → End∗B(E) such that Ẽ equals the
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Hilbert C([0, 1], B)-module C([0, 1], E) with the natural representation π̃ of A
on C([0, 1], E) induced from π , and if F̃ is given by a norm-continuous family
{Ft }t∈[0,1]. A module (π, E, F) is called degenerate if for all a ∈ A we have

π(a)(F − F∗)= [F, π(a)] = π(a)(F2
− 1)= 0.

The KK-theory KK(A, B) of A and B is defined as the set of homotopy equiva-
lence classes of (bounded) Kasparov A-B-modules. Since homotopy equivalence
respects direct sums, the direct sum of Kasparov A-B-modules induces a (commu-
tative and associative) binary operation (“addition”) on the elements of KK(A, B)
such that KK(A, B) is in fact an abelian group [Kasparov 1980, §4, Theorem 1].

In this paper we will give a completely analogous description of KK-theory,
based instead on unbounded Kasparov modules [Baaj and Julg 1983]. Recall that
a closed densely defined symmetric operator D : Dom D→ E is self-adjoint and
regular if the operators D± i : Dom D→ E have dense range. We refer to [Lance
1995, Chapters 9 and 10] for details on regular operators on Hilbert modules. For
a self-adjoint regular operator D : Dom D→ E , we write

Lip(D) := {T ∈ End∗B(E) : T (Dom D)⊂ Dom D and [D, T ] ∈ End∗B(E)}.

It is worth noting that, because D is densely defined, Lip(D)∩End0
B(E) is equal to

End0
B(E). However, in general Lip(D) is not equal to End∗B(E). We also introduce

Lip0(D) := {T ∈ Lip(D) : T (1+D2)−1/2, T ∗(1+D2)−1/2
∈ End0

B(E)}.

We note that Lip0(D) is a ∗-subalgebra of End∗B(E). We introduce the following
relaxation of the notion of unbounded Kasparov module.

Definition 1.1. An unbounded A-B-cycle (π, E,D) consists of a Z2-graded, count-
ably generated Hilbert B-module E , a Z2-graded ∗-homomorphism π : A →
EndB(E), and an odd regular self-adjoint operator D on E , such that

π(A)⊂ Lip0(D).

The set of all unbounded A-B-cycles is denoted 91(A, B). We will often suppress
the representation π in our notation and simply write (E,D) instead of (π, E,D).

Remark 1.2. (1) It follows immediately from the definition that π(a)(1+D2)−1/2
∈

End0
B(E) for any a ∈ A, i.e., D has “A-locally compact” resolvents.

(2) We point out that if π(A) ⊂ End0
B(E) (i.e., A is represented as compact op-

erators), then the condition π(A)⊂ Lip0(D) is automatically satisfied, since
Lip(D)∩End0

B(E)⊂ Lip0(D) is always dense in End0
B(E).

Remark 1.3. We use the term unbounded A-B-cycle since our definition is differ-
ent from the usual definition of an unbounded Kasparov module, originally given
in [Baaj and Julg 1983]. An unbounded A-B-cycle (π, E,D) is an unbounded Kas-
parov module if there exists a dense ∗-subalgebra A⊂ A such that π(A)⊂Lip0(D).
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To avoid confusion we often refer to such cycles as ordinary unbounded Kasparov
modules.

Our main reason for relaxing this definition is the following simple lemma.

Lemma 1.4. The direct sum of unbounded A-B-cycles is well-defined, and there-
fore 91(A, B) is a semigroup.

Proof. Given unbounded A-B-cycles (πi , Ei ,Di ), i = 0, 1, we have Lip0(D0)⊕

Lip0(D1)⊂ Lip0(D0⊕D1) and πi (A)⊂ Lip0(Di ). It follows that

(π0⊕π1)(A)⊂ Lip0(D0)⊕Lip0(D1)⊂ Lip0(D0⊕D1),

and therefore (π0⊕π1, E0⊕ E1,D0⊕D1) is also an unbounded A-B-cycle. �

Remark 1.5. Note that if there are dense ∗-subalgebras Ai ⊂ A such that πi (Ai )⊂

Lip(Di ), it may not be possible to find a dense ∗-subalgebra A⊂ A such that

(π0⊕π1)(A)⊂ Lip0(D0⊕D1).

In fact, even if E0 = E1 and π0 = π1 = π , the intersection

Lip(D0)∩Lip(D1)∩π(A)

might not be dense in π(A) (for an example, see for instance [Deeley et al. 2018,
Appendix A]). Hence, the direct sum is not well-defined on ordinary unbounded
Kasparov modules. The usual way around this problem is to fix a dense ∗-subalgebra
A ⊂ A, and to consider only those unbounded Kasparov modules (π, E,D) for
which π(A)⊂ Lip0(D). With our relaxed condition π(A)⊂ Lip0(D), we avoid the
need to make such a choice for A.

Lemma 1.6. Let (π, E,D) be an unbounded A-B-cycle, and suppose that A is sep-
arable. Then there exists a countable subset W ⊂ Lip0(D) consisting of products of
elements in Lip0(D) (i.e., each w ∈W is of the form w= T1T2 for T1, T2 ∈Lip0(D))
such that π(A)⊂W .

Proof. Since A is separable, and since products are dense in any C∗-algebra, we
may pick a countable dense subset of products {a j b j } j∈N ⊂ A. Since π(A) ⊂
Lip0(D), there exist sequences {v j,k}k∈N, {w j,k}k∈N⊂Lip0(D) such that, for each j ,

lim
k
‖a j − v j,k‖ = lim

k
‖b j −w j,k‖ = 0.

The statement then holds with W := {v j,kw j,k} j,k∈N. �

Baaj and Julg proved for any ordinary unbounded Kasparov module that the
bounded transform D 7→ FD := D(1+D2)−1/2 yields a bounded Kasparov module
and hence a KK-class. Before we continue, we need to show that this still holds
for our relaxed definition of unbounded cycles.
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Proposition 1.7 (cf. [Baaj and Julg 1983]). If (π, E,D) is an unbounded A-B-
cycle (as in Definition 1.1), then the bounded transform (π, E, FD) is a bounded
Kasparov module and hence defines an element in KK(A, B).

Proof. As remarked in [Blackadar 1998, Proposition 17.11.3], it suffices to show
that [FD, a]b is compact for any a, b ∈ A. By Definition 1.1, there is a sequence
Tn ∈ Lip0(D) such that Tn→ a in norm, and then [FD, Tn]b→[FD, a]b in norm as
well. It thus suffices to show that [F, T ]b ∈ End0

B(E) for b ∈ A and T ∈ Lip0(D).
Compactness of [F, T ]b follows from the careful argument provided in the proof
of [Carey and Phillips 1998, Proposition 2.4], after multiplication with b from the
right. �

1A. The algebras CF and JF . Let E be a countably generated Hilbert B-module.
The following result is well-known, and follows from the proof of [Blackadar 1998,
Proposition 13.6.1] (which extends from h ∈ End0

B(E) to arbitrary h ∈ End∗B(E)).

Lemma 1.8 (cf. [Blackadar 1998, Proposition 13.6.1]). Let h ∈ End∗B(E). Then
hE is dense in E if and only if h ·End0

B(E) is dense in End0
B(E).

For a bounded Kasparov A-B-module (E, F) with F = F∗ and F2
≤ 1, we

define

CF := C∗(1− F2)+ FC∗(1− F2), JF := End0
B(E)+CF .

The C∗-algebra JF was introduced in [Mesland and Rennie 2016, Lemma 4.5], and
plays an important role in the construction of the (unbounded) lift of a (bounded)
Kasparov module.

Lemma 1.9. The space CF is a separable C∗-algebra, and 1− F2 is a strictly
positive element in CF .

Proof. It is explained in the proof of [Mesland and Rennie 2016, Lemma 4.5]
that CF is a separable C∗-algebra. By assumption, the spectrum spec(F) of F is
contained in [−1, 1], and by construction CF can be identified with a ∗-subalgebra
of C0(spec(F) \ {±1}). Under this identification, the element c = 1 − F2 cor-
responds to the function x 7→ 1− x2. In particular, we have c(t) 6= 0 for each
t ∈ spec(F)\{±1}. Since CF also separates points of spec(F)\{±1} (the elements
1− F2 and F(1− F2) suffice), the Stone–Weierstrass theorem implies that CF '

C0(spec(F) \ {±1}). Since c is a strictly positive function on C0(spec(F) \ {±1}),
it follows that 1− F2 is a strictly positive element in CF . �

Lemma 1.10. The space JF is a σ -unital C∗-algebra, and we have the inclusions

AJF , JF A, F JF , JF F ⊂ JF .

Furthermore, if k ∈End0
B(E) is a positive operator such that k+(1−F2) has dense

range in E , then k+ (1− F2) is strictly positive in JF .
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Proof. As E is countably generated, End0
B(E) is a σ -unital C∗-algebra (see, e.g.,

[Lance 1995, Proposition 6.7]). Since End0
B(E) is an ideal in End∗B(E), it follows

from [Kasparov 1980, §3, Lemma 2] that JF is also a σ -unital C∗-algebra. The
inclusions F JF , JF F ⊂ JF are immediate, and the inclusions AJF , JF A ⊂ JF

follow because a(1− F2) and [F, a] are compact for all a ∈ A.
Let k ∈ End0

B(E) be a positive operator such that h := k+ (1− F2) has dense
range in E . Consider an element l+c ∈ JF where l ∈ End0

B(E) and c ∈CF , and let
ε > 0. Since 1− F2 is strictly positive in CF by Lemma 1.9, there exists b ∈ CF

such that ‖(1− F2)b− c‖< ε. Moreover, since l − kb is compact, we know from
Lemma 1.8 that there exists a ∈ End0

B(E) such that ‖ha− (l − kb)‖< ε. Hence,

‖h(a+ b)− (l + c)‖ ≤ ‖ha− (l − kb)‖+‖(1− F2)b− c‖< 2ε,

which proves that h JF is dense in JF . �

1B. The lifting construction. Since our definition of unbounded cycle is more
general than the usual definition of unbounded Kasparov module, it of course re-
mains true that the bounded transform is surjective [Baaj and Julg 1983]. The
way to prove this surjectivity is by showing that every bounded Kasparov module
(E, F) can be lifted to an (ordinary) unbounded Kasparov module (E,D) such
that FD is operator-homotopic to F . Because we will make essential use of the
technical subtleties of this lifting procedure in the sequel, we present the proof here,
closely following the arguments of [Mesland and Rennie 2016; Kucerovsky 2000].
Recall that all approximate units are assumed to be even, positive, increasing, and
contractive for the C∗-algebra norm.

Lemma 1.11 [Mesland and Rennie 2016, proof of Theorem 1.25]. Let C be a
commutative separable C∗-algebra, {c j } j∈N ⊂ C a total subset, and {un}n∈N a
countable commutative approximate unit for C. If for some 0 < ε < 1, dn :=

un+1− un satisfies

‖dnc j‖ ≤ ε
2n for all j ≤ n,

then the series l−1
:=
∑
ε−ndn defines an unbounded multiplier on C such that

l := (l−1)−1
∈ C is strictly positive.

Proof. The series l−1c j :=
∑

n ε
−ndnc j is convergent for all j by our assumption

that ‖dnc j‖ ≤ ε
2n for all n ≥ j , so l−1 is a densely defined unbounded multiplier.

The partial sums
∑k

n=0 ε
−ndn are elements in the commutative C∗-algebra C '

C0(Y ), where Y = Spec C . Under this isomorphism, the approximate unit un

is identified with a sequence of functions converging pointwise to 1. For fixed
t ∈ (0, 1) set

Yk := {y ∈ Y : uk(y)≥ t},
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which gives an increasing sequence of compact sets Yk ⊂ Yk+1 with
⋃
∞

k=0 Yk = Y .
Let y ∈ Y \ Yk and m ≥ k. We have the estimates

∞∑
n=0

ε−ndn(y)≥
n=m∑
n=k

ε−ndn(y)+
∞∑

n=m+1

ε−ndn(y)

≥ ε−k(um+1− uk)(y)+
∞∑

n=m+1

ε−ndn(y)

≥ ε−k(um+1(y)− t)+
∞∑

n=m+1

ε−ndn(y)→ ε−k(1− t),

as m→∞. This shows that l−1 is given by a function whose reciprocal is a strictly
positive function in C0(Y ), so this defines a strictly positive element l ∈ C . �

Proposition 1.12. Let (E, F) be a bounded Kasparov A-B-module satisfying F∗=
F and F2

≤ 1. Given a countable dense subset A ⊂ A, there exists a positive
operator l ∈ JF with dense range in E such that

(1) the (closure of the) operator D := 1
2(Fl−1

+ l−1 F) makes (E,D) into an
ordinary unbounded Kasparov A-B-module with A⊂ Lip0(D), and

(2) F and FD are operator-homotopic.

Moreover, if F2
= 1, we can ensure that l commutes with F and that (1+D2)−1/2

is compact.

Proof. Pick an even strictly positive element h∈ JF . Since we have (see Lemma 1.10)

AJF , JF A, F JF , JF F ⊂ JF ,

there exists by [Akemann and Pedersen 1977, Theorem 3.2] an approximate unit
un ∈ C∗(h) for JF that is quasicentral for A and F . Let {ai }i∈N be an enumeration
of A, choose a countable dense subset {ci }i∈N⊂C∗(h), and fix a choice of 0<ε< 1.
By selecting a suitable subsequence of un , we can furthermore achieve that, for
each n ∈ N, dn := un+1− un satisfies

(a) ‖dnci‖ ≤ ε
2n for all i ≤ n,

(b) ‖dn(1− F2)1/4‖ ≤ ε2n ,

(c) ‖dn[F, ai ]‖ ≤ ε
2n for all i ≤ n,

(d) ‖[dn, ai ]‖ ≤ ε
2n for all i ≤ n, and

(e) ‖[dn, F]‖ ≤ ε2n .

Here properties (a)–(c) follow because un is an approximate unit for JF (and ci ,
(1− F2)1/4, and [F, ai ] all lie in JF ), and properties (d)–(e) follow because un is
quasicentral for A and F . By property (a) and Lemma 1.11 we obtain a strictly
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positive element l ∈ C∗(h) such that l−1
=
∑
ε−ndn . Since l JF ⊃ lC∗(h)JF ,

lC∗(h) is dense in C∗(h), and C∗(h)JF is dense in JF , it follows that l JF is dense
in JF and therefore l is strictly positive in JF . In particular, l has dense range
in E . From properties (b)–(e) it follows that l ∈ C∗(h)⊂ JF satisfies [Mesland and
Rennie 2016, Definition 4.6]. Then by [Mesland and Rennie 2016, Theorem 4.7;
Kucerovsky 2000, Lemma 2.2] the (closure of the) operator

D := 1
2(Fl−1

+ l−1 F)

is a densely defined and regular self-adjoint operator on E , and (E,D) is an or-
dinary unbounded Kasparov A-B-module with A ⊂ Lip0(D). Furthermore, the
proof of [Mesland and Rennie 2016, Theorem 4.7] (combined with [Blackadar
1998, Proposition 17.2.7]) shows that FD is operator-homotopic to F .

For the final statement, suppose F2
= 1, so that JF = End0

B(E). For any positive
element k ∈ JF with dense range, we can consider h := k+ Fk F ≥ k, which is also
positive with dense range [Lance 1995, Corollary 10.2]. Then h is a strictly positive
element in End0

B(E) (see Lemma 1.8), and h commutes with F . We then proceed as
above (conditions (b) and (e) now being redundant) to construct a compact operator
l ∈C∗(h)which also commutes with F . Lastly, for D= Fl−1 we see (1+D2)−1/2

=

l(1+ l2)−1 is indeed compact. �

Proposition 1.12 immediately implies the surjectivity of the bounded transform:

Theorem 1.13 (cf. [Baaj and Julg 1983; Kucerovsky 2000; Blackadar 1998, The-
orem 17.11.4]). If A is separable, then the bounded transform gives a surjective
map 91(A, B)→ KK(A, B).

1C. Regular self-adjoint operators. Let D be a regular self-adjoint operator on
a Hilbert B-module E . We recall from [Lance 1995, Theorem 10.9] that there
exists a continuous functional calculus for D, i.e., a ∗-homomorphism f 7→ f (D)
from C(R) to the regular operators on E , such that id(D)= D and b(D)= FD :=

D(1+D2)−1/2 (where b(x) = x(1+ x2)−1/2). In particular, if f ∈ C(R) is real-
valued, then f (D) is regular self-adjoint.

If the operators a(D± i)−1 are compact for some a ∈ End∗B(E), we note that
also ag(D) is compact for any g ∈ C0(R) (since the functions x 7→ (x ± i)−1

generate C0(R)). In particular, if f ∈ C(R) is a real-valued function such that
limx→±∞| f (x)| =∞, then a( f (D)± i)−1 and a(1+ f (D)2)−1/2 are compact.

For completeness, we will show that the continuous functional calculus is com-
patible with Z2-gradings.

Lemma 1.14. Let D be an odd regular self-adjoint operator on a Z2-graded Hilbert
B-module E. If f ∈ C(R) is an odd real-valued function, then the regular self-
adjoint operator f (D) is also odd.
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Proof. Let 0 denote the Z2-grading operator on E , and let us grade C0(R) by even
and odd functions. As in the proof of [Higson and Roe 2000, Lemma 10.6.2], the
identity

0(i ±D)−1
= (i ∓D)−10

shows that 0 graded-commutes with (i±D)−1 and hence with any element in C0(R).
The linear subspace E := {g(D)ψ : g ∈ Cc(R), ψ ∈ E} is a core for f (D) [Lance
1995, Lemma 10.8]. Each g ∈Cc(R) is the sum of an even function g0 ∈Cc(R) and
an odd function g1 ∈ Cc(R). Then we have 0E⊂ E. Moreover, since f g0 ∈ Cc(R)

is odd and f g1 ∈ Cc(R) is even, we find that

0 f (D)g(D)=− f (D)g0(D)0+ f (D)g1(D)0 =− f (D)0g(D).

Thus, [ f (D), 0]+ = 0 on the core E, and it follows that in fact 0 preserves
Dom f (D) and f (D) anticommutes with 0. �

Lemma 1.15. Let X be a locally compact Hausdorff space and Y ⊂ X an open
subset. Let {Dy}y∈Y be a family of regular self-adjoint operators on a Hilbert B-
module E , and assume there exists a dense submodule E⊂ E which is a core for Dy

for each y ∈ Y , such that for each ψ ∈ E the map Y → E , y 7→ Dyψ is continuous.
Then the operator D̃ on the Hilbert C0(X, B)-module C0(Y, E) defined by

Dom D̃ := {ψ ∈ C0(Y, E) : ψ(y) ∈ Dom Dy, D̃ψ ∈ C0(Y, E)},

(D̃ψ)(y) := Dyψ(y)

is regular and self-adjoint.

Proof. Consider the algebraic tensor product Ẽ := Cc(Y )⊗E. Since y 7→ Dyψ is
continuous for each ψ ∈ E, we note that Ẽ⊂Dom D̃. In particular, since Ẽ is dense
in C0(Y, E), we know that D̃ is densely defined. Moreover, since Dy is closed on
Dom Dy , it follows that also D̃ is closed on Dom D̃. By assumption, the operators
Dy ± i : E→ E have dense range in E for all y ∈ Y . Since C0(Y, E) ⊗̂evx B = {0}
for x /∈ Y , it follows from Corollary A.3 that the operators D̃± i : Ẽ→ C0(Y, E)
have dense range in C0(Y, E), and therefore D̃ is regular and self-adjoint. �

Remark 1.16. We will apply the above lemma to construct operator-homotopies
over X = [0, 1], and the two main cases of interest are Y = X or Y = (0, 1].

2. The unbounded homotopy relation

2A. The homotopy semigroup. For any t ∈ [0, 1], we have the surjective ∗-homo-
morphism evt : C([0, 1], B)→ B given by evt(b) := b(t). Given an unbounded
A-C([0, 1], B)-cycle (π, E,D), we then define

evt(π, E,D)= (πt , Et ,Dt) := (π ⊗̂ 1, E ⊗̂evt B,D ⊗̂ 1).
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Definition 2.1. Consider unbounded A-B-cycles (π0, E0,D0) and (π1, E1,D1).
We introduce the following notions:

• Unitary equivalence. (π0, E0,D0) and (π1, E1,D1) are called unitarily equiv-
alent (denoted (π0, E0,D0) ' (π1, E1,D1)) if there exists an even unitary
U : E0→ E1 such that UD0 = D1U and Uπ0(a)= π1(a)U for all a ∈ A.

• Homotopy. A homotopy between (π0, E0,D0) and (π1, E1,D1) is given
by an unbounded A-C([0, 1], B)-cycle (π̃, Ẽ, D̃) such that ev j (π̃, Ẽ, D̃) '

(π j , E j ,D j ) for j = 0, 1.

• Operator-homotopy. A homotopy (π̃, Ẽ, D̃) is called an operator-homotopy
if there exists a Hilbert B-module E with a representation π : A→ End∗B(E)
such that Ẽ equals the Hilbert C([0, 1], B)-module C([0, 1], E) with the nat-
ural representation π̃ of A on C([0, 1], E) induced from π .

We denote by ∼oh the equivalence relation on 91(A, B) generated by operator-
homotopies and unitary equivalences. The homotopy relation is denoted ∼h .

Remark 2.2. If (π, E,D) is an unbounded A-B-cycle such that π(A)⊂ End0
B(E)

(i.e., A is represented as compact operators), then (π, E,D) is operator-homotopic
to (π, E, 0), via the operator-homotopy given by Dt = tD for t ∈ [0, 1] (see also
Remark 1.2(2)).

We note that it was shown in [Kaad 2019, Proposition 4.6] that the homotopy
relation is an equivalence relation on unbounded Kasparov modules. We will show
next that the proof extends to our more general notion of unbounded cycles from
Definition 1.1, and for this purpose we recall some notation from [Kaad 2019, §4].
Consider two unbounded A-C([0, 1], B)-cycles (π, E,D) and (π ′, E ′,D′), and a
unitary isomorphism U : E ⊗̂ev1 B→ E ′ ⊗̂ev0 B satisfying

U (π(a) ⊗̂ev1 1)U∗ = π ′(a) ⊗̂ev0 1, U (D ⊗̂ev1 1)U∗ = D′ ⊗̂ev0 1,

for any a ∈ A. For t ∈ [0, 1] we consider the localizations Et := E ⊗̂evt B, and for
e∈ E we write et := e⊗̂evt 1∈ Et (as in the Appendix). We define the concatenation

E ×U E ′ := {(e, e′) ∈ E ⊕ E ′ :Ue1 = e′0}.

The space E ×U E ′ is endowed with the right action of C([0, 1], B) and the inner
product described in [Kaad 2019, §4]. We note that π ⊕π ′ and D⊕D′ are well-
defined on E×U E ′, and that D⊕D′ is a regular self-adjoint operator (see the proof
of [Kaad 2019, Proposition 4.6]). For two linear subspaces W ⊂ EndC([0,1],B)(E)
and W ′ ⊂ EndC([0,1],B)(E ′), we write

W ×U W ′ := {(w,w′) ∈W ⊕W ′ :U (w ⊗̂ev1 1)U∗ = w′ ⊗̂ev0 1}.
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We note that we have the inclusion Lip(D)×U Lip(D′) ⊂ Lip(D⊕D′). In fact,
using [Kaad 2019, Lemma 4.5], we obtain

Lip0(D)×U Lip0(D′)⊂ Lip0(D⊕D′).

Proposition 2.3 (cf. [Kaad 2019, Proposition 4.6]). The homotopy relation on un-
bounded A-B-cycles is an equivalence relation.

Proof. Reflexivity and symmetry are proven exactly as in [Kaad 2019, Proposition
4.6]. For transitivity, we need to show that the concatenation of two unbounded
A-C([0, 1], B)-cycles is again an unbounded A-C([0, 1], B)-cycle.

We will first show that we may assume (without loss of generality) that any
unbounded A-C([0, 1], B)-cycle (π, E,D) is “constant near the endpoints”. We
define

Ẽ := C([0, 1], E0)×Id E, π̃(a) := π0(a)⊕π(a), D̃ := D0⊕D.

Here π0(a) and D0 denote the obvious extension to C([0, 1], E0) of the operators
π(a) ⊗̂ev0 1 and D ⊗̂ev0 1 on E0, respectively. Now consider ε > 0 and a ∈ A. Pick
S ∈ Lip0(D) such that ‖π(a)− S‖< ε. Then we also have ‖π0(a)− S0‖< ε and
therefore ‖π̃(a)− S0⊕ S‖< ε. This proves that we have the inclusions

π̃(A)⊂ Lip0(D0)×Id Lip0(D)⊂ Lip0(D̃),

so (π̃, Ẽ, D̃) is an unbounded A-C([0, 1], B)-cycle which is constant on [0, 1
2 ].

Now suppose we have two unbounded A-C([0, 1], B)-cycles (π, E,D) and
(π ′, E ′,D′), and a unitary isomorphism U : E ⊗̂ev1 B→ E ′ ⊗̂ev0 B satisfying

U (π(a) ⊗̂ev1 1)U∗ = π ′(a) ⊗̂ev0 1, U (D ⊗̂ev1 1)U∗ = D′ ⊗̂ev0 1,

for any a ∈ A. As described above, we may assume (without loss of generality)
that (π ′, E ′,D′) is constant on [0, 1

2 ]. We define

E ′′ := E ×U E ′, π ′′(a) := π(a)⊕π ′(a), D′′ := D⊕D′.

Now consider ε > 0 and a ∈ A. Pick S ∈ Lip0(D) such that ‖π(a)− S‖< ε. Then
in particular we have

‖π ′0(a)−U S1U∗‖ = ‖π1(a)− S1‖< ε.

Pick a function χ ∈ C∞([0, 1]) such that 0≤ χ ≤ 1, χ(0)= 1, and χ(t)= 0 for all
1
2 ≤ t ≤ 1. Since E ′ is constant on [0, 1

2 ], we note that χU S1U∗ is a well-defined ad-
jointable operator on E ′, which in fact lies in Lip0(D′). If we also pick R′ ∈ Lip0(D′)

such that ‖π ′(a)− R′‖ < ε, then we obtain T ′′ := S⊕ (χU S1U∗+ (1−χ)R′) ∈
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Lip0(D)×U Lip0(D′) and we have the estimate

‖π ′′(a)− T ′′‖ ≤max{‖π(a)− S‖, ‖π ′(a)−χU S1U∗+ (1−χ)R′‖}
≤max

{
‖π(a)− S‖, sup

t∈[0,1]
(χ(t)‖π ′0(a)−U S1U∗‖+ (1−χ(t))‖π ′t (a)− R′‖)

}
< ε.

This proves that we have the inclusions

π ′′(A)⊂ Lip0(D)×U Lip0(D′)⊂ Lip0(D′′),

and we conclude that (π ′′, E ′′,D′′) is again an unbounded A-C([0, 1], B)-cycle. �

Definition 2.4. We define UKK(A, B) as the set of homotopy equivalence classes
of unbounded A-B-cycles.

We recall from Lemma 1.4 that the direct sum of two unbounded cycles is well-
defined. Since the direct sum is also compatible with homotopies, we obtain a
well-defined addition on UKK(A, B) induced by the direct sum. Moreover, this
addition is associative and commutative (since homotopy equivalence is weaker
than unitary equivalence). Hence, UKK(A, B) is an abelian semigroup, with the
zero element given by the class of the zero cycle (0, 0).

2B. Functional dampening. The goal of this subsection is to show that, up to
operator-homotopy, we can replace an unbounded cycle (E,D) by (E, f (D)) for
suitable functions f which blow up towards infinity at a sublinear rate. One can
think of f (D) as a “dampened” version of D, and we refer to the transformation
D 7→ f (D) as “functional dampening”. Our proof is partly inspired by the proof
of [Kaad 2019, Proposition 5.1], where the special case f (x) := x(1+ x2)−r (with
r ∈ (0, 1

2)) is considered.

Definition 2.5. A dampening function is an odd continuous function f : R→ R

such that
lim

x→∞
f (x)=∞, lim

x→∞
f (x)(1+ x2)−1/2

= 0.

Proposition 2.6. Consider an unbounded A-B-cycle (E,D) and a dampening
function f . Assume that there exists a self-adjoint subset W ⊂Lip0(D)∩Lip( f (D))
such that π(A)⊂W . Then (E, f (D)) is an unbounded A-B-cycle which is operator-
homotopic to (E,D).

Proof. By Lemma 1.14, f (D) is an odd regular self-adjoint operator on E . Since
the function x 7→ (1+ f (x)2)−1/2 lies in C0(R), we find that

Lip0(D)∩Lip( f (D))⊂ Lip0( f (D)).

Hence (E, f (D)) is indeed an unbounded A-B-cycle. To see that it is operator-
homotopic to (E,D), consider the functions g(x) := (1+ x2)−1/2(1+ | f (x)|) and
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h(x) := xg(x). Then g ∈ C0(R) and since f − h ∈ Cb(R), we see that h(D) is
a bounded perturbation of f (D) (in particular, (E, h(D)) is operator-homotopic
to (E, f (D))).

It remains to show that (E, h(D)) is operator-homotopic to (E,D). We consider
the operator-homotopy given for t ∈ [0, 1] by

Dt := Dgt(D), gt(x) := ((1− t)1/2+ g(x))t .

We note that g0(x)= 1 and g1(x)= g(x). Since g(x) is bounded from below by
a positive constant for |x |< r , we see that the map [0, 1] 3 t 7→ gt( · ) ∈ Cb(R) is
uniformly continuous on compact subsets of R, and therefore t 7→ gt(D) is strongly
continuous (see, e.g., [Kaad and Lesch 2012, Lemma 7.2]). Consequently, t 7→ Dt

is strongly continuous on Dom D. Furthermore, for each t ∈ [0, 1], Dom D is a
core for Dt , so from Lemma 1.15 we obtain a regular self-adjoint operator D̃ on
C([0, 1], E).

Consider a self-adjoint element w ∈W . Let us fix 0< t < 1 and write

Qt(D) := (1− t)1/2+ g(D),

so that gt(D) = Qt(D)
t . We note that Qt(D) ∈ Lip(D) and [D, Qt(D)] = 0, and

we find that

D[Qt(D), w] = D[g(D), w] = [h(D), w] − [D, w]g(D)

is bounded. Consider the integral formula (see the proof of [Pedersen 1979, Propo-
sition 1.3.8])

Qt(D)
t
=

sin(π t)
π

∫
∞

0
λ−t(1+ λQt(D))

−1 Qt(D) dλ. (2.7)

Since Qt(D) is bounded below by (1− t)1/2, we know that Qt(D) is invertible,
and that

‖(1+ λQt(D))
−1
‖ ≤ (1− t)−1/2λ−1. (2.8)

In particular, (1+ λQt(D))
−1 is of order O(λ−1) as λ→∞. Using that Dom D is

a core for Qt(D) and D commutes with Qt(D), we then compute

[(1+ λQt(D))
−1 Qt(D), w]D= (1+ λQt(D))

−1
[Qt(D), w]D

− λ(1+ λQt(D))
−1
[Qt(D), w]D(1+ λQt(D))

−1 Qt(D),

and we see that ‖[(1+ λQt(D))
−1 Qt(D), w]D‖ is finite and of order O(λ0) for

λ→ 0, and of order O(λ−1) as λ→∞. By applying the above integral formula,
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we obtain that

St := [gt(D), w]D= [Qt(D)
t , w]D

=
sin(π t)
π

∫
∞

0
λ−t
[(1+ λQt(D))

−1 Qt(D), w]D dλ

is a norm-convergent integral. It follows that St is a bounded operator. To show
that St is in fact uniformly bounded in t , let us split the integral in two parts. First,
since ‖(1+ λQt(D))

−1
‖ ≤ 1, we have∥∥∥∥sin(π t)

π

∫ 1

0
λ−t
[(1+ λQt(D))

−1 Qt(D), w]D dλ
∥∥∥∥

≤
sin(π t)
π
‖[g(D), w]D‖(1+‖Qt(D)‖)

∫ 1

0
λ−t dλ

≤
sin(π t)
π
‖[g(D), w]D‖(2+‖g(D)‖)(1− t)−1.

Second, using (2.8) we estimate∥∥∥∥sin(π t)
π

∫
∞

1
λ−t
[(1+ λQt(D))

−1 Qt(D), w]D dλ
∥∥∥∥

≤
sin(π t)
π
‖[g(D), w]D‖((1− t)−1/2

+ (1− t)−1
‖Qt(D)‖)

∫
∞

1
λ−t−1 dλ

≤
sin(π t)
π
‖[g(D), w]D‖(2(1− t)−1/2

+ (1− t)−1
‖g(D)‖)t−1.

Using that sin(π t)= O(t) as t→ 0 and sin(π t)= O(1− t) as t→ 1, we see that
both integrals are uniformly bounded in t . Thus, St is uniformly bounded. It then
suffices to check strict continuity on the dense submodule Dom D. Since gt(D) is
strongly continuous, we see that St is strongly continuous on Dom D. Furthermore,
rewriting

D[gt(D), w] = [Dgt(D), w] − [D, w]gt(D)

= [gt(D), w]D+ gt(D)[D, w] − [D, w]gt(D),

we conclude that S∗t =−D[gt(D), w] is also strongly continuous on Dom D. Thus,
we have shown that the commutator

[Dt , w] = [D, w]gt(D)+D[gt(D), w]

is uniformly bounded and strictly continuous, and therefore [D̃, w] is bounded and
adjointable on C([0, 1], E).

Now consider the functions Rt ∈ C0(R) given by Rt(x) := (i ± xgt(x))−1. We
claim that t 7→ Rt is continuous with respect to the supremum-norm on C0(R). To
prove this claim, first observe that gt(x)≥ g(x)t ≥min(1, g(x)) for all x ∈ R and
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t ∈ [0, 1]. Hence, for each ε > 0 there exists r ∈ (0,∞) such that for all t ∈ [0, 1]
we have sup|x |>r |Rt(x)| ≤ ε. Then for t, s ∈ [0, 1] we can estimate

‖Rt − Rs‖ ≤ 2ε+ sup
|x |<r
‖Rt(x)− Rs(x)‖ ≤ 2ε+ sup

|x |<r
‖xgt(x)− xgs(x)‖

≤ 2ε+ r sup
|x |<r
‖gt(x)− gs(x)‖.

Since gt(x) is uniformly continuous for |x | < r , we see that t 7→ Rt is norm-
continuous. Consequently, we conclude that t 7→ (i ±Dt)

−1 is a norm-continuous
map such that w(i ± Dt)

−1 is compact for each w ∈ W and t ∈ [0, 1]. Hence,
w(D̃± i)−1 is compact on C([0, 1], E). This completes the proof that Dt yields
an operator-homotopy (C([0, 1], E), D̃). �

Remark 2.9. A higher order unbounded Kasparov module is a pair (E,D) such
that there exist 0< ε < 1 and a dense ∗-subalgebra A⊂ A for which the operators
[D, a](1+D2)−(1−ε)/2 (for a ∈A) extend to bounded operators. The class of higher
order Kasparov modules contains all ordinary unbounded Kasparov modules. In
[Goffeng et al. 2019, Theorem 1.37] it was shown that the C1-function

sgnlog(x) := sgn(x) log(1+ |x |)

can be used to turn a higher order unbounded Kasparov module into an ordinary
unbounded Kasparov module. In fact, the proof of [Goffeng et al. 2019, Theorem
1.37] shows that for any unbounded cycle (E,D) (as in Definition 1.1) we have
the inclusion Lip(D)⊂ Lip(sgnlog(D)). It then follows from Proposition 2.6 that
any unbounded cycle (E,D) is operator-homotopic to (E, sgnlog(D)).

Using the natural notion of homotopy for higher order modules, one can ask
whether the transformation (E,D) 7→ (E, sgnlog(D)) can be implemented as an
operator-homotopy within the class of higher order unbounded Kasparov modules,
so that every higher order module would be operator-homotopic to an ordinary
unbounded Kasparov module. It is not immediately clear if this is indeed the case.

2C. From bounded to unbounded homotopies. Recall the ∗-homomorphism evt :

C([0, 1], B)→ B given by b 7→ b(t). For a Hilbert C([0, 1], B)-module E we
write Et := E ⊗̂evt B for the localization of E at t ∈ [0, 1]. Moreover, for any
h ∈ End∗B(E), we consider the localization ht := h ⊗̂ 1 on Et . We describe some
basic facts regarding these localizations in the Appendix.

Now consider two unbounded A-B-cycles (E0,D0) and (E1,D1), and assume
that their bounded transforms are homotopic. Thus, there exists a homotopy (E, F)
between (E0, FD0) and (E1, FD1), where E is a module over C([0, 1], B). For
simplicity, let us assume that ev j (E, F) is equal to (E, FD j ) (i.e., there is no unitary
equivalence involved). We are ready to derive our main technical result.
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Proposition 2.10. Suppose A is separable, and B σ -unital. Consider two un-
bounded A-B-cycles (E0,D0) and (E1,D1), and let (E, F) be a homotopy be-
tween (E0, FD0) and (E1, FD1), satisfying F = F∗ and F2

≤ 1. Let W j ⊂ Lip0(D j )

be countable subsets consisting of products of elements in Lip0(D j ), such that A ⊂
W j (for j = 0, 1). Then there exists a positive operator l ∈ JF ⊂ End∗C([0,1],B)(E)
with dense range in E such that

(1) the (closure of the) operator S := 1
2(Fl−1

+ l−1 F) makes (E,S) into an
unbounded A-C([0, 1], B)-cycle, and

(2) writing l j := ev j (l) and S j := ev j (S) (for j = 0, 1), we have

l j ∈ C∗((1+D2
j )
−1), S j = FD j l

−1
j , W j ⊂ Lip(l−1

j )∩Lip(S j ),

and the operator l−1
j (1+D2

j )
−1/4 extends to an adjointable endomorphism.

Proof. Note that (1) can be obtained by an application of Proposition 1.12. In
order to achieve (2) simultaneously, we need to construct our lift more carefully.
Consider again the σ -unital C∗-algebra JF = End0

C([0,1],B)(E) + CF . Let k ∈
End0

C([0,1],B)(E) be an even strictly positive element and χ ∈ C([0, 1]) be given by
χ(t) := t (1− t). Then χk ∈ End0

C([0,1],B)(E) (see Lemma A.1), and we define

h := χk+ (1− F2) ∈ JF .

Consider the localizations

ht := evt(h)= χ(t)kt + (1− F2
t ).

For t ∈ (0, 1) we have that χ(t) > 0, and χ(t)kt has dense range in Et by Corollary
A.3. Since χ(t)kt ≤ ht , ht has dense range in Et by [Lance 1995, Corollary 10.2].
For t ∈ {0, 1}, we have ht = (1− F2

t )
1/2
= (1+D2

t )
−1/2, which has dense range as

well. Thus, applying Corollary A.3 again, we conclude that h has dense range in E .
Moreover, from Lemma 1.10 it follows that h is a strictly positive element in JF .

Let A := {ai }i∈N⊂ A be a countable dense subset of A, let {ci }i∈N be a countable
dense subset of C∗(h), and let {w j,i }i∈N be an enumeration of W j . We have the
inclusions AJF , JF A, F JF , JF F ⊂ JF (see Lemma 1.10). Since ev j (F)= FD j and
W j ⊂Lip0(D j ), we have for allw∈W j thatw(1− F2

D j
)=w(1+D2

j )
−1
∈End0

B(E j ).
Moreover, by assumption anyw∈W j is of the formw= T1T2 for T1, T2 ∈Lip0(D j ).
Since [FD j , T1]T2 is compact, as explained in the proof of Proposition 1.7, it fol-
lows that also [FD j , w] ∈ End0

B(E j ). It thus holds that

W j JFD j
, JFD j

W j , FD j JFD j
, JFD j

FD j ⊂ JFD j
.

Furthermore, since ev j : C([0, 1], B)→ B = End0
B(B) is a surjective ∗-homo-

morphism we have End0
B(E j )=End0

C([0,1],B)(E)⊗̂ev j 1 and hence JFD j
= JF ⊗̂ev j 1.
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Therefore, any approximate unit un ∈ JF gives an approximate unit ev j (un) for
JFD j

. The C∗-subalgebra C∗(h) ⊂ JF thus contains a commutative approximate
unit un for JF which is quasicentral for A and F , and such that for j ∈ {0, 1},
ev j (un) is quasicentral for W j [Akemann and Pedersen 1977, Theorem 3.2].

By fixing a choice of 0< ε < 1 and selecting a suitable subsequence of un , we
can achieve that, for each n ∈ N, dn := un+1− un satisfies properties (a)–(e) of the
proof of Proposition 1.12 as well as

(c′) ‖ev j (dn)[ev j (F), w j,i ]‖ ≤ ε
2n for all i ≤ n and for j = 0, 1, and

(d′) ‖[ev j (dn), w j,i ]‖ ≤ ε
2n for all i ≤ n and for j = 0, 1.

As in Proposition 1.12, property (c′) follows because ev j (un) is an approximate
unit for JFD j

and (d′) follows because ev j (un) is quasicentral for W j . Thus, as in
Proposition 1.12, we can construct a strictly positive element l ∈ JF , such that the
(closure of the) operator

S := 1
2(Fl−1

+ l−1 F)

is a densely defined and regular self-adjoint operator on E , and (E,S) is an un-
bounded Kasparov A-C([0, 1], B)-module for which we have A⊂ Lip0(S). This
proves (1).

For (2), we first note that l j ∈ C∗(h j ) and h j = (1+D2
j )
−1 for j = 0, 1. In

particular, l j commutes with FD j and S j = FD j l
−1
j . Properties (c′) and (d′) ensure

that [S j , w] and [l−1
j , w] are bounded for all w ∈W j ( j = 0, 1). Furthermore, from

property (b) it follows that l−1(1− F2)1/4 is everywhere defined and bounded, and
localizing in j = 0, 1 then shows that l−1

j (1+D2
j )
−1/4 is bounded. �

Theorem 2.11. Suppose A is separable, and B σ -unital. Consider two unbounded
A-B-cycles (π0, E0,D0) and (π1, E1,D1). Any homotopy (π, E, F) between (π0,

E0, FD0) and (π1, E1, FD1) can be lifted to an unbounded A-C([0, 1], B)-cycle
(π, E,S) such that, for j = 0, 1,

• the endpoints ev j (π, E,S) are unitarily equivalent to (π j , E j , f j (D j )) for
dampening functions f j : R→ R, and

• there exist countable self-adjoint subsets W j ⊂ Lip0(D j )∩Lip( f j (D j )) such
that π j (A)⊂W j .

Moreover, if (π, E, F) is an operator-homotopy, then (π, E,S) is an operator-
homotopy.

Proof. We may assume (without loss of generality) that F = F∗ and F2
≤ 1

[Blackadar 1998, Proposition 17.4.3]. For j = 0, 1, we have unitary equivalences
U j : ev j (E)→ E j such that ev j (F)=U∗j FD j U j . Then D j on E j is unitarily equiv-
alent to U∗j D jU j on ev j (E). To simplify notation, we will from here on ignore
this unitary equivalence and simply assume that ev j (E, F) is equal to (E j , FD j ).
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We know by Lemma 1.6 that, for j = 0, 1, there exist countable self-adjoint
subsets W j ⊂ Lip0(D j ) consisting of products of elements in Lip0(D j ), such that
π j (A) ⊂ W j . From Proposition 2.10, we obtain an unbounded A-C([0, 1], B)-
cycle (E,S := 1

2(Fl−1
+l−1 F)), which provides a homotopy between (E0,S0) and

(E1,S1), where S j := ev j (S). By property (2) of Proposition 2.10, we know that
l j ∈C∗((1+D2

j )
−1), S j = FD j l

−1
j , W j ⊂ Lip(l−1

j )∩Lip(S j ), and l−1
j (1+D2

j )
−1/4

is bounded. It follows that we can write S j = f j (D j ) for some dampening function
f j , which proves the first statement. Furthermore, if we have in fact an operator-
homotopy (E, F), then it is clear that the lift (E,S) obtained from Proposition 2.10
is also an operator-homotopy. �

2D. The isomorphism with KK-theory. Using the results from the previous sec-
tions, we can now prove that our semigroup UKK(A, B) is isomorphic to Kas-
parov’s KK-group.

Theorem 2.12. Suppose A is separable, and B σ -unital. The bounded transform
induces a semigroup isomorphism UKK(A, B)→ KK(A, B), given by [(E,D)] 7→

[(E, FD)].

Proof. If there exists a homotopy (E,D) between unbounded A-B-cycles (E0,D0)

and (E1,D1), then (E, FD) provides a homotopy between (E0, FD0) and (E1, FD1).
Moreover, the bounded transform is compatible with direct sums, so it induces
a well-defined semigroup homomorphism. Furthermore, this homomorphism is
surjective by Theorem 1.13, so it remains to prove that it is also injective.

Consider two unbounded A-B-cycles (E0,D0) and (E1,D1), with [(E0, FD0)] =

[(E1, FD1)]. Then there exists a homotopy (E, F) between (E0, FD0) and (E1, FD1).
From Theorem 2.11 we obtain an unbounded A-C([0, 1], B)-cycle (E,S) such
that, for j = 0, 1, the endpoints ev j (E,S) are unitarily equivalent to (E j , f j (D j ))

for dampening functions f j : R→ R, and there exist self-adjoint subsets W j ⊂

Lip0(D j )∩Lip( f j (D j )) such that π j (A)⊂W j . It then follows from Proposition 2.6
that D j is operator-homotopic to S j . Thus, we have the composition of homotopies

D0 ∼oh S0 ∼h S1 ∼oh D1,

which proves that [(E0,D0)] = [(E1,D1)]. �

Remark 2.13. A priori, UKK(A, B) is a semigroup, and the isomorphism

UKK(A, B)→ KK(A, B)

is an isomorphism of semigroups. Since KK(A, B) is a group, it of course fol-
lows that UKK(A, B) is also a group. However, the isomorphism UKK(A, B)→
KK(A, B) requires the assumption that A is separable. In Theorem 4.16 we will
give a direct proof that UKK(A, B) is a group, which avoids the bounded transform
and therefore also works for nonseparable (σ -unital) C∗-algebras.
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For any dense ∗-subalgebra A ⊂ A, we define 91(A, B) as the set of those
(π, E,D) ∈ 91(A, B) for which π(A) ⊂ Lip0(D), and we define UKK(A, B) as
the homotopy equivalence classes of elements in 91(A, B) (where it is understood
that the homotopies are given by elements in 91(A,C([0, 1], B))). The natural in-
clusion 91(A, B) ↪→91(A, B) induces a well-defined semigroup homomorphism
UKK(A, B)→ UKK(A, B). We say that A is countably generated if A contains
a countable subset that generates it as a ∗-algebra over C. We emphasize that this
does not involve taking closures of any kind. While, as we explained in Remark 1.5,
it is not necessary to fix a countably generated dense ∗-subalgebra A⊂ A, we will
show next that it is nevertheless possible to define unbounded KK-theory using any
such fixed choice for A⊂ A.

