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Coassembly is a homotopy limit map
Cary Malkiewich and Mona Merling

In memory of Bruce Williams

We prove a claim by Williams that the coassembly map is a homotopy limit map.
As an application, we show that the homotopy limit map for the coarse version
of equivariant A-theory agrees with the coassembly map for bivariant A-theory
that appears in the statement of the topological Riemann—Roch theorem.
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1. Introduction

In the celebrated paper [Dwyer et al. 2003], Dwyer, Weiss, and Williams give index-
theoretic conditions that are necessary and sufficient for a perfect fibration £ — B
to be equivalent to a fiber bundle with fibers compact topological (or smooth)
manifolds. Williams [2000] defines a bivariant version of A-theory for fibrations,
which is contravariant in one variable and therefore comes with a coassembly map.
He then reinterprets the condition from [Dwyer et al. 2003] as the condition that
a certain class in bivariant A-theory (the Euler characteristic), after applying the
coassembly map, lifts either along the assembly map or the inclusion of stable
homotopy into A(X).

In this paper, we show that coassembly maps in general agree with homotopy
limit maps, the latter being more amenable to computations. In particular, this
shows that the target of Williams’ coassembly can be interpreted as a homotopy
fixed point spectrum, which has an associated homotopy fixed point spectral se-
quence that computes its homotopy groups. Together with well known formulas

MSC2010: 19D10, 55P42, 55P91.
Keywords: coassembly, A-theory, equivariant A-theory, homotopy limit, bivariant A-theory.
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374 CARY MALKIEWICH AND MONA MERLING

for the assembly map, e.g., in [Malkiewich 2017, Definition 6.2], this means we get
combinatorial formulas for each of the maps used in the statement of the bivariant
topological and smooth Riemann—Roch theorems from [Williams 2000].

In general, the homotopy limit map is defined for any topological group G and
G-space or G-spectrum X as the map from fixed points to homotopy fixed points,

X¢ — xho,

Atiyah proved that for KU with C;-action induced by complex conjugation the
homotopy limit map is an equivalence. In general, this is not the case, and the ho-
motopy limit problem, beautifully described in [Thomason 1983], asks how close
the homotopy limit map is to being an equivalence. Some of the classical examples
of interest are Segal’s conjecture where X = Sg, the sphere spectrum for G finite,
the Atiyah—Segal completion theorem, where X = K Ug, equivariant topological
K -theory for G compact Lie, and Thomason’s theorem, where X = K E, the alge-
braic K -theory of a finite Galois extension with Galois group action. In all of these
cases, the homotopy limit map is shown to become an equivalence after suitable
completion or inversion of an element in the homotopy groups of the fixed point
spectrum. More recent solutions of homotopy limit problems appear in [Hu et al.
2011; Rondigs et al. 2018; Heard 2017], which study the homotopy limit problem
for KGL, the motivic spectrum representing algebraic K -theory, with C,-action.
On the other hand, the coassembly map considered in [Williams 2000] is defined
for any reduced contravariant homotopy functor F, whose domain is the category
of spaces over BG. It is a natural transformation ¥ — Fy,, one that universally ap-
proximates F by a functor that sends homotopy pushouts to homotopy pullbacks. It
is formally dual to the assembly map of [Weiss and Williams 1995; Davis and Liick
1998], which by [Hambleton and Pedersen 2004; Davis and Liick 1998] coincides
with the assembly map of the Farrell-Jones conjecture [1993]. A comprehensive
recent survey on assembly maps is given in [Liick 2019]. The coassembly map is
also a close analog of the linear approximation map of embedding calculus [Weiss
1999; Goodwillie and Weiss 1999]. Further applications of the coassembly map
appear in [Cohen and Klein 2009; Raptis and Steimle 2014; Malkiewich 2017].
Our first result is a precise correspondence between these two constructions. We
only consider topological groups G that are the realization of a simplicial group G.,,
and we focus on the case where F takes values in spectra, because the correspond-
ing result for spaces is similar and a little easier. Without loss of generality, we
assume that the homotopy functor F' is enriched in simplicial sets, so that F'(EG)
carries a continuous left action by G, and F (BG) maps to its fixed points. We may
then make F(EG) into a G-spectrum whose fixed points are F(BG). An analog
of this result for the assembly map can be found in [Davis and Liick 1998, §5.2].
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Theorem A (Theorem 3.6). Let G be a group that is the realization of a simplicial
group G,. The coassembly map on the terminal object F(BG) — Fg,(BG) is
equivalent to the homotopy limit map of this G-spectrum, F(BG) — F(EG)"°.

This is similar to a claim in [Williams 2000], when F is a contravariant form of
algebraic K -theory and G =~ QX . Giving a precise proof amounts to showing that
diagrams on a suitable category of contractible spaces over BG correspond to G-
objects, plus a little more structure. Our version of the argument uses parametrized
spectra to form a bridge between the two settings.

Our second result applies Theorem A to Williams’ bivariant A-theory functor
A(E — B) to fibrations of the form EG x5 X — BG where G is a finite group. This
gives the homotopy limit map of the “coarse” equivariant A-theory G-spectrum
from [Malkiewich and Merling 2019], equivalently the K-theory of group actions
from [Barwick et al. 2020] applied to retractive spaces over X.

Theorem B (Theorem 4.2). In the stable homotopy category, the homotopy limit
map for AZ**¢(X) is isomorphic to the coassembly map for bivariant A-theory:

AcGoarse(X)H Ag)arse(x)hH

|- |-
A(EGxyX—> BH) — Aq(EG xyg X — BH)

This is not quite a direct consequence of Theorem A because we have to show
that the equivalence between the two theories preserves the G-actions and inclu-
sions of fixed points, up to some coherent homotopies.

Remark. This provides one half of an argument that would significantly generalize
the main theorem of [Malkiewich 2017]. The other half relies on a conjectural
connection between assembly maps and the Adams isomorphism, which we do
not pursue here.

Remark. This paper does not consider the homotopy limit problems for profinite
groups, which involve a modified definition of homotopy fixed points that are asso-
ciated to the continuous cohomology of the profinite group [Devinatz and Hopkins
2004]. Our homotopy limit map is the usual one from, e.g., [Bousfield and Kan
1972, Chapter XI, §3.5], and we only consider those topological groups that are geo-
metric realizations of simplicial groups. The main example we have in mind is QX.

Conventions. Throughout, all of our topological spaces are compactly generated
weak Hausdorff (CGWH) [Lewis 1978, Appendix A; Strickland 2009]. Unless
otherwise noted, the term “spectra” can be interpreted to mean prespectra, symmet-
ric spectra, or orthogonal spectra. See [Mandell et al. 2001] for more information
about how to pass between these different models. The term “naive G-spectrum”
refers to a spectrum with an action by the group G, up to maps that are equivalences
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on all of the categorical fixed point spectra X subgroups H < G. Equivalently,
this can be viewed as a diagram of spectra on the orbit category O(G)°P. In fact, we
will only be concerned with diagrams restricted to the trivial orbit G/G and the full
orbit G /e, corresponding to the data of the G-fixed points of a naive G-spectrum
and its underlying spectrum with G-action.

2. Review of coassembly

Let B be an unbased space and let Up denote the comma category of spaces over B.
A commuting square in Up is a homotopy pushout square if it is such when we
forget the maps to B. A contravariant functor F from Up to spectra is

e reduced if it sends @ — B to a weakly contractible spectrum,

» a homotopy functor if it sends weak equivalences of spaces to stable equiva-
lences of spectra, and

o excisive if it is a reduced homotopy functor that sends coproducts and homo-
topy pushout squares of spaces to products and homotopy pullback squares of
spectra, respectively.

Note that this last condition can be stated in several equivalent ways, the simplest
of which is that F takes all homotopy colimits to homotopy limits.

If F is a contravariant reduced homotopy functor from AUp to spectra, consider
the comma category of excisive functors P with natural transformations F — P.
Define a weak equivalence of such functors to be a natural transformation P — P’
(under F) that is a stable equivalence at every object. Inverting these equivalences
gives the homotopy category of excisive functors under F.

Proposition 2.1 [Cohen and Klein 2009; Malkiewich 2017, Proposition 5.4; 2015,
§7]. The homotopy category of excisive functors under F has an initial object Fg,,
in other words a universal approximation of F by an excisive functor. The natural
transformation F — Fg, can be given by the formula
F(X— B)— holim F((A"LB)— B).
(A"—>X)eAT

Here Ay = Aging x is the category of simplices in the simplicial set Sing X.
Concretely, it has an object for every continuous map A" — X and a morphism
for every factorization A? — A? — X where A? — A? is a composite of inclu-
sions of a face. There is a natural “last vertex” operation that gives an equivalence
|Ax| = X [Goerss and Jardine 2009, Chapter III, §4; Malkiewich 2017, §5].

We could alternatively describe Fg, (X — B) as the spectrum of sections of a
parametrized spectrum over X whose fiber over x is F((x LI B) — B). See [Weiss
and Williams 1995; Williams 2000; Cohen and Klein 2009; Malkiewich 2015;
2017] for more details and other explicit constructions of the coassembly map.
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3. Proof of Theorem A

The first step is to interpret both the homotopy limit map and the coassembly map
as the unit of an adjunction.

Let G, be a simplicial group with realization G = |G,|, and let BG be the
topological bar construction of G. It will be convenient for us to let Upg refer
to the category of unbased spaces over BG that are homotopy equivalent to cell
complexes, as opposed to all spaces over BG. Recall that Agpg C Upg is the
subcategory of spaces over BG consisting only of the simplices A? — BG for
varying p > 0 and the compositions of face maps. Note that a homotopy functor
on this subcategory must send every map to a weak equivalence.

Proposition 3.1. For reduced homotopy functors on spaces over BG, the coassem-
bly map is the unit of the adjunction of homotopy categories

reduced homotopy functors ﬁ homotopy functors
. P L T R A%
F:Up,— Fp holim FOAT) F:Apge—Sp

AP X

Proof. We first examine the larger homotopy category of all functors. It is standard
that the homotopy right Kan extension is the right adjoint of restriction. Further-
more, the canonical map of F into the extension of the restriction of F is the unit
of this adjunction. By [Cohen and Klein 2009, §5] or [Malkiewich 2015, §7], this
particular model for the homotopy right Kan extension sends homotopy functors
to reduced homotopy functors, so the adjunction descends to these subcategories,
with the same unit. |

Let BG, be the simplicially enriched category with one object [e] and morphism
space G,. Note that BG = |BG,|. Let C(BG,) be the “cone” category with one
additional object [G] and one additional nontrivial morphism [G] — [e]. This is
isomorphic to the full subcategory of the enriched orbit category O(G)°P on the
orbits G/e and G/G. Let t : BG, — C(RG,) be the inclusion.

Remark. If X is a G-space or naive G-spectrum, then X¢ and X = X'} form a
diagram over C(®G,). If X is a genuine orthogonal G-spectrum, the same is true
for the genuine fixed points X, by taking a fibrant replacement, then passing to
the underlying naive G-spectrum.

Proposition 3.2. For naive G-spectra, the map (—)° — (=)"C is equivalent to the
unit of the adjunction of homotopy categories

enriched C(BG.) : i enriched BG,
diagrams of spectra ) lagrams OfSPeC”’a.
enriched homotopy (i.e., spectra with G-action)

right Kan extension

evaluated at [G].
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Proof. This is immediate from the local formula for an enriched homotopy right
Kan extension [Riehl 2014, Example 7.6.6]. O

The next step is to relate the categories on the left-hand side of these adjunctions
together. Morally, we take each homotopy functor F to the diagram on C(%8G.,)
given by F(BG) and F(EG).

There are two problems to address here. The first problem is that this is not an
equivalence of homotopy categories, but we can fix that by localizing the category
of homotopy functors along the maps that are equivalences on BG and EG. The
second problem is that G will not act on F(EG) unless we make F simplicially
enriched. We fix the second problem using the following result.

Lemma 3.3. Every contravariant homotopy functor F to spaces or spectra can be
replaced by a simplicially enriched functor, by a zig-zag of equivalences of functors

F < F = F
that is itself functorial in F.

Proof. This is by a variant of the trick used in [Waldhausen 1985] to replace
functors by homotopy functors. It adapts from covariant to contravariant functors
by replacing Map(A”, —) with A? x —.

If F lands in orthogonal spectra, regard it as landing in prespectra or symmetric
spectra, and replace the spectrum F (X) at each level by F’(X) = |Sing F(X)|. The
effect of this is that each degeneracy map A” — A9 induces a levelwise cofibration
F'(A? x X) — F'(A? x X). Then pass back up to orthogonal spectra if desired,
and replace F'(X) again by the realization

F'(X)=|n+— F'(A" x X)|.

This defines a functor that receives a map from F’ by inclusion of simplicial level 0.
The map is an equivalence on each spectrum level, because F’ is a homotopy func-
tor and the simplicial space defined above is good and therefore Reedy cofibrant
[Lillig 1973]. We extend the functor structure on F'toa simplicial enrichment by
taking each map |Y,| x X — Z to the realization of the map that at level k is

Yi x F'(AF x X) > F/(A* x 2),
obtained from the map of spaces
kaAkxX—>Aka
whose coordinates are the action ¥; x A* x X — Z and the projection to A¥. [

Proposition 3.4. The forgetful functors in the following diagram are equivalences
of homotopy categories. Here “enriched” means simplicially enriched.:
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reduced homotopy functors
F: ou%PG — &p (localized)

~

enriched reduced homotopy functors
F :ou%PG — ¥ p (localized)

~

enriched reduced functors
F :Up. — $p (localized)

~

enriched functors
C(BG,) > Ip

Proof. The construction of Lemma 3.3 gives an inverse to the first equivalence.
Note this is still well defined after localizing because the construction preserves
the property of a map of functors F — F’ being an equivalence on one particular
space X. For the second pair of categories, by Whitehead’s theorem any enriched
functor is a homotopy functor on the cofibrant and fibrant objects. Hence we can
invert the forgetful functor by composing each F with a fibrant replacement in Up¢.
To check this respects the localization, we note that when we turn an enriched func-
tor into a homotopy functor, it will have equivalent values on EG and BG, because
these two spaces are already fibrant. For the final pair of categories, the restriction
functor has the enriched homotopy right Kan extension as its right adjoint, and
this adjunction clearly descends to the localization. In fact, since C(®8G,) is a full
subcategory of m‘;PG, the counit is an equivalence, and therefore by the definition
of our localization, the unit is also an equivalence; hence we get an equivalence of
categories. ]

Next we relate the categories on the right-hand side in Propositions 3.2 and 3.1
using parametrized spectra. To be definite, we will now assume that ¥ p means
orthogonal spectra. The category of parametrized orthogonal spectra is defined
in [May and Sigurdsson 2006, Definition 11.2.3], and its homotopy category is
obtained by inverting the ,-isomorphisms from [May and Sigurdsson 2006, Def-
inition 12.3.4].

The first part of the equivalence is as follows. Given a diagram F of orthogonal
spectra over ‘¢, at each spectrum level we can take its Bousfield—Kan homotopy
colimit as a diagram of unbased spaces, giving a retractive space over |€|. In total
this gives a parametrized spectrum hocolime F' over |4| [Lind and Malkiewich
2018, §4]. See the diagram
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homotopy functors
F: A%pG —5p

hocolim F(AP)
A%®
BG

~

parametrized spectra
over | A%pG

~ | W(QEXG—)

enriched functors BG, — Ip
(spectra with left G-action)

The second part of the equivalence is the Borel construction EG x g —, followed
by pullback along the equivalence |A(I)3pG| => BG. Alternatively, we make the
following construction. Let E be any weakly contractible space with a free right
G-action, withamap E/G — |A%pG |. Let Q E be its cofibrant replacement as a free
G-space, so that there is an equivalence [ : QF /G = BG. If X is a spectrum with
G-action, take a cofibrant replacement if necessary so that its levels are well based,
then take Q F x g X, which is a parametrized spectrum over Q E /G, and push it
forward along [ to |A%pG|. We will see in the next proposition that this is always
equivalent to the Borel construction, but it is convenient to allow ourselves to pick
a particular space E with this property, rather than having to use the pullback of
EG to |AY].

Proposition 3.5. These are equivalences of homotopy categories, and the second
is independent of the choice of E, up to isomorphism.

Proof. For the first one, the homotopy category of homotopy functors on A%pc
is equivalent to the homotopy category of functors that are fibrant in the aggre-
gate model structure of [Lind and Malkiewich 2018, Theorem 4.4]. Therefore,
hocolim A% F(AP) is naturally isomorphic as a map of homotopy categories to
the left Quillen equivalence of [Lind and Malkiewich 2018, Theorem 4.5], and is
thus an equivalence. On the other hand, for a G-space X the horizontal maps in
the following square are equivalences:

QE xg X — EG xg X

| |

|AD| ———— BG

Hence the functor QF x s — is equivalent to the Borel construction EG xg —
(which lands in spectra over BG) followed by the pullback from BG to |A%pG|.
(Under the cofibrancy assumptions on X, the same is also true if we push QF x g X
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forward along /.) This factorization into Borel-then-pullback also holds at the level
of homotopy categories, since the Borel construction preserves all equivalences and
outputs a fibration, on which the pullback preserves equivalences. Then the Borel
construction is an equivalence by [Ando et al. 2018, Appendix B] or [Lind and
Malkiewich 2018, Theorem 4.5], and the derived pullback is an equivalence by
[May and Sigurdsson 2006, Proposition 12.6.7]. |

Now we may finish the proof of Theorem A.

Theorem 3.6. For any reduced homotopy functor F : ou‘;PG — Ip, the coassem-
bly map on BG is isomorphic in the homotopy category to the map F(BG) —
F(EG)"S induced by the functoriality of F.

Proof. The adjunction from Proposition 3.1 descends to the localization we de-
scribed above; hence we get the following diagram of adjunctions and equivalences
of homotopy categories. It remains to check that the equivalences and left adjoints
in this figure commute up to some natural isomorphism, so that the figure is an
“equivalence of adjunctions’:

reduced homotopy functors :&‘ homotopy functors
. 0P : . AOP
F:Ug; — ¥p (localized) Xrsholig F(A7) F:Apg;—>%p
A

X

~

enriched reduced ' 7
homotopy functors . | hocglim F(A”)

A
F: OlL%pG — ¥p (localized) po

~

enriched reduced functors parametrized spectra

F: UG- — $p (localized) over | A
~ ~| QExg—
enriched functors resirm enriched functors BG, — Ip
CRG,) —> Ip (spectra with left G-action)

homotopy right
Kan extension

To form this natural isomorphism, we assume that F is an enriched reduced
homotopy functor on Upc. Composing with fibrant replacement, then reenriching
by the equivalences in Proposition 3.4, we may assume that F sends equivalences
of spaces to level equivalences of spectra. We may also compose with |Sing —|
so that it is enriched in topological spaces. These manipulations are natural in F;
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hence we can make these assumptions even if what we are after is an isomorphism
that is natural in F.
We define
E = hoc%lim Mapy;(A?, EG)

BG

with G acting on the right on EG. By Lemma 3.7 below, E is weakly contractible.
Form the following diagram at each spectrum level, in which the second map along
the top uses the enriched functoriality of F:

QF x F(EG) — hocolim Mapg; (A?, EG) x F(EG) — hocolim F'(A?)
l APeAT, ., AreAyy

—
—

QFE xg F(EG) — hocolignMapBG(Ap, EG) xg F(EG)
APeA

BG

This map of spaces induces a map of parametrized spectra over QE /G — |A%pG [,
or a map from the pushforward of the first to the second over |A%pG |. To argue that
the above map is an equivalence of parametrized spectra, it suffices to argue it is
an equivalence at each spectrum level.

To check the composite along the bottom is an equivalence, it suffices to examine
the induced map on their homotopy fibers over |A%pG|. In the target, by a variant
of Quillen’s theorem B [Meyer 1986; Grayson 1976], the map to |A%pG| is a quasi-
fibration, so the fiber F'(A?) is equivalent to the homotopy fiber. In the source, we
pick a single G-orbit of Q E and check that the inclusion of G x F(EG) into the
homotopy fiber of QF xg F(EG) — QFE/G is an equivalence, by replacing E by
a space that is fibrant, then comparing to £G. Therefore the above map induces on
homotopy fibers a map equivalent to F(EG) — F(A?), which is an equivalence
because F is a homotopy functor. This proves that the left adjoints commute up to
isomorphism. U

Lemma 3.7. The space E = hocolim A% Mapgg (AP, EG) is weakly contractible.

Proof. We first rearrange the colimit using the string of weak equivalences

hocolim A” x g EG ————— hocolim A? x g EG
Tw(ApG)°P T ApG

hocolim AP x Mapg; (A, EG) (3.8)

Tw(Apg)°P

~

hocolim Map; (A4, EG) ———— hoc%IimMapBG(A”, EG)
AO

Tw(ApG)P oG
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Here Tw(Apg)°P denotes (the opposite of) the twisted arrow category of Apg.
The objects are arrows in A g, and a morphism from A? — AY — BG to A? —
AY — BG is a factorization

AP — AV

|

Al —— A7

|

BG == BG

In general, for a category 6, the twisted arrow category Tw(6)°P is equipped with
a “source” functor s : Tw(%)°? — C that remembers just the source of each arrow,
and a “target” functor ¢ : Tw(€)°P — €°P that remembers the target of the arrow.
It is straightforward to define the diagrams on the left-hand side of (3.8). The
top horizontal map is the pullback of a diagram on Apg along the source func-
tor. Similarly, the horizontal diagram on the bottom is a pullback along the target
functor. The bottom vertical arrow arises by collapsing A” to a point and is thus a
levelwise equivalence. The top vertical arrow arises from the levelwise maps

AP xMapy;(A?, EG) - AP xpg EG

defined by sending (x, f) — (x, f(g(x))), where g is the given map A? — Af9.
We check from the definition that this is indeed a map of Tw(A ps)°P-diagrams.
It is also an equivalence on each term, since restricting the A” or A? to a single
point is an equivalence, and after this substitution we get a homeomorphism

Map ¢ (%}, EG) = {%} x5 EG.

The next step is to show that these four maps of colimits are weak equivalences.
For the vertical maps, this follows because the two maps of diagrams are an equiv-
alence on each term. For the horizontal arrows, this follows because the source
and target functors are homotopy terminal. For the source functor, this means that
for any object j € C, the overcategory (j | s) is contractible. To prove this, we
note that the overcategory consists of pairs of arrows j — a — b and morphisms
of the form

:u—m—&

|
;

|
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The inclusion of the subcategory of all arrows of the form j = j — b has a right
adjoint, so that subcategory has an equivalent nerve. Furthermore, this subcategory
has a terminal object j = j = j, so it is contractible. All together, this proves that
s is homotopy terminal. A similar proof works for the target functor 7.

We have now reduced to proving that hocolima,,(A? xps EG) is weakly
contractible. Since geometric realization commutes with finite limits, we get a
homeomorphism

hogolim(Ap xgg EG) = (hocolim Ap) xgg EG.
BG

ApG

Clearly BG xpg EG = EG is contractible, so it is enough to prove that the map

¢ :hocolim A? — BG,
Apg

which arises from all the individual maps A” — BG, is an equivalence. There is
an immediate equivalence

hocolim A? =5 hocolim * = |Agg| = BG (3.9
ApG ApG
but that is a different map. To show that ¢ is an equivalence, we extend it to a
natural transformation of functors on unbased spaces

hocolim A? — X.
Ax
It is clearly an equivalence when X is empty or contractible. Furthermore, using
(3.9), both sides are equivalent to the identity functor and are therefore excisive.
A standard inductive argument then shows that ¢ is an equivalence on all spaces.
This finishes the proof. U

4. Review of coarse and bivariant A-theory

Let G be a finite group and X a G-space. Let R(X) be the category of retractive
spaces

X5LHy5Lx ri=id

with weak equivalences given by the weak homotopy equivalences and cofibrations
given by maps that have the fiberwise homotopy extension property (FHEP). The
category R(X) has a G-action through exact functors induced by conjugation from
the G-action on X [Malkiewich and Merling 2019, §3.1]. For taking K -theory, we
restrict to the subcategory Rj¢(X) € R(X) of retractive spaces that are homotopy
finite. These are the spaces that, in the homotopy category of retractive spaces, are
a retract of a finite cell complex relative to X. We note the action respects this
condition.
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For each subgroup H < G, the homotopy fixed points are defined as
Ryyp ()" := Cat(€G, Ryp(X)7,

where €G is the G-category with one object for each element of G and a unique
morphism between any two objects, and Cat(€G, R;r(X)) is the category of all
functors and natural transformations, with G acting by conjugation [Malkiewich
and Merling 2019, Definition 2.2].

The homotopy fixed point category Ry (X )" is equivalent to the Waldhausen
category whose objects are H-spaces Y containing X as an H-equivariant retract,
whose underlying space is homotopy finite [Malkiewich and Merling 2019, Propo-
sition 3.1]. The morphisms are the H-equivariant maps of retractive spaces ¥ — Y’.
The cofibrations are the H-equivariant maps which are nonequivariantly cofibra-
tions and the weak equivalences are the H-equivariant maps which are nonequiv-
ariantly weak equivalences.

We define A5*"°(X) to be the naive G-spectrum obtained by applying S, to the
Waldhausen G-category Cat(€G, Ry,r(X)). This is equivalent to the underlying
naive G-spectrum of a genuine 2-G-spectrum [Malkiewich and Merling 2019,
Theorem 2.21].

For a Hurewicz fibration p : E — B, the bivariant A-theory A(p) is defined to be
the K-theory of the Waldhausen category of retractive spaces X over E, with the
property that X — B is a fibration, and the map of fibers E, — X}, is a retract up
to homotopy of a relative finite complex. See [Williams 2000; Raptis and Steimle
2014].

In the present section we extend the following result of [Malkiewich and Merling
2019] to the coassembly map.

Proposition 4.1. There is a natural equivalence of symmetric spectra
ALV ~ A(EG xy X — BH).
The equivalence is induced by the functor
hH p
CI)IRhf(X) —)Rhf(EGXHX%BH)

that applies EG x g — to the retractive space (Y, iy, py) over X, obtaining a re-
tractive space over EG x g X:

1 G
EG xpy X 29 BG xpy ¥ 289 EG xy X.

To define the coassembly map, we observe that while bivariant A-theory is a
functor of fibrations, it can be regarded as a contravariant functor on Up in the
following way. Fix a fibration p : E — B. Then Up is equivalent to the category
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whose objects are pullback squares
E —— E
p/l lp
B'—— B
and whose maps are commuting squares (necessarily pullback squares)
E// E/
p,/l l p,
B// N B/
Along this equivalence, bivariant A-theory is a reduced homotopy functor from OIL%p
to spectra, so it has a coassembly map
ca:AE' L BY = Aq(E' L B).

We emphasize that the coassembly map depends on the choice of fibration E 5B
and map B’ — B. Different choices give rise to different coassembly maps.
Fix the fibration EG x g X — B H and the pullback square

EGxyX ——EGxyX
p| |7
BH — BH
and consider the resulting coassembly map. Our last remaining goal is to prove:

Theorem 4.2. In the stable homotopy category, the map from fixed points to homo-
topy fixed points is isomorphic to the coassembly map for bivariant A-theory:

Ag)arse(X)H Ag)arse(X)hH

|- |-

A(EG xy X —> BH) -5 Aq(EG xy X — BH)

Furthermore the left-hand map in the above diagram can be taken to be the equiv-
alence of Proposition 4. 1.

5. Proof of Theorem B

Note that without loss of generality we may take H = G. Since G is finite, we may
ignore issues of enrichment. By Theorem 3.6, the coassembly map for bivariant A-
theory is equivalent to the homotopy limit map for the diagram on C(%®G) given by
bivariant A-theory on EG and BG. So it remains to compare the resulting diagram
on C(BG) to the one defined by coarse A-theory.
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Proposition 5.1. The equivalence of Proposition 4.1 can be extended to an equiv-
alence of diagrams of symmetric spectra over C(RBG).

We expect it is possible to compare these two as diagrams over O(G)°P, but this
raises additional coherence issues, and is not necessary to prove Theorem 4.2.

Proof. We start by describing the 0(G)°P-action on bivariant A-theory. To each
map of G-sets f: G/H — G/K and G-space X we assign the pullback square

B(x,G,G xgX) —— B(x,G,G xg X)

Lo,

EG
B(x, G, G/H) — L B(x, G, G/K)
The vertical maps collapse X to a point, and the top horizontal map
GxgX—>GxgX

sends (y, x) to (yg~!, gx), where g is any element such that f(eH) =g~ ' K. Note
that this formula is well defined because g is unique up to left multiplication by K.
It is easy to check that these formulas give a functor from O(G) into the category
of pullbacks of the fibration EG xg X — BG, and therefore define the action of
O0(G)°P on the bivariant A-theory spectra A(EG xy X — EG/H). This action is
strict by functoriality of bivariant A-theory [Raptis and Steimle 2014, Remark 3.5].

Now we restrict to C(BG), where we wish to prove that the functor & of
Proposition 4.1 gives a map of C(%BG) diagrams, in other words that the two
squares below commute:

A(é)arse(X)G % A(EG xg X - EG/G)

includel linclude

AcGoarse(X){E} % A(EGx X — EG)

gl lg.

Acoarse(x)e] —® JA(EGxX— EG)

This turns out to be false, but only because the relevant functors of Waldhausen
categories agree up to canonical isomorphism, rather than strictly. We therefore
replace our two diagrams over C(BG) by equivalent ones on which the map &
strictly commutes with the C(%BG) action.

First we make the following reduction. We first show that in order to get a
strictly commuting zig-zag of equivalences of C(#BG)-diagrams, it is enough to
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define a square of G-equivariant functors

F
—

€
[
D — D
",
such that 6 and %’ have trivial G-action, and such that the square commutes up to
a G-fixed natural isomorphism 7. Given such a square, we may replace 9 by the
category 9; defined as follows:

« the objects %; are ob€ LI ob %, and

e the morphisms are given by 9;(d,d") =%(d, d"), 9;(d, ¢) =%(d, Ic), and
Dy(c,d)=D(Ic,d) if ¢ is an object of 6 and d, d’ are objects of 9.

We define a new functor 9; — %' using F, on the full subcategory on ob %, I' o Fy
on the full subcategory on ob 6, and on each morphism f between ¢ € ob ¢ and
d € ob %, the composite

I'o Fi(¢c) < Fyol(c) «—s Fy(d).
n F(f)

It is easy to check this is indeed a functor and is G-equivariant. It is then straight-
forward to define the rest of the following diagram so that every functor is equi-
variant and every square of functors commutes strictly, giving a zig-zag of C(BG)-
diagrams of categories

Note that if € and 9 are Waldhausen categories and all functors I, I’, Fy, F, are
exact, then the resulting diagram above is also a diagram of Waldhausen categories,
where %; has the Waldhausen structure inherited from computing maps in %. With
this reduction in hand, it is enough to make a square of functors of Waldhausen
G-categories, in which the top row has trivial G-action, that commutes up to a
G-fixed natural isomorphism. We will construct the square

Cat(€G, Ry (X)¢ —>— Ry (EG x¢ X — BG)

lq*

1 Rhf(EGXX—>EG)

lconst

Cat(€G, Rys (X)) —— Cat(€G, Rys (EG x X — EG))
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The map @ along the top is the one from Proposition 4.1 that applies EG x g — to
the retractive space (Y, iy, py) over X, obtaining a retractive space over EG x g X.

The left-hand vertical map / includes the fixed points into the whole category,
i.e., takes a retractive G-space (Y, i, p) to the G-tuple of retractive spaces (Y, i o g~}
g o p) with isomorphisms of retractive spaces

’

hlg.—
qbg,h:(Y,iog_],gop)—g) (Y,ioh_],hop)

over the identity map of X. Along the right-hand edge, the first functor pulls back
along the quotient map

q:EGxX— EG xg X.
The left action of g € G on the target is by pullback along the map

Caxe—l._
pg:EGxXLEGxX

and note that ¢* lands in the G-fixed points because the composite function g o pg
is equal to g. The second functor on the right-hand edge pulls back along the map
of categories €G — *. To define the functor on the bottom, first form the functor

D: Ry (X) = Rpp(EG x X — EG),
®(Z,i,p)=EGx(Z,i,p)=(EG x Z,id x i,id X p).
Then pick the isomorphisms
Oy: Pog—> god,
EG x(Z,iog ', gop)— pi(EG x (Z.i, p))

arising from the commuting diagram

~1
2.7 %
EGx X p—) EGx X
g
id,iog™! id,i
-g,id
EGxZ——EGXxZ
id,gop id,p

. 71.
EGx X 25 EG x X
8

We check the cocycle condition g6, o 6, = 6, which reduces to the equality
(—-8)-h=—-(gh) as self-maps of EG x Z, and pj, 0 pg = pgy, as self-maps of
EG x X. Therefore by [Malkiewich and Merling 2019, Definition 2.5], the iso-
morphisms 6, make ® a pseudoequivariant functor. By [Malkiewich and Merling
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2019, Proposition 2.10], after applying Cat(€G, —) we get a strictly equivariant
functor ®.