Proposition 2.14. Suppose A is separable, and B σ -unital. For any countably
generated dense ∗-subalgebra A⊂ A, the map UKK(A, B)→ UKK(A, B) is an
isomorphism.

Proof. We have the following commuting diagram:

UKK(A, B) //

&&

UKK(A, B)

xx

KK(A, B)

We know from Theorem 2.12 that the map UKK(A, B)→ KK(A, B) is an iso-
morphism. Thus, we need to show that also UKK(A, B)→ KK(A, B) is an iso-
morphism. The assumption that A is separable ensures that the bounded transform
UKK(A, B)→ KK(A, B) is surjective (see Theorem 1.13). Moreover, the proofs
of Theorems 2.11 and 2.12 with the special choice W j = π j (A) show that the
bounded transform is also injective. �

3. Degenerate cycles

In this section, we will consider two notions of degenerate cycles in unbounded
KK-theory, namely “algebraically degenerate” and “spectrally degenerate” cycles.
Our aim is to prove the following:

• any degenerate cycle is null-homotopic, i.e., homotopic to the zero cycle (0, 0),
and

• any homotopy can be implemented as an operator-homotopy modulo addition
of degenerate cycles.

3A. Algebraically degenerate cycles.
Definition 3.1. An unbounded A-B-cycle (π, E,D) is called algebraically degen-
erate if π = 0.
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By considering the obvious homotopy (C0((0, 1], E),D), we easily obtain:

Lemma 3.2. An algebraically degenerate unbounded A-B-cycle (E,D) is null-
homotopic.

As an application of the above lemma, we will show that two unbounded cy-
cles (π, E,D) and (π, E,D′) are homotopic if the difference D−D′ is “locally
bounded”.

Proposition 3.3. Let (π, E,D) and (π, E,D′) be unbounded A-B-cycles. Suppose
there exists a subset W ⊂ Lip0(D)∩Lip0(D′) with π(A) ⊂ W such that for each
w ∈ W , the operator (D−D′)w extends to a bounded operator. Then (π, E,D)

and (π, E,D′) are homotopic.

Proof. Consider the unbounded A-C([0, 1], B)-cycle (π,C([0, 1], E⊕E),D⊕D′)

with the representation given for t ∈ [0, 1] by πt(a) := (a⊕ a)Pt in terms of the
norm-continuous family of projections

Pt :=

(
cos2( 1

2π t) cos(1
2π t) sin(1

2π t)
cos(1

2π t) sin(1
2π t) sin2(1

2π t)

)
.

We note that P0 = 1⊕ 0 and P1 = 0⊕ 1. For homogeneous w ∈W we compute

[D⊕D′, (w⊕w)Pt ] =(
[D,w]cos2(1

2π t) (Dw−(−1)degwwD′)cos( 1
2π t)sin( 1

2π t)
(D′w−(−1)degwwD)cos( 1

2π t)sin( 1
2π t) [D′,w]sin2( 1

2π t)

)
.

We observe that Dw − (−1)degwwD′ = (D − D′)w + [D′, w] is bounded, and
similarly for D′w−(−1)degwwD. Hence, [D⊕D′, (w⊕w)Pt ] is uniformly bounded
and norm-continuous in t , and we obtain (w⊕w)P•⊂Lip(D⊕D′). Moreover, since
the resolvents of D⊕D′ are constant in t , we have in fact (w⊕w)P•⊂Lip0(D⊕D′).
Thus, we have

π•(A)⊂ {(w⊕w)P• : w ∈W } ⊂ Lip0(D⊕D′),

and we have a homotopy between (π⊕0, E⊕E,D⊕D′) and (0⊕π, E⊕E,D⊕D′).
Finally, since algebraically degenerate cycles are null-homotopic by Lemma 3.2,
we note that (π ⊕ 0, E ⊕ E,D⊕D′) is homotopic to (π, E,D), and that (0⊕π,
E ⊕ E,D⊕D′) is homotopic to (π, E,D′). �

Remark 3.4. The assumption that (D−D′)w is bounded for all w ∈ W is inter-
preted as saying that D− D′ is locally bounded. In the above proposition, we
have assumed that both (E,D) and (E,D′) are unbounded cycles. Under certain
conditions, it suffices to assume only that (E,D) is an unbounded cycle; using
local boundedness of D−D′ one can then prove that (E,D′) is also an unbounded
cycle. We refer to [van den Dungen 2018] for further details.
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3B. Spectrally degenerate cycles. We denote by sgn :R\{0}→ {±1} the function
sgn(x) := x

|x | . We say that a regular self-adjoint operator D : Dom D → E is
invertible if there exists D−1

∈ End∗B(E) that satisfies DD−1
= D−1D = 1. It

then follows that Dom D = Ran D−1
= Ran|D|−1 and Ran D = E . Thus, if D is

invertible, sgn(D) is well-defined and equal to D|D|−1.

Definition 3.5. An unbounded A-B-cycle (π, E,D) is called spectrally degener-
ate if D is invertible and there exists W ⊂ Lip0(D) such that π(A) ⊂ W and
[sgn(D), w] = 0 for all w ∈W .

Lemma 3.6. Let D : Dom D→ E be self-adjoint, regular, and invertible. If w ∈
End∗B(E) is such that w : Dom D→ Dom D and [sgn(D), w] = 0, then [D, w] is
bounded if and only if [|D|, w] is bounded.

Proof. This follows from the simple observation that sgn(D) is a self-adjoint unitary
and D= sgn(D)|D|. We have

[D, w] = sgn(D)[|D|, w], [|D|, w] = sgn(D)[D, w],

whence [D, w] is bounded if and only if [|D|, w] is bounded. �

We have already seen in Lemma 3.2 that any algebraically degenerate cycle is
null-homotopic. Here we shall prove that also any spectrally degenerate cycle (E,D)

is null-homotopic. The easiest way to prove this is by observing that the bounded
transform (E, FD) is operator-homotopic to the degenerate cycle (E, sgn(D)) (which
is null-homotopic), and then applying Theorem 2.11. However, we can only apply
Theorem 2.11 if A is separable. But with only a bit more effort, we can in fact
explicitly construct an unbounded homotopy between any spectrally degenerate
cycle and the zero module.

Proposition 3.7. Any spectrally degenerate unbounded A-B-cycle (E,D) is null-
homotopic.

Proof. Consider for t ∈ (0, 1] the family of regular self-adjoint operators

Dt := t−1 sgn(D)|D|t .

Since t 7→ |D|t−1 is norm-continuous and |D|t = |D|t−1
|D|, we see that |D|t

is strongly continuous on Dom D. Since Dom D is a core for Dt for each t ∈
(0, 1], we obtain from Lemma 1.15 a regular self-adjoint operator D̃ on the Hilbert
C([0, 1], B)-module Ẽ := C0((0, 1], E). We claim that (Ẽ, D̃) is an unbounded
cycle, and therefore it provides a homotopy between ev1(Ẽ, D̃) = (E,D) and
ev0(Ẽ, D̃)= (0, 0).

To prove the claim, choose W ⊂Lip0(D) such that π(A)⊂W and [sgn(D), w]=
0 for all w ∈W . First consider the resolvents of Dt . We compute

(Dt ± i)−1
=∓i t sgn(D)|D|−t(t sgn(D)|D|−t

∓ i)−1. (3.8)
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Since D is invertible, the operators w|D|−t are compact for 0 < t ≤ 1 and for
w ∈W , and hence so are w(Dt ± i)−1. Moreover, t 7→ |D|−t is norm-continuous
on (0, 1], and therefore t 7→ t sgn(D)|D|−t is norm-continuous on (0, 1]. But then
the composition with x 7→ x(x ± i)−1 gives again a continuous function, and we
see from (3.8) that t 7→ (Dt ± i)−1 is norm-continuous on (0, 1]. Furthermore,
since |D|−t is uniformly bounded and t sgn(D)|D|−t is self-adjoint, it also follows
from (3.8) that

lim
t↘0
‖(Dt ± i)−1

‖ = lim
t↘0

t‖sgn(D)|D|−t(t sgn(D)|D|−t
∓ i)−1

‖ = 0,

so we also obtain continuity at 0. Hence, w(D̃± i)−1 is compact on Ẽ .
Next, we consider the commutator [Dt , w] = t−1 sgn(D)[|D|t , w] for some self-

adjoint w ∈ W . We have seen above that |D|t is strongly continuous on Dom D,
and hence also [Dt , w] is strongly continuous on Dom D. To show that [Dt , w] is
strongly continuous everywhere, it then suffices to show that [Dt , w] is uniformly
bounded. For this purpose, we consider the operator inequality

±i[|D|−1, w] = ∓i |D|−1
[|D|, w]|D|−1

≤ ‖[|D|, w]‖|D|−2,

where [|D|, w] is bounded by Lemma 3.6. Applying [Kucerovsky 2000, Proposi-
tion 2.11] to the function f (x) := x t , we then find that

±i[|D|−t , w] = ±i[ f (|D|−1), w] ≤ f ′(|D|−1)‖[|D|, w]‖|D|−2

= t |D|1−t
‖[|D|, w]‖|D|−2

= t‖[|D|, w]‖|D|−1−t .

For any ψ ∈ Dom D, we therefore have

〈ψ |±i[|D|t , w]ψ〉=〈ψ |∓i |D|t [|D|−t , w]|D|tψ〉=〈|D|tψ |∓i[|D|−t , w]|D|tψ〉

≤〈|D|tψ | t‖[|D|, w]‖|D|−1ψ〉=〈ψ | t‖[|D|, w]‖|D|t−1ψ〉.

Since both ‖[|D|, w]‖ |D|t−1 and [|D|t , w] are bounded for t ∈ [0, 1] (for the latter,
see for instance [Gracia-Bondía et al. 2001, Lemma 10.17]), we have the norm-
inequality

‖[|D|t ,w]‖=‖±i[|D|t ,w]‖≤ t‖[|D|,w]‖‖|D|t−1
‖≤ t‖[|D|,w]‖max{1,‖|D|−1

‖}.

We finally obtain

‖[Dt , w]‖ ≤ t−1
‖sgn(D)‖‖[|D|t , w]‖ ≤ ‖[|D|, w]‖max{1, ‖|D|−1

‖}.

Hence, [Dt , w] is uniformly bounded and strongly continuous as a function of
t ∈ (0, 1], and therefore the commutator [D̃, w] is bounded on Ẽ . Thus, we have
shown that W ⊂ Lip0(D̃) and therefore π̃(A)⊂W ⊂ Lip0(D̃). �
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3C. Operator-homotopies modulo degenerate cycles. In bounded KK-theory, it
was shown by Kasparov that any homotopy can be implemented as an operator-
homotopy modulo addition of degenerate modules [Kasparov 1980, §6, Theo-
rem 1]. Using this result, we will prove that a similar statement holds in unbounded
KK-theory.

Let ∼oh+d denote the equivalence relation on 91(A, B) given by operator-homo-
topies, unitary equivalences, and addition of spectrally degenerate and algebraically
degenerate cycles. We already know from Lemma 3.2 and Proposition 3.7 that
degenerate cycles are null-homotopic, so ∼oh+d is stronger than ∼h . We will prove
here that in fact these two relations coincide.

Lemma 3.9. Suppose A is separable, and B σ -unital. Let (E, F) be a (bounded)
Kasparov A-B-module, such that F = F∗, F2

= 1, and [F, a] = 0 for all a ∈ A
(in particular, (E, F) is degenerate). Let D := Fl−1 be a lift of F , where l is a
positive element in JF with dense range in E obtained from Proposition 1.12. Then
the unbounded A-B-cycle (E,D) is spectrally degenerate.

Proof. Since F2
= 1 and [F, l]= 0, we have that D is invertible and that sgn(D)= F

(graded) commutes with the algebra A. Thus, (E,D) is spectrally degenerate. �

Theorem 3.10. Suppose A is separable, and B σ -unital. Then the homotopy equiv-
alence relation ∼h on 91(A, B) coincides with the equivalence relation ∼oh+d .

Proof. We need to prove that the relation ∼oh+d is weaker than ∼h . To this end let
(E0,D0) and (E1,D1) be unbounded A-B-cycles which are homotopic. We then
know that the bounded transforms (π0, E0, FD0) and (π1, E1, FD1) are also homo-
topic. By [Kasparov 1980, §6, Theorem 1], there exist degenerate bounded Kas-
parov modules (π ′0, E ′0, F ′0) and (π ′1, E ′1, F ′1) such that (π0⊕π

′

0, E0⊕E ′0, FD0⊕F ′0)
is operator-homotopic to (π1⊕π

′

1, E1⊕ E ′1, FD1⊕ F ′1). Denote by E ′op
j the Hilbert

B-module E ′j equipped with the opposite Z2-grading. By adding the algebraically
degenerate module (0, E ′op

0 ,−F ′0)⊕ (0, E ′op
1 ,−F ′1), we obtain the top line in the

following diagram:

FD0 ⊕ F ′0⊕−F ′0⊕−F ′1
oh

oh

FD1 ⊕ F ′1⊕−F ′0⊕−F ′1

oh

FD0 ⊕ F̂ ′0⊕−F ′1

oh

FD1 ⊕ F̂ ′1⊕−F ′0

oh

FD0 ⊕ FD̂′0
⊕−FD′1

oh FD1 ⊕ FD̂′1
⊕−FD′0

(3.11)
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Since F ′j is degenerate, we know for all a∈ A that [F ′j , π
′

j (a)]=π
′

j (a)(1− (F
′

j )
2)=

0. As in [Blackadar 1998, §17.6], (π ′j ⊕ 0, E ′j ⊕ E ′op
j , F ′j ⊕ −F ′j ) is operator-

homotopic to the degenerate module

(π ′j ⊕ 0, E ′j ⊕ E ′op
j , F̂ ′j ), F̂ ′j :=

(
F ′j (1− (F ′j )

2)1/2

(1− (F ′j )
2)1/2 −F ′j

)
.

This yields the vertical operator-homotopies between the first two lines in (3.11).
By construction, (F̂ ′j )

2
= 1 and [F̂ ′j , π

′

j (a)] = 0. Hence, by Lemma 3.9 and
Proposition 1.12 we can lift F̂ ′j to spectrally degenerate unbounded cycles (π ′j ⊕ 0,
E ′j ⊕ E ′op

j , D̂′j ), such that F̂ ′j ∼oh FD̂′j
. Moreover, using again Proposition 1.12,

we can lift −F ′j to algebraically degenerate unbounded cycles (0, E ′op
j ,−D′j ) such

that −F ′j ∼oh −FD′j
. This yields the vertical operator-homotopies between the

last two lines in (3.11). Finally, by transitivity we obtain the horizontal operator-
homotopy on the bottom line, and by Theorem 2.11 this operator-homotopy lifts
to an unbounded operator-homotopy

D0⊕ D̂′0⊕−D′1
oh

D1⊕ D̂′1⊕−D′0.

Thus, we have shown that (E0,D0)∼oh+d (E1,D1). �

4. Symmetries and the group structure

In this section we discuss various notions of symmetries for unbounded cycles.
The presence of such symmetries induces homotopical triviality and can be used
to give a direct proof of the fact that the semigroup UKK(A, B) is a group for any
two σ -unital C∗-algebras.

4A. Lipschitz regularity. Let 0<α< 1 and fα ∈C0(R) be a function that behaves
like xα towards infinity. We will show here that we can use the functional damp-
ening of Proposition 2.6 to replace any unbounded cycle (E,D) by a Lipschitz
regular cycle (E, fα(D)).

Definition 4.1. An unbounded A-B-cycle (π, E,D) is called Lipschitz regular if
π(A)⊂ Lip0(D)∩Lip(|D|).

Remark 4.2. Since the map x 7→ |x | − (1 + x2)1/2 lies in C0(R), we have for
T ∈ End∗B(E) that [|D|, T ] is bounded if and only if [(1+D2)1/2, T ] is bounded,
and therefore Lip(|D|)= Lip((1+D2)1/2).

The following result generalizes [Kaad 2019, Proposition 5.1], where the spe-
cific function x 7→ x(1+ x2)(α−1)/2 was considered.

Proposition 4.3. Let (E,D) be an unbounded cycle, 0 < α < 1, and let fα :
R→ R be any odd continuous function such that limx→∞ fα(x)− xα exists. Then
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(E, fα(D)) defines a Lipschitz regular unbounded cycle that is operator homotopic
to (E,D).

Proof. We will show that Lip(D)⊂ Lip( fα(D))∩Lip(| fα(D)|), and the statement
then follows from Proposition 2.6. Given two such functions fα and gα, both
fα−gα and | fα|−|gα| lie in Cb(R). Thus, fα(D)−gα(D) and | fα(D)|−|gα(D)| are
bounded operators, and we see that Lip( fα(D))= Lip(gα(D)) and Lip(| fα(D)|)=
Lip(|gα(D)|). Hence, it suffices to prove the statement for fα(x) := x(1+x2)(α−1)/2.
Using for s ∈ (0, 1) the integral formula (which can be derived from (2.7) by
replacing Qt(D) by (1+D2)−1)

(1+D2)−s
=

sin(πs)
π

∫
∞

0
λ−s(1+ λ+D2)−1 dλ,

it is shown in the proof of [Kaad 2019, Proposition 5.1] that [(1+D2)(α−1)/2, T ]D
extends to a bounded operator for each T ∈ Lip(D). Hence, Lip(D)⊂ Lip( fα(D)).

To prove the Lipschitz regularity, we consider instead the function gα(x) :=
sgn(x)(1+ x2)α/2. Using again the above integral formula, one can show similarly
that

[|gα(D)|, T ] = [(1+D2)α/2, T ] = −(1+D2)α/2[(1+D2)−α/2, T ](1+D2)α/2

is indeed bounded for each T ∈ Lip(D), and therefore Lip(D)⊂ Lip(|gα(D)|). �

Remark 4.4. In addition to the two functions x 7→ x(1 + x2)(α−1)/2 and x 7→
sgn(x)(1+ x2)α/2 considered in the proof of Proposition 4.3, another typical exam-
ple of a function fα as in Proposition 4.3 is the function sgnmodα : R→ R given
by x 7→ sgn(x)|x |α . Note that if D is invertible, then sgnmodα(D)= sgn(D)|D|α =
D|D|α−1.

Remark 4.5. Recall from Remark 2.9 the function sgnlog(x) := sgn(x) log(1+|x |).
In [Goffeng et al. 2019, Theorem 1.16], it is proved that the transformation D 7→

sgnlog(D) turns Lipschitz regular twisted unbounded Kasparov modules into or-
dinary unbounded Kasparov modules. Incorporating this “untwisting” procedure
into the homotopy framework using Proposition 2.6 is of interest in the study of
twisted local index formulae. This is beyond the scope of the present paper.

4B. Spectral symmetries.

Definition 4.6. An unbounded A-B-cycle (E,D) is called

• spectrally symmetric if there exist an odd self-adjoint unitary S on E and a
W ⊂ Lip0(D) such that π(A)⊂ W , [S, w] = 0 for all w ∈ W , S : Dom D→

Dom D, DS− SD= 0, and SD is positive, and

• spectrally decomposable if there exists a spectral symmetry S such that both
(S± 1)D are positive.
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The definition of spectrally decomposable cycle is adapted from [Kaad 2019,
Definition 4.1] (where it is phrased in terms of the projection P = 1

2(1+ S)). By
definition, every spectrally decomposable cycle is also spectrally symmetric. More-
over, any spectrally degenerate cycle (E,D) is clearly spectrally decomposable
(hence spectrally symmetric) with spectral symmetry sgn(D).

Spectrally symmetric cycles are actually not much more general than spectrally
degenerate cycles. Indeed, the following lemma shows that any spectral symmetry
S more or less acts like sgn(D) (except that D may not be invertible, so there could
be some freedom in how S acts on Ker D).

Lemma 4.7. Let (E,D) be an unbounded A-B-cycle with spectral symmetry S.
Then D= S|D|, and (E,D) is Lipschitz regular.

Proof. On the Z2-graded module E = E+⊕ E− we can write

D=

(
0 D−

D+ 0

)
, S =

(
0 U∗

U 0

)
,

where U : E+→ E− is unitary. Since DS = SD, we see that UD− = D+U∗. We
then compute

D2
=

(
D−D+ 0

0 D+D−

)
=

(
U∗D+U∗D+ 0

0 UD−UD−

)
.

Since SD is positive, we know that U∗D+ and UD− are positive, and we obtain

|D| =

(
U∗D+ 0

0 UD−

)
= SD.

As in Lemma 3.6, it then follows that Lip(|D|)= Lip(D), so in particular (E,D)

is Lipschitz regular. �

Furthermore, the next proposition shows that any spectrally symmetric cycle is
in fact just a bounded perturbation of a spectrally degenerate cycle.

Proposition 4.8. Let (E,D) be an unbounded A-B-cycle with spectral symmetry S.
Then (E,D+ S) is a spectrally degenerate unbounded A-B-cycle.

Proof. Since S is bounded, self-adjoint, and odd, we know that (E,D + S) is
again an unbounded A-B-cycle. Furthermore, since (D+ S)2 = D2

+ 1+ 2SD is
positive and invertible, we know that also D+ S is invertible. Moreover, noting
that (D+ S)2= (1+ SD)2 and that 1+ SD is positive, we see that |D+ S| = 1+ SD.
Hence, we find that

sgn(D+ S)= (D+ S)|D+ S|−1
= S(SD+ 1)(1+ SD)−1

= S,

and we conclude that (E,D+ S) is degenerate. �
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In [Kaad 2019, Definition 4.8], the notion of spectrally decomposable module
was used to define the equivalence relation of “stable homotopy” for unbounded
Kasparov modules (i.e., homotopies modulo addition of spectrally decomposable
modules). Here, we point out that in fact any spectrally symmetric cycle (E,D) is
null-homotopic. If A is separable, this follows from Theorem 2.11 by observing
that, if S is a spectral symmetry of (E,D), then the bounded transform (E, FD)

is operator-homotopic to the degenerate cycle (E, S) (since [FD, S] = 2SFD is
positive [Blackadar 1998, Proposition 17.2.7]). In general, we simply combine
Propositions 4.8 and 3.7 to obtain:

Corollary 4.9. Any spectrally symmetric unbounded A-B-cycle is null-homotopic.
Consequently, the relation of stable homotopy equivalence of [Kaad 2019, Defini-
tion 4.8] coincides with the relation ∼h of homotopy equivalence.

In [Kaad 2019, Theorem 7.1] it was shown that, for any countable dense ∗-
subalgebra A⊂ A, the stable homotopy equivalence classes of elements in91(A, B)
form a group which is isomorphic to KK(A, B). In particular, this group is inde-
pendent of the choice of A. We emphasize here that Corollary 4.9, combined
with [Kaad 2019, Theorem 7.1], then gives a second independent proof of the
isomorphism UKK(A, B)' KK(A, B) from Theorem 2.12.

As a further application of Corollary 4.9, the following proposition (adapted
from the results of [Kaad 2019]) gives a criterion that ensures that two given un-
bounded cycles are homotopic.

Proposition 4.10 (cf. [Kaad 2019, Proposition 6.2]). Let (π, E,D) and (π, E,D′)

be unbounded A-B-cycles such that π(A) ⊂ Lip0(D)∩Lip0(D′). Suppose there
exists an odd self-adjoint unitary F : E → E such that F commutes with both D

and D′, and such that we have the equalities FD = |D| and FD′ = |D′|. Then
(E,D) is homotopic to (E,D′).

Proof. Using Proposition 4.3, we may assume (without loss of generality) that
(E,D) and (E,D′) are Lipschitz regular, and that π(A)⊂W for some

W ⊂ Lip0(D)∩Lip(|D|)∩Lip0(D′)∩Lip(|D′|).

We then note that the operator F satisfies the assumptions of [Kaad 2019, Proposi-
tion 6.2] (with the dense ∗-subalgebra A⊂ A replaced by W ), where we point out
that the Lipschitz regularity of D ensures that

D[F, w] = [DF, w] − [D, w]F = [|D|, w] − [D, w]F

is bounded for w ∈ W (and similarly for D′). Then we know from (the proof of)
[Kaad 2019, Proposition 6.2] that (E,D)− (E,D′) is homotopic to a spectrally
decomposable cycle. Using Corollary 4.9 we conclude that (E,D)− (E,D′) is
null-homotopic, and therefore (E,D) is homotopic to (E,D′). �
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Corollary 4.11. Let (π, E,D) and (π, E,D′) be unbounded A-B-cycles. Suppose
that D and D′ are both invertible, and that sgn(D) = sgn(D′). Then (E,D) is
homotopic to (E,D′).

4C. Clifford symmetries.

Definition 4.12. An unbounded Kasparov A-B-cycle (E,D) is called Clifford sym-
metric if there exists an odd self-adjoint unitary γ on E and a W ⊂ Lip0(D) such
that π(A)⊂W , [γ,w] = 0 for all w ∈W , γ :Dom D→Dom D, and Dγ =−γD.

The idea here is that a Clifford symmetric A-B-cycle is in fact an A ⊗̂Cl1-B-
cycle, and the image of the map KK(A ⊗̂Cl1, B)→ KK(A, B) is zero. Indeed,
one easily checks that the bounded transform (E, FD) of a Clifford symmetric
unbounded cycle is operator-homotopic to the degenerate Kasparov module (E, γ ).
We prove here an analogous statement for unbounded cycles.

Lemma 4.13. Let (E,D) be an unbounded A-B-cycle with a Clifford symmetry γ
and 0 < α < 1. Then (E,D) is operator-homotopic to the spectrally symmetric
unbounded cycle (E, γ |D|α).

Proof. Since γ commutes with |D|α and (γ |D|α)2 = |D|2α , we know that γ |D|α is
regular and self-adjoint, and T (1+ (γ |D|α)2)−1/2 is compact for any T ∈ Lip0(D).
Moreover, since Lip(γ |D|α) = Lip(|D|α) contains Lip(D), we see that π(A) ⊂
Lip0(D)⊂ Lip0(γ |D|α). Thus, (E, γ |D|α) is indeed an unbounded cycle. We note
that γ provides a spectral symmetry for (E, γ |D|α). The operator-homotopy is
obtained by composing the operator-homotopy between D and sgnmodα(D) (see
Proposition 4.3 and Remark 4.4) with the operator-homotopy given for t ∈ [0, 1] by

Dt := cos(1
2π t) sgnmodα(D)+ sin(1

2π t)γ |D|α. (4.14)

Note that γ anticommutes with sgnmodα(D) as the latter is given by an odd func-
tion of D (see Lemma 1.14). We then compute that D2

t = |D|
2α , and thus Lip0(D)⊂

Lip0(Dt) for all t ∈ [0, 1], so Dt is indeed an operator-homotopy. �

As in [Deeley et al. 2018, Definition 3.1], we say that an unbounded cycle (E,D)

is weakly degenerate if D is given by a sum D= D0+S, such that

• D0 and S are odd regular self-adjoint operators with Dom D = Dom D0 ∩

Dom S,

• S is invertible, A ⊂ Lip(S), and Sa− aS= 0 for all a ∈ A, and

• there is a common core E⊂ Dom(SD0)∩Dom(D0S) for D0 and S such that
D0S+SD0 = 0 on E.

Roughly speaking, this means that S is degenerate and D0 has Clifford symmetry
γ = sgn(S). The proof of Lemma 4.13 can be adapted to weakly degenerate cycles.



HOMOTOPY EQUIVALENCE IN UNBOUNDED KK-THEORY 533

Lemma 4.15. Any weakly degenerate unbounded A-B-cycle (E,D = D0+S) is
operator-homotopic to spectrally symmetric unbounded A-B-cycle (E, sgn(S)|D|α)
for any 0< α < 1. In particular, (E,D) is null-homotopic.

Proof. The proof is the same as for Lemma 4.13, but we need to show that (4.14)
is again an operator-homotopy (with γ = sgn(S)). We compute

D2
t = |D|

2α
+ 2 sin( 1

2π t) cos( 1
2π t)[sgnmodα(D), γ ]|D|α.

Since S is invertible, also D is invertible, and we find that

[sgnmodα(D), γ ] = [D, γ ]|D|α−1
= 2|S| |D|α−1.

In particular, [sgnmodα(D), γ ]|D|α is a positive operator and therefore D2
t ≥ |D|

2α

for all t ∈ [0, 1]. Hence, if T (1+D2)−1/2 is compact for some T ∈ EndB(E), then
also T (1+ |D|2α)−1/2 is compact, and therefore

T (1+D2
t )
−1/2
= T (1+ |D|2α)−1/2(1+ |D|2α)1/2(1+D2

t )
−1/2

is compact. Thus, Lip0(D)⊂ Lip0(Dt) for all t ∈ [0, 1], so Dt is indeed an operator-
homotopy. Finally it follows from Corollary 4.9 that (E,γ |D|α) is null-homotopic.�

4D. The unbounded KK-group. As mentioned in Remark 2.13, the isomorphism
UKK(A, B)'KK(A, B) from Theorem 2.12 implies in particular that UKK(A, B)
is a group. Here we give a direct proof of this fact, working only in the unbounded
picture of KK-theory (hence avoiding the bounded transform entirely). In partic-
ular, the proof we give here (in contrast with Theorem 2.12) does not require the
assumption that A is separable.

Given an unbounded A-B-cycle (π, E,D), define its “inverse” as

−(π, E,D) := (πop, Eop,−D),

where Eop
= E with the opposite grading and the representation

πop(a)= (−1)deg aπ(a)

for homogeneous elements a ∈ A.

Theorem 4.16. For any σ -unital C∗-algebras A and B, the abelian semigroup
UKK(A, B) is in fact a group. To be more precise, the inverse of [(π, E,D)] ∈

UKK(A, B) is given by [−(π, E,D)].

Proof. The sum (π, E,D)− (π, E,D) is given by the Clifford symmetric cycle

(π, E,D)− (π, E,D)=

(
π ⊕πop, E ⊕ Eop,

(
D 0
0 −D

))
, γ =

(
0 1
1 0

)
,
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where γ denotes the Clifford symmetry. From Lemma 4.13 we know that a Clif-
ford symmetric cycle is operator-homotopic to a spectrally symmetric cycle. Fur-
thermore, by Corollary 4.9, every spectrally symmetric cycle is null-homotopic.
Thus, we have shown that (π, E,D)− (π, E,D) is null-homotopic, and therefore
[−(π, E,D)] is indeed the inverse of [(π, E,D)]. �

Appendix: On localizations of dense submodules

Let X be a locally compact Hausdorff space, B a C∗-algebra, and E a Hilbert
C0(X, B)-module. We will show in this appendix that a submodule of E is dense
if and only if it is pointwise dense. One way to prove this could be by showing
that E can be viewed as a continuous field of Banach spaces (where each Banach
space is in fact a Hilbert B-module), and then applying the theory of continuous
fields [Dixmier and Douady 1963] (for this approach, see for instance [Ebert 2018,
Lemma 2.7, Corollary 2.8, and Proposition 2.21]). Here, we prefer instead to give
our proof in the language of Hilbert C∗-modules.

For x ∈ X we denote by evx : C0(X, B)→ B the ∗-homomorphism f 7→ f (x).
Let ι : B → B+ be the embedding of B into its (minimal) unitization B+. We
define the localization Ex := E ⊗̂evx B+, and we note that there is a map E→ Ex

via e 7→ ex := e ⊗̂ 1. For a submodule F ⊂ E we write

Fx := { fx ∈ Ex : f ∈ F} ⊂ Ex ,

for the image of F under the map e 7→ ex . We collect some basic facts regarding
these localizations in the following lemma.

Lemma A.1. (1) The Hilbert C0(X, B)-module E is a central bimodule over
C0(X), and the left C0(X) action is by adjointable operators.

(2) The map E→ Ex given by e 7→ ex := e ⊗̂ 1 is surjective.

(3) We have a unitary isomorphism Ex ' E ⊗̂evx B.

(4) We have the equality ‖e‖E = supx∈X‖ex‖, and the map x 7→‖ex‖ lies in C0(X).

Proof. For (1), see for instance [Kasparov 1988, Definition 1.5] and the discussion
following it. For (2), it suffices to consider elements e ⊗̂ b ∈ Ex with e ∈ E and
b ∈ B. Picking f ∈ C0(X) such that f (x) = 1 and defining b̃ ∈ C0(X, B) by
b̃(y) := f (y)b for y ∈ X , we see that e ⊗̂b= eb̃ ⊗̂1, which proves (2). For (3), we
note that the map id ⊗̂ ι : E ⊗̂evx B→ E ⊗̂evx B+ is an isometry, so we only need to
check that the range is dense. Using an approximate unit un ∈ B, we indeed find

‖e ⊗̂ 1− e ⊗̂ un‖
2
= ‖e ⊗̂ (1− un)‖

2
= ‖(1− un) evx(〈e, e〉)(1− un)‖→ 0.
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The equality in (4) follows by direct calculation:

‖e‖2E = ‖〈e, e〉‖C0(X,B) = sup
x∈X
‖〈e, e〉(x)‖B = sup

x∈X
‖〈e ⊗̂ 1, e ⊗̂ 1〉Ex‖B = sup

x∈X
‖ex‖

2.

Finally, for continuity of the norm, we use that ‖ex‖ = ‖〈e, e〉1/2(x)‖ and that the
map x 7→ 〈e, e〉1/2(x) is continuous. �

Proposition A.2. If F ⊂ E is a submodule, then F is dense in E if and only if for
each x ∈ X , Fx is dense in Ex .

Proof. We will freely use the facts from Lemma A.1. If F is dense in E , the equality
‖e‖E = supx∈X‖ex‖ shows that Fx is dense in Ex for each x ∈ X . Conversely,
suppose Fx is dense in Ex for all x ∈ X . Fix ε > 0 and ψ ∈ E . For each x ∈ X ,
there exists φ ∈ F such that ‖ψx −φx‖<

ε
2 . By continuity of the norm, there exists

a precompact open neighborhood Ux of x in X such that

sup
y∈Ux

‖ψy −φy‖< ε.

There exists a compact subset K ⊂ X such that supx∈X\K‖ψ(x)‖ < ε. By com-
pactness of K , we can choose finitely many points {xi }

N
i=1 such that K ⊂

⋃N
i=1 Uxi .

Thus, on each Ui :=Uxi there exists φi ∈ F such that supy∈Ui
‖ψy −φi,y‖< ε. Let

U0 := X \ K , and let χi be a partition of unity subordinate to {Ui }
N
i=0. Let {un} be

an approximate unit for B, and choose n large enough such that ‖φi,y−φi,yun‖< ε

for all i = 1, . . . , N and y ∈Ui . Let ηi ∈ C0(X, B) be given by ηi (x) := χi (x)un .
Then the element φ :=

∑N
i=1 φiηi ∈ F is supported on V :=

⋃N
i=1 Ui , and we

compute

‖ψ −φ‖ ≤ sup
x∈V
‖ψx −φx‖+ sup

x∈X\V
‖ψx −φx‖

≤ sup
x∈V \K

∥∥∥∥(1−
N∑

i=1

χi (x)
)
ψx

∥∥∥∥+ sup
x∈V

∥∥∥∥ N∑
i=1

χi (x)(ψx −φi,x)

∥∥∥∥
+ sup

x∈V

∥∥∥∥ N∑
i=1

χi (x)(φi,x −φi,x un)

∥∥∥∥+ sup
x∈X\V

‖ψx‖

≤ 4ε.

It follows that F is dense in E . �

For any adjointable operator T on E , we write Tx := evx(T ) := T ⊗̂ 1 for the
corresponding operator on Ex = E ⊗̂evx B+.

Corollary A.3. Let E be a C0(X, B)-module and h ∈ End∗B(E). Then h has dense
range in E if and only if for all x ∈ X , hx has dense range in Ex .
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1. Introduction

Fix a prime p. The aim of this paper is to concretely identify in degree 2, for a
certain class of p-complete rings R, the p-completed cyclotomic trace

ctr : K (R;Zp)→ TC(R;Zp)

from the p-completed K-theory spectrum K (R;Zp) of R to the topological cyclic
homology TC(R;Zp) of R. Our main result is that on π2 the p-completed cyclo-
tomic trace is given by a q-logarithm

logq(x) :=
∞∑

n=1

(−1)n−1q−n(n−1)/2 (x − 1)(x − q) · · · (x − qn−1)

[n]q
,
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which is a q-deformation of the usual logarithm (where q is a parameter to be
defined later). Before stating a precise version of the theorem, let us try to put it
in context and to explain what the involved objects are.

K-theory and topological cyclic homology. We start with K-theory. For any com-
mutative ring A, [Quillen 1973] defined the algebraic K-theory space K (A) of
A as a generalization of the Grothendieck group K0(A) of vector bundles on the
scheme Spec(A). The (connective) K-theory spectrum K (A) of a ring A is obtained
by group completing1 the E∞-monoid of vector bundles on Spec(A) whose addition
is given by the direct sum. In other words, for the full K-theory one mimics in a
homotopy-theoretic context the definition of K0(A) with the set of isomorphism
classes of vector bundles replaced by the groupoid of vector bundles. Algebraic
K-theory behaves like a cohomology theory but has the nice feature — compared
to other cohomology theories, like étale cohomology — that it only depends on
the category of vector bundles on the ring (rather than on the ring itself) and thus
enjoys strong functoriality properties, which makes it a powerful invariant attached
to A.

Unfortunately, the calculation of the homotopy groups

Ki (A) := πi (K (A)), i ≥ 1,

is in general rather intractable. There is for example a natural embedding

A×→ π1(K (A)),

which is an isomorphism if A is local, but the higher K-groups are much more
mysterious. One essential difficulty comes from the fact that K-theory, although
it is a Zariski (and even Nisnevich) sheaf of spaces (see [Thomason and Trobaugh
1990]), does not satisfy étale descent. One could remedy this by étale sheafification,
but one would lose the good properties of K-theory. This lead people to look for
good approximations of K-theory, at least after profinite completions. By this,
we mean invariants, still depending only on the category of vector bundles on the
underlying ring, satisfying étale descent — and therefore, easier to compute — and
close enough to (completed) K-theory, at least in some range.

The work of Thomason [1985] provides a good illustration of this principle.
Thomason shows that the K (1)-localization of K-theory, with respect to a prime
` invertible in A, satisfies étale descent2 and coincides with `-adically completed
(for short: `-adic) K-theory in high degrees under some extra assumptions, later
removed by [Rosenschon and Østvær 2006], building upon the work of Voevodsky

1See [Nikolaus 2017] for a discussion of homotopy-theoretic group completions and Quillen’s
+-construction.

2In fact, it even coincides with `-adic étale K-theory on connective covers.
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and Rost. When the prime p is not invertible in A, the situation is much more
subtle. For instance, a theorem of Gabber [1992] shows that `-adic K-theory is
insensitive to replacing A by A/I if (A, I ) forms a henselian pair; in particular,
the computation of `-adic K-theory of henselian rings (which form a basis of the
Nisnevich topology) is reduced to the computation of the `-adic K-theory of fields.
This is not true anymore for p-adic K-theory. Nevertheless, the recent work of
Clausen, Mathew and Morrow [Clausen et al. 2018], expresses this failure in terms
of another noncommutative invariant attached to A, the topological cyclic homol-
ogy of A, whose definition will be recalled below. Topological cyclic homology is
related to K-theory via the cyclotomic trace

ctr : K (A)→ TC(A)

(see [Blumberg et al. 2013, Section 10.3; Bökstedt et al. 1993, Section 5]). Clausen,
Mathew and Morrow prove, extending earlier work of Dundas, Goodwillie and
McCarthy [Dundas et al. 2013] in the nilpotent case,3 that the cyclotomic trace
induces, for any ideal I ⊆ A such that the pair (A, I ) is henselian, an isomorphism

K (A, I )/n ∼= TC(A, I )/n

from the relative K-theory

K (A, I )/n := fib(K (A)/n→ K (A/I )/n)

to the relative topological cyclic homology

TC(A, I )/n := fib(TC(A)/n→ TC(A/I )/n),

for any integer n. This has the consequence that p-completed TC provides a good
approximation of p-adic K-theory, at least for rings henselian along (p): namely,
it satisfies étale descent (because topological cyclic homology does) and coincides
with p-adic K-theory in high degrees. Under additional hypotheses, one can even
get better results: for instance, Clausen, Mathew and Morrow prove, among other
things, that the cyclotomic trace induces an isomorphism

K (R;Zp)∼= τ≥0 TC(R;Zp)

for all rings R which are henselian along (p) and such that R/p is semiperfect
(i.e., such that Frobenius is surjective); see [Clausen et al. 2018, Corollary 6.9].

Examples of such rings are the quasiregular semiperfectoid rings of [Bhatt et al.
2019]. A ring R is called quasiregular semiperfectoid if R is p-complete with

3This is not a generalization though, since the result of Dundas–Goodwillie–McCarthy applies
also to noncommutative rings and is not restricted to finite coefficients.
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bounded p∞-torsion,4 the p-completed cotangent complex L̂ R/Zp has p-complete
Tor-amplitude in [−1, 0] and there exists a surjective morphism R′ → R with
R′ (integral) perfectoid. This class of rings is interesting as for R quasiregular
semiperfectoid, the topological cyclic homology π∗(TC(R;Zp)) can be computed
in more concrete terms.

Let us recall the description of topological cyclic homology π∗(TC(R;Zp))

from [Bhatt et al. 2019], which builds heavily on the foundational work of Nikolaus
and Scholze [2018]. For this, we need some definitions. From now on, all spectra
are assumed to be p-completed. One starts with the (p-completed) topological
Hochschild homology spectrum THH(R;Zp) of R, which is equipped with a nat-
ural T = S1-action and a T-equivariant map, the cyclotomic Frobenius,

ϕcycl : THH(R;Zp)→ THH(R;Zp)
tC p

to the Tate fixed points of the cyclic group C p ⊆ T. Then one takes the homotopy
fixed points, the negative topological cyclic homology,

TC−(R;Zp) := THH(R;Zp)
hT

and the Tate fixed points, the periodic topological cyclic homology,

TP(R;Zp) := THH(R;Zp)
tT.

From the cyclotomic Frobenius on THH(R;Zp) one derives a map5

ϕhT
cycl : TC−(R;Zp)→ TP(R;Zp).

Then the topological cyclic homology TC(R;Zp) of R is defined via the fiber
sequence

TC(R;Zp)→ TC−(R;Zp)
can−ϕhT

cycl
−−−−−→ TP(R;Zp),

where can : TC−(R;Zp)→ TP(R;Zp) is the canonical map from homotopy to
Tate fixed points. The ring

1̂R := π0(TC−(R;Zp))∼= π0(TP(R;Zp))

is p-complete, p-torsion free6 and the cyclotomic Frobenius ϕhT
cycl induces a Frobe-

nius lift ϕ on 1̂R; see [Bhatt and Scholze 2019, Theorem 11.10].

4This means that there exists N ≥ 0 such that R[p∞] = R[pN
]. This technical condition is useful

when dealing with derived completions.
5Here one needs [Nikolaus and Scholze 2018, Lemma II.4.2], which implies TP(R;Zp) ∼=

(THH(R;Zp)
tC p )hT.

6Indeed, any element killed by p is killed by ϕ, as in the proof of [Bhatt and Scholze 2019,
Lemma 2.28], and thus lies in all the steps of the Nygaard filtration.
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Remark 1.1. The prismatic perspective of [Bhatt and Scholze 2019] gives an
alternative description of 1̂R: it is the completion with respect to the Nygaard
filtration of the (derived) prismatic cohomology 1R of R. In particular, using the
theory of δ-rings, one can give, when R is a p-complete with bounded p∞-torsion
quotient of a perfectoid ring by a regular sequence, a construction of 1̂R as the
Nygaard completion of a concrete prismatic envelope; see [Bhatt and Scholze 2019,
Proposition 3.12].

The choice of a morphism R′→ R with R′ perfectoid yields a distinguished
element ξ̃ (up to a unit) of the ring 1̂R . Using ξ̃ one defines the Nygaard filtration

N≥i1̂R := ϕ
−1((ξ̃ i ))

on 1̂R . The graded rings π∗(TC−(R;Zp)) and π∗(TP(R;Zp)) are then concen-
trated in even degrees and

π2i (TC−(R;Zp))∼=N≥i1̂R, π2i (TP(R;Zp))∼= 1̂R

for i ∈ Z; see [Bhatt and Scholze 2019, Theorem 11.10].7 Moreover, on π2i the
cyclotomic Frobenius

ϕhT
cycl : π2i (TC−(R;Zp))→ π2i (TP(R;Zp))

identifies with the divided Frobenius ϕ/ξ̃ i . Thus, from the definition of TC(R;Zp)

we obtain exact sequences

0→π2i (TC(R;Zp))∼=1̂
ϕ=ξ̃ i

R →N≥i1̂R
1−(ϕ/ξ̃ i )
−−−−−→1̂R→π2i−1(TC(R;Zp))→0.

As mentioned in Remark 1.1, the ring 1̂R tends to be computable. For example,
if R is perfectoid, then 1̂R ∼= Ainf(R) is Fontaine’s construction applied to R and
if pR = 0, then 1̂R is the Nygaard completion of the universal PD-thickening
Acrys(R) of R. Thus, for quasiregular semiperfectoid rings the target of the cyclo-
tomic trace is rather explicit.

Main results. The results of [Clausen et al. 2018] (together with those of [Bhatt
et al. 2019]) therefore give a way of computing higher p-completed K-groups of
quasiregular semiperfectoid rings. But there is at least one degree (except 0) where
one can be more explicit, without using the cyclotomic trace map: namely, after
p-completion of K (R) there is a canonical morphism

Tp(R×)→ π2(K (R;Zp))

7These identifications depend on the choice of a suitable generator v ∈ π−2(TC−(R;Zp)). If R
is an algebra over Z

cycl
p we will clarify our choice in Section 6 carefully.
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from the Tate module Tp(R×) of the units of R, which is an isomorphism in many
cases. The results explained in the previous paragraph show that the cyclotomic
trace identifies π2(K (R;Zp)) with

π2(TC(R;Zp))∼= 1̂
ϕ=ξ̃

R .

What does the composite map

Tp(R×)→ π2(K (R;Zp))
ctr
−→ π2(TC(R;Zp))∼= 1̂

ϕ=ξ̃

R

look like? The main result of this paper, which we now state, provides a concrete
description of it. Let R be a quasiregular semiperfectoid ring which admits a com-
patible system of morphisms Z[ζpn ] → R for n ≥ 0. These morphisms give rise to
the elements

ε = (1, ζp, . . .) ∈ R[ = lim
←−−

x 7→x p
R, q := [ε]θ ∈ 1̂R and ξ̃ :=

q p
− 1

q − 1
.

Here
[ – ]θ : R[→1R

is the Teichmüller lift coming from the surjection θ : 1R → R (see the proof of
Lemma 2.4).

Theorem 1.2 (cf. Theorem 6.7). The composition8

Tp(R×)→ π2(K (R;Zp))
ctr
−→ π2(TC(R;Zp))∼= 1̂

ϕ=ξ̃

R

is given by the q-logarithm

x 7→ logq([x]θ ) :=
∞∑

n=1

(−1)n−1q−n(n−1)/2 ([x]θ − 1)([x]θ − q) · · · ([x]θ − qn−1)

[n]q
.

Here we embed

Tp(R×)⊆ R[, (r0 ∈ R×[p], r1, . . .) 7→ (1, r0, r1, . . .).

By
[n]q :=

qn
− 1

q − 1

we denote the q-analog of n ∈ Z.

Remark 1.3. A similar result can be found in Lemma 4.2.3 of [Geisser and Hes-
selholt 1999], but only before p-completion, on π1 and in terms of TR∗, which is
not enough to deduce Theorem 1.2 from their result.

8See Section 6 for a more precise description of the isomorphism π2(TC(R;Zp))∼= 1̂
ϕ=ξ̃
R . We

note that it depends on the choice of some compatible system ε = (1, ζp, ζp2 , . . .) of primitive pn-th
roots of unity.
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As a consequence of [Clausen et al. 2018] and Theorem 1.2, one gets the fol-
lowing result.

Corollary 1.4. Let R be a quasiregular semiperfectoid Z
cycl
p -algebra. The map

logq([ – ]θ ) : Tp(R×)→ 1̂
ϕ=ξ̃

R

is a bijection.

This corollary is used in [Anschütz and Le Bras 2019], which studies a pris-
matic version of Dieudonné theory for p-divisible groups, and was our original
motivation for proving Theorem 1.2.

Here is a short description of the proof of Theorem 1.2. By testing the uni-
versal case R = Zcycl

〈x1/p∞
〉/(x − 1), one is reduced to the case where the pair

(p, ξ̃ ) forms a regular sequence on 1̂R , i.e., the prism (1̂R, ξ̃ ) is transversal (see
Definition 3.2). In this situation, we prove that the reduction map

1̂
ϕ=ξ̃

R ↪→N≥11̂R/N≥21̂R

is injective (Corollary 3.11). Thus it suffices to identify the composition

Tp(R×)
ctr
−→ 1̂

ϕ=ξ̃

R →N≥11̂R/N≥21̂R.

Using the results of [Bhatt et al. 2019] the quotient N≥11̂R/N≥21̂R identifies with
the p-completed Hochschild homology π2(HH(R;Zp)) (see Section 5) and thus
the above composition identifies with the p-completed Dennis trace. A straight-
forward computation then identifies the p-completed Dennis trace (see Section 2),
which allows us to conclude. We expect the results in Section 2 to be known, in
some form, to the experts, but we did not find the results anywhere in the literature.

Let us end this introduction by a remark and a question. One could try to reverse
the perspective from Corollary 1.4 and try to recover a (very) special case of the
result of Clausen, Mathew and Morrow [Clausen et al. 2018] regarding the cyclo-
tomic trace map using the concrete description furnished by Theorem 1.2. If R is
of characteristic p, we have q = 1 and then the q-logarithm becomes the honest
logarithm

log([ – ]θ ) : Tp(R×)→ Acrys(R)ϕ=p.

In [Scholze and Weinstein 2013], it is proven (using the exponential) that the map
log([ – ]) is an isomorphism, when R is the quotient of a perfect ring modulo a reg-
ular sequence. If R is the quotient of a perfectoid ring by a finite regular sequence
and is p-torsion free, it is not difficult to deduce from Scholze and Weinstein’s
result that the map

logq([ – ]θ ) : Tp(R×)→ 1̂
ϕ=ξ̃

R
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is a bijection when p is odd. Is there a way to prove it directly in general, for any
p and any quasiregular semiperfectoid ring?

Plan of the paper. In Section 2 we concretely identify the p-completed Dennis
trace on the Tate module of units (see Proposition 2.5) in the form we need it.
In Section 3 we prove the crucial injectivity statement, namely Corollary 3.11,
for transversal prisms. In Section 4 we make sense of the q-logarithm. Finally, in
Section 6 we prove our main result, Theorem 1.2, and its consequence, Corollary 1.4.

2. The p-completed Dennis trace in degree 2

Fix some prime p and let A = R/I be the quotient of a (p, I )-complete ring R.
The aim of this section is to concretely describe in degree 2 the composition

Tp(A×)→ π2(K (A;Zp))
Dtr
−−→ π2(HH(A;Zp))→ π2(HH(A/R;Zp)).

Here
K (A;Zp)

denotes the p-completed (connective) K-theory spectrum of A,

HH(A;Zp) and HH(A/R;Zp)

are the p-completed (derived) Hochschild homology of A as a Z-algebra and R-
algebra, respectively, and Dtr is the Dennis trace map. Before stating precisely our
result, let us start by some reminders on the objects and the maps involved in the
previous composition.

We first recall the construction of the first map Tp(A×)→ π2(K (A;Zp)). Let

GL(A)= lim
−−→

r
GLr (A)

be the infinite general linear group over A. There is a canonical inclusion

A× = GL1(A)→ GL(A)

of groups which on classifying spaces induces a map

B(A×)→ B(GL(A)).

Composing with the morphism to Quillen’s +-construction yields a canonical mor-
phism

B(A×)→ BGL(A)→ K (A) := BGL(A)+× K0(A)

into the K-theory space K (A) of A.9 After p-completion of spaces we obtain a
canonical morphism

ι : B(A×)∧p → K (A;Zp) := K (A)∧p .

9We use space as a synonym for Kan complex.
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We recall (see [May and Ponto 2012, Theorem 10.3.2]) that the space B(A×)∧p has
two nontrivial homotopy groups which are given by

π1(B(A×)∧p)∼= H 0(R lim
←−−

n
(A×⊗L

Z Z/pn)),

π2(B(A×)∧p)∼= H−1(R lim
←−−

n
(A×⊗L

Z Z/pn))∼= Tp(A×).

In degree 2 we thus get a morphism

Tp(A×)= π2(B(A×)∧p)→ π2(K (A;Zp)),

which is the first constituent of the map

Tp(A×)→ π2(K (A;Zp))
Dtr
−−→ π2(HH(A;Zp))→ π2(HH(A/R;Zp))

we want to describe.
Now we turn to the construction of Hochschild homology and the Dennis trace

Dtr : K (A)→ HH(A).

Let R be a (commutative) ring and A a (commutative) R-algebra. Let

T := S1 ∼= BZ

be the circle group. Then the Hochschild homology spectrum

HH(A/R)

(simply denoted HH(A) when R =Z) is the initial T-equivariant10 E∞− R-algebra
with a nonequivariant map A→ HH(A/R) of E∞− R-algebras [Bhatt et al. 2019,
Remark 2.4]. For a comparison with classical definitions, we refer to [Hoyois
2015].

The functor A 7→ HH(A/R) extends to all simplicial R-algebras and as such
is left Kan extended (as it commutes with sifted colimits) from the category of
finitely generated polynomial R-algebras. By left Kan extending the (decreasing)
Postnikov filtration τ≥•HH(A/R) on HH(A/R) for A a finitely generated polyno-
mial R-algebra one obtains the T-equivariant HKR-filtration

FilnHKRHH(A/R)

on HH(A/R) for A a general R-algebra. The∞-category of T-equivariant objects
in the derived ∞-category D(R) of R is equivalent to the ∞-category of R[T]-
modules, where

R[T] = R⊗6∞
+

T

10For an∞-category C the category of T-equivariant objects of C is by definition the∞-category
of functors BT→ C.
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is the group algebra of T over R; see [Hoyois 2015, page 5]. Let

γ ∈ H1(T, R)∼= HomD(R)(R[1], R[T])

be a generator.11 The multiplication by γ induces a differential

d : HHi (A/R)→ HHi+1(A/R)

which makes HH∗(A/R) into a graded commutative dg-algebra over R all of whose
elements of odd degree square to zero; see [Krause and Nikolaus 2017, Lemma 2.3].
By the universal property of the de Rham complex �∗A/R , the canonical morphism
A→ HH0(A/R) extends therefore to a morphism

αγ :�
∗

A/R→ HH∗(A/R).

The Hochschild–Kostant–Rosenberg theorem affirms that αγ is an isomorphism if
R→ A is smooth. By left Kan extension, one obtains for arbitrary R→ A the
natural description

αγ :
∧i L A/R[i] ∼= gri

HKRHH(A/R)

of the graded pieces of the HKR-filtration via exterior powers of the cotangent
complex of A over R; see [Bhatt et al. 2019, Section 2.2].

In particular, we get after p-completion the following consequence in degree 2,
which will be used to formulate our description of the Dennis trace below.

Lemma 2.1. Let R be a ring and I ⊆ R an ideal. Let A = R/I . Fix a generator γ
of H1(T,Z). There is a natural isomorphism

αγ : (I/I 2)∧p
∼= π2(HH(A/R;Zp)).

Here (and in the rest of the paper) we denote by M∧p the derived p-adic comple-
tion of an abelian group M , i.e.,

M∧p := H 0(R lim
←−−

n
M ⊗L

Z Z/pn).

Proof. The first assertion follows from the HKR-filtration on HH(A/R;Zp) de-
scribed above and the fact there is a canonical isomorphism

(I/I 2)∧p
∼= H−1((L A/R)

∧

p),

which is implied by [Stacks 2005–, Tag 08RA]. �

The Dennis trace can be defined abstractly [Blumberg et al. 2013, Section 10.2]
as the composition of the unique natural transformation

K → THH
11We will mostly assume that γ is obtained by base change from some generator of H1(T,Z).
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of additive invariants of small stable∞-categories from K-theory to topological
Hochschild homology, which induces the identity on

Z∼= π0(K (S))→ π0(THH(S))∼= Z,

and the natural transformation (on rings) THH→ HH.
The only thing we need to use as an input regarding the Dennis trace is the

following explicit description in degree 1. Recall from above that if A is a ring,
each choice of a generator γ of H1(T,Z) gives rise to an isomorphism

αγ : π1(HH(A/Z))∼=�1
A/Z

as H 0(L A/Z)∼=�
1
A/Z for any A.

Lemma 2.2. Let A be a commutative ring. There exists a unique bijection

δ1 : {generators of H1(T,Z)} ∼= {±1}

such that

A× ∼= π1(BA×) Dtr
−−→ π1(HH(A))

αγ
∼= �

1
A/Z, a 7→ δ1(γ ) dlog(a)

for any generator γ ∈ H1(T,Z).

Proof. Let A be any commutative ring. The Hochschild homology HH(A) can be
calculated as the geometric realization

HH(A) := lim
−−→
1op

A⊗
L
Z

n+1

.

Note that this representation, which relies on the standard simplicial model of the
circle 11/∂11, depends implicitly on the choice of a generator γ0 of H1(T,Z); see
[Hoyois 2015, Theorem 2.3].12 Replacing the derived tensor product by the non-
derived one produces the classical, nonderived Hochschild homology HHusual(A)
of A. As

π1(HH(A))∼= π1(HHusual(A))

we may argue using HHusual instead of HH.
Using the above description of the classical Hochschild homology, the Dennis

trace can be described more concretely; see [Bökstedt et al. 1993, Section 5; Loday
1992, Chapter 8.4]. It factors (on homotopy groups) through the integral group
homology of GL(A), i.e., through H∗(BGL(A),Z), which is by definition (and
the Dold–Kan correspondence) the homotopy of the space Z[BGL(A)] obtained
by taking the free simplicial abelian group on the simplicial BGL(A). As the +-
construction

BGL(A)→ BGL(A)+

12In this reference, γ0 is called γ .
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is an equivalence on integral homology [Weibel 2013, Chapter IV, Theorem 1.5],
the morphism

Z[BGL(A)] ' Z[BGL(A)+]

is an equivalence of simplicial abelian groups, and using the canonical inclusion

BGL(A)+→ Z[BGL(A)+]

we arrive at a canonical morphism

K (A)→ BGL(A)+→ Z[BGL(A)+] ' Z[BGL(A)].

We observe that for r = 1 the morphism BGL1(A)→ BGL1(A)+ is an equiv-
alence as GL1(A) = A× is abelian. Thus there is a commutative diagram (up to
homotopy)

BGL1(A) //

��

Z[BGL1(A)]

��

K (A) // Z[BGL(A)]

with each morphism being the canonical one.
The Dennis trace factors as a composition

Dtr : K (A)→ Z[BGL(A)] Dtr′
−−→ HHusual(A/Z),

where by construction

Dtr′ : Z[BGL(A)] → HHusual(A)

is given as the colimit of compatible maps13

Dtr′r : Z[BGLr (A)] → HHusual(A).

When r = 1, which is the only case relevant for us, the map Dtr′1 is the linear
extension of the map

BA×→ HHusual(A)

which in simplicial degree n is given by

(a1, . . . , an) 7→
1

a1 · · · an
⊗ a1⊗ · · ·⊗ an.

Fix a generator γ of H1(T,Z). The choice of γ gives the HKR-isomorphism

αγ : π1(HHusual(A))∼= π1(HH(A/Z))∼=�1
A/Z.

13Here compatible means up to some homotopy. To obtain strict compatibility one has to use the
normalized Hochschild complex; see [Loday 1992, Section 8.4].
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Using the above description of Hochschild homology as a geometric realization,
the isomorphism αγ is given by

π1(HHusual(A))∼=�1
A/Z, a⊗ b 7→ adb

with inverse adb 7→ a⊗ b if γ = γ0, and by

π1(HHusual(A))∼=�1
A/Z, a⊗ b 7→ bda

with inverse bda 7→ a⊗b if γ =−γ0; this can be checked by analyzing compatibil-
ity with differentials and using [Hoyois 2015, Theorem 2.3]. In the first case, we
set δ1(γ )= 1; in the second case, we set δ1(γ )=−1. Then on homotopy groups
the map Dtr1 is given by

A× ∼= π1(BA×)→ π1(HH(A))
αγ
∼= �

1
A/Z, a 7→ δ1(γ ) dlog(a) := δ1(γ )

da
a
,

as claimed. �

Remark 2.3. Let A be a flat Z-algebra. The description of HH(A)= HHusual(A)
as the geometric realization of the simplicial object

HH(A/Z) := lim
−−→
1op

A⊗Z
n+1

shows that HH(A;Zp) is computed by the complex

· · · → (A⊗Z A⊗Z A)∧p → (A⊗Z A)∧p → A∧p .

One can then show that the p-completed Dennis trace (BA×)∧p→HH(A;Zp) sends
an element

(a1, a2, . . .) ∈ Tp(A×)= π2((BA×)∧p)

to the element represented, up to a sign, by the cycle

1⊗ 1⊗ 1+
∞∑

n=1

pn−1
( 1

a2
n
⊗ an ⊗ an +

1
a3

n
⊗ a2

n ⊗ an + · · ·+
1

a p
n
⊗ a p−1

n ⊗ an

)
.

We omit the proof, since we will not use this result.

We can now state and prove the main result of this section. Fix a generator γ of
H1(T,Z). We describe the image of some element Tp(A×) under the composition

Tp(A×)
Dtr
−−→ π2(HH(A;Zp))→ π2(HH(A/R;Zp))

α−1
γ

∼= (I/I 2)∧p ,

using the notation of Lemma 2.1. Recall first the following standard lemma.
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Lemma 2.4. Let R be a ring, I ⊆ R an ideal and assume that R is (p, I )-adically
complete. Then the canonical map

R[ := lim
←−−

x 7→x p
R→ A[ := lim

←−−
x 7→x p

A,

with A = R/I , is bijective.

Proof. It suffices to construct a well-defined, multiplicative map

[ – ] : A[→ R

reducing to the first projection modulo I . Let

r := (r0, r1, . . .) ∈ A[

be a p-power compatible system of elements in A with lifts r ′i ∈ R of each ri . Then
the limit

lim
n→∞

(r ′n)
pn

exists and is independent of the lift. Thus

[r ] := lim
n→∞

(r ′n)
pn

defines the desired map. �

The morphism
[ – ] : A[→ R

is the Teichmüller lift for the surjection π : R → R/I . If we want to make its
dependence of the surjection clear, we write [ – ]π . Let

Tp A× = lim
←−−

x 7→x p
A×[pn

]

be the Tate module of A×. Then we embed Tp A× into A[ as the sequences with
first coordinate 1. For any a ∈ A[ we define

[a] := r0,

where r= (r0, r1, . . .)∈ R[ is the unique element reducing to a. If a= (1, a1, a2, . . .)

lies in Tp A×, then [a] ∈ 1+ I .

Proposition 2.5. Fix a generator γ ∈ H1(T,Z). Let R be a ring and I ⊆ R an
ideal such that R is (p, I )-adically complete. Let A = R/I . Then the composition

Tp(A×)∼= π2((BA×)∧p)
Dtr
−−→ π2(HH(A/R;Zp))∼= (I/I 2)∧p

is given by sending a ∈ Tp(A×) to

δ1(γ )([a] − 1),

where δ1(γ ) ∈ {±1} is the sign from Lemma 2.2.
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Proof 14. Fix a ∈ Tp(A×). Then there exists, by (p, I )-adic completeness of R, a
unique morphism Z[1/p] → R× of abelian groups such that

1/pn
7→ [a1/pn

].

By naturality, it therefore suffices to check that for

R := Z[t1/p∞
] ∼= Z[Z[1/p]] and A := R/(t − 1)∼= Z[Qp/Zp],

under the morphism

Tp A× Dtr
−−→ HH2(A;Zp)→ HH2(A/R;Zp)∼= L A/R[−1] ∼= (t − 1)/(t − 1)2

the element (1, t1/p, t1/p2
, . . .) ∈ A[ is mapped to the class of δ1(γ )(t − 1).

Observe first that the Hochschild homology

HH2(A)

vanishes. Indeed, it is easy to see that L A/Z is concentrated in degree 0. Moreover,
�1

A/Z
∼= L A/Z is generated by one element. This implies that

π0
(∧n L A/Z

)
= 0

for n ≥ 2 (see the proof of [Bhatt 2012, Corollary 3.13]). By the HKR-filtration,
we get that HH2(A)= 0. Passing to p-completions we can conclude that

HH2(A;Zp)∼= TpHH1(A)
αγ
∼= Tp(�

1
A/Z),

where the last isomorphism is the HKR-isomorphism (for γ ).
There is a commutative diagram

HH2(A;Zp)
∼=

//

∼=

��

HH2(A/R;Zp)

∼=

��

Tp�
1
A/Z
∼= π1((L A/Z)

∧
p)

∼=
// π1((L A/R)

∧
p)
∼= ((t − 1)/(t − 1)2)∧p

Using Lemma 2.2, the element

(1, t1/p, t1/p2
, . . .) ∈ Tp A×

is mapped to the element

δ1(γ )(0, d log(t1/p), d log(t1/p2
), . . .) ∈ Tp(�

1
A/Z).

14The following argument is simpler than our original argument and was suggested by the referee.
We thank her/him for allowing us to include it.
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The effect of the bottom row can be calculated using the exact triangle

L R/Z⊗
L
R A→ L A/Z

β
−→ L A/R

and applying p-completions. More precisely, rotating plus the isomorphisms

L R/Z ∼=�
1
R/Z, L A/R ∼= (t − 1)/(t − 1)2[1]

yield the exact triangle

(t − 1)/(t − 1)2 d
−→�1

R/Z⊗R A→�1
A/R→ (t − 1)/(t − 1)2[1],

where the first morphism is the differential. Now, applying (derived) p-completion
to this exact triangle, the resulting connecting morphism

Tp(�
1
A/Z)→ (t − 1)/(t − 1)2

sends (0, d log(t1/p), d log(t1/p2
), . . .) to t − 1 as t − 1≡ t−1

t
mod (t − 1)2 and

d(t − 1)
t
= d log(t)= pnd log(t1/pn

)

for all n ≥ 0.15 Thus,

β((0, d log(t1/p), d log(t1/p2
), . . .)= t − 1

as claimed. �

We recall the following lemma. For a perfect ring S we denote its ring of Witt
vectors by W (S).

Lemma 2.6. Let S be a perfect ring and let A be a W (S)-algebra. Then the canon-
ical morphism

HH(A;Zp)→ HH(A/W (S);Zp)

is an equivalence.

Proof. By the HKR-filtration, it suffices to see that the canonical morphism

L A/Z→ L A/W (S)

of cotangent complexes is a p-adic equivalence, i.e., an equivalence after –⊗L
Z Z/p.

Computing the right-hand side by polynomial algebras over W (S) we see that it
suffices to consider the case that A is p-torsion free. Then by base change

L A/Z⊗
L
Z Z/p ∼= L(A/p)/Fp and L A/W (S)⊗

L
Z Z/p ∼= L(A/p)/S

15If 0→ M→ N → Q→ 0 is a short exact sequence of abelian groups, then the boundary map
Tp Q→ M∧p has the following description: Take x := (qi )i≥0 ∈ Tp Q and lift each qi to some ni ∈ N .
Then pi ni ∈ M and the limit lim

←−
pi ni ∈ M∧p exists and is the image of x .
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and the claim follows from the transitivity triangle

A/p⊗L
S L S/Fp → L(A/p)/Fp → L(A/p)/S,

using the fact that S is perfect, which implies that the cotangent complex L S/Fp of
S over Fp vanishes. �

3. Transversal prisms

In this section we want to prove the crucial injectivity statement (Corollary 3.11)
mentioned in the introduction. Let us recall the following definition from [Bhatt
and Scholze 2019].

Definition 3.1. A δ-ring is a pair (A, δ), where A is a commutative ring, δ : A→ A
a map of sets, with δ(0)= 0, δ(1)= 0, and

δ(x + y)= δ(x)+ δ(y)+
x p
+ y p
− (x + y)p

p
,

δ(xy)= x pδ(y)+ y pδ(x)+ pδ(x)δ(y),
for all x, y ∈ A.

A prism (A, I ) is a δ-ring A with an ideal I defining a Cartier divisor on Spec(A),
such that A is derived (p, I )-adically complete and p ∈ (I, ϕ(I )).

Here, the map

ϕ : A→ A, x 7→ ϕ(x) := x p
+ pδ(x)

denotes the lift of Frobenius induced from the δ-structure on A. We make the
(usually harmless) assumption that I = (ξ̃ ) is generated by some distinguished
element ξ̃ ∈ A, i.e., ξ̃ is a nonzero divisor and δ(ξ̃ ) is a unit.

Definition 3.2. We call a prism transversal if (p, ξ̃ ) is a regular sequence on A.

Let us fix a transversal prism (A, I ). In particular, A is p-torsion free. Moreover,
A is classically (p, I )-adically complete. Indeed, (p, ξ̃ ) being a regular sequence
implies that

A⊗L
Z[x,y] Z[x, y]/(xn, yn)∼= A/(pn, ξ̃ n)

and therefore

A ∼= R lim
←−−

n
(A⊗L

Z[x,y] Z[x, y]/(xn, yn))∼= R lim
←−−

n
(A/(pn, ξ̃ n))∼= lim

←−−
n

A/(pn, ξ̃ n),

using Mittag-Leffler for the last isomorphism.
We set

Ir := Iϕ(I ) · · ·ϕr−1(I )

for r ≥ 1 (where ϕ0(I ) := I ). Then Ir = (ξ̃r ) with

ξ̃r := ξ̃ϕ(ξ̃ ) · · ·ϕ
r−1(ξ̃ ).
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Lemma 3.3. For all r ≥ 1 the element

ϕr (ξ̃ )

is a nonzero divisor and (ϕr (ξ̃ ), p) is again a regular sequence. In particular, the
elements ξ̃r , r ≥ 1, are nonzero divisors.

Proof. The regularity of the sequence (p, ϕr (ξ̃ )), or equivalently of (p, ξ̃ pr
), fol-

lows from that of (p, ξ̃ ). The regularity of (ϕ(ξ̃ pr
), p) follows from this and the

fact that in any ring R with a regular sequence (r, s) such that R is r-adically
complete the sequence (s, r) is again regular.16 �

Lemma 3.4. The ring A is complete for the topology induced by the ideals Ir , i.e.,

A ∼= lim
←−−

r
A/Ir .

Proof. Each A/Ir is p-torsion free by Lemma 3.3. Therefore, both sides are p-
complete and p-torsion free. Hence, it suffices to check the statement modulo p
(note that by p-torsion freeness of each A/Ir , modding out p commutes with the
inverse limit). But modulo p the topology defined by the ideals Ir is just the ξ̃ -adic
topology and A/p is ξ̃ -adically complete. �

Lemma 3.5. For r ≥ 1 there is a congruence

ϕr (ξ̃ )≡ pu modulo (ξ̃ )

with u ∈ A× some unit.

Proof. For r = 1 this follows from

ϕ(ξ̃ )= ξ̃ p
+ pδ(ξ)

because by definition of distinguishedness the element δ(ξ) ∈ A× is a unit. For
r ≥ 2 we compute

ϕr (ξ̃ )= ϕr−1(ξ̃ p
+ pδ(ξ̃ ))= ϕr−1(ξ̃ )p

+ pϕr−1(δ(ξ̃ )).

By induction we may write ϕr−1(ξ̃ )= pu+ aξ̃ with u ∈ A× some unit, and thus
modulo ξ̃ we calculate

ϕr (ξ̃ )≡ (pu)p
+ pϕ(δ(ξ̃ ))= p(ϕ(δ(ξ̃ ))+ p p−1u p)

with ϕ(δ(ξ̃ ))+ p p−1u p
∈ A× some unit. �

Lemma 3.6. For all r ≥ 1 the sequences (ϕr (ξ̃ ), ξ̃ ) and (ξ̃ , ϕr (ξ̃ )) are again regu-
lar. Moreover, Ir =

⋂r−1
i=0 ϕ

i (I ) for all r ≥ 1.

16Passing to the inverse limit of the injections R/rn s
−→ R/rn implies that s ∈ R is a nonzero

divisor. Thus, (r, s) is regular and s is regular, which implies that (s, r) is regular.



THE p-COMPLETED CYCLOTOMIC TRACE IN DEGREE 2 557

Proof. We can write ϕ(ξ̃ )= pδ(ξ̃ )+ ξ̃ p, where δ(ξ̃ ) ∈ A× is a unit. By Lemma 3.5
we get ϕr (ξ̃ )≡ pu modulo (ξ̃ ) with u ∈ A× a unit. As (ξ̃ , p) is a regular sequence
we conclude (using [Stacks 2005–, Tag 07DW] and Lemma 3.3) that (ϕr (ξ̃ ), ξ̃ )

is a regular sequence. To prove the last statement we proceed by induction on r .
First note the following general observation: If R is some ring and ( f, g) a regular
sequence in R, then ( f )∩ (g)= ( f g). In fact, if r = sg ∈ ( f )∩ (g), then sg ≡ 0
modulo f , and hence s ≡ 0 modulo f as desired. Thus, it suffices to prove that
(ξ̃r , ϕ

r (ξ̃ )) is a regular sequence for r ≥ 1 (recall that ξ̃r = ξ̃ϕ(ξ̃ ) · · ·ϕ
r−1(ξ̃ )). By

induction, the morphism

A/(ξ̃r )→

r−1∏
i=0

A/(ϕi (ξ̃ ))

is injective. Hence, it suffices to show that for each i = 0, . . . , r − 1 the element
ϕr (ξ̃ ) maps to a nonzero divisor in A/(ϕi (ξ̃ )). But this follows from Lemma 3.5,
which implies ϕr (ξ̃ )≡ pu modulo ϕi (ξ̃ ) for some unit u ∈ A×. �

We can draw the following corollary.

Lemma 3.7. Define ρ : A→
∏
r≥0

A/ϕr (I ), x 7→ (x mod ϕr (I )). Then ρ is injective.

Proof. This follows from Lemma 3.4 and Lemma 3.6, as the kernel of ρ is given
by
⋂
∞

r=1 ϕ
r (I )=

⋂
∞

r=1 Ir = 0. �

We now define the Nygaard filtration of the prism (A, I ) (see [Bhatt and Scholze
2019, Definition 11.1]).

Definition 3.8. Define

N≥n A := {x ∈ A | ϕ(x) ∈ I n A},

the n-th filtration step of the Nygaard filtration.

By definition, the Frobenius on A induces a morphism

ϕ :N≥1 A→ I.

Note that we do not divide the Frobenius by ξ̃ . Moreover, we define

σ :
∏
i≥0

A/ϕi (I )→
∏
i≥0

A/ϕi (I ), (x0, x1, . . .) 7→ (0, ϕ(x0), ϕ(x1), . . .).

Here we use the fact that if a ≡ b mod ϕi (I ), then ϕ(a) ≡ ϕ(b) mod ϕi+1(I ) to
get that σ is well-defined. Then the diagram
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N≥1 A
ρ
//

ϕ

��

∏
i≥0

A/ϕi (I )

σ

��

I
ρ
//
∏
i≥0

A/ϕi (I )

(3.9)

commutes, where ρ is the homomorphism from Lemma 3.7.

Lemma 3.10. The reduction map

Aϕ=ξ̃ → A/I, x 7→ x mod (ξ̃ )

is injective.

Proof. Let x ∈ Aϕ=ξ̃ ∩ I . We want to prove that x = 0. Clearly, x ∈ N≥1 A. By
Lemma 3.7 it suffices to prove that

x ≡ 0 mod ϕi (I )

for all i ≥ 0. Write
ρ(x)= (x0, x1, . . .)

By the commutativity of the square (3.9) we get

ρ(ϕ(x))= σ(ρ(x))= (0, ϕ(x0), ϕ(x1), . . .).

As ϕ(x)= ξ̃ x and therefore ρ(ϕ(x))= ξ̃ρ(x), we thus get

(ξ̃ x0, ξ̃ x1, . . .)= (0, ϕ(x0), ϕ(x1), . . .).

We assumed that x ∈ I , and thus x0 = 0 ∈ A/I . Now we use that ξ̃ is a nonzero
divisor modulo ϕi (I ) (see Lemma 3.6) for i > 0. Hence, if xi = 0, then

0= ϕ(xi )= ξ̃ xi+1 ∈ A/ϕi+1(I )

implies xi+1 = 0. Beginning with x0 = 0, this shows that xi = 0 for all i ≥ 0, which
implies our claim. �

The same proof shows that also the reduction map

Aϕ=ξ̃
n
→ A/I

is injective for n ≥ 1.
The following corollary is crucially used in Theorem 6.7.

Corollary 3.11. The reduction map

Aϕ=ξ̃ →N≥1 A/N≥2 A

is injective.
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Proof. Let x ∈ Aϕ=ξ̃ ∩N≥2 A. Then

ξ̃ x = ϕ(x)= ξ̃ 2 y

for some y ∈ A. As ξ̃ is a nonzero divisor in A we get x ∈ I = (ξ̃ ). But then x = 0
by Lemma 3.10. �

Similarly, for each n ≥ 0 the morphism

Aϕ=ξ̃
n
→N≥i A/N≥i+1 A (3.12)

is injective. Let R be a quasiregular semiperfectoid ring (see [Bhatt et al. 2019,
Definition 4.19]) which is p-torsion free. In this case,

A := 1̂R

is transversal and (3.12) implies that for i ≥ 0,

π2i (TC(R))→ π2i (THH(R))

is injective; see [Bhatt et al. 2019, Theorem 1.12]. We ignore if there exists a direct
topological proof, i.e., one which does not invoke prisms. Note that the p-torsion
freeness is necessary. Indeed, by [Bhatt et al. 2019, Remark 7.20], π2i (TC(R)) is
always p-torsion free.

4. The q-logarithm

In this section we recall the definition of the q-logarithm and prove some properties
of it. Several statements in q-mathematics that we use are probably standard; see,
e.g., [Scholze 2017] for more on q-mathematics. Recall that the q-analog of the
integer n ∈ Z is defined to be

[n]q :=
qn
− 1

q − 1
∈ Z[q±1

].

If n ≥ 1, then we can rewrite

[n]q = 1+ q + · · ·+ qn−1

and then the q-number actually lies in Z[q]. For n≥ 0, we moreover get the relation

[−n]q =
q−n
− 1

q − 1
= q−n 1− qn

q − 1
=−q−n

[n]q . (4.1)

The q-numbers satisfy some basic relations, for example

[n+ k]q = qk
[n]q + [k]q (4.2)

for n, k ∈ Z, or

[m]q =
(qn)k − 1

qn − 1
qn
− 1

q − 1
=
(qn)k − 1

qn − 1
[n]q if n | m.
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As further examples of q-analogs let us define the q-factorial for n ≥ 1 as

[n]q ! := [1]q · [2]q · · · [n]q ∈ Z[q]

(with the convention that [0]q ! := 1) and, for 0≤ k ≤ n, the q-binomial coefficient
as (

n
k

)
q
:=

[n]q !
[k]q ![n− k]q !

.

Lemma 4.3. (1) For 0≤ k ≤ n, the q-binomial
(n

k

)
q is in Z[q].

(2) For 1≤ k ≤ n, the analog(
n
k

)
q
= qk

(
n− 1

k

)
q
+

(
n− 1
k− 1

)
q

of Pascal’s identity holds.

Proof. Part (1) follows from part (2) using induction and the easy case
(n

0

)
q = 1.

Then part (2) can be proved as follows: Let 1≤ k ≤ n; then

qk
(

n− 1
k

)
q
+

(
n− 1
k− 1

)
q
=

[n− 1]q !
[k− 1]q ![n− 1− k]q !

(
qk

[k]q
+

1
[n− k]q

)
=

[n− 1]q !
[k− 1]q ![n− 1− k]q !

qk
[n− k]q + [k]q
[k]q [n− k]q

=
[n− 1]q !

[k− 1]q ![n− 1− k]q !
[n]q

[k]q [n− k]q

=

(
n
k

)
q

using the addition rule (4.2). �

Let us define a generalized q-Pochhammer symbol by

(x, y; q)n := (x + y)(x + yq) · · · (x + yqn−1) ∈ Z[q±1, x, y]

for n ≥ 1. Note that setting x = 1 and y := −a recovers the known q-Pochhammer
symbol

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1)= (1,−a; q)n.

Moreover, we make the convention

(x, y; q)0 := 1.

In the q-world the generalized q-Pochhammer symbol replaces the polynomial

(x + y)n.
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For example one can show (using Lemma 4.3) the q-binomial formula

(x, y; q)n =
n∑

k=0

qk(k−1)/2
(

n
k

)
q
xn−k yk . (4.4)

Let us now come to q-derivations. We recall that the q-derivative ∇q f of some
polynomial f ∈ Z[q±1

][x±1
] is defined by

∇q f (x) :=
f (qx)− f (x)

qx − x
∈ Z[q±1

][x±1
].

Thus, for example, if f (x)= xn , n ∈ Z, then we can calculate

∇q(xn)=
qnxn
− qx

qx − x
=

qn
− 1

q − 1
xn−1
= [n]q xn−1.

The q-derivative satisfies an analog of the Leibniz rule, namely

∇q( f (x)g(x))=∇q( f (x))g(qx)+ f (x)∇q(g(x)).

Similarly to the classical rule

∇x((x + y)n)= n∇x((x + y)n−1),

we obtain the following relation for the generalized q-Pochhammer symbol.

Lemma 4.5. Let ∇q := ∇q,x denote the q-derivative with respect to x. Then the
formula

∇q((x, y; q)n)= [n]q(x, y; q)n−1

holds in Z[q±1
][x±1, y±1

] .

Proof. We proceed by induction on n. Let n = 1. Then (x, y; q)n = x + y and

∇q((x + y))= 1.

Now let n ≥ 2. We calculate using induction

∇q((x, y; q)n)=∇q((x, y; q)n−1(x + yqn−1))

= (x, y, q)n−1∇q(x + yqn−1)+ (qx + qn−1 y)∇q((x, y; q)n−1)

= (x, y; q)n−1 · 1+ q(x + qn−2 y)[n− 1]q(x, y; q)n−2

= (1+ q[n− 1]q)(x, y; q)n−1

= [n]q(x, y; q)n−1,

where we used the q-Leibniz rule and (4.2). �
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Similarly, as the polynomials

1, x − 1,
(x − 1)2

2!
, . . . ,

(x − 1)n

n!
, . . .

are useful for developing some function into a Taylor series around x = 1 (because
the derivative of one polynomial is the previous one), the q-polynomials

1, (x,−1; q)1,
(x,−1; q)2
[2]q !

, . . . ,
(x,−1; q)n
[n]q !

, . . .

are useful for developing a q-polynomial into some “q-Taylor series” around x = 1.
However, for this to make sense we have to pass to suitable completions and local-
ize at {[n]q}n≥1. Let us be more precise about this. The (q − 1, x − 1)-completion
Z[[q − 1, x − 1]] of Z[q, x] contains expressions of the form

∞∑
n=0

an(x,−1; q)n

with an ∈ Z[[q − 1]] because

(x,−1; q)n= (x−1)(x−1+1−q) · · ·
(

x−1+(1−q)
1− qn−1

1− q

)
∈ (q−1, x−1)n.

Finally, the next calculations will take place in the ring17

Q[[q − 1, x − 1]] ∼= Z[[q − 1, x − 1]][1/[n]q | n ≥ 1]∧(q−1,x−1)

because
(x,−1; q)n
[n]q !

∈ (q − 1, x − 1)Q[[q−1,x−1]].

The ring Q[[q − 1, x − 1]] admits a surjection

Q[[q − 1, x − 1]] →Q[[x − 1]]

with kernel generated by q − 1. Similarly, there is a morphism

ev1 :Q[[q − 1, x − 1]] →Q[[q − 1]]

with kernel generated by x−1. Finally, the q-derivative ∇q extends to a q-derivation
on Q[[q−1, x−1]] and it induces the usual derivative after modding out q−1. We
denote by ∇n

q the n-fold decomposition of ∇q and by

f (x)|x=1 := ev1( f (x))

the evaluation at x = 1 of an element f ∈Q[[q − 1, x − 1]].

17Note that inverting [n]q for n ≥ 0 and then (q − 1)-adically completing is the same as inverting
n for n ≥ 0 and then (q − 1)-adically completing.



THE p-COMPLETED CYCLOTOMIC TRACE IN DEGREE 2 563

Lemma 4.6. Take f (x) ∈ Q[[q − 1, x − 1]]. If ∇n
q ( f (x))|x=1 = 0 for all n ≥ 0,

then f (x)= 0.

Proof. As ∇q reduces to the usual derivative modulo q − 1, we see that f must be
divisible by q−1, i.e., we can write f (x)= (q−1)g(x) with g(x)∈Q[[q−1, x−1]].
But then ∇n

q (g(x))x=1 = 0 for all n ≥ 0, and we can conclude as before that
q − 1 | g(x), which in the end implies

f (x) ∈
∞⋂

k=1

(q − 1)k = {0}

because Q[[q − 1, x − 1]] is (q − 1)-adically separated. �

Now we can describe the q-Taylor expansion around x = 1 for elements in
Q[[q − 1, x − 1]].

Proposition 4.7. For any f (x) ∈Q[[q − 1, x − 1]] there is the Taylor expansion

f (x)=
∞∑

n=0

∇
n
q ( f (x))|x=1

(x,−1; q)n
[n]q !

.

Proof. Because
∇q

(
(x,−1; q)n
[n]q !

)
=
(x,−1; q)n−1

[n− 1]q !

we can directly calculate that both sides have equal higher derivatives at x = 1.
Thus they agree by Lemma 4.6. �

Using this in Lemma 4.9 we can motivate the below formula for the q-logarithm.

Definition 4.8. We define the q-logarithm as

logq(x) :=
∞∑

n=1

(−1)n−1q−n(n−1)/2 (x,−1; q)n
[n]q

∈Q[[q − 1, x − 1]].

Note that logq(x) is contained in a much smaller subring of Q[[q − 1, x − 1]]:
it suffices to adjoin the elements (x,−1; q)n/[n]q for n ≥ 0 to Z[q±1, x±1

] and
(x − 1)-adically complete.

In the ring Q[[q − 1, x − 1]] the element x is invertible, as

1
x
=

1
1−(1−x)

= 1+ (1− x)+ (1− x)2+ · · · .

The q-derivative of the q-logarithm is 1/x , like the usual logarithm.

Lemma 4.9. The q-logarithm logq(x) is the unique f (x) ∈Q[[q − 1, x − 1]] satis-
fying f (1)= 0 and ∇q( f (x))= 1/x. Moreover,

logq(x)=
q − 1
log(q)

log(x)

as elements in Q[[q − 1, x − 1]].
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Proof. That logq(x) has q-derivative 1/x can be checked using Proposition 4.7 after
writing 1/x in its q-Taylor expansion. Moreover, logq(1) = 0. For the converse
pick f as in the statement. By Proposition 4.7 we can write

f (x)=
∞∑

n=0

∇
n
q ( f (x))|x=1

(x,−1; q)n
[n]q !

,

and thus we have to determine

an := ∇
n
q ( f (x))|x=1

for n ≥ 0. By assumption we must have a0 = f (1)= 0. Moreover, for n ≥ 1,

an =∇
n
q ( f (x))|x=1 =∇

n−1
q (x−1)|x=1 = [−n+ 1]q · · · [−1]q .

Using [−k]q =−q−k
[k]q for k ∈ Z, the last expression simplifies to

[−n+ 1]q · · · [−1]q = (−1)n−1q−n(n−1)/2
[n− 1]q ! .

Thus we can conclude

f (x)=
∞∑

n=1

(−1)n−1q−n(n−1)/2 (x,−1; q)n
[n]q

= logq(x).

For the last statement note that

f (x) :=
q − 1
log(q)

log(x)

exists in Q[[q − 1, x − 1]] (because n ∈ R×q for all n ≥ 1) and satisfies f (1) = 0.
Moreover,

∇q( f (x))=
f (qx)− f (x)

qx − x
=

q − 1
log(q)

log(q)+ log(x)− log(x)
(q − 1)x

=
1
x
,

which implies f (x)= logq(x) by the proven uniqueness of the q-logarithm. �

We now turn to prisms again. Define

ξ̃ := [p]q = 1+ q + · · ·+ q p−1

and
ξ̃r := ξ̃ϕ(ξ̃ ) · · ·ϕ

r−1(ξ̃ )

for r ≥ 1. Here, ϕ is the Frobenius lift on Z[q±1
] satisfying ϕ(q) = q p. Then ξ̃

is a distinguished element in the prism Zp[[q − 1]]. The ξ̃r are again q-numbers,
namely

ξ̃r = [pr
]q .
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Let us recall the following situation from crystalline cohomology. Assume that
A is a p-complete ring with an ideal J ⊆ A equipped with divided powers

γn : J → J, n ≥ 1.

In this situation the logarithm

log(x) :=
∞∑

n=1

(−1)n−1(n− 1)!γn(x − 1)

converges in A for every element x ∈ 1+ J . We now want to prove an analo-
gous statement for the q-logarithm. Recall that for a prism (A, I ) we defined in
Definition 3.8 the Nygaard filtration

N≥n A := {x ∈ A | ϕ(x) ∈ I n
}, n ≥ 0.

From now on, we assume that the prism (A, I ) lives over (Zp[[q − 1]], (ξ̃ )). The
expression

γn,q(x− y) :=
(x − y)(x − qy) · · · (x − qn−1 y)

[n]q !
∈Zp[[q−1]][x, y][1/[m]q |m≥ 0]

is called the n-th q-divided power of x − y; see [Pridham 2019, Remark 1.4].18

We study the divisibility of

(x − y)(x − qy) · · · (x − qn−1 y)

by
ξ̃ , ϕ(ξ̃ ), . . . .

The following statement is clear.

Lemma 4.10. For r ≥ 1 the polynomial (in q)

ϕr−1(ξ̃ )=
q pr
− 1

q pr−1
− 1

is the minimal polynomial of a pr -th root of unity ζpr , i.e., the morphism

Z[q]/(ϕr−1(ξ̃ ))→ Z[ζpr ], q 7→ ζpr

is injective.

Thus, reducing modulo ϕr−1(ξ̃ ) is the same as setting q = ζpr . Moreover, in
Z[ζpr ] there is the equality

z pr
− 1=

pr
−1∏

i=0

(z− ζ i
pr ).

18This terminology is, however, quite bad. The q-divided power depends on the pair (x, y) and
not simply their difference x − y.
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Setting z = x/y one thus arrives at the congruence

x pr
− y pr

≡ (x − y)(x − qy) · · · (x − q pr
−1 y) mod ϕr−1(ξ̃ ), (4.11)

which will be useful.

Lemma 4.12. Let n ≥ 1, and for r ≥ 1 write n = ar pr
+ br with ar , br ≥ 0 and

br < pr . Then in Zp[[q − 1]],

[n]q ! = u
∞∏

r≥1

ϕr−1(ξ̃ )ar

for some unit u ∈ Zp[[q − 1]]×.

Proof. We may prove the statement by induction on n. Thus let us assume that it is
true for m = n− 1, and for r ≥ 1 write m = cr pr

+ dr with cr , dr ≥ 0 and dr < pr .
If n is prime to p, then [n]q is a unit in Zp[[q − 1]] and it suffices to see that the
right-hand side is equal (up to some unit in Zp[[q − 1]]) to

∞∏
r≥1

ϕr−1(ξ̃ )cr .

But n being prime to p implies that br > 0 for all r ≥ 1. Thus cr =ar and dr =br−1,
which implies that both products are equal. Now assume that p divides n and write
n= psn′ with n′ prime to p. Moreover, write m= n−1= cr pr

+dr as above. Then
we can conclude ar = cr for r > s while cr = ar − 1 for 1≤ r ≤ s (as dr = pr

− 1
for such r ). Altogether we therefore arrive at

[n]q ! = [n]q [n− 1]q ! = u′[n]q
∞∏

r≥1

ϕr−1(ξ̃ )cr = u′v
∞∏

r≥1

ϕr−1(ξ̃ )ar ,

u′ ∈ Zp[[q − 1]]×, where we used the fact that

[n]q = v[ps
]q = vϕ

s−1(ξ̃ ) · · · ξ̃

for some unit v ∈ Zp[[q − 1]]. �

Proposition 4.13. Let (A, I ) be a prism over (Zp[[q− 1]], (ξ̃ )) and let x, y ∈ A be
elements of rank 1 such that ϕ(x − y)= x p

− y p
∈ ξ̃ A. Then for all n ≥ 1 the ring

A contains a q-divided power

γn,q(x − y)=
(x − y)(x − qy) · · · (x − qn−1 y)

[n]q !

of x − y.19 Moreover, γn,q lies in fact in the n-th step N≥n A of the Nygaard
filtration of A.

19By this we mean that there exists an element, called γn,q (x − y), such that [n]q !γn,q (x − y)=
(x − y)(x − qy) · · · (x − qn−1 y). The element γn,q (x − y) need not be unique, but it is if A is
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Proof. Replacing A, x, y by the universal case we may assume that A is flat
over Zp[[q − 1]]. In particular, this implies that ξ̃ , ϕ(ξ̃ ), . . . are pairwise regular
sequences (see Lemma 3.6). Fix n ≥ 1. For r ≥ 1 we write n as

n = ar pr
+ br

with ar , br ≥ 0 and 0≤ br < pr . We claim that for each r ≥ 0

ϕr−1(ξ̃ )ar

divides
(x − y)(x − qy) · · · (x − qn−1 y).