The top route through our diagram of functors takes a retractive G-space Y
over X to the functor €G — R;,r(EG x X — EG) with values

g+ q"(EG xg (Y,i,p)), (g—h) > id.
The bottom route produces the functor with values
g p;(EG x (Y,1i, p)).

To describe the maps, let us represent the space p,(EG x (Y, i, p)) by drawing the
span along which we take the pullback to get it:

id, g.87 " .
EGxY 5 EGx X &2 " EGx X PH(EG x (Y, i, p)).
Pg

Then our functor out of €G assigns the map g — & to the composite of the following
isomorphisms:

" ot
EGxYl—p>EGxX<%EGxX pi(EG x (Y, i, p))
8
g~ lid Lg‘,g- 0!
id,go
EGxY 2 EGx X ——EGx X EGx (Y,iog™', gop)
idhlg H id,(h'g") ()
id. /o
EGxY R EGx X —— EG x X EGx (Y,ioh~',hop)
-h,id Lh,hL O
id,p b .
EGxY — EGx X o EGx X Pr(EG x (Y,i, p))

Now we will define a natural isomorphism »n from the bottom route to the top route.
Continuing to use this span notation, for each g € €G we define an isomorphism 7,
by the map of spans

"
EGxY —"  EGx X+ EGxX pi(EG x (Y,i, p))
id,idl lq H lng

"
EGxgY T EGxgX X~ EGx X ¢ (EG x (Y, i, p))

This commutes with the maps g — & of €G because the composite of the three
maps of spans from () commutes with the map of spans just above. Naturality
follows because each G-equivariant map ¥ — Y’ induces maps on the source and
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target of 1, that commute with 7, for each g. Finally we check that n is a G-fixed
natural transformation. The map yn,-1, := p;n, -1, comes from the map of spans

Pg

id, — _
EGxYy =21 EGXX ¢—EGXX <— EGXX  pip*., (EGX(Y,i,p))

yT'g 4
id,p P

EGxgY ~% EGxgX +— EGxX +~EGxX  piq*(EGxg(Y.i, p))
v

q

which is indeed the same map of spans that defines n,. This finishes the con-
struction of the square of equivariant functors that commutes up to equivariant
isomorphism. In summary, using the reduction cited earlier in the proof, we have
now constructed a strictly commuting zig-zag of C(BG)-diagrams of Waldhausen
categories

Cat(€G, Rhf(X))G Cat(€G, Ryr (X))

Cat(éG, Rys(X))¢ ———— Cat(éG, Rus(X));

|

Rpf(EG xg X - BG) —— Cat(€éG, Rys(EG x X — EG))

constog™

const | ~

Rif(EG xG X — BG) ———— Ryy(EG x X — EG)
q

Now we apply the K-theory functor to this diagram. By Proposition 4.1, the left
map ® induces an equivalence in K -theory. The right maps labeled ~ are G-maps
which are nonequivariant equivalences. It remains to show that the remaining ver-
tical map gives an equivalence on K -theory. In general, for any pseudoequivariant
functor ® : € — %, we have a commutative diagram of nonequivariant categories

Cat(€G, €) —2— Cat(€G, @)
@— g
[}

where the vertical maps are nonequivariant equivalences. (Note that the diagram
with those equivalences reversed doesn’t commute.) Since ® induces an equivalence
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on K -theory, so does ®. Now use the factorization

Cat(€G, Ryf (X)) — Cat(€G, Ry (X)); —> Cat(€G, Ryf(EG x X — EG))

\//}

0]

to conclude that the remaining functor
Cat(€G, Ryp (X)) — Cat(€G, Ryr (EG x X — EG))

also gives an equivalence in K-theory. Thus we get a strictly commuting zig zag
of equivalences of C(#BG) diagrams in spectra. U
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Rational equivalence of cusps

Shouhei Ma

We prove that two cusps of the same dimension in the Baily—Borel compactifi-
cation of some classical series of modular varieties are linearly dependent in the
rational Chow group of the compactification. This gives a higher dimensional
analogue of the Manin—Drinfeld theorem. As a consequence, we obtain a higher
dimensional generalization of modular units as higher Chow cycles on the mod-
ular variety.

1. Introduction

The classical theorem of Manin [1972] and Drinfeld [1973] asserts that the differ-
ence of two cusps is torsion in the Picard group of the modular curve for a congru-
ence subgroup of SL,(Z). This had stimulated the development of the theory of
modular units and cuspidal class groups; see [Kubert and Lang 1981]. The original
proof of Manin and Drinfeld used modular symbols and Hecke operators on the
cohomology of the modular curve. Later, an interpretation in terms of the mixed
Hodge structure of the modular curve minus the cusps was also found [Elkik 1990].

Our purpose in this paper is to prove a generalization of the Manin—Drinfeld
theorem for cusps in the Baily—Borel compactification of some higher dimensional
classical modular varieties. In higher dimensions, cusps are no longer divisors, but
algebraic cycles of various codimension. We wish to clarify their contribution to
the Chow group of the Baily—Borel compactification.

The modular varieties of our object of study are of the following three types:

(1) modular varieties of orthogonal type attached to rational quadratic forms of
signature (2, n), which have only 0-dimensional and 1-dimensional cusps;

(2) Siegel modular varieties attached to rational symplectic forms; and

(3) modular varieties of unitary type, including the Picard modular varieties, at-
tached to Hermitian forms over imaginary quadratic fields.
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Keywords: modular variety, Baily—Borel compactification, cusp, Chow group, Manin—Drinfeld
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In Cartan’s classification of irreducible Hermitian symmetric domains, these cor-
respond to the domains D of type IV, III, and I, respectively. The Baily—Borel
compactification [Baily and Borel 1966] of the modular variety I'\D for an arith-
metic group I" is obtained by adjoining rational boundary components to D and
then taking the quotient by I". Below, by a cusp we mean the closure of the image
of a rational boundary component in the Baily—Borel compactification.

Our main results are the following.

Theorem 1.1 (orthogonal case). Let A be an integral quadratic lattice of sig-
nature (2,n), I' a congruence subgroup of the orthogonal group O"(A), and
Xr the Baily—Borel compactification of the modular variety defined by T". Let
Z1, Z> be two cusps of Xr of the same dimension, say k € {0, 1}. Assume that
n >3 ifk =1. Then we have Q[Z|] = Q[Z,] in the rational Chow group
CHy(Xr)a = CHi(X1) ®7z Q of Xr.

Theorem 1.2 (symplectic case). Let A be an integral symplectic lattice, I" a con-
gruence subgroup of the symplectic group Sp(A), and Xt the Satake—Baily—Borel
compactification of the Siegel modular variety defined by I'. If Z1, Z, are two
cusps of Xr of the same dimension, say k, then Q[Z] = Q[Z,] in CHx(Xr)q.

Theorem 1.3 (unitary case). Let K be an imaginary quadratic field, A a Hermitian
lattice over Ok, I' a congruence subgroup of the unitary group U(A), and Xr the
Baily-Borel compactification of the modular variety defined by I'. If Z, Z, are
two cusps of Xr of the same dimension, say k, then Q[Z] = Q[Z,] in CH;(X1)q.

Note that the equality Q[Z;] = Q[Z;] in CHi(X1)g is the same as the equality
N1[Z1] = Nz[Z5] in the integral Chow group CH (Xr) for some natural numbers
Ni, N>. When k =0, we must have N; = N», so [Z1] —[Z>] is torsion in CHy(XT).

In the symplectic case, when A has rank > 4, every finite-index subgroup of
Sp(A) is a congruence subgroup by [Mennicke 1965; Bass et al. 1964]. The case
rk(A) = 2 is just the case of modular curves.

The case (n, k) = (2, 1) in the orthogonal case is indeed an exception. We have
self products of modular curves as typical examples of X in n = 2, for which two
transversal boundary curves are not homologically equivalent. On the other hand,
we should note that some consideration in the case n = 2 is necessary for our proof
for the case n > 3.

The proof of Theorems 1.1-1.3 is based on the same simple idea. We connect
Z1 and Z, by a chain of submodular varieties or their products, through the in-
terior or the boundary, and use induction on the dimension of modular varieties.
This eventually reduces the problem to the Manin—Drinfeld theorem for modular
curves. The actual argument requires case-by-case construction depending on the
combinatorics of rational boundary components. We need to argue the three cases
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separately, though the symplectic and the unitary cases are similar. Theorem 1.1
is proved in Section 2, Theorem 1.2 in Section 3, and Theorem 1.3 in Section 4.

In Section 5, as a consequence of these results, we associate an explicit nonzero
element of the higher Chow group CHy(I'\D, 1)g of the modular variety ['\D
(before compactification) to each pair (Z1, Z;) of cusps of maximal dimension k.
This gives a higher dimensional analogue of modular units from the viewpoint of
algebraic cycles. If the span of all such higher Chow cycles on I'\D has dimen-
sion no less than the number of maximal cusps, we would then obtain a nontrivial
subspace of CHy (X, 1)g for the Baily—Borel compactification Xr-.

Throughout the paper I' (V) stands for the principal congruence subgroup of
SL,(Z) of level N, and X(N) = I'(N)\H* the (compactified) modular curve
for I'(N). In Section 2 and Section 3, for a free Z-module A of finite rank, we
denote by AY = Homy (A, Z) its dual Z-module and define A = A ®7 F for
F = Q,R,C. For a Q-vector space V we also write V¥ = Homg(V, Q) and
Vi =V ®qg F when no confusion is likely to occur.

2. The orthogonal case

In this section we prove Theorem 1.1. We first recall orthogonal modular varieties;
see [Scattone 1987; Looijenga 2016]. Let A be a free Z-module of rank 2 4+ n
equipped with a nondegenerate symmetric bilinear form (-,-) : A Xx A — Z of
signature (2, n). Let

Or ={[Cw] e PAc | (w, w) =0}

be the isotropic quadric in PA¢. The open set of O defined by the condition
(w, @) > 0 consists of two connected components, and the Hermitian symmetric
domain D, attached to A is defined as one of them. This choice is equivalent to
the choice of an orientation of a positive definite plane in Ag.

Let O(A) be the orthogonal group of A, namely the group of isomorphisms
A — A preserving the quadratic form. We write O" (A) for the subgroup of O(A)
preserving the component D, . For a natural number N let Ot (A, N) < Ot (A) be
the kernel of the reduction map O™ (A) — GL(A/NA). A subgroup I" of O*(A)
is called a congruence subgroup if it contains O" (A, N) for some level N. A
typical example is the kernel of the reduction map O"(A) — GL(AY/A) for the
discriminant group A /A.

There are two types of rational boundary components of D : 0-dimensional
and 1-dimensional components. The 0-dimensional components correspond to
isotropic Q-lines / in Ag: we take the point p; =[Ic] € Q s, which is in the closure
of Dy, for each such I. The 1-dimensional components correspond to isotropic Q-
planes J in Ag: we take the connected component of PJgc —PJr ~HUH, say Hy,
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that is in the closure of D, . The union

D*A=DAU I_l H,;u |_| PI
dim J=2 dim =1
is equipped with the Satake topology [Baily and Borel 1966; Borel and Ji 2005].
By [Baily and Borel 1966], the quotient space X = I"'\D, has the structure of a
normal projective variety and contains I'\D, as a Zariski open set.

In Section 2A we prove Theorem 1.1 for O-dimensional cusps, and in Section 2B
for 1-dimensional cusps. Throughout this section U stands for the rank 2 unimod-
ular hyperbolic lattice with Gram matrix ((1) (1)) The symbol A L A5 stands for the
orthogonal direct sum of two quadratic lattices (or spaces) A1, A, while A| @ A»
just stands for the direct sum of A, A, as Z-module (or linear space) and does not
necessarily mean that (A, Ap) =0.

2A. 0-dimensional cusps. In this subsection we prove Theorem 1.1 for O-dimen-
sional cusps. Let I} #~ I, be two isotropic lines in Ag and p;, p» € Xr the corre-
sponding 0-dimensional cusps. We consider separately the cases where (11, I) =0
or (11, I) # 0. In the former case p; and p, are joined by a boundary curve, while
in the latter case they are joined by a modular curve through the interior of Xr-.

2A1. The case (11, I;) = 0. We first assume that (/;, I;) = 0. The direct sum
J =1, @ I, is an isotropic plane in Ag. Let H}, =H, U |_|1cJ prand I'y C SL(J)
be the image of the stabilizer of J in I'. We have a generically injective mor-
phism f : X; — Xr from the modular curve X; = I'y\H% whose image is the
1-dimensional cusp associated to J.

Claim 2.1. T'; is a congruence subgroup of SL(Jz), where Jz = J N A.

Proof. There exists a rank 2 isotropic sublattice J;, in Ag such that J, >~ (Jz)" by
the pairing. The lattice A| = JZGBJ% isisometric to U L U. We set A» = (A)TNA
and A’ = A; L A,. Recall that I" contains O" (A, N) for some level N. Since both
A and A’ are full lattices in Ag, we can find natural numbers Ny, N> such that

NiA'CNACACN;'A.
If we set N’ = N N», this tells us that
O"(A',N)CO"(A,N)CT (2.2)
inside O(Aqg) = O(Af@). Now we have the embedding
SLy(Z) = SL(Jz) = O (M), vy 1) @y ®ida,,

whose image is contained in the stabilizer of J. Since this maps I'(N’) into
O'(A’, N') C T, we see that I'; contains I'(N’). O
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Let g1, g be the cusps of X; corresponding to Iy, I, respectively. By this
claim we can apply the Manin—Drinfeld theorem to X ;. Therefore, [¢1] = [¢2]
in CHy(X j)g. Since f(q1) = p1 and f(g2) = p», we obtain

[p1]l = filg1] = filgal = [p2]
in CHo(X1)o.

2A2. The case (11, I;) #0. Next we assume that (I, o) #0. In this case Iy D I, is
isometric to Ug. Its orthogonal complement (I; @ I,) has signature (1, n —1). We
choose a vector v of positive norm from (/; @ >)* and put Ab =16 1L,®Quv. Then
Ag;[) has signature (2, 1). Let D/ be the Hermitian symmetric domain attached
to Ag. We have the natural inclusion D}, C Dj, which is compatible with the
embedding of orthogonal groups

1: 0T (Ag) = 01 (Aq), y >y ®idp)e

Claim 2.3. There is a subgroup T'" < O (Ag) such that (T'") CT and X' =T"\D},
is naturally isomorphic to X (N) for some level N.

Proof. Let Ay = U L (2). Then Ab is isometric to the scaling of (A1)g by
some positive rational number. This gives natural isomorphisms D}, >~ D} and
O*(Ag) = 0" ((A1)a). The group O ((A1)g) is related to SL,(Q) by the follow-
ing well-known construction (cf. [Maclachlan and Reid 2003, §2.4]). Let V C M>(Q)
be the space of 2x2 matrices with trace 0, equipped with the symmetric form
(A, B) =tr(AB). Then V N M,(Z) is isometric to A;. By conjugation SL;(Q)
acts on V. This defines a homomorphism

¢ :SLy(Q@) — 0T (V) =07 ((A1)a)

with Ker(¢) = {£I}. (We have Im(¢) = SO™(V), but we do not need this fact.) It
is readily checked that ¢(I'(N)) C O" (A4, N) for every level N. Furthermore, ¢
is compatible with the Veronese isomorphism

* * 2
H —>DA1, TH—>e+tTv9g—T°f,

where e, f are the standard basis of U and vy is a generator of (2). Now by the
same argument as (2.2), there exists a level N such that the embedding ¢ maps
O™ (Aq, N) into I'. This proves our claim. O

Let g1, g2 be the cusps of X’ corresponding to the isotropic lines Iy, I, of Ab.
By this claim we have a finite morphism f : X’ — X which sends ¢; to p; and ¢»
to py. By the Manin—Drinfeld theorem for X’ we have [¢1] = [¢2] in CHy(X")q.
Applying f., we obtain [p;] = [p2] in CHyp(Xr)g. This finishes the proof of
Theorem 1.1 for O-dimensional cusps.
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Remark 2.4. If A has Witt index 2, (I; & I>)* contains an isotropic line, say I3.
Then we could also apply the result of Section 2A1 to /; vs. I3 and to I3 vs. I, thus
obtaining [p1] = [p2] via I3. Together with the case of Section 2A1, this shows
that when X contains at least one 1-dimensional cusp, then any two 0-dimensional
cusps can be connected by a chain of 1-dimensional cusps of length < 2, which
provides their rational equivalence.

2B. 1-dimensional cusps. In this subsection we prove Theorem 1.1 for 1-dimen-
sional cusps.

2B1. Preliminaries inn=2. Although the case n =2 is not included in Theorem 1.1
for 1-dimensional cusps, we need to study a specific example in n = 2 as prelim-
inaries for the proof for the case n > 3. We consider the lattice 2U = U L U.
Let e1, f1 be the standard basis of the first copy of U, and e;, f, be that of the
second U. Let J| = Qe ® Qe and J, = Q f> ® Q f1, which are isotropic planes
in 2Ug. We take an arbitrary natural number N and consider the modular surface
S(N)=0"(QU, N)\D;3,,. Let Cy, C; be the boundary curves of S(N) associated
to J{, J}, respectively.

Lemma 2.5. We have Q[C] = Q[C,] in CH{(S(N))qg.

Proof. Recall that we have the Segre isomorphism
HxH — Dy, (o) ea—tunfittne+nf. (2.6)

This extends to H* x H* — D7, and maps the boundary components H x (12 = 0),
H x (72 = ic0) of H* x H* to the boundary components H/, H;; of D, respec-
tively.

Let J; =Qf,®Qe; and J; = Qe> @ Q f;. By the pairing we identify J; >~ (J{)"
and J; 2~ (J3)". Then we define an embedding

SLy (@) x SLp(@) = SL(J)) x SL(J5) = O (2Ug)

by sending y1 € SL(J]) to (y11,7) @ (1'|7) and y3 € SL(J3) to (y31,) & (111
This embedding of groups is compatible with the isomorphism (2.6) of domains,
and it maps ['(N) x I'(N) into O (2U, N). We thus obtain a finite morphism
f:X(N)x X(N)— S(N) which maps the boundary curves

Cil=X(N)x(t2=0), Cj=X(N)x (1y=1i00)

of X(N)x X(N) onto Cy, C», respectively. By the Manin—Drinfeld theorem for the
second copy of X (N), we have [C}]=[C}]in CH; (X (N) x X (N))q. Applying f,
we obtain the assertion. U
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2B2. The case J1 N J, = {0}. We go back to the proof of Theorem 1.1. Let A
have signature (2, n) with n > 3. Let J; # J, be two isotropic planes in Ag and
Zy, Zy C Xr the corresponding 1-dimensional cusps. We first consider the case
where J; N J, = {0}. In this case the pairing between J; and J, is perfect because
Jf- /Ji is negative definite. The direct sum A(’ED = J| & J, is isometric to 2Ug. We
can take an isometry 2Ug — A, which maps J{, J; to Ji, Ja, respectively. This
gives an embedding of orthogonal groups

0" (2Uq) ~ 0" (Ag) = 01 (Aq), y >y ®idg) (2.7)

which is compatible with the embedding D,y >~ Dpr C Dy of domains. By the
same argument as (2.2), we can find a level N such that the embedding (2.7)
maps O1(2U, N) into I". We thus obtain a finite morphism f : S(N) — X with
f(Cy1)=Z, and f(Cy) = Z,. Sending the equality Q[C] = Q[C>] of Lemma 2.5
by fx, we obtain @Q[Z] = Q[Z,] in CH(X1)q.

2B3. The case Jy N Jy # {0}. We next consider the case where J; N J, # {0}. Let
I = J1 N J, and choose splittings J; =1 @ Iy and J, =1 & I,. Since (11, I) #0,
we have I} @ I, ~ Ug. Let Ay =11 @ I, and Ay, = (Ab)L. Then Ag, has
signature (1,n — 1). Since n — 1 > 2 and A&D contains at least one isotropic line 7,
we find that A{) contains infinitely many isotropic lines. We can choose isotropic
lines I3, I4 in Aé such that I, I3, I4 are linearly independent. Put J3 = I, & I, and
Js = I3 & I;. Then J3, Jy are isotropic of dimension 2 and we have

JiNnJz={0}, J3NJy={0}, JysNJ,=/{0}.

If Z; C Xr is the 1-dimensional cusp associated to J;, we can apply the result of
Section 2B2 successively and obtain

Q[Z:]=QlZ3] = Q[Z4] = Q[ Z;]

in CH;(Xr)gq. This finishes the proof of Theorem 1.1 for 1-dimensional cusps.

3. The symplectic case

In this section we prove Theorem 1.2. We first recall Siegel modular varieties
(see [Hulek et al. 1993; Looijenga 2016]). Let A be a free Z-module of rank 2g
equipped with a nondegenerate symplectic form (-, -): A x A — Z. Let Sp(A) be
the symplectic group of A, namely the group of isomorphisms A — A preserving
the symplectic form. For a natural number N we write Sp(A, N) for the kernel
of the reduction map Sp(A) — GL(A/NA). A subgroup I' of Sp(A) is called a
congruence subgroup if it contains Sp(A, N) for some level N. When g > 2, every
finite-index subgroup of Sp(A) is a congruence subgroup [Mennicke 1965; Bass
et al. 1964].
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Let
LGy ={[V]1eG(g, Ac) | (-, )lv =0}

be the Lagrangian Grassmannian parametrizing g-dimensional (= maximal) isotropic
C-subspaces of Ac. The Hermitian symmetric domain attached to A is defined as
the open locus Dy C LG, of those [V] such that the Hermitian form i (-, )|y on
V is positive definite.

Rational boundary components of D, correspond to isotropic Q-subspaces /
of Ag. To each such I we associate the locus D; C LG, of those [V] which
contains / and for which i(-,~)|y is positive semidefinite with kernel Ic. If
we consider the rational symplectic space Ag = 1 L+/1I, then Dy is canonically
isomorphic to the Hermitian symmetric domain D, attached to A, by mapping
[V]1eD;to[V/Ic] € Dy. The union

DX =Dy U |_| D,
ICAq

is equipped with the Satake topology [Baily and Borel 1966; Borel and Ji 2005;
Hulek et al. 1993]. By [Baily and Borel 1966], the quotient space Xr = I"'\D} has
the structure of a normal projective variety and contains ['\D, as a Zariski open set.

Theorem 1.2 is proved by induction on g. The case g = 1 follows from the
Manin—Drinfeld theorem. Let g > 2. Assume that the theorem is proved for every
congruence subgroup of Sp(A’) for every symplectic lattice A" of rank < 2g. We
then prove the theorem for I' < Sp(A) with A rank 2g.

Let I} # I, be two isotropic Q@-subspaces of Ag of the same dimension, say g,
and Z, Z, C Xr the corresponding cusps. If we write g’ = g — ¢, then Z; has
dimension k = g”(g"” + 1)/2. We consider the following three cases separately:

(1) Nl #{0};
(2) the pairing between /| and I, is perfect;
(3) I; NI, = {0} but the pairing between /1 and I, is not perfect.

The case (1) is studied in Section 3A, where Z; and Z; are joined by a modular
variety in the boundary. The case (2) is studied in Section 3B, where Z; and Z,
are joined by a product of two modular varieties (when g’ = 1) or by a chain of
boundary modular varieties (when g’ > 1). The remaining case (3) is considered
in Section 3C, where we combine the results of (1) and (2).

3A. The case I1 NI, #{0}. Assume that [;N 1, #{0}. Let I = I, N I,. In this case
Dy,, Dy, are in the boundary of D;. We set Ag = I+/1, Ii=1/1,and I =1/I.
Then I{, I are isotropic subspaces of Ag,. The isomorphism D; — Dy extends to
Dy — D, and maps Dy, to D 1 The stabilizer of / in I" acts on Af naturally. Let
I'; < Sp(Ag) be its image in Sp(Ag). By a similar argument as Claim 2.1, T'; is a
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*

congruence subgroup of Sp(A’) for some lattice A’ C Ag,. If we put X; =T'/\Dj,,
we have a generically injective morphism f : X; — Xr onto the /-cusp.

Let Z|, Z, C X; be the cusps of X; corresponding to I{,I; C Ag, respec-
tively. By the induction hypothesis, we have Q[Z]] = Q[Z}] in CH;(X)q. Since
f(Z}) = Z;, applying f, gives Q[Z;] = Q[Z>] in CHy(XT)q.

3B. The case (11, I) perfect. Next we consider the case where the pairing be-
tween I; and I, is perfect. We distinguish the cases g’ > 1 and ¢’ =1 (i.e., top
dimensional cusps).

3B1. The case g’ > 1. Firstlet g’ > 1. We can choose a proper subspace J; # {0}
of I;. We put J, = ]lL N1 and Is = J; @ J>. Then I is isotropic of dimension g'.
By construction we have 11 N Iz # {0} and 13N I, # {0}. Therefore we can apply the
result of Section 3A to 1 vs. I3 and to I3 vs. Ir. If Z3 is the cusp of X associated
to I3, this gives Q[Z] = Q[Z3] = Q[Z;] in CHx(XT)q-

3B2. The case g’ =1. Nextlet g’ = 1. We set Ay = I} @ I, which is a nondegen-
erate symplectic space of dimension 2. Then Af, := (Ag;D)L is also nondegenerate
of dimension 2¢ —2 and we have Ag = Ag L Ag). Let Dy, Dpr be the Hermitian
symmetric domains attached to A, A¢,, respectively. We have the embedding of

domains
Dp X Dpr = Dy, V., V= VeaeVv. (3.1)

This is compatible with the embedding of groups
Sp(AQ) x Sp(Ag) = Sp(Aq), .y vey (3.2)

The isotropic lines 11, I> in Ag, correspond to the respective rational boundary
points [(I1)c], [(12)c] of Dpr > H. Then (3.1) extends to D}, x D}, < D} and
maps [(1;)c] X Da» to Dy,.

We take some full lattices A’ C Ag, and A” C Ag). By the same argument as
(2.2), we can find a level N such that (3.2) maps Sp(A’, N) x Sp(A”, N) into I.
If we put X' = Sp(A’, N)\D}, and X" = Sp(A”, N)\D},, we thus obtain a finite
morphism f : X’ x X” — Xr. Let py, py be the cusps of the modular curve X’
corresponding to I, I, C Ap, respectively. If we set

Zl=pixX"cX x X",

the above consideration shows that f (Zlf )y=1Z;.

We have [p1] = [p2] in CHy(X")g by the Manin—Drinfeld theorem. Taking the
pullback by X’ x X" — X', we obtain [Z]] =[Z}] in CHx (X' x X")q. Then, taking
the pushforward by f, we obtain Q[Z;] = Q[Z;] in CHx(XT)q.
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3C. The remaining case. Finally we consider the remaining case, namely that
I) N I, = {0} but the pairing between I and I is not perfect. Let J; C I} and
Jo C I, be the kernels of the pairing between I; and I,. We choose splittings
L =J1®K;and I, = J, ® K>. Then dim J; = dim J, and the pairing between K
and K, is perfect. (We may have K; = {0}. This is the case, e.g., when g’ = 1.)
We set Ay = K1 @ K> and Af, = (Ab)l, which are nondegenerate subspaces of
Ag with Ag = Ay L A{). By definition J; and J; are isotropic subspaces of A
with J; N Jy = {0} and (J1, J2) = 0. We can take another isotropic subspace Jy of
A&o of the same dimension as Ji, J, such that the pairings (Jo, J1) and (Jyo, J») are
perfect. We set Iz = Jo @ K, and Iy = Jo @ K. Then I3, 14 are isotropic subspaces
of Ag of the same dimension as I, I;. By construction the pairings (/1, I3) and
(I, 14) are perfect, and we have I3 N 14 # {0}. Then we can apply the result of
Section 3B to I; vs. I3 and to I, vs. 14, and when K; # {0} the result of Section 3A
to I3 vs. Iy. (When K; = {0}, so that I3 = I, the latter process is skipped.) If
Z3, Z4 are the cusps of Xt associated to I3, 14, respectively, this shows that

Q[Z1] = Q[Z3] = Q[Z4] = Q[ Z]
in CHy (X1)q. This completes the proof of Theorem 1.2.

Remark 3.3. Summing up the argument in the case g’ > 1, we see that if Z; and
Z, are not top dimensional, we can obtain their rational equivalence through a
chain of higher dimensional cusps of length < 5.

4. The unitary case

In this section we prove Theorem 1.3. We first recall modular varieties of unitary
type; see [Holzapfel 1998; Looijenga 2016]. Let K = Q(+/—D) be an imaginary
quadratic field with R = Ok its ring of integers (or more generally an order in K).
By a Hermitian lattice over R we mean a finitely generated torsion-free R-module
A equipped with a nondegenerate Hermitian form (-,-) : A x A — R. We let
Ag =A®p K and A¢c = A ®g C, which are Hermitian spaces over K, C, respec-
tively, and in which A is naturally embedded. We may assume without loss of
generality that the signature (p, q) of A satisfies p <gq.

Let U(A) be the unitary group of A, namely the group of R-linear isomorphisms
A — A preserving the Hermitian form. This is the same as K-linear isomorphisms
Ak — Ak preserving the lattice A and the Hermitian form. We write SU(A) for
the subgroup of U(A) of determinant 1. For a natural number N we write U(A, N)
for the kernel of the reduction map U(A) — GL(A/NA). A subgroup I' of U(A)
is called a congruence subgroup if it contains U(A, N) for some level N.

Let Gy = G(p, Ac) be the Grassmannian parametrizing p-dimensional C-linear
subspaces of Ac. The Hermitian symmetric domain D, attached to A is defined
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as the open locus

Dpy={lVIeGal(-,)lv >0}
of subspaces V to which restriction of the Hermitian form is positive definite.
When p =0, this is one point; when p =1, this is a ball in PA¢ >~ P9.

Rational boundary components of D, correspond to isotropic K-subspaces 1
of A k. For each such I we associate the locus D; C G 5 of those V which contain
I and for which (-, -)|y is positive semidefinite with kernel I¢. If we consider
A =1 L /1, this is a nondegenerate K-Hermitian space of signature (p —r, g —r),
where r = dimg /, and D; is naturally isomorphic to the Hermitian symmetric
domain D, attached to A, by sending [V'] € D; to [V /Ic]. The union

Di=Dyu| | Dy
ICAk
is equipped with the Satake topology [Baily and Borel 1966; Borel and Ji 2005].
By [Baily and Borel 1966], the quotient space X = I'\D, has the structure of a
normal projective variety and contains I'\Dp as a Zariski open set.

The proof of Theorem 1.3 proceeds by induction on g. The case ¢ = 1 is the
Manin-Drinfeld theorem; we explain this in Section 4A. The inductive argument
is done in Section 4B. Since this is similar to the symplectic case, we will be brief
in Section 4B.

4A. The case q =1. Letg =1. Thenr = p =g =1, so Ak is the (unique) K-
Hermitian space of signature (1, 1) containing an isotropic vector, and D, is the
unit disc in PA¢ >~ P'. The group SU(Ag) is naturally isomorphic to SL,(@), and
' NSU(A) is mapped to a conjugate of a congruence subgroup of SL;(Z) under
this isomorphism. This is a classical fact, but since we could not find a suitable
reference for the second assertion, we give below a self-contained account for the
reader’s convenience. Theorem 1.3 in the case ¢ = 1 then follows from the Manin—
Drinfeld theorem, because we have a natural finite morphism from Xrnsy(a) to Xr.