This implies the proposition, namely by Lemma 4.12 we have

[n]q ! = u
∏
r≥1

ϕr−1(ξ̃ )ar

for some unit u ∈ A× while furthermore the morphism

A/([n]q !)→
∏
r≥1

A/(ϕr−1(ξ̃ ))ar

is injective by the proof of Lemma 3.6. Thus fix r ≥ 1. To prove our claim we may
replace n by n− br as

(x − y)(x − qy) · · · (x − qn−br−1 y)

divides
(x − y)(x − qy) · · · (x − qn−1 y).

Thus let us assume that n = ar pr . We claim that each of the ar -many elements

(x − y)(x − qy) · · · (x − q pr
−1 y),

(x − q pr
y)(x − q pr

+1 y) · · · (x − q2pr
−1 y),

...

(x − q(ar−1)pr
y)(x − q(ar−1)pr

+1 y) · · · (x − qar pr
−1 y)

(note that their product is (x−y) · · · (x−qn−1 y)) is divisible by ϕr−1(ξ̃ ). For this re-
call the congruence (4.11). Replacing in this congruence y by q pr

y, . . . , q(ar−1)pr
y

shows that each of the above ar elements is congruent modulo ϕr−1(ξ̃ ) to an ele-
ment of the form

x pr
− qk y pr

[n]q -torsion free for any n ≥ 0. Note that even in this torsion free case γn,q (x − y) depends on the
pair (x, y) and not merely on the difference x − y.
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with k ≥ 0 divisible by pr . But we have

x pr
− qk y pr

= (x pr
− y pr

)+ y pr
(1− qk)

and we claim that under our assumptions both summands are divisible by ϕr−1(ξ̃ ).
For the first summand we use that x, y are of rank 1 to write

x pr
− y pr

= ϕr−1(x p
− y p)= ϕr−1(ξ̃ )ϕr−1

( x p
− y p

ξ̃

)
,

which makes sense as we assumed that

x p
− y p

∈ ξ̃ A.

For the second summand we note that

1− qk
=

1− qk

1− q pr ϕ
r−1(ξ̃ )(1− q pr−1

)

with all factors in Zp[[q − 1]] as pr divides k. It remains to prove that

γn,q(x − y)=
(x − y)(x − qy) · · · (x − qn−1 y)

[n]q !

lies in N≥n A. But

ϕ(γn,q)=
(x p
− y p)(x p

− q p y p) · · · (x p
− q p(n−1)y p)

ϕ([n]q !)

and as we saw above ξ̃ divides each of the n factors

(x p
− y p), (x p

− q p y p), . . . , (x p
− q p(n−1)y p).

But ξ̃ and ϕ([n]q !) form a regular sequence by Lemma 3.6, which implies that

(x p
− y p)(x p

− q p y p) · · · (x p
− q p(n−1)y p)

is divisible by ξ̃ nϕ([n]q) as was to be proven. This finishes the proof of the propo-
sition. �

As the proof shows there exists unique choice of a q-divided power

γn,q(x − y)

which is functorial in the triple (A, x, y) (with x, y ∈ A satisfying the assumptions
in Proposition 4.13). From now on we always assume that these q-divided powers
are chosen. Moreover, we get the following lemma concerning the convergence of
the q-logarithm.
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Lemma 4.14. Let (A, I ) be a prism over (Zp[[q−1]], (ξ̃ )). Then for every element
x ∈ 1+N≥1 A of rank 1 the series

logq(x)=
∞∑

n=1

(−1)n−1q−n(n−1)/2
[n− 1]q !γn,q(x − 1)

is well-defined and converges in A. Moreover, logq(x) ∈N≥1 A,

logq(x)≡ x − 1 mod N≥2 A
and

logq(xy)= logq(x)+ logq(y)

for any x, y ∈ 1+N≥1 A of rank 1.

Proof. By our assumption on x we get ϕ(x − 1) ∈ ξ̃ A, and thus we may apply
Proposition 4.13 to x = x and y = 1. Thus the (canonical choice of) q-divided
powers

γn,q(x − 1)=
(x − 1)(x − q) · · · (x − qn−1)

[n]q !

in A are well-defined. Moreover, as

logq(x)=
∞∑

n=1

(−1)n−1q−n(n−1)/2
[n− 1]q !γn,q(x − 1)

and the elements [n− 1]q ! tend to zero in A for the (p, I )-adic topology, we can
conclude that the series logq(x) converges because A is ξ̃ -adically complete. The
claim concerning the Nygaard filtrations follows directly from γn,q(x−1) ∈N≥n A,
which was proven in Proposition 4.13. That logq is a homomorphism can be seen
in the universal case in which A is flat over Zp[[q − 1]] (by [Bhatt and Scholze
2019, Proposition 3.13]). Then the formula logq(xy)= logq(x)+ logq(y) can be
checked after base change to Qp[[q − 1]], where it follows from Lemma 4.9 as the
usual logarithm is a homomorphism. �

5. Prismatic cohomology and topological cyclic homology

This section is devoted to the relation of the prismatic cohomology developed by
Bhatt and Scholze [2019] with topological cyclic homology (as described by Bhatt,
Morrow and Scholze [Bhatt et al. 2019]) following [Bhatt and Scholze 2019, Sec-
tion 11.5].

Let R be a quasiregular semiperfectoid ring, and let S be any perfectoid ring
with a map S→ R.

Proposition 5.1. The category of prisms (A, I ) with a map R→ A/I admits an
initial object (1init

R , I ), which is a bounded prism. Moreover, 1init
R identifies with

the derived prismatic cohomology 1R/Ainf(S), for any choice of S as before.
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Proof. See [Bhatt and Scholze 2019, Propositions 7.2 and 7.10] or [Anschütz and
Le Bras 2019, Proposition 3.4.2]. �

In the following, we simply write 1R =1
init
R =1R/Ainf(S).

Theorem 5.2. Let R be a quasiregular semiperfectoid ring. There is a functorial
(in R) δ-ring structure on 1̂top

R := π0(TC−(R;Zp)) refining the cyclotomic Frobe-
nius. The induced map 1R =1

init
R → 1̂

top
R identifies 1̂top

R with the completion with
respect to the Nygaard filtration (Definition 3.8) of 1R , and is compatible with the
Nygaard filtration on both sides.

Proof. See [Bhatt and Scholze 2019, Theorem 11.10]. �

The Nygaard filtration on 1̂top
R is defined as the double-speed abutment filtration

for the (degenerating) homotopy fixed point spectral sequence

E i j
2 := H i (T, π− j (THH(R;Zp)))⇒ π−i− j (TC−(R;Zp))

for the T= S1-action on THH(R;Zp). If η ∈ H 2(T,Z) is a generator, then multipli-
cation by any lift v∈π−2(TC−(R;Zp)) of the image of η in H 2(T,π0(THH(R;Zp)))

induces isomorphisms

π2i (TC−(R;Zp)))∼=N≥i1̂
top
R

for i ∈ Z.

Remark 5.3. We will only use the fact that 1̂R is a prism in this paper (as we
will apply the results of Section 3 to π0(TC−(R;Zp))) and that the topological
Nygaard filtration, defined via the homotopy fixed point spectral sequence, agrees
with the Nygaard filtration from Definition 3.8, but the way one proves this is by
showing the stronger statement that 1̂top

R is the Nygaard completion of 1R . We
ignore whether there is a more direct way to produce the δ-structure on 1̂R; see
[Bhatt and Scholze 2019, Remark 1.14].

6. The p-completed cyclotomic trace in degree 2

Now we are ready to prove our main theorem on the identification of the p-completed
cyclotomic trace. Recall that for any ring A the cyclotomic trace

ctr : K (A)→ TC(A)

from the algebraic K-theory of A to its topological cyclic homology is a natural
morphism20 refining the Dennis trace Dtr : K (A)→HH(A) introduced in Section 2;
see [Blumberg et al. 2013, Section 10.3; Bökstedt et al. 1993, Section 5]. Let us
carefully fix some notation. For the whole section we fix a generator γ ∈ H1(T,Z),

20When upgraded to a natural transformation of functors on small stable∞-categories the cyclo-
tomic trace is uniquely determined by these properties; see [Blumberg et al. 2013, Section 10.3].
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but note that the formulas in Theorem 6.7 will be independent of this choice. Set
Z

cycl
p as the p-completion of Zp[µp∞] and choose some p-power compatible sys-

tem of p-power roots of unity

ε := (1, ζp, ζp2, . . .) ∈ (Zcycl
p )[

with ζp 6= 1. This choice determines several elements as we now discuss. Set

q := [ε]θ ∈ Ainf(Z
cycl
p ) :=W ((Zcycl

p )[)∼= π0(TC−(Zcycl
p ;Zp)),

µ := q − 1,

ξ̃ := [p]q =
q p
− 1

q − 1
= 1+ q + · · ·+ q p−1,

and
ξ := ϕ−1(ξ̃ ).

Note that the ring Ainf(Z
cycl
p ) is the (p, q − 1)-adic completion of Zp[q1/p∞

]. We
now construct elements

u ∈ π2(TC−(Zcycl
p ;Zp)), v ∈ π−2(TC−(Zcycl

p ;Zp))

such that uv = ξ ∈ π0(TC−(Zcycl
p ;Zp)).21 The elements u, v will be uniquely

determined by ε. Let

ctr : Tp(Z
cycl
p )×→ π2(TC(Zcycl

p ;Zp))

be the cyclotomic trace in degree 2. We denote by the same symbol the composition

ctr : Tp(Z
cycl
p )×→ π2(TC−(Zcycl

p ;Zp))

with the canonical morphism TC( – ;Zp)→ TC−( – ;Zp). Let

can : TC−( – ;Zp)→ TP( – ;Zp)

be the canonical morphism (from homotopy to Tate fixed points).

Lemma 6.1. The element

can(ctr(ε)) ∈ π2(TP(Zcycl
p ;Zp))

is divisible by µ.

A similar statement (in terms of TF) is proven in [Hesselholt 2006, Proposi-
tion 2.4.2] (see also [Hesselholt 2018, Definition 4.1]) using the explicit description
of the cyclotomic trace in degree 1 via TR from [Geisser and Hesselholt 1999,
Lemma 4.2.3].

21We need a finer statement than [Bhatt et al. 2019, Propositions 6.2 and 6.3], which asserts the
existence of some u, v as above with uv = aξ for some unspecified unit a ∈ Ainf(Z

cycl
p )×.
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Proof. Fix a generator
σ ′ ∈ π2(TP(Zcycl

p ;Zp)).

It suffices to show that can ◦ ctr(ε) maps to 0 under the composition

π2(TP(Zcycl
p ;Zp))

σ ′
−1

−−→ π0(TP(Zcycl
p ;Zp))∼= Ainf(Z

cycl
p )→W (Zcycl

p )

because the kernel of Ainf(Z
cycl
p )→ W (Z

cycl
p ) is generated by µ; see [Bhatt et al.

2018, Lemma 3.23]. It therefore suffices to prove the statement for OC for C/Qcycl
p

an algebraically closed, complete nonarchimedean extension. Over OC we can
(after changing σ ′) find

u′ ∈ π2(TC−(OC ;Zp)), v′ ∈ π−2(TC−(OC ;Zp))

such that
u′v′ = ξ =

µ

ϕ−1(µ)
, can(v′)= σ ′−1

and the cyclotomic Frobenius maps u′ to σ ′; see [Bhatt et al. 2019, Proposition
6.2., Proposition 6.3]. Then multiplication by v′ induces an isomorphism

π2(TC(OC ;Zp))∼= Ainf(OC)
ϕ=ξ̃ .

By [Fargues and Fontaine 2018, Proposition 6.2.10]

(Ainf(OC)[1/p])ϕ=ξ̃

is 1-dimensional over Qp and thus generated by µ (as µ 6= 0 and ϕ(µ)= ξ̃µ). But
µ is not divisible by p in Ainf(OC) as it maps to a unit in W (C). This proves that
Ainf(OC)

ϕ=ξ̃
= Zpµ, which implies the claim. �

Let us define

σ :=
ctr(ε)
µ
∈ π2(TP(Zcycl

p ;Zp)) and u := ξσ ∈ π2(TC−(Zcycl
p )).

More precisely, the element u is defined via can(u)= ξσ . Note that ξσ lies indeed
in the image of

can : π2(TC−(Zcycl
p ;Zp))→ π2(TP(Zcycl

p ;Zp)),

due to the fact that the abutment filtration for the Tate fixed point spectral sequence
on π2(TP(Zcycl

p ;Zp)) is the ξ -adic filtration.

Lemma 6.2. The element u defined above lifts the class of

δ1(γ )ξ ∈ π2(THH(Zcycl
p ;Zp))∼= π2(HH(Zcycl

p ;Zp))
αγ
∼= (ξ)/(ξ

2).
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Proof. By definition

can(u)=
ξ

µ
ctr(ε) ∈ π2(TP(Zcycl

p ;Zp)).

Now
ξ

µ
=

1
ϕ−1(µ)

and (ξ)/(ξ 2) is ϕ−1(µ)-torsion free as a module over Ainf(Z
cycl
p ), since

θ(ϕ−1(µ))= ζp − 1 6= 0 ∈ Zcycl
p .

Moreover, the cyclotomic trace lifts the Dennis trace in Hochschild homology.
Thus, by Proposition 2.5,

αγ (Dtr(ε))≡ δ1(γ )([ε] − 1) ∈ (ξ)/(ξ 2)

and therefore
u ≡ δ1(γ )

[ε] − 1
ϕ−1(µ)

= δ1(γ )ξ ∈ (ξ)/(ξ
2)

as desired. �

In particular, we see that the element

σ ∈ π2(TP(Zcycl
p ;Zp))

is a generator. Set

v := σ−1
∈ π−2(TC−(Zcycl

p ;Zp))
can
∼= π2(TP(Zcycl

p ;Zp)).

Then
uv = ξ.

Recall that for any morphism of rings R→ A, the negative cyclic homology is
defined to be

HC−(A/R) := HH(A/R)hT,

where ( – )hT
:= lim
←−−BT

( – ); see [Hoyois 2015] for a comparison with the classical
definition in [Loday 1992, Definition 5.1.3]. The homotopy fixed point spectral
sequence

H i (BT, π− j (HH(A/R))⇒ π−i− j (HC−(A/R))

endows π∗(HC−(A/R)) with a (multiplicative) decreasing filtration, which we de-
note by

N≥•HC−(A/R).

Each generator γ ∈ H1(T,Z) defines canonically a generator ηγ ∈ H 2(BT,Z).
We abuse notation and denote by γ ∈ H1(T, R) the image of γ ∈ H1(T,Z), and
similarly for ηγ .
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Proposition 6.3. Let γ ∈ H1(T,Z) be a generator and assume A = R/( f ) for
some nonzero divisor f ∈ R. Then

(1) HH∗(A/R) is concentrated in even degrees and the homotopy fixed point spec-
tral sequence

H i (BT, π− j (HH(A/R))⇒ π−i− j (HC−(A/R))

degenerates.

(2) There exists a unique element δ2 ∈ {±1}, independent of the choice of γ , such
that the morphism

( f )/( f )2
αγ
−→ π2(HH(A/R))

η̃γ
−→ π0(HC−(A/R))/N≥2HC−(A/R)

sends the class of f to δ2 f · 1π0(HC−(A/R))/N≥2HC−(A/R). Here the first isomor-
phism is the one from Lemma 2.1. The second morphism is the multiplication
by some lift η̃γ ∈ π−2(HC−(A/R)) of ηγ ∈ H 2(BT, π0(HH(A/R)).22

Proof. The first claim follows from the HKR-filtration as the exterior powers∧i L A/R[i]

are concentrated in even degrees for all i ≥ 0. For the second claim we can reduce
by naturality to the universal case R = Z[x], f = x , in which case it is well-known
that the elements

η̃γ (αγ ( f )), f · 1π0(HC−(A/R))/N≥2HC−(A/R)

are generators of the free A-module N≥1π0(HC−(A/R)/N≥2π0(HC−(A/R))) of
rank 1. This implies the existence of δ2 as A ∼= Z. As the composition η̃γ ◦αγ is
independent of the choice of γ ∈ H1(T,Z) (because both αγ and η̃γ are changed
by a sign), the proof is finished. �

Remark 6.4. We expect that δ2 = 1, but did not make the explicit computation,
since we do not need it.

We need the following relation of v to ηγ .

Lemma 6.5. Let ηγ , v∈H 2(T, π0(HH(Zcycl
p ;Zp))) be the images of ηγ ∈H 2(T,Z)

and v ∈ π−2(TC−(Zcycl
p ;Zp)) under the canonical morphisms

H 2(T,Z)→ H 2(T, π0(HH(Zcycl
p ;Zp)))

and
π−2(TC−(Zcycl

p ;Zp))→ H 2(T, π0(HH(Zcycl
p ;Zp))),

respectively. Then v = δ2δ1(γ )ηγ .
22As we mod out by N≥2 and the spectral sequence degenerates, the second morphism does not

depend on the choice of a lift.
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Proof. By Lemma 6.2 we know that the image of u in

π2(HH(Zcycl
p ;Zp))

αγ
∼= (ξ)/(ξ

2)

is
αγ (δ1(γ )ξ).

As ηγ , v ∈ H 2(T, π0(HH(Zcycl
p ;Zp))) there exists some unit r ∈ Z

cycl
p such that

rηγ = v. We can calculate in π0(HC−(Zcycl
p ;Zp))/N≥2π0(HC−(Zcycl

p ;Zp)) that

ξ = uv = vαγ (δ1(γ )ξ)= rηγαγ (δ1(γ )ξ)= rδ2δ1(γ )ξ

using Proposition 6.3. Thus, r = δ2δ1(γ ). �

One has the following (important) additional property (which, up to changing ξ
by some unit, is implied by the conjunction of [Bhatt et al. 2019, Propositions 6.2
and 6.3]).

Lemma 6.6. The cyclotomic Frobenius

ϕhT
: π2(TC−(Zcycl

p ;Zp))→ π2(TP(Zcycl
p ;Zp))

sends u to σ .

Proof. The cyclotomic Frobenius ϕhT is linear over the Frobenius on Ainf. Thus,
noting ξ/µ= 1/ϕ−1(µ), we can calculate

ϕhT(u)= ϕ
( ξ
µ

)
ϕhT(ctr(ε))=

1
µ
ϕhT(ctr(ε)).

But
ϕhT(ctr(ε))= can(ctr(ε))

as the cyclotomic trace has image in π2(TC(Zcycl
p ;Zp)). This implies that

ϕhT(u)=
ctr(ε)
µ
= σ. �

By Lemma 6.6 one can conclude that there is a commutative diagram

π2(TC(R;Zp)) //

βε
��

π2(TC−(R;Zp))
ϕhT
−can

//

v
��

π2(TP(R;Zp))

σ−1

��

1̂
ϕ=ξ̃

R
// N≥11̂R

(ϕ/ξ̃ )−1
// 1̂R

whose vertical arrows are isomorphisms, for any quasiregular semiperfectoid Z
cycl
p -

algebra R. We remind the reader that the induced isomorphism

βε : π2(TC(R;Zp))∼= 1̂
ϕ=ξ̃

R

depends only on ε, not on γ .
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For a quasiregular semiperfectoid ring R we denote the Teichmüller lift by

[ – ]θ̃ : R
[
= lim
←−−

x 7→x p
R→1R.

More precisely, the canonical morphism R→1R induces a morphism ι : R[→1
[
R

and [ – ]θ̃ is the composition of ι with the Teichmüller lift for the surjection

1R→1R.

We set23

[ – ]θ := [( – )1/p
]θ̃ .

We consider the p-adic Tate module

Tp R× = lim
←−−
n≥0

R×[pn
]

of R× as being embedded into R[ as the elements with first coordinate equal to 1.
We are ready to state and prove our main theorem.

Theorem 6.7. Let R be a quasiregular semiperfectoid Z
cycl
p -algebra. Then the

composition

Tp R×→ π2(K (R;Zp))
ctr
−→ π2(TC(R;Zp))

βε
∼= 1̂

ϕ=ξ̃

R

is given by sending x ∈ Tp(R×) to

logq([x]θ )=
∞∑

n=1

(−1)n−1q−n(n−1)/2 ([x]θ − 1)([x]θ − q) · · · ([x]θ − qn−1)

[n]q
.

Proof. Replacing R by the universal case Z
cycl
p 〈x1/p∞

〉/(x − 1), we may assume
that R is p-torsion free and (thus) that (1̂R, (ξ̃ )) is transversal (by Lemma 3.3 it
suffices to see that (p, ξ) is a regular sequence, which follows as 1̂R/ξ ∼= ̂L�R/Zcycl

p
,

by [Bhatt et al. 2019, Theorem 7.2.(5)], is p-torsion free).
Let us define

ctr2 : Tp R×→ π2(K (R;Zp))
ctr
−→ π2(TC(R;Zp)).

By Theorem 5.2 the canonical morphism

ι :1R→ π0(TC−(R;Zp))

is compatible with the Nygaard filtrations and identifies π0(TC−(R;Zp)) with the
Nygaard completion 1̂R of 1R . By Corollary 3.11 the morphism

1ϕ=ξ̃
R ↪→N≥11R/N≥21R ∼=N≥11̂R/N≥21̂R

23This agrees with the definition of [ – ]θ made in the introduction.
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is injective. Hence it suffices to show that the morphisms logq([ – ]θ ) and βε ◦ ctr
agree modulo N≥21̂R . Multiplication by the element v ∈ π−2(TC−(Zcycl

p ;Zp))

constructed after Lemma 6.2 and the HKR-isomorphism (which depends on γ )
induce an isomorphism

J/J 2
αγ
∼= π2(THH(R;Zp))

v
∼=N≥11̂R/N≥21̂R,

where J is the kernel of the surjection

θ :W (R[)→ R.

By Proposition 6.3 and Lemma 6.5 this isomorphism sends the class of j ∈ J to

δ2
2δ1(γ ) · j · 11̂R/N≥21̂R

= δ1(γ ) · j · 11̂R/N≥21̂R

for the canonical W (R[)-algebra structure on

1̂R/N≥21̂R ∼= π0(TC−(R;Zp))/N≥2π0(TC−(R;Zp))

∼= π0
(
HC−(R/W (R[))

)
/N≥2π0

(
HC−(R/W (R[))

)
(which lifts the morphism θ ). Let x ∈ Tp R×. By Lemma 4.14

logq([x]θ )≡ [x]θ − 1 mod N≥21̂R.

On the other hand, as the cyclotomic trace reduces to the Dennis trace Dtr, we can
calculate, using Proposition 2.5 and Lemma 6.5,

βε(ctr(x))≡ vDtr(x)

= vδ1(γ )([x]θ − 1)= δ1(γ )
2([x]θ − 1) · 11̂R/N≥21̂R

mod N≥21̂R

= ([x]θ − 1) mod N≥21̂R.

Thus we can conclude
logq([x]θ )= βε ◦ ctr(x)

as desired. �

Corollary 6.8. Let R be a quasiregular semiperfectoid Z
cycl
p -algebra. The map

logq([ – ]θ ) : Tp(R×)→ 1̂
ϕ=ξ̃

R

is a bijection.

Proof. Since both sides satisfy quasisyntomic descent,24 one can assume, as in
[Bhatt et al. 2019, Proposition 7.17], that R is w-local and R× is divisible. In this

24For Tp( – )× this follows from p-completely faithfully flat descent on p-complete rings with
bounded p∞-torsion [Anschütz and Le Bras 2019, Appendix]. For 1̂ϕ=ξ̃R it is proven in [Bhatt et al.
2019].
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case, the map
Tp(R×)→ π2(K (R;Zp))

is a bijection. Moreover, [Clausen et al. 2018, Corollary 6.9] shows that

ctr : π2(K (R;Zp))→ π2(TC(R;Zp))

is also bijective. As by Theorem 6.7 the composite of these two maps is the map
logq([ – ]θ̃ ), this proves the corollary. �

Remark 6.9. As explained at the end of the introduction, one can give a direct and
more elementary proof of Corollary 6.8 when R is the quotient of a perfect ring by
a finite regular sequence [Scholze and Weinstein 2013] or when R is a p-torsion
free quotient of a perfectoid ring by a finite regular sequence and p is odd. But we
do not know how to prove it directly in general.
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Nisnevich topology with modulus

Hiroyasu Miyazaki

In the theory of motives à la Voevodsky, the Nisnevich topology on smooth
schemes is used as an important building block. We introduce a Grothendieck
topology on proper modulus pairs, which is used to construct a non-homotopy-
invariant generalization of motives. We also prove that the topology satisfies
similar properties to the Nisnevich topology.
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1. Introduction

In the theory of motives à la Voevodsky [2000], the Nisnevich topology on the
category of smooth schemes over a field k plays a fundamental role. In this paper,
we introduce a Grothendieck topology on proper modulus pairs, which is used to
construct a non-homotopy-invariant generalization of motives. We also prove that
the topology satisfies similar properties to the Nisnevich topology.

A Nisnevich cover f : Y → X is an étale cover such that any point x ∈ X admits
a point y ∈ Y with f (y)= x and k(y)= k(x). Therefore, the Nisnevich topology
is finer than the Zariski topology and is coarser than the étale topology. Voevodsky
defined the category of effective motives DMeff as the derived category of the
abelian category of Nisnevich sheaves with transfers NST, modulo A1-homotopy
invariance:

DMeff
:=

D(NST)
(A1-homotopy invariance)

. (1.1.1)
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Grant (19K23413).
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We briefly recall the definition of NST. Let PST be the category of additive
abelian presheaves on the category of finite correspondences Cor. We have a
natural functor Sm→ Cor, where Sm denotes the category of smooth schemes
over k. Then NST is defined to be the full subcategory of PST which consists of
F ∈ PST such that the restriction F |Sm is a Nisnevich sheaf on Sm.

The definition of NST is simple, but it is nontrivial that NST is an abelian
category. It follows from the existence of a left adjoint to the inclusion functor
NST→ PST. A key ingredient of the proof of its existence is the following fact:
for any Nisnevich cover U → X , the Čech complex

· · · −→ Ztr(U ×X U )−→ Ztr(U )−→ Ztr(X)→ 0

is exact as a complex of Nisnevich sheaves, where Ztr(– ) :Cor→ PST denotes the
Yoneda embedding (see for example [Mazza et al. 2006, Proposition 6.12]). More-
over, the Nisnevich topology is subcanonical, i.e., every representable presheaf in
Sm is a sheaf.

The category of motives DMeff has provided vast applications to the study of
arithmetic geometry, but on the other hand, it has a fundamental constraint that
it cannot capture non-A1-homotopy-invariant phenomena, e.g., wild ramification.
Indeed, the arithmetic fundamental group π1(X), which captures the information
of ramifications, is not A1-homotopy invariant.

An attempt to develop a theory of motives which captures non-A1-homotopy-
invariant phenomena started in [Kahn et al. 2015]. The strategy is to extend Voevod-
sky’s theory to modulus pairs. A modulus pair is a pair M = (M,M∞) of a scheme
M and an effective Cartier divisor M∞ on M such that the interior Mo

:=M−M∞

is smooth over k. We can define a reasonable notion of morphisms between mod-
ulus pairs, and we obtain a category of modulus pairs MSm. A modulus pair M
is proper if M is proper over k, and we denote by MSm the full subcategory of
MSm consisting of proper modulus pairs (see Definition 2.1.1 for details).

These categories embed in categories of “modulus correspondences” MCor
and MCor, just as Sm embeds in Cor (see Definition 2.3.2). In [Kahn et al.
2015], categories of “modulus sheaves with transfers” MNST (relative to MCor)
and MNST (relative to MCor) were introduced, in order to parallel the definition
of (1.1.1). However, the proof that these categories are abelian was found to contain
a gap. This gap was filled in [Kahn et al. 2019a] for MNST, by showing that its
objects are indeed the sheaves with transfers for a suitable Grothendieck topology
on MSm.

In this paper, we construct a Grothendieck topology on MSm with nice proper-
ties. It will be shown in [Kahn et al. 2019b], using [Kahn and Miyazaki 2019], that
the objects of MNST are the sheaves (with transfers) for this topology and that this
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category is abelian. Thus the present paper contains the tools to finish filling the
gap of [Kahn et al. 2015]. Moreover, we prove an important exactness result.

Our guide is the following characterization of the Nisnevich topology on Sm:
the Nisnevich topology is generated by coverings U tV → X associated with some
commutative square S in Sm of the form

W //

��

V

��

U // X

which satisfies the following properties:

(1) S is a cartesian square,

(2) the horizontal morphisms are open immersions,

(3) the vertical morphisms are étale, and

(4) the morphism (V −W )red→ (X −U )red is an isomorphism.

Such squares are called elementary Nisnevich squares. Elementary Nisnevich
squares form a cd-structure on Sm in the sense of [Voevodsky 2010]. A remarkable
property of the Nisnevich cd-structure is the following fact: a presheaf of sets F
on Sm is a Nisnevich sheaf if and only if F(∅) = {∗} and for any elementary
Nisnevich square as above, the square

F(X) //

��

F(U )

��

F(V ) // F(W )

is cartesian. This equivalence holds for any cd-structure which is complete and
regular; see [Voevodsky 2010, Definitions 2.3, 2.10, Corollary 2.17].

In [Kahn et al. 2019a], a cd-structure on MSm is introduced. It is denoted PMV,
and satisfies properties similar to elementary Nisnevich squares. Its definition will
be recalled in Section 4.1. For short, we call the topology on MSm associated with
PMV the MV-topology.

Our main result is the following.

Theorem. The category of proper modulus pairs MSm admits a cd-structure PMV

such that the following assertions hold. For short, we call the topology associated
with PMV the MV-topology.

(1) (Theorems 4.3.1, 4.4.1, 4.4.2) The cd-structure PMV is complete and regular.
In particular, a presheaf of sets F on MSm is a sheaf for the MV-topology if
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and only if F(∅)= {∗} and for any square T ∈ PMV of the form

W //

��

V

��

U // M
the square

F(M) //

��

F(U )

��

F(V ) // F(W )

is cartesian.

(2) (Theorem 4.5.1) The MV-topology and the MV-topology are subcanonical.

(3) (Corollary 5.2.7) For any M ∈MSm, consider the presheaf Ztr(M) on MCor
represented by M , which is a sheaf for the MV-topology by [Kahn et al. 2019a,
Theorem 2(2)]. Then, for any square as above, the following complex of
sheaves for the MV-topology is exact:

0→ Ztr(W )−→ Ztr(U )⊕Ztr(V )−→ Ztr(M)→ 0.

The organization of the paper is as follows. In Section 2, we recall basic def-
initions and results on modulus pairs from [Kahn et al. 2019a]. In Section 3, we
introduce “the off-diagonal functor”, which is a key ingredient to define the cd-
structure on the category of proper modulus pairs. In Section 4, we define the
cd-structure on the category of proper modulus pairs, and prove that it satisfies
completeness and regularity. Finally, in Section 5, we prove the exactness of the
Mayer–Vietoris sequences associated with the distinguished squares with respect
to the cd-structure.

Notation and convention. Throughout the paper, we fix a base field k. Let Sm be
the category of separated smooth schemes of finite type over k, and let Sch be the
category of separated schemes of finite type over k. For any scheme X and for any
closed subscheme F ⊂ X , we denote by BlF (X) the blow-up of X along F .

2. Basics on modulus pairs

In this section, we introduce basic notions which we use throughout the paper.

2.1. Category of modulus pairs. We recall basic definitions on modulus pairs, in-
troduced in [Kahn et al. 2019a]. We also introduce some new notation. In particular,
the canonical model of fiber product is often useful (see Definition 2.2.2). Though
our main interest in this paper is on proper modulus pairs, we introduce the general
definition of modulus pairs for later use.
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Definition 2.1.1. (1) A modulus pair is a pair M = (M,M∞) consisting of a
scheme M ∈ Sch (the ambient space) and an effective Cartier divisor M∞ on M
(the modulus divisor) such that the interior Mo

:= M \ |M∞| belongs to Sm, where
|M∞| denotes the support of M∞.

Note that Mo is a dense open subset of M . Moreover, we can prove that M must
be a reduced scheme by using the smoothness of Mo and the assumption that M∞

is an effective Cartier divisor.

(2) A modulus pair M is called proper if the ambient space M is proper over k.

(3) An admissible morphism f : M→ N of modulus pairs is a morphism between
the interiors f o

: Mo
→ N o in Sm which satisfies the properness condition:

– Let 0 be the graph of the rational map f̄ : M 99K N which is induced by f o.
Then the natural morphism 0→ M is proper.

and the modulus condition:

– Let 0N be the normalization of 0. Then we have the inequality

M∞|0N ≥ N∞|0N

of effective Cartier divisors on 0N , where M∞|0N and N∞|0N denote the
pullbacks of M∞ and N∞ along the natural morphisms 0N

→M and 0N
→ N .

Note that the pullbacks are defined since the rational map f̄ restricts to a
morphism f o, and since Mo is dense in M .

If f : M → N and g : N → L are admissible morphisms, then the composite
go
◦ f o
: Mo

→ Lo defines an admissible morphism M → N ; see [Kahn et al.
2019a]. If N is proper, then the properness condition above is always satisfied.

(4) We let MSm denote the category whose objects are modulus pairs and whose
morphisms are admissible morphisms. The full subcategory of MSm consisting of
proper modulus pairs is denoted by MSm.

(5) A morphism f : M→ N in MSm is called ambient if f o
: Mo
→ N o extends

to a morphism M→ N in Sch. Such an extension is unique since M is reduced,
Mo is dense in M , and N is separated. We let MSmfin (resp. MSmfin) denote the
(nonfull) subcategory of MSm (resp. MSm) whose objects are modulus pairs (resp.
proper modulus pairs) and whose morphisms are ambient morphisms.

(6) A morphism f :M→ N in MSm is called minimal if f is ambient and satisfies
M∞ = f̄ ∗N∞.

(7) We let 6fin denote the subcategory of MSm whose objects are the same as
MSm and whose morphisms are those morphisms f : M → N in MSmfin such
that f is minimal, f̄ : M → N is proper, and f o

: Mo
→ N o is an isomorphism
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in Sm. Then the canonical functor MSmfin
→MSm induces an equivalence of

categories 6−1
fin MSmfin '

−→MSm [Kahn et al. 2019a, Proposition 1.9.2].

(8) Let Sq be the product category [0]×[0], where [0]= {0→1}. For any category C,
we define CSq to be the category of functors from Sq to C. An object T of CSq is
given by a commutative diagram

T (00) //

��

T (01)

��

T (10) // T (11)

in C, and a morphism T1→T2 in CSq is given by a set of morphisms T1(i j)→T2(i j),
i, j = 0, 1, which are compatible with all the edges of the squares.

(9) A morphism T1→ T2 in MSmSq is called ambient if for any i, j = 0, 1, the
morphisms T1(i j)→ T2(i j) in MSm are ambient. A square T ∈MSmSq is called
ambient if it is contained in (MSmfin)Sq

⊂MSmSq.

The following lemma is often useful.

Lemma 2.1.2. For any square T ∈ MSmSq, there exists an ambient square T ′

which admits an ambient morphism T ′→ T which is an isomorphism in MSmSq.

Proof. This is just a consequence of a repeated use of the graph trick [Kahn et al.
2019a, Lemma 1.3.6]. Or, the reader can consult the calculus of fractions in [Kahn
et al. 2019a, Proposition 1.9.2]. The details are left to the reader. �

2.2. Fiber products. We discuss fiber products in MSm and MSm.

Lemma 2.2.1. Let X be a scheme, and let D1 and D2 be effective Cartier divisors
on X. Assume that the scheme-theoretic intersection inf(D1, D2) := D1×X D2 is
also an effective Cartier divisor on X. Set X∞ := D1+ D2− inf(D1, D2).

Then for any morphism f : Y → X in Sch such that Y is normal and the image
of any irreducible component of Y is not contained in |X∞| = |D1| ∪ |D2|, we have

f ∗X∞ = sup( f ∗D1, f ∗D2),

where sup is the supremum of Weil divisors on the normal scheme Y .

Proof. Since inf(D1, D2)×X Y = inf( f ∗D1, f ∗D2), we are reduced to the case
X = Y . Moreover, an easy local computation shows that D1 − inf(D1, D2) and
D2− inf(D1, D2) do not intersect. The assertion immediately follows from this.
See [Kahn et al. 2019a, Lemma 1.10.1, Definition 1.10.2, Remark 1.10.3] for more
details. �

Definition 2.2.2. Let f1 :M1→ N and f2 :M2→ N be morphisms in MSmfin, and
assume that the fiber product Po

:= Mo
1 ×N o Mo

2 exists in Sm. We define a modulus
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pair P as follows. Let P0 be the scheme-theoretic closure of Po in M ×N M2, and
let p̄0,i : P0 → M1 ×N M2

pri
−−→ M i be the composite of the closed immersion

followed by the i-th projection for i = 1, 2. Let

P := Bl( p̄∗0,1 M∞1 )×P0
( p̄∗0,2 M∞2 )(P0)

πP
−→ P0

be the blow-up of P0 along the closed subscheme ( p̄∗0,1 M∞1 )×P0
( p̄∗0,2 M∞2 ). Set

P∞ := π∗P p̄∗0,1 M∞1 +π
∗

P p̄∗0,2 M∞2 − E,

where E := π−1
P (( p̄∗0,1 M∞1 )×P0

( p̄∗0,2 M∞2 )) denotes the exceptional divisor. Then
we have P − |P∞| = Po

∈ Sm by construction, and we obtain a modulus pair
P = (P, P∞).

We call P the canonical model of fiber product of f1 and f2, and we often write

M1×
c
N M2 := P.

By construction, we have a commutative diagram

M1×
c
N M2

p2
//

p1
��

M2

f2
��

M1
f1

// N

in MSmfin. Moreover, we have (M1×
c
N M2)

o ∼= Mo
1 ×N o Mo

2 .

Theorem 2.2.3. Let f1 : M1 → N and f2 : M2 → N be morphisms in MSmfin.
Assume that the fiber product Mo

1×N o Mo
2 exists in Sm. Then the canonical model of

fiber product M1×
c
N M2 represents the fiber product M1×N M2 in MSm. Moreover,

if M1,M2, N are proper, then M1×
c
N M2 (hence M1×N M2) is proper.

Remark 2.2.4. M1×
c
N M2 does not necessarily represent a fiber product in MSmfin,

and it is not functorial in MSmfin. However, under some minimality conditions,
they behave nicely in MSmfin.

Proof. We prove that P := M1 ×
c
N M2 satisfies the universal property of fiber

product in MSm. Let g1 : L→ M1 and g2 : L→ M2 be morphisms in MSm which
coincide at N . Since MSm ∼= 6−1

fin MSmfin, we can find morphisms L1→ L in
6fin such that the composite morphisms L1→ L→ Mi are ambient for i = 1, 2,
and such that L1 is normal. Since L1→ L is an isomorphism in MSm, we replace
L with L1 and assume that L is normal, and that g1 and g2 are ambient. Let
p1 : P→ M1 and p2 : P→ M2 be the ambient morphisms as in Definition 2.2.2.

There exists a unique morphism go
: Lo
→ Po

= Mo
1 ×N o Mo

2 in Sm which is
compatible with go

1 , go
2 , po

1 , and po
2 . It suffices to prove that go defines a morphism
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L→ P in MSm. Let 0 ⊂ L × P be the closure of the graph of go, and let 0N be
the normalization of 0. Let s : 0N

→ L and t : 0N
→ P be the natural projections.

Then, for i = 1, 2, we obtain a commutative diagram

0N t
//

s
��

P
p̄i
��

L
ḡi

//

go
>>

M i

where the commutativity follows from the fact that p̄i t and ḡi s coincide on the
dense open subset s−1(Lo)⊂ 0N .

By the construction of P and by Lemma 2.2.1, we have

t∗P∞ = sup(t∗ p̄∗1 M∞1 , t∗ p̄∗2 M∞2 )= sup(s∗ḡ∗1 M∞1 , s∗ḡ∗1 M∞2 ),

where the second equality follows from the commutativity of the above diagram.
Since g1 and g2 are ambient and L is normal, we have ḡ∗i M∞i ≤ L∞. Therefore,
we obtain

t∗P∞ ≤ s∗L∞,

which shows that go defines a morphism g : L→ P . This proves the first assertion.
The last assertion is obvious by construction. �

Corollary 2.2.5. Let f1 : M1 → N and f2 : M2 → N be morphisms in MSm.
Assume that the fiber product Mo

1 ×N o Mo
2 exists in Sm. Then there exists a fiber

product M1 ×N M2 in MSm. Moreover, if M1, M2, and N are proper, then
M1×N M2 is proper.

Proof. By [Kahn et al. 2019a, Lemma 1.3.6], for each i = 1, 2, there exists a
morphism M ′i → Mi in MSmfin which is invertible in MSm and such that the
composite M ′i → Mi → N is ambient. Theorem 2.2.3 shows that the fiber product
M ′1×N M ′2 exists in MSm. This also represents a fiber product M1×N M2, prov-
ing the first assertion. The second assertion follows from the construction of the
canonical model of fiber product. �

Remark 2.2.6. The inclusion functor τs :MSm→MSm preserves fiber products
by construction.

Given some minimality assumptions, we can say more about the canonical
model of fiber product. We do not need this in this paper, but it will be used
in the other papers, including [Kahn and Miyazaki 2019].

Proposition 2.2.7. (1) Let f1 : M1 → N and f2 : M2 → N be morphisms in
MSmfin, and assume that f1 is minimal, Mo

1 ×N o Mo
2 is smooth over k and

M1×N M∞2 is an effective Cartier divisor on M1×N M2. Then we have

M1×
c
N M2 = (M1×N M2,M1×N M∞2 ).
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(2) Consider the commutative diagram

U1 //

j1
��

V

j
��

U2oo

j2
��

M1 // N M2oo

in MSmfin, such that j1 and j2 are minimal, and such that Mo
1 ×N o Mo

2 and
U o

1 ×V o U o
2 are smooth over k. Then the morphism

j1× j2 :U1×
c
V U2→ M1×

c
N M2

in MSm, induced by the universal property of fiber product, belongs to MSmfin

and is minimal.

(3) In the situation of (2), if j̄, j̄1, j̄2 are open immersions, if U1→ V is minimal,
and if U 1×V U 2 is normal, then

j1× j2 :U 1×V U 2 =U1×
c
V U2→ M1×

c
N M2

is an open immersion, where the equality follows by (1).

Proof. (1): This follows from the construction of canonical model of fiber product;
see also [Kahn et al. 2019a, Corollary 1.10.7].

(2): Let P be the closure of Mo
1 ×N o Mo

2 in M1 ×N M2, and Q the closure of
U o

1 ×V o U o
2 in U 1×V U 2. Then the morphisms j̄1 and j̄2 induce a morphism

J : Q→ P.

Then we obtain the commutative diagrams

Q J
//

qi
��

P

pi
��

U i
j̄i
// M i

in Sch for i = 1, 2, where pi and qi are the natural i-th projections. Set F :=
p∗1 M∞1 ×P p∗2 M∞2 ⊂ P and G := q∗1 U∞1 ×Q p∗2U∞2 ⊂ Q. Then the commutativity
of the diagrams shows

J−1 F := F ×P Q = (q∗i j̄∗1 M∞1 )×Q (q
∗

i j̄∗2 M∞2 )= q∗i U∞1 ×Q q∗i U∞2 = G,

where the equality in the second line follows from the minimality of j1 and j2. Let
πP : BlF (P)→ P and πQ : BlG(Q)→ Q be the blow-ups. Then, by the universal
property of blow-up, J lifts to a morphism

J 1 :U1×
c
V U2 = BlG(Q)→ BlF (P)= M1×

c
N M2,
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which makes the diagram

BlG(Q)

πQ
��

J 1
// BlF (P)

πP
��

Q J
// P

commute. Moreover, letting F ′ := π−1
P (F),G ′ := π−1

Q (G) be the exceptional
divisors, the commutativity of the two diagrams as above shows

J ∗1(M1×
c
N M2)

∞
= J ∗1(π

∗

P p∗1 M∞1 +π
∗

P p∗1 M∞1 − F ′)

= π∗Q J ∗ p∗1 M∞1 + p∗Q J ∗π∗2 M∞2 −G ′

= π∗Qq∗1 j̄∗1 M∞1 +π
∗

Qq∗2 j̄∗2 M∞2 −G ′

= π∗Qq∗1 U∞1 +π
∗

Qq∗2 U∞2 −G ′

= (U1×
c
V U2)

∞,

where the equality in the fourth line follows from the minimality of j1 and j2.
Therefore, the morphism J 1 defines a minimal morphism U1×

c
V U2→ M1×

c
N M2,

as desired.

(3): We take the notation as above. Then U 1×V U 2 is an open subset of P . Since
J ∗F =G, the minimality of U1→ V shows F∩U 1×V U 2=U 1×V U∞2 , where the
right-hand side is an effective Cartier divisor on U 1×V U 2. Therefore, the blow-up
πP is an isomorphism over U 1×V U 2, and the open immersion U 1×V U 2→ P
uniquely lifts to an open immersion U 1×V U 2→ BlF (P). �

2.3. A remark on elementary correspondences. In this subsection, we observe a
relationship between cartesian squares and elementary correspondences. First we
provide some definitions.

Definition 2.3.1. For any M1,M2 ∈ MSm, we define MCorel to be the set of
elementary finite correspondences V : Mo

1 → Mo
2 which satisfy the following ad-

missibility conditions: let V be the closure of V in M1×M2, and let V N
→ V be

the normalization of V . Let pri : V
N
→ M i be the i-th projections.

(1) pr1 is proper.

(2) pr∗1 M∞1 ≥ pr∗2 M∞2 .

Definition 2.3.2 [Kahn et al. 2019a, Definitions 1.1.1, 1.3.3]. A category MCor is
defined as follows: the objects are the same as MSm, and for M, N ∈MCor, the
set of morphisms is defined as the free abelian group generated on MCorel(M, N ).
Note that MCor(M, N )⊂ Cor(Mo, N o) by definition. The composition is given
by the composition of finite correspondences. Define MCor as the full subcategory
of MCor whose objects are proper modulus pairs.
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Proposition 2.3.3. For any modulus pair M , for any f : N → L in MSm, and for
any V ∈MCorel(M, N ), the image

f+(V ) := (IdMo × f o)(V )⊂ Mo
× Lo

is an irreducible closed subset, and we have f+(V ) ∈MCorel(M, L).
Thus, any modulus pair M is associated a covariant functor

MCorel(M, – ) :MSm→ Set.

Proof. By [Kahn et al. 2019a, Proposition 1.2.3], the composition of finite cor-
respondences W := 0 f o ◦ V belongs to MCor(M, L), where 0 f o denotes the
graph of f o

: Mo
→ N o. By the definition of composition, we can verify that

|W | = f+(V ). This implies that f+(V ) is a component of W . Therefore, we have
W∈MCor(M, L), as desired. �

Proposition 2.3.4. Let T be a pull-back square in MSm of the form

T (00)
vT
//

qT
��

T (01)

pT
��

T (10)
uT
// T (11)

(2.3.5)

and let M be a modulus pair. Consider the associated commutative diagram of sets

MCorel(M, T (00))
vT+
//

qT+
��

MCorel(M, T (01))

pT+
��

MCorel(M, T (10))
uT+
// MCorel(M, T (11))

and set

5 :=MCorel(M, T (10))×MCorel(M,T (11)) MCorel(M, T (01)).

Then the induced map ρ :MCorel(M, T (00))→5 is surjective. Moreover, it is
bijective if vo

T is an immersion.

Remark 2.3.6. We can formulate another statement by replacing MCorel with
MCor and ( – )+ with ( – )∗, but it is false. Indeed, if α1 and α2 are distinct
elementary correspondences which have the same image β under pT∗, then the
image of the (nonelementary) finite correspondence α := α1−α2 is zero, which is
trivially contained in the image of uT∗. But there is no reason why α is contained
in the image of vT∗.

Proof. The latter statement is clear, since the composite pr2 ◦ ρ is equal to vT+,
which is injective if vo

T is an immersion.



592 HIROYASU MIYAZAKI

We prove the surjectivity of ρ. Consider any α1 ∈MCorel(M, T (10)) and
α2 ∈ MCorel(M, T (01)), and assume β := uT+(α1) = pT+(α2). Let ξi be the
generic point of αi for i = 1, 2.

We need to prove that there exists an element γ ∈MCorel(M, T (00)) which
maps to α1 and α2.

Let

ζ ∈ (Mo
× T (10)o)×Mo×T o(11) (Mo

× T (01)o)∼= Mo
× T (10)o×T o(11) T (01)o

∼= Mo
× T (00)o

be a point which lies over ξ1 and ξ2. Let γ := {ζ } be the closure of ζ in Mo
×T (00)o,

endowed with the reduced scheme structure.

Claim 2.3.7. γ is an elementary correspondence from Mo to T (00)o.

Proof. We have to prove that γ is finite and surjective over a component of Mo.
Since ζ = (ξ1, ξ2) ∈ α1×Mo α2, the scheme γ is naturally a closed subscheme of
α1×Mo α2. Moreover, since ζ maps to ξi via the projection pri : α1×Mo α2→ αi

for each i = 1, 2, we obtain dominant maps γ → αi . These maps are finite (hence
surjective) since each αi is finite over Mo. Since the natural map γ → Mo factors
as γ → α1→ Mo, and since α1 is finite and surjective over a component, we obtain
the claim. �

Claim 2.3.8. γ ∈MCorel(M, T (00)).

Proof. We make a preliminary reduction as follows: since the assertion depends
only on the isomorphism class of T in MSmSq, we may assume that T is ambient
by Lemma 2.1.2. Moreover, since T is a pull-back diagram, we have T (00) ∼=
T (10) ×c

T (11) T (01), where the right-hand side is the canonical model of fiber
product in Definition 2.2.2. Therefore, by replacing T (00) with (the normaliza-
tion of) T (10)×c

T (11) T (01) (this preserves the condition that T is ambient by the
construction of canonical model), we may assume that q̄∗T T (10)∞ and v̄∗T T ∗(01)
have a universal supremum in the sense of [Kahn et al. 2019a, Definition 1.10.2]
and that T (00)∞ = sup(q̄∗T T (10)∞, v̄∗T T (01)∞).

Let γ be the closure of γ in M× T (00). First we check that γ is proper over M .
Note that the natural map γ → M factors as γ → α1 ×M α2 → M . The first
map is proper since the natural map T (00)→ T (10)×T (11) T (01) is proper by
construction of the canonical model of fiber product, and the latter map is proper
since the αi are proper over M by assumption. This shows that γ → M is proper,
as desired.

Next we check the modulus condition. Let γ N be the normalization of γ . Simi-
larly, let α1 be the closure of α1 in M × T (10), α2 the closure of α2 in M × T (01),
and αN

i the normalization of αi . By assumption, we have α1 ∈MCorel(M, T (10))



NISNEVICH TOPOLOGY WITH MODULUS 593

and α2 ∈MCorel(M, T (01)), which means

M∞|αN
1
≥ T (10)∞|αN

1
and M∞|αN

2
≥ T (01)∞|αN

2
.

Since γ → αi are dominant for i = 1, 2, we obtain morphisms γ N
→ αN

i by the
universal property of normalization. Therefore, the above inequalities imply

M∞|γ N ≥ q̄∗T T (10)∞|γ N and M∞|γ N ≥ v̄∗T T (01)∞|γ N .

Thus, since q̄∗T T (10)∞ and v̄∗T T (01)∞ have a universal supremum and T (00)∞ =
sup(q̄∗T T (10)∞, v̄∗T T (01)∞) by assumption, we obtain

M∞|γ N ≥ sup(q̄∗T T (10)∞|γ N , v̄∗T T (01)∞|γ N )

= sup(q̄∗T T (10)∞, v̄∗T T (01)∞)|γ N

= T (00)∞|γ N

by [Kahn et al. 2019a, Remark 1.10.3(3)]. This finishes the proof of the claim. �

By construction, we have α1 = qT+(γ ) and α2 = vT+(γ ). This finishes the proof
of Proposition 2.3.4. �

3. Off-diagonal functor

We introduce the “off-diagonal” functor, which is a key notion used in the definition
of the cd-structure on MSm.

Definition 3.1.1. Define MEt as a category such that

(1) objects are those morphisms f : M→ N in MSm such that f o
: Mo
→ N o is

étale, and

(2) morphisms of f : M1→ N1 and g : M2→ N2 are those pairs of morphisms
(s : M1→ M2, t : N1→ N2) which are compatible with f, g such that so and
to are open immersions.

Define MEt as the full subcategory of MEt consisting of those f : M→ N such
that M, N ∈MSm.

Definition 3.1.2. For modulus pairs M and N , we define the disjoint union of M
and N by

M t N := (M t N ,M∞ t N∞).

We have (M t N )o = Mo
t N o, and M t N represents a coproduct of M and N in

the category MSm.

Theorem 3.1.3. There is a functor

OD :MEt→MSm
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such that for any f : M→ N , there exists a functorial decomposition

M ×N M ∼= M tOD( f ).

Moreover, we have OD( f )o=Mo
×N o Mo

\1(Mo), where1 :Mo
→Mo

×N o Mo is
the diagonal morphism. In particular, if f o is an open immersion, then OD( f )o=∅,
and hence OD( f )=∅. Moreover, the functor OD restricts to a functor

OD :MEt→MSm.

We call these functors the off-diagonal functors.

Proof. First, we prove that for any f : M→ N in MEt, there exists a morphism
i : X→ M ×N M such that the induced morphism

M t X
1ti
−−→ M ×N M

is an isomorphism in MSm. Take any object f : M→ N in MEt. Since f o is étale
and separated by the assumption, the diagonal morphism 1 : Mo

→ Mo
×N o Mo

is an open and closed immersion. Therefore, we obtain a decomposition into two
connected components:

Mo
×N o Mo

=1(Mo)t (Mo
×N o Mo

−1(Mo)).

Let P denote the canonical model of fiber product M×c
N M as in Definition 2.2.2.

Note that Po
= Mo

×N o Mo.
Define a closed immersion ī1 :1( f )→ P as the scheme-theoretic closure of

the open immersion 1(Mo)→ Po
→ P . Set

1( f )∞ := ī∗1P∞ and 1( f ) := (1( f ),1( f )∞).

Then ī1 induces a minimal morphism i1 :1( f )→ P , and we have1( f )o=1(Mo).
Similarly, define a closed immersion īOD : OD( f )→ P as the scheme-theoretic

closure of the open immersion Mo
×N o Mo

−1(Mo)→ Po
→ P . Set

OD( f )∞ := ī∗OD P∞ and OD( f ) := (OD( f ),OD( f )∞).

Then īOD induces a minimal morphism iOD : OD( f )→ P . Moreover, we have
OD( f )o = Mo

×N o Mo
−1(Mo).

The morphisms i1 and iOD induce a minimal morphism in MSmfin:

i1 t iOD :1( f )tOD( f )→ P.

By (7) in Definition 2.1.1, this morphism is an isomorphism in MSm (not in
MSmfin) since (i1 t iOD)

o
= io

1 t io
OD :1( f )o tOD( f )o→ Po ∼= Mo

×N o Mo is
an isomorphism in Sm, and since ī1 t īOD :1( f )tOD( f )→ P is proper by con-
struction.
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We claim 1( f )∼= M . Let 1 : M→ P (∼= M ×N M) be the diagonal morphism.
Then the composite M 1

−→ P ∼=1( f )tOD( f ) factors through 1( f ). The inverse
morphism is given by 1( f )→ P pr1

−−→ M , where pr1 denotes the first projection
P ∼= M ×N M→ M .

Thus, for any f : M→ N in MEt, we have obtained a decomposition

M ×N M ∼= M tOD( f ).

Next we check the functoriality of OD( f ). Let ( f1 : M1→ N1)→ ( f2 : M2→ N2)

be a morphism in MEt, i.e., a commutative diagram

M1
s
//

f1
��

M2

f2
��

N1
t
// N2

where f1, f2, s, and t are morphisms in MSm such that f o
1 and f o

2 are étale and
so and to are open immersions.

We claim that there exists a unique morphism OD( f1)→ OD( f2) such that the
diagram

M1×N1 M1 // M2×N2 M2

M1 tOD( f1) //

∼=

OO

M2 tOD( f2)

∼=

OO

commutes. The uniqueness is obvious by the commutativity of the above diagram.
For the existence, we need to show that the composite

OD( f1)→ M1×N1 M1→ M2×N2 M2 ∼= M2 tOD( f2)

factors through OD( f2). To see this, it suffices to prove that the image of the
morphism

Mo
1 ×N o

1
Mo

1 \1(M
o
1 )→ Mo

1 ×N o
1

Mo
1

so
×so

−−−→ Mo
2 ×N o

2
Mo

2

lands in Mo
2 ×N o

2
Mo

2 \1(M
o
2 ), which easily follows from the injectivity of the open

immersion so. This finishes the proof. �

The off-diagonal functor is compatible with base change.

Proposition 3.1.4. Let f : M → N be an object of MEt, and N ′→ N any mor-
phism in MSm. Then the base change g := f ×N N ′ belongs to MEt, and we have
a natural isomorphism OD(g)∼= OD( f )×N N ′.

Proof. The first assertion holds since go
= f o

×N o N ′o is étale as a base change
of an étale morphism. We prove the second assertion. Note (M ×N M)×N N ′ ∼=
M ′×N ′ M ′, where M ′ := M ×N N ′. Consider the following diagram in MSm:
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(M ×N M)×N N ′

��

(M tOD( f ))×N N ′oo M ′ t (OD( f )×N N ′)oo

h
��

M ′×N ′ M ′ M ′ tOD(g)oo

where all the arrows, except for h, are natural isomorphisms in MSm, and h is
defined to be the composite. By diagram chase, h restricts to the identity map on
M ′ and an isomorphism OD( f )×N N ′→ OD(g). �

4. The cd-structure

In this section, we introduce a cd-structure on MSm, and prove its fundamental
properties.

4.1. MV-squares. First, let us recall from [Kahn et al. 2019a] the cd-structure
on MSm.

Definition 4.1.1. (1) An MVfin-square is a square S ∈ (MSmfin)Sq such that the
morphisms in S are minimal, and such that the resulting square

S(00) //

��

S(01)

��

S(10) // S(11)

is an elementary Nisnevich square (on Sch).

(2) An MV-square is a square S ∈MSmSq which is isomorphic to the image of
an MVfin-square by the inclusion functor (MSmfin)Sq

→MSmSq.

Proposition 4.1.2 [Kahn et al. 2019a, Proposition 3.2.2]. The MV-squares form a
complete and regular cd-structure PMV on MSm. �

Definition 4.1.3. The topology on MSm associated with the cd-structure PMV is
called the MV-topology.

In the following, we describe OD for MVfin and MV-squares.

Lemma 4.1.4. Let f : U → M be a minimal morphism such that f̄ : U → M is
étale. Then we have

OD( f )=U ×M U −1(U ) and OD( f )∞ = π∗M∞ ∩OD( f ),

where 1 : U → U ×M U is the diagonal, and π : U ×M U → M is the natural
morphism.

Proof. Since U o
×Mo U o

−1(U o) is dense in U ×M U −1(U ) (as a complement
of the divisor U∞ ×M U \1(U )), and since U∞ ×M U = U ×M U∞ = π∗M∞,
the assertion follows from the construction of OD( f ). �
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Proposition 4.1.5. Let S be an MVfin-square of the form

S(00)
vS
//

qS
��

S(01)
pS
��

S(10)
uS
// S(11)

Then the morphism OD(qS)→ OD(pS) is an isomorphism in MSmfin.

Proof. Let S be an MVfin-square. Then, since S is an elementary Nisnevich square,
we have a natural isomorphism

S(00)×S(10) S(00)−10(S(00)) ∼−→ S(01)×S(11) S(01)−11(S(01)),

where 1i : S(0i)→ S(0i)×S(1i) S(0i) is the diagonal for each i = 0, 1. Then, in
view of Lemma 4.1.4, the minimality of uS, pS, qS shows that the isomorphism as
above induces an isomorphism OD(qS)→ OD(pS) in MSmfin. �

Corollary 4.1.6. Let S be an MV-square. The natural morphism OD(qS)→OD(pS)

is an isomorphism in MSm.

Proof. By definition of MV-square, there exists an MVfin-square S′ which is iso-
morphic to S. Then, noting that there are natural isomorphisms OD(qS)∼=OD(qS′)

and OD(pS)∼= OD(pS′) in MSm, the assertion follows from Proposition 4.1.5. �

4.2. MV-squares.

Definition 4.2.1. Let T be an object of MSmSq of the form (2.3.5). Then T is
called an MV-square if the following conditions hold:

(1) T is a pull-back square in MSm.

(2) There exist an MV-square S such that S(11) ∈MSm and a morphism S→ T
in MSmSq such that the induced morphism So

→ T o is an isomorphism in
SmSq and S(11)→ T (11) is an isomorphism in MSm. In particular, T o is an
elementary Nisnevich square.

(3) OD(qT )→ OD(pT ) is an isomorphism in MSm.

We let PMV be the cd-structure on MSm consisting of MV-squares. The topol-
ogy on MSm associated with the cd-structure PMV is called the MV-topology for
short.

Remark 4.2.2. (1) For any T ∈MSmSq with T o an elementary Nisnevich square,
the induced morphism OD(pT )

o
→ OD(qT )

o between interiors is an isomor-
phism in Sm. This follows easily from the definition of elementary Nisnevich
squares.
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(2) If po
T and qo

T are open immersions, then OD(qT )=OD(pT )=∅. In particular,
we have OD(qT )∼= OD(pT ).

Proposition 4.2.3. Let T be a square in MSmSq which satisfies condition (1), (2),
or (3) of Definition 4.2.1. Then, for any morphism M→ T (11) in MSm, the base
change square TM := T ×T (11) M also satisfies (1), (2), or (3), respectively.

Proof. Since base change of a pull-back diagram is a pull-back diagram, condition
(1) is preserved by base change. Proposition 3.1.4 shows that (3) is preserved by
the base change.

Finally, we prove that (2) is preserved by base change. Let S→ T be a morphism
as in (2), and let M → T (11) be any morphism in MSm. Then we obtain a
morphism SM → TM , where SM := S ×S(11) M and TM := T ×T (11) M . Since
S(11)∼= T (11), we obtain SM(11)∼= TM(11). Moreover, SM is an MV-square as
the base change of an MV-square (see [Kahn et al. 2019a, Theorem 4.1.2]), and
we have So

M
∼= T o

M . Therefore, the morphism SM → TM satisfies the requirement
in (2). This finishes the proof. �

4.3. Completeness.

Theorem 4.3.1. The cd-structure PMV is complete.

Proof. By [Voevodsky 2010, Lemma 2.5], it suffices to prove the following:

(1) Any morphism with values in ∅= (∅,∅) is an isomorphism.

(2) For any T ∈ PMV and any M→ T (11) in MSm, the square TM := T ×T (11) M ,
which is obtained by base change, belongs to PMV.

But (1) is obvious, and (2) is a direct consequence of Proposition 4.2.3. �

4.4. Regularity.

Theorem 4.4.1. The cd-structure PMV is regular.

Proof. By [Voevodsky 2010, Lemma 2.11], it suffices to prove that for any T ∈ PMV,
the following assertions hold:

(1) T is a pull-back square in MSm.

(2) uT : T (10)→ T (11) is a monomorphism.

(3) The fiber products T (01)×T (11) T (01) and T (00)×T (10) T (00) exist in MSm,
and the derived square

T (00) //

1qT
��

T (01)

1pT
��

T (00)×T (10) T (00) // T (01)×T (11) T (01)

which we denote by d(T ), belongs to PMV.
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The definition of MV-squares gives (1), and (2) holds since uo
T :T

o(10)→T o(11)
is an open immersion. We prove (3) by checking the conditions in Definition 4.2.1
for d(T ).

Since 1o
pT

and 1o
qT

are open immersions, we have OD(1qT )
∼=∅∼= OD(1pT )

by Theorem 3.1.3. Hence d(T ) satisfies (3) in Definition 4.2.1.
Note that d(T ) is isomorphic in MSmSq to the diagram

T (00) //

��

T (01)

��

T (00)tOD(qT ) // T (01)tOD(pT )

where the vertical maps are the canonical inclusions, and the horizontal maps are
induced by vT . It is easy to see that this diagram is a pull-back diagram, i.e.,
d(T ) satisfies (1) in Definition 4.2.1. Indeed, suppose that we are given a pair
of morphisms f : M → T (01) and g : M → T (00) t OD(qT ) which coincide
at T (01) t OD(pT ). Then, one sees that go

: Mo
→ T (00)o t OD(qT )

o factors
through T (00)o, which implies that g factors through T (00).

We are reduced to checking Definition 4.2.1(2) for d(T ). Consider the following
diagram in MSm:

(T (00)o,∅) //

��

T (01)

��

(T (00)o,∅)tOD(qT ) // T (01)tOD(pT )

which we denote by d(T )0, where the vertical maps are the canonical inclusions.
Then d(T )0 is an MV-square since OD(qT )∼= OD(pT ), and there exists a natural
morphism d(T )0 → d(T ). It induces an isomorphism d(T )o0 ∼= d(T )o, and we
have d(T )0(11)∼= d(T )(11). Therefore, d(T ) satisfies (2) in Definition 4.2.1. This
finishes the proof. �

Theorem 4.4.2. Let F be a presheaf with values in Sets on MSm. Then F is a
sheaf with respect to the MV-topology if and only if F(∅) = 0 and for any MV-
square T ∈ PMV, the square

F(T (11)) //

��

F(T (10))

��

F(T (01)) // F(T (00))

is cartesian.

Proof. This follows from [Voevodsky 2010, Corollary 2.17], Theorem 4.3.1, and
Theorem 4.4.1. �
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4.5. Subcanonicity. In this subsection, we prove the following result. Recall that
a Grothendieck topology is subcanonical if every representable presheaf is a sheaf.

Theorem 4.5.1. The MV-topology and the MV-topology are subcanonical.

We need the following elementary observation.

Lemma 4.5.2. Let P be a complete and regular cd-structure on a category C. Then
the topology associated with P is subcanonical if and only if every square T ∈ P
is cocartesian in C.

Proof. Let Y denote the Yoneda embedding of C into the category of presheaves
on C. All squares T ∈ P are cocartesian in C if and only if for any T ∈ P and for
any X ∈ C, the square

Y(X)(T (11))
u∗T
//

p∗T
��

Y(X)(T (10))

q∗T
��

Y(X)(T (01))
v∗T
// Y(X)(T (00))

(4.5.3)

is cartesian in C. The latter condition is equivalent to that for any X ∈ C, the
representable presheaf Y(X) is a sheaf for the topology associated with P by [Vo-
evodsky 2010, Corollary 2.17]. This finishes the proof. �

We also need the following results:

Lemma 4.5.4 [Krishna and Park 2012, Lemma 2.2]. Let f : X→ Y be a surjective
morphism of normal integral schemes, and let D, D′ be two Cartier divisors on Y .
If f ∗D′ ≤ f ∗D, then D′ ≤ D. �

Proposition 4.5.5. (1) Any MV-square is cocartesian in MSm.

(2) Any MV-square is cocartesian in MSm, and hence in MSm.

Proof. (1): Let S be an MV-square. We may assume that S is an MVfin-square
since cocartesianness is stable under isomorphisms. Let S(10)→M and S(01)→M
be morphisms in MSm which coincide after restricting to S(00). Since So is an
elementary Nisnevich square, it is cocartesian in Sm. Therefore, the morphisms
S(10)o→ Mo and S(01)o→ Mo induce a unique morphism ho

: S(11)o→ Mo. It
suffices to check that ho induces a morphism S(11)→ M in MSm.

Let 0 be the graph of the rational map S(11) 99K M , and let 0N
→ 0 be the

normalization. For any (i j) ∈ Sq, set

S1(i j) := (S(i j)×S(11) 0
N , S∞(i j)×S(11) 0

N ).

The minimal morphisms S1(i j)→ S1(kl) are induced by S(i j)→ S(kl) for all
(i j)→ (kl) in Sq, and they form an MVfin-square S1. Moreover, S1(i j) are normal
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for all (i j) ∈ Sq, and the composites

h̄i j : S1(i j)→ S(11) 99K M

are morphisms of schemes for all (i j) ∈ Sq by construction. Moreover, the mor-
phisms S1(i j)→ S(i j) are proper (by the properness of 0 over S(11)). Therefore,
by the minimality of S1(i j)→ S(i j), the morphism S1 → S is an isomorphism
in MSmSq.

Claim 4.5.6. S∞1 (11)≥ h̄∗11 M∞.

Proof. The admissibility of S(10)→M and S(01)→M implies that of S1(10)→M
and S1(01)→M . Since S1(10) and S1(01) are normal, we have S1(i j)∞ ≥ h̄∗i j M∞

for (i j) = (10), (01). Since S1(10) t S1(01)→ S1(11) is a surjection between
normal schemes and since S1(10)→ S1(11) and S1(01)→ S1(11) are minimal,
Lemma 4.5.4 implies

S1(11)∞ ≥ h̄∗11 M∞. �

By Claim 4.5.6, we have a morphism S1(11)→ M in MSmfin. The composite
S(11) ∼←− S1(11)→ M gives the desired morphism. The uniqueness of the mor-
phism follows from the fact that the elementary Nisnevich square So is cocartesian
in Sm. This finishes the proof of (1).

(2): Let T be an MV-square. Then condition (2) of Definition 4.2.1 shows that
there are an MV-square S and a morphism S→T in MSmSq such that S(11)∼=T (11).
Let f : T (10)→ M and g : T (01)→ M be morphisms in MSm which coincide
after restriction to T (00). Then the composites

fS : S(10)→ T (10)→ T (11) and gS : S(01)→ T (01)→ T (11)

coincide after restriction to S(00). Then fS and gS induce a unique morphism
h : T (11)∼= S(11)→ M since S is cocartesian in MSm by (1). Since So ∼= T o, we
have h ◦ uT = f and h ◦ pT = g. This finishes the proof of Proposition 4.5.5. �

Proof of Theorem 4.5.1. This follows from Lemma 4.5.2 and parts (1) and (2) of
Proposition 4.5.5. �

5. Mayer–Vietoris sequence

5.1. Easy Mayer–Vietoris.

Definition 5.1.1. For any sheaf F on a site C, we denote by ZF the sheaf associated
with the presheaf C 3 X 7→ Z(F(X)), where for any set S, we denote by ZS the
free abelian group generated on S.

For any M ∈MSm (or MSm), we set Z(M) := ZY(M), where Y(M) denotes
the presheaf of sets represented by M .
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Theorem 5.1.2. Let T be an MV-square. Then the complex

0→ Z(T (00))→ Z(T (10))⊕Z(T (01))→ Z(T (11))→ 0

of sheaves on MSm is exact.

Proof. This follows from [Voevodsky 2010, Lemma 2.18], Theorem 4.4.1, and
Theorem 4.5.1. �

5.2. Mayer–Vietoris with transfers.

Theorem 5.2.1. Let T ∈ MSmSq. Assume that T o is an elementary Nisnevich
square, and that T satisfies (1) and (3) in Definition 4.2.1. Recall the notation

T (00)
vT
//

qT
��

T (01)
pT
��

T (10)
uT
// T (11)

(5.2.2)

from Definition 4.2.1. Then for any M ∈MSm, the complex

0→ Ztr(T (00))(M)
(qT∗ ,vT∗)
−−−−−→ Ztr(T (10))(M)⊕Ztr(T (01))(M)

pT∗−uT∗
−−−−−→ Ztr(T (11))(M) (5.2.3)

of abelian groups is exact.

Proof. The assertion is equivalent to requiring that the commutative square

MCor(M, T (00))
vT∗
//

qT∗
��

MCor(M, T (01))
pT∗
��

MCor(M, T (10))
uT∗
// MCor(M, T (11))

(5.2.4)

be cartesian. Note that the horizontal maps are injective.
The following lemma is key. Recall the notation from Proposition 2.3.3.

Lemma 5.2.5. Let α1, α2 ∈ MCorel(M, T (01)) be elementary correspondences
with α1 6= α2. Assume that pT+(α1)= pT+(α2) holds in MCorel(M, T (11)). Then
α1 and α2 belong to the image of vT∗.

Proof. Set P := T (01)×T (11) T (01), and consider the commutative diagram

MCorel(M, P)
pr1+

//

pr2+
��

MCorel(M, T (01))

��

MCorel(M, T (01)) // MCorel(M, T (11))

in Set. By Proposition 2.3.4, there exists an element γ ∈MCorel(M, P) such that
pr1+(γ )= α1 and pr2+(γ )= α2.
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We have a canonical identification

MCorel(M, P)∼=MCorel(M, T (01))tMCorel(M,OD(pT ))

induced by P ∼= T (01) t OD(pT ). Through this identification, we may regard
MCorel(M,OD(pT )) as a subset of MCorel(M, P).

Claim 5.2.6. γ ∈MCorel(M,OD(pT )).

Proof. Let ξ1, ξ2, and ζ be the generic points of α1, α2, and γ . Then ζ lies over ξ1

and ξ2. Since ξ1 6= ξ2 by the assumption that α1 6=α2, we have ζ /∈Mo
×1(T (01)o),

where 1(T (01)o) denotes the image of 1 : T (01)o→ T (01)o×T (11)o T (01)o. This
implies that ζ ∈ Mo

×OD(pT )
o. Therefore, we have

γ ∈ Cor(Mo,OD(pT )
o)∩MCorel(M, P)=MCorel(M,OD(pT )). �

By construction, we have αi = pri (γ )= |(pri )∗(γ )|, where

pri : T (01)o×T (11)o T (01)o→ T (01)o, i = 1, 2,

are the projections. Thus, in order to prove αi ∈MCor(M, T (00)) for i = 1, 2,
it suffices to prove that γ ∈MCor(M, T (00)×T (10) T (00)). Since by the above
claim γ ∈MCor(M,OD(pT )), and since OD(qT )∼= OD(pT ) by condition (3) of
Definition 4.2.1, we have γ ∈MCor(M,OD(qT ))⊂MCor(M, T (00)×T (10)T (00)).
This finishes the proof of Lemma 5.2.5. �

Now we are ready to prove that (5.2.4) is cartesian. Let α ∈MCor(M, T (01))
and assume pT∗(α) ∈MCor(M, T (10)). Write α =

∑
i∈I miαi , where I is a finite

set, mi ∈ Z− {0}, and the αi are elementary correspondences which are distinct
from each other. Then we have αi ∈MCor(M, T (01)) for all i ∈ I . Set

J := {i ∈ I | ∃ j ∈ I −{i}, |pT∗(αi )| = |pT∗(α j )|}.

Then by Lemma 5.2.5, we have αi ∈MCor(M, T (00)) for all i ∈ J . Let i ∈ I − J ,
and set β := |pT∗(αi )|. Then the coefficient of β in pT∗(α) is nonzero, and
therefore β ∈ MCorel(M, T (10)). By Proposition 2.3.4, there exists a unique
element γ ∈MCorel(M, T (00)) such that vT+(γ ) = αi and qT+(γ ) = β. Since
T (00)o→ T (01)o is an open immersion, this implies αi = γ ∈MCorel(M, T (00)).
This finishes the proof of the exactness of (5.2.3). �

Recall from [Kahn et al. 2019a, Theorem 2(2)] that for any M ∈ MSm, the
presheaf Ztr(M) on MSm is a sheaf for the MV-topology.

Corollary 5.2.7. Let T be an MV-square. Then the complex

0→ Ztr(T (00))
(qT∗ ,vT∗)
−−−−−→ Ztr(T (10))⊕Ztr(T (01))

pT∗−uT∗
−−−−−→ Ztr(T (11))→ 0

of sheaves on MSm for the MV-topology is exact.
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Proof. By Theorem 5.2.1, it suffices to prove the surjectivity of the last maps of
the complexes. Take a morphism S→ T in MSmSq as in (2) of Definition 4.2.1.
Then the map

Ztr(S(10))⊕Ztr(S(01))→ Ztr(S(11))= Ztr(T (11))

is epi in MNST by [Kahn et al. 2019a, Theorem 4.5.7]. Since the map factors
through

Ztr(T (10))⊕Ztr(T (01)),
we are done. �
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The Topological Period-Index Conjecture
for spinc 6-manifolds

Diarmuid Crowley and Mark Grant

The Topological Period-Index Conjecture is a hypothesis which relates the pe-
riod and index of elements of the cohomological Brauer group of a space. It was
identified by Antieau and Williams as a topological analogue of the Period-Index
Conjecture for function fields.

In this paper we show that the Topological Period-Index Conjecture holds and
is in general sharp for spinc 6-manifolds. We also show that it fails in general for
6-manifolds.

1. Introduction

This paper is about the Topological Period-Index Problem (TPIP), which was iden-
tified by Antieau and Williams [2014a; 2014b] as an important analogue of period-
index problems in algebraic geometry. We give a brief introduction to the TPIP
and refer the reader to [Antieau and Williams 2014a; 2014b] for more information.

Let X be a connected space with the homotopy type of a finite CW -complex.
The cohomological Brauer group of X is defined to be the torsion subgroup of its
third integral cohomology group:

Br′(X) := T H 3(X).

Here and throughout integer coefficients are omitted. For α ∈ Br′(X), the period
of α is defined to be the order of α,

per(α) := ord(α).

Let PU (n) :=U (n)/U (1) be the n-dimensional projective unitary group, which
is the quotient of the unitary group U (n) by its centre. By a theorem of Serre
[Grothendieck 1968, Corollaire 1.7], every class α ∈ T H 3(X) arises as the ob-
struction to lifting the structure group of some principal PU (n)-bundle P→ X to
the group U (n). In this case one writes α = δ(P) and defines the index of α by

ind(α) := gcd(n : α = δ(P) for a PU (n)-bundle P),

MSC2010: primary 57R19; secondary 14F22, 19L50.
Keywords: Brauer groups, twisted K -theory, period-index problems.
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so that the index defines the homotopy-invariant function

ind : T H 3(X)→ Z, α 7→ ind(α).

From the definitions, one sees that per(α) | ind(α) and by [Antieau and Williams
2014a, Theorem 3.1] the primes dividing per(α) and ind(α) coincide. The TPIP is
the problem of relating the index of a class α to its period and properties of X , like
its dimension.

To investigate the TPIP, Antieau and Williams [2014b, Straw Man] formulated
what is often called the Topological Period-Index Conjecture (TPIC) for X :

TPIC. If X is homotopy equivalent to a CW -complex of dimension 2d and if α is
an element of Br′(X), then

ind(α) | per(α)d−1.

Warning. The TPIC should be regarded as a hypothesis for investigating the TPIP
and not as a conjecture, in the usual sense of the word.

Indeed, while the obstruction theory developed by Antieau and Williams [2014b,
Theorem A] shows that the TPIC holds for any 4-dimensional complex, they also
prove that the TPIC fails in general for 6-dimensional complexes, but at most by a
factor of two.

Theorem 1.1 (cf. [Antieau and Williams 2014b, Theorems A and B]). Let X be a
6-dimensional CW -complex, α ∈ Br′(X) have period n, and set ε(n) := gcd(n, 2).
Then ind(α) | ε(n)n2.

Moreover, if X is a 6-skeleton of the Eilenberg–Mac Lane space K (Z/2, 2) and
we take the generator α ∈ H 3(X) = Z/2 (so that per(α) = 2), then ind(α) = 8 >
per(α)2.

An important motivation for Antieau and Williams in identifying the TPIC was
the Algebraic Period-Index Conjecture (APIC) which was identified in the work
of Colliot-Thélène [2002]. This is a statement in algebraic geometry concerning
the Brauer group of certain algebras A. When A = C(V ) is the function field
of a smooth complex variety V , then the APIC for C(V ) implies the TPIC for V .
When the variety V has complex dimension d = 1, the APIC is trivially true, it was
proven for d = 2 by de Jong [2004], and for d ≥ 3 we have the Antieau–Williams
alternative:

(A) either there exits a V violating the TPIC, in which case the APIC fails in
general,

(B) or every V satisfies the TPIC (in which case we have identified an a priori
new topological property of smooth complex varieties).
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In this paper we show that for d = 3 the latter statement holds. This may be
regarded as evidence for the APIC in complex dimension 3.

A smooth complex projective variety V is in particular a manifold: here and be-
sides Remark 1.9, we use the word “manifold” to mean “closed smooth manifold”.
Recall that a manifold M admits a spinc structure if it is orientable and the second
Stiefel–Whitney class of M has an integral lift. For example, every variety V as
above admits a spinc structure. More generally, it is well known that a 6-manifold
admits a spinc structure if and only if it admits an almost complex structure (as can
be easily deduced from results in [Massey 1961]).

Theorem 1.2. The Topological Period-Index Conjecture holds for spinc 6-manifolds.

As we explain in Section 2, Theorem 1.2 is an elementary consequence of results
of Antieau and Williams [2014b] and:

Theorem 1.3. Let N be a closed spinc 6-manifold and let x ∈ H 2(N ;Z/2). Then
there exists a class ex ∈ H 2(N ) such that

βZ/2(x2)= βZ/2(x)ex ∈ H 5(N ),

where βZ/2
: H∗(N ;Z/2)→ H∗+1(N ) denotes the mod 2 Bockstein.

To discuss the TPIP further for 6-manifolds we recall that Teichner [1995] has
already constructed orientable 6-manifolds N with x ∈ H 2(N ;Z/2) such that
βZ/2(x2) 6= 0. The manifolds in Teichner’s examples are all the total-spaces of
2-sphere bundles over 4-manifolds, where the class x restricts to a generator of
H 2(S2

;Z/2). We call pairs (N , x) coming from Teichner’s examples Teichner
pairs (see Definition 5.3) and investigating their construction we prove:

Theorem 1.4. For a Teichner pair (N , x), let α := βZ/2(x) ∈ T H 3(N ).

(1) If the base 4-manifold of a Teichner pair (N , x) is orientable, then N is spinc,
per(α)= 2, and ind(α)= 4.

(2) There exist Teichner pairs (N , x) over nonorientable 4-manifolds where we
have per(α)= 2 but ind(α)= 8.

Summarising Theorems 1.2 and 1.4 we obtain the following result on the TPIP
for 6-manifolds.

Theorem 1.5. The TPIC fails in general for 6-manifolds but it holds and is in
general sharp for spinc 6-manifolds.

Remark 1.6. One may view Theorem 1.3 as giving a cohomological obstruction to
a closed 6-manifold admitting a spinc structure. For instance, we do not currently
know how to prove that the Teichner manifold N appearing in Theorem 1.4(2) (and
Proposition 5.9) is not spinc, except by invoking Theorem 1.3.
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Remark 1.7. The nonvanishing of βZ/2(x2) ∈ H 5(N ) is related to various nonre-
alisability phenomena, for which the examples in [Teichner 1995] are of minimal
dimension. For example, βZ/2(x2) vanishes if x ∈ H 2(N ;Z/2) can be realised
as the second Stiefel–Whitney class w2(E) of some real vector bundle E over N ,
since w2(E)2 is the mod 2 reduction of the integral class p1(E), the first Pontrjagin
class.

It is a classical result of Thom [1954] that βZ/2(x2) vanishes if the Poincaré
dual of x in H4(N ;Z/2) is realised as the fundamental class of an embedded 4-
manifold in N . More recently, in [Grant and Szűcs 2013] the second author and
Szűcs showed that βZ/2(x2) vanishes if the Poincaré dual of x is realised by the
fundamental class of an immersion of a 4-manifold in N and more precisely that
the Poincaré dual of βZ/2(x2) is realised by the singular set of a generic smooth
map realising the Poincaré dual of x . Notwithstanding Remarks 1.6 and 1.8, the
geometric significance of the condition βZ/2(x2) /∈ βZ/2(x)H 2(N ) appearing in
Section 2 remains somewhat mysterious.

Remark 1.8. The TPIP also arises in twisted K -theory, where classes α ∈ T H 3(X)
define the twisting used to define the K -groups, K ∗α(X), of α-twisted vector bun-
dles over X [Donovan and Karoubi 1970]. For α ∈ T H 3(X) and i : ∗ → X the
inclusion of a point, by [Antieau and Williams 2014a, Proposition 2.21], we have

i∗(K 0
α(X))= ind(α)K 0(∗)= ind(α)Z.

Hence ind(α) is the index of the intersection
⋂
∞

i=1 Ker(di ) ⊆ H 0(X; K 0) ∼= Z,
where di : H 0(X; K 0)→ H i (X; K i−1) is the i-th differential in the twisted Atiyah–
Hirzebruch spectra sequence computing K ∗α(X).

This perspective is behind the index formula [Antieau and Williams 2014b, The-
orem A], which we use in Section 2, and also the recent work of Gu [2019] on
the TPIP for 8-complexes. Gu shows that the 3-primary TPIP for 8-complexes
involves controlling βZ/3(x3)/βZ/3(x)H 4(X) for classes x ∈ H 2(X;Z/3), just as
the TPIP for 6-complexes involves controlling βZ/2(x2)/βZ/2(x)H 2(X) for classes
x ∈ H 2(X;Z/2). We expect that the methods of this paper involving the integrality
of Wu classes and the bilinear algebra of the subsection beginning on page 613
will generalise to combine with the work of Gu and prove the TPIC for odd-order
Brauer classes over orientable 8-manifolds.

Remark 1.9. It is natural to wonder whether the singular spaces Z underlying sin-
gular complex 3-dimensional projective varieties satisfy the TPIC. In this direction,
we note that the complement of the singular set in Z can often be compactified to
give a spinc manifold with boundary (N , ∂N ). The arguments of this paper can be
generalised to prove that if (N , ∂N ) is a compact spinc manifold with boundary
where the first Chern class of N vanishes on ∂N and T H1(∂N )⊗Z/2 = 0, then
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the TPIC holds for quotients N/∂N . As a consequence we believe that the TPIC
holds for singular spaces underlying certain complex 3-dimensional varieties with
isolated conical singularities.

Organisation. The rest of this paper is organised as follows. In Section 2 we prove
Theorem 1.2 assuming Theorem 1.3. In Section 3 we establish some preliminary re-
sults about linking pairings and bilinear forms. In Section 4 we prove Theorem 1.3
and in Section 5 we discuss Teichner’s examples and prove Theorem 1.4.

2. The Topological Period-Index Conjecture for spinc 6-manifolds

In this section we prove that the Topological Period-Index Conjecture holds for
spinc 6-manifolds. This is an elementary consequence of Theorem 1.3 and results
in [Antieau and Williams 2014b].

Let α ∈ Br′(X)= T H 3(X) with ord(α)= n and let

βZ/n
: H∗(X;Z/n)→ H∗+1(X)

be the mod n Bockstein, which lies in the exact sequence

H∗(X;Z/n)
βZ/n

−−→ H∗+1(X)
×n
−→ H∗+1(X).

As ord(α)= n, we see that α = βZ/n(ξ) for some ξ ∈ H 2(X;Z/n). We consider
the Pontrjagin square

P2 : H 2(X;Z/2m)→ H 4(X;Z/4m)

and following Antieau and Williams define Q̃(ξ) ∈ H 5(X)/αH 2(X) by the equa-
tion

Q̃(ξ) :=
{
[βZ/n(ξ 2)] n is odd,
[βZ/2n(P2(ξ))] n is even,

where [γ ] ∈ H 5(X)/αH 2(X) denotes the coset of γ ∈ H 5(X). By [Antieau and
Williams 2014b, Theorem A], the element Q̃(ξ) depends only on α and when X
is a 6-dimensional CW-complex,

ind(α)= ord(Q̃(ξ)) per(α).

Hence to verify the Topological Period-Index Conjecture in dimension 6, it suffices
to show that ord(Q̃(ξ)) | n, i.e., nQ̃(ξ)= 0. For this we consider the commutative
diagram

H 2(X;Z/2k)

ρ2
��

βZ/2k
// H 3(X)

×k
��

H 2(X;Z/2)
βZ/2

// H 3(X)
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where ρ2 denotes reduction modulo 2 and the diagram commutes as a consequence
of the commutative diagram of coefficient short exact sequences

Z

×k
��

×2k
// Z

=

��

ρ2k
// Z/2k

ρ2

��

Z
×2
// Z

ρ2
// Z/2

Hence for all ξ ∈ H 2(X;Z/2k) we have the equation

βZ/2(ρ2(ξ))= kβZ/2k(ξ). (2.1)

Proof of the Topological Period-Index Conjecture for spinc 6-manifolds. Let (N , c1)

be a spinc 6-manifold and α ∈ Br′(N ) have order n, and choose ξ ∈ H 2(N ;Z/n)
such that α = βZ/n(ξ). If n is odd, then nQ̃(ξ) = 0 and so by [Antieau and
Williams 2014b, Theorem A(3)] the Topological Period-Index Conjecture holds
for α. If n = 2m, then set

x := ρ2(ξ) ∈ H 2(N ;Z/2).

By Theorem 1.3, there is a y ∈ H 2(N ) such that βZ/2(x2)= βZ/2(x)y. Applying
(2.1) we obtain

βZ/2(x2)= βZ/2(x)y = mβZ/2m(ξ)y = mαy ∈ αH 2(N )⊆ H 5(N ) (2.2)

and so [βZ/2(x2)] = 0 ∈ H 5(N )/αH 2(N ). Applying (2.1) and (2.2) we obtain

2m Q̃(ξ)= 2m[βZ/4m(P2(ξ))] = [2mβZ/4m(P2(ξ))]

= [βZ/2(ρ2(P2(ξ)))] = [β
Z/2(x2)] = 0,

where the second to last equality holds since P2 satisfies ρ2m(P2(ξ))= ξ
2, where

ρ2m denotes reduction to modulo 2m. �

3. Linking pairings and bilinear forms

In this section we establish some elementary results used in the proof of Theorem 1.3.

Some properties of Bockstein homomorphisms. For a space X and a positive in-
teger n recall that

βZ/n
: H∗(X;Z/n)→ H∗+1(X)

is the Bockstein associated to the coefficient sequence Z→ Z
ρn
−→ Z/n.

Lemma 3.1. Let x ∈H∗(X;Z/n) and y∈H i (X), and consider xy∈H∗+i (X;Z/n).
Then

βZ/n(xy)= βZ/n(x)y.
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Proof. Let y ∈ C i (X) be a cocycle representative for y and ρn denote reduction
modulo n, and consider the commutative diagram below, in which the rows are
short exact sequences of chain complexes:

0 // C∗(X)
×n

//

∪y
��

C∗(X)
ρn

//

∪y
��

C∗(X;Z/n) //

∪ρn(y)
��

0

0 // C∗+i (X)
×n
// C∗+i (X)

ρn
// C∗+i (X;Z/n) // 0

Observe that the vertical arrows are chain maps, since the coboundary is a deriva-
tion and y is a cocycle. The result now follows from the naturality of connecting
homomorphisms. (Compare to [Brown 1982, Chapter V, §3.3].) �

We also consider the Bockstein homomorphism

βQ/Z
: H∗(X;Q/Z)→ H∗+1(X),

which is associated to the coefficient sequence Z→Q
π
−→Q/Z. Let

ιn : Z/n→Q/Z

be the inclusion defined by sending [1] ∈ Z/n to
[ 1

n

]
and also write

ιn : H∗(X;Z/n)→ H∗(X;Q/Z)

for the map on homology induced by ιn . The commutative diagram of coefficient
sequences

Z

=

��

×n
// Z

×
1
n

��

// Z/n

ιn

��

Z // Q // Q/Z

gives rise to the equality

βZ/n
= βQ/Z

◦ ιn : H∗(X;Z/n)→ H∗+1(X). (3.2)

The linking pairings of an oriented manifold. Let G and H be finite abelian
groups. Recall that a bilinear pairing

φ : G× H →Q/Z

is called perfect if g= 0∈G if and only if φ(g, h)= 0 for all h ∈ H and h = 0∈ H
if and only if φ(g, h)= 0 for all g ∈ G.

Remark 3.3. A useful property of perfect pairings, which we leave for the reader
to verify, is that h1 = h2 ∈ H if and only if φ(g, h1)= φ(g, h2) for all g ∈ G. An
analogous statement holds for g1, g2 ∈ G.
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Now let M be a closed, connected, oriented m-manifold with [M] ∈ Hm(M) the
fundamental class of M . For each k = 2, . . . ,m − 2, the linking pairing of M is
the pairing

bM : T H k+1(M)× T H m−k(M)→Q/Z, ( f, y) 7→ bM( f, y) := 〈 f̃ y, [M]〉,

where f̃ ∈ H k(M;Q/Z) is any class such that βQ/Z( f̃ )= f . The pairing bM is well
defined because if f̃ ′ is some other lift of f , then f̃ − f̃ ′ itself lifts to H k(M;Q)
and then 〈 f̃ y, [M]〉− 〈 f̃ ′y, [M]〉 = 〈( f̃ − f̃ ′)y, [M]〉 = 0, since y is torsion.

Lemma 3.4. The linking pairing bM : T H k+1(M) × T H m−k(M) → Q/Z is a
perfect pairing such that for all w ∈ H k(M;Z/n) and all y ∈ T H m−k(M)

bM(β
Z/n(w), y)= ιn(〈wy, [M]〉).

Proof. That bM is perfect is well known. The case m = 2k+1 is part of [Davis
and Kirk 2001, Exercise 55]. The general case follows from results in [Seifert and
Threlfall 1934]. Since we did not find a definitive reference in the literature, we
give a proof below.

For a finite abelian group G, let G∧ := Hom(G,Q/Z) denote the torsion dual
of G. A pairing φ : G× H →Q/Z of finite abelian groups induces adjoint homo-
morphisms φ̂ : H→G∧, h 7→ [g 7→φ(g, h)] and φ̂′ :G→ H∧, g 7→ [h 7→φ(g, h)],
and it is easily checked that φ is perfect if and only if either one of φ̂ or φ̂′ is an
isomorphism.