We embed K = Q(+/—D) into the matrix algebra M,(Q) by sending /—D to
Jp = ((1) _g). Left multiplication by Jp makes M;,(Q) a 2-dimensional K-linear
space. We have a K-Hermitian form on M,(Q) defined by

(A, B) = tr(AB") +~—D ' t(JpAB®). A, B < My(Q),

where for B = (‘;Z) we write B* = (7‘1 _Z) We denote Ag = M>(Q) when

C
we want to stress this K-Hermitian structure. Then Ak has signature (1, 1) and
contains an isotropic vector, e.g., ((1) 8). Right multiplication by SL,(Q) on M»(Q)

is K-linear and preserves this Hermitian form. This defines a homomorphism
SLo(@) — SU(Ak) 4.1

which in fact is an isomorphism; see, e.g., [Shimura 1964, §2].
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Let A C Ak be a full R-lattice. We shall show that for every level N the image
of SU(A, N) =SU(Ag)NU(A, N) by (4.1) is conjugate to a congruence subgroup
of SL,(Z). Let

O={XeM@Q)|AX CA}.

This is an order in M>(Q); see [Maclachlan and Reid 2003, §2.2]. Then SU(A) =0,
where for any subset S of M,(Q) we write S' = SNSL,(Q). Take a maximal order
Omax of M>(Q) containing O. Since O is of finite index in Oy,x, there exists a
natural number Ny such that NgOnax C O. Therefore,

I +NNoOmax C I +NO C O C Opax.
Since (I + NO)! ¢ SU(A, N), this implies that
(I + NNoOmax)' € SU(A, N) c SU(A) c O

Since every maximal order of M, (Q) is conjugate to M,(Z), there exists g € GL,(Q)
such that

['(NNo) C Adg(SU(A, N)) C Ad,(SU(A)) C SLa(2).
This proves our claim.

4B. Inductive step. Let g > 2. Suppose that Theorem 1.3 is proved for all Hermit-
ian lattices of signature (p’, ¢’) with p’ < ¢’ < g. We then prove the theorem for
Hermitian lattices of signature (p, ¢) with p < ¢g. Since the argument is similar to
the symplectic case, we will just indicate the outline. Let I; 7~ I, be two isotropic
K-subspaces of Ak of the same dimension, say r, and Z;, Z» C X the associated
cusps. We make the following classification:

(D) LN #{0};
(2) the pairing between /1 and I, is perfect;

(3) I; NI, = {0} but the pairing between /; and I is not perfect.

(1) This is similar to Section 3A. In this case Z; and Z, are joined by the cusp
associated to 11 N I, to which we can apply the induction hypothesis.

(2) The case r = 1 is similar to Section 3B2. If we set A/K =1, &, and
Ay = (A/K)L, these are nondegenerate of signature (1,1) and (p — 1,q — 1),
respectively. Then Z; and Z; are joined by the embedding Dps x Dpr — Dp. We
can apply the Manin—Drinfeld theorem to D:.

The case r > 1 is similar to Section 3B1. We can interpolate Z; and Z; by a
third cusp by taking a proper subspace J; # {0} of I and setting I3 = J; @ (JlL Nh).
Then we can apply the result of case (1) to /; vs. I3 and to I3 vs. I5.
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(3) This is similar to Section 3C. We take splittings I} = J1 ® Ky and I, = J, & K>
such that (Jy, I2) =0, (J2, I1) =0 and (K, K») is perfect. We choose an isotropic
subspace Jo from (K| ®K»)* with (J1, Jo) and (J», Jo) perfect, and put I = Jo® K>
and Iy = Jo @ K. Then we apply case (2) to 7 vs. I3 and to 14 vs. I, and case (1)
to Iz vs. Iy when K; # {0}. This proves Theorem 1.3.

Remark 4.2. As in the symplectic case, we see that when Z;, Z, are not top di-
mensional, their rational equivalence can be obtained through a chain of higher
dimensional cusps of length < 5.

5. Modular units and higher Chow cycles

Let I', Dy, and Xr be as in the previous sections. As a consequence of Theo-
rems 1.1-1.3, we can associate to each pair of maximal cusps of X a nonzero
higher Chow cycle of the modular variety Yr = I'\D,. This gives a higher dimen-
sional analogue of modular units [Kubert and Lang 1981] from the viewpoint of
algebraic cycles.

Let Z| # Z, be two cusps of Xt of the same dimension, say k. By our result,
we have [Z] = «[Z;] in CHy(X1)g for some o # 0 € Q. On the other hand, we
can also view Zi, Z, as k-cycles on the boundary 0 Xr = Xr — Yr, which is an
equidimensional reduced closed subscheme of Xr-.

Lemma 5.1. When the cusps Z,, Z, are not top dimensional, [Z,] = «[Z,] holds
already in CHi (0 X1)q-.

Proof. When Z1, Z, are not top dimensional, the proofs of Theorems 1.1-1.3 and
Remarks 2.4, 3.3, and 4.2 show that we can connect Z; and Z; by a chain of higher
dimensional cusps. To be more precise, we have (congruence) modular varieties

X1, ..., Xy, their cusps Zl-+ ,Z; C X; of dimension k, and a finite morphism
fi : Xi = Xr onto a cusp of Xr, such that f;(Z;) = f,-+1(Zl.JfH) for each i and

fi (Zfr) =271, fn(Zy) = Z;. By induction on dimension, we have [Zi+] =w;[Z;]
in CHy (X;)q for some «; € (). Since f; factors through

X, —> 0Xr C Xr,
we have
[fi(ZD)] = £:(Z]))]
in CHy (3 Xr)q for some o € Q. It follows that

[Z1] = (]‘[a,f)[zz]

i

in CHk(aXr)@. U
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Consider the localization exact sequence of higher Chow groups [Bloch 1986;
1994] for the Baily—Borel compactification

Yr < Xp <> 9 Xr.

The first few terms of this sequence are written as

= CHi(Xr, g &> CH(Yr. g > CHi(9X1)a > CHi(Xr)g — - - .

where § is the connecting map. By Lemma 5.1, the QQ-linear subspace of CHi (0 Xr)g
generated by the k-dimensional cusps has dimension 1 if k is not the maximal
dimension of cusps. On the other hand, when k = dim d X, the k-dimensional
(= maximal) cusps are irreducible components of d X, so CHx (0 Xr)q is freely
generated over (D by those cusps. Let ¢ be the number of maximal cusps of Xr.
Since the image of i, : CHy(0Xr)g — CHi(Xr)g has dimension 1 by Theo-
rems 1.1-1.3, we find that

dimIm(§) = dim Ker(i,) = — 1.

Let us construct some explicit elements of CHy (Y1, 1)g whose images by § gener-
ate Im(8) = Ker(i).

Let Z; # Z;, be two maximal cusps of X, say of dimension k = dimdX. As
above, we have i,(Z; — aZ>) = 0 in CHy(X1)g for some o € Q. We construct
an element of CHg (Yr, 1)g whose image by § is Z| —aZ, in CHi (0 Xr)g. (Such
an element must be nonzero because Z| — o Z; is nonzero in CHy (0 X1)g.) Recall
from the proof of Theorems 1.1-1.3 that, in a basic case, we have a compactified
modular curve X' = X, its two cusps p1, p2 € X', a k-dimensional compactified
modular variety X" = X, and a finite morphism f : X’ x X” — Xr such that
f(pi x X"y = Z;. (In the orthogonal case X" is one point when k = 0 and a
modular curve when k = 1; in the symplectic case X” is a Siegel modular variety
of genus g — 1; in the unitary case X" is associated to a unitary group of signature
(p —1,q —1).) The general case is a chain of such basic cases. For simplicity we
assume that (Z1, Z,) is such a basic pair.

By the Manin-Drinfeld theorem for X’, there exists a modular function F on
X’ such that div(F) = B8(p1 — p») for some natural number 8. Let Y/ C X’ and
Y” C X” be the modular varieties before compactification. We can view F as an
element of O*(Y’) = CHy(Y’, 1). Then §(F) = 8(p1 — p») for the connecting map
8:CHp(Y’, 1) > CHo(dX’). Let : Y/ x Y” — Y’ be the projection and, by abuse of
notation, f : Y’ xY” — Yr be the restriction of f: X’ x X" — Xr. We can pullback
the higher Chow cycle F by the flat morphism 7 and then take its pushforward by
the finite morphism f. The result, f,7*F, is an element of CHy (YT, 1).

Proposition 5.2. We have Q8(fun*F) = Q(Z1 — aZ,) in CH (0 X1)g.
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Proof. We take a desingularization X — X" of X", and let ¥ C X" be the inverse
image of Y”. We have the commutative diagram
O*Y) —= L 0¥ x X)) —L—— 0* (Y’ x V)

~

CHo(Y/, 1)—>CHk(Y/><X” 1) s CHu(Y' x 77, 1) —F— CHL (1, 1)

| I

CHo(0X') —=— CHx(dX’ x )?”)%CHk(a(X/x}?”))LCHk(aXF)

*

The various § are the connecting maps of each localization sequence, 77: X'x X'>X'
the projection, (X" X XN=X'xX"—Y xY", j:Y xY" < Y'x X" the open
immersion, i : 9 X’ x X" <> (X' x X" the closed embedding, and fiX'x X" — Xr
the proper morphism induced from f. If we send @QF C CHy(Y’, 1)g through this
diagram to CHy(dXr)q, the image is Q(Z; — «Z;). The assertion follows by
noticing that f, j*7* = fym*. O

In this way, as a “lift” from the modular unit F', we obtain an explicit nonzero
element of CHy (YT, 1)g whose image by § is Z| —a Z;. If we run (Z1, Z;) over all
basic pairs of maximal cusps, we obtain a set of nonzero elements of CH (Y1, 1)g
whose image by § generate Im(§) = Ker(i,). In general, by this construction we
could obtain more than ¢t — 1 higher Chow cycles on Yr. This is because

(1) the choice of X’ x X” — Xr is not necessarily unique for the given pair
(Z1, Z»), and

(2) the number of basic pairs could be larger than ¢ — 1.

The point (1) amounts to the situation that two pairs (I, I2), (I, 12’) of isotropic
subspaces are not I'-equivalent as pairs, although /; is I'-equivalent to /{ and I,
is ['-equivalent to 1), respectively. A typical situation of (2) is that for three cusps
Z1, Zy, Z3, all pairs (Z1, Z3), (Z2, Z3), (Z3, Z1) are basic.

If the span V C CHy (YT, 1)g of all higher Chow cycles constructed in this way
has dimension > ¢, the kernel of § : V — CHy (0 Xr)g would then give rise to a
nontrivial subspace of CHy (X, 1)q.
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C,-equivariant stable homotopy
from real motivic stable homotopy

Mark Behrens and Jay Shah

We give a method for computing the C,-equivariant homotopy groups of the
Betti realization of a p-complete cellular motivic spectrum over R in terms of
its motivic homotopy groups. More generally, we show that Betti realization
presents the C»-equivariant p-complete stable homotopy category as a localiza-
tion of the p-complete cellular real motivic stable homotopy category.
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1. Introduction

Let SH(K) denote the co-category of motivic spectra over a field K [Morel and
Voevodsky 1999], whose equivalences are given by the stable A!-equivalences.
This co-category has a bigraded family of spheres
§h = 8" AG],
of topological degree i and motivic weight j. These lead to bigraded homotopy
groups
nf X =[S", X]k.
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A motivic spectrum is cellular if it is built from the spheres S/ using cofiber
sequences and filtered homotopy colimits. A map between cellular spectra is a
stable A'-equivalence if and only if it is a 7X_-isomorphism [Dugger and Isaksen

k%

2005]. We shall let SH¢e (K) denote the full subcategory of cellular spectra.

Complex and real Betti realization. 1f Z is a smooth scheme over C, then its C-
points, or Betti realization
Be(Z) := Z(0C),

form a topological space when endowed with the complex analytic topology. The
resulting Betti realization functor

Be : SH(C) — Sp

(where Sp denotes the oco-category of spectra) is called Betti realization [Morel and
Voevodsky 1999]. Since Be(S"/) = S, Betti realization induces a map

Be: JT,-%X — 1; Be(X).

This map was well studied by Dugger and Isaksen [2010] (at the prime 2) and
by Stahn [2016] (at odd primes). For a prime p, the p-complete motivic stable
stems have an element

T emy_ (570,

The following result is a direct corollary of the results of Dugger and Isaksen and
of Stahn (here, Be,(—) denotes p-completed Betti realization).

Theorem 1.1 (see Theorem 8.18). Let X € SH(C) be p-complete and cellular.
Then Betti realization induces an isomorphism of abelian groups

75 X[t 2> 7 Be,p(X),
and thus an equivalence of co-categories
Be, : SHeen(C) [z "1 = Sp).
In the real case, there is a real Betti realization functor
Ber : SH(R) — Sp

which arises from associating to a smooth scheme Z over R its topological space
of R-points Z(R), endowed with the real analytic topology. The inclusion

o {1} — G,

gives an element p € niRl 1 §%-0 which becomes an equivalence after real Betti
realization. Bachmann [2018] proved the following:
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Theorem 1.2 (see Theorem 8.10). For all X € SH(R), real Betti realization in-
duces an isomorphism of abelian groups

Beg : n[”?jX[,o_l] =5 m;_; Ber(X),

U an equivalence of co-categories

SH(R)[p~'] => Sp.

and moreover

Statement of results. The results discussed above demonstrate that the homotopy
groups of the complex and real Betti realizations of a cellular motivic spectrum
can be obtained by localizing its motivic homotopy groups, and each of these Betti
realization functors is a localization.

The purpose of this paper is to prove a similar result about the Cy-Betti realiza-

tion functor
Be®? : SH(R) — Sp°2.

Here, Sp®? denotes the co-category of genuine C,-spectra. This functor arises from
associating to a smooth scheme Z over R the C,-topological space Z(C), with the
C»-action given by complex conjugation.
For Y € Sp®2, the RO (C,)-graded equivariant homotopy groups are bigraded
by setting
ni,cjz'Y = [§E—DHio y1C,

where o is the sign representation. In G-equivariant homotopy theory, one takes the
stable equivalences to be the 7/ -isomorphisms, where 77 denotes the Z-graded
H -equivariant homotopy groups, and H ranges over the subgroups of G. However,
in the case of G = C,, a map in Sp®? is a stable equivalence if and only if it is a ng -
isomorphism (see the discussion following (6.1)). The C,-equivariant homotopy
groups of Y can be effectively analyzed from the homotopy pullback (isotropy
separation square) [Greenlees and May 1995]

Yy ——Y?
l l (1.3)
Yh——y!
where?
Y= F((E C>)+,Y) (homotopy completion),
Y®:=YA E\C/‘g (geometric localization),
Y=Y h )q’ (equivariant Tate spectrum).

IBachmann’s methods do not rely upon cellularity hypotheses.
2The terminology here comes from the fact that the fixed points YhC2 y®C2 and yC2 are the
homotopy fixed points, geometric fixed points, and Tate spectrum of Y, respectively.
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We let Sp"C? denote the full subcategory of Sp©? consisting of homotopically com-
plete spectra, and let Sp®<? denote the full subcategory consisting of geometrically
local spectra. The C,-geometric fixed points functor gives an equivalence of oco-
categories Sp®? ~ Sp.

Bachmann’s theorem (Theorem 1.2) effectively describes the homotopy theory
of the geometric localization of C,-Betti realization Becz(—)(b. This is because

(1) for all X € SH(R), we have

Beg(X) = Be©2(X)®¢,

. . . . . . . o C Cs 0,0.
(2) geometric localization is given by inverting a :=Be™*(p) e 7] | S

Y®~vla . (1.4)
Thus, Bachmann’s theorem (Theorem 1.2) can be restated in the following way.

Theorem 1.5 (see Theorem 8.24). For all X € SH(R), C,-Betti realization induces
an isomorphism

~

nE*X[pfl] = nfi Be©2(X)?,
and an equivalence
Be®2 : SH(R)[p~ '] => SpPc2.

We are thus left to describe the homotopy theory of the homotopy completion
of the C,-Betti realization.
We first note that a map
f . Y] — Y2

in Sp“? is an equivalence if and only if the underlying map
eyl —=Y
of spectra is a nonequivariant equivalence. We therefore first study Be?(—)¢. Con-

sider the diagram of adjoint functors

Be©2
SH(R) ———— Sp©?

Sing©2
f*‘JQ Resec2 l)[lndfz (1.6)
B

SH(C) <:e> Sp
Sing

where (¢*, ¢,) are the base change functors associated to the morphism

¢ : Spec(C) — Spec(R)
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and (ReseCZ, Indecz) are the change of group functors associated to the inclusion
e — Cz.

We will prove the following theorem, which has also been independently obtained
by Isaksen, Kong, Wang, and Xu.

Theorem 1.7 (see Corollary 8.2). Under the equivalence
0" 80 ~ X2 Spec(C)
the adjunction (¢*, £,) induces an equivalence
SH(C) ~ Modsyr) (25° Spec(C)).

Let Cp € SH(R) denote the cofiber of p € niRl’_lSO’O. Since ¢*(p) is null in

nfl _lSO’O, there is a map

C(p) — X5° Spec(C) (1.8)

E*—isomorphism after p-completion (Proposition 8.3). The

real motivic spectrum X3° Spec(C) is not cellular (Remark 8.4), so Cp may be re-
garded as its p-complete cellular approximation. We deduce the following (which
was also independently observed by Isaksen, Kong, Wang, and Xu):

which we show is a

Corollary 1.9 (see Corollary 8.6). The adjunction (£*, ¢,) and equivalence (1.8)
induces an equivalence

SHeen(€)}, = Modsp,, ), (C(0)).
In particular, for X € SHCCU(R)Q there is an isomorphism
7E (X)) Z xR (X A Cp).
Combining Corollary 1.9 with Theorem 1.1, we deduce that for X € SHceu(lR)IA,,
=C ~ _
mi(Be, (X)) Z /(X A Cplr™']).
In particular, 7 exists as a self map
7:2%7'C(p)) = C(p)).
Let C(p") denote the cofiber of p’ € niRi’_iSO’O. We will prove:

Theorem 1.10 (see Theorem 7.10 and Proposition 7.11). For each i > 1, there
exists a j so that C(,Oi);)\ has a v/ -self map

o/ 1 2P, = Cloh)y.
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Our proof of the existence of these 7-self maps at the prime 2 relies on first prov-
ing the existence of their C,-Betti realizations, and then using a theorem of Dugger
and Isaksen [2017b] to lift the self maps to the real motivic category. Because this
approach involves some analysis of the C,-equivariant stable stems, it may be of
independent interest.

We shall let C (pi)g[t_l] denote the telescope of this 7/ -self map. Define, for
X € SH(R)},?

X = ho}im XAC(PHIT.

Our main theorem is the following:

Theorem 1.11 (see Corollary 8.21 and Theorem 8.26). For X € SHcell([R{)
p-completed C;-Betti realization functor Be induces an isomorphism

T X 1S3 Be 2(X)"
and the right adjoint

Cell Sing® : (Sp"®), > SHeen(R)’)

of p-complete, homotopy complete C,-Betti realization is fully faithful.

Thus, Theorems 1.5 and 1. 11 combine to express the RO(C,)-graded equivari-
ant homotopy groups of Be 2(X)® and Be >(X)" in terms of the real motivic
homotopy groups of X By the isotropy separatlon square (1.3), we just need to
be able to compute 7, Bec (X)' (and the maps on homotopy groups) to recover
n* % Be (X), but thls is easﬂy accomplished by combining Theorem 8.26 with
(1.3) to deduce (for X cellular and p-complete) an 1som0rph1sm

AC ~ —_— —
72 Be, (X) =af X r e~

Finally, we will show that the isotropy separation square (1.3) implies that
Theorems 1.5 and 1.11 combine to show that p-complete C;-equivariant stable
homotopy is a localization of real motivic cellular stable homotopy.

Theorem 1.12 (see Theorem 8.22). The right adjoint to p-complete cellular C,-
Betti realization
Cell Sing® : (Sp©))) — SHeen(R)))

is fully faithful.
We will apply our techniques to compute 71* Be2 X from 71 X, for X equal to

3For p odd, it turns out that 1ndependently of i, one can take j = 2 in Theorem 1.10 (see
Proposition 7.11). Consequently, X5 A has a 72-self map, and the spectrum X, Az~ can be simply
taken to be the telescope of this 72 self map on X, A,

4For p odd, the situation is much simpler, as thls Tate spectrum is contractible since 2 = |C5| is
invertible.
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(1) (HF;)R, the real motivic mod 2 Eilenberg—MacLane spectrum, with
Bey' (HF)r ~ HE,,

the C»-equivariant Eilenberg—MacLane spectrum associated to the constant
Mackey functor [,

(2) (HZ%)w, the real motivic 2-adic Eilenberg-MacLane spectrum, with
Bes’(HZ))p ~ HZ,

the C;-equivariant Eilenberg—MacLane spectrum associated to the constant
Mackey functor 77,

(3) kgl}, the 2-complete effective cover of the real motivic K -theory spectrum
KGL, with
Bes? kgl) ~kR),

the 2-complete connective Real K -theory spectrum.

In the case of (H[F;)r, the homotopy groups of the C,-Betti realization differ from
the motivic homotopy groups of the original spectrum through the addition of a
notorious “negative cone” (see, e.g., [Dugger and Isaksen 2017b, Figure 1]). From
the perspective of the mod 2 Adams spectral sequence, the presence of this “neg-
ative cone” makes the equivariant homotopy of the Betti realizations of the other
examples similarly more complicated than the motivic homotopy of the original
spectra. Our theory organically predicts the presence of the negative cone through
a mechanism of local duality such as that studied in [Barthel et al. 2018], and thus
gives a more direct route to these equivariant computations by starting with the
simpler motivic analogs. This connection with local duality deserves further study.

Relationship to the work of Heller and Ormsby. Heller and Ormsby [2016; 2018]
also study the relationship between real motivic and C;-equivariant spectra (and
their results extend to other real closed fields), but their analysis centers around the
adjoint pair

ch: Sp© 2 SH(R) : (cr)«

where cp; is the equivariant generalization of the constant functor (Definition 8.11).

Namely, Heller and Ormsby show that Sp®? is a colocalization of SH(R) by
showing that cf; is fully faithful. Their results allow them to compute, for X € Sp©?
integer graded motivic homotopy groups of ¢ X in terms of the integer graded
equivariant homotopy groups of X.

Our results, by contrast, show that C,-Betti realization exhibits (SpCz)A as a
localization of SHceu([RE)A and this allows us to compute for X € SHceu([R{)
equivariant RO (C»)- graded homotopy groups of Be €2 (X) in terms of the blgraded
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motivic homotopy groups of X. Nevertheless, we use the functor ¢y, to prove our
localization theorem.

Organization of the paper. The first four sections of this paper are formal. In
Section 2, we recall some facts concerning limits of presentable oco-categories.
In Section 3, we study both Bousfield localizations of symmetric monoidal oco-
categories and their relation to completion, and we discuss the interaction of these
localizations with a monoidal Barr—Beck theorem of Mathew, Naumann, and Noel
[Mathew et al. 2017]. In Section 4, we summarize some facts regarding cellu-
larization in the co-categorical context, and the interaction of cellularization with
localization and symmetric monoidal structures.

In Section 5, we recall the notion of a recollement of co-categories, which is a
formalism for decomposing an co-category using two complementary localizations.
We show that to prove an adjunction between two recollements is a localization, it
suffices to check fully faithfulness on the constituents of the recollements.

In Section 6, we turn to the case of interest and recall some facts about motivic
and equivariant homotopy theory that we will need later.

In Section 7, we show that James periodicity in the 2-primary equivariant stable
stems results from the existence of u-self maps on C(a")g, where a is the Euler
class of the sign representation. We then use an isomorphism theorem of Dugger
and Isaksen [2017b] to lift these u-self maps to t-self maps on C (p")g. For an
odd prime p, we explain how the work of Stahn [2016] implies that every (p, p)-
complete R-motivic spectrum has a 72-self map.

Section 8 contains all of our main theorems, and their proofs, concerning the
localizations induced by Betti realization.

Section 9 contains examples, where we take various real motivic spectra, and
use our theory to compute the 2-primary RO (C3)-graded C;-equivariant homotopy
groups of their Betti realizations from their 2-primary motivic homotopy groups.
We also explain how to do these kinds of computations at an odd prime, where the
story is much simpler.

2. Limits of presentable co-categories

We collect some necessary facts about limits in the co-category Pr’ of presentable
oo-categories.
Suppose €, : J — Prl is a diagram and let

K= (6 —J

be the presentable fibration [Lurie 2009, Definition 5.5.3.2] classified by €¢,. By
[Lurie 2009, Proposition 5.5.3.13, Corollary 3.3.3.2], we have an equivalence

€ :=1im 6, > Sect(¥) := Funj5™"(J, %)
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between the limit 6 of 6, and the oo-category of cocartesian sections of ¥. Let &
be another presentable co-category and suppose that we have an extension

@,:J< — Prt

with the cone point sent to 9. Then we have an induced adjunction

F:9%92>%:R.

Let

% — J9

be the presentable fibration classified by %,. In terms of the description of C as
Sect(X), we may describe F and R more explicitly as follows:

D

2

The functor
F:% ~1lim%, — € ~lim,

is given by the contravariant functoriality of limits for the inclusion J C J<.
Thus, under the equivalences Sect(¥) >~ % and Sect(¥) ~ €, the functor F :
9% — 6 corresponds to the functor

F : Sect(¥) — Sect(¥X)

given by restriction of cocartesian sections. In particular, an object x € &
corresponds to the cocartesian section

g:J9—>%
determined up to contractible choice by o (v) = x for v the cone point, and
then F(x) =ao|y.
Let
P XCE—> X =D
be the cartesian pushforward to the fiber over the initial object v € J<. Then
for any object o € € viewed as a cocartesian section of & and x € 9, we have
the sequence of equivalences
Mapg, (x, lim po) >~ lim Mapg (x, po (—))
>~ lim Mapg_ (F.x,0(—))
~ Mapy(Fx,0),

so there is an equivalence R(o) =~ lim po.
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3. Localization of symmetric monoidal oo-categories
with respect to a commutative algebra

Let €, 9 be presentable stable symmetric monoidal co-categories, where we by
default assume that the tensor product commutes with colimits separately in each
variable.

Adjunctions and limits. We say that an adjunction
F:¢2%:R

is monoidal if F is (strong) symmetric monoidal, in which case R is lax monoidal.
Given a diagram of commutative algebras in 6

p: L — CAIg(6),
we have a canonical monoidal adjunction in Pr®
¢: MOd(@(li{Il )= liI{nModcg(p(—)) . (3.1)

Let R =limy p. For X € Mod¢(R), the unit map 1 : X — ¥ ¢ X may be identified
with the canonical map
X — 1ir£1X®R p(@i)
AS]

in view of the material in Section 2.
Moreover, for any functor f : K — L, by functoriality of limits we have a
commutative diagram in Prt

Mod¢ (lim;, p) LN lim;, Mod¢ (p(—))

| |

Mode (limg pf) —— limg Mode(pf (—))

Bousfield localization. Recall [Lurie 2009, Definition 5.2.7.2] that a localization
of an co-category ¥ is an adjunction

L:X2%y:R

where the right adjoint R is fully faithful. The left adjoint L is the localization
functor.

When & = € is our presentable stable symmetric monoidal co-category, we
will be concerned with the special case of Bousfield localization with respect to an
object E € 6. We briefly recall this notion to fix terminology.

A map

X—>Y
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in € is an E-equivalence if
EQRX—->EQRQY

is an equivalence. An object X € € is E-null if
X®E~0.

An object X € € is E-local if for every E-equivalence
f:Y—>Z

the map
f*:Home(Z, X) — Homg (Y, X)

is an equivalence, i.e., for every E-null object W,
Home (W, X) >~ 0.

Let € C € denote the full subcategory consisting of the E-local objects. Then € g
is again a presentable stable co-category and we have the localization adjunction

L E: 9 <__> 9 E . i E-
With the tensor product on € defined by Lg(—® —), € is a symmetric monoidal
oo-category and L g —1ig is a monoidal adjunction.
Example 3.2. Suppose E = C(x) is the cofiber of a map
x:I—1

for 1 € € the unit. Then we also write 67 for €z and call this co-category the
x-completion of €.

Derived completion. If we further suppose that E is a dualizable E,-algebra A €
CAlg(€), then Bousfield localization can be computed as the A-completion. Specif-
ically, we have the following:

(1) Let C*(A) be the Amitsur complex on A [Mathew et al. 2017, Construction
2.7]. By [Mathew et al. 2017, Proposition 2.21], for any X € € we have an
equivalence

LA(X)~Tot(X ® C*(A)) =~ linAl(X ® A®T1),
ne
(2) By [Mathew et al. 2017, Theorem 2.30],’ this equivalence of objects promotes
to an equivalence of symmetric monoidal co-categories
€4 >~ TotMod¢ (C*(A)) =~ 1irrAl Mode (A®" 1Y,
ne

5Note that even though [Mathew et al. 2017, Hypotheses 2.26] are otherwise in effect in that
section of the paper, the proof of [Mathew et al. 2017, Theorem 2.30] only uses that A € CAlg(%) is
dualizable.
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Let I denote the fiber of the unit

IS5 1A

and define
C (") :=cofib((" : I®" — 1).

Then there is an equivalence [Mathew et al. 2017, Proposition 2.14]
C (") = Tot, (C*(A)).

Note that because the cosimplicial object C*(A) in ¢ canonically lifts to a cosim-
plicial object in CAlg(€), the cofiber C (:") obtains the structure of an E,-algebra
as a limit and the maps

ol (i B ol (1))

are maps of F-algebras.

The completion tower. For our dualizable E.-algebra A, we wish to reexpress the
above descent description of €4 in terms of an inverse limit over the co-categories
Mod¢ (C((")).

By (3.1), for all n we have canonical monoidal adjunctions

@n: Mode(C(1")) 2 Tot,—1 Modg(C*(A)) : Yy

where the left adjoints ¢, are compatible with restriction along A—, C A-,,. Pas-
sage to the limit then yields the monoidal adjunction

®oo: limModg(C (")) 2 TotModg(C*(A)) : Vo,

where ¢oo{X,} = {¢, X,}. By the universal property of the limit, and using that
C(/)-modules are A-local, we also have the monoidal adjunctions

¢: €4 = limMod¢(C (")) : ¥,
¢’ €4 = Tot Modg (C*(A)) : ¢/,

where the second adjunction is the adjoint equivalence of [Mathew et al. 2017,
Theorem 2.30]. These adjunctions fit into a commutative diagram
¢/
N mm(}d@ (C*(A)).

Proposition 3.3. Both ¢ 4 ¢ and ¢poo 1 Yoo are adjoint equivalences of symmetric
monoidal co-categories.

Proof. 1t suffices to prove the first statement. We need to show that
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(1) the unit id — ¢ is an equivalence,

(2) v is conservative.

For (1), given any A-local object X, the unit map
X—> ¢YdpX ~2limXQC(") ~Tot X  C*(A)

is already known to be an equivalence. For (2), we first note that ¢, is fully faithful,
i.e., the unit map id — ¥, ¢, is an equivalence. Indeed, for any finite co-category K
and functor p : K — CAlg(%), if R =limg p and X € Mod¢(R), then there is an
equivalence

X =lim X @ p(-).

Now suppose that {X,,} is a object in lim Mod« (C(¢"*)) such that
v{X,}=limX, ~0.

Note that since ¢poo{X,} = {¢» X}, for the cosimplicial object ¢, X, we have that
Tot, (9. X.) = VY Xy = Xy, 8O

VU (ool X)) = Tot ¢, X, =~ lim Tot,, (¢, X,) ~ lim X,, >~ 0.
n n
Therefore, because ¥’ is an equivalence, ¢poo{X,} =~ 0. This means that for all n,
¢n X, ~0,s50 X, =Y, X, ~0and {X,} ~0. U

Remark 3.4. We have a commutative diagram of right adjoints

lim Mody(C (")) +— Tot Modi(C*(4))

| |

Fun(ZZ, €) +———— Fun(A, €)

where DK is the functor that sends a cosimplicial object to its tower of partial
totalizations. DK implements the equivalence of the co-categorical Dold—Kan cor-
respondence [Lurie 2017, Theorem 1.2.4.1]. We may thus interpret Proposition 3.3
as a monoidal refinement of the Dold—Kan correspondence, with ¢, providing an
explicit inverse.

We also record a useful corollary of the proof of Proposition 3.3. This result is
a companion to the fact that

—®A: %64 — Modg(A)

1s conservative.
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Lemma 3.5. For every n, the base change functor
Mod¢ (C (")) — Mod¢ (C (1)) = Mod¢(A)
is conservative.