Standard properties of cup and cap products give 〈 f̃ y, [M]〉 = 〈 f̃ , y ∩ [M]〉.
Hence the adjoint homomorphism of bM ,

b̂M : T H m−k(M)→ T H k+1(M)∧, y 7→ [ f 7→ bM( f, y)= 〈 f̃ , y ∩ [M]〉],

is equal to the composition φ̂M ◦ P D, where P D : T H m−k(M)→ T Hk(M) is the
Poincaré duality isomorphism and φ̂M : T Hk(M)→ T H k+1(M)∧ is an adjoint of
the pairing

φM : T H k+1(M)× T Hk(M)→Q/Z, ( f, b) 7→ 〈 f̃ , b〉,

for f̃ ∈ H k(M;Q/Z) a lift of f . Hence it suffices to prove that φ̂M is an isomor-
phism or equivalently that the other adjoint φ̂′M : T H k+1(M)→ T Hk(M)∧ is an
isomorphism. Since the finite groups T H k+1(M) and T Hk(M)∧ have the same
order by the universal coefficient theorem, it suffices to show that φ̂′M is injective.

Suppose that φ̂′M( f )= 0 and let f̃ ∈ H k(M;Q/Z) be a lift of f . Then for all
b ∈ T Hk(M)

〈 f̃ , b〉 = 0 ∈Q/Z.
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Since Q/Z is an injective Z-module, another application of the universal coefficient
theorem gives

H k(M;Q/Z)∼= Hom(Hk(M),Q/Z)∼= T Hk(M)∧⊕Hom(F Hk(M);Q/Z),

where F Hk(M) := Hk(M)/T Hk(M). With respect to the above decomposition
we have f̃ = (0, z̄) for some z̄ ∈ Hom(F Hk(M);Q/Z). Now z̄ can be lifted to
z ∈ H k(M;Q) so that f̃ −π(z)= 0 but then f = βQ/Z( f̃ )= βQ/Z( f̃ −π(z))= 0
and so φ̂′M is injective.

The second statement follows directly from the definition of bM and (3.2). �

Bilinear forms over Z/2. In this subsection we establish a basic fact about sym-
metric bilinear forms over Z/2. Let V be a finitely generated (Z/2)-vector space
and let

λ : V × V → Z/2

be a symmetric bilinear form on V . If V ∗ :=Hom(V,Z/2) is the dual vector space
to V , then the adjoint homomorphism of λ is the homomorphism

λ̂ : V → V ∗, v 7→ (w 7→ λ(v,w)).

The form (λ, V ) is nonsingular if λ̂ : V → V ∗ an isomorphism. Notice that the
map

γ (λ) : V → Z/2, v 7→ λ(v, v)

is linear since

λ(v+w, v+w)= λ(v, v)+ λ(v,w)+ λ(w, v)+ λ(w,w)

= λ(v, v)+ 2λ(v,w)+ λ(w,w)= λ(v, v)+ λ(w,w).

Thus γ (λ) ∈ V ∗.

Lemma 3.5. For all λ, γ (λ) ∈ Im(λ̂).

Proof. For the orthogonal sum of bilinear forms, λ0⊕ λ1, we have

γ (λ0⊕ λ1)= γ (λ0)⊕ γ (λ1).

The lemma follows since every symmetric bilinear form over a finite field is iso-
morphic to the orthogonal sum of the zero form and a nonsingular form. �

Remark 3.6. Although we will not use this fact, it is worthwhile to note that
Lemma 3.5 is equivalent to the following statement: let A be a symmetric matrix
over Z/2; then the diagonal of A lies in the column space of A.
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Example 3.7. Let N be a closed, connected, oriented 6-manifold, and let x ∈
H 2(N ;Z/2). We identify H 6(N ;Z/2)= Z/2 and for the (Z/2)-vector space

V := T H 2(N )/2T H 2(N )

we define the symmetric bilinear form

λx : V × V → Z/2, ([y], [z]) 7→ yxz.

By Lemma 3.5, there is a vector [d] ∈ V such that λ̂x([d])= γ (λx) ∈ V ∗. Hence
for any dx ∈ [d] ⊂ T H 2(N ) and all y ∈ T H 2(N ), we have

y2x = yxy = λx([y], [y])= λx([y], [dx ])= yxdx .

4. The proof of Theorem 1.3

Let N be a closed, connected, oriented spinc 6-manifold. To prove Theorem 1.3 it
suffices to prove the following: for x ∈ H 2(N ;Z/2) and all y ∈ T H 2(N ), there is
a class ex ∈ H 2(N ) such that

x2 y = xex y ∈ H 6(N ;Z/2). (4.1)

To see this we use the linking pairing of N , which is a perfect pairing by Lemma 3.4:

bN : T H 5(N )× T H 2(N )→Q/Z.

From (4.1) and Lemmas 3.4 and 3.1, for all y ∈ T H 2(N ) we have

bN (β
Z/2(x2), y)= ι2(〈x2 y, [N ]〉)= ι2(〈xex y, [N ]〉)

= bN (β
Z/2(xex), y)= bN (β

Z/2(x)ex , y).

Thus βZ/2(x2)= βZ/2(x)ex , since bN is perfect; see Remark 3.3.
To find ex , we start with v2(N ), the second Wu class of N . Since N is orientable,

v2(N ) coincides with w2(N ), the second Stiefel–Whitney class of N . Since N is
spinc, the class w2(N ) lifts to an integral class c1 ∈ H 2(N ). In summary, we have

v2(N )= w2(N )= ρ2(c1) ∈ H 2(N ;Z/2). (4.2)

By definition of the Wu class v2(N ) we have

xyv2(N )= Sq2(xy)= x2 y+ xy2, (4.3)

where we have used the Cartan formula for Sq2(xy) and the fact that Sq1(ρ2(y))= 0.
By (4.2) we can replace v2(N ) by c1 in (4.3) and rearranging we obtain

x2 y = xyc1+ xy2. (4.4)
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By Example 3.7, there is an element dx ∈ T H 2(N ) such that xy2
= xydx and so

x2 y = xyc1+ xydx = xyex ,

where ex := c1 + dx . Hence we have found ex as in (4.1), finishing the proof of
Theorem 1.3.

5. Teichner’s examples

In this section we recall a construction due to Teichner [1995] which produces
closed smooth 6-manifolds N with classes x ∈ H 2(N ;Z/2) such that βZ/2(x2) 6= 0.
The manifolds N are constructed as total spaces of sphere bundles of rank-3 vec-
tor bundles E over closed 4-manifolds. In the following, Zw1(E) denotes integral
coefficients twisted by the first Stiefel–Whitney class of the bundle E .

Lemma 5.1 [Teichner 1995, Lemma 1]. Let E be a 3-dimensional vector bundle
over a path-connected space X , with sphere bundle N = SE.

(i) There exists a class x ∈ H 2(N ;Z/2) which restricts to the generator in the
cohomology H 2(S2

;Z/2) of the fibre if and only if w3(E)= 0.

(ii) Assume that w2(E) is not the reduction of a class in H 2(X;Zw1(E)). Then any
class x as in (i) has 0 6= βZ/2(x2) ∈ H 5(N ;Z).

The next lemma guarantees the existence of such bundles with base X = M a
closed connected 4-manifold.

Lemma 5.2 [Teichner 1995, Lemma 2]. Let M be a closed connected 4-manifold
with fundamental group Z/4. Then there exists a 3-dimensional bundle E over M
with w3(E) = 0, w1(E) = w1(M), and w2(E) not the reduction of a class in
H 2(M;Zw1(E)). �

Definition 5.3. The total space N of the sphere bundle of a bundle E satisfying the
conditions of Lemma 5.2 is a closed connected 6-manifold, which by Lemma 5.1
supports a class x ∈ H 2(N ;Z/2) satisfying βZ/2(x2) 6= 0. We will call such a total
space N a Teichner manifold and the pair (N , x) a Teichner pair.

Spinc 6-manifolds N with βZ/2(x2) 6= 0 ∈ H5(N). In this subsection we show
that a Teichner manifold over an orientable base is spinc.

Lemma 5.4. Let N be a Teichner manifold over a closed connected 4-manifold M.
Then

(i) N is orientable,

(ii) and if M is orientable, then N is spinc.
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Proof. Let π : N → M be the bundle projection. Since the normal bundle of the
sphere bundle in the total space of E is trivial, there are bundle isomorphisms

T N ⊕R∼= T E |N ∼= π∗(T M)⊕π∗(E).

Now part (i) follows from the equation

w1(N )= π∗w1(M)+π∗w1(E)= 0.

For (ii), assume w1(M)= 0 so that

w2(N )= π∗w2(M)+π∗w1(M)π∗w1(E)+π∗w2(E)= π∗w2(M)+π∗w2(E).

Then
βZ/2(w2(N ))= π∗(βZ/2(w2(M)))+π∗(βZ/2(w2(E))).

The first term vanishes since any orientable 4-manifold is spinc; see [Morgan 1996]
for example. The second term vanishes since βZ/2(w2(E)) ∈ H 3(M) is the Euler
class of the orientable bundle E . �

The following proposition proves Theorem 1.4(i).

Proposition 5.5. Let (N, x) be a Teichner pair over a closed, connected, orientable
4-manifold. Then N is spinc and βZ/2(x2) 6= 0, but βZ/2(x2) ∈ βZ/2(x)H 2(N ).

Furthermore, the element α=βZ/2(x)∈ T H 3(N ) has per(α)= 2 and ind(α)= 4.

Proof. The first statement is a consequence of Lemmas 5.4 and 5.1 and Theorem 1.3.
To prove the second statement, we recall that by [Antieau and Williams 2014b,

Theorem A],
ind(α)= ord(Q̃(x)) per(α),

where Q̃(x) = [βZ/4(P2(x))] ∈ H 5(N )/αH 2(N ). Note that by Theorem 1.3 and
(2.1),

2Q̃(x)= 2[βZ/4(P2(x))] = [2βZ/4(P2(x))] = [βZ/2(x2)] = 0,

since N is spinc. However Q̃(x) 6= 0, since any element of αH 2(N ) is 2-torsion,
while

2βZ/4(P2(x))= βZ/2(x2) 6= 0.

Hence ord(Q̃(x))= 2 and we’re done. �

6-manifolds violating the TPIC. In this subsection we give examples of Teichner
pairs (N , x) over a nonorientable base which violate the Topological Period-Index
Conjecture, i.e., βZ/2(x2) /∈ βZ/2(x)H 2(N ). We first prove an extension of [Teich-
ner 1995, Lemma 2].
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Lemma 5.6. Let M be a closed connected 4-manifold with an element a ∈ H1(M)
of order 4. Then there exists a 3-dimensional bundle E over M with w1(E) =
w1(M), w2(E) not coming from H 2(M;Zw1(E)), and w3(E)= 0.

Proof. We use multiplicative notation for elements of H1(M) = π1(M)ab. The
Poincaré dual of a2 in H 3(M;Zw1(M)) has order 2 and hence is the image of an
element z ∈ H 2(M;Z/2) under the twisted Bockstein. As in Teichner’s proof of
[1995, Lemma 2], there are no obstructions to constructing a 3-bundle E with
(w1(E), w2(E))= (w1(M), z).

It remains to show that w3(E)= 0. This follows from Theorem 2.3 of [Green-
blatt 2006], which states that for any space X and twisting w ∈ H 1(X;Z/2), the
composition of the twisted Bockstein βw : H i (X;Z/2)→ H i+1(X;Zw) with re-
duction mod 2 is given by

ρ2 ◦β
w(z)= Sq1(z)+ zw.

Hence we have
w3(E)= Sq1(w2(E))+w2(E)w1(E)

= ρ2 ◦β
w1(M)(w2(E))

= 0,

since βw1(M)(w2(E))= βw1(M)(z) is even. �

In order to find an example with βZ/2(x2) /∈ βZ/2(x)H 2(N ) it turns out to be
sufficient that there is an element a ∈ H1(M) of order 4 such that 0 6= τ!(a2) ∈

H1(M̂), where τ! : H1(M)→ H1(M̂) is the transfer associated to the orientation
double cover τ : M̂→ M .

To this end, we shall use a closed connected 4-manifold M with

π1(M)= C8 oC2 = 〈a, b | b−1ab = a5, a8, b2
〉

and with w1(M) : π1(M)→ C2 the projection onto the base of the semidirect
product. Note that

H1(M)= 〈a, b | a = a5, a8, b2, [a, b]〉 ∼= C4×C2

has an element a of order 4. It is well known (see, e.g., [Ranicki 2002, Propostion
11.75]) that every homomorphism w : π→ Z/2 from a finitely presented group π
arises as (π1(X), w1(X)) for a 4-manifold X , so a 4-manifold M as above exists.

Lemma 5.7. The transfer homomorphism τ! : H1(M)→ H1(M̂) does not map the
element a2

∈ H1(M) to 0.

Proof. Let G = π1(M) and let H = ker(w1(M)) = C8, so that [G : H ] = 2. The
definition of the transfer in terms of coset representatives gives

τ! : Gab→ Hab, g[G,G] 7→ g2
[H, H ].

Therefore τ!(a2)= a4
6= 0 as claimed. �
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Before continuing, we record the following lemma which will be useful in the
proof of Proposition 5.9 below.

Lemma 5.8 [Dold 1980, Chapter VII, §8.10]. Let i : A→ X denote the inclusion
of a CW-pair (X, A), and let δ : H∗(A)→ H∗+1(X, A) be the connecting homo-
morphism in the long exact cohomology sequence (with any coefficients). Then for
all x ∈ H∗(A) and y ∈ H∗(X) we have

δ(xi∗(y))= δ(x)y. �

The following proposition proves Theorem 1.4(ii).

Proposition 5.9. Let (N , x) be a Teichner pair over a nonorientable 4-manifold M
with w1(M) : π1(M)→ Z/2 as above. Then βZ/2(x2) /∈ βZ/2(x)H 2(N ).

Furthermore, the element α=βZ/2(x)∈ T H 3(N ) has per(α)= 2 and ind(α)= 8.

Proof. We first prove that βZ/2(x2) /∈ βZ/2(x)H 2(N ). Suppose towards a contra-
diction that βZ/2(x2) = βZ/2(x)Y for some Y ∈ H 2(N ). Let i : N ↪→ DE be
the inclusion of the unit sphere bundle in the unit disc bundle of E . From the long
exact sequence of the pair (DE, N ), the twisted Thom isomorphism H 3(DE, N )∼=
H 0(M;Zw), and the fact that M is nonorientable, we see that i∗ : H 2(DE)→
H 2(N ) is surjective. Hence Y = i∗(y) for some y ∈ H 2(DE)∼= H 2(M).

Let twE ∈H 3(DE,N;Zw) be the twisted Thom class of E and tE∈H 3(DE,N;Z/2)
its mod 2 reduction. From the fact that x restricts to a generator in each fibre, it fol-
lows that tE = δ(x), where δ : H∗(N ;Z/2)→ H∗+1(DE, N ;Z/2) is the connecting
homomorphism (see the proof of Lemma 1 in [Teichner 1995]). Now we have

δ(x2)= δ(Sq2(x))= Sq2(δ(x))= Sq2(tE)= w2(E)tE

and since Bocksteins commute with connecting homomorphisms

δ(βZ/2(x2))= βZ/2(δ(x2))= βZ/2(w2(E)tE).

On the other hand, βZ/2(x2)= βZ/2(x)i∗(y) and so

δ(βZ/2(x2))= δ(βZ/2(x)i∗(y))

= δ(βZ/2(xi∗(ρ2(y))))

= βZ/2(δ(xi∗(ρ2(y))))

= βZ/2(δ(x)ρ2(y))

= βZ/2(tEρ2(y)).

Here we have used Lemmas 3.1 and 5.8.
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The above argument shows that βZ/2(w2(E)tE)=β
Z/2(tEρ2(y)), or equivalently

tE(w2(E)− ρ2(y)) is the reduction of an integral class. From the square

H 5(DE, N )
ρ2
// H 5(DE, N ;Z/2)

H 2(M;Zw)

∪twE ∼=

OO

ρ2
// H 2(M;Z/2)

∪tE ∼=

OO

which commutes since the Thom isomorphisms commute with reduction mod 2, we
see that w2(E)− ρ2(y) is the reduction of a twisted integral class, or equivalently

βw(w2(E))= βw(ρ2(y)).

Next we lift this equation to the orientation cover, using the commutative square

H 2(M̂;Z/2)
βZ/2

// H 3(M̂)

H 2(M;Z/2)

τ ∗

OO

βw
// H 3(M;Zw)

τ ∗

OO

to conclude that

τ ∗βw(w2(E))= τ ∗βw(ρ2(y))= βZ/2(τ ∗(ρ2(y)))= βZ/2ρ2(τ
∗(y))= 0.

However, Poincaré duality gives a commutative square

H 3(M;Zw) τ ∗
//

∩[M]w ∼=

��

H 3(M̂)

∩[M̂] ∼=
��

H1(M)
τ!

// H1(M̂)

Since the bundle E was chosen as in Lemma 5.6 so that βw(w2(E))∩ [M]w = a2,
and τ!(a2) 6= 0 by Lemma 5.7, we see that τ ∗βw(w2(E)) 6= 0, a contradiction.

To prove the second statement, we have per(α) = 2 and since βZ/2(x2) /∈

βZ/2(x)H 2(N ),

2Q̃(x)= [βZ/4(P2(x))] = [2βZ/4(P2(x))] = [βZ/2(x2)] 6= 0.

Hence ord(Q̃(x)) = 4. As ind(α) = ord(Q̃(x)) per(α) by [Antieau and Williams
2014b, Theorem A], ind(α)= 8. �
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Weibel’s conjecture for twisted K -theory

Joel Stapleton

We prove Weibel’s conjecture for twisted K -theory when twisting by a smooth
proper connective dg-algebra. Our main contribution is showing we can kill
a negative twisted K -theory class using a projective birational morphism (in
the same twisted setting). We extend the vanishing result to relative twisted
K -theory of a smooth affine morphism and describe counterexamples to some
similar extensions.

1. Introduction

The so-called fundamental theorem for K1 and K0 states that for any ring R there
is an exact sequence

0→ K1(R)→ K1(R[t])⊕ K1(R[t−1
])→ K1(R[t±])→ K0(R)→ 0.

We see K0 can be defined using K1. There is an analogous exact sequence, trun-
cated on the right, for K0. Bass defines K−1(X) as the cokernel of the final mor-
phism. He then iterates the construction to define a theory of negative K -groups
[Bass 1968, §XII.7 and §XII.8].

Weibel’s conjecture [1980] asks if K−i (R) = 0 for i > dim R when R has fi-
nite Krull dimension. Kerz, Strunk, and Tamme [Kerz et al. 2018] have proven
Weibel’s conjecture for any Noetherian scheme of finite Krull dimension (see the
introduction for a historical summary of progress) by establishing pro cdh-descent
for algebraic K -theory. Land and Tamme [2019] have shown that a general class
of localizing invariants satisfy pro cdh-descent. With this improvement, we extend
Weibel’s vanishing to some cases of twisted K -theory.

Theorem 1.1. Let X be a Noetherian d-dimensional scheme and A a sheaf of
smooth proper connective quasicoherent differential graded algebras over X ; then
K−i (Perf(A)) vanishes for i > d.

The original goal of this paper was to extend Weibel’s conjecture to an Azumaya
algebra over a scheme. To an Azumaya algebra A of rank r2 on X we can associate
a Severi–Brauer variety P of relative dimension r − 1 over X . Such a variety is
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étale-locally isomorphic over X to Pr−1
X . Quillen [1973] generalizes the projective

bundle formula to Severi–Brauer varieties showing (for i ≥ 0)

Ki (P)∼=
r−1⊕
n=0

Ki (A
⊗n).

At the root of this computation is a semiorthogonal decomposition of Perf(P).
Consequently, the computation lifts to the level of nonconnective K -theory spectra.
Statements about the K -theory of Azumaya algebras can generally be extracted
through this decomposition. In our case, the dimension of the Severi–Brauer vari-
ety jumps and so Weibel’s conjecture (for our noncommutative dg-algebra) does
not follow from the commutative setting.

We could remedy this by characterizing a class of morphisms to X , which should
include Severi–Brauer varieties, and then show the relative K -theory vanishes un-
der −d − 1. In Remark 4.4, we show that smooth and proper morphisms (in fact,
smooth and projective) are not sufficient. We warn the reader that we will use the
overloaded words “smooth and proper” in both the scheme and dg-algebra settings.

For dg-algebras and dg-categories, properness and smoothness are module and
algebraic finiteness conditions [Toën and Vaquié 2007, Definition 2.4]. Together,
the two conditions characterize the dualizable objects in ModModR (PrL

st,ω), whose
objects are ω-compactly generated R-linear stable presentable∞-categories. More
surprisingly, the invertible objects of ModModR (PrL

st,ω) are exactly the module cate-
gories over derived Azumaya algebras [Antieau and Gepner 2014, Theorem 3.15].
So Theorem 1.1 recovers the discrete Azumaya algebra case.

However, any connective derived Azumaya algebra is discrete. After base-
changing to a field k, Ak ∼= H∗Ak is a connective graded k-algebra and H∗Ak ⊗k

(H∗Ak)
op is Morita equivalent to k. So H∗Ak is discrete. The scope of Theorem 1.1

is not wasted as smooth proper connective dg-algebras can be nondiscrete [Raed-
schelders and Stevenson 2019, §4.3].

The proof of Theorem 1.1 follows [Kerz 2018]. In Section 2, we define and study
twisted K -theory. We kill a negative twisted K -theory class using a projective
birational morphism in Section 3. Lastly, Section 4 holds the main theorem and
we consider some extensions.

Conventions. We make very little use of the language of ∞-categories. For a
commutative ring R, there is an equivalence of∞-categories between the E1-ring
spectra over H R and differential graded algebras over R localized at the quasi-
isomorphisms [Lurie 2017, Proposition 7.1.4.6]. For a dg-algebra (or E1-ring) A,
we can consider the∞-category RMod(A) of spectra which have a right A-module
structure. We will refer to this∞-category as the derived category of A and denote
it by D(A). The subcategory Perf(A) consists of all compact objects of RMod(A),
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or the right A-modules which corepresent a functor that commutes with filtered
colimits. We shall refer to objects of Perf(A) as perfect complexes over A.

We use K (−) undecorated as nonconnective algebraic K -theory and consider it
as a localizing invariant in the sense of Blumberg, Gepner, and Tabuada [Blumberg
et al. 2013]. In particular, it is an∞-functor from Catperf

∞ , the∞-category of idem-
potent complete small stable infinity categories with exact functors, taking values
in Sp, the∞-category of spectra. For X a quasicompact quasiseparated scheme,
K (Perf(X)) is equivalent to the nonconnective K -theory spectrum of Thomason
and Trobaugh [1990]. The∞-category Catperf

∞ has a symmetric monoidal structure
which we will denote by ⊗̂. For R an E∞-ring spectrum, Perf(R) is an E∞ algebra
in Catperf

∞ . We will restrict the domain of algebraic K -theory to ModPerf(R)(Catperf
∞ ).

2. Twisted K -theory

In Grothendieck’s original papers [1968a; 1968b; 1968c], he globalizes the notion
of a central simple algebra over a field.

Definition 2.1. A locally free sheaf of OX -algebras A is a sheaf of Azumaya alge-
bras if it is étale-locally isomorphic to Mn(OX ) for some n.

An Azumaya algebra is then a PGLn-torsor over the étale topos of X and so,
by Giraud, isomorphism classes are in bijection with H 1

ét(X,PGLn). The central
extension of sheaves of groups in the étale topology

1→ Gm→ GLn→ PGLn→ 1

leads to an exact sequence of nonabelian cohomology

· · · → H 1
ét(X,Gm)→ H 1

ét(X,GLn)→ H 1
ét(X,PGLn)→ H 2

ét(X,Gm).

For d | n we have a morphism of exact sequences

1 Gm GLn PGLn 1

1 Gm GLd PGLd 1

with the two right arrows given by block-summing the matrix along the diagonal
n/d times. The Brauer group is the filtered colimit of cofibers

Br(X) := colim
−−−−−−→

(cofib(H 1
ét(X,GLn)→ H 1

ét(X,PGLn)))

along the partially ordered set of the natural numbers under division. This is
the group of Azumaya algebras modulo Morita equivalence with group operation
given by tensor product [Grothendieck 1968a]. We have an injection Br(X) ↪→
H 2

ét(X,Gm) and when X is quasicompact this injection factors through the torsion
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subgroup. We will call Br′(X) := H 2
ét(X,Gm)tor the cohomological Brauer group.

Grothendieck asked if the injection Br(X) ↪→ Br′(X) is an isomorphism.
This map is not generally surjective. Edidin, Hassett, Kresch, and Vistoli [Edidin

et al. 2001] give a nonseparated counterexample by connecting the image of the
Brauer group to quotient stacks. There are two ways to proceed in addressing the
question. The first is to provide a class of schemes for when this holds. In [de Jong
2006], de Jong publishes a proof of O. Gabber that Br(X) ∼= Br′(X) when X is
equipped with an ample line bundle. Along with reproving Gabber’s result for
affines, Lieblich [2004] shows that for a regular scheme with dimension less than
or equal to 2 there are isomorphisms Br(X)∼= Br′(X)∼= H 2

ét(X,Gm).
The second perspective is to enlarge the class of objects considered. The Morita

equivalence classes of Gm-gerbes over the étale topos of a scheme X are in bijection
with H 2

ét(X,Gm). Lieblich [2004] associates to any Azumaya algebra A a Gm-
gerbe of Morita-theoretic trivializations. Over an étale open U → X , the gerbe
gives a groupoid of Morita equivalences from A to OX . The gerbe of trivializations
represents the boundary class δ([A])= α ∈ H 2

ét(X,Gm).
Any class α ∈ H 2

ét(X,Gm) is realizable on a Čech cover. We can use this
data to build a well defined category of sheaves of OX -modules which “glue up
to α” [Căldăraru 2000, Chapter 1]. Let ModαX denote the corresponding derived
∞-category and PerfαX the full subcategory of compact objects. K (PerfαX ) is the
classical definition of α-twisted algebraic K -theory. Determining when the coho-
mology class α is represented by an Azumaya algebra reduces to finding a twisted
locally free sheaf with trivial determinant on a Gm-gerbe associated to α [Lieblich
2004, §2.2.2]. The endomorphism algebra of the twisted locally free sheaf gives
the Azumaya algebra and the twisted module represents the tilt ModαX 'ModA.

Lieblich also compactifies the moduli of Azumaya algebras. This necessarily
includes developing a definition of a derived Azumaya algebra.

Definition 2.2. A derived Azumaya algebra over a commutative ring R is a proper
dg-algebra A such that the natural map of R-algebras

A⊗L
R Aop '

−→ RHomD(R)(A,A)

is a quasi-isomorphism.

After Lieblich, Toën [2012] and (later) Antieau and Gepner [2014] consider
the analogous problem posed by Grothendieck in the dg-algebra and E∞-algebra
settings, respectively. Antieau and Gepner construct an étale sheaf Br in the
∞-topos Shvét

R . For any étale sheaf X , we can now associate a Brauer space
Br(X). For X a quasicompact quasiseparated scheme, they show π0(Br(X)) ∼=
H 1

ét(X,Z)× H 2
ét(X,Gm) and every such Brauer class is algebraic. Now for any
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(possibly nontorsion) α ∈ H 2
ét(X,Gm) there is a derived Azumaya algebra A and

an equivalence ModαX 'ModA of stable∞-categories.
This reframes classical twisted K -theory as K -theory with coefficients in a par-

ticularly special dg-algebra in D(X). For our purposes, we work with a generalized
definition of twisted K -theory which allows “twisting” by any dg-algebra.

Definition 2.3. Let R be a commutative ring. For a dg-algebra A over R, we define
the A-twisted K -theory K A

:ModPerf(R)(Catperf
∞ )→ Sp by

K A(C) := K (C ⊗̂Perf(R) Perf(A)).

When the dg-algebra “A” is clear, we just write twisted K -theory. If our input
to K A is an R-algebra S, then

K A(S)= K (Perf(S) ⊗̂Perf(R) Perf(A))' K (Perf(S⊗R A))' K (S⊗R A).

Our definition recovers the historical definition of twisted K -theory when A is a
derived Azumaya algebra and we evaluate on the base ring R. The same definition
works for a scheme X and A∈AlgE1

(Dqc(X)). We will refer to such an A as a sheaf
of quasicoherent dg-algebras over X . By [Blumberg et al. 2013, Theorem 9.36],
twisted K -theory is a localizing invariant. When X is a quasicompact quasisepa-
rated scheme, Clausen, Mathew, Naumann, and Noel [Clausen et al. 2020, Propo-
sition A.15] establish Nisnevich descent when X is quasicompact quasiseparated.

Definition 2.4. A dg-algebra A over a ring R is proper if it is perfect as a complex
over R and smooth if it is perfect over Aop

⊗R A.

The following is Lemma 2.8 of [Toën and Vaquié 2007] and is an essential
property for our proof in Section 3.

Lemma 2.5. Let A be a smooth proper dg-algebra over a ring R. Then a complex
of D(A) is perfect over A if and only if it is perfect as an object of D(R).

The previous definition and lemma both generalize to a sheaf of quasicoherent
dg-algebras over a scheme as perfection is a local property. For the remainder of
the section, we prove some basic properties of A-twisted K -theory, often assuming
A is connective. We will not use smooth and properness until the later sections.

Proposition 2.6. Let A, S be connective dg-algebras over R. Then the natural
maps induce isomorphisms

K A
i (S)∼= K A

i (π0(S))∼= K π0(A)
i (S)∼= K π0(A)

i (π0(S))

for i ≤ 0.

Proof. We have the following isomorphisms of discrete rings:

π0(A⊗R S)∼= π0(A⊗R π0(S))∼= π0(π0(A)⊗R S)∼= π0(π0(A)⊗R π0(S)).
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The lemma follows since Ki (R) ∼= Ki (π0(R)) for i ≤ 0 [Blumberg et al. 2013,
Theorem 9.53]. �

The previous proposition suggests we can work discretely and then transfer the
results to the derived setting. This is true to some extent. However, taking π0

of a connective dg-algebra does not preserve smoothness, which is a necessary
property for our proof of Proposition 3.2. We will also need reduction invariance
for low-dimensional K -groups.

Proposition 2.7. Let R be a commutative ring and A a connective dg-algebra
over R. Let S be a commutative ring under R, and let I be a nilpotent ideal of S.
Then the induced morphism K A

i (S)
∼=−→ K A

i (S/I ) is an isomorphism for i ≤ 0.

Proof. By naturality of the fundamental exact sequence of twisted K -theory (see
(†) and the surrounding discussion at the beginning of Section 3), we can restrict
the proof to K A

0 . By Proposition 2.6, we can assume A is a discrete algebra. Let
ϕ : S � S/I be the surjection. After −⊗R A we have a surjection (kerϕ)⊗R A �
ker(ϕ ⊗R A). The nonunital ring (kerϕ)⊗R A is nilpotent. So ker(ϕ ⊗R A) is
nilpotent as well. The proposition follows from nil-invariance of K0. �

A Zariski descent spectral sequence argument gives us a global result.

Corollary 2.8. Let X be a quasicompact quasiseparated scheme of finite Krull
dimension d and A a sheaf of connective quasicoherent dg-algebras over X. The
natural morphism f : Xred→ X induces isomorphisms

K f ∗A
−i (Xred)∼= K A

−i (X)

for i ≥ d.

Proof. We have descent spectral sequences

E p,q
2 = H p

Zar(X, (πq K A)∼) ⇒ πq−p K A(X),

E p,q
2 = H p

Zar(X, f∗(πq K f ∗(A))∼)⇒ πq−p K f ∗A(Xred)

both with differential d2 = (2, 1). We let F∼ denote the Zariski sheafification of
the presheaf F . The spectral sequences agree for q ≤ 0. By Corollary 3.27 of
[Clausen and Mathew 2019], the spectral sequences vanishes for p > d . �

In Theorem 4.3, we extend our main theorem across smooth affine morphisms.
We will need reduction invariance in this setting.

Definition 2.9. For f : S→ X a morphism of quasicompact quasiseparated schemes
and A a sheaf of quasicoherent dg-algebras over X , the relative A-twisted K -theory
of f is

K A( f ) := fib(K A(X)
f ∗
−→ K A(S)).
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As defined, K A( f ) is a spectrum. There is an associated presheaf of spectra on
the base scheme X given by U 7→ K A( f|U ). This presheaf sits in a fiber sequence

K A( f )→ K A
→ K A

S

where the presheaf K A
S is also defined by pullback along f . Both presheaves K A

and K A
S satisfy Nisnevich descent and so K A( f ) does as well.

Corollary 2.10. Let f : S→ X be an affine morphism of quasicompact quasisepa-
rated schemes. Suppose X has Krull dimension d and let A be a sheaf of connective
quasicoherent dg-algebras over X. Then the commutative diagram

Sred Xred

S X

fred

g

f

induces an isomorphism of relative twisted K -theory groups

K g∗A
−i ( fred)∼= K A

−i ( f )

for i ≥ d + 1.

Proof. We have two descent spectral sequences

E p,q
2 = H p

Zar(X, (πq K A( f ))∼) ⇒ πq−p K A( f )(X),

E p,q
2 = H p

Zar(X, g∗(πq K g∗A( fred))
∼)⇒ πq−p K g∗A( fred)(Xred)

with differential of degree d = (2, 1) and F∼ the sheafification of the presheaf F .
For an open affine Spec R→ X with pullback Spec A→ S we examine the mor-
phism of long exact sequences when q ≤ 0:

··· πq K A(R) πq K A(A) πq−1 K A( f ) πq−1 K A(R) πq−1 K A(A) ···

··· πq K A(Rred) πq K A(Ared) πq−1 K A( fred) πq−1 K A(Rred) πq−1 K A(Ared) ···

∼= ∼= ∼= ∼=

By the 5-lemma, this induces sheaf isomorphisms

g∗(πq K g∗A( fred))
∼ ∼= (πq K A( f ))∼

for q < 0 and, as in Corollary 2.8, cohomology vanishes for p > d . �

We will need proexcision for abstract blow-up squares. Recall that an abstract
blow-up square is a pullback square

D X̃

Y X

(∗)
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with Y → X a closed immersion and X̃→ X a proper morphism which restricts to
an isomorphism of open subschemes X̃ \D→ X \Y . The theorem is stated using the
∞-category of prospectra Pro(Sp), where an object is a small cofiltered diagram,
E :3→ Sp, valued in spectra. We write {En} for the corresponding prospectrum.
If the brackets and index are omitted, then the prospectrum is considered constant.
After adjusting equivalence class representatives, we may assume the cofiltered
diagram is fixed when working with a finite set of prospectra. Any morphism
can then be represented by a natural transformation of diagrams (also known as a
level map). We will need no knowledge of the∞-category beyond the following
definition.

Definition 2.11. A square of prospectra

{En} {Fn}

{Xn} {Yn}

is procartesian if and only if the induced map on the levelwise fiber prospectra is
a weak equivalence [Land and Tamme 2019, Definition 2.27].

The following is Theorem A.8 of [Land and Tamme 2019]. The theorem holds
much more generally for any k-connective localizing invariant [Land and Tamme
2019, Definition 2.5]. Twisted K -theory is 1-connective.

Theorem 2.12 [Land and Tamme 2019]. Given an abstract blow-up square (∗) of
schemes and a sheaf of dg-algebras A on X , then the square of prospectra

K A(X) K A(X̃)

{K A(Yn)} {K A(Dn)}

is procartesian (where Yn is the infinitesimal thickening of Y ).

The procartesian square of prospectra gives a long exact sequence of progroups

· · · → {K A
−i+1(En)} → K A

−i (X)→ K A
−i (X̃)⊕{K

A
−i (Yn)} → {K A

−i (En)} → · · ·

which is the key to our induction argument.

3. Blowing up negative twisted K -theory classes

We turn to our main contribution of the existence of a projective birational mor-
phism which kills a given negative twisted K -theory class (when twisting by a
smooth proper connective dg-algebra). Let X be a quasicompact quasiseparated
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scheme and A a sheaf of quasicoherent dg-algebras on X . We first construct geo-
metric cycles for negative twisted K -theory classes on X using a classical argument
of Bass [1968, §XII.7] which works for a general additive invariant. We have an
open cover

X [t±] X [t−]

X [t] P1
X

f

g j

k

Since twisted K -theory satisfies Zariski descent, there is an associated Mayer–
Vietoris sequence of homotopy groups

· · · → K A
−n(P

1
X )

( j∗k∗)
−−−→ K A

−n(X [t])⊕ K A
−n(X [t

−
])

f ∗−g∗
−−−→ K A

−n(X [t
±
])

∂
−→ K A

−n−1(P
1
X )→ · · · .

As an additive invariant, K A(P1
X )' K A(X)⊕ K A(X) splits as a K A(X)-module

with generators

[O ⊗OX A] = [A] and [O(1)⊗OX A] = [A(1)]

corresponding to the Beilinson semiorthogonal decomposition. Adjusting the gen-
erators to [A] and [A] − [A(1)], we can identify the map ( j∗, k∗) as it is a map
of K A(X)-modules. The second generator vanishes under each restriction. This
identifies the map as

K A(P1
X )' K A(X)[A]⊕ K A(X)([A] − [A(1)])

1⊕0
−−→ K A(X [t])⊕ K A(X [t−])

with 1 the diagonal map corresponding to pulling back along the projections
X [t]→ X and X [t−]→ X . As 1 is an embedding the long exact sequence splits as

0→K A
−n(X)

1
−→K A

−n(X [t])⊕K A
−n(X [t

−
])
±
−→K A

−n(X [t
±
])

∂
−→K A

−n−1(X)→0. (†)

After iterating the complex

K A
−n(X [t])→ K A

−n(X [t
±
])� K A

−n−1(X),

we can piece together a complex

K A
0 (A

n+1
X )→ K A

0 (G
n+1
m,X )� K A

−n−1(X).

Negative twisted K -theory classes have geometric representations as twisted per-
fect complexes on Gi

m,X . There is even a sufficient geometric criterion implying a
given representative is 0; it is the restriction of a twisted perfect complex on Ai

X .
Our proof of the main proposition of this section will use these representatives. We
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first need a lemma about extending finitely generated discrete modules in a twisted
setting.

Lemma 3.1. Let j :U→ X be an open immersion of quasicompact quasiseparated
schemes. Let A be a sheaf of proper connective quasicoherent dg-algebras on X
and j∗A its restriction. Let N be a discrete j∗A-module which is finitely generated
as an OU -module. Then there exists a discrete A-module M, finitely generated
over OX , such that j∗M∼= N.

Proof. Note that H≥1( j∗A) necessarily acts trivially on N. So the j∗A-module
structure on N comes from forgetting along the map j∗A→ H0( j∗A) and the
natural H0( j∗A)-module structure. Under restriction,

j∗H0(A)∼= H0( j∗A).

We reduce to when A is a quasicoherent sheaf of discrete OX -algebras, finite over
the structure sheaf. We have an isomorphism N∼= j∗ j∗N. Write j∗N as a filtered
colimit of its finitely generated A-submodules j∗N∼= colim

−−−−−−→λ Mλ. The pullback is
exact, so we can write N∼= colim

−−−−−−→λ j∗Mλ as a filtered colimit of finitely generated
submodules. As N is finitely generated itself, this isomorphism factors at some
stage and N∼= j∗Mλ. �

Proposition 3.2. Let X be a reduced scheme which is quasiprojective over a Noe-
therian affine scheme. Let A be a sheaf of smooth proper connective quasicoherent
dg-algebras on X. Let γ ∈ K A

−i (X) for i > 0. Then there is a projective birational
morphism ρ : X̃→ X so that ρ∗γ = 0 ∈ K A

−i (X̃).

Proof. We fix a diagram of schemes over X

Gi
m,X Ai

X

X
π1

j

π2

For any morphism f :Y1→Y2, we let f̃ :Gi
m,Y1
→Gi

m,Y2
denote the pullback. Lift γ

to a K A
0 (G

i
m,X )-class [P•], with P• some π∗1 A-twisted perfect complexes on Gi

m,X .

The induction step. We induct on the range of homology of P•. As π∗1 A is a
sheaf of proper quasicoherent dg-algebras, P• is perfect on Gi

m,X by Lemma 2.5.
Since Gi

m,X has an ample family of line bundles, we may choose P• to be strict
perfect without changing the quasi-isomorphism class. After some (de)suspension,
we may assume P• is connective as this only alters the K0-class by ±1. For the
lowest nontrivial differential of P•, d1, we utilize part (iv) of Lemma 6.5 of [Kerz
et al. 2018] (with the morphism Gi

m,X → X ) to construct a projective birational
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morphism ρ : X1→ X so that coker(ρ̃∗d1) (= H0(ρ̃
∗P•)) has tor-dimension ≤ 1

over X1. Consider the distinguished triangle of ρ̃∗π∗1 A-complexes on Gi
m,X1

F•→ ρ̃∗P•→ H0(ρ̃
∗P•)∼= coker ρ̃∗d1.

In Lemma 3.3 below, we cover the base induction step, when the homology is
concentrated in a single degree. Using this, construct a projective birational mor-
phism φ : X2→ X1 such that Lφ̃∗H0(ρ̃

∗P•) is a perfect complex and is the restric-
tion of a perfect complex from Ai

X2
. By two out of three, Lφ̃∗F• is perfect and

[φ̃∗ρ̃∗P•] = [Lφ̃∗F•] + [Lφ̃∗H0(ρ̃
∗P•)] in K A

0 (G
i
m,X2

). We then repeat the entire
induction step with Lφ̃∗F•.

We need the induction to terminate, which is the purpose of the first projective bi-
rational morphism of each step. Since coker(ρ̃∗d1) has tor-dimension ≤ 1 over X1,
by [Kerz et al. 2018, Lemma 6.5], Lφ̃∗ coker(ρ̃∗d1)∼= φ̃

∗ coker(ρ̃∗d1). This implies
Lφ̃∗F• will have no homology outside the original range of homology of P•. Since
φ̃∗ coker(ρ̃∗d1)∼= coker(φ̃∗ρ̃∗d1), this guarantees H0(Lφ̃∗F•)= 0, so the homology
of Lφ̃∗F• lies in a strictly smaller range than φ̃∗ρ̃∗P•. Proposition 3.2 follows from
the next lemma. �

Lemma 3.3. Let X be a reduced scheme which is quasiprojective over a Noether-
ian affine scheme. Let A be a sheaf of smooth proper connective quasicoherent dg-
algebras on X. Let N be a discrete π∗1 A-module which is coherent on Gi

m,X . Then
there exists a birational blow-up φ : X̃→ X so that φ̃∗N is perfect over φ̃∗π∗1 A on
Gm,X̃ and is the restriction of a perfect complex over the pullback of A to Ai

X̃
.

Proof. Using Lemma 3.1, extend N from Gi
m,X to a coherent π∗2 A-module M on Ai

X .
Using the ample family, choose a resolution in OAi

X
-modules of the form

0→ K→ F→M→ 0

where F is a vector bundle and K is the coherent kernel. As X is reduced, K is flat
over some dense open set U of X . By platification par éclatement [Raynaud and
Gruson 1971, Theorem 5.2.2], there is a U -admissible blow-up φ : X̃→ X so that
the strict transform of K along the pullback morphism p : Ai

X̃
→ Ai

X is flat over X̃ .
We now show the pullback p∗M is perfect as a p∗π∗2 A-module. Let j :Ai

U→Ai
X̃

be the inclusion of the open set and Z the closed complement. For any sheaf of
modules G on Ai

X̃
, we let GZ denote the subsheaf of sections supported on Z . We

have a short exact sequence natural in G

0→ GZ → G→ j stG→ 0.

We also obtain the following exact sequence of sheaves of abelian groups via pull-
back:

0→ Tor p−1O
Ai

X1 (p−1M,OAi
X̃
)→ p∗K→ p∗F→ p∗M→ 0.
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To make our notation clearer, we set T = Tor p−1O
Ai

X1 (p−1M,OAi
X̃
). We flesh

both these exact sequences out into a (nonexact) commutative diagram of p−1OAi
X
-

modules

0 0 0

0 TZ T j stT 0

0 (p∗K)Z p∗K j st p∗K 0

0 (p∗F)Z p∗F j st p∗F 0

0 (p∗M)Z p∗M j st p∗M 0

0 0 0

We observe that every row and the middle column is exact. The first map in the left
column is an injection and the last map in the right column is a surjection. Since
p∗F is flat, we have (p∗F)Z = 0. This induces a lifting of the injection

TZ T

(p∗K)Z p∗K

We finish the proof by showing j∗Tor p−1O
Ai

X1 (p−1M,OAi
X̃
)= 0. Since j :Ai

U→Ai
X̃

is flat, the sheaf is isomorphic to TorAi
U

1 ( j∗ p−1M, j∗OAi
X̃
) and j∗OAi

X̃

∼= OAi
U

. Our
big diagram can be rewritten as

0 0 0

0 TZ T 0 0

0 (p∗K)Z p∗K j st p∗K 0

0 0 p∗F j st p∗F 0

0 (p∗M)Z p∗M j st p∗M 0

0 0 0

∼=

∼=
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and we can glue together to get a flat resolution of p∗M as an OAi
X̃
-module

0→ j st p∗K→ p∗F→ p∗M→ 0

implying globally finite Tor-amplitude. It remains to show the complex is pseudo-
coherent. This follows since Ai

X̃
is Noetherian and p∗M is coherent. Since p∗π∗2 A

is a sheaf of smooth quasicoherent dg-algebras over OAi
X̃
, the complex p∗M is

perfect over p∗π∗2 A by Lemma 2.5. By commutativity, p∗M restricts to φ̃∗N on
Gi

m,X̃
. This completes the proof of Proposition 3.2. �

We will need a relative version of Proposition 3.2.

Corollary 3.4. Let f : S→ X be a smooth quasiprojective morphism of Noetherian
schemes with X reduced and quasiprojective over a Noetherian base ring. Let A

be a sheaf of smooth proper connective quasicoherent dg-algebras over X and
consider a negative twisted K -theory class γ ∈ K A

i (S) for i < 0. Then there exists
a projective birational morphism ρ : X̃ → X such that, under the pullback of the
pullback morphism, ρ∗Sγ = 0.

Proof. We will briefly check that we can run the induction argument in the proof
of Proposition 3.2. The assumptions of this corollary are invariant under pullback
along projective birational morphisms X̃→ X . We need to ensure we can select
projective birational morphisms to our base X . Lemma 6.5 of [Kerz et al. 2018]
is stated in a relative setting. The proof also relies on platification par éclatement.
This can still be applied in our relative setting as X is reduced [Kerz and Strunk
2017, Proposition 5]. �

4. Twisted Weibel’s conjecture

We now prove Theorem 1.1 and an extension across a smooth affine morphism. We
begin with the base induction step for both theorems. Kerz and Strunk [2017] use a
sheaf cohomology result of Grothendieck along with a spectral sequence argument
to show vanishing for a Zariski sheaf of spectra can be reduced to the setting of
local ring.