Proof. We showed that the functor ¢, is fully faithful, and the restriction functor
Tot,,—1 Mod¢(C*(A)) — Modg(A)
is clearly conservative. ([

The monoidal Barr-Beck theorem. Throughout, let
F:42%:R

be a monoidal adjunction between our presentable symmetric monoidal stable co-
categories ¢ and 9. We recall the monoidal Barr—-Beck theorem of [Mathew et al.
2017], which will be a key technical device to many of the formal results of this

paper.
Theorem 3.6 [Mathew et al. 2017, Theorem 5.29]. Suppose that F - R satisfies
the following conditions:

(1) R is conservative,
(2) R preserves colimits,

(3) (F, R) satisfies the projection formula: the natural map
R(X)®Y - R(X® F(Y))
is an equivalence for all X € D and Y € €.
Then there is an equivalence
% >~ Modg(R(1g))
and F — R is equivalent to the free-forgetful adjunction.

We may descend Theorem 3.6 to subcategories of local objects.

Lemma 3.7. Let € and 9 be presentable symmetric monoidal stable co-categories,
let
F:€2%:R

be a monoidal adjunction, let E € € be any object, and let E' = F (E). Then the
adjunction F - R induces a monoidal adjunction

F/Z (61; <__>QZ§E/ ZR/

between the oo-categories of E-local and E’-local objects. Moreover:
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(1) If R is conservative, then R’ is conservative.

(2) Suppose that (F, R) satisfies the projection formula. Then there is an equiva-
lence

LgR >~ R/LE/

and (F', R') satisfies the projection formula. Moreover, if R in addition pre-
serves colimits, then R’ preserves colimits.

Therefore, we have
Mod¢ (R(1g)) g =~ Mode, (LER(1g))
and F' — R’ is the free-forgetful adjunction.

Proof. Because the functor F is strong monoidal, F sends E-equivalences to E’-
equivalences. Therefore, if X is E’-local, then R(X) is E-local, so we may define

R :%p — €
to be the restriction of R. We may then define
F 1 6p — Dp
by F’':= Lg/F to obtain the induced monoidal adjunction
F':%r 2 9 :R.

For (1), if R is conservative, then because i R’ = Rig/, R’ is conservative. For
(2), if (F, R) satisfies the projection formula, then we have that for any E’-null
object X,

RX)QE~R(X®E')~0,
so R sends E’-equivalences to E-equivalences. Therefore, we have Lg R >~ R'L .

To see that (F’, R’) satisfies the projection formula, we use the sequence of equiv-

alences
R'(X®g, F'(Y))~ R (Lp(ipX ®g F(Y)))

~LER(ip X ®g F(Y))
~Lp(R(ipX)®¢Y)
~R'X ®¢, Y.

Now suppose that R preserves colimits. To see that R’ preserves colimits, suppose

being given a diagram X, : / — 9. Then we have

colim X, >~ Lg colimig X.,
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and we have the sequence of equivalences

R'(colim X,) >~ R'L g colimig X,
~ LgRcolimig X,
~colim LgRig X,
~colimR LgigX,
~ colimR'X,.
Finally, the last statement is a consequence of Theorem 3.6. (]

Example 3.8. In Lemma 3.7, let E = C(x) for x as in Example 3.2. Then we see
that

Mod¢(R(1g)); >~ Modegn (R(13)7).
We also note a similar result when passing to module categories.
Lemma 3.9. Let A € CAlg(6) and A’ = F(A), and let

F’: Mod¢(A) 2 Modg (A" : R’

denote the induced monoidal adjunction. Then:

(1) If R is conservative, then R’ is conservative.
2) If R preserves colimits, then R’ preserves colimits.
p p

(3) If R preserves colimits and (F, R) satisfies the projection formula, then (F', R")
satisfies the projection formula.

Proof. Because F' and R’ are computed by F and R after forgetting the module
structure, the first two results are clear. For the projection formula, under our
assumptions the natural map

RM @4 N — R(M s FN)
is equivalent to the geometric realization of the map of simplicial diagrams
RMQ@A®* QN — R(M®(A)®** ® FN),
which is an equivalence in view of the projection formula for (F, R). (]
Lifting localizations. For A € CAlg(‘¢) dualizable and

C("t") = Tot, C*(A)
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as before, let A’ = F(A) and j = F (1), so that F(C (/")) >~ C(j"). We have induced
monoidal adjunctions

Fy: Mod¢(C(:")) 2 Modg (C(j") : Ry,
FOOZ CGA <_—)9DA’ ZROO.

We end this section with a result that allows us to lift the property of R; being
fully faithful to R, and R.

Proposition 3.10. Suppose that R preserves colimits, (F, R) satisfies the projec-
tion formula, and Ry is fully faithful. Then Ry, is fully faithful for all 1 <n < oo.

Proof. First suppose n < oo and let X € Modg (C(j")). We need to prove that
the counit € is an equivalence. Because the base change functor — ®cj» A’ is
conservative by Lemma 3.5, it suffices to show that €}, ®c;» A’ is an equivalence.
But by the projection formula for (F},, R,) established in Lemma 3.9, this map is
equivalent to the counit ef‘X®C}_n - Because X ®cjn A” is an A’-module, ef‘X®Cjn A
is lifted by the counit 6(1X®Cjn Ay which is an equivalence by assumption. The proof

for the case n = oo is similar, where we instead use that
—®A Dy — Modg(A))

is conservative and the projection formula for (F, Rs) by Lemma 3.7. O

4. Cellularization

In this section, we collect a few technical lemmas that will be applied to study
the oo-category SHee(S) of cellular motivic spectra. To begin with, we have
the following variant of [Mathew et al. 2017, Proposition 2.27] (with the same
conclusion), where we do not assume that E is an algebra object of 6.

Lemma 4.1. Suppose € is a presentable symmetric monoidal stable oo-category
and E is a dualizable object in €.

(1) For any object X € 6, E¥Y ® X is E-local. If EY ~ E Q k, then E ® X is also
E-local.

(2) For any compact object X € 6, EY ® X is compact in 6g. If EY ~ E Q«,
then E ® X is also compact in €.

(3) If {X;} is a set of compact generators of 6, then {EV ® X;} is a set of com-
pact generators of 6g. Therefore, if € is compactly generated, then G is
compactly generated.

Proof. (1) Let Z be an E-null object. Then
Hom¢(Z, EY @ X) ~Homg(Z® E, X) ~ 0,
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so EY ® X is E-local. If EY >~ E ® k, then
Hom¢(Z, E® X) ~Homg(Z® EY, X) ~Homc(Z® E®«, X) ~0,
so E® X is E-local.
(2) Observe that the functor
(€E — @
given by Y — Y ® E preserves colimits [Mathew et al. 2017, Remark 2.20]. Let
Y,: J —> $6g

be a functor and let us write colim Y; for the colimit in 6 and L g (colim ;) for the
colimit in 6. Then we have

Homg(EY ® X, Lg(colimY;)) ~ Homeg (X, E ® Lg(colimY;))
~ Home (X, colim(E ® Y;))
>~ colim Homg (X, EQ Y;)
~ colimHomg(EY ® X, Y;),

so EY ® X is compact. The second assertion is similar.

(3) This follows as in the proof of [Mathew et al. 2017, Proposition 2.27]. U
The following concerns the existence and basic properties of cellularization:

Lemma 4.2. Let € be a compactly generated stable oo-category, let S ={S; :i € $}
be a small set of compact objects in €, and let €' be the localizing subcategory
generated by S (i.e., the smallest full stable subcategory containing S that is closed
under colimits).

(1) €’ is compactly generated and is a coreflective subcategory of € (i.e., the
inclusion j : €’ C € admits a right adjoint). Moreover, if

Cell : ¢ — €’

denotes this right adjoint, then Cell also preserves colimits.

(2) Suppose in addition that € is closed symmetric monoidal, the unit 1 € € is
compact and in S, and for all i, i’ € $, we have that S; ® Sy € S. Then €' C 6
is a symmetric monoidal subcategory.

(3) Suppose in addition to the assumptions of (2) that each S; is dualizable. Then
forall X e € and Y € €/, the natural map 0 : Cell(X) @ Y — Cell(X ®Y) is
an equivalence.
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Proof. For (1), 6’ is compactly generated by definition, so j admits a right adjoint
by the adjoint functor theorem [Lurie 2009, Corollary 5.5.2.9]. Moreover, the set S
furnishes a set of compact generators for 6’ that are sent to compact objects under j,
so Cell preserves colimits. For (2), because the tensor product ® commutes with
colimits separately in each variable, our assumption ensures that if X, Y € €, then
X ® Y € €’. We may then invoke [Lurie 2017, Remark 2.2.1.2] to see that ¢’ C 6
is a symmetric monoidal subcategory. For (3), the assumption ensures that 6’
is generated by dualizable objects under colimits. Because Cell commutes with
colimits, both the source and target of & commute with colimits separately in each
variable. We may thus suppose that Y is a dualizable object in 6’, with dual Y.
Note that YV is also the dual of Y in 6. For each generator S; we have that
Home (S;, Cell(X) ® Y) >~ Hom(S; ® YV, Cell(X))
~ Homg (S; ® YV, X)
~ Homg(S;, X ®Y)

~ Homg(S;, Cell( X ® Y)),
so 6 is an equivalence. U

The following two lemmas describe the interaction of cellularization with Bous-
field localization and passage to module categories.

Lemma 4.3. With the setup of Lemma 4.2(2), let E be a dualizable object in 6.
Then:

(1) If X €6 is j(E)-local, then Cell(X) € €' is E-local.
(2) For X €6, the natural map

Cell(X) ® E — Cell(X ® j(E))

is an equivalence. Hence, Cell sends j(E)-equivalences to E-equivalences.

(3) The adjunction
j: € = %€:Cell
induces a monoidal adjunction
J' €y 2 €jE) :Cell

such that Cell'(X) >~ Cell(X) for X € €jg, j'(Y) = Ljg)j(Y) for Y € €,
and the functor j' is fully faithful.

(4) The functor Cell’ preserves colimits.
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(5) Suppose in addition the condition of Lemma 4.2(3). Then for all X € €
and Y € <€/E we have the natural equivalence

Le(Cell(X)®Y) ~Cell (LE(X®Y)).

Consequently, the conclusion of Lemma 4.5 holds with j' - Cell’ in place of
j —1Cell.

Proof. We consider each assertion in turn:

(1) If Y € ¢’ is E-null, then j(Y) € € is j(E)-null since the inclusion ¢’ C % is
strong monoidal. Then if X € € is j(E)-local, we have for all Y € €’ E-null that
Home (Y, Cell X) >~ Home (Y, X) =~ 0, so Cell(X) is E-local.

(2) We write j(E) as E for clarity. It suffices to observe that for all i € $,
Home (S;, Cell(X) ® E) >~ Homg (S; ® EV, Cell(X))
~ Homg(S; ® EY, X)
>~ Homg¢(S;, X ® E)
~ Homg(S;, Cel( X ® E)).

(3) By (1), Cell : ¢ — %’ restricts to a functor

Cell' : €jg) — €.
Define
j/ : %}5 d ng(E)
to be the composite

Ljw
CG/E cC6 — ng(E).

Then it is clear that j* 4 Cell’, the adjunction is monoidal with respect to the tensor
products Lg(—® —) and L jg)(— ® —) on €/, and € (), and the unit map
n:Y — Cell'j'Y
is equivalent to Cell of the unit map
n:Y— LjgY.
Because 7 is an j (E)-equivalence in 6, by (2) we see that Cell(7) is an equivalence.

(4) By Lemma 4.1, {S; ® EY : i € $} are a set of compact generators for €, and
are also compact and j (E)-local objects when regarded as being in ‘6. Therefore,
the left adjoint j” sends compact generators to compact objects, which implies that
the right adjoint Cell’ preserves colimits.

(5) With our additional assumption, the S; ® E constitute a set of compact dual-
izable generators of €’;. The proof of Lemma 4.2(3) then applies to j' — Cell’. [J
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Lemma 4.4. With the setup of Lemma 4.2(3), let A be an E-algebra in € and
let A’ := Cell(A) be the resulting Eo.-algebra in 6'. Then we have an induced

adjunction
j': Modg (A") 2 Modyg(A) : Cell’

such that j' is fully faithful and identifies Mod« (A") with the localizing subcate-
gory of Modg (A) generated by Sy :={S;  A:i € $}.

Proof. Note that Mod¢(A) and Mod«/ (A’) are compactly generated stable symmet-
ric monoidal co-categories, and the set Sy := {S; ® A’} furnishes a set of compact
dualizable generators for Mod¢ (A’). Because Cell is lax monoidal, it induces a
functor Cell’ : Mod¢ (A) — Mod (A’) such that the diagram of right adjoints

/

— ¢
Cell
| ]

MOd%;’(A/) W M0d<g (A)
(S

commutes (where U and U’ denote the forgetful functors). Since Cell preserves
limits and U, U’ create limits, Cell’ also preserves limits and therefore admits a
left adjoint j’ such that the diagram of left adjoints

¢ —

!
Mode (A) —— Modeg(A)

commutes (where F and F’ denote the free functors), so j(Sa/) = Sa. It remains
to show that ;' is fully faithful, i.e., that the unit map

n:M— Cell j'M

is an equivalence for all M € Mod (A’). For this, note that Cell’ preserves colimits
since Cell preserves colimits by Lemma 4.2(2) and U, U’ create colimits, so we
may suppose that M = S; ® A’. But then we have

Cell j'(S; @ A) =Cell (S @A)~ S; QA
by Lemma 4.2(3), and it is easily checked that n implements this equivalence. [J

Finally, we retain the projection formula after cellularization.

Lemma 4.5. With the setup of Lemma 4.2(3), let 9 be a presentable symmetric
monoidal stable co-category and let

F:€2%:R
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be a monoidal adjunction such that R preserves colimits and (F, R) satisfies the
projection formula. Then Cell R preserves colimits and (Fj, Cell R) satisfies the
projection formula.

Proof. Cell R preserves colimits by Lemma 4.2(2). For the projection formula, we
note that for all X e @ and Y € €/,
(CellR)(X) QY ~Cel(RX®Y) ~ (Cell R)(X® LY),

where the first equivalence is by Lemma 4.2(3) and the second by our assumption
on (L, R). O

5. Recollements

Let & be an oco-category which admits finite limits. Recall [Lurie 2017, §A.8;
Barwick and Glasman 2016] that an oco-category & is a recollement of two full
subcategories U and ¥ if the inclusions j,, i, of these subcategories admit left
adjoints j*, i*:

* i*
Jx Ly

such that

(1) the subcategories U, ¥ C & are stable under equivalence,

(2) the left adjoints j*, i* are left exact,

(3) the functor j*i, is equivalent to the constant functor at the terminal object,

(4) if f is a morphism of ¥ such that j* f and i* f are equivalences, then f is an
equivalence.

The following lemma shows that if & is a recollement of U and ¥, then to test
whether a functor into ¥ is a localization, it suffices to check this on U and 2.

Lemma 5.1. Let 6 and ¥ be co-categories that admit finite limits and suppose that
we have a recollement on X

* i*
UWSXZ=2HF
Jx Ly

and an adjunction F: € = & : R with F also left exact such that
(1) the natural transformation i*F R j, = i* j, induced by the counit of (F, R) is
an equivalence,
(2) the functor j*F Ri, is equivalent to the constant functor at the terminal object,
(3) the two functors Rj, and Ri, are fully faithful.
Then R is fully faithful.
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Proof. We will show that for any X € &, the counit € : FRX — X is an equivalence.
Because i* and j* are jointly conservative, it suffices to show that i*e and j*e are
equivalences. Consider the pullback square

X — i "X
JeJ "X —— " o j X

Applying i* F R and using that Ri, is fully faithful and i*F Rj, >~ i* j,, we obtain
a pullback square

i*FRX = i*FRii*X ~i*X

| |

i*FRjuj* X ~i*juj*X —— i*FRiyi* ju j*X ~i* juj* X

from which it follows that i *e is an equivalence. Applying j*F R and using that
Rj, is fully faithful and j*F Ri, >~ 0, we obtain a pullback square

J*FRX —— j*FRi,i*X ~0

J*FRjsj*X ~ j*X — j*FRi,i*j,j*X ~0

from which it follows that j*e is an equivalence. ([l

6. Background on motivic and equivariant homotopy theory

The motivic stable homotopy category. Let S be a scheme and let SH(S) denote
the symmetric monoidal co-category of motivic P!-spectra over S. Let SHeey(S)
be the localizing subcategory of SH(S) generated by the motivic spheres {S”-7}.
A motivic spectrum E is cellular if it lies inside SHce(S). Note that the full
hypotheses of Lemma 4.2 apply.

We recall from [Elmanto and Kolderup 2020, §2.2] the following facts concern-
ing compact and dualizable objects and generation in SH(S):

(1) For X an affine smooth scheme over S and g € Z, the motivic P!-spectrum
¥9X 4 is compact; in particular, the bigraded motivic spheres S”°7 are com-
pact. Compactness of the unit then implies that every dualizable object in SH(S)
is compact. Moreover, SH(S) is generated under sifted colimits by XX and
is thus compactly generated.

(2) If K is a field of characteristic 0, then every compact object in SH(K) is
dualizable.
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We collect a few facts concerning the functoriality of SH(—); see [Hoyois 2017]
for a reference. Let f : T — S be a morphism of schemes. We always have a
monoidal adjunction

S SH(S) = SH(T) : fs.

The left adjoint f; to f* exists if f is smooth. If f is smooth and proper, we have
the duality equivalence

fe= 27,

In particular, if f is finite étale, then f, >~ f; and the adjunction f* H f, is am-
bidextrous. On the other hand, if f is separated and of finite type, we have the
adjunction

fi: SH(T) = SH(S) : f'.

Moreover, f; coincides with f if f is proper. If f is finite étale, we have that
f'~ f*. Finally, we have the projection formula

HX A X)) = i(X)AY.
Euler classes. Let
p=ps: ST 500

be the map in SH(S) induced by the inclusion
90 = (+1} > G, = "1
The equivariant analog is the element a € nfi’_lS induced by the inclusion
§0 s 57,

The element a is the C,-Betti realization of the element p € niRl _1» and also serves
as the Euler class for the representation o.
For Y e Sp®?, the cofiber sequence

£°C, - §0 24 50 6.1)
yields a long exact sequence

G a _C e
---—>71i+1’1Y—>71i Y—>7mY — ...

It follows that a map of C,-spectra is a stable equivalence if and only if it induces
an isomorphism on the bigraded homotopy groups ng %, and that, in contrast to the
R-motivic case, every Cp-spectrum is stably equivalent to one built from represen-
tation spheres.

The cofiber sequence (6.1) results in an equivalence

Ca~3%'""5£7C,. (6.2)
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More generally, the cofiber sequences

S(io), — §° 2% gio
yield equivalences
Ca' ~2'79S(io), (6.3)

and, taking Spanier—Whitehead duals, equivalences
Ca' ~ (S@io)L)".
We therefore have, for any Y € SpCZ,
Y'=F((EC)+.Y)
>~ liim F(S@io)+,Y)
:MPYACWS

~Y). (6.4)

Since we have __
Y®*=YAEC,
~ colimY A §'°
1

~Y[a " (6.5)

we deduce that the isotropy separation square (1.3) is equivalent to the a-arithmetic
square

Y —— Y[a ]
YN —— Y a7 ']

Therefore, C,-Betti realization takes the p-arithmetic square to the isotropy sepa-
ration square.

n-completion and n-localization at odd primes. Let K be a perfect field. Bach-
mann [2018, Lemma 39] summarizes relations in nf* 599 involving the Hopf map

nemf s
and the element p € fl 7150’0, after 2 is inverted. Namely, the element®
e:=—np—1

SHere we are following the convention that p = [—1]. Bachmann instead takes p = —[—1], which
results in the formula € = np — 1 in his work.
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is the interchange isomorphism
e:SHASH - gt AShL

Therefore it satisfies €2 >~ 1, and hence for any X € SH(K)[1/2], there is a corre-
sponding decomposition into 4-1-eigenspaces

X =k x"enf Xt (6.6)
Here (—)~ is the +1 eigenspace, and (—)* is the —1 eigenspace. We have

nl X =nf X =7k X[p™"

and on nf*X + multiplication by 7 and p? is zero.” We deduce:
Proposition 6.7. For any X € SHee(K)[1/2], we have
b (VR =P (V)
and the homotopy groups of these spectra are nf*X ~, and we have
A~ VA
X, >~ X,
and the homotopy groups of these spectra are nf*X *.
Proof. From the discussion above we deduce that the maps
X~ = X[~ "in ™" < X[p™ '],
AN AN AN
X N Xy n < X77
induce isomorphisms on bigraded homotopy groups, and hence are equivalences
since the spectra are cellular. U

Finally we note that for X € SH1(K)[1/2], since X 2 [p_l] =~ (), the p-arithmetic
square

X —— X[p']

|

—1
Xy — Xplp™"]
yields a topological lift of the decomposition (6.6)
X~X[p '1vX). (6.8)

TWhen K =R, multiplication by p is zero on NE*X T. This follows from the presentation of the

Milnor-Witt ring of R in the introduction of [Dugger and Isaksen 2017a].
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On the other hand, for any ¥ € Sp©2[1/2], the Tate spectrum Y’ is contractible,
and the isotropy separation square reduces to a splitting

Y ~yY®vyh (6.9)

The discussion from the previous subsection implies that C,-Betti realization car-
ries the splitting (6.8) to (6.9).

Motivic and equivariant cohomology. Let (HF,)x denote the mod p motivic
Eilenberg—MacLane spectrum over K. By [Voevodsky 2003; 2011; Stahn 2016],

Fplzl, K =C,
nX (HF )k ={Flt,pl, K=R, p=2,
Fplz?l, K =R, podd.

Here, p is the Hurewicz image of pr (and pc =~ 0).
Eilenberg—MacLane spectra are stable under base change —in particular,

¢ (HFp)r = (HFp)c
and the associated map

7® (HF g — & (HF )

is the quotient by the ideal generated by p if p = 2, and the evident inclusion if p
is odd.

The C,-Betti realization of the mod p motivic Eilenberg—MacLane spectrum is
the C;-equivariant Eilenberg-MacLane spectrum HT, associated to the constant
Mackey functor [, [Heller and Ormsby 2016]: o

Be“2(HF,)g =~ HF .
For p =2 we have

Falu, al
m L HEy =Folu, al® a9

. .. c
where a is the Hurewicz image of the element a € n_% 1

u=Be" (1) e w52 Hy,
and
C
0 emy,HE.
For p odd we have
7 LHF, =Fplu™?]
where
u?> =Be®(t?) e yr(fz_zH[Fp.
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7. t-self maps

In this section we will construct z/-self maps on the spectra C(p')},. For p =2,
this will be accomplished in the first three subsections by first constructing the C,-
Betti realizations of the desired self maps, and then by using a theorem of Dugger
and Isaksen [2017b] to lift these equivariant self maps to real motivic self maps.
For p odd, we will observe in the last subsection that the work of Stahn [2016]
implies that every p-complete spectrum has a 72-self map.

From now until the last subsection of this section, we implicitly assume every-
thing is 2-complete.

R-motivic and C-equivariant homotopy groups of spheres. For j € Z, let PjOo
denote the stunted projective spectrum given as the Thom spectrum

P = (RP®)/
where § is the canonical line bundle. The Segal conjecture for the group C; (Lin’s
theorem [1980]) implies the following:
Proposition 7.1. There are isomorphisms
72800 = (P°1Y).
Proof. The Segal conjecture implies that for a finite C,-spectrum Y, the map
Y > Y'=F(EC)4,Y)
is a (2-adic) equivalence. Using the equivalence
P >~ (S )y,

we have
7 =[S A5, 517

> (S NS/ F((ECy) 4, $)1©
> (S, F(ECy)4+ A S/7, )]
=[S, F(ECy)1 Ac, $77. 9)]
=i ([P7°1). U

Applying nf % to the norm cofiber sequence
(ECy), — S"— EC, (7.2)

gives the long exact sequence

s C > s
"'_>7Ti7j+1_>)‘i,j_)ni,j_—_>7Tj—i_>"'
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studied by Landweber® [1969]. Using the equivalences

[Pfo]v ~ XJP__C{o_1 [Bruner et al. 1986, Theorem V.2.14(iv)],
st~ px, [Lin 1980],

there is an isomorphism of long exact sequences

IR

(&
s o G o2 s
T Aij T Tj—i

[ X s

—i-1
"'_>7TiijSooo_>7Ti*jPE.;' —>7Ti7jflpfojo —>7T,'7j71Pfooo—>"'

where the bottom long exact sequence is the sequence obtained by applying 7, to

the cofiber sequence
—j—1
P_s — P%,— P%.

By (6.5), the geometric fixed points map is the a-localization map

nfjs - niC;S[a—l]

€2 l_

7T,'_jS

Thus the groups JT*C: % consist of a-torsion, and a-towers, where the latter are in
bijective correspondence with the nonequivariant stable stems. The generators
of these a-towers correspond to the Mahowald invariants [Bruner and Greenlees
1995].

As explained in [Dugger and Isaksen 2017b], Landweber [1969] uses James
periodicity to show that the a-torsion in ni’cjz. is periodic in the j direction outside
of a certain conic region.

Theorem 7.4 (Landweber). Define
y(m) =#k:0<k<m, k=0,1, 2,4 mod 8}. (7.5)
Outside of the region
J-1=<i<2j
there are isomorphisms
(nsz')a—tors = (”i?;_,_zy(i—l))a—tors-

8Here, we have indexed 7;, j and A; j with respect to our bigrading convention, not Landweber’s.
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Proof. Outside of the region described, the map
)\'i,j - (nfj)a-tors

is an isomorphism, and Landweber [1969, Theorem 2.4, Proposition 6.1] observed
that James periodicity implies that there is an isomorphism

M = A jarion. O
Dugger and Isaksen [2017b] prove the following theorem.’
Theorem 7.6 (Dugger and Isaksen). C,-Betti realization induces an isomorphism
7 S0 — mi ;SO0
fori>3j—5.

Figure 1 depicts the location of the a-torsion and the a-towers in mg . The
dashed line marks the region where Dugger and Isaksen proved these groups coin-
cide with the groups nj'f* (Theorem 7.6). This cone in Theorem 7.4 is labeled the
“nonperiodicity cone” in the figure. Outside of this cone, the map

c
Aij —> (”i’;)a—tors
is an isomorphism.
u-self maps. Since the Cy-spectra S0 and S''! are nonequivariantly equivalent,
the equivalence (6.2) results in a self-equivalence
u:2%"1Ca - Ca.

We denote this map u, and shall refer to it as a u-self map, because it induces the
multiplication by # map on the homology groups

(HF2) s« (Ca) = Fa[u™].

We invite the reader to think of a u-self map as analogous to the v,-self maps
of chromatic homotopy theory [Ravenel 1992]. For instance, the mod 2/ Moore
spectrum admits a v{ -self map for certain values of j which depend on i. We have
the following analog in the present situation.

Theorem 7.7. The C,-spectrum Ca' admits a u-self map
_pr-b i
Upy(-1) ° 202" 4l - Cd
and this map is an equivalence.

To prove Theorem 7.7 (and the forthcoming Theorem 7.10) we shall need the
following lemma.

9Belmont, Guillou, and Isaksen [Belmont et al. 2020] have recently improved this isomorphism
theorem to the region i > 2;j — 4.
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J
m = a-torsion
% = a-torsion-free
------ e ‘
____ 7 xSOmO(?
v

Figure 1. The structure of rricj 500,

Lemma 7.8. The spectra Cp' € SH(R) and Ca' € Sp©? are E-ring spectra.

Proof. The case of Cp' is explained in Remark 8.5. The case of Ca’ follows from
the fact that C,-Betti realization is monoidal. |

Proof of Theorem 7.7. Using the equivalence (6.3) and the Adams isomorphism,
nkC}Cai — [SkIHO w10 g g) , ]C2
= [SH, 2S(i0) 4 ASTITI7E
=[S, 2830) 4 Ac, ST

~ —1-1
= ﬂk_lEP_l_i
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and a similar argument yields

(HF2)Ca' = (HF) P77 (7.9)
It follows that
(HF2). «Ca' = Falu*, al/ (@)

where, under the isomorphism (7.9), the monomial u*a’ is the homology class
coming from the (s — 1)-cell of P;:_rf__il.
By Lemma 7.8, to prove the theorem it suffices to prove that there is an element

G i
Upyi-1) € ”o,-zv(f%) Ca
whose Hurewicz image is

y(@i—1)
u? e H®

i
0’,2y(i—l)Ca .

Using the commutative diagram

Cs i = _ ov(=1_1
JTO’_Z}/(,-_,)CCZ E— 7'[2;/(;71) EPZVU-U—;'
C i _ 2vi=D_
HO’_zy(i,l)Ca —>E sz([—|>ZP2V(i71)_i

relating equivariant and nonequivariant Hurewicz homomorphisms, the result fol-
i—1

lows from the fact [Bruner et al. 1986, Theorem V.2.14(v)] that P;:(i,_])):il is re-

ducible.

The resulting self map u,,¢-1 induces multiplication by u? !

" on homology,

and therefore is a homology isomorphism, and hence is a equivalence. U
Note that we make no claims that these u-self maps have any uniqueness or

compatibility properties.

T-self maps.

Theorem 7.10. The R-motivic spectrum Cp' admits a t-self map
Toyl-1) : EO’_zy(i_l)C,Oi — Cpi.
Proof. By Lemma 7.8, it suffices to prove that there is an element

G i
Toyi-1) € 7'[0’_2]/(1-,1) C,O

whose Hurewicz image is

7" € (HFy)g _ari-0 Cp' Z Fal1, pl/(p).
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By Theorem 7.6, there are isomorphisms in the map of long exact sequences

R R R R R

T i1 x 7 T, _ovi-n T Ty _oyi- yCp' — T iy 7T oy
Cy e C, C, a' C,

T i1 = o _ovi-n 7 Ty _oyii- I)C“ PTG gy T T gy

which, by the 5-lemma, allow us to deduce that there is an isomorphism

Cy

R i
Ty _ovi- L, Cp! —>7TO ~vi-nCa’.

The desired element 7,,¢-1) can be taken to be an element which corresponds, under
this isomorphism, to the element 5,1y of Theorem 7.7. (I

t-self maps at an odd prime. In this subsection, everything is implicitly p-complete
for a fixed odd prime p.
Consider the homotopy complete (p-complete) Co-equivariant sphere S”. We

have
i S" = [SF7, F(ECy) 4, $)I°

=[(ECy)4 A SF, S
=[(EC2)+ Ac, S¥7, §¥]

=[P, sM
~ Zy, keven,
10, Kk odd,

where the last isomorphism comes from the fact that P is p-adically contractible
if k is odd, and inclusion of the bottom cell

Sk s p°
is a p-adic equivalence if k is even. Define u” to be a generator of noc 2_25/1‘ Then
the above calculation implies that

Cy ch ~ +2
7o 2 S" = 7, (1.

Thus the homotopy groups of any p-complete homotopy complete C,-equivariant
spectrum are u?-periodic.
Proposition 7.11. We have

ToS) = 7,77

and every (p-complete) p-complete real motivic spectrum has a t>-self map. More-
over, we have

=5=C
Be, (t%) =u’.
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Proof. Let BPGL be the odd primary real motivic Brown—Peterson spectrum
constructed in [Stahn 2016]. By [Stahn 2016, Proposition 2.5], we have

nE*BPGL = Zp[rz, v, V2, ... ]

with |v;| = (2p’ — 2, p' — 1). Consider the associated ( p-complete) real motivic
Adams—Novikov spectral sequence'”

Extgpcr, .BPGL(BPGLy «, BPGL, 1) = R s»

*k0 "

Stahn [2016] explains the odd primary analog of a recipe of Dugger and Isaksen
[2010], which allows one to completely construct the motivic Adams—Novikov
spectral sequence from the classical Adams—Novikov spectral sequence. In partic-
ular, using Proposition 6.7, we are able to deduce the first statement. The second
statement follows by considering the composite (arising from the Hurewicz homo-
morphism, the map of [Hoyois 2015], and Betti realization)

7,1 =7, S) — 7§ BPGL — mt (HF ))r — 752 HF , = Fp[u*?].

Theorem 4.18 of [Heller and Ormsby 2016] implies that C,-Betti realization maps
72 to u®. We deduce that

B, (¢2) = i’
with A € Z7]. Without loss of generality, we may choose the generator 72 so that
A=1. O
8. The equivariant-motivic situation

The monoidal Barr-Beck theorem for étale base change. For a subgroup H <G,
the restriction-induction adjunction

Res : Sp® = Sp#’ :Ind§,

satisfies the hypotheses of Theorem 3.6 (cf. [Mathew et al. 2017, Theorem 5.32]).
Let ¢ denote the map

¢ : Spec C — Spec R
and consider the induced adjunction
£*: SH(R) = SH(C) : ¢,.
10por convergence, the argument of [Dugger and Isaksen 2010, §8] shows that this spectral se-

quence converges to the (HF p)g-completion of the motivic sphere spectrum, which by [Hu et al.
2011], is the (p, n)-completion.
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Note that since the adjunction ¢* 4 ¢, is monoidal, we have
Spec C; = ¢ 1 € CAlg(SH(R)).

With the adjunction ¢* - ¢, being our main situation of interest, we now make the
analogous observation in the motivic context.

Proposition 8.1. If f : T — S is finite étale, then f* - f, satisfies the hypotheses
of Theorem 3.6, and we have

SH(T') >~ Modshs) (f«1).

Proof. In view of the properties of the base change functors outlined in Section 6,
it only remains to show that f is conservative, so suppose X € SH(T') such that
Jf«X = 0. Consider the pullback square

TxsT —557T
f
T—' 5§

Then f* fux ~ g.g*x >~ 0. But g,g*x is a finite coproduct of copies of x, using
that f is finite étale. Hence, x >~ 0. U

Corollary 8.2. SH(C) >~ Modsgw) (Spec C-.).
The following is the key calculational observation behind this paper:

Proposition 8.3. There is a noncanonical map
C(p) — SpecC4

which becomes an equivalence after p-completion and cellularization.

Proof. Let
£: S[%O — SpecC.

be the unit map, which is adjoint to the identity in SH(C). By adjunction, we have
[, Spec C4lr =[S, $9%c.

But since p >~ 0 in SH(C), & o p is null homotopic. Making a choice of null
homotopy, we obtain a comparison map

a:C(p) —> SpecC,

that we wish to show is a p-complete cellular equivalence. Using the motivic
Adams spectral sequence, it suffices to show that

B (HF)E,(C(p)) — (HF,)F (Spec Cy) =l (HFp)c
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is an isomorphism (for p odd, the motivic Adams spectral sequence only converges
to the (p, n)-completion [Heller and Ormsby 2016], but both C(p) and Spec C
are n-complete by Proposition 6.7).

For p =2, nff* of the map (HF,)r — ¢+« (HF,)c is computed to be the surjection
F»[z, p] = Fy[7], which identifies 8 as the isomorphism F;[z, p]/p = Fa[7].

For p odd, nf}f* of the map (HF,)r — ¢+(HTF,)c is computed [Stahn 2016,
Proposition 1.1] to be the injection F p[‘l,'z] — [Fp[z]. Using the fact that p acts
trivially, we deduce

(HE).Co =Fyle?)(1, 1)
and we conclude that 8 is an isomorphism. U

Remark 8.4. We claim that Spec C is not cellular in SH(R). Indeed, upon apply-
ing ¢*, the cofiber sequence

g—l-1 2 0.0 _ C(p)

becomes
ST S0 5 7 (Clp))

and thus we have

£*(Cp) = 8% v s
But

£*Spec Cq = 72,1 = §90 v §90,

In effect, the presence of the motivic weight forbids Spec C from being cellular.

Remark 8.5. Via Proposition 8.3 and Cell being lax monoidal, C (,0)2 and there-
fore C (p”)? obtain the structure of E.,-algebras in SH([R{)IA,.

Corollary 8.6. There is an equivalence

SHeent(C);, = Modsh,,, ) (C(0))

and we have a diagram of commuting left adjoints

SHeen (R)) SH(R))
I+ I
SHcell (C) 2 C SH(C)/p\

: }

ModsH,, @)y (C(p)) —— Modsu(w); (Spec C+)
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where the horizontal right adjoints are given by the cellularization functor. In
particular, for X € Sp(R)”, we have an induced isomorphism

e XAC(p) e 0 X,

Proof. Combine Proposition 8.3, Proposition 8.1, Lemma 4.4 with A = Spec(C)+,
and Lemma 4.3 for the p-completion. (Il

Warning 8.7. Cell is not strong monoidal, and indeed one may show that
Cell(Spec C A Spec C,) % C(p)"2.

Therefore, we don’t have an induced adjunction between Spec C_-local objects in
SH([R)? and C(p)-local objects in SHceH(R)Q.

Betti realization. We next relate the motivic to the Cy-equivariant situation. We
begin by recalling the Betti realization and constant functors, for which an oo-
categorical reference is [Bachmann and Hoyois 2018, §10.2, §11].

Definition 8.8. The complex Betti realization functor
Be : SH(C) — Sp

is the unique colimit preserving functor that sends the complex motivic spectrum
XX to XX (C) for X a smooth quasiprojective C-variety, where X (C) is en-
dowed with the analytic topology. Likewise, the C,-Betti realization functor

Be®? : SH(R) — Sp©?

is the unique colimit preserving functor that sends the real motivic spectrum X% X
to XX (C) for X a smooth quasiprojective R-variety, where X (C) has C>-action
given by complex conjugation. We define p-complete Betti realization functors by

Be,(—) :=Be(-)),
G e RaCa A
Be, (=) :=Be™*(-)),.
Both Be and Be®? are symmetric monoidal functors. Let Sing and Sing®? denote

their respective right adjoints, so we have the following diagram of adjoint functors:

Be®2
SH(R) ——— Sp©?

Sing©2
e Resf2 ‘:[Indfz (8.9)
Be
SH(C) —— Sp

Sing
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We also have the real Betti realization functor
Ber : SH(R) — Sp

that sends XX, to X X (R). By definition, &2 Be®> ~ Beg. Bachmann [2018,
§10] has also identified his real-étale localization functor

SH(R) — Sp
with Beg. If we let

is:Sp — Sp©2

denote the right adjoint to geometric fixed points (—)®¢2, then it follows that
Sing®? i, is fully faithful.

Consider the p-inverted motivic sphere SO*O[p_l] and the associated localization
SH(S)[p~!]. The following main theorem of [Bachmann 2018] is essential.

Theorem 8.10 [Bachmann 2018]. There is an equivalence of co-categories
SH(S)[p™~"1 == Sp(Shv(Sper($))),

where Sper(S) is the real spectrum of S [Bachmann 2018, §3]. In particular, we
have

SH(R)[p~'1~ Sp
and the following diagram commutes

Begr

SH(R) Sp

~ <

SHR)[p™']

Thus, real Betti realization is localization with respect to p.

We recall the definition of the constant functor, and Heller and Ormsby’s equi-
variant generalization [2016].

Definition 8.11. The constant functor
¢t : Sp — SH(C)

is the unique colimit preserving functor that sends S° to $%°. The C,-equivariant
constant functor

¢ Sp©? — SH(R)

is the unique colimit preserving functor that sends S° = C,/C5 L to 590 = Spec R,
and C, /1, to SpecC,..
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Lemma 8.12. Betti realization splits the constant functor. In other words, we have
equivalences

Beocf ~id,
Be© och ~id.
Proof. The functors in question preserve colimits, so it suffices to observe that:
(Becp)(8) = S°,
(Be“ cj) (8°) = §°,
(Be® c)(Ca/14) = Co/ 1. O
Lemma 8.13. The monoidal adjunctions
Be: SH(C) = Sp : Sing,
Be®2: SH(R) = Sp®? : Sing®
satisfy the hypotheses of Theorem 3.6. Therefore, we have

Sp =~ Modspc) (Sing %),
SpC2 >~ ModsH(r) (Singc2 SO).

Proof. We verify the second statement; the first will follow by a similar argument.
Let us consider the hypotheses in turn:

(1) In view of Lemma 8.12, Sing®? is conservative as it is split by the right adjoint
to the constant functor cp.

(2) Note that for X a smooth quasiprojective R-variety, X (R) and X (C) have the
homotopy types of finite CW-complexes; hence, Be®? (X$°X) is compact in Sp©2.
Because the collection of motivic spectra {2%° X} furnish a set of compact genera-
tors for SH(R), we deduce that Sing®? preserves colimits. To verify the projection
formula

Sing®2(A) A B ~ Sing®?(A ABe®? B),

because both sides preserve colimits in the B variable, it suffices to check for
B =X X. In this case, we need to show that for any W € SH(R), the comparison
map

[W, Sing®2(A) A Blg — [W, Sing®(A ABe® B)|n

is an isomorphism. Using that B is dualizable, under adjunction this is equivalent
to

[Be©2(W) ABe®2(BY), A]> — [Be©*(W), A A Be®? B]©
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where the conclusion follows because Be®? B is also dualizable with dual given by
Be“2(BY). O

Using Lemma 3.7, we deduce the following p-complete variant.
Corollary 8.14. For a prime p, we have
Sp)y = Modsgic), (ISing S°17),
[Sp“1)) ~ Modsuy, ([Sing® S°17).

We may also deduce the following cellular variant, which highlights an impor-
tant difference between the R- and C-motivic settings.

Corollary 8.15. The adjunction

Be: SHcen(C) = Sp : Cell Sing

satisfies the hypotheses of Theorem 3.6, and therefore Betti realization gives an
equivalence

Modsp,, c)(Cell Sing §%) ~ Sp.
In particular, we have an equivalence
Modsp,, () (Cell Sing S°) ~ Modspc) (Sing S°).
In the real case, the adjunction
Be®?: SHe(R) 2 Sp©? : Cell Sing®?
satisfies these hypotheses after p-completion, giving
Modspi sy, ([Cell Sing® §°17) = (Sp=);. (8.16)

Proof. Lemma 4.5 implies every hypotheses of Theorem 3.6 holds for the cellular
adjunctions except for the conservativity hypothesis. In the complex case, because
¢ has essential image in SHce (C), Cell Sing is conservative. However, in the real
case,

cp(Ca/14) = Spec C1
is not cellular. Nonetheless, because
(Cell Spec C,), == C(p), — (Spec C4)),

is sent to an equivalence in (Sp©?) 2, it follows that Cell Sing®? is conservative after
p-completion. O
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Remark 8.17. The observation (8.16) is not new — Ricka [2017, Theorem 2.4]
proves this. However, Ricka’s version does not have the p-completion. We believe
the subtlety mentioned in the proof above may have been overlooked in his proof,
however, and we do not know if (8.16) holds without the p-completion.

Betti realization as a localization. We will now show that in the p-complete set-
ting, both Cell Sing and Cell Sing®? are fully faithful, implying Be p and EEIC;Q are
localizations when restricted to p-complete cellular motivic spectra.

The complex case, summarized in the following theorem, was essentially proven
by Dugger and Isaksen [2010] (in the case of p = 2) and Stahn [2016] (in the case
of p odd).

Theorem 8.18. The functor
Cell Sing : Sp, — SHeen(C)),

is fully faithful with essential image consisting of those objects in SHce (C)Q on
which multiplication by t is an equivalence. Therefore, given X € SHceu(C)[A,,
2-complete Betti realization induces an isomorphism

JTiq’:jX[‘E_l] =7 I/B\ep(X).

Proof. Because we already know that Be - Cell Sing satisfies the hypotheses of
Theorem 3.6, it suffices to compute (SO’O)]A,[I_I] ~ Cell Sing(So)g. But the natural
map

(8" [r~'1— Sing(s%))
is a cellular equivalence by the results of [Dugger and Isaksen 2010; Stahn 2016]. [J

Our strategy will be to formally derive the real case from this, by lifting this local-
ization up the p-completion tower, and combining with Bachmann’s Theorem 8.10.
To this end, we consider the isotropy separation recollement on Sp®? given by

()" (—)*C
Sphc2 _J_><—*— Sp©? ? Sp.
Lemma 8.19. We have equivalences of functors
(Be? Sing® i,.(—))" ~0,

(Be®? Cell Sing®? i (—))" ~ 0.

Proof. Because S*°[p~!] is cellular, the essential image of
Sing®? i, : Sp — SH(R)

is cellular as it is generated as a localizing subcategory by S%°[p~!]. Therefore,

Cell Sing®? iy, ~ Sing®? i,



452 MARK BEHRENS AND JAY SHAH
so we may ignore cellularization in the proof. Because for E € Sp©2, E" ~ 0 if
and only if Rest? E ~ 0, it suffices to show that
Resec2 Be© Singc2 i, >~0.
Because Resf2 Be®> ~ Be ¢* for
¢ : Spec C — Spec R,
this follows from the observation that
¢*: SH(R) — SH(C)
vanishes on p-inverted objects. O
Lemma 8.20. The natural transformations
(Be® Sing™ j. () — (ju(-)*?,
(Be Cell Sing® ju (=) — (ju(—)*®
induced by the counits of the adjunctions
€ : Be® Sing®? — id,
€' : Cell Be®? Sing®? — id
are equivalences.

Proof. We first consider the noncellular assertion. Let X € Sp"®? and ¥ = j, X.
Since i, is fully faithful, it suffices to prove that

i.([Be®> Sing® Y1%®?) = EC, ABe©> Sing®? ¥ — i, (Y®?) = EC, A Y

is an equivalence. For this, first note that because E/'\CVIQ =Be®2(5°[p~1]), using
that Be®? is strong monoidal and the projection formula we have equivalences

EC, ABe Sing® j.(X) ~ Be®(Sing® (X) A S*°[p~'])
~ Be®? Singc2 (X A Eég)

under which EC, A ey is identified with €y Ec,- Next, by Lemma 8.19 and the
fact that Sing®? i, is fully faithful, for any Z € Sp the fiber sequence of functors

(EC)). A——> id — ECy A —
applied to Be®? Sing®? i,.Z yields the equivalence
Be© Singc2 ivZ — E\éz ABe® Singc2 i.Z>~i,Z.
In particular, the counit
Be® SingCZ(X A ﬁz) — XA Isz

is an equivalence.
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Finally, the cellular assertion is proven in the same way, using now that $%%[p~1]
is cellular and Be®> < Cell Sing®? is a monoidal adjunction that satisfies the pro-
jection formula by Lemma 4.5. (I

We have almost assembled all of the ingredients needed to prove Theorem 8.22.
In view of Lemma 5.1, it only remains to prove the fully faithfulness of Sing® on
the Borel part of the recollement, which we turn to now.

Because we have Be©? (C(p)) = C(a) for the Euler class

a:85°—§°
and (Sp®?) s Sp”€2 (6.4), we obtain the induced adjunction

E‘;};Czi SHeen(R)) , 2 (Sp"*), : Cell Sing"

as in Lemma 3.7.
Corollary 8.21. The functor Cell Sing 2 is fully faithful.
Proof. Combine Theorem 8.18, Corollary 8.6, and Proposition 3.10. ]

We may now deduce the categorical half of our main theorem, which states
that C,-equivariant Betti realization, when restricted to p-complete cellular real
motivic spectra, is a localization.

Theorem 8.22. Cell Sing®? : (SpCz)g — SHCCH(R)Q is fully faithful.

Proof. The conditions of Lemma 5.1 apply in view of Lemma 8.19, Lemma 8.20,
Bachmann’s Theorem 8.10, and Corollary 8.21. O

Computing Betti localization. In the complex case, Theorem 8.18 implies that
Betti realization can be computed on p-complete cellular complex motivic spectra
by inverting t € ngil(So*O)g.

We would like a similar result for the C,-Betti realization of a p-complete cellu-
lar real motivic spectrum. In the real case, for X € SH(R), the isotropy separation
recollement implies that the homotopy type of the p-complete C,-equivariant Betti
realization can then be recovered by the pullback:

B, (X) — B, (X)®

l l (8.23)

Be,’ (X)" —— B, (X)!

Therefore, it suffices to compute ]/S\G:IC,2 (X)®, ]/BEICf (X)h, I/SEIC,Z(X )!, and the map

AC
Be ’

@ oG t
» (X)® — Bep (X)'.
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For the geometric localization EE?(X )®, Bachmann’s Theorem 8.10 has the
following immediate consequence (which does not require p-completion or cellu-
larization).

Theorem 8.24. For X € SH(R), equivariant Betti realization induces an isomor-
phism
me X[p~'1=> 182 Be(X)?.
Proof. Using Bachmann’s Theorem 8.10, we have
7y X[~ '] = i Ber(X)
= 7, Be©2(X)®“
>~ nf; Be©2(X)?. O
We will now show that if X is p-complete and cellular, the p-complete homo-
topy completion Be 2(X)h can be computed by inverting t on the p-completion
tower. The Tate spectrum Be ’(X)" may then computed by inverting p on the
T-inverted p-completion.

Let us now describe in detail how to invert T on the p-completion tower. For
every n, we have adjunctions

=C3, .
Bep2 " MOdSHceu(R)g (Cp") = MOd(SpCz)]AJ (C(a") : SlngC2 "

where Sing“?" is fully faithful by Theorem 8.18 and Proposition 3.10. The self
map Ty of C (,0”)?7 constructed in Section 7 (where we take Ty := 72 there in the
case of p odd) allows us to explicitly compute the resulting localization functor in
terms of ty-localization, as stated in the next lemma.

Lemma 8.25. For X € ModsH., ) (C(p")), we have
Sing®" Be,*" X ~ X[z;"].
Thus, the image of the fully faithful right adjoint
Sing©" : Mod g3 (C(@")) = Modsp,g, iy (C(p")

consists of those p-complete cellular C(p")-modules on which multiplication by
Ty IS an equivalence.

Proof. For brevity, we implicitly assume everything is p-complete in this proof.
We claim the self maps ty satisfy

(D) EECM(IN) = uy is an self-equivalence of C(a"),

2) C(p"ry'TAcem C(p) = C(p)[r 1.
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Statement (1) is proven in Theorem 7.7 (for p = 2) and Proposition 7.11 (for p
odd). For statement (2), it suffices to show that the composite

20N C(p) = £V C (") Acim C(p) 255 C(0") Acim C(p) = C(p)
is equal to ¥, up to multiplication by a unit. However, by Corollary 8.6, we have
70, C(p) =7 (8", = Z,[7].
In particular, the Hurewicz homomorphism
w05 C(p) = (HF ) ,.Co = Fplr]

is given by the obvious surjection, and the result follows from the fact that 7y
induces multiplication by 7"V on homology.
By (1), we have a comparison map

C(p"lty'1 = Sing™" (C(a™)
adjoint to the equivalence
C(aMuy'1=C@@").

After base change to C(p), this map is an equivalence by (2), hence is an equiva-
lence as — Ac(,m) C(p) is conservative. Because the adjunctions in question also
satisfy the hypotheses of Theorem 3.6, we have that
Sing®" Be,, ™" X = Sing®>" ((Be," X) Ac(an) C(a™))
~ Sing“2"(C(a")) Ac(om X
~ X[ty']. O
For p odd, every X € SH(R), has a 72-self map on its p-completion, and we
can therefore form the telescope
Ar-—17._ vA[-—2
Xp[t ].—Xp[‘l,’ 1.

For p = 2, because the periodicity of the elements Ty increases as n — 0o, we
do not have an analogous construction. Nevertheless, given X € SHceH(R)g, the
equivalences of Lemma 8.25 allow us to define maps

X AC(p")ly'] ~ Sing®" Bel,™" X A C(p")
—Cy,n—1

— Sing®”" "' Be, XAC(p™™h
~ X AC(P" Myl
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We may therefore define
X r ™ :=1im X A C(p")[ry'].
n

We are now ready to deduce the computational half of our main theorem.
Theorem 8.26. For X € SHCEH(R);, we have

—~hC,

Cell Sing"® Be,, * X, ~ X/ [t7']

and C-Betti realization induces an isomorphism
R yA[.—17 =, _C Rale vk
o Xyt 1= . Be, (X)W
Proof. Since

—~hC,

Cell Sing"“> Be,, * X ~ lim Sing®>" 1§Ef,2’” X AC(p"),
n

we deduce the first statement from Lemma 8.25. The second statement follows
from the adjunction

73 (Be,’ ()" = [Be® §™, Be, " ()"
= (877, Cell Sing® Be,,*(X)" g

= X0 O
9. Examples

We now demonstrate the effectiveness of our theory by computing the C;-equivariant
homotopy groups of the C,-Betti realizations of some p-complete cellular real
motivic spectra from their motivic homotopy groups.

For p odd, the computational implementation of our theory is straightforward.
Given X € SHee(R)”, we have (6.8)

X~ X[p~'1v Xy
and we have
—C _ _
7C2 Be (X) =7 X[p M@k, X[ 2.

In the case of p = 2, the computations are more interesting, and we illustrate
this with some examples. In each of these cases, the motivic homotopy groups are
less complicated than the corresponding C,-equivariant homotopy groups.!!

Tt is worth pointing out that in each of these examples the actual determination of these mo-
tivic homotopy groups is often the result of deep results in motivic homotopy theory, whereas the
corresponding equivariant computations do not depend on similarly deep input.
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We point out that the use of isotropy separation to organize the equivariant ho-
motopy of the examples in this section is not new — see, for example, [Greenlees
2018].

mod 2 motivic cohomology. Let (HF,)g € SH(R) denote the mod 2 real motivic
Eilenberg—MacLane spectrum. Dugger and Isaksen [2005] proved that the motivic
complex cobordism spectrum MGL is cellular. Work of Hopkins and Morel and
of Hoyois [2015] implies that (HZ)r (and hence (HF,)R) is a regular quotient of
MGL, and is therefore cellular. Finally, Heller and Ormsby [2016, Theorem 4.17]
prove that for any abelian group, the C,-Betti realization of (HA)r is HA, the
Cs-equivariant Eilenberg—MacLane spectrum associated to the constant Mackey
functor A, so we have
Be“?(HFo)r ~ HF,.

We may therefore apply our theory to compute & H Fs.
Recall again that we have [Voevodsky 2003]

ml (HF)r = Fa[r, pl.
Using Theorem 8.10, we have
n A HE® =l (HE)slp™']
= Fa[z, p*1.
Using Theorem 8.26, we have
2 HE = (HF)p[r™']
=™, pl.

Because the Tate spectrum is the geometric localization of the homotopy comple-
tion, we may apply Theorem 8.10 to the above to deduce

2 HE = nf (HF)plt o]
=Falt*, p*l.

We may then use the Mayer—Vietoris sequence

Cy t 3 _C, C, h C, ®
---—>n*+1’*H[F_2 —)ﬂ*’*Hﬂ:_2—>7T*’*H[F_2 GBJT*’*H[F_Z — ...

associated to the isotropy separation square (8.23) to deduce

Falz, p]
c _ 2lT, p —1_-1
m,  HE =Tz, p]® m{ap T}
The calculation is displayed in Figure 2. The motivic homotopy nE* (HF)Rr
is displayed in the shaded region. In this figure, a dot represents a factor of [F,
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Figure 2. Computing nf YHT, from JTE*(H Fo)g.
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and a line represents multiplication by the element p. The other three quadrants
are then obtained from this motivic homotopy by inverting 7, p, or both t and p.
The resulting equivariant homotopy, deduced from the Mayer—Vietoris sequence, is
displayed in the upper-left-hand chart (the combination of the shaded and unshaded
regions).

2-adic motivic cohomology. The discussion of the previous subsection also estab-
lishes that the 2-adic real motivic Eilenberg—MacLane spectrum (H Z5)g is cellular
(and it is clearly 2-complete). The coefficients of (HZ,)r are given by (see, for
example [Hill 2011]'?)

Zslp, T
2p)

Again, [Heller and Ormsby 2016, Theorem 4.17] implies that

my (HZ))R =

Be“(HZ))r ~ HZ>.
We therefore deduce
nHZ,® =l (HZ)rlp ™'
=Fa[7?, p™],
2 HZ" = nf (HZ)plt 2
_ D[t p]
2p)
A HZY = af, (HZ)rlt 210"

=Ft*2, p*].
We therefore deduce from the Mayer—Vietoris sequence

2C HZ, = Z5[7?%, p, 217%] ® Falz?, p] (9p=1r2),
T (2p) (T, p>)
Note that there are implicitly defined relations in the above presentation, such as
122t %) =2¢7%+2 and p(2r~*) = 0.
The calculation is displayed in Figure 3. Everything is analogous to the nota-
tion of Figure 2, except that there are now boxes in addition to solid dots, which
represent factors of Z5.

I2Hill computes the homotopy of B PGL(O)QA, which, by the work of Hopkins and Morel and of
Hoyois [2015] is equivalent to HZ5.
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The effective cover of 2-adic algebraic K-theory. We now turn our attention to
the spectrum kgl, the effective cover of K GL, the algebraic K-theory spectrum
for the reals. Hill [2011] computes the 2-adic homotopy groups of this spectrum
through the identification

kgly ~ BPGL(1)}.
In particular, kgl5' is cellular. We have

Zalp, 272, 4, 1]
(2p, v1p3)

nf*kglg ~

with
loil = (2, D).
Note that, just as in the previous subsection, our presentation has implicitly defined

relations, such as (272)? = 47*.
It is clear from the definition of K G L that we have

Be®> KGL = KR

where K R is Atiyah’s Real K-theory spectrum, and from [Heard 2019, Corollary
5.9] we deduce the connective analog

Be®2 kgl ~ kR.

We deduce
2 (kRY)® =1l kgl o]

=Fa[c*, p™],

RO =¥ kgls [t

_ Dolp, 27, v ]

(2p, v1p3)
w (kRS =7l (kg [T 1o "]
=Fo[t*, p*].
We therefore deduce
G pr = Lol 207 7 vy, 22, v 7] o Falz?, p] Py
2p,v1p”) (T%°, p™)

The calculation is displayed in Figure 4. In this figure, dotted lines represent
vi-multiplication.
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Groups with Spanier—Whitehead duality

Shintaro Nishikawa and Valerio Proietti

Building on work by Kasparov, we study the notion of Spanier—Whitehead K-
duality for a discrete group. It is defined as duality in the KK-category between
two C*-algebras which are naturally attached to the group, namely the reduced
group C*-algebra and the crossed product for the group action on the univer-
sal example for proper actions. We compare this notion to the Baum—Connes
conjecture by constructing duality classes based on two methods: the standard
“gamma element” technique, and the more recent approach via cycles with prop-
erty gamma. As a result of our analysis, we prove Spanier—Whitehead duality
for a large class of groups, including Bieberbach’s space groups, groups acting
on trees, and lattices in Lorentz groups.

Introduction

Alexander duality applies to the homology theory properties of the complement of
a subspace inside a sphere in Euclidean space. More precisely, for a finite complex
X contained in $"*!, if H denotes reduced homology or cohomology with coeffi-
cients in a given abelian group, there is an isomorphism H;(X) = Hi(smH! \ X),
induced by slant product with the pullback of the generator «*([S"]), via the duality
map p: X x (S"M\ X) — 8", u(x, y) = @x —y)/lx—yll.

Ed Spanier and J. H. C. Whitehead generalized this statement and adapted it to
the context of stable homotopy theory. Their basic intuition was that sphere comple-
ments determine the homology, but not the homotopy type, in general. However,
the stable homotopy type can be deduced and provides a first approximation to
homotopy type [Spanier and Whitehead 1958]. Thus, the modern statement is
phrased in terms of dual objects X, DX in the category of pointed spectra with
the smash product as a monoidal structure, and by taking maps to an Eilenberg—
Mac Lane spectrum one recovers Alexander duality formally.

The modern version of the duality implies Poincaré duality for compact man-
ifolds and extends in a natural way to generalized cohomology theories such as
K-theory. In this setting, a compact spin®-manifold exhibits Poincaré duality in

MSC2010: primary 46L.85; secondary 46L80, 55P25.
Keywords: Spanier—Whitehead duality, Poincaré duality, Baum—Connes conjecture, direct splitting
method, noncommutative topology.
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the sense that the K-homology class of the Dirac operator induces by cap product
an isomorphism K*(M) — K,,(M), where the shift is given by the dimension
[Kasparov 1988].

More generally, the bivariant version of K-theory introduced by Kasparov, which
we shall use extensively in this paper, showcases a close relationship to Alexander—
Spanier duality; by this we mean that for X, Y finite complexes one has a chain of
isomorphisms [Kaminker and Schochet 2019]

KK.(C(X), C(Y)) =KK,(C, C(DXAY)) = K. (C(DXAY)) = K*(DXAY).

Having introduced C*-algebras in this way, as they arise naturally in applications
to topology, dynamics, and index theory, and are generally noncommutative, it is
natural to seek for generalizations of Spanier—Whitehead duality in the framework
of noncommutative geometry.

For a separable, nuclear C*-algebra A represented on a Hilbert space, the com-
mutant of its projection into the Calkin algebra has some of the properties reminis-
cent of a Spanier—Whitehead K-dual. This is the Paschke dual of A, and satisfies
K.(P(A)) = K*(A). However, in general P(A) is neither separable nor nuclear,
the Kasparov product is not defined, so that it seems desirable to explore different
routes for the definition of a K-dual.

A. Connes [1994] introduced the appropriate formalism for this question, which
shall be described shortly, and in [Connes 1996] he showed the first nontrivial ex-
ample of a noncommutative Poincaré duality algebra, in the form of the irrational
rotation algebra. H. Emerson [2003] proved the same result for the crossed product
of a hyperbolic group acting on its Gromov boundary. Examples of pairs of alge-
bras with Spanier—Whitehead duality were also given by Kaminker and Putnam
[1997] in the case of Cuntz—Krieger algebras associated to M and its transpose,
where M is a square {0, 1}-valued matrix. Their result is a special case of a more
general one, in which the stable and unstable Ruelle algebras of a Smale space are
shown to be in duality [Kaminker et al. 2017]. Duality in K-theory also appears in
connection with string theory on noncommutative spacetimes [Brodzki et al. 2008;
2009].

In this paper, G is a discrete group which admits a G-compact model EG of the
classifying space for proper actions [Baum et al. 1994]. We study the question of
Spanier—Whitehead duality for the pair of C*-algebras C;(G) and Co(EG) x G,
where the latter is the crossed product for the group action on EG.

This problem is tightly related to the Baum—Connes conjecture and in particular
to the so-called Dirac dual-Dirac method. This goes back to the seminal work
of Kasparov [1988, Sections 4 and 6] and is further explored in [Kasparov and
Skandalis 1991, Section 6]. In a different direction, the relationship between the
assembly map and Fourier—Mukai duality is discussed in [Block 2010].
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The idea of an underlying noncommutative duality whenever Dirac and dual-
Dirac classes are available is well-known to experts; see for example [Brodzki
et al. 2008, Example 2.14; Echterhoff et al. 2008, Theorems 2.9 and 3.1]. In
particular work of Emerson and Meyer [2010] shares many ideas with the present
paper, while working in the context of equivariant KK-theory and groupoids. See
page 472 and Remark 1.18 for more details.

Below are two main results of this paper. More details on statements and termi-
nology are given in the sequel.

Theorem. Suppose the y-element exists. Then Co(EG) X G is a Spanier—Whitehead
K-dual of C}(G) (in a canonical way) if and only if G satisfies the strong Baum—
Connes conjecture.

Corollary. For all a-T-menable groups G which admit a G-compact model of EG,
Co(EG) x G is a Spanier—Whitehead K-dual of C}(G).
Noncommutative Spanier—Whitehead duality. Let us see the main notions we will
be working with. In what follows the C*-tensor product is understood to be spatial.
Definition 0.1 (cf. [Brodzki et al. 2008, Section 2.7]). Let A, B be separable C*-
algebras. B is called a weak Spanier—Whitehead K-dual of A if there are elements
deKK;(A® B,C) and 6e€KK_;(C,A® B)

such that the induced maps

di:K;(A)— K/*(B), d;j(x)=x®ad,

8;: K/(B)— K;_i(A), 8j(x)=38®px
are isomorphisms and inverses to each other.

Note that, unlike the case of topological spaces, in the noncommutative context
the existence of d, given §, is an additional requirement.