Proposition 4.1. Let R be a regular Noetherian ring of Krull dimension d over a
local Artinian ring k. Let A be a smooth proper connective dg-algebra over R;
then K A

i (R)= 0 for i < 0.

Proof. By Corollary 2.10, we may assume k is a field. Proposition 5.4 of [Raed-
schelders and Stevenson 2019] shows that the t-structure on D(A) restricts to a
t-structure on Perf(A), which is observably bounded. The heart is the category of
finitely generated modules over H0(A). As H0(A) is finite-dimensional over k,
this is a Noetherian abelian category. By Theorem 1.2 of Antieau, Gepner, and
Heller [Antieau et al. 2019], the negative K -theory vanishes. �
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Theorem 1.1. Let X be a Noetherian scheme of Krull dimension d and A a sheaf of
smooth proper connective quasicoherent dg-algebras on X ; then K A

−i (X) vanishes
for i > d.

Proof. Proposition 4.1 covers the base case so assume d > 0. By the Kerz–Strunk
spectral sequence argument and Corollary 2.8, we may assume X is a Noetherian
reduced affine scheme.

Choose a negative K A-theory class γ ∈ K A
−i (X) for i ≥ dim X + 1. Using

Proposition 3.2, construct a projective birational morphism that kills γ and extend
it to an abstract blow-up square

E X̃

Y X

By [Land and Tamme 2019, Theorem A.8], there is a Mayer–Vietoris exact se-
quence of progroups

· · · → {K A
−i+1(En)} → K A

−i (X)→ K A
−i (X̃)⊕{K

A
−i (Yn)} → {K A

−i (En)} → · · · .

When i ≥ dim X + 1, by induction every nonconstant progroup vanishes and
K A
−i (X)∼= K A

−i (X̃) showing γ = 0. �

By [Antieau and Gepner 2014, Theorem 3.15], we recover Weibel’s vanishing
for discrete Azumaya algebras.

Corollary 4.2. For X a Noetherian d-dimensional scheme and A a quasicoherent
sheaf of discrete Azumaya algebras, then K A

−i (X)= 0 for i > d.

The next result nearly covers the K -regularity portion of Weibel’s conjecture,
but we are missing the boundary case K A

−d(X)∼= K A
−d(A

n
X ).

Theorem 4.3. Let f : S→ X be a smooth affine morphism of Noetherian schemes
and A a sheaf of smooth proper connective quasicoherent dg-algebras on X. Then
K A
−i ( f )= 0 for i > dim X + 1.

Proof. The base case is covered by Proposition 4.1 and our reductions are analo-
gous to those in the proof of Theorem 1.1. So assume X is a Noetherian reduced
affine scheme of dimension d . Choose γ ∈ K A

−i (S) with i > d . Using Corollary 3.4,
construct a projective birational morphism ρ : X̃→ X that kills γ . We then build
a morphism of abstract blow-up squares

D S̃

E X̃

V S

Y X
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By Theorem 2.12, we again get a long exact sequence of progroups corresponding
to the back square

· · · → {K A
−i+1(Dn)} → K A

−i (S)→ K A
−i (S̃)⊕{K

A
−i (Vn)} → {K A

−i (Dn)} → · · · .

When i ≥ dim X + 1, every nonconstant progroup vanishes by induction and we
have an isomorphism K A

−i (S)∼= K A
−i (S̃) implying γ = 0. �

Remark 4.4. The conditions on the morphism in Corollary 3.4 are more general
than those of Theorem 4.3. We might hope to generalize Theorem 4.3 to a smooth
quasiprojective or smooth projective map of Noetherian schemes. Although the
induction step is present, both base cases fail. Consider the descent spectral se-
quence

E p,q
2 := H p(X, K̃q)⇒ Kq−p(X) with d2 = (2, 1).

If dim X ≤ 3, then

E2,1
3 = E2,1

∞
= coker(H 0(X,Z)

d2
−→ H 2(X,O∗X ))

contributes to K−1(X). The differential is zero as the edge morphism

K0(X)
rank
−−→ E0,0

∞

identifies E0,0
∞

with the rank component of K0, implying E0,0
2 = E0,0

∞
. We now

construct a family of examples for schemes X with nontrivial H 2(X,O∗X ). Let
Xred be quasiprojective smooth over a field k and form the cartesian diagram

X Xred

Spec(k[t]/(t2)) Spec k

f

The pullback X will be our counterexample. We have an isomorphism

O∗X
∼= g∗(O∗Xred

)⊕ g∗(OXred)

of sheaves of abelian groups on X with g : Xred→ X the pullback of the reduction
morphism Spec k→ Spec k[t]/(t2). Locally, (R[t]/(t2))× consists of all elements
of the form u+ v · t where u ∈ R× and v ∈ R. Sheaf cohomology commutes with
coproducts, so this turns into an isomorphism

H 2(X,O∗X )∼= H 2(X, g∗(O∗Xred
))⊕ H 2(X, g∗(OXred))

∼= H 2(Xred,O
∗

Xred
)⊕ H 2(Xred,OXred).

Now the problem reduces to finding a surface or 3-fold Xred with nontrivial degree-
2 sheaf cohomology. Take a smooth quartic in P3

k for a counterexample which is
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smooth and proper. Here is a counterexample which is smooth and quasiaffine.
Let (A,m) be a 3-dimensional local ring which is smooth over a field k. Take
X = Spec A \ {m} to be the punctured spectrum. Then H 2(X,OX ) ∼= H 3

m(A),
which is the injective hull of the residue field A/m.
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Positive scalar curvature metrics via
end-periodic manifolds

Michael Hallam and Varghese Mathai

We obtain two types of results on positive scalar curvature metrics for compact
spin manifolds that are even-dimensional. The first type of result are obstructions
to the existence of positive scalar curvature metrics on such manifolds, expressed
in terms of end-periodic eta invariants that were defined by Mrowka, Ruberman
and Saveliev (Mrowka et al. 2016). These results are the even-dimensional
analogs of the results by Higson and Roe (2010). The second type of result
studies the number of path components of the space of positive scalar curva-
ture metrics modulo diffeomorphism for compact spin manifolds that are even-
dimensional, whenever this space is nonempty. These extend and refine certain
results in (Botvinnik and Gilkey 1995) and also (Mrowka et al. 2016). End-
periodic analogs of K -homology and bordism theory are defined and are utilised
to prove many of our results.

1. Introduction 639
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1. Introduction

Eta invariants were originally introduced by Atiyah, Patodi and Singer [Atiyah
et al. 1975a; 1975b; 1976] as a correction term appearing in an index theorem for
manifolds with odd-dimensional boundary. The eta invariant itself is a rather sen-
sitive object, being defined in terms of the spectrum of a Dirac operator. However,
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Figure 1. Pieces of an end-periodic manifold.
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when one considers the relative eta invariant (or rho invariant), defined by twisting
the Dirac operator by a pair of flat vector bundles and subtracting the resulting eta
invariants, many marvellous invariance properties emerge. For example, Atiyah,
Patodi and Singer showed that the mod Z reduction of the relative eta invariant of
the signature operator is in fact independent of the choice of Riemannian metric
on the manifold. Key to the approach is their index theorem for even-dimensional
manifolds with global boundary conditions, which they show is equivalent to study-
ing manifolds with cylindrical ends and imposing (weighted) L2 decay conditions.

The links between eta invariants and metrics of positive scalar curvature metrics
have been studied using different approaches by Mathai [1992a; 1992b], Keswani
[1999] and Weinberger [1988]. A conceptual proof of the approach by Keswani,
was achieved by Higson and Roe [2010] using K -homology; see also [Deeley and
Goffeng 2016; Benameur and Mathai 2013; 2014; 2015; Piazza and Schick 2007a;
2007b].

Our goal in this paper to use the results of Mrowka, Ruberman and Saveliev
[Mrowka et al. 2016] instead of those by Atiyah, Patodi and Singer [Atiyah et al.
1975a]. Manifolds with cylindrical ends studied in [Atiyah et al. 1975a] are special
cases of end-periodic manifolds studied in [Mrowka et al. 2016]. More precisely,
let Z be a compact manifold with boundary Y and suppose that Y is a connected
submanifold of a compact oriented manifold X that is Poincaré dual to a primitive
cohomology class γ ∈ H 1(X,Z). Let W be the fundamental segment obtained by
cutting X open along Y (Figure 1).

If Wk are isometric copies of W , then we can attach X1 =
⋃

k≥0 Wk to the
boundary component Y of Z , forming the end-periodic manifold Z∞ (Figure 2).
Often in the paper, we also deal with manifolds with more than one periodic end.
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The motivations for considering such manifolds are from gauge theory; it was
Taubes [1987] who originally developed the analysis of end-periodic elliptic op-
erators on end-periodic manifolds, and successfully calculated the index of the
end-periodic antiself dual operator in Yang–Mills theory.

We adapt the results by Higson and Roe [2010], using end-periodic K -homology,
to obtain obstructions to the existence of positive scalar curvature metrics in terms
of end-periodic eta invariants (see Section 3) that were defined by Mrowka, Ru-
berman and Saveliev [Mrowka et al. 2016] for even-dimensional manifolds, using
the b-trace approach of Melrose [1993]. These obstructions are for the compact
manifold X , and not the end-periodic manifold Z∞; the end-periodic manifold is
only a tool used to obtain the obstructions. This is established in Section 6. Roughly
speaking, end-periodic K -homology is an analog of geometric K -homology, where
the representatives have in addition, a choice of degree 1 cohomology class deter-
mining the codimension 1 submanifold. It is defined and studied in Section 2.

We also adapt the results by Botvinnik and Gilkey [1995], using end-periodic
bordism, to obtain results on the number of components of the moduli space of
Riemannian metrics of positive scalar curvature metrics in terms of end-periodic
eta invariants. Such results have been obtained by Mrowka, Ruberman and Saveliev
[Mrowka et al. 2016], and the introduction of end-periodic bordism provides a con-
ceptualisation of their approach. Again, the information on path components is for
the compact manifold X , and the end-periodic manifold is but a means to obtaining
this information. End-periodic bordism is defined and studied in Section 4.

In Section 5 we define the end-periodic analogs of the structure groups of Higson
and Roe, and study the end-periodic rho invariant on these groups.

Section 6 contains applications to positive scalar curvature, using the established
end-periodic K -theory and end-periodic spin bordism of the previous sections.

In Section 7 we give a proof of the vanishing of the end-periodic rho invariant
of the twisted Dirac operator with coefficients in a flat Hermitian vector bundle
on a compact even dimensional Riemannian spin manifold X of positive scalar
curvature using the representation variety of π1(X).

It seems to be a general theme that for any geometrically defined homology the-
ory, there is an analogous theory tailored to the setting of end-periodic manifolds,
and that this end-periodic theory is isomorphic to the original geometric theory in
a natural way. These isomorphisms are built on the foundation of Poincaré duality.

2. End-periodic K -homology

2.1. Review of K-homology. We begin by reviewing the definition of K -homology
of Baum and Douglas [1982], using the (M,S, f )-formulation introduced by Keswani
[1999], and used by Higson and Roe [2010].
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Definition 2.1. A K -cycle for a discrete group π is a triple (M, S, f ), where M is a
compact oriented odd-dimensional Riemannian manifold, S is a smooth Hermitian
bundle over M with Clifford multiplication c : T M→ End(S), and f : M→ Bπ
is a continuous map to the classifying space of π .

Such a bundle S with the above data is called a Dirac bundle. We remark that
M may be disconnected, and that its connected components are permitted to have
different odd dimensions.

Definition 2.2. Two K -cycles (M, S, f ) and (M ′, S′, f ′) for Bπ are said to be iso-
morphic if there is an orientation preserving diffeomorphism ϕ : M→ M ′ covered
by an isometric bundle isomorphism ψ : S→ S′ such that

ψ ◦ cM(v)= cM ′(ϕ∗v)

for all v ∈ T M , and such that f ′ ◦ϕ = f .

A Dirac operator for the cycle (M, S, f ) is any first-order linear partial differ-
ential operator D acting on smooth sections of S whose principal symbol is the
Clifford multiplication. That is to say, for any smooth function φ : M→ R one has

[D, φ] = c(gradφ) : 0(S)→ 0(S).

The K -homology group K1(Bπ) will consist of geometric K -cycles for π mod-
ulo an equivalence relation, which we will now describe.

Definition 2.3. A K -cycle (M, S, f ) is a boundary if there exists a compact ori-
ented even-dimensional manifold W with boundary ∂W = M such that:

(a) W is isometric to the Riemannian product (0, 1]×M near the boundary.

(b) There is a Z2-graded Dirac bundle over W that is isomorphic to S⊕ S in the
collar with Clifford multiplication given by

cW (v)=

(
0 cM(v)

cM(v) 0

)
, cW (∂t)=

(
0 −I
I 0

)
for v ∈ T M .

(c) The map f : M→ Bπ extends to a continuous map f :W → Bπ .

Remark 2.4. Our orientation convention for boundaries is the following: If W is
an oriented manifold with boundary ∂W then the orientation on W at the bound-
ary is given by the outward unit normal followed by the orientation of ∂W . The
isometry in part (a) is required to be orientation preserving.

We define the negative of a K -cycle (M, S, f ) to be (−M,−S, f ), where −M
is M with its orientation reversed, and −S is S with the negative Clifford mul-
tiplication c−S = −cS . Two K -cycles (M, S, f ) and (M ′, S′, f ′) are bordant
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if the disjoint union (M, S, f ) q (−M ′,−S′, f ′) is a boundary, and we write
(M, S, f ) ∼ (M ′, S′, f ′). This is the first of the relations defining K -homology;
there are two more to define:

(1) Direct sum/disjoint union:

(M, S1, f )q (M, S2, f )∼ (M, S1⊕ S2, f ).

(2) Bundle modification: Let (M, S, f ) be a K -cycle. If P is a principal SO(2k)-
bundle over M , we define

M̂ = P ×ρ S2k .

Here ρ denotes the action of SO(2k) on S2k given by the standard embedding of
SO(2k) into SO(2k+ 1). The metric on M̂ is any metric agreeing with that of M
on horizontal tangent vectors and with that of S2k on vertical tangent vectors. The
map f̂ : M̂→ Bπ is the composition of the projection M̂→ M and f : M→ Bπ .
Over S2k is an SO(2k)-equivariant vector bundle C`θ (S2k)⊂ C`(T S2k), defined
as the +1 eigenspace of the right action by the oriented volume element θ on the
Clifford bundle C`(T S2k). The SO(2k)-equivariance of this bundle implies that it
lifts to a well-defined bundle over M̂ . We thus define the bundle

Ŝ = S⊗C`θ (S2k)

over M̂ . Clifford multiplication on Ŝ is given by

c(v)=
{

cM(v)⊗ ε if v is horizontal,
I ⊗ cS2k (v) if v is vertical,

where ε is the grading element of the Clifford bundle over S2k . The K -cycle
(M̂, Ŝ, f̂ ) is called an elementary bundle modification of (M, S, f ), and we write
(M, S, f )∼ (M̂, Ŝ, f̂ ). We remark also that individual bundle modifications are
allowed to be made on connected components of M .

Remark 2.5. If D is a given Dirac operator for the cycle (M, S, f ), then there is a
preferred choice of Dirac operator for an elementary bundle modification (M̂, Ŝ, f̂ )
of (M, S, f ). If Dθ denotes the SO(2k)-equivariant Dirac operator acting on
C`(S2k), then the Dirac operator on S⊗C`θ (S2k) is

D̂ = D⊗ ε+ I ⊗ Dθ ,

where ε is the grading element of C`θ (S2k).

Definition 2.6. The K -homology group K1(Bπ) is the abelian group of K -cycles
modulo the equivalence relation generated by isomorphism of cycles, bordism,
direct sum/disjoint union, and bundle modification. The addition of equivalence
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classes of K -cycles is given by disjoint union

(M, S, f )q (M ′, S′, f ′)= (M qM ′, Sq S′, f q f ′).

One must of course check that this operation descends to a well-defined binary op-
eration on K -homology which satisfies the group axioms. The details are straight-
forward.

Remark 2.7. There is another group K0(Bπ) defined in terms of even-dimensional
cycles, which is well suited to the original Atiyah–Singer index theorem. We will
not need it here.

2.2. Definition of end-periodic K-homology. With the definition of K -homology
reviewed, we now adapt the definition to the setting of manifolds with periodic
ends.

Definition 2.8. An end-periodic K -cycle, or simply a K ep-cycle for a discrete
group π is a quadruple (X, S, γ, f ), where X is a compact oriented even-dimensional
Riemannian manifold, S = S+ ⊕ S− is a Z2-graded Dirac bundle over X , γ ∈
H 1(X,Z) is a cohomology class whose restriction to each connected component
of X is primitive, and f is a continuous map f : X→ Bπ .

The Z2-graded structure of S includes a Clifford multiplication by tangent vec-
tors to X which swaps the positive and negative subbundles. Again, the manifold
X is allowed to be disconnected, with the connected components possibly having
different even dimensions. Note that the definition of a K ep-cycle imposes topolog-
ical restrictions on X , namely each connected component of X must have nontrivial
first cohomology in order for the class γ to be primitive on each component.

Definition 2.9. Two K ep-cycles (X, S, γ, f ) and (X ′, S′, γ ′, f ′) are isomorphic if
there exists an orientation preserving diffeomorphism ϕ : X→ X ′ which is covered
by a Z2-graded isometric bundle isomorphism ψ : S→ S′ such that

ψ ◦ cX (v)= cX ′(ϕ∗v)

for all v ∈ T X . The diffeomorphism ϕ must additionally satisfy ϕ∗(γ ′)= γ , and
f ′ ◦ϕ = f .

We now define what it means for a K ep-cycle (X, S, γ, f ) to be a boundary.
First, let Y ⊂ X be a connected codimension-1 submanifold that is Poincaré dual
to γ . The orientation of Y is such that for all closed forms α of codimension 1
(over each component of X ), ∫

Y
ι∗(α)=

∫
X
γ ∧α,
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where ι : Y → X is the inclusion and we abuse notation by writing γ for what is
really a closed 1-form representing the cohomology class γ . In other words, the
orientation of Y is such that the signs of the above two integrals always agree. Now,
cut X open along Y to obtain a compact manifold W with boundary ∂W = Y q−Y ,
with our boundary orientation conventions as in Remark 2.4. Glue infinitely many
isometric copies Wk of W end to end along Y to obtain the complete oriented Rie-
mannian manifold X1 =

⋃
k≥0 Wk with boundary ∂X1 =−Y . There is a canonical

map X1 → X sending a point of Wk to its corresponding point in X . Pull back
the Dirac bundle S on X via this map to get a Z2-graded Dirac bundle on X1, also
denoted S, and pull back the map f to get a map f : X1→ Bπ .

Definition 2.10. The K ep-cycle (X, S, γ, f ) is a boundary if there exists a compact
oriented Riemannian manifold Z with boundary ∂Z = Y , which can be attached
to X1 along Y to form a complete oriented Riemannian manifold Z∞ = Z ∪Y X1,
such that the bundle S extends to a Z2-graded Dirac bundle on Z∞ and the map f
extends to a continuous map f : Z∞→ Bπ .

Remark 2.11. Being a boundary is clearly independent of the choice of Y ; if Y ′ is
another choice of submanifold Poincaré dual to γ we simply embed Y ′ somewhere
in the periodic end of Z∞, and take Z ′ to be the compact piece in Z∞ bounded by
Y ′.

Definition 2.12. The manifold Z∞ from Definition 2.10 is called an end-periodic
manifold. It is convenient to say the end is modelled on (X, γ ), or sometimes just
X if γ is understood. Any object on Z∞ whose restriction to the periodic end X1

is the pullback of an object from X is called end-periodic. For example, the bundle
S, the map f , and the metric on Z∞ in the previous definition are all end-periodic.

Remark 2.13. We allow end-periodic manifolds to have multiple ends. This situ-
ation arises when the manifold X , on which the end of Z∞ is modelled, is discon-
nected.

The negative of a K ep-cycle (X, S, γ, f ) is simply (X, S,−γ, f ). This is so
that the disjoint union of a K ep-cycle with its negative is a boundary — it is clear
that the Z-cover X̃ of X corresponding to γ is an end-periodic manifold with end
modelled on (X q X, γ q−γ ). The definitions of bordism and direct sum/disjoint
union are exactly the same as before, with the class γ left unchanged. In the case
of bundle modification, the class γ̂ on X̂ = P ×ρ S2k is the pullback of γ by the
projection p : X̂→ X , and we endow the tensor product bundle S⊗C`θ (S2k) with
the standard tensor product grading of Z2-graded modules. There is also one more
relation we define which relates the orientation on X to the one-form γ :

(X, S,−γ, f )∼ (−X,5(S), γ, f )
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where −X is X with the reversed orientation and 5(S) is S with its Z2-grading
reversed. We call this relation orientation/sign, as it links the orientation on X to
the sign of γ . The need for this relation will become apparent in (2) of the proof
of Lemma 2.16.

Definition 2.14. The end-periodic K -homology group, K ep
1 (Bπ), is the abelian

group consisting of K ep-cycles up to the equivalence relation generated by isomor-
phism of K ep-cycles, bordism, direct sum/disjoint union, bundle modification, and
orientation/sign. Addition is given by disjoint union of cycles

(X, S, γ, f )q (X ′, S′, γ ′, f ′)= (X q X ′, Sq S′, γ q γ ′, f q f ′).

Remark 2.15. As for K -homology we could also define the group K ep
0 (Bπ) using

odd-dimensional K ep-cycles, although we will not pursue this here.

2.3. The isomorphism. We will now show that there is a natural isomorphism
K1(Bπ)∼= K ep

1 (Bπ).
First we describe the map K1(Bπ)→ K ep

1 (Bπ). Let (M, S, f ) be a K -cycle
for Bπ . Define X = S1

× M an even-dimensional manifold with the product
orientation and Riemannian metric, the Dirac bundle S ⊕ S → X with Clifford
multiplication as in (b) of Definition 2.3, γ = dθ ∈ H 1(X,Z) the standard generator
of the first cohomology of S1, and f : X → Bπ the extension of f : M → Bπ .
We map the equivalence class of (M, S, f ) in K1(Bπ) to the equivalence class of
(S1
×M, S⊕ S, dθ, f ) in K ep

1 (π).

Lemma 2.16. The map sending a cycle (M, S, f ) to the end-periodic cycle (S1
×

M, S⊕ S, dθ, f ) descends to a well-defined map of K -homologies.

Proof. It must be checked that each of the relations defining K0(Bπ) are preserved
by this map.

(1) Boundaries: Let (M, S, f ) be a boundary. Then we have a compact manifold
W with boundary ∂W = M satisfying conditions (a) and (b) in Definition 2.3. To
show that (S1

× M, S ⊕ S, dθ, f ) is a boundary, we attach W to the half-cover
X1 =R≥0×M to obtain a Riemannian manifold Z∞. Over X1 is the bundle S⊕ S,
and over W is a bundle isomorphic to S ⊕ S. We use the isomorphism to glue
the bundles together and define S⊕ S over Z∞. The assumptions on the Clifford
multiplication imply that it extends over this bundle. Since the map f on M extends
to W , the map f on S1

×M extends to Z∞.

(2) Negatives: The negative of (M, S, f ) is (−M,−S, f ), which maps to (−S1
×

M,−S⊕−S, dθ, f ). The negative of (−S1
×M,−S⊕−S, dθ, f ) is

(−S1
×M,−S⊕−S,−dθ, f )∼ (S1

×M,5(−S⊕−S), dθ, f )
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by the orientation/sign relation. The only difference between this cycle and (X, S⊕
S, dθ, f ) is that the Clifford multiplication is negative; Clifford multiplication by
vectors tangent to M has become negative and reversing the Z2-grading has caused
∂θ to act negatively. This cycle is isomorphic to

(S1
×M, S⊕ S, dθ, f )

via the identity map ϕ : M→ M and the isometric bundle isomorphism ψ : −S⊕
−S→ S⊕ S, ψ(s⊕ t)= c(ω)(s⊕ t), where ω is the oriented volume element of
S1
×M . Hence negatives are preserved by the mapping.

(3) Disjoint union: Obvious.

(4) Bordism: Since negatives map to negatives, boundaries map to boundaries,
and disjoint union is preserved, it follows that bordism is also preserved.

(5) Direct sum/disjoint union: Also obvious.

(6) Bundle modification: Let (M̂, Ŝ, f̂ ) be an elementary bundle modification
for (M, S, f ) associated to the principal SO(2k)-bundle P → M . We pullback
P to a bundle over X = S1

×M , and use it to construct our bundle modification
(X̂ , (S⊕ S)ˆ, dθ, f ) of (S1

×M, S⊕ S, dθ, f ). It is clear that X̂ = S1
× M̂ . Now

Ŝ = S⊗C`θ (S2k), so

Ŝ⊕ Ŝ ∼= (S⊕ S)⊗C`θ (S2k)= (S⊕ S)ˆ.

It is straightforward yet tedious to verify that Clifford multiplication is preserved
by this isomorphism. So the K ep-cycle obtained via bundle modification then map-
ping, is isomorphic to the K ep-cycle obtained by mapping then bundle modifica-
tion. �

Now for the inverse map. Let (X, S, γ, f ) be an end-periodic cycle. Choose
a submanifold Y ⊂ X Poincaré dual to γ , oriented as in the paragraph after
Definition 2.9. We map the cycle (X, S, γ, f ) to (Y, S+, f ), where S+ and f
are restricted to Y . If ω is an oriented volume form for Y then we let ∂t be the unit
normal to Y such that ∂t ∧ω is the orientation on X . The Clifford multiplication
on S+ is then defined to be

cY (v)= cX (∂t)cX (v)

for v ∈ T Y . Note that this agrees with the conventions of (b) in Definition 2.3. One
easily verifies that this indeed defines a Clifford multiplication on S+.

Lemma 2.17. The map sending an end-periodic cycle (X, S, γ, f ) to the cycle
(Y, S+, f ) described above, descends to a well-defined map of K -homologies.
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Y

W

Y1 2

Figure 3. Compact bordism between Y1 and Y2.

Proof. We must not only check that the relations defining end-periodic K -homology
are preserved, but that the class in K -homology obtained is independent of the
choice of Y .

(1) Boundaries: Let (X, S, γ, f ) be a boundary. Then there is a compact oriented
manifold Z with boundary ∂Z = Y over which the Z2-graded Dirac bundle S and
map f extend. We modify the metric near the boundary of Z to make it a product.
It follows that the cycle (Y, S+, f ) is a boundary.

(2) Choice of Y : Suppose Y1 and Y2 are submanifolds of X that are Poincaré dual
to γ . We can take functions f1, f2 : X→ S1 both having 1 ∈ S1 as a regular value
and satisfying f −1

i (1)= Yi for i = 1, 2. Since Y1 and Y2 are both Poincaré dual to
γ , the functions fi are homotopic. Let f̃i : X̃→R be the lift of fi : X→ S1, where
X̃→ X is the Z-cover determined by γ . The preimage f̃ −1

i (m) gives an embedding
of Yi in X̃ for any m ∈ Z. Choosing a tubular neighbourhood Y1× (−ε, ε) ⊂ X̃ ,
we can homotopy f̃1 into f̃2 over the interval (−ε, ε). Letting F be the resulting
function on X̃ , we may take F−1

[−m,m] for some large integer m to be a bordism
W between Y1 and Y2. Since f1 and f2 are proper, so is F , and the resulting
bordism is compact; see Figure 3.

We pull back the bundle S and the map f to W , and modify the metric near the
boundary so that it is a product. The result is that Y1q−Y2 is a boundary.

(3) Negatives: Reversing the sign of γ changes the orientation of Y . Clifford
multiplication on Y also becomes negative, since changing the orientation on Y
reverses the unit normal to Y . Hence negatives of cycles map to negatives.

(4) Disjoint union: Obvious.

(5) Bordism: Since boundaries map to boundaries, negatives map to negatives,
and disjoint union is preserved, it follows that bordism is also preserved.

(6) Direct sum/disjoint union: Obvious.

(7) Orientation/sign: From (3) in this proof, the K -cycle obtained from (X, S,−γ,
f ) is the negative of the cycle (Y, S+, f ). Now consider the K -cycle obtained from
(−X,5(S), γ, f ). Reversing the orientation on X will also reverse it on Y . Instead
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of S+, we now take S− with Clifford multiplication

cS−(v)= c(−∂t)c(v)=−c(∂t)c(v)

where v ∈ T Y and −∂t is the unit normal to −Y . We now show (−Y, S+, f ) and
(−Y, S−, f ) are isomorphic. Let ω be the oriented volume element of +Y (or −Y ,
it does not matter) and define a map ψ : S+→ S− by ψ(s)= c(ω)s. Then

ψ ◦ cS+(v)= cS−(v) ◦ψ

and the cycles are therefore isomorphic.

(8) Bundle modification: Let (X̂ , Ŝ, γ̂ , f̂ ) be an elementary bundle modification
for (X, S, γ, f ), associated to the principal SO(2k)-bundle P → X . We restrict
this principal bundle to Y and consider the corresponding bundle modification
(Ŷ , Ŝ+, f̂ ) for (Y, S+, f ). It is clear that Ŷ ⊂ X̂ is Poincaré dual to γ̂ . The bundle

Ŝ = S⊗C`θ (S2k)

has even part

Ŝ+ = (S+⊗C`+θ (S
2k))⊕ (S−⊗C`−θ (S

2k)),

while over Ŷ we have the bundle

Ŝ+ = S+⊗C`θ (S2k).

Identifying S+ with S− via the isomorphism c(∂t), we see that Ŝ+ ∼= Ŝ+. It is
routine to check that the Clifford multiplications are preserved under this isomor-
phism. �

Theorem 2.18. The above maps between K -homologies define an isomorphism of
groups K1(Bπ)∼= K ep

1 (Bπ).

Proof. We must check that the above maps on K -homologies are inverse to each
other. If we begin with a cycle (M, S, f ), this maps to (S1

× M, S ⊕ S, dθ, f ).
Mapping this again, we get (M, S, f ) back, so this direction is easy. Now suppose
we begin with a cycle (X, S, γ, f ). This maps to (Y, S+, f ) which then maps
to (S1

× Y, S+ ⊕ S+, dθ, f ). We will show this cycle is bordant to the original
cycle (X, S, γ, f ). Consider the half cover X1 of X obtained using −γ . Near the
boundary, this is diffeomorphic to a product (−δ, 0]×Y . The half cover of S1

×Y
obtained from dθ is R≥0×Y . The two half covers clearly glue together to produce
and end-periodic manifold with two ends. The Dirac bundles and maps to Bπ
extend over this manifold, and hence the two cycles are bordant. �
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3. Relative eta/rho invariants

In this section, we use the end-periodic eta invariant of Mrowka, Ruberman and
Saveliev [Mrowka et al. 2016] to define homomorphisms from the end-periodic
K -homology group K ep

1 (Bπ) to R/Z. Any pair of unitary representations σ1, σ2 :

π→U (N ) will determine such a homomorphism, and we see that this homomor-
phism agrees with that constructed in Higson and Roe [2010] under the natural
isomorphism K1(Bπ)∼= K ep

1 (Bπ).

3.1. Rho invariant for K-homology. Let (M, S, f ) be a K -cycle. Any Dirac op-
erator for this cycle is a self-adjoint elliptic first-order operator on S, and so has a
discrete spectrum of real eigenvalues. The eta function of this operator is defined
to be the sum over the nonzero eigenvalues of D

η(s)=
∑
λ6=0

sign(λ)|λ|−s,

which converges absolutely for Re(s) sufficiently large. It is a theorem of Atiyah,
Patodi and Singer (APS) that this function admits a meromorphic continuation to
the complex plane, and that this continuation takes a finite value η(0) at the origin.
The eta invariant of the chosen Dirac operator D is by definition

η(D)= 1
2(η(0)− h) (3.1)

where h = dim ker(D) is the multiplicity of the zero eigenvalue.
The eta invariant plays a central role in the Atiyah–Patodi–Singer index theorem,

appearing as a correction term for the boundary. Suppose W is an even-dimensional
manifold with boundary ∂W = M , equipped with a Dirac bundle satisfying the
conditions of Definition 2.3. Further, suppose we have a Dirac operator D(W ) on
W so that

D(W )=

(
0 −∂t + D

∂t + D 0

)
(3.2)

in a product neighbourhood of the boundary, where D is the Dirac operator on M .
In this instance we say that D(W ) bounds D. Then the APS index theorem [Atiyah
et al. 1975a] states

IndAPS D+(W )=

∫
W

I(D+(W ))− η(D). (3.3)

The left-hand side is the index of D+(W ) with respect to a certain global boundary
condition — the projection onto the nonnegative eigenspace of D must vanish. The
integrand I(D+(W )) is the constant term in the asymptotic expansion of the super-
trace of the heat operator for D+(W ), called the index form of the Dirac operator.
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Remark 3.1. In (3.3), the eta invariant is as in (3.1), where the sign of the term
h = dim ker D is negative. This is contingent on the orientation of M being con-
sistent with the boundary orientation inherited from W . If the orientations are not
compatible, then the sign of h is reversed in (3.3).

The map f in the cycle (M, S, f ) determines a principle π-bundle over M .
Given a representation σ1 : π → U (N ), we can then form a flat vector bundle
E1→ M and twist the Dirac operator D on S to obtain a Dirac operator D1 acting
on sections of S ⊗ E1. Given a second representation σ2 : π → U (N ) we form
another operator D2 on S⊗ E2 in the same way.

Definition 3.2. The relative eta invariant, or rho invariant associated to the two
unitary representations σ1, σ2 : π→U (N ), the K -cycle (M, S, f ) for Bπ , and the
choice of Dirac operator D for the K -cycle, is defined to be

ρ (σ1, σ2 ;M, S, f )= η(D1)− η(D2).

The eta invariant of an operator depends sensitively on the operator itself, whereas
the relative eta invariant is much more robust. The following is a restatement of
[Higson and Roe 2010, Theorem 6.1], and is the reason for our omission of D in
the above notation for the rho invariant.

Theorem 3.3. The mod Z reduction of the rho invariant ρ(σ1, σ2 ;M, S, f ) for
representations σ1, σ2 : π → U (N ), depends only on the equivalence class of
(M, S, f ) in K1(Bπ), and on σ1, σ2. There is therefore a well-defined group
homomorphism

ρ (σ1, σ2) : K1(Bπ)→ R/Z.

The most complicated part of the proof is showing invariance under bundle
modification. We will not repeat the full proof, however we will show invariance
under bordism since the argument serves to motivate the end-periodic case.

Proof. Let (M, S, f ) be a boundary — we will show that the rho invariant ρ (σ1, σ2;

M, S, f ) vanishes modulo Z. Let W be as in Definition 2.3 and let D(W ) be a
Dirac operator on W which bounds the Dirac operator D on M . Since the map f
to Bπ extends to W , we find twisted Dirac operators D1(W ) and D2(W ) on W
bounding the twisted operators D1 and D2 on M . Applying the APS index theorem
separately to these operators gives

IndAPS D+i (W )=

∫
W

I(D+i (W ))− η(Di ) (3.4)

for i = 1, 2. Since D1(W ) and D2(W ) are both twists of the same Dirac operator
D(W ) by flat bundles of dimension N , we have

I(D+1 (W ))= I(D+2 (W ))= N · I(D+(W )).



652 MICHAEL HALLAM AND VARGHESE MATHAI

Subtracting the two equations (3.4) from each other therefore yields

ρ(σ1, σ2 ;M, S, f )= η(D1)− η(D2)= IndAPS D+2 (W )− IndAPS D+1 (W ),

which is an integer.
Now, consider the negative cycle (−M,−S, f ) for (M, S, f ). If D is a Dirac

operator for (M, S, f ), then −D is a Dirac operator for (−M,−S, f ). From the
definition of the eta invariant (3.1) and from Remark 3.1, we see that η(−D) =
−η(D). Finally, the eta invariant is clearly additive under disjoint unions of cycles.
It follows that if two cycles are bordant, then their eta invariants agree modulo
integers. �

Higson and Roe [2010] used this map on K -homology to obtain obstructions
to positive scalar curvature for odd-dimensional manifolds. Our isomorphism of
K -homologies will allow us to transfer their results to the even-dimensional case.

3.2. Index theorem for end-periodic manifolds [Mrowka et al. 2016]. Mrowka,
Ruberman and Saveliev [2016] proved an index theorem for end-periodic Dirac
operators on end-periodic manifolds, which generalises the Atiyah–Patodi–Singer
index theorem. Rather than the eta invariant appearing as a correction term for the
end, a new invariant called the end-periodic eta invariant appears, and this new
invariant agrees with the eta invariant of Atiyah–Patodi–Singer in the case of a
cylindrical end. In this section, we review the end-periodic index theorem of MRS,
and give the necessary definitions and theorems required to define the end-periodic
rho invariants. There is nothing new here, so the reader who is already familiar
with the MRS index theorem may safely skip to Section 3.3

Let (X, S, γ, f ) be a K ep-cycle, and let D(X) be a Dirac operator for the cycle.
Let X̃ be the Z-cover associated to γ , and let F : X̃→R be the map which covers the
classifying map X→ S1 for the Z-cover X̃ . Then F satisfies F(x+1)= F(x)+1,
where x+1 denotes the image of x ∈ X̃ under the fundamental covering translation.
It follows that d F descends to a well-defined one-form on X , also denoted d F .
Fixing a branch of the complex logarithm, define a family of operators

Dz(X)= D(X)− ln(z) c(d F)

on X , where c(d F) is Clifford multiplication by d F , and z ∈ C∗. These are in fact
the operators obtained by conjugating the Dirac operator on X̃ with the Fourier-
Laplace transform — see Section 2.2 of [Mrowka et al. 2016] for more details. The
spectral set of this family of operators is defined to be the set of z for which Dz(X)
is not invertible. The spectral sets of the families D±z (X) are defined similarly.

Henceforth, we will take Z∞ to be an end-periodic manifold with end mod-
elled on (X, γ ). All objects on Z∞ will be taken to be end-periodic, unless stated
otherwise. Now, the Fredholm properties of the end-periodic operator D+(Z∞)



POSITIVE SCALAR CURVATURE VIA END-PERIODIC MANIFOLDS 653

are linked to the spectral set of the family D+z (X). In fact, it follows from [Taubes
1987, Lemma 4.3], that D+(Z∞) is Fredholm if and only if the spectral set of the
family D+z (X) is disjoint from the unit circle S1

⊂ C. Thus, a necessary (but not
sufficient) condition for D+(Z∞) to be Fredholm is that Ind D+(X)= 0.

Definition 3.4 (Mrowka et al. 2016). Suppose that the spectral set of the family
D+z (X) is disjoint from the unit circle S1

⊂ C. The end-periodic eta invariant for
the Dirac operator D+(X) is then defined as

ηep(D+(X))= 1
π i

∫
∞

0

∮
|z|=1

Tr
(
c(d F) · D+z exp(−t D−z D+z )

)dz
z

dt,

where the Dirac operators in the integral are on X , and the contour integral over
the unit circle is taken in the anticlockwise direction.

Remark 3.5. There is an equivalent definition of the eta invariant in terms of the
von Neumann trace — see [Mrowka et al. 2016, Proposition 6.2], also [Atiyah
1976] for information on the von Neumann trace.

Suppose X = S1
× Y , where Y is a compact oriented odd dimensional manifold,

and X is endowed with the product Riemannian metric. Assume the Dirac operator
D(X) on X takes the form of that in the RHS of Equation (3.2), with D being the
Dirac operator on Y . Then it is shown in [Mrowka et al. 2016, §6.3] that for
d F = dθ ,

ηep(D+(X))= η(D).

We now state the end-periodic index theorem of Mrowka, Ruberman and Saveliev,
in the case when the end-periodic operator D+(Z∞) is Fredholm. Recall that for
D+(Z∞) to be Fredholm, it is necessary that Ind D+(X)= 0. The Atiyah–Singer
index theorem then implies that the index form I(D+(X)) is exact, so one can find
a form ω on X satisfying dω = I(D+(X)).

Theorem 3.6 (MRS index theorem, [Mrowka et al. 2016, Theorem A]). Suppose
that the end-periodic operator D+(Z∞) is Fredholm, and choose a form ω on X
such that dω = I(D+(X)). Then

Ind D+(Z∞)=
∫

Z
I(D+(Z)) −

∫
Y
ω+

∫
X

d F ∧ω − 1
2 η

ep(X). (3.5)

Remarks 3.7. The form ω is called the transgression class — see [Gilkey 1984b,
p. 306] for more details. In the case that the metric is a product near Y , one can
choose F so that the two integrals involving the transgression class cancel, leaving
a formula similar to the original APS formula. The theorem reduces to the APS
index theorem [Atiyah et al. 1975a] when Z∞ only has cylindrical ends.
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When D+(Z∞) is not Fredholm, Mrowka, Ruberman and Saveliev are still able
to prove an index theorem under the assumptions that the spectrum of the family
D+z (X) is discrete, which in particular implies Ind D+(X)= 0. This is analogous
to the case in the APS index theorem when the Dirac operator D on the boundary
has a nonzero kernel, and the correction h = dim ker D appears in the formula.

The key is to introduce the weighted Sobolev spaces on Z∞ as follows. First
recall that the Sobolev space L2

k(Z∞, S) for an integer k ≥ 0, is defined as the
completion of C∞0 (Z∞, S) in the norm

‖u‖2L2
k(Z∞,S)

=

∑
j≤k

∫
Z∞
|∇

j u|2

for a fixed choice of end-periodic metric and compatible end-periodic Clifford
connection on Z∞. Now, restrict the upstairs covering map F : X̃ → R to the
half-cover X1 =

⋃
k≥0 Wk , and choose an extension of this map to Z∞, which we

continue to denote F . Given a weight δ ∈ R and an integer k ≥ 0, we say that
u ∈ L2

k,δ (Z∞, S) if eδF u ∈ L2
k (Z∞, S). Define the L2

k,δ-norm by

‖u‖L2
k,δ(Z∞,S)

= ‖eδF u‖L2
k (Z∞,S)

.

It is easy to check that up to equivalence of norms, this is independent of the choice
of extension of F to Z∞, since the region over which we are choosing an extension
is compact. The spaces L2

k,δ(Z∞, S) are all complete in this norm, and the operator
D+(Z∞) extends to a bounded operator

D+(Z∞) : L2
k+1,δ (Z∞, S+)→ L2

k,δ (Z∞, S−) (3.6)

for every k and δ. The following theorem of [Taubes 1987] classifies Fredholmness
of the operator (3.6) in terms of the family D+z (X)= D+(X)− ln(z) c(d F).

Lemma 3.8 (Taubes 1987, Lemma 4.3). The operator

D+(Z∞) : L2
k+1,δ (Z∞, S+)→ L2

k,δ (Z∞, S−)

is Fredholm if and only if the operators D+z (X) are invertible for all z on the circle
|z| = eδ.

The usual L2-case corresponds to the weighting δ = 0, and hence we see by
setting z = 1:

Corollary 3.9. A necessary condition for the operator D+(Z∞) to be Fredholm is
that Ind D+(X)= 0.

The following result on the spectral set of the family is also due to Taubes, which
suffices for our purposes.
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Theorem 3.10 (Taubes 1987, Theorem 3.1). Suppose that Ind D+(X)= 0 and that
the map c(d F) : ker D+(X)→ ker D−(X) is injective. Then the spectral set of the
family D+z (X) is a discrete subset of C∗, and the operator D+(Z∞) is a Fredholm
operator.

It follows that the operator D+(Z∞) acting on the Sobolev spaces of weight δ
is Fredholm for all but a closed discrete set of δ ∈ R.

Remark 3.11. There are two important instances where the hypothesis of Theorem
3.10 is satisfied:

(1) When X = S1
×M with the product metric, and the Dirac operator on X taking

the form of Equation (3.2). In this case d F = dθ , and c(dθ) is as in part (b) of
Definition 2.3. This example shows that every class in K ep(Bπ) has a representa-
tive with discrete spectral set.

(2) When X is spin with positive scalar curvature and D+(X) is the spin Dirac
operator on X (or more generally, D+(X) twisted by a flat bundle). In this case
Lichnerowicz’ vanishing theorem implies that ker D+(X) and ker D−(X) are triv-
ial. In the applications to positive scalar curvature, we will always assume X to be
spin, so that this assumption is satisfied.

[Mrowka et al. 2016, Theorem C] extends Theorem 3.6 to the non-Fredholm
case that applies to operators such as the signature operator and is analogous to the
extended L2 case considered in [Atiyah et al. 1975a].

We allow for the case where the family has poles lying on the unit circle, in
which case the operator D+(X) is not Fredholm. By discreteness of the spectral
set, the family D+z (X) has no poles for z sufficiently close to (but not lying on) the
unit circle, and hence there is ε > 0 such that for all 0<δ<ε the operators D+z (Z∞)
acting on the δ-weighted Sobolev spaces are all Fredholm (see Lemma 3.8). The
index does not change under small variations of δ in this region, and we denote it
by IndMRS D+(Z∞). This is the regularised form of the index which appears in
the full MRS index theorem.

There are two more quantities to define which appear in the full MRS index
theorem. First of all, the end-periodic eta invariant in Definition 3.4 is no longer
well defined if the family D+z (X) has poles on the unit circle. Letting ε > 0 be
sufficiently small so that there are no poles in e−ε < |z|< eε except for those with
|z| = 1, define

ηep
ε (D

+(X))= 1
π i

∫
∞

0

∮
|z|=eε

Tr
(
d f · D+z exp(−t (D+z )

∗D+z )
)dz

z
dt, (3.7)
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where the integral is taken to be the constant term of its asymptotic expansion in
powers of t . Define

η
ep
± (D

+(X))= lim
ε→0±

ηep
ε (D

+(X)),

and
ηep(D+(X))= 1

2 [η
ep
+ (D

+(X))+ ηep
− (D

+(X))]. (3.8)

It is this incarnation of the eta invariant which will appear in the MRS index
theorem. Since (D+z )

∗
= D−z for |z| = 1 this definition of ηep(X) agrees with

Definition 3.4 when there are no poles on the unit circle.
The last term to define is the analog of h = dim ker D appearing in the APS

index theorem. The family D+z (X)
−1 is meromorphic, so if z ∈ S1 is a pole then it

has some finite order m. Define d(z), as in [Mrowka et al. 2011, §6.3], to be the
dimension of the vector space solutions (ϕ1, . . . , ϕm) to the system of equations

D+z (X)ϕ1 = c(d F)ϕ2,

...

D+z (X)ϕm−1 = c(d F)ϕm,

D+z (X)ϕm = 0.

For z not in the spectral set of the family D+z (X), we have d(z)= 0. The term h
in the MRS index theorem is defined as the finite sum of integers

h =
∑
|z|=1

d(z).

Remark 3.12. The integers d(z) give a formula for the change in index when one
varies the weight δ; if Indδ D+(Z∞) denotes the index of D+(Z∞) acting on the
δ-weighted Sobolev spaces, then one has for δ < δ′ that

Indδ D+(Z∞)− Indδ′ D+(Z∞)=
∑

eδ<|z|<eδ′
d(z).