Some notation: 14 € KKy(A, A) stands for the ring unit, c : AQ B=ZB® A
denotes the flip isomorphism. Recall as well the homomorphism

75 : KK (A, A) > KK,(A® B, AQ B),
given on cycles as
(¢, H,T)—> (¢®1,HR®B, T®1),

and equally defined via Kasparov product (over the complex numbers) by tp(x) =
x®@1lg=13&x.
Lemma 0.2 [Emerson 2003, Lemma 9]. In the setting of Definition 0.1, we have
the identities

Bj4i0d))() =D"y®4As and (dj—;i08;)(y)=(-1)"Ap®pY,
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where the elements Ay € KKo(A, A) and Ap € KKo(B, B) are defined as

Ax=08Rpd=(®14)Bagpea (14 B0*(d)),
Ap=8®4d = (0.,(8)® 13) Spgass (1 ®d).

Definition 0.3. Let A, B denote C*-algebras in weak Spanier—Whitehead duality.
With notation from Lemma 0.2, if we have A4 = 14 and Ag = (—1)'15, we say
that A and B satisfy Spanier—Whitehead K-duality.

Note that this definition is symmetric, so that it can equivalently be phrased by
saying that B is a Spanier—Whitehead K-dual of A, in alignment with the weak
form introduced earlier.

Remark 0.4. In the tensor category (KK, ®), where objects are C*-algebras and
Hom(A, B) = KKy (A, B), the previous definition (for i = j = 0) can be reinter-
preted as the statement that A is a dualizable object and B is its dual. In other
words the triangle identity

A A

(and its analogue swapping A and B) holds up to the unique isomorphisms coming
from braiding and A ® C = A.

The Spanier—Whitehead K-dual respects tensor products in the following sense:
if the dual of A is B and the dual of A’ is B’, then the dual of A® B is KK-equivalent
to A’ ® B’, provided it exists; see [Kaminker and Schochet 2019].

Throughout this paper G denotes a countable discrete group admitting a G-
compact model for its universal example for proper actions.

Definition 0.5. G has (weak) Spanier—Whitehead K-duality if Co(EG) x G is a
(weak) dual of C}(G).

Remark 0.6. It follows from [Anantharaman-Delaroche 2002, Proposition 2.2]
that the action of G on EG is amenable. Then by [Anantharaman-Delaroche 2002,
Theorem 5.3] the associated full and reduced crossed products are isomorphic. In
particular, any covariant pair of representations for Co(EG) and G gives rise to a
representation of the reduced crossed product Co(EG) x G, namely the integrated
form.

In short, the aim of this paper is identifying an element x belonging to the
“representation ring” KKOG (C, C), and constructing classes d and § as above in
such a way that Acx) and AcyeG)xc are both expressible in terms of x. Then
the sought duality is reduced to studying the homotopy class of such an element.
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Baum—Connes conjecture: the duality perspective. The Baum—Connes conjec-
ture [Baum et al. 1994] states that the Baum—Connes assembly map

1% : KK (Co(EG), €) — KK,(C, C}(G)) 0.7)

is an isomorphism of abelian groups. A generalization “with coefficients” can
be introduced by inserting a G-algebra A in the right “slot” of the left-hand side
of (0.7), and by considering the corresponding reduced crossed product in the target
group:

1§ : KKS(Co(EG), A) — KK(C, A x, G). (0.8)

Going back to the case with trivial coefficients (i.e., A = C), since G is a discrete
group, the (dual) Green—Julg isomorphism [Blackadar 1998; Kaad and Proietti
2018; Land 2015]

KK (Co(EG), C) =KK.(Co(EG) %, G, C)
allows us to view the assembly map as a morphism
KK, (Co(EG) % G, C) — KK.(C, C/(G)). 0.9
We shall see that this map is given by Kasparov product with a certain element
§ e KK(C, C/(G) ® Co(EG) x G)

(see Definition 1.1). Thus, the Baum—Connes conjecture for a discrete group G
admitting a G-compact model EG is equivalent to the assertion that the element §
induces the isomorphism

8, : K*(Co(EG) x G) = K,(C*(G)).

A priori, this isomorphism itself is not enough to conclude that G has weak Spanier—
Whitehead K-duality. In this paper, under an assumption (see below), we identify
an element

d e KK(C}(G) ® Ch(EG) x G, C)

which induces a map

di: K (C7(G)) — K*(Co(EG) 1 G)

which is the inverse of §, in favorable circumstances, namely if the Baum—Connes
conjecture holds (it is a left inverse in general). Our assumption for constructing
such an element d is the existence of the so-called gamma element, or alternatively
the (y)-element for G. Let us briefly review these notions.
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The y-element and the (y)-element. The following notion of the gamma element
originates in [Kasparov 1988].

Definition 0.10 [Tu 2000]. An element x in KK (C, C) is called a gamma element
for G if it satisfies the following:

(1) For any finite subgroup F € G, we have
Resi (x) = ¢ € KKF(C, ©).
(2) For some separable, proper G-C*-algebra P, we have
x=B®pa, wherea cKKS(P,C), KK, P).

A gamma element for G, if it exists, is a unique idempotent in KK (C, C) which
is characterized by the listed properties. Thus, we call it the gamma element for
G and denote it by y. The existence of the gamma element for G implies that
the Baum—Connes assembly map is split-injective for all coefficients A [Tu 2000],
and furthermore that the assembly map uﬁ is surjective if and only if y acts as the
identity on K, (A X, G) via ring homomorphisms

KK%(C,C) - KK (A, A) > KK(A %, G, Ax,G) — End(K,(Ax,G)). (0.11)

The other composition y = & ® 8 is an idempotent in KK(P, P) which may not
be the identity on P in general. Upon replacing P with its “summand” Pg = y P,
which can be defined as a limit of P 2> P 3> ... in the category KK¢ [Neeman
2001, Proposition 1.6.8], we can arrange « (and 8) above to be a weak-equivalence,
meaning that Resg(a) is an isomorphism for any finite subgroup F of G. In
this case, the element « in KKY(P¢, C) is called the Dirac element and can be
characterized up to equivalence by the fact that « is a weak-equivalence from a
“proper object” Pc to C. Meyer and Nest [2006] showed that the Dirac element
always exists for any group G but, in general, it is not known whether P¢ can
be taken to be a proper C*-algebra. For most of the known examples, P¢ can
indeed be assumed to be proper, meaning that we may think P = Pc. However,
we emphasize that the algebra P appearing in the definition can be quite arbitrary,
whereas Pg is a uniquely characterized object.

In [Nishikawa 2019], the first author introduced a notion called the (y)-element,
which can be thought of as an alternative description of the gamma element, by-
passing the necessity of a proper algebra P for its definition.

Recall that we assume that G admits a G-compact model for EG. We use [—, —]
to denote the commutator.

Definition 0.12 [Nishikawa 2019, Definition 2.2]. A cycle (H, T) representing
an element [H, T] in KKY(C, C) is said to have property (y) if it satisfies the
following:
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(1) For any finite subgroup F € G, we have
Res&([H, T1) = 1c €e KKF(C, ©).

(2) There is a nondegenerate G-equivariant representation of Co(EG) on H such
that

(2a) the function
g—1lg-f. Tl

belongs to Co(G, K(H)): it vanishes at infinity and is compact-operator-
valued for any f € Co(EG);
(2b) for some cutoff function ¢ € C.(EG) (i.e., ¢ is nonnegative and satisfies

D ¢eG g(c)? = 1), we have

T-> (g-0)T(g-c) € K(H).

geG

An element x in KK (C, C) is called a (y)-element for G if it is represented by
some cycle with property (y).

A (y)-element for G, if it exists, is a unique idempotent in KK¢(C, C) which
is characterized by the listed properties. Thus, we call it the (y)-element for G. If
there is a gamma element y for G, there is a cycle with property (y) representing y .
Thus the two notions, the y-element and the (y)-element for G, coincide when y
exists. The existence of the (y)-element x for G implies that the Baum—Connes
assembly map is split-injective for all coefficients A, and furthermore that the as-
sembly map ug is surjective if and only if x acts as the identity on K.(A x, G)
via ring homomorphisms (0.11).

Given the existence of the (y)-element, [Nishikawa 2019] introduced the so-
called (y)-morphism as a candidate for inverting the assembly map w©. This is
given by Kasparov product with a certain element

X € KK(C}(G) ® Co(EG). C).
The Green—Julg isomorphism allows us to get the corresponding element
d € KK(C;(G) ® Co(EG) x G, C).

Our proposed strategy aims at realizing weak Spanier—Whitehead duality through
elements 6 and d respectively corresponding to the assembly map and the (y)-
morphism, which seems to be a natural situation. Furthermore, as a result of
Lemma 0.2, the surjectivity and injectivity of the assembly map are controlled
by Acx) and Acy(gG)«G- respectively. This gives yet another interpretation of
these two classes.
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Equivariant Kasparov duality. In [Emerson and Meyer 2010] the authors study
several duality isomorphisms between equivariant bivariant K-theory groups, gen-
eralizing Kasparov’s first and second Poincaré duality isomorphisms. For many
groupoids, both dualities apply to a universal proper G-space, which is the basis
for the Dirac dual-Dirac method. In this setting they explain how to describe the
Baum—Connes assembly map via localization of categories as in [Meyer and Nest
2006].

The main notion in [Emerson and Meyer 2010] is that of equivariant Kas-
parov dual for a G-space X. It involves an X x G-C*-algebra P, an element
« € KK (P, C), and an additional class ® € RKKY(X; C, P) (see [Emerson and
Meyer 2010, Definition 4.1] for more details). Recall that the category RKK (X)
coincides with the range of the pullback functor p% : KK¢ — KK**¢ via the
collapsing map p : X — .

The case X = EG is particularly relevant for our purposes. The class ® may be
thought as the “inverse” of « up to restriction to finite subgroups. More precisely,
if a lifting B € KKY(C, P) of © exists, then the axioms of equivariant Kasparov
duality guarantee that 8 ® p « is the y-element and @ ®¢ 8 = 1p. In particular, we
have P = P¢ and « is a weak equivalence, and hence a Dirac morphism.

Let Z denote the unit space of G and suppose the moment map from EG — Z
is proper. Then [Emerson and Meyer 2010, Theorem 5.7] establishes a connection
to what we might call “equivariant” Spanier—Whitehead duality. We summarize it
below for the convenience of the reader (see also Remark 1.18).

Theorem 0.13. The triple (P, o, ©) is a Kasparov dual for X if and only if Co(X)
and P are dual objects in KK (cf. Remark 0.4) with duality unit and counit in-
duced by ©® and «, respectively.

Concerning the connection with the Baum—Connes assembly map, we have:

Theorem 0.14 [Emerson and Meyer 2010, Theorem 6.14]. Suppose EG admits a
local symmetric Kasparov dual. Then the assembly map ,uf is an isomorphism for
all proper coefficient algebras A.

Assuming EG to be G-compact, the proof of the previous theorem roughly
goes as follows: the second Poincaré duality isomorphism [Emerson and Meyer
2010, Section 6] combined with the Green—Julg isomorphism for proper groupoids
[Emerson and Meyer 2009, Theorem 4.2] translate the assembly map ug into the
map K,((P®A) X G) — K.(A x G) induced by «. Now it is easy to see from the
definition of equivariant Kasparov dual that the element 74 () € KK¢(P ® A, A)
is invertible when A is a proper C*-algebra.

Main results. Let us summarize our main results. Recall that G is a countable
discrete group with a G-compact model for EG.
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As we have explained in the previous sections, our main strategy for obtaining
duality relies on (1) the y-element, or (2) the (y)-element. The choice of one
over the other does not affect the expression for the unit of Spanier—Whitehead
duality; nevertheless, the descriptions of the counit and the elements Acx () and
Ac,(EG)»c depend on the method that we are employing. In practice, the latter
elements will be expressible in terms of the y-element in the first case, and in the
terms of the (y)-element in the second case.

Along this categorization, Theorem A and Corollary B below fall in the first
scenario, while Theorem D is an instance of the second. Section 3 contains simple
examples of possible applications of duality in K-theory.

Theorem A. Suppose that the y-element y € KKC(C, C) exists and let Pc be the
source of the Dirac morphism o € KK (Pc, C). Then the C *-algebra Pc X G is
Spanier—Whitehead K-dual to Co(EG) % G.

A few more comments about this theorem. The source of the Dirac morphism
(the “simplicial approximation” in [Meyer and Nest 2006]) can be obtained in a va-
riety of ways: by appealing to the Brown representability theorem, by considering
the left adjoint to the embedding functor of projective objects, or by constructing
the appropriate homotopy colimit from a projective resolution of C (here, “projec-
tive” is to be understood in a relative sense, i.e., with respect to the homological
ideal of weakly contractible objects). Even though Pc may not be a proper algebra
in general, its reduced and maximal crossed products are KK-equivalent. This is
because Pc belongs to the localizing subcategory of KK generated by proper
algebras and the reduced and maximal crossed product functors are triangulated
functors and commute with countable direct sums; see [Meyer and Nest 2006].

Theorem A provides a fourth characterization of Pc, namely as the Spanier—
Whitehead K-dual of the classifying space for proper actions. Note that even
though our statement is only available after descent— that is, we can only get
Pc » G and not P¢ via duality —this is only a minor drawback in the case of
discrete groups, for the left-hand side of (0.9) retains the full information of the
“topological” K-theory group through the dual Green—Julg isomorphism

KK (Co(EG), C) = KK(Co(EG) % G, C).

In the situation where, at the KK-theory level, the simplicial approximation is
equivalent to the data of G acting on the point, we can replace P¢c x G with C)(G)
and obtain Spanier—Whitehead duality for the group as in the next corollary. If the
y-element exists, we define the strong Baum—Connes conjecture to be the statement
that 19 (y) = 1¢x() in KK(C}(G), C}(G)).

Corollary B. Suppose the y-element exists. Then G has Spanier—Whitehead dual-
ity if and only if it satisfies the strong Baum—Connes conjecture.
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In light of the result above, we can view the notion of Spanier—Whitehead K-
duality for G as a homotopy-theoretic characterization of the strong Baum—Connes
conjecture (cf. Remark 3.8).

The main application of the previous corollary is summarized in the result below.

Corollary C. All a-T-menable groups which admit a G-compact model of EG
have Spanier—Whitehead K-duality. Examples of a-T-menable groups are the fol-
lowing:

e all groups which act properly, affine-isometrically, and cocompactly on a
finite-dimensional Euclidean space,

e all cocompact lattices of simple Lie groups SO(n, 1) or SU(n, 1),

e all groups which act cocompactly on a tree.

Having such an explicit duality should be useful. For example, in principle,
it allows us to compute the Lefschetz number of an automorphism of C;(G), or
more generally of a morphism f in KK(C}(G), C(G)); see [Dell’ Ambrogio et al.
2014; Emerson 2011].

If a cycle with property (y) is found, then we can deduce the duality in complete
analogy with the case of the y-element (this is how the definition of property (y)
was designed). However, in this case we do not have information on the local-
ization at the weakly contractible objects [Meyer and Nest 2010]. So we get the
corresponding statement for Corollary B, but not for Theorem A.

Theorem D. Suppose there is a (y)-element x € KK°(C, C) for G. If 78 (x) =
lex) € KK¢ (CH(G), C}(G)), then G has Spanier—Whitehead duality.
1. General framework

Let G be a countable discrete group, and EG be a G-compact model of the univer-
sal proper G-space. Let A and B be C*-algebras equipped with a G-action. If the
G-action on B is trivial, we recall the dual Green—Julg isomorphism [Blackadar
1998; Kaad and Proietti 2018; Land 2015]

GJ:KKC(A, B) XKK(A x G, B).
Given a € A, define 8; € C.(G, A) C A x G to be the function

L
sy =14 TIT8
§ 0 ift#g.

The dual coaction is defined as

A:AxG— CHG)®AXG, 8y > 8 ® 8.
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Let ¢ € C.(EG) be a cutoff function, and consider the associated projection
pe € Co(G, Co(EG)) € Co(EG) x G defined by p.(g) = cg(c). This projection
does not depend on ¢ up to homotopy, hence we denote it pg in the sequel.

Definition 1.1. We define the canonical duality unit to be the class
§ =8¢ =[A(pc)] € KK(C, C;(G) ® Co(EG) x G).

The notational dependence on G shall be dropped when clear from the context.
In this paper, whenever we say that G has Spanier—Whitehead duality, we implicitly
assume that the duality unit is given as above.

Let us recall the definition of Kasparov’s descent homomorphism [1988], which
plays an important role in this paper. It is denoted ;¢ below. Suppose (¢, H, T)
is a Kasparov cycle defining an element of KK®(A, B). The G-action on H is
denoted U : G — End¢(H). The element ]G([d), H, T]) e KK(AxG,BxG)is
defined by the cycle (¢, H x G, T) given as follows.

The Hilbert C*-module H x G is the completion of C.(G, H) with respect to
the norm induced by the B x G-valued inner product

(E10) (1) = B ((E(@)12(gD)),

geG

where &, ¢ € C.(G, H), t € G, and B denotes the given G-action on B. The right
action of B % G is uniquely determined by the formula

E- PO =D E@B(f(g "1,

geG

where £ € C.(G, H), f € C.(G, B), and t € G. The representation of A x G on
H % G is determined by

@NHEND =D d(F@IIUREE )],
geCG
where f € C.(G, A), & € C.(G, H), and ¢t € G. Finally the operator T is defined
by (fé)(z‘) =T(&(¢)) for § € C.(G, H) and t € G. By using reduced crossed
products everywhere, we can similarly define a “reduced version” of the descent
homomorphism, denoted ;¢ in the sequel.

Lemma 1.2 [Land 2015, Proposition 4.7]. Kasparov’s descent homomorphism can
be factorized as follows:

G

KKC(A,C) — 1 L KK(A x G, C*(G))

Jo |
tC*(G)

KK(A % G,C) —— KK(C*(G) ® A X G, C*(G))
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When the canonical map A x G — A X, G is an isomorphism (e.g., if G acts
properly on A), the version of the previous lemma with reduced crossed products
also holds. See Remark 0.6.

Lemma 1.3 [Kaad and Proietti 2018, Section 2]. Let A and B be G-C*-algebras
and suppose the G-action on B is trivial. Consider an element x € KK%(A, A).
The following diagram commutes:

KKS (A, B) —SL KK(A x G, B)

lx@v— l;%)@

KKS(A, B) —2L KK(A x G, B)
It follows from Lemma 1.2 that we have the commutative diagram

g

KK (Cyo(EG), B) KK(C, B® C*(G))

GJlE l—
5®CO<§GMG—

KK(Cyo(EG) » G, B) ——— = KK(C, B® C}(G))

Since the definition of the duality counit requires additional information, and
depends on the choice of “y-like” element, the rest of this section gets split in two
parts. The torsion-free case is treated in detail at the end of this section.

Argument based on the (y)-element. Let (H, T) be a G-equivariant Kasparov cy-
cle with property (y). Let x = [H, T] be the corresponding element in KK (C, C).
Let

F=[H®L(G), p®m, (g(T))gec] € KK(C}(G)® Co(EG),C).  (14)

Here, m : Co(EG) — B(H) is the representation witnessing the conditions for
property (y) of (H, T), p stands for the right regular representation, and C}(G)
has trivial G-action. By means of the Green—Julg isomorphism, we set

d =GJ(x) e KK(CI(G) ® Co(EG) x G, C).
We set AC;‘(G) =4 ®C0(EG)>4G d and ACQ(EG)XIG =4 ®C;‘(G) d. We shall prove
(1) Acxy = 7 (x) in KK(CH(G), C}(G));
(2) AcyEG)xG = lcyEGyxc iIn KK(Co(EG) x G, Co(EG) X G).
Proposition 1.5. We have the equality Ac:) = J (x).

Proof. We claim the Kasparov module

(P61 ®cyEGyxa 1 () (1.6)
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is equivalent to ;¢ (x), i.e., there is an isomorphism of Hilbert C*-modules inter-
twining the representations and the operators (up to a compact perturbation).
The class in (1.6) is represented by

(H®L*(G) %, G, (p®7 x, D(p6 ® =), (8(T))gec »r 1).
We have an isomorphism of C;(G)-modules
H >, GZ(p@m x, 1)(pg ® D(H ® 3(G) , G) (1.7)
given by the assignment
Exrugi> Y () (h-E) @8y Xy thng,
heG

where £ € H, §;, € £>(G), and c is a cutoff function defining p;. The inverse of
the map above is given by the restriction of

(E)neG Xy ug Z Rt (m(0)E) ® Xplp-g,
heG

where (§)neq € H ® €2(G). Under the isomorphism in (1.7), the representation
(p®@m %, 1)(pg ® —) is identified with the left action of C;'(G) on H x, G, and
the compressed operator

(p®@m % 1)(p6 @ D((&(T))gec »#r D(p @7 x, 1)(pe ® 1)

is identified with T’ x, 1 on H %, G, where we define
T'=) (8-0T(g-0).
geG
Hence the claim follows by definition of property (y).
By Lemma 1.2, we have
18 (%) = A ®cy£6)xc GI(F).
Thus, we have
15 @) =[pc) Bcy(e)x6 17 (F)

= [p6] ®cy(E6)xG A ®cyEG)xG GI(X)

=4 @CO(EG)MG d. |
Proposition 1.8. We have the equality Acy(£G)xG = 1cy(EG)xG-

In order to prove the proposition, a few preliminaries are in order. First we
generalize the construction in (1.4) to include a coefficient algebra. This is easily
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done: simply replace ¢2(G) with the right Hilbert A-module £?(G, A) and define
the right regular representation pf{ of A X, G (equipped with trivial G-action)

ar> (g(a))gea, h— pp:(ag)gec H> (agn)gec
fora € A,h € G. Thus we get a class X4 in KK°(A %, G ® Co(EG), A). We
define a group homomorphism
v§ 1 KK(C, A %, G) = KK (Co(EG), A)
as the one induced by the class X4 via the index pairing
KK(C, A x, G) x KKY(A %, G ® Co(EG), A) — KK (Co(EG), A).

This map is referred to as the (y)-morphism in [Nishikawa 2019]. Note also that
Glo vg equals the map d; from Definition 0.1 (choosing B = Co(EG) x G as
usual). The lemma below is about the naturality property of the assembly map and
the (y)-morphism.

Lemma 1.9. The following diagrams commute for any f € KK%(A, B):

G

KKC (Co(EG), A) —2 KK(C, A x, G)

|-e lf@m
G

KKC (Co(EG), B) —2 KK(C, B %, G)

1)G
KK(C, A %, G) —— KKY(Co(EG), A)

l@f(f) l—@f

G
KK(C, B %, G) SN KK (Cy(EG), B)
Proof. The first diagram commutes by functoriality of descent and associativity
of the Kasparov product. By results from [Meyer 2000] any morphism f in
KKY(A, B) can be written as a composition of *-homomorphisms and their in-
verses in KK. This means it suffices to check the commutativity of the second
diagram with respect to x-homomorphisms f : A — B. We omit this simple
verification. (]

Proof of Proposition 1.8. Let B = Co(EG) x G and regard it as a G-C*-algebra
with the trivial G-action. We have the following diagram:

G UG
KK (Co(EG), B) — KK(C, C}(G) ® B) —— KK (Co(EG), B)

GJlE l: R GJlE
5®p— —®cx)d

KK(B, B) —— KK(C, C}(G) ® B) ———— KK(B, B)
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If we prove that the composition on the top is the identity, then it follows that
AC()(EG)XJG = ICO(EG)NG- Let DB . PB — B be a weak equivalence as in [Meyer
and Nest 2006]. Because the diagram

G G

G e "Py G
KK”(Co(EG), Pp) — KK(C, P X G) —— KK (Co(EG), Pp)

lDB* ler(DB*) lDB*
G G

KKY(Co(EG), B) —~— KK(C, B », G) —— KK9(Cy(EG), B)

commutes, it suffices to show that vgB is a left inverse of the assembly map ugB.

Now, ,ugB is invertible, hence it suffices to show that vgB yields a right inverse. A

minor generalization of the proof of Proposition 1.5 shows that ,uIGJB ) vgB coincides

with the induced action of x € KK¢(C, C) on K.(Pg x G). Recall that x equals
the identity when restricted to each finite subgroup H C G, and Pp x G belongs
to the localizing subcategory of KK generated by the B x H’s. Therefore the map
I® - K.(Pp x G) - K,(Pp x G) is the identity by [Meyer and Nest 2006,
Theorem 9.3]. O

Remark 1.10. In parallel with Proposition 1.5, one can prove that

AcyEGxG = 1 (X ® leyes))-

Again, we set B = Co(EG) »x G and first notice that vg o ,u(B; =X @CO(Eg) —. It
is enough to show this when B is replaced by Pg, in which case we can invert the
assembly map and write

OB )= M® ) ougomy ™
1§ ovs =u§ o (x ®cyrc) —)ou§)",
Vg O/Lg =X ®C0(EG) -
To complete the proof one must show that
GI(x ®c GI™ (1) = J,° (x* ® lcyea) @5 L,
but this follows from Lemma 1.3.
We now come to the main result of this subsection.
Theorem 1.11. Suppose there is a (y)-element x € KK°(C, C) for G. If
7 (x) =1€KK(C}(G), CH(G)),

then G has Spanier—Whitehead duality.
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Argument based on the y-element. Suppose there is a gamma element y as in
Definition 0.10. Following [Guentner et al. 2000, Chapter 15], we define a map s4
for any proper algebra A. This is the G-equivariant *-homomorphism

sa:A X, G®Cy(EG) — K(A®(X(G)),

where A X, G is equipped with the trivial G-action, defined as the tensor product
of the representation

Co(EG) 3 ¢ > ($)gec € LA L3(G))
of Co(EG) on A ® £>(G) and the right regular representation
Asar (8(@)ge6 €LIARLG), G3gr>1®p,

of A, G on A®£*(G), where Py 1s the right translation by g. Here, the G-action
on the Hilbert module A ® £2(G) is given by the tensor product of the action on A
and the left-regular representation. The x-homomorphism s4 defines an element

ss € KK9(A x, G ® Co(EG), A).

Proposition 1.12 (see [Guentner et al. 2000, Chapter 15]). For any proper G-
C*-algebra A, the x-homomorphism s 4 defines the inverse

sa:KK(C, A x, G) = KK (Co(EG), A)
of the assembly map
1§ : KKC(Co(EG), A) — KK(C, A %, G).

Proof. The assembly map is an isomorphism for any proper algebra. Hence, we
just show that the composition ug o 54 is the identity. Take a Kasparov cycle
(E, F) for KK(C, A x, G) where E is a graded A x, G-module and F is an odd,
self-adjoint operator on E satisfying 1 — F? = 0 modulo compact operators.

By Kasparov’s stabilization theorem, we can assume E is A ® H x, G for
some graded Hilbert space H with the trivial G-action. The map s4 sends this
cycle (A ® H %, G, F) to the G-equivariant cycle (A ® H ® 2(G), 7, p(F))
for KK¢ (Co(EG), A), where 7 is a representation of Co(EG) on AQ H ® 2(G)
defined as follows: for ¢ in Co(EG),

(P)(ag ® vy ®Sg) = pag Vg R I,
and p(F) is an operator in L(A® H ® £%(G)) determined by the map

LAQH X, G)=M(AQ K(H) x, G)
L M(A® K(H ® (*(G))) = L(A® H ® (*(G)),
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which is a natural extension of the right regular representation ,off of Ax, G on
A ® £2(G) described before. Hence, the composition ,uf o 54 sends the cycle
(A® H %, G, F) to the cycle (p.(A ® H ® £*(G) X, G), p.p(F) %, 1p.), where
we simply denote by p. the image of a cutoff projection p. in Co(EG) X by the
representation 7 X, 1.

On the other hand, there is an isomorphism of right Hilbert A X, G-modules

AQH X, G— p.(AQ HQ*G) %, G)

given by

Expug > Y c(h(E) @8, ¥y upg foréin AQ H.
heG

The inverse map is given by
(Ennec Xr ttg > D BT (CER) X, upry  for (E)reg in A® H®L7(G).
heG

Under this isomorphism, the restriction p.p (F) %, 1 p. of p(F) %, 1 on the subspace
pP(AQH ®(G)x,G)of AQ HR®*(G) %, G corresponds to the operator F' on
AQ® H %, G. In summary, the composition ,ug osy4 sends the cycle (AQ H X, G, F)
to itself up to the isomorphism described above. ]

For any separable G-C*-algebra B, we have the commutative diagram

1§ : KK (Co(EG), B) —— KK(C, B x, G)

l—@cﬂ J/‘@Bquer(idB®}3)
Mg@p : KKG(CO(EG), B® P) i) KK(C, (B® P) x, G)
l—@w l_®(B®P)><rG]rG(idB®a)

1§ : KK (Co(EG), B) —— KK(C, B x, G)

where the vertical composition on the left is the identity. With this observation and
Proposition 1.12, we see that the element

(S (15® B)) B85 P)x,G SBap ®p & € KKO((B %, G) ® Co(EG), B)

induces the left-inverse of the assembly map ,ug via Kasparov product. We remark
that this is the standard technique for proving the split injectivity of the assembly
map in the presence of a y-element.

Now, we set d’ to be the element in KK(C’(G) ® Co(EG) x G, C) which cor-
responds to

d" = (3% (B)) ®px,c sp ®p a € KKC(CH(G) ® Co(EG), C).
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Let
8 =86 € KK(C, Co(EG) x G ® C}(G))

as before. We set A/C;‘(G) =4 ®C0(EG)><G d, A/C()(EG)NG =4 @C;k(G) d.
Proposition 1.13. We have
Ay = 17 (¥) € KK(CF(G), CF(G))

and
A/C()(EG)XIG = 1C0(EG)><1G € KK(CO(EG) Do Gv CO(EG) A G)-

Before giving a proof of Proposition 1.13, let us obtain our main results as its
direct consequences:

Theorem 1.14. If ;9 (y) = Lcx(G), then G has Spanier—Whitehead duality.
The previous result has a converse; see Theorem 3.3 for further details.
Theorem 1.15. If ,ug is an isomorphism, G has weak Spanier—Whitehead duality.

Theorem 1.16. In general, if y € KKC(C, C) exists, then Cy (EG) %G is a Spanier—
Whitehead K-dual of Pc X G.

Proof. Note that Pc x G is a direct summand (in the category KK) of C*(G)
corresponding to the idempotent ]rG (y) €e KK(C:(G), C}(G)) (see [Neeman 2001,
Proposition 1.6.8]). Namely, we have

ipcx6 € KK(Pe % G, Cr(G)), qprexG € KK(CF(G), Pc x G),
so that qpPcxG 0qu;><1G = 1P@>4G and l'prG O(GPexG = ],,G()/) We set

dP@X]G =ipexG @Cr*((;) d e KK(Cy(EG) ¥ G ® Pc x G, C),
8pexG =8 ®cxG) qrexnc € KK(C, Co(EG) x G ® Pc x G).

Then we have
8PexG QCy(EG)xG APexG = 1pexG, 3pPexG pPexG ApexG = 1cy(EG) G-

This proves the statement. We only prove the first identity; the other one is proved
similarly. For any C*-algebra D, we have the following commutative diagram:

KK(Pc % G, D) KK(C;"(G), D)
apwc@wl B%“”_l
KK(C, Co(EG) % G ® D) —— KK(C, Co(EG) %, G ® D)
l—@co(gc)xc dronc l@co@cmcd/

KK(Pc x G, D) KK(C}(G), D)
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Here, the top and the bottom horizontal arrows are induced by ip.xc and gpe.xG-
The right vertical composition is induced by ;. (y). It follows that the left vertical
composition is the identity. Taking D = P¢ x G, we get

8 PG ®Cy(EG)xG APexG = 1 pen- U
Proof of Proposition 1.13. We directly compute and prove
8 ®cyEcync d = 1% (y) e KK(CF(G), CF(G)).