Theorem 3.13 (MRS index theorem [Mrowka et al. 2016, Theorem C]). Suppose
the spectral set of D+z (X) is a discrete subset of C∗, and let ω be a form on X such
that dω = I(D+(X)). Then

IndMRS D+(Z∞)=
∫

Z
I(D+(Z))−

∫
Y
ω+

∫
X

d F ∧ω− 1
2(h+ η

ep (D+(X))).

3.3. End-periodic R/Z-index theorem. Let σ1, σ2 : π→U (N ) be unitary repre-
sentations of the discrete group π . Using the end-periodic eta invariant of MRS, we
will define an end-periodic rho invariant ρep(σ1, σ2) analogous to the rho invariant
in the APS case. This will determine a map from end-periodic K -homology to
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R/Z, however we must be more careful about how we define the rho invariant due
to the MRS index theorem not being applicable to all operators.

Definition 3.14. Let (X, S, γ, f ) be a K ep-cycle. Assume we can choose a cov-
ering function F : X̃ → R so that the spectral sets of the families of the twisted
operators D+1 (X) and D+2 (X) are discrete. Then we define the end-periodic rho
invariant to be

ρep(σ1, σ2; X, S, γ, f )= 1
2 [h1+ η

ep(D+1 (X))− h2− η
ep(D+2 (X))].

By [Mrowka et al. 2016, Lemma 8.2], this definition is independent of the choice
of such function F , if it exists.

Theorem 3.15. Whenever it is defined, the mod Z reduction of the end-periodic
rho invariant ρep(σ1, σ2 ; X, S, γ, f ) associated to σ1, σ2 : π → U (N ) depends
only on the representations σ1, σ2 and the equivalence class of (X, S, γ, f ) in
K ep

1 (Bπ). Moreover, every equivalence class has a representative with a well-
defined rho invariant. Hence there is a well-defined group homomorphism

ρep(σ1, σ2) : K
ep
1 (Bπ)→ R/Z.

Furthermore, the following diagram commutes:

K ep
1 (Bπ) K1(Bπ)

R/Z

ρep(σ1,σ2)

∼

ρ (σ1,σ2)

Hence, even if the spectral set of D+(X) is not discrete, we can still define
its R/Z end-periodic rho invariant in a perfectly reasonable and consistent man-
ner. This allows us to define the R/Z invariant, for instance, in the case where
Ind D+(X) 6= 0. For the applications to positive scalar curvature, the end-periodic
rho invariant is well-defined and given by the usual formula (3.8), since in Remark
3.11 we have noted that the spectral sets of its twisted operators are discrete.

Proof. That every equivalence class in K ep-homology has a representative with dis-
crete spectral set follows from the proof of Theorem 3.3 — the cycle (X, S, γ, f )
is bordant to the cycle (S1

× Y, S+⊕ S+, dθ, f ), which has discrete spectral set
by part (1) of Remark 3.11.

As we shall see, it is only necessary to prove invariance of ρep under bordism,
and then Theorem 3.3 will imply invariance under the other relations defining
K ep-homology. First suppose that (X, S, γ, f ) is a boundary with Dirac opera-
tor D+(X) such that the families associated to the twisted operators D+1 (X) and
D+2 (X) have discrete spectral sets. We apply the MRS index theorem to each
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operator separately to get

IndMRS D+i (Z∞)=
∫

Z
I(D+i (Z))−

∫
Y
ωi +

∫
X

d F ∧ωi −
1
2 hi + η

ep(D+i (X))

for i = 1, 2. Now, since we are twisting by flat vector bundles, both the index form
and the transgression classes for the twisted operators are constant multiplies of
the index form and transgression class of the original operator. Hence when we
subtract the two equations, the terms involving these vanish and we are left with

ρep(σ1, σ2; X, S, γ, f )= IndMRS D+2 (Z∞)− IndMRS D+1 (Z∞),

which is an integer. The end-periodic rho invariant behaves additively under dis-
joint unions of cycles and changes sign when the negative of a cycle is taken. This
proves bordism invariance mod Z.

Now the K ep-cycle (X, S, γ, f ) with discrete spectral sets is bordant to (S1
×

Y, S+ ⊕ S+, dθ, f ), where Y is Poincaré dual to γ . By [Mrowka et al. 2016,
§6.3], the end-periodic rho invariant of (S1

× Y, S+⊕ S+, dθ, f ) is equal to the
rho invariant of the K -cycle (Y, S+, f ). Hence

ρep(σ1, σ2; X, S, γ, f )= ρ(σ1, σ2; Y, S+, f ) mod Z.

The isomorphism K1(Bπ)∼= K ep
1 (Bπ) then immediately implies the theorem. �

4. End-periodic bordism groups

In this section, we recall the definition of the spin bordism groups, and introduce the
analogous bordism groups in the end-periodic setting. As for K -homology, there
are natural isomorphisms between the spin bordism groups and the end-periodic
spin bordism groups. We also consider the PSC spin bordism groups described in
Botvinnik and Gilkey [1995], and define the corresponding end-periodic PSC spin
bordism groups. Throughout, we take m ≥ 5 to be a positive odd integer.

4.1. Spin bordism and end-periodic spin bordism. We recall the definition of the
spin bordism group �spin

m (Bπ) for a discrete group π .

Definition 4.1. An �spin
m -cycle for Bπ is a triple (M, σ, f ), where M is a compact

oriented Riemannian spin manifold of dimension m, σ is a choice of spin structure
on M , and f : M→ Bπ is a continuous map.

The negative of an �spin
m -cycle (M, σ, f ) is (−M, σ, f ), where −M is M with

the reversed orientation. An �spin
m -cycle (M, σ, f ) is a boundary if there exists a

compact oriented Riemannian manifold W with boundary ∂W =M , a spin structure
on W whose restriction to the boundary is the spin structure σ , and a continuous
map W → Bπ extending the map f . Two �spin

m -cycles (M, σ, f ) and (M ′, σ ′, f ′)
are bordant if (M, σ, f )q (−M ′, σ ′, f ′) is a boundary.
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Definition 4.2. The m-dimensional spin bordism group �spin
m (Bπ) for Bπ , con-

sists of �spin
m -cycles for Bπ modulo the equivalence relation of bordism. It is an

abelian group with addition given by disjoint union of cycles.

The end-periodic spin bordism group �ep,spin
m (Bπ), is defined in an analogous

way to the end-periodic K -homology group.

Definition 4.3. An �ep,spin
m -cycle for Bπ is a quadruple (X, σ, γ, f ) where X is

a compact oriented Riemannian spin manifold of dimension m + 1, σ is a spin
structure on X , γ is a cohomology class in H 1(X,Z) that is primitive on each
component of X , and f : X→ Bπ is a continuous map.

The definition of a boundary is essentially the same as for end-periodic K -
homology.

Definition 4.4. An �ep,spin
m -cycle (X, σ, γ, f ) is a boundary if there exists an end-

periodic oriented Riemannian spin manifold Z∞ with end modelled on (X, γ ),
such that the pulled back spin structure σ on the periodic end extends to Z∞, as
does the pulled back map f to Bπ .

The negative of a cycle (X, σ, γ, f ) is (X, σ,−γ, f ). As before, we introduce
the additional relation of orientation/sign:

(X, σ,−γ, f )∼ (−X, σ, γ, f ).

Two �ep,spin
m -cycles (X, γ, σ, f ) and (X ′, γ ′, σ ′, f ′) are bordant if (X, σ, γ, f )q

(X, σ,−γ, f ) is a boundary.

Definition 4.5. The m-dimensional end-periodic spin bordism group �ep,spin
m (Bπ)

consists of �ep,spin
m -cycles modulo the equivalence relation generated by bordism

and orientation/sign, with addition given by disjoint union.

Analogous to the K -homology groups from Section 2, there is a canonical iso-
morphism between the spin bordism and end-periodic spin bordism groups which
we will now describe.

The map�spin
m (Bπ)→�

ep,spin
m (Bπ) takes a�spin

m (Bπ)-cycle (M, σ, f ) to (S1
×

M, 1×σ, dθ, f ), where S1
×M has the product orientation and Riemannian metric,

1× σ is the product spin structure of the trivial spin structure 1 on S1 with the spin
structure σ on M , dθ is the standard generator of the first cohomology of S1, and
f is the obvious extension of f : M→ Bπ to S1

×M .

Proposition 4.6. The map which sends an �spin
m (Bπ)-cycle (M, σ, f ) to the

�ep,spin
m (Bπ)-cycle (S1

×M, 1× σ, dθ, f )

is well-defined on spin bordism groups.
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Proof. If (M, σ, f ) and (M ′, σ ′, f ′) are bordant, with W bounding their disjoint
union, then R≥0×M and R≤0×M ′ can be joined using W to form an end-periodic
manifold Z∞ with multiple ends. All structures extend to Z∞ by assumption, hence
the two�ep,spin

m (Bπ)-cycles (S1
×M, 1×σ, dθ, f ) and (−S1

×M, 1×σ ′,−dθ, f ′)
are bordant. Using the orientation/sign relation, we see that (S1

×M, 1×σ, dθ, f )
and (S1

×M ′, 1× σ ′, dθ, f ′) are equivalent. �

Now for the map �ep,spin
m (Bπ)→ �

spin
m (Bπ). Let (X, σ, γ, f ) be an �ep,spin

m -
cycle for Bπ , and Y be a submanifold of X Poincaré dual to γ . We equip Y with
the induced spin structure and orientation from γ . Explicitly, the orientation of Y is
as in the paragraph after Definition 2.9, and the restricted spin structure is obtained
first by cutting X open along Y to get a manifold W with boundary ∂W = Y q−Y ,
and then taking the boundary spin structure on the positively oriented component
Y of ∂W . This yields an �spin

m -cycle (Y, σ, f ), where σ and f are restricted to Y .

Proposition 4.7. The map taking an�ep,spin
m (Bπ)-cycle (X,σ,γ, f ) to the�spin

m (Bπ)-
cycle (Y, σ, f ) described above is well-defined on bordism groups.

Proof. Independence of the choice of Y is proved as for the K -homology case,
only with spin structures instead of Dirac bundles. It is clear that the orienta-
tion/sign relation is respected, since both (X, σ,−γ, f ) and (−X, σ, γ, f ) get
sent to (−Y, σ, f ). If (X, σ, γ, f ) and (X ′, σ ′, γ ′, f ′) are bordant, then there is a
compact manifold Z with boundary ∂Z = Y q−Y ′ such that the spin structures and
maps extend over Z . But this shows that (Y, σ, f ) and (Y ′, σ ′, f ′) are bordant. �

Theorem 4.8. The above maps of bordism groups are inverse to each other, and
so define a natural isomorphism of abelian groups �spin

m (Bπ)∼=�ep,spin
m (Bπ).

Proof. A cycle (M, σ, f ) gets mapped to (S1
× M, 1 × σ, dθ, f ), which gets

returned to (M, 1× σ, f ), where the latter two entries are restricted to M . It is
straightforward to check that the product spin structure 1×σ restricted to M yields
the original spin structure σ . Therefore we obtain our original cycle (M, σ, f ) after
mapping it to and from end-periodic bordism.

Now let (X, σ, γ, f ) be an end-periodic cycle, with submanifold Y Poincaré
dual to γ . This maps to a cycle (Y, σ, f ), where the latter two structures are
restricted from X , and this maps back to (S1

×Y, 1×σ, dθ, f ). The same argument
as in the proof of Definition 2.9 shows that this is bordant to (X, σ, γ, f ). �

4.2. PSC spin bordism and end-periodic PSC spin bordism. Botvinnik and Gilkey
[1995] use a variant of spin cobodism tailored to the setting of manifolds with
positive scalar curvature, which we now recall.

Definition 4.9. A �
spin,+
m -cycle is a quadruple (M, g, σ, f ), where M is a compact

oriented Riemannian spin manifold of dimension m with a metric g of positive
scalar curvature, σ is a spin structure on M , and f : M→ Bπ is a continuous map.
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The negative of (M, g, σ, f ) is (−M, g, σ, f ), as before. A cycle (M, g, σ, f )
is called a boundary if there is a compact oriented Riemannian spin manifold W
with boundary ∂W = M so that the spin structure σ and map f extend to W . It
is also required that W has a metric of positive scalar curvature that is a product
metric dt2

+ g in a neighbourhood of the boundary. Two cycles are bordant if the
disjoint union of one with the negative of the other is a boundary.

Definition 4.10. The PSC spin bordism group �spin,+
m (Bπ) for Bπ consists of

�
spin,+
m -cycles modulo bordism, with addition given by disjoint union.

We now define the end-periodic PSC spin bordism group �ep,spin,+
m (Bπ) for

Bπ .

Definition 4.11. An �ep,spin,+
m -cycle is a quintuple (X, g, σ, γ, f ), where X is a

compact oriented Riemannian spin manifold of dimension m+1 with a metric g of
positive scalar curvature, σ is a choice of spin structure on X , γ is a cohomology
class in H 1(X,Z) whose restriction to each component of X is primitive, and
f : X→ Bπ is a continuous map. We further require that there is a submanifold Y
of X that is Poincaré dual to γ , such that the induced metric on Y has positive scalar
curvature, and the metric on X is a product metric dt2

+gY in a neighbourhood of Y .

Let (X, g, σ, γ, f ) be an �ep,spin,+
m -cycle and take Y ⊂ X to be a submanifold

with PSC that is Poincaré dual to γ , having the product metric in a tubular neigh-
bourhood. As before we form X1 =

⋃
k≥0 Wk , where the Wk are isometric copies

of X cut open along Y . For (X, g, σ, γ, f ) to be a boundary means that there is a
compact oriented Riemannian spin manifold Z of positive scalar curvature, whose
metric is a product near the boundary, which can be attached to X1 along Y to form
a complete oriented Riemannian spin manifold of PSC Z∞ = Z ∪Y X1, such that
the pulled back spin structure σ and map f on X1 extend over Z .

The negative of (X, g, σ, γ, f ) is (X, g, σ,−γ, f ), and we have the orienta-
tion/sign relation

(X, g, σ,−γ, f )∼ (−X, g, σ, γ, f ).

Two �ep,spin,+
m -cycles are bordant if the disjoint union of one with the negative of

the other is a boundary.

Definition 4.12. The m-dimensional end-periodic PSC spin bordism group�ep,spin,+
m

(Bπ) for Bπ consists of �ep,spin,+
m -cycles modulo bordism and orientation/sign,

with addition given by disjoint union.

Theorem 4.13. There is a canonical isomorphism �
spin,+
m (Bπ)∼=�ep,spin,+

m (Bπ).

The maps are exactly as for the spin bordism theories, only when mapping from
�

ep,spin,+
m (Bπ) to �spin,+

m (Bπ) the Poincaré dual submanifold Y must be taken to
have PSC and a product metric in a tubular neighbourhood.
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Proof. As before. �

4.3. Rho invariants. Given a triple (M,σ, f ) and two unitary representations σ1, σ2 :

π → U (N ), we define the rho invariant ρ (σ1, σ2 ;M, σ, f ) as before, using the
spin Dirac operator for the cycle (M, S, f ). We also define the end-periodic rho
invariant for cycles (X, σ, γ, f ) in an entirely analogous manner, using the end-
periodic eta invariant of MRS instead. Of course, we must again be careful with
the definition, allowing only the rho invariant for cycles whose twisted operators
have discrete spectral sets to be defined in terms of the true end-periodic eta invari-
ants — all others are defined by taking bordant cycles with discrete spectra. We
remark also that in the case of positive scalar curvature, the h-terms appearing in
the definition of the rho invariants vanish.

Theorem 4.14. The rho invariant extends to a well-defined homomorphism

ρ (σ1, σ2) :�
spin
m (Bπ)→ R/Z,

as does the end-periodic rho invariant

ρep(σ1, σ2) :�
ep,spin
m (Bπ)→ R/Z.

Furthermore, the following diagram commutes:

�
ep,spin
m (Bπ) �

spin
m (Bπ)

R/Z

ρep(σ1,σ2)

∼

ρ (σ1,σ2)

Proof. Apply the APS and MRS index theorems respectively, and use the isomor-
phism of Theorem 4.8. �

Now for the positive scalar curvature case.

Theorem 4.15. The rho invariant extends to a well-defined homomorphism

ρ (σ1, σ2) :�
spin,+
m (Bπ)→ R,

as does the end-periodic rho invariant

ρep(σ1, σ2) :�
ep,spin,+
m (Bπ)→ R.

Furthermore, the following diagram commutes:

�
ep,spin,+
m (Bπ) �

spin,+
m (Bπ)

R
ρep(σ1,σ2)

∼

ρ (σ1,σ2)
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(- ∞, 0 ] × Y Y
W

Y
W

Y
W

Y
W

Y

Figure 4. End-periodic manifold with two ends.

Remark 4.16. The end-periodic rho invariant appearing in the theorem is given on
all representatives of equivalence classes as the genuine difference of the twisted
eta invariants as in formula (3.8), due to Remark 3.11.

For the proof, we will need the following (see [Mrowka et al. 2016, Proposition
8.5 (ii)]).

Lemma 4.17. If (X, g, σ, γ, f ) is an�ep,spin,+
m -cycle and (Y, g, σ, f ) is the�spin,+

m -
cycle it maps to, then

ρep(σ1, σ2 ; X, g, σ, γ, f )= ρ(σ1, σ2 ; Y, g, σ, f ).

Proof. We join R≥0 × Y to X1 =
⋃

k≥0 Wk together as in Figure 4 to form an
end-periodic spin manifold Z∞ with two ends. [Mrowka et al. 2016, Lemma 8.1]
(which uses the results of Gromov and Lawson [1983]) gives that the spin Dirac
operator D+(Z∞) is Fredholm and has zero index. The same holds for its twisted
counterparts. Applying the MRS index theorem to the two twisted spin Dirac
operators D+1 (Z∞) and D+2 (Z∞), and subtracting the equations as per usual then
yields the result. �

Proof of Theorem 4.15. See [Botvinnik and Gilkey 1995, Theorem 1.1] for the
proof that the map ρ (σ1, σ2) :�

spin,+
m (Bπ)→ R is well-defined. Lemma 4.17 and

the isomorphism of Theorem 4.13 then immediately imply the result. �

5. End-periodic structure group

Let σ1, σ2 :π→U (N ) be unitary representations of the discrete group π . Recall the
definition of the structure group S1(σ1, σ2) of Higson–Roe, starting from [Higson
and Roe 2010, Definition 8.7].

Definition 5.1. An odd (σ1, σ2)-cycle is a quintuple (M, S, f, D, n)where (M, S, f )
is an odd K -cycle for Bπ , D is a Dirac operator for (M, S, f ), and n ∈ Z.

A (σ1, σ2)-cycle (M, S, f, D, n) is a boundary if the K -cycle (M, S, f ) is bounded
by a manifold W (as in Definition 2.3) and there are Dirac operators D1(W ) and
D2(W ) on W which bound the twisted Dirac operators D1 and D2 on M , such that

IndAPS D+1 (W )− IndAPS D+2 (W )= n.
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Since we are no longer looking at rho invariants modulo integers or at spin Dirac
operators, we will denote by ρ(σ1, σ2 ; D, f ) the rho invariant of Definition 3.2,
indicating its possible dependence on the Dirac operator D.

Lemma 5.2 (Higson and Roe 2010, Lemma 8.10). If a (σ1, σ2)-cycle (M, S, f, D, n)
is a boundary, then ρ(σ1, σ2; D, f )+ n = 0.

Definition 5.3. The relative eta invariant, or rho invariant of the (σ1, σ2)-cycle
(M, S, f, D, n) is ρ(σ1, σ2 ; D, f )+ n.

The disjoint union of (σ1, σ2)-cycles is defined as,

(M, S, f, D, n)q (M ′, S′, f ′, D′, n′)= (MqM ′, Sq S′, f q f ′, DqD′, n+n′).

The negative of a (σ1, σ2)-cycle (M, S, f, D, n), is defined as,

−(M, S, f, D, n)= (M,−S, f,−D, h1− h2− n),

where h1 = dim ker(D1) and h2 = dim ker(D2). Two (σ1, σ2)-cycles are bordant
if the disjoint union of one cycle with the negative of the other is a boundary.

The two remaining relations to define are:

• Direct sum/disjoint union:

(M, S⊕ S′, f, D⊕ D′, n)∼ (M qM, Sq S′, f q f, Dq D′, n).

• Bundle Modification: If (M̂, Ŝ, f̂ ) is an elementary bundle modification of
(M, S, f ) with the Dirac operator D̂ from 2.5, then

(M, S, f, D, n)∼ (M̂, Ŝ, f̂ , D̂, n).

Definition 5.4. The structure group S(σ1, σ2), is the set of equivalence classes
of (σ1, σ2)-cycles under the equivalence relation generated by bordism, direct
sum/disjoint union, and bundle modification. It is an abelian group with addition
is given by disjoint union.

In [Higson and Roe 2010, Proposition 8.14], it is proved that the relative eta
invariant of a (σ1, σ2)-cycle depends only on the class that the cycle determines in
S(σ1, σ2). Hence there is a well-defined group homomorphism ρ : S(σ1, σ2)→ R,
defined by

ρ(M, S, f, D, n)= ρ(σ1, σ2 ; D, f )+ n.

5.1. End-periodic structure group. We define in a parallel manner the end-periodic
structure group Sep

1 (σ1, σ2).

Definition 5.5. An odd (σ1, σ2)
ep-cycle is a sextuple (X, S, γ, f, D, n) where

(X, S, γ, f ) is a K ep-cycle for Bπ , D is a Dirac operator for (X, S, γ, f ), and
n ∈ Z. We additionally assume that the spectral set of the family D+z (X) is discrete.
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A (σ1, σ2)
ep-cycle (X, S, f, γ, D, n) is a boundary if the K ep-cycle (X, S, γ, f )

is a boundary (Definition 2.10), and moreover there is a Dirac operator D(Z∞) on
the manifold Z∞ extending the Dirac operator D on X1 =

⋃
k≥0 Wk such that the

difference of the MRS indices

IndMRS(D+1 (Z∞))− IndMRS(D+2 (Z∞))= n.

Here the D+i (Z∞) are the twists of D+(Z∞) by the flat vector bundles determined
by the extension of f to Z∞ and by σ1, σ2. We can show the analog of Lemma 5.2

Lemma 5.6. If a (σ1, σ2)
ep-cycle (X, S, γ, f, D, n) is a boundary, then

ρep(σ1, σ2 ; D, f, γ )+ n = 0.

We call the quantity ρep(σ1, σ2 ; D, f, γ )+ n the end-periodic rho invariant of
the (σ1, σ2)

ep-cycle (X, S, γ, f, D, n).

The disjoint union of (σ1, σ2)
ep-cycles is defined as

(X, S, f, γ, D, n)q (X ′, S′, γ ′, f ′, D′, n′)

= (X q X ′, Sq S′, γ q γ ′, f q f ′, Dq D′, n+ n′).

The negative of a (σ1, σ2)
ep-cycle (X, S, γ, f, D, n), is

−(X, S, γ, f, D, n)= (X, S,−γ, f, D, h1− h2− n),

where h1, h2 are the integers occurring in the MRS index theorem associated to
σ1, σ2. Two (σ1, σ2)

ep-cycles are bordant if the disjoint union of one with the
negative of the other is a boundary. We also have:

• Direct sum/disjoint union:

(X, S⊕ S′, γ + γ ′ f, D⊕ D′, n)∼ (X qM, Sq S′, γ q γ ′, f q f, Dq D′, n).

• Bundle modification: If (X̂ , Ŝ, γ̂ , f̂ ) is an elementary bundle modification of
(X, S, γ, f ) and D̂ is the Dirac operator of Remark 2.5, then

(X, S, γ, f, D, n)∼ (X̂ , Ŝ, γ̂ , f̂ , D̂, n).

• Orientation/sign:

(X, S,−γ, f, D, n)∼ (−X,5(S), γ, f, D, n).

Definition 5.7. The end-periodic structure group, denoted by Sep
1 (σ1, σ2), is the set

of equivalence classes of (σ1, σ2)
ep-cycles under the equivalence relation generated

by bordism, direct sum/disjoint union, bundle modification, and orientation/sign.
It is an abelian group with unit and addition is given by disjoint union.
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Define the group homomorphism ρep
: Sep

1 (σ1, σ2)→ R by the formula

ρep(X, S, γ, f, D, n)= ρep(σ1, σ2; D, f, γ )+ n.

Then the following theorem is the analog of Theorem 3.15 is proved in a similar
way.

Theorem 5.8. The end-periodic rho invariant ρep(X, S, γ, f, σ1, σ2)+ n associ-
ated to the (σ1, σ2)

ep-cycle (M, S, γ, f, D, n) depends only on the equivalence
class of (M, S, γ, f, D, n) in Sep

1 (σ1, σ2). Hence there is a well-defined group
homomorphism

ρep
: Sep

1 (σ1, σ2)→ R.

Furthermore, the following diagram commutes:

Sep
1 (σ1, σ2) S1(σ1, σ2)

R
ρep

∼

ρ

Here the maps

Sep
1 (σ1, σ2)↔ S1(σ1, σ2)

are the analog of the maps in K -homologies given earlier.
Also, Higson and Roe establish a commuting diagram of short exact sequences;

see [Higson and Roe 2010], the paragraph below Definition 8.6,

0 // Z //

=

��

// S1(σ1, σ2) //

ρ

��

K1(Bπ)

ρ(σ1,σ2)

��

// 0

0 // Z //// R // R/Z // 0.

(5.1)

By Theorems 5.8 and 3.15, we deduce that there is a commuting diagram of
short exact sequences,

0 // Z //

=

��

// Sep
1 (σ1, σ2) //

ρep

��

K ep
1 (Bπ)

ρep(σ1,σ2)

��

// 0

0 // Z //// R // R/Z // 0.

(5.2)

This tells us when the R/Z-index theorem can be refined to an R-index theorem.
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6. Applications to positive scalar curvature

Using the above isomorphisms of K -homologies and cobordism theories, we can
immediately transfer results on positive scalar curvature from the odd-dimensional
case to the even-dimensional case in which a primitive 1-form is given.

6.1. Odd-dimensional results in the literature. First we will state the odd-dimen-
sional results that we will be generalising to the even-dimensional case using our
isomorphisms. The first ones are obstructions to positive scalar curvature.

Theorem 6.1 (Weinberger 1988; Higson and Roe 2010, Theorem 6.9). Let (M, S, f )
be an odd K -cycle for Bπ , where M is an odd dimensional spin manifold with a
Riemannian metric of positive scalar curvature, and S is the bundle of spinors on
M. Then for any pair of unitary representations σ1, σ2 : π→U (N ), the associated
rho invariant ρ(σ1, σ2 ;M, S, f ) is a rational number.

Theorem 6.2 (Higson and Roe 2010, Remark 6.10). Let (M, S, f ) be an odd K -
cycle for Bπ , where M is an odd dimensional spin manifold with a Riemannian
metric of positive scalar curvature, and S is the bundle of spinors on M. If the
maximal Baum–Connes map for π is injective, then for any pair of unitary repre-
sentations σ1, σ2 : π→U (N ), the associated rho invariant ρ(σ1, σ2 ;M, S, f ) is
an integer.

Remarks 6.3. The maximal Baum–Connes map for π is injective whenever for
instance π is a torsion-free linear discrete group [Guentner et al. 2005].

Theorem 6.4 (Higson and Roe 2010, Theorem 1.1; Keswani 2000). Let (M, S, f )
be an odd K -cycle for Bπ , where M is an odd dimensional spin manifold with
a Riemannian metric of positive scalar curvature, and S is the bundle of spinors
on M. If the maximal Baum–Connes conjecture holds for π , then for any pair of
unitary representations σ1, σ2 : π→U (N ), the associated rho invariant ρ(σ1, σ2;

M, S, f ) is zero.

Remarks 6.5. The maximal Baum–Connes conjecture holds for π whenever π is
K -amenable.

We now turn to a result on the number of path components of the moduli space
of PSC metrics modulo diffeomorphism, M+(M). Denote for a group π , the repre-
sentation ring R(π) consisting of formal differences of finite dimensional unitary
representations, and let R0(π) be those formal differences with virtual dimension
zero (an element of R0(π) can be thought of as an ordered pair of unitary repre-
sentations σ1, σ2 : π→U (N )). Following Botvinnik and Gilkey [1995], introduce
the subgroups

R±0 (π)= {α ∈ R0(π) : tr(α(λ))=± tr(α(λ−1)) for all λ ∈ π}
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and define

rm(π)=

{
rankZ R+0 (π) if m = 3 mod 4,
rankZ R−0 (π) if m = 1 mod 4.

The following is a result of Botvinnik and Gilkey on the number of path compo-
nents of the moduli space of PSC metrics modulo diffeomorphism.

Theorem 6.6 (Botvinnik and Gilkey 1995, Theorem 0.3). Let M be a compact con-
nected spin manifold of odd dimension m ≥ 5 admitting a metric of positive scalar
curvature. Suppose that π = π1(M) is finite and nontrivial, and that rm(π) > 0.
Then the moduli space of PSC metrics modulo diffeomorphism M+(M) has infin-
itely many path components.

Their proof involves finding a countably indexed family of metrics gi of positive
scalar curvature on M so that ρ(M, gi ) 6= ρ(M, g j ) for i 6= j . If these metrics
were homotopic through PSC metrics, then they would lie in the same PSC bor-
dism class and hence have equal rho invariants. We will extend this result to the
even-dimensional case under the additional hypothesis of “psc-adaptability”; see
Definition 6.11.

6.2. Our even-dimensional results. In the following theorems, we assume that Y
is a submanifold of X that is Poincaré dual to a primitive class γ ∈ H 1(X,Z)

such that the scalar curvature of Y in the induced metric is positive. In fact, the
theorems even hold under the weaker hypothesis that the induced metric on Y is
conformal to a metric of positive scalar curvature. By a theorem of [Schoen and
Yau 1979], if dim(X) = n ≤ 7, then every homology class in Hn−1(X,Z) has a
representative that is a smooth, orientable minimal hypersurface. It follows that if
X is spin with positive scalar curvature, then a Poincaré dual to a primitive class
γ ∈ H 1(X,Z) can be chosen to be a smooth, spin minimal hypersurface Y , such
that the induced metric on Y is conformal to one of positive scalar curvature. So
this weaker assumption is automatically true when dim(X)= n ≤ 7.

The following is our even-dimensional analog of Theorem 6.1.

Theorem 6.7. Let (X, S, γ, f ) be an odd K ep-cycle for Bπ , where X is an even-
dimensional spin manifold with a Riemannian metric of positive scalar curvature,
S is the bundle of spinors on X and γ a primitive class in H 1(X,Z) such that there
is a Poincaré dual submanifold Y whose scalar curvature in the induced metric
is positive. Then for any pair of unitary representations σ1, σ2 : π → U (N ), the
associated end-periodic rho invariant ρep(σ1, σ2 ; X, S, γ, f ) is a rational number.

Proof. The odd K ep-cycle for Bπ , (X, S, γ, f ) determines an odd K -cycle for
Bπ , (Y, S+, f ) where Y is a Poincaré dual submanifold for γ having positive
scalar curvature, and is given the induced spin structure from X . By Theorem 6.1,
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ρ(σ1, σ2 ; Y, S+, f )∈Q. By Theorem 3.15 it follows that ρep(σ1, σ2 ; X, S, γ, f )∈
Q as claimed. �

Next is our even-dimensional analog of Theorem 6.2, and is argued as above.

Theorem 6.8. Let (X, S, γ, f ) be an odd K ep-cycle for Bπ , where X is an even-
dimensional spin manifold with a Riemannian metric of positive scalar curvature,
S is the bundle of spinors on X and γ a primitive class in H 1(X,Z) such that there
is a Poincaré dual submanifold Y whose scalar curvature in the induced metric is
positive. If the maximal Baum–Connes map for π is injective, then for any pair
of unitary representations σ1, σ2 : π → U (N ), the associated end-periodic rho
invariant ρep(σ1, σ2 ; X, S, γ, f ) is an integer.

Proof. As for Theorem 6.7. �

Here is the even-dimensional analog of Theorem 6.4.

Theorem 6.9. Let (X, S, γ, f ) be an odd K ep-cycle for Bπ , where X is an even-
dimensional spin manifold with a Riemannian metric of positive scalar curvature,
S is the bundle of spinors on X and γ a primitive class in H 1(X,Z) such that there
is a Poincaré dual submanifold Y whose scalar curvature in the induced metric is
positive. If the maximal Baum–Connes conjecture holds for π , then for any pair
of unitary representations σ1, σ2 : π → U (N ), the associated end-periodic rho
invariant ρep(σ1, σ2 ; X, S, γ, f ) is zero.

Proof. The odd K ep-cycle for Bπ , (X, S, γ, f ) determines an odd K -cycle (Y, S+, f )
for Bπ , where Y is a Poincaré dual submanifold for γ having positive scalar cur-
vature, and is endowed with the induced spin structure. By Theorem 6.4,

ρ(σ1, σ2; Y, S+, f )= 0.

By 4.17 it follows that ρep(σ1, σ2 ; X, S, γ, f )= 0. �

Example 6.10. Although ρ-invariants are difficult to compute, nevertheless thanks
to many authors, there is now a decent set of computations that are available. We
can use these to compute end-periodic rho invariants, which we will show in a
simple example. Consider Y = S1 with the trivial spin structure. Then unitary
characters σ1, σ2 of the fundamental group of S1 can be identified with real num-
bers, and a computation (see [Gilkey 1984b, p. 82]) says that the rho invariant of the
spin Dirac operator is ρ(S1, σ1, σ2)= σ1− σ2 mod Z. In particular, ρ(S1, σ1, σ2)

can take on any real value mod Z. Let W be a spin cobordism from S1 to S1,
and 6 be the compact spin Riemann surface (whose genus is ≥ 1) obtained as a
result of gluing the two boundary components of W . Then S1 is a codimension
one submanifold of 6 that represents a generator a of π1(6). We can extend the
characters σ1, σ2 of aZ to all of π1(6) by declaring them to be trivial on the other
generators. Then by Theorem 3.15, it follows that ρep(6, γ, σ1, σ2) = σ1 − σ2
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mod Z, can take on any real value mod Z, where γ is the degree one cohomology
class on 6 which is Poincaré dual to S1. We conclude by Theorem 6.7 that the
Riemann surface 6 does not admit a PSC metric. This of course can also be proved
by the Gauss–Bonnet theorem and is well-known.

The construction generalises easily to any odd dimensional spin manifold Y with
nonzero rho invariant ρ(Y, σ1, σ2) 6= 0 mod Z. We conclude by Theorem 3.15 that
the resulting even dimensional spin manifold X constructed from a spin cobor-
dism from Y to itself, has nonzero end-periodic rho invariant ρep(X, γ, σ1, σ2) 6=

0 mod Z, where γ is the degree one cohomology class on X which is Poincaré
dual to the submanifold Y . In particular, such an X does not admit a PSC metric.
Examples of Y include odd-dimensional lens spaces L(p; Eq), where it is shown
in [Gilkey 1984a, Theorem 2.5, part (c)], that for any spin structure on L(p; Eq),
there is a representation σ of π1(L(p; Eq)) such that ρ(L(p; Eq), Id, σ ) 6= 0 ∈Q/Z.
Explicitly, for 3 dimensional lens spaces L(p, q), consider the representation σ :
π1(L(p; Eq))→U (1) taking the generator t ∈π1(L(p; q)) to the unit complex num-
ber exp(2π

√
−1/p). Then ρ(L(p; q), Id, σ )=−(d/2p)(p+1) 6= 0∈Q/Z where

d is a certain integer relatively prime to 48p. Then ρep(X, γ, Id, σ ) 6= 0 ∈ Q/Z.
These results confirm Theorem 6.7 in these examples.

6.3. Size of the space of components of positive scalar curvature metrics. Hitchin
[1974] proved the first results on the size of the space of components of the space
of Riemannian metrics of positive scalar curvature metrics on a compact spin
manifold, when nonempty. This sparked much interest in the topic and results
by Botvinnik–Gilkey, Piazza–Schick and many others.

We now extend Theorem 6.6 to the even-dimensional case. We would like to
say something like “Given an even-dimensional manifold X with PSC having a
submanifold Y of PSC Poincaré dual to a primitive one-form γ , if M+(Y ) has
infinitely many path components then so does M+(X).” The argument would
involve using a countable family of PSC metrics on Y with distinct rho invariants
to find a countable such family on X . There are complications however, since given
an arbitrary PSC metric on Y , there is not necessarily a PSC metric on X whose
restriction to Y is the given metric. Because we are already assuming that there is
at least one PSC metric on X which restricts to a metric of PSC on Y , there are no
obstructions from topology preventing this from being the case.

Definition 6.11. Let X be a compact even-dimensional manifold, and γ ∈H 1(X,Z)

a primitive cohomology class with accompanying Poincaré dual submanifold Y .
Suppose that there is at least one PSC metric on X which restricts to a PSC metric
on Y . We say that X is psc-adaptable with respect to Y if for every PSC metric gY

on Y , there is a PSC metric gX on X that is a product metric dt2
+ gY in a tubular

neighbourhood of Y .
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Y

X

Y

W

Y

Figure 5. Pushing a PSC metric across W using the Miyazaki–
Rosenberg construction.

Y

W'

Y' Y'

W'

Y

Figure 6. Obtaining a psc-adaptable manifold through a symmetric bordism.

Some notes and comments on the notion of psc-adaptability. Let X and Y be
as in the above definition, and take an arbitrary PSC metric gY on Y . Cutting X
open along Y , we obtain a self cobordism W of Y ; see Figure 5. Under suitable
assumptions on the topology of X and Y , a construction of Miyazaki [1984] and
Rosenberg [1986] (using the theory of Gromov and Lawson [1980a] and Schoen
and Yau [1979]) enables one to push the PSC metric on Y across the bordism
(pictured on the right in the figure) to get a PSC metric on W restricting to metrics
of PSC on each boundary component. One might then try to glue the manifold
back together to obtain a PSC metric on X which restricts to the given metric gY

on Y . The problem is that one doesn’t know whether the new psc metric on Y is
isotopic to the original. Hence the concept of psc-adaptability which hypothesizes
that this is true. It is the case when the bordism is symmetric for instance. That
is, starting with a bordism W ′ from Y to Y ′, we get a bordism from Y to itself by
thinking of W ′ as a bordism from Y ′ to Y and gluing to the original bordism; see
Figure 6.

Then one can use the Miyazaki–Rosenberg construction starting with the PSC
metric g on Y to get another PSC metric on Y ′ halfway through, and then reverse
the Miyazaki–Rosenberg construction from the PSC metric on the halfway Y ′ to
get a PSC metric g′ on Y on the other end, which isotopic to the original PSC
metric g on Y . Considering a small cylinder over Y , and using the fact that isotopy
implies concordance, see [Gromov and Lawson 1980a, Lemma 3], we can further
push g′ to g. Since the metrics agree on either end, the bordisms can be glued
together.
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Mrowka, Ruberman and Saveliev also note a class of psc-adaptable manifolds —
those of the form (S1

×Y )#M where Y and M are manifolds of positive scalar cur-
vature; see [Mrowka et al. 2016, Theorem 9.2]. The end-periodic bordism groups
provide a more natural framework for their proof of the following:

Theorem 6.12 (Mrowka et al. 2016, Theorem 9.2). Let X be a compact even-
dimensional spin manifold of dimension ≥ 6 admitting a metric of positive scalar
curvature. Suppose there is a submanifold Y ⊂ X of PSC that is Poincaré dual
to a primitive cohomology class γ ∈ H 1(X,Z), such that π = π1(Y ) is finite and
nontrivial. Further assume that the classifying map f : Y → Bπ of the universal
cover extends to X , and that X is psc-adaptable with respect to Y . If rm(π1(Y )) > 0,
then π0(M

+(X)) is infinite, where M+(X) denotes the quotient of the space of
positive scalar curvature metrics by the diffeomorphism group.

Proof. In the terminology of Section 4, we have an �ep,spin,+
m (Bπ)-cycle (X, g, σ,

γ, f ), with associated�spin,+
m (Bπ)-cycle (Y, g, σ, f ). Botvinnik and Gilkey [1995]

construct a representation α : π→U (N ) of π and a countable family of metrics
gi on Y with

ρ(α, 1; Y, gi , σ, f ) 6= ρ(α, 1; Y, g j , σ, f )

for i 6= j , where 1 : π → U (N ) is the trivial representation. Our assumption of
psc-adaptability and Theorem 4.15 imply there is a countable family of metrics gi

on X with
ρep(α, 1; X, gi , σ, γ, f ) 6= ρ(α, 1; X, g j , σ, γ, f )

for i 6= j . But [Mrowka et al. 2016, Theorem 9.1] says that homotopic metrics of
PSC on X should have the same rho invariants. �

7. Vanishing of end-periodic rho using the representation variety

In this section we give a proof of the vanishing of the end-periodic rho invariant
of the twisted Dirac operator with coefficients in a flat Hermitian vector bundle
on a compact even-dimensional Riemannian spin manifold X of positive scalar
curvature using the representation variety of π1(X) instead.

Let ι : Y ↪→ X be a codimension one submanifold of X which is Poincaré dual
to a generator γ ∈ H 1(X,Z).

Let R = Hom(π,U (N )) denote the representation variety of π = π1(Y ), and
R̃ denote the representation variety of π1(X). We now construct a generalisation
of the Poincaré vector bundle P over Bπ ×R. Let Eπ → Bπ be a principal
π-bundle over the space Bπ with contractible total space Eπ . Let h : Y → Bπ
be a continuous map classifying the universal π-covering of Y . We construct a
tautological rank N Hermitian vector bundle P over Bπ ×R as follows: consider
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the action of π on Eπ ×R×CN given by

Eπ ×R×CN
×π→ Eπ ×R×CN , ((q, σ, v), τ )→ (qτ, σ, σ (τ−1)v).

Define the universal rank N Hermitian vector bundle P over Bπ ×R to be the
quotient (Eπ ×R×CN )/π . Then P has the property that the restriction P|Bπ×{σ }
is the flat Hermitian vector bundle over Bπ defined by σ . Let I denote the closed
unit interval [0, 1] and β : I → R be a smooth path in R joining the unitary
representation α to the trivial representation. Define E = ( f ×β)∗P→ Y × I to
be the Hermitian vector bundle over Y × I , where f : Y → Bπ is the classifying
map of the universal cover of Y . Let Et → Y ×{t} denote the restriction of E to
Y ×{t}. Then Et is the flat unitary Hermitian vector bundle over Y determined by
the unitary representation β(t) of π . Thus E has a natural flat unitary connection,
whose restriction on each Et , t ∈ I is the flat unitary connection, which can be
extended to a full U (n)-connection ∇E on Y × I , which amounts to giving an
action of ∂/∂t , or equivalently of identifying E with a bundle pulled back from Y .
With such a choice of connection, it follows that the curvature of E is a multiple of
dt , and so the only nonzero component of the Chern character form ch(∇E)− N
is the first Chern form αt ∧ dt in dimension 2, where αt is a closed 1-form on Y ,
whose cohomology class α = [αt ] ∈ H 1(Y,R) = H 1(Bπ,R) is independent of
t ∈ I .

Theorem 7.1 (PSC and vanishing of end-periodic rho). Let (X, g) be a compact
spin manifold of even dimension, and let ι : Y ↪→ X be a codimension one sub-
manifold of X which is Poincaré dual to a primitive class γ ∈ H 1(X,Z). Suppose
that

(1) g is a Riemannian metric of positive scalar curvature;

(2) the restriction g|Y is also a metric of positive scalar curvature.

Let α̃ : π̃→U (N ) be a unitary representation of π̃ =π1(X), and α : π→U (N )
be the unitary representation of π = π1(Y ) defined by α̃ ◦ ι∗. Assume that α can
be connected by a smooth path β : I → R to the trivial representation in the
representation space R.

Then ρep(X, S, γ, g; α̃, 1)= 0, where the flat hermitian bundle Eα̃ is determined
by α̃.

Proof. As observed above, the unitary connection ∇E induced on E has curvature
which is a multiple of dt , so that the Chern character form ch(∇E)= N +αt ∧ dt ,
where αt ∧ dt is the first Chern form of the connection on E and t is the variable
on the interval I . It follows that ch(E) = N + α ∧ dt where α ∈ H 1(Y,R) is
the cohomology class of αt . Consider the integrand

∫
Y×I Â(Y × I ) ch(E). Since

Â(Y × I ) = Â(Y ), where Â(Y ) is the A-hat characteristic class of Y . From the
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Y × [ 0,1]
Y

W
Y

W
Y

W
Y

W
YY

W
Y

W
Y

W
Y

W
Y

Figure 7. End-periodic manifold with 2 ends.

discussion above ∫
Y×I

Â(Y ) ch(E)=
∫

Y
Â(Y )α

∫
I

dt.

Since (Y, g) is a spin Riemannian manifold of positive scalar curvature, it follows
from [Gromov and Lawson 1980b, Theorem 2.1] that

∫
Y Â(Y ) f ∗(x) = 0 for all

x ∈ H 1(Bπ,R)= H 1(Y,R).
Therefore we conclude that

∫
Y×I Â(Y ) ch(E)= 0.

Consider the manifold Y × I . It can be made into an end-periodic manifold with
two ends as follows. Let W be the fundamental segment obtained by cutting X open
along Y , and Wk be isometric copies of W . Then we can attach X1 =

⋃
k≥0 Wk

to one boundary component of Y × I and X0 =
⋃

k<0 Wk to the other boundary
component. Call the resulting end-periodic manifold Z∞ (see the Figure 7). It is
clear that Z∞ is diffeomorphic to X̃ , the cyclic Galois cover of X corresponding
to γ . Let f0 =− f and f1 = f for a choice of real-valued function f on Z∞ such
that γ = [d f ].

The flat hermitian bundle Eα̃ over X induces a flat hermitian bundle p∗(Eα̃)
over X̃ , where p : X̃→ X is the projection. The restriction of p∗(Eα̃) to the subset
X1 is denoted by E1. Let E0 denote the trivial bundle over X0. We use the smooth
path γ to define the bundle E over Y × I which has the property that the restriction
of Ẽ to the boundary components agree with E0 and E1, thereby defining a global
vector bundle Ẽ over Z∞.

We can apply Theorem C in [Mrowka et al. 2016] to see that

index(D+
Ẽ
(Z∞))=

∫
Y×I

Â(Y × I ) ch(E)

−

∫
Y
ω+

∫
X

d f ∧ω− 1
2(h1+ ηep(X, Eα̃, γ, g))

+

∫
Y
ω−

∫
X

d f ∧ω− 1
2((h0− ηep(X, Eid , γ, g))

Since g and g|Y are metrics of positive scalar curvature by hypothesis, it follows
that index(D+E (Z∞))= 0 by [Mrowka et al. 2016, Lemma 8.1] and that

∫
Y×I Â(Y×

I ) ch(E) = 0 by the earlier argument. Therefore ρep(X, S, γ, g; α̃, 1) = 0 as
claimed. �
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