For simplicity, we prove this for the case when 8 is represented by a cycle (P, b)
for b an essential unitary in M (P), and « by a cycle (H, F'), where P is represented
on H nondegenerately and F is a G-equivariant essential unitary modulo P. Then
d" is represented by a cycle of the form

(H®L(G), p®m, N(g(h))gec + M(g(F))gec),

where the G-action on H ® ¢>(G) is the tensor product of the G-action on H
and the left regular representation on 2(G), wisa representation of Co(EG) on
H®(G) given by ¢ = (¢)¢ei, and p is a representation of C(G) on H®(G)
by the right regular representation g — 1 ® p,. Here, M and N are given by the
Kasparov technical theorem as usual [Higson 1987; Kasparov 1980; 1995]. If we
compute § ®c,(EG)xc d’, we get the cycle isomorphic to

(H %, G, 76, To %, 1) = j°((H, Tp))

where (H, Ty) is a cycle for KKY(C, C), n¢ is the natural left multiplication by
C(G), and Ty = Nob+ M, Fy. Here Fy is the average of F': Fy= fG ge)Fg(c)dug
and so are Ny and My. The cycle (H, Tp) is (homotopic to) a Kasparov product of
o and S. In other words, the element [H, Tp] is the gamma element y. It follows
that

8 &cyecyncd =17 ().
Now we can prove

8 ®cx)d = lcyEc)ng € KK(Co(EG) x G, Co(EG) x G)

using a simple trick. We have the following diagram for B = Co(EG) x G with
the trivial G action:

G Gy—1

U (up)™
KK (Co(EG), B) —— KK(C. C}(G) ® B) —— KK (Co(EG). B)

.k :

55— ~Bcro)d
KK(B, B) — KK(C, C}(G) ® B) ——— KK(B, B)

Here, by (Mg)_l we simply mean the left inverse of ,ug. This shows § ®cx () d
acts as the identity on KK (B, B), proving the claim. U
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Remark 1.17. The previous proof also shows that d = d’, as it is intuitive from
the fact that the y-element can be represented by a cycle satisfying property (y)
[Nishikawa 2019].

Remark 1.18. It is natural to use the duality class ® from page 472 to prove
Theorem 1.16. The argument is based on the following diagram, where we set
d =GJ(sp ®p a), and ,ung’P is a bivariant assembly map (see Section 3):

-8cyEG)nG 4

KK(C, PxG®Co(EG)xG) KK(PxG, PxG)

G
TMPMG.P

KK%(Co(EG), PRC(EG)xG) KK (Co(EG)®PxG, P)

* *
pmlw NlpEG

- ®CO(§G) wgd

RKK®(EG; Cy(EG), PQCy(EG)xG) ————— RKK(EG; Co(EG)®P X G, P)

G ~
HPeCy(EG)xG | =

-BcoEc)nG d'

Sete =GJ! (1¢cy(EG)xc) and consider the element g = © ®C0( EG) e in the bottom
left group. Suppressing p.; from the notation, we compute

80 ®cy(EG)xG d' = O Bcy(EG) € ®cy(EG)xG CI(sp ®p )
= (O ®p a) B¢ (e ®cyEG)xc GI(sp)) = sp.

Now it is routine to check that ,ung’ p(sp) = 1pyuc. Hence, if we define
dpxg €EKK(C, P xG®Co(EG) X G)
by sending §¢ through the left vertical isomorphism in the diagram above, we have

8PG ®cy(EG)xG d = 1pxg-

The other identity is similarly proved; we skip the details.

Note that this is an improvement over Theorem 1.16, because the existence of
O is strictly weaker than having a gamma element. A similar argument shows that
in general, if Pgc is a (categorical) direct summand of some proper algebra, the
conclusion of Theorem 1.16 holds, namely Co(EG) % G is a Spanier—Whitehead
K-dual of Pc x G.

The torsion-free case. We treat the torsion-free case separately, partly because it
is particularly simple (e.g., condition (1) of Definition 0.10 reduces to a statement
in nonequivariant K-theory), and partly because it is among the first cases where
the duality classes (i.e., unit and counit) have been identified (albeit in a slightly
different language, cf. [Kasparov 1988, Theorems 6.6 and 6.7]).

We assume that G is a countable, discrete, torsion-free group. In this case,
because proper actions are automatically free, the space EG is identified as the total
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space EG of the classifying space for principal G-bundles, and our assumption that
G admits a G-compact model of EG translates into the assumption that G admits
a compact model of BG. Denote by [MF] the class

[MF] € KK(C, C*(G) ® C(BG))

associated to the module of sections of the Mis¢enko bundle. This is the Hermitian
bundle of C*-algebras obtained from the associated bundle construction

EG x C*(G) — BG,

where G acts diagonally, acting on the reduced group C*-algebra via the left regular
representation [Mis¢enko and Fomenko 1979].

Proposition 1.19 ([Connes 1994]; for a proof see [Kaad and Proietti 2018]). The
Mis¢enko module MF is the finitely generated projective Hilbert C*-module de-

scribed as the completion of C.(EG) with respect to the norm induced by the
Cx(G) ® C(BG)-valued inner product

EOO@ =Y EMLy-0, (1.20)

p(y)=x

where £, € C.(EG),t € G, x € BG, and p : EG — BG is the quotient map. The
right action of C}(G) ® C(BG) on M is defined by

E-HO) =D F@PO) &g, (1.21)

geCG
where § € C.(EG), f € C.(G, C(BG)), and y € EG.

We have, for any separable C*-algebra B with trivial G-action [Land 2015; Kaad
and Proietti 2018],

[MFI®c (8) —
KK(C(BG), B) ———  KK(C, C;"(G) ® B)

Lk

KKC (Co(EG), B) ——~— KK(C, C(G) ® B)

The vertical isomorphism above is implemented by the strong Morita equiva-
lence between C(BG) and Cy(EG) x G [Rieffel 1976], whose associated KK-class
is denoted [Y*] below (we use [Y] for the opposite module).

If G admits a compact nonpositively curved manifold as a model for BG, then
the element d was introduced by Kasparov [1988] as a “dual-Dirac” class

d e KK(C}(G) ® C(BG), C).
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To be more consistent with the terminology of this paper, d should be called the
duality counit induced by the y-element (which exists in this situation). Kasparov
went on to show that d defines a left inverse for the assembly map.

Hence we see that we are in a situation where Spanier—Whitehead duality comes
into play very naturally, with the choice MF = unit and d = counit. Note that, while
the class d requires structural information on the group, the class of the Mis¢enko
bundle relies on very little structure. This is in complete analogy with the canonical
unit defined previously.

Proposition 1.22. The class MF coincides with 8 from Definition 1.1 up to KK-
equivalence. More precisely, we have

86 =MF 8¢y ¢)cs0) Tex6) (VD).

Proof. Let us set Z = GJ_l([Y]) € KK (Cy(EG), C(BG)). It is shown in [Kaad
and Proietti 2018] that Z is represented by a G-C*-correspondence satisfying the
isomorphism of Hilbert modules

MF = i*(Y*) ®c, 6 16 (Z %, G)

(we are denoting by i the inclusion C < C(BG) as constant functions). We want
to prove

(P61 ®cyEG) <G [A] = i*([Y*]) ®cykc)xG 1 (Z) @C;‘(G)@C(BG) Tex ) ([YFD),

or equivalently, by Lemma 1.2,

[P6] ®coEoyxa [A]
= i*([Y*]) ®cyz6)x6 ([A1® Tcx6)(GI(Z))) Bcx6racma) Texe) (VD).
It is well-known that [pg] = i*([Y*]) (see for example [Land 2015]), so that by
associativity of the Kasparov product we have reduced the problem to showing
1¢2(6)(GI(2)) ® tcr () ([Y*]) = Te2(6)(GI(Z) By [Y*]) = lexy®coEG)%G-
Now GJ(Z) = [Y] by construction, and hence the proof is complete. U

Now suppose that G is a general torsion-free group, and that a (y)-element
x = [H, T] exists. Inspired by Kasparov’s construction, we define the class d in
KK(C}(G) ® C(BG), C) by setting

d =[Y1®c,EG)xG d.

The element d admits a simple description in terms of the cycle (H, T)) with prop-
erty (y) as follows. The G-equivariant nondegenerate representation 7w of Co(EG)
on H extends to that of the multiplier algebra C,(EG). Together with the represen-
tation g of G on H, it induces the representation g @ 7w of C}(G) ® C(BG) on
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H. Here, C(BG) is naturally identified as the subalgebra C,(EG) consisting of G-
invariant functions. The representation 7 extends to the representation for C;(G)
since g is weakly contained in the left regular representation. Indeed, mg is
contained in the (amplified) left regular representation as we have a G-equivariant
embedding from H to H ® £>(G) given by

V> Zn(h(c))v ® 8.
h

Proposition 1.23. The triple (H, 1¢®m, T) defines a Kasparov cycle [rg®m, H, T']
for KK(C}(G) ® C(BG), C). We have [ng ®@n, H, T]=d.

Proof. We need to show that for any G-invariant continuous function ¢ on EG, the
commutator [T, ¢] is compact. By condition (2b) for property (y), we just need to
show that [T, ¢] is compact, where 7' =) ¢eG 8(c)Tg(c); c is a cutoff function
on EG. Take any compactly supported function y on EG so that cx = c.

We have

[T, ¢1=)_ 8T, g(x)lg(c) =Y _ g(c)T,g(c),
geG geG

where T, = [T, g(x )] are compact operators whose norms vanish as g goes to in-
finity by condition (2a) for property (y). It follows that [T", ¢p]=>_ g 8(0)Tg8(c)
is compact (see [Nishikawa 2019, Lemmas 2.5 and 2.6]).

We leave to the reader the straightforward check that the element [H, mg @ 7w, T']
in KK(C}(G) ® C(BG), C) corresponds to d in KK(C}(G) ® Co(EG) x G, C) by
the Morita equivalence between C(BG) and Co(EG) X G. U

We set
Acic) = [MF1®ca) d, Acwe) = [MF]&c: ) d.
The following conclusions are immediate from the discussion above.

Theorem 1.24. Let G be a torsion-free group and suppose that a (y)-element
x € KKY(C, C) exists. We have

Acic) = 17 (%), Acso) = leso)-
For example, this is the case when BG is a compact smooth manifold of nonpositive
sectional curvature.
2. Examples

In this section we give a few examples and computations to put into context the
abstract duality results that have been explained previously. We primarily treat the
case of strong Spanier—Whitehead duality, and only briefly discuss the weak case,
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as it is mostly covered by other results in the literature (see, for example, [Brodzki
et al. 2008, Examples 2.14 and 2.17]).

Groups with Spanier—Whitehead K-duality. Let G be a countable discrete group
which satisfies (1) and either (2) or (3) of the following:

(1) G admits a G-compact model of EG;

(2) G admits a y-element y such that ;¢ (y) = lcx Gy, or

(3) G admits a (y)-element x such that ]rG (x) =1cx6)-
We recall that the gamma element y, if it exists, is represented by a cycle with
property (y). Therefore, condition (2) implies (3). Our previous argument shows

that such a group G has Spanier—Whitehead K-duality. Thanks to the Higson—
Kasparov theorem [2001], we obtain the following:

Theorem 2.1. All a-T-menable groups which admit a G-compact model of EG
have Spanier—Whitehead K-duality.

Examples of such a-T-menable groups include the following:

« all groups which act properly, affine-isometrically, and cocompactly on a
finite-dimensional Euclidean space,

« all cocompact lattices of simple Lie groups SO(n, 1) or SU(n, 1),

« all groups which act cocompactly on a tree (or more generally on a CAT(0)-
cube complex).

For any a-T-menable group G listed above, the gamma element y can be repre-
sented by an explicit cycle with property (y). Below, we describe an explicit cycle
with property (y) for these groups. As a consequence, we can obtain an explicit
cycle d in KK(C*(G)®Co(EG) x G, C) which, together with §, induces the duality
between C;(G) and Co(EG) x G.

To begin, we recall from [Kasparov 1988; Valette 2002] that the gamma ele-
ment exists for any group G which acts properly and isometrically on a simply
connected, complete Riemannian manifold M of nonpositive sectional curvature
which is bounded from below. In this case, the gamma element for G is represented
by an unbounded G-equivariant Kasparov cycle

(Hy. Dy),

where Hy, is the Hilbert space L*(M, A*TEM) of L?-sections of the complexified
exterior algebra bundles on M and where D), is the self-adjoint operator

Dy =dy+ d;?
on M given by the Witten type perturbation
dy =d+dfn
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of the exterior derivative d; the function f is the squared distance d12v1 (xg,x)on M
for some fixed point xo of M. Let

Dy

Fy=—7—

be the bounded transform of D,;. The element [Hyy, Fy] in KKC(C, C) is the
gamma element for G. We now suppose furthermore that the action of G on M
is cocompact. In this case, G admits a G-compact model of EG, namely the
manifold M.

Proposition 2.2. The cycle (Hyy, Fyy) has property (y).

Proof. Since [Hy, Fy] is the gamma element for G, it satisfies condition (1) of
Definition 0.12. To show that condition (2) holds for [Hys, Fis], we shall apply
Theorem 6.1 of [Nishikawa 2019]. We use the natural nondegenerate representa-
tion of Co(M) on Hys by pointwise multiplication. We take the dense subalgebra
B of Cy(M) consisting of compactly supported smooth functions. Note that B
contains a cutoff function of M. For any function 4 in B, we have

[Dum, (M) =1d +d*, g(h)] = g(c(h)),

where c(h) is the Clifford multiplication by the gradient of # which is bounded and
compactly supported. We can now use [Nishikawa 2019, Theorem 6.1] to conclude
that the bounded transform (Hys, F)) satisfies condition (2) of property (y). [

Corollary 2.3. For all groups G which act properly, affine-isometrically, and co-
compactly on a finite-dimensional Euclidean space R", the G-equivariant cycle
(Hre, Fre) has property ().

Corollary 2.4. For all cocompact closed subgroups G of a semisimple Lie group L,
the G-equivariant cycle (Hyjk, Fr k) has property (y), where K is a maximal
compact subgroup of L.

Let us look at a few examples.

Poincaré-Langlands duality. In [Niblo et al. 2016] the authors examine the
Baum—Connes correspondence for the (extended) affine Weyl group W, associated
to a compact connected semisimple Lie group G. This group can be realized as
the group of affine isometries of the Lie algebra t of a maximal torus 7 € G. The
structure of W, is that of a semidirect product I' x W, where I" is the lattice of
translations in t, and W is the Weyl group of the root system of G.

Ultimately, it is shown that the Baum—Connes conjecture (which holds in this
case) is equivalent to 7' -duality for the aforementioned torus 7" and the Pontryagin
dual T of the lattice I". From the viewpoint of Lie groups, T equivariantly coincides
with the maximal torus 7" of the Langlands dual G¥ of G. In K-theory this
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is expressed by W-equivariant Spanier—Whitehead duality between the dual tori
T and TV, which is referred to as “Poincaré—Langlands duality” in [Niblo et al.
2016].

Propositions 1.19-1.23 and Theorem 1.24 can be equivalently applied to get
these results, with C(BT") playing the role of C(T') and C}(I") playing the role of
C(T") through the Gelfand transform.

The (y)-element, which belongs to KK"Y«(C, C), in this case can be constructed
as explained above with M =t and distance function induced by a W-equivariant
metric. Equivalently, the bounded transform of the Bott—Dirac operator

By = Z(ext(ei) +int(e1))x; + (ext(e;) — int(e;)) dix,

yields a W-equivariant cycle with property (y), provided that interior multiplica-
tion is defined through a W-equivariant metric. The cycle obtained this way is
indeed isomorphic to the one obtained through the Witten type perturbation of the
de Rham operator, and its KK-class coincides with the classical y-element which
is homotopic to the unit [Higson and Kasparov 2001].

In summary, we obtain equivariant duality classes §" e KKY(C, c(t/ TH®C I,
derived from the MiS¢enko W-bundle associated to the principal I'-bundle t — T,
and d% € KKY(C (t/T)® C}(T), C), derived from the (y)-element described
above. We can prove

8" ®caryd" =" (),

where on the right-hand side we mean “partial” descent with respect to the normal
subgroup I' € W,. As we know, y = 1¢ in KKFXW(C, C), so that we get

8 &cryd" =1, " ®carnd" =1

in the equivariant groups KK (C(T"), C(TV)), KKY (C(T), C(T)), respectively.

Lattices in SO(n, 1) and SU(#n, 1). Let G be a cocompact lattice of a simple Lie
group L =SO(n, 1), or L =SU(n, 1). Let K be a maximal compact subgroup of L.
Corollary 2.4 shows that the G-equivariant cycle (Hy k, Fr k) has property (y).
The corresponding element x = [Hy /g, F1 k] is nothing but the gamma element
y for G, which is shown to be equal to 15 [Higson and Kasparov 2001; Julg and
Kasparov 1995].

Groups acting on trees. Let G be a countable discrete group which acts properly
and cocompactly on a locally finite tree Y. The tree Y is the union of the sets
Y9, Y of the vertices and edges of the tree. Without loss of generality, we assume
a G-invariant typing on the tree. Namely, we assume a G-invariant decomposition
Y0 = Y(? uy 10 so that any two adjacent vertices have distinct types. This can be
achieved by the barycentric subdivision of the tree. We take E as the geometric



GROUPS WITH SPANIER-WHITEHEAD DUALITY 491

realization of the tree. This is a G-compact model of the universal proper G-space.
We denote by d the edge path metric on E and hence on Y such that each edge
has length 1.

The ¢% space ¢>(Y) is naturally a graded G-Hilbert space with the even and
odd spaces being ¢2(Y?), £2(Y'"), respectively. Let Hg be the graded Hilbert space
L*(R, AL (R)) as before, but now with the trivial G-action. We construct a Kas-
parov cycle with the property (y) on the graded tensor product

Hy = Hr ® £*(Y).

Following [Kasparov and Skandalis 1991], we define a nondegenerate representa-
tion w of Co(E) on Hy, which is diagonal with respect to Y. This is given by a
family (7r,)yey of representations of Co(E) on Hg indexed by yin Y. If y is a
vertex, we define 7, by sending ¢ in Co(E) to the multiplication on Hg by the
constant ¢ (y). If y is an edge with vertices yg, y; of corresponding types, we
identify y with the interval [—%, %] via the unique isometry sending y; to (=1)/ %
We define y by sending ¢ in Co(E) to the multiplication on Hg by the restriction
of ¢ to the edge y extended to the left and right constantly.

Now, like the operator Dj;, we define an unbounded, odd, self-adjoint operator
Dy with compact resolvent of index 1, which is almost G-equivariant and has nice
compatibility with functions in Co(E). The bounded transform Fy of Dy will give
us a desired Kasparov cycle (Hy, Fy) with property (y). For this, we fix a base
point yo from Y°. The following construction depends on the choice of y;. We
have the decomposition of Hy

Hy = Hr ®Csy, & D (Hr® (Cs, @ Cs,)),
yeY\{yo}

where for each vertex y # yo, e, is the last edge appearing in the geodesic from
yo to y and where the symbol 8, denotes a delta function in £2(Y). Our operator
Dy is block-diagonal with respect to this decomposition. It is given by a family
(Dy),eyo of an unbounded, odd, self-adjoint operators with compact resolvent.

For a vertex y € YJQ of type j, let Bg , be the Bott—Dirac operator on Hg with
“origin shifted”:

Br,y = (ext(e;) +int(e1))(x —ny) + (ext(e;) — int(e;)) %

where n, = (—l)j(% +d(y, yo)). For y = yo, we simply set

Dy,=Bg,,®1 on Hg® Cs,,.
For y # yp, we set

01

D),:BRJ@HMM@(l 0

) on HR@(CS)'@CSE})’
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where M X is the multiplication on Hp by the function x, on R defined as

0, X< %

(x—%)z, %Ex<1,
fory e ¥y, xy(x)=1qx-3, 1 <x <d(y, yo),

—(x—ny)?+d(y.y0) — 5. d(y.yo) <x <ny,

d(y, yo) — 3. ny <x,

d(y, y0) — 3, X <ny,

—(x—ny)?+d(y,y0) =3, ny <x<—d(y, ),
forerIO, Xy (xX) = | —x—%, —d(y,yo) <y <—1,

(x+%)2, —1<x<-1,

0, —1<x

Note that for each y # yo, D, is a bounded perturbation of a self-adjoint operator
Bg.y ® 1 with compact resolvent of index 0, and hence so is D,. All D, are hence
diagonalizable. Therefore, Dy = (D)) cyo is self-adjoint. In order to see that Dy
has compact resolvent, we compute

—~ ~ 0O M, \~/01
2 2 2 Xy
D)Y_BR’y®1 MX«"®1 <Mx}’ 0 )®(1 0)’

where X§ is the derivative of yx,. We see that D§ has spectrum far away from 0 as
y goes to infinity essentially because the derivatives X; are uniformly bounded in
y and because we have

2
(x —ny) + x5 = 2(3d(y. yo) — §)

everywhere. It follows that Dy indeed has compact resolvent. Let Fy be the

bounded transform
Dy

Fy = ————.
RN E

Proposition 2.5. A pair (Hy, Fy) is a G-equivariant Kasparov cycle with prop-
erty (y).

Proof. Almost G-equivariance follows from
Dy — g(Dy) =bounded for g € G,

which we leave to the reader. To see that [Hy, Fy] = 1f in R(F) for any finite
subgroup F of G, we note that the class [Hy, Fy] does not depend on the choice of
the base point yg. Hence, we may assume that yy is a vertex fixed by the group F. In
this case, it is not hard to see that Fy is an odd, F-equivariant, self-adjoint operator
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whose graded index is the one-dimensional trivial representation of F' spanned by
Eo@)Byo in Hy @CSW where &) = e~**/2_ This shows [Hy, Fy] = 1r. To show that
it has condition (2) of property (y) with respect to the representation & of Co(E),
we shall apply Theorem 6.1 of [Nishikawa 2019] for the dense subalgebra B of
Co(E) consisting of compactly supported functions which are smooth inside each
edge and constant near the vertices. Note that B contains a cutoff function of E.
First, we can see that for each y # yo, the operator M, ® ((1) (1)) commutes with
the representation 71 This is due to the vanishing of x, for y € Yé) andyeY 10
over x < l and —5 < x, respectively. For ¢ in B, we compute the commutator

[Dy, n(¢) as

[Dy,ﬂ(¢)]=[BR,y0®1,7T(¢)]+ Z |:BRy®1+MX)®<O 1) ﬂ(¢):|

yeY%\{yo}
=[Bay, ® L@+ Y  [Bay®L 7m(g)]
yeY\{yo}
0 —<4 ~
- £ [(375) o
yerO\(yo) -~ 94X
=7(¢) ) ( ) ®1,
yeY\{yo}

where in the last two, each summand is an operator on Hg ® C(Sey and where ¢’ is
the derivative of ¢. Note that each summation is a finite sum since ¢ is compactly
supported. We can now use [Nishikawa 2019, Theorem 6.1] to conclude that the
bounded transform (Hy, Fy) satisfies condition (2) of property (y). O

Remark 2.6. The construction can be generalized to define a cycle with property
(y) for a group which acts properly and cocompactly on a Euclidean building in
the sense of [Kasparov and Skandalis 1991]. In [Brodzki et al. 2019], a different
construction is given which provides us a cycle with property (y) for a group which
acts properly and cocompactly on a finite-dimensional CAT(0) cube complex.

Groups with weak Spanier—Whitehead K-duality. Let G be a countable discrete
group satisfying the conditions (1) and either (2)’ or (3)’ below:

(1) G admits a G-compact model of EG;

(2) G admits a y-element y with j, (y) acting as the identity on K, (C)(G)), or
(3) G admits a (y)-element x with j; G(x) acting as the identity on K, (C}(G)).

Our previous argument shows that such a group G has weak Spanier—Whitehead
K-duality. For any word-hyperbolic group, the gamma element is shown to exist
and the Baum—Connes conjecture has been verified [Lafforgue 2012; Kasparov and
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Skandalis 2003; Mineyev and Yu 2002]. Moreover, any hyperbolic group is known
to admit a G-compact model of EG [Meintrup and Schick 2002]. Hence, we have
the following:

Theorem 2.7. All word-hyperbolic groups G have weak Spanier—Whitehead K-
duality.

As an example of hyperbolic groups, we can take G to be a cocompact lat-
tices of the simple Lie group L = Sp(n, 1). As before, the y-element for G has
an explicit representative (Hy k, F k) with property (). We remark that the
gamma element y = [Hy /k, Fy k] is well-known to be not homotopic to 1 due to
Kazhdan’s property (T). Furthermore, Skandalis [1988] showed that ]rG (y) is not
equal to 1¢x(G). More precisely, what he showed is that C}(G) is not K-nuclear,
which in particular implies that it cannot be KK-equivalent to any nuclear C*-
algebra. The same remark that 77 (y) # ILcx(G) applies to any infinite hyperbolic
property (T) group [Higson and Guentner 2004, Theorem 5.2]. In general, when
the gamma element y exists, the equality er (y) = lcx () implies that C;(G) is
KK-equivalent to Pc X G, which satisfies the UCT [Meyer and Nest 2006, Propo-
sition 9.5]; in particular it is K-nuclear. Therefore, if C;(G) is not K-nuclear, we

have ;7 (y) # lcxG)-
3. Some applications

In this section we prove a few results by applying the theory of K-duality developed
in the previous pages. Some of the material presented here has been previously
treated in the literature via possibly different methods [Dadarlat 2009, Section 3;
Emerson and Meyer 2010, Section 5; Kaminker et al. 2017, Section 4.4; Rosen-
berg and Schochet 1987, Section 7]. Nevertheless, we provide a brief account for
completeness, to give a better idea of some applications of our main theorems.

We say a C*-algebra A is KK-compact if the functor sending D to KK, (A, D)
commutes with filtered colimits. If A is a C*-algebra with a Spanier—Whitehead
K-dual B, then A is KK-compact because KK, (A, D) is naturally isomorphic to
KK, (C, D ® B) and the K-theory functor is continuous.

As explained after Theorem 6.6 of [Meyer and Nest 2006], a C*-algebra satisfies
the universal coefficient theorem (UCT) [Blackadar 1998, Section 23] if and only if
it belongs to the localizing triangulated subcategory of the KK-category generated
by the complex numbers (this category is denoted as (x) in [Meyer and Nest 2006]).
As in [Dell’ Ambrogio et al. 2011], let us denote this subcategory by 7. It is known
that within this subcategory, an object is dualizable if and only if it is compact:

Proposition 3.1 [Dell’ Ambrogio et al. 2011, Proposition 4.1]. In the subcategory
T C KK, the full triangulated subcategory . of compact objects coincides with the
(closed) symmetric monoidal category Ty of dualizable objects. Furthermore, both
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these two subcategories are equal to the thick triangulated subcategory generated
by the complex numbers.

Corollary 3.2. If G has Spanier—Whitehead duality then C)(G) satisfies the UCT.

Proof. We know that Co(EG) x G satisfies the UCT [Meyer and Nest 2006, Propo-
sition 9.5]. By assumption, Co(EG) x G has a Spanier—Whitehead K-dual C}(G).
Thus, Co(EG) x G is KK-compact. By Proposition 3.1, it is dualizable in 7.
Namely, it has a Spanier—Whitehead K-dual, say A, which satisfies the UCT. On
the other hand, it is fairly easy to see that a dual object is unique up to equivalence.
Hence, C}(G) is KK-equivalent to A. The claim follows from this. g

The strong Baum—Connes conjecture was introduced in [Meyer and Nest 2006]
as the assertion that the canonical Dirac morphism « in KK®(Pc, C) induces a
KK-equivalence J,G () from Pc x G to C}(G). In the presence of the gamma
element y for G, this is equivalent to the assertion that ;(y) = lcx6).-

Theorem 3.3. If G has Spanier—Whitehead duality then it satisfies the strong Baum—
Connes conjecture. Moreover, if the y-element exists and G satisfies the strong
Baum—Connes conjecture, than G has Spanier—Whitehead duality.

Proof. Suppose G has Spanier—Whitehead duality. Then we know that the Baum—
Connes conjecture holds for G, and so the Dirac morphism « induces an isomor-
phism ],G ()« on K-groups from P¢c x G to C}(G). Furthermore, both Pc x G
and C}(G) satisty the UCT by [Meyer and Nest 2006, Proposition 9.5] and by
Corollary 3.2, respectively. It follows that ;°(a) is a KK-equivalence [Black-
adar 1998, Theorem 23.10.1]. Conversely, if the strong Baum—Connes conjecture
holds, we have ;¢ (y) = lcx(G)- Hence, G has Spanier-Whitehead duality by
Theorem 1.14. (]

As in [Blackadar 1998, Theorem 23.10.5], a C*-algebra A satisfies the UCT
if and only if it is KK-equivalent to a commutative C*-algebra Co(X). Further-
more, this X can be taken to be a three-dimensional cell complex [Blackadar 1998,
Corollary 23.10.3; Rosenberg and Schochet 1987, Proposition 7.4]. This is be-
cause the range of K-theory on such spaces exhausts all countable Z/(2)-graded
abelian groups. If K,(A) is finitely generated, then X can be chosen finite, and
a Spanier—Whitehead K-dual exists for such spaces [Emerson and Meyer 2010,
Proposition 5.9].

Lemma 3.4. Suppose A has a Spanier—Whitehead K-dual and satisfies the UCT.
Then it has finitely generated K-theory groups.

Proof. As in the proofs of [Rosenberg and Schochet 1987, Proposition 7.4; Black-
adar 1998, Corollary 23.10.3], let C = C° @ C' be a commutative C*-algebra
KK-equivalent to A, where C is the mapping cone of a %-homomorphism on
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direct sums of Co(R), and C! is the suspension of such a mapping cone. It is
easy to see that C is the inductive limit of subalgebras C,, where C, has finitely
generated K-theory. Since KK, (A, —) is continuous (since A is KK-compact), the
equivalence A — C factors through C, for some n € N. Then K, (A) is finitely
generated because it is a quotient of K, (C,), which enjoys this property. ([

Proposition 3.5. Suppose G satisfies the Baum—Connes conjecture and the y -
element exists. Then C)(G) has finitely generated K-theory groups.

Proof. If y € KK (C, C) exists, then Pc x G is dualizable by Theorem 1.16. It is
known that Pc x G satisfies the UCT; see [Meyer and Nest 2006, Proposition 9.5].
Thus, Pc % G has finitely generated K-groups by Lemma 3.4. Recall that in the
localization picture the assembly map appears as

K. (Pc X G) = K.(C}(G)). (3.6)
Therefore, if (3.6) is an isomorphism the right-hand side is finitely generated. [

Remark 3.7. More generally, C(G) has finitely generated K-theory groups if G
satisfies the Baum—Connes conjecture and the source P¢ of the Dirac morphism is a
(categorical) direct summand of a proper algebra. This is because by Remark 1.18,
Pc % G has a Spanier—Whitehead K-dual.

Remark 3.8. By the results in [Dell’ Ambrogio et al. 2011], there exists a functor K
from the KK-category to the stable homotopy category satisfying 7, (IK(A))=K,,(A).
This functor specializes to a full and faithful functor on the subcategory of dualiz-
able objects satisfying the UCT, realizing C*-algebras as perfect KU-modules (in
particular, finite spectra). Hence, the previous results can also be obtained from
the well-known fact that homotopy groups are finitely generated in this context.

Define the n-th dimension-drop algebra as
I, ={f € C(0, 1], M,(C)) | f(0) =0, f(1) € Cl,}.
We can use this to introduce the mod-n K-theory groups as follows:
K. (B; Z/(n)) =KK,(I,, B).

It is apparent from this definition that a Baum—Connes conjecture in mod-n K-
theory for B would have to introduce coefficients on the left, and we can take this
as motivation to find a satisfactory formulation for the full bivariant version of the
Baum—Connes conjecture. The approach via localization immediately generalizes
to this context, giving us a map

KK, (A, (Pc®B) xG) - KK, (A, B x,G) (3.9
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definedas y — y® ]rG (15 ® @), where « € KK(Pg, C) is the Dirac morphism, for
any (separable) C*-algebra A and G-C*-algebra B.

The original definition of the left-hand side (following [Baum et al. 2003] and
[Uuye 2011]), what is called the “naive” topological K-group in [Uuye 2011], is
given as

lim KKZ(Co(Y, A), B),
YCEG
where the limit ranges as usual over G-invariant G-compact subspaces of EG.
Unlike the simpler case of the conjecture, the definition making use of the naive
topological group is not equivalent to the definition in (3.9). However, [Uuye 2011]
shows that there are natural maps

vy : KK9(Co(Y, A), B) - KK, (A, (Pc ® B) x G), (3.10)

which make the obvious diagram commute. In addition, if A admits a Spanier—
Whitehead K-dual, then (3.10) induces an isomorphism.

Theorem 3.11 [Uuye 2011]. Suppose A has a Spanier—Whitehead K-dual. Then
the comparison map induced by the vy is an isomorphism.
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Homotopy equivalence in unbounded KK-theory

Koen van den Dungen and Bram Mesland

We propose a new notion of unbounded KK-cycle, mildly generalizing unbounded
Kasparov modules, for which the direct sum is well-defined. To a pair (A, B) of
o-unital C*-algebras, we can then associate a semigroup UKK (A, B) of homo-
topy equivalence classes of unbounded cycles, and we prove that this semigroup
is in fact an abelian group. In case A is separable, our group UKK (A, B) is iso-
morphic to Kasparov’s KK-theory group KK (A, B) via the bounded transform.
We also discuss various notions of degenerate cycles, and we prove that the
homotopy relation on unbounded cycles coincides with the relation generated by
operator-homotopies and addition of degenerate cycles.

Introduction

Given two (o -unital, Z,-graded) C*-algebras A and B, Kasparov [1980] defined
the abelian group KK (A, B) as a set of homotopy equivalence classes of Kasparov
A-B-modules, equipped with the direct sum. These groups simultaneously gener-
alize K-theory (if A = C) and K-homology (if B = C).

It was shown by Baaj and Julg that every class in KK(A, B) can also be rep-
resented by an unbounded Kasparov module. Many examples of elements in KK-
theory which arise from geometric situations are most naturally described in the
unbounded picture. The prototypical example is a first-order elliptic differential
operator (e.g., the Dirac operator, signature operator, or de Rham operator) on a
complete Riemannian manifold. The unbounded picture is also more suitable in
the context of nonsmooth manifolds. Indeed, while on Lipschitz manifolds there is
no pseudodifferential calculus, it makes perfect sense to consider first-order differ-
ential operators and thus to construct unbounded Kasparov modules on Lipschitz
manifolds (see, e.g., [Teleman 1983; Hilsum 1985; 1989]). Furthermore, the Kas-
parov product is often easier to describe in the unbounded picture. In fact, under
suitable assumptions, the Kasparov product of two unbounded Kasparov modules
can be explicitly constructed [Mesland 2014; Kaad and Lesch 2013; Brain et al.
2016; Mesland and Rennie 2016]. These advantages of the unbounded picture of
KK-theory motivate the following question.

MSC2010: 19K35.
Keywords: Kasparov theory.
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Question. Can Kasparov’s KK-groups equivalently be defined as the set of homo-
topy equivalence classes of unbounded Kasparov modules?

A similar question is considered in [Kaad 2019], where it is shown that Kas-
parov’s KK-groups can be obtained using the (a priori) weaker equivalence relation
of stable homotopy of unbounded Kasparov modules. In the present paper we will
provide a positive answer to the above question. Moreover, we will prove that the
stable homotopy relation of [Kaad 2019] in fact coincides with ordinary homotopy
equivalence.

The first problem one encounters when trying to answer the above question, is
that the direct sum of unbounded Kasparov modules is not well-defined. To resolve
this issue, we slightly weaken the standard definition of unbounded Kasparov mod-
ules in such a way that the set U, (A, B) of such unbounded A-B-cycles (E, %)
becomes closed under the direct sum operation. By considering the natural notion
of homotopy equivalence on W;(A, B) (completely analogous to homotopies of
bounded Kasparov modules), we thus obtain a semigroup UKK (A, B) given by the
set of homotopy equivalence classes of W (A, B). We will prove that UKK(A, B)
is in fact a group.

To answer the aforementioned question, we must show that the group UKK (A, B)
is isomorphic to Kasparov’s KK-theory group KK (A, B). The results of Baaj and
Julg already show that the bounded transform

(E, %)~ (E, Fy:= (1 +3%)~1/?)

induces a surjective homomorphism UKK(A, B) — KK (A, B). This is proven by
explicitly constructing an unbounded lift for any bounded Kasparov module.

The difficulty is to prove injectivity of the bounded transform. To be precise,
given unbounded cycles (Eg, %) and (E1, @) and a homotopy (E, F') between
their bounded transforms, we can use the lifting results from Baaj and Julg to lift
(E, F) to an unbounded homotopy (E, ¥). However, it is in general not clear
how the endpoints of (E, ) are related to (E;, %;), and the main challenge is
therefore to construct (E, ¥) in such a way that its endpoints are in fact homotopic
to (E js ) j).

For this purpose, we describe a general notion of functional dampening, which
is the transformation &% +— f (%) for suitable “dampening functions” f : R — R
which blow up towards infinity at a slow enough rate (such that f(x)(1 +x2)~1/2
vanishes at infinity) and which are compatible with the Lipschitz structure obtained
from %. We prove that (E, (%)) is operator-homotopic to (E, @) for any damp-
ening function f, generalizing a result in [Kaad 2019].

With a careful adaptation of the lifting construction of [Baaj and Julg 1983;
Kucerovsky 2000], using ideas from [Mesland and Rennie 2016], we then prove
our first main result:
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Theorem A. If A is separable, then any homotopy (E, F) between (Ey, Fg,)
and (E1, Fg,) can be lifted to an unbounded Kasparov A-C ([0, 1], B)-module
(E, ) such that, for j =0, 1, the endpoints ev;(E, ¥) are unitarily equivalent
to (Ej, f;(D;)) for dampening functions f;: R — R.

As mentioned above, functional dampening provides an operator-homotopy be-
tween (E;,%;) and (E;, f;(9;)), and thus we obtain a positive answer to the
above question:

Theorem B. If A is separable, then the bounded transform induces an isomor-
phism

UKK(A, B) > KK(A, B).

We continue to provide an alternative description of the homotopy equivalence
relation at the unbounded level. In bounded KK-theory, it is well-known that the
homotopy relation coincides with the relation obtained from unitary equivalences,
operator-homotopies, and addition of degenerate modules. We will prove an anal-
ogous statement in unbounded KK-theory. We consider two notions of degenerate
cycles, namely spectrally degenerate cycles (for which & is invertible and %|%| !
commutes with A) and algebraically degenerate cycles (for which A is represented
trivially). We then consider the equivalence relation ~,;14 obtained from unitary
equivalences, operator-homotopies, and addition of algebraically and spectrally
degenerate cycles. Our next main result then reads:

Theorem C. Degenerate cycles are null-homotopic. Furthermore, if A is separa-
ble, then the homotopy equivalence relation ~;, on W1 (A, B) coincides with the
equivalence relation ~,p14.

We prove the first statement by explicitly constructing a homotopy between
degenerate cycles and the zero cycle. The second statement is then obtained by
combining [Kasparov 1980, §6, Theorem 1] with Theorem A.

Let us briefly compare our work with the existing literature on unbounded Kas-
parov modules. First, we note that, in the usual approach to unbounded KK-theory,
it is necessary to make a fixed choice of a dense x-subalgebra s C A, and to con-
sider only those unbounded Kasparov A-B-modules (£, %) for which & C Lip(%),
to ensure that the direct sum is well-defined. This means that any equivalence
relation on unbounded Kasparov A-B-modules only applies to those unbounded
Kasparov modules which are defined using the same choice of #{. Thus, it is im-
possible to compare unbounded Kasparov modules which are defined with respect
to different choices of s{. One major advantage of our approach is that, instead
of fixing a choice of x-subalgebra s, we consider the slightly weaker notion of
unbounded cycles, which only requires that A C Lip(%). For such cycles the direct
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sum is well-defined in full generality. In particular, the notion of homotopy equiva-
lence can then be used to compare arbitrary unbounded A-B-cycles. Nevertheless,
we will show that Theorems A—C remain valid if we do fix a countably generated
dense *-subalgebra 9 C A, and replace UKK(A, B) by the semigroup UKK (s4, B)
given by homotopy equivalence classes of all those unbounded Kasparov modules
(m, E, ®) for which () C Lip(D).

Other equivalence relations on unbounded Kasparov modules have already been
considered in the literature, namely the bordism relation [Deeley et al. 2018] and
the stable homotopy relation [Kaad 2019]. Both of these approaches rely on a fixed
choice of a dense *-subalgebra s C A. Let us discuss the relationships between
homotopy equivalence, stable homotopy equivalence, and bordism. The paper
[Deeley et al. 2018] studies a notion of bordism of unbounded Kasparov modules
due to Hilsum [2010], and proves that there is a surjective homomorphism from
the corresponding bordism group 2(, B) to Kasparov’s KK-group KK(A, B). In
particular, from Theorem B we obtain a surjective homomorphism to our UKK-
group, which means that the bordism relation is stronger than the homotopy rela-
tion. However, it remains an open question if these relations coincide or not. One
technical tool appearing in [Deeley et al. 2018] is the notion of weakly degenerate
module, which is shown to be null-bordant. As a spin-off from our study of Clif-
ford symmetric modules, we give a direct proof in Lemma 4.15 that any weakly
degenerate cycle is also null-homotopic (without assuming A to be separable).

After the appearance of [Deeley et al. 2018] as a preprint in 2015, there has been
increased interest within the community regarding equivalence relations on un-
bounded Kasparov modules. Discussions between the authors and Kaad in Novem-
ber 2018 gave the problem new impetus. The subsequent paper [Kaad 2019] pro-
vides a first study of homotopies of unbounded Kasparov modules. The work in the
present paper was initiated independently and the methods developed here are com-
plementary to those in [Kaad 2019]. The main technical results, our Theorem A
and [Kaad 2019, Proposition 6.2], are very distinct in spirit and lend themselves to
different types of applications. Our proofs of Theorems A—C are independent of
the results from [Kaad 2019]. Moreover, it should be noted that our Theorem B is
stronger than the main result in [Kaad 2019] in the sense we now explain.

In [Kaad 2019], a countably generated dense *x-subalgebra s C A is fixed and
the notion of stable homotopy of unbounded Kasparov &{- B-modules is considered.
Stable homotopy is a weakening of the homotopy equivalence relation obtained
from homotopy equivalences and addition of “spectrally decomposable” modules.
It is then proved that the resulting set of equivalence classes of unbounded Kasparov
A-B-modules forms an abelian group which (if A is separable) is isomorphic to
Kasparov’s KK-group. In particular, this group does not depend on the choice of
the dense *-subalgebra s{ C A (up to isomorphism).
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As described above, we avoid in the present paper the need to fix a countably
generated dense *-subalgebra s{ C A in the definition of the unbounded KK-group.
Even more importantly, thanks to our new approach towards lifting a homotopy
in Theorem A (adapting the more refined lifting methods of [Kucerovsky 2000;
Mesland and Rennie 2016]), we overcome the need to weaken the homotopy equiv-
alence relation by addition of spectrally decomposable modules. Furthermore, we
will also show that, in fact, adding spectrally decomposable modules does not
weaken the homotopy equivalence relation after all. Indeed, any spectrally decom-
posable module is just a bounded perturbation of a spectrally degenerate module.
Consequently, it follows from Theorem C that any spectrally decomposable cycle
is null-homotopic, so that the relation of stable homotopy equivalence coincides
with homotopy equivalence. We point out that, combined with the main results
from [Kaad 2019], this provides a second and independent proof of Theorem B.

Finally, let us briefly summarize the layout of this paper. We start in Section 1
with our definition of unbounded cycles, and we show that the direct sum is well-
defined. In Sections 1A and 1B we recall the lifting construction from [Baaj
and Julg 1983], closely following the arguments of [Mesland and Rennie 2016;
Kucerovsky 2000]. We collect some basic facts regarding regular self-adjoint op-
erators in Section 1C.

In Section 2A we introduce the homotopy relation (as well as the special case of
operator-homotopies), and construct the semigroup UKK (A, B). In Section 2B we
show that the notion of functional dampening can be implemented via an operator-
homotopy. In Section 2C we construct the lift of a homotopy and prove Theorem A
(see Theorem 2.11). Combined with the operator-homotopy obtained from func-
tional dampening, we then obtain Theorem B (see Theorem 2.12).

We introduce our notions of algebraically and spectrally degenerate cycles in
Section 3, and we prove that degenerate cycles are null-homotopic (Lemma 3.2
and Proposition 3.7). In Section 3C we then show that any homotopy can be imple-
mented as an operator-homotopy modulo addition of degenerate cycles (Theorem
3.10), which completes the proof of Theorem C.

We give a direct proof that UKK(A, B) is a group (and not just a semigroup)
in Section 4. In the case where A is separable, this follows immediately from
the isomorphism UKK(A, B) ~ KK(A, B), but our direct proof works for any
pair (A, B) of o-unital C*-algebras. The proof relies on the observation that
the presence of certain symmetries induces homotopical triviality. After a brief
discussion of Lipschitz regular cycles in Section 4A, we introduce the notion of
spectrally symmetric cycles in Section 4B. These cycles are a mild generalization
of the notion of spectrally decomposable modules introduced in [Kaad 2019]. We
prove that any spectrally symmetric cycle is a bounded perturbation of a spectrally
degenerate cycle, and therefore null-homotopic. In Section 4C we introduce the
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notion of Clifford symmetric cycles, which are elements of W (A, B) which extend
to W (A ® Cl;, B). We prove that every Clifford symmetric cycle is operator-
homotopic to a spectrally symmetric cycle and therefore null-homotopic. The
proof is easily generalized to show that in fact every weakly degenerate cycle is
null-homotopic. We exploit such Clifford symmetries to prove in Section 4D that
the semigroup UKK (A, B) is in fact a group.

Finally, the Appendix contains some basic facts regarding localizations of Hilbert
C*-modules and their dense submodules.

Notation and conventions. Let A and B denote o-unital Z,-graded C*-algebras.
By an approximate unit for A we will always mean an even, positive, increasing,
and contractive approximate unit for the C*-algebra A. For elements a, b € A we
denote by [a, b] the graded commutator. If a and b are homogeneous, we denote by
dega, deg b € Z; their degree and [a, b] :=ab — (—1)degadegbpy For general a, b
we extend the graded commutator by linearity. Let E be a Z,-graded Hilbert C*-
module over B, or Hilbert B-module for short (for definitions and further details
regarding Hilbert C*-modules, we refer to the books [Lance 1995; Blackadar
1998]). Throughout this article, we will assume E is countably generated. We
write End (E) for the adjointable operators on E, and End%(E ) for the compact
operators on E. For any subset W C End (E), we write W for the closure of W
with respect to the operator-norm of Endj (E).

1. Unbounded cycles

Kasparov [1980] defined the abelian group KK (A, B) as a set of homotopy equiv-
alence classes of Kasparov A-B-modules. We briefly recall the main definitions
(more details can be found in, e.g., [Blackadar 1998, §17]).

A (bounded) Kasparov A-B-module is a triple (7, E, F) comprising a Z,-graded,
countably generated, right Hilbert B-module E, a (Z,-graded) x-homomorphism
7 : A — Endj(E), and an odd adjointable endomorphism F' € End} (E) such that,
foralla € A,

n(a)(F — F*),[F,n(a)], 7(a)(F? — 1) € End%(E).

Two Kasparov A-B-modules (g, Eg, Fo) and (7, E, Fy) are called unitarily
equivalent (denoted with ~) if there exists an even unitary in Homp (Ey, E1) in-
tertwining the ; and F; (for j =0, 1). A homotopy between (my, Eo, Fy) and
(71, E1, Fy) is given by a Kasparov A-C ([0, 1], B)-module (77, E, F) such that

ev,(%,E, F)~ (n;, E;, F}), j=0,1.

A homotopy (7, E, F ) is called an operator-homotopy if there exists a Hilbert
B-module E with a representation 7 : A — Endj(E) such that E equals the
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Hilbert C ([0, 1], B)-module C([0, 1], E) with the natural representation 7 of A

on C([0, 1], E) induced from 7, and if F is given by a norm-continuous family

{Fi}tef0.17- A module (r, E, F) is called degenerate if for all a € A we have
m@)(F—F*=[F,n(a)]= 7'((61)(F2 —1)=0.

The KK-theory KK (A, B) of A and B is defined as the set of homotopy equiva-
lence classes of (bounded) Kasparov A-B-modules. Since homotopy equivalence
respects direct sums, the direct sum of Kasparov A-B-modules induces a (commu-
tative and associative) binary operation (“addition”) on the elements of KK(A, B)
such that KK (A, B) is in fact an abelian group [Kasparov 1980, §4, Theorem 1].

In this paper we will give a completely analogous description of KK-theory,
based instead on unbounded Kasparov modules [Baaj and Julg 1983]. Recall that
a closed densely defined symmetric operator & : Dom% — E is self-adjoint and
regular if the operators % +i : Dom% — E have dense range. We refer to [Lance
1995, Chapters 9 and 10] for details on regular operators on Hilbert modules. For
a self-adjoint regular operator % : Dom% — E, we write

Lip(@) :={T € End3(F) : T(Dom%) C Dom% and [%, T] € End}(E)}.

It is worth noting that, because 9 is densely defined, Lip(%) N End% (E) is equal to
End%(E ). However, in general Lip(9) is not equal to End (E). We also introduce

Lip® (@) := {T € Lip(D) : T(1 +D*~/2, T*(1 +9*)~"/? € End% (E)}.

We note that Lip’ (%) is a %-subalgebra of End} (E). We introduce the following
relaxation of the notion of unbounded Kasparov module.

Definition 1.1. An unbounded A-B-cycle (7, E, %) consists of a Z,-graded, count-
ably generated Hilbert B-module E, a Z,-graded %-homomorphism 7 : A —
Endp(FE), and an odd regular self-adjoint operator % on E, such that

w(A) C Lip®(@).

The set of all unbounded A-B-cycles is denoted W (A, B). We will often suppress
the representation 7 in our notation and simply write (£, %) instead of (7, E, D).

Remark 1.2. (1) It follows immediately from the definition that 77 (a)(1+%2) /%€
End%(E) for any a € A, i.e., 9 has “A-locally compact” resolvents.

(2) We point out that if 7(A) C End%(E ) (i.e., A is represented as compact op-
erators), then the condition 7 (A) C Lip®(9) is automatically satisfied, since
Lip(@) NEnd%(E) C Lip®(®) is always dense in End (E).

Remark 1.3. We use the term unbounded A-B-cycle since our definition is differ-
ent from the usual definition of an unbounded Kasparov module, originally given

in [Baaj and Julg 1983]. An unbounded A-B-cycle (7, E, %) is an unbounded Kas-
parov module if there exists a dense *-subalgebra s{ C A such that 7 () C LipO(QD).
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To avoid confusion we often refer to such cycles as ordinary unbounded Kasparov
modules.

Our main reason for relaxing this definition is the following simple lemma.

Lemma 1.4. The direct sum of unbounded A-B-cycles is well-defined, and there-
fore W{(A, B) is a semigroup.

Proof. Given unbounded A-B-cycles (w;, E;, %;), i =0, 1, we have Lipo(ébo) (&)
Lip®(@;) ¢ Lip®(@o ® D) and 7; (A) C Lip®(D;). It follows that

(0 @ 71)(A) C Lip” (@) ® Lip° (@) C Lip” (Do & D)),
and therefore (g @ 1, Eg @ E1, Do ® D) is also an unbounded A-B-cycle. [

Remark 1.5. Note that if there are dense *-subalgebras sd; C A such that 7; (A;) C
Lip(%;), it may not be possible to find a dense *-subalgebra s¢ C A such that

(700 @ 1) () C Lip® (@ & By).
In fact, even if Ey = E| and 19 = m; = 7, the intersection
Lip(%o) NLip(%) N7 (A)

might not be dense in 7 (A) (for an example, see for instance [Deeley et al. 2018,
Appendix A]). Hence, the direct sum is not well-defined on ordinary unbounded
Kasparov modules. The usual way around this problem is to fix a dense *x-subalgebra
A C A, and to consider only those unbounded Kasparov modules (i, E, %) for
which (o) C LipO (%). With our relaxed condition 7 (A) C LipO (%), we avoid the
need to make such a choice for .

Lemma 1.6. Let (7, E, %) be an unbounded A-B-cycle, and suppose that A is sep-
arable. Then there exists a countable subset W C Lip0 (D) consisting of products of
elements in LipO (D) (i.e., each w € W is of the form w =T\ T, for T\, T» € Lip0 (D))
such that w(A) C W.

Proof. Since A is separable, and since products are dense in any C*-algebra, we

may pick a countable dense subset of products {a;b;}jeny C A. Since w(A) C
Lip%(9), there exist sequences {v ikt kens {wjxtken C Lip0 (%) such that, for each j,

lil?lnaj —vjkll = lil?lnbj —wjll =0.

The statement then holds with W :={v; s w; i} ken- O

Baaj and Julg proved for any ordinary unbounded Kasparov module that the
bounded transform & +— Fg, := D(1 4+ %2)~!/? yields a bounded Kasparov module
and hence a KK-class. Before we continue, we need to show that this still holds
for our relaxed definition of unbounded cycles.
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Proposition 1.7 (cf. [Baaj and Julg 1983)). If (%, E, D) is an unbounded A-B-
cycle (as in Definition 1.1), then the bounded transform (w, E, Fg) is a bounded
Kasparov module and hence defines an element in KK(A, B).

Proof. As remarked in [Blackadar 1998, Proposition 17.11.3], it suffices to show
that [ Fg, alb is compact for any a, b € A. By Definition 1.1, there is a sequence
T, € Lipo(@) such that 7, — a in norm, and then [ Fg, T,,]b — [Fg, a]b in norm as
well. It thus suffices to show that [F, T']b € End%(E) forbe Aand T € Lipo(éb).
Compactness of [F, T']b follows from the careful argument provided in the proof
of [Carey and Phillips 1998, Proposition 2.4], after multiplication with b from the
right. ]

1A. The algebras Cp and Jr. Let E be a countably generated Hilbert B-module.
The following result is well-known, and follows from the proof of [Blackadar 1998,
Proposition 13.6.1] (which extends from & € End%(E ) to arbitrary & € End}(E)).

Lemma 1.8 (cf. [Blackadar 1998, Proposition 13.6.1]). Let h € End}(E). Then
hE is dense in E if and only if h - End%(E) is dense in End%(E).

For a bounded Kasparov A-B-module (E, F) with F = F* and F 2 <1, we
define

Cr:=C*(1—F>+FC*(1-F?%,  Jp:=End}(E)+Cr.

The C*-algebra Jr was introduced in [Mesland and Rennie 2016, Lemma 4.5], and
plays an important role in the construction of the (unbounded) lift of a (bounded)
Kasparov module.

Lemma 1.9. The space Cr is a separable C*-algebra, and 1 — F? is a strictly
positive element in Cr.

Proof. 1t is explained in the proof of [Mesland and Rennie 2016, Lemma 4.5]
that C is a separable C*-algebra. By assumption, the spectrum spec(F) of F is
contained in [—1, 1], and by construction Cr can be identified with a x-subalgebra
of Co(spec(F) \ {£1}). Under this identification, the element c = 1 — F 2 cor-
responds to the function x — 1 — x2. In particular, we have c(t) # 0 for each
t € spec(F)\ {£1}. Since C also separates points of spec(F) \ {1} (the elements
1 — F? and F(1 — F?) suffice), the Stone—Weierstrass theorem implies that Cr ~
Co(spec(F) \ {Z1}). Since c is a strictly positive function on Cy(spec(F) \ {£1}),
it follows that 1 — F? is a strictly positive element in CF. (Il

Lemma 1.10. The space Jr is a o-unital C*-algebra, and we have the inclusions
AJp, JFA, FJp, JpF C JF.

Furthermore, if k € End% (E) is a positive operator such that k+ (1 — F?) has dense
range in E, then k + (1 — F?) is strictly positive in Jr.
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Proof. As E is countably generated, End% (E) is a o-unital C*-algebra (see, e.g.,
[Lance 1995, Proposition 6.7]). Since End%(E ) is an ideal in End} (E), it follows
from [Kasparov 1980, §3, Lemma 2] that Jr is also a o-unital C*-algebra. The
inclusions FJg, Jp F C Jg are immediate, and the inclusions AJg, JFA C Jg
follow because a(1 — F?) and [F, a] are compact for all a € A.

Letk e End%(E ) be a positive operator such that h :=k+ (1 — F 2) has dense
range in E. Consider an element / +c € Jr where [ € End%(E ) and ¢ € CF, and let
e > 0. Since 1 — F? is strictly positive in Cr by Lemma 1.9, there exists b € Cr
such that ||(1 — F2)b — ¢|| < . Moreover, since [ — kb is compact, we know from
Lemma 1.8 that there exists a € End%(E ) such that ||ha — (I — kb)|| < €. Hence,

lh(a+b) — A+ o)l <llha— (I —kb)| + (1 - F*)b—c|| <2,
which proves that £ JF is dense in JF. U

1B. The lifting construction. Since our definition of unbounded cycle is more
general than the usual definition of unbounded Kasparov module, it of course re-
mains true that the bounded transform is surjective [Baaj and Julg 1983]. The
way to prove this surjectivity is by showing that every bounded Kasparov module
(E, F) can be lifted to an (ordinary) unbounded Kasparov module (£, %) such
that Fy is operator-homotopic to F. Because we will make essential use of the
technical subtleties of this lifting procedure in the sequel, we present the proof here,
closely following the arguments of [Mesland and Rennie 2016; Kucerovsky 2000].
Recall that all approximate units are assumed to be even, positive, increasing, and
contractive for the C*-algebra norm.

Lemma 1.11 [Mesland and Rennie 2016, proof of Theorem 1.25]. Let C be a
commutative separable C*-algebra, {cj}jen C C a total subset, and {u,}nen a
countable commutative approximate unit for C. If for some 0 < ¢ < 1, d, :=
Uyy] — Uy satisfies

2n

ldncill <™ forall j <n,

then the series |=' := Y e7"d, defines an unbounded multiplier on C such that
[:= (Y~ e C is strictly positive.

Proof. The series ["!cj :=Y", e7"d,c; is convergent for all j by our assumption
that ||d,c;|l < g2 for all n > j, so I~ is a densely defined unbounded multiplier.
The partial sums Zﬁ:o ¢ "d, are elements in the commutative C*-algebra C ~
Co(Y), where Y = Spec C. Under this isomorphism, the approximate unit u,
is identified with a sequence of functions converging pointwise to 1. For fixed
t€(0,1) set

Yii={yeY u(y) >t}
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which gives an increasing sequence of compact sets Yy C Yii1 with (Jpo, Y =Y.
Let y € Y \ Y and m > k. We have the estimates

Ze‘”dn(y) > i e "dy(y) + Z e "dy(y)
n=0 n=k

n=m+1
o
> & Uy —u )M+ Y &7 du(y)
n=m+1

> unn (N =0+ Y e7"dy(y) > e (1 -1,
n=m+1

as m — o0o. This shows that /! is given by a function whose reciprocal is a strictly

positive function in Co(Y), so this defines a strictly positive element [ € C. ]

Proposition 1.12. Let (E, F) be a bounded Kasparov A-B-module satisfying F* =
F and F? < 1. Given a countable dense subset sl C A, there exists a positive
operator | € Jp with dense range in E such that

(1) the (closure of the) operator % = %(Fl_1 + [7'F) makes (E, %) into an
ordinary unbounded Kasparov A-B-module with s C Lip®(®), and
(2) F and Fg are operator-homotopic.

Moreover, ifF2 =1, we can ensure that | commutes with F and that (1 + 9252)_1/2
is compact.

Proof. Pick an even strictly positive element & € Jr. Since we have (see Lemma 1.10)
AJp, JFA, FJp, JFF C Jp,

there exists by [Akemann and Pedersen 1977, Theorem 3.2] an approximate unit
u, € C*(h) for Jg that is quasicentral for A and F. Let {a;};cn be an enumeration
of &, choose a countable dense subset {c¢; };cny C C*(h), and fix a choice of 0 <& < 1.
By selecting a suitable subsequence of u,, we can furthermore achieve that, for
eachn e N, d,, :== u, | — u, satisfies

(@) ||dnci|| <& foralli <n,

(b) lld,(1 = FHV4) < e,

(©) |ldulF, a;]|| <& foralli <n,

(d) I[dy, ai]|| < &> for all i <n, and

@) l[dn, F1Il <&
Here properties (a)—(c) follow because u, is an approximate unit for J¢ (and c;,
(1 — F?)Y/4 and [F, g;] all lie in JF), and properties (d)—(e) follow because u,, is
quasicentral for A and F. By property (a) and Lemma 1.11 we obtain a strictly
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positive element / € C*(h) such that [~! = > e™d,. Since IJp D IC*(h)JF,
[C*(h) is dense in C*(h), and C*(h)JF is dense in Jr, it follows that [ Jg is dense
in Jr and therefore [ is strictly positive in Jr. In particular, [ has dense range
in E. From properties (b)—(e) it follows that [ € C*(h) C JF satisfies [Mesland and
Rennie 2016, Definition 4.6]. Then by [Mesland and Rennie 2016, Theorem 4.7;
Kucerovsky 2000, Lemma 2.2] the (closure of the) operator

% :=3(FI"" +17'F)

is a densely defined and regular self-adjoint operator on E, and (E, %) is an or-
dinary unbounded Kasparov A-B-module with s¢ C Lip®(@). Furthermore, the
proof of [Mesland and Rennie 2016, Theorem 4.7] (combined with [Blackadar
1998, Proposition 17.2.7]) shows that Fg is operator-homotopic to F.

For the final statement, suppose F2 = 1, so that Jp = End%(E ). For any positive
element k € Jr with dense range, we can consider & := k + FkF > k, which is also
positive with dense range [Lance 1995, Corollary 10.2]. Then £ is a strictly positive
element in End%(E ) (see Lemma 1.8), and & commutes with F'. We then proceed as
above (conditions (b) and (e) now being redundant) to construct a compact operator
[ € C*(h) which also commutes with F'. Lastly, for @ = FI~ " wesee (1+%%) 712 =
1(14+1*)~"is indeed compact. U

Proposition 1.12 immediately implies the surjectivity of the bounded transform:

Theorem 1.13 (cf. [Baaj and Julg 1983; Kucerovsky 2000; Blackadar 1998, The-
orem 17.11.4]). If A is separable, then the bounded transform gives a surjective
map W(A, B) — KK(A, B).

1C. Regular self-adjoint operators. Let & be a regular self-adjoint operator on
a Hilbert B-module E. We recall from [Lance 1995, Theorem 10.9] that there
exists a continuous functional calculus for %, i.e., a x-homomorphism f +— f (%)
from C(R) to the regular operators on E, such that id(%) =% and b(D) = Fg :=
B(1 + D% ~1/2 (where b(x) = x(1 4+ x?)~/2). In particular, if f € C(R) is real-
valued, then f (%) is regular self-adjoint.

If the operators a(% £ i )~ are compact for some a € Endj(E), we note that
also ag(®) is compact for any g € Co(R) (since the functions x — (x *+ i)t
generate Co(R)). In particular, if f € C(R) is a real-valued function such that
lim,_, +o0| f (x)| = 00, then a(f (D) £i)~! and a(1 + £(@)>)~!/? are compact.

For completeness, we will show that the continuous functional calculus is com-
patible with Z,-gradings.

Lemma 1.14. Let % be an odd regular self-adjoint operator on a Z,-graded Hilbert
B-module E. If f € C(R) is an odd real-valued function, then the regular self-
adjoint operator (D) is also odd.
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Proof. Let I' denote the Z;-grading operator on E, and let us grade Co(R) by even
and odd functions. As in the proof of [Higson and Roe 2000, Lemma 10.6.2], the
identity

ri+9 '=G@x9)°'r

shows that I graded-commutes with (i +9%)~! and hence with any element in Cp(R).
The linear subspace € :={g(D)y : g € C.(R), € E} is a core for f(%) [Lance
1995, Lemma 10.8]. Each g € C.(R) is the sum of an even function gy € C.(R) and
an odd function g; € C.(R). Then we have '€ C €. Moreover, since gy € C.(R)
is odd and fg; € C.(R) is even, we find that

Lf(@)g@) =—f(D)go(DT + f(D)g1(DI" = — f(D)T'g(D).

Thus, [f(9), ']+ = 0 on the core €, and it follows that in fact [ preserves
Dom f (%) and f(%) anticommutes with I". O

Lemma 1.15. Let X be a locally compact Hausdorff space and Y C X an open
subset. Let {9} ey be a family of regular self-adjoint operators on a Hilbert B-
module E, and assume there exists a dense submodule € C E which is a core for 9,
foreach 'y €'Y, such that for each € € the map Y — E, y — D,V is continuous.
Then the operator % on the Hilbert Co(X, B)-module Cy(Y, E) defined by

Dom3 := (¢ € Co(Y, E) : ¥(y) € Dom%,, Gy € Co(Y, E)},
@Y)(y) =Dy ()
is regular and self-adjoint.

Proof. Consider the algebraic tensor product €= C.(Y)®€. Since y — Dy is
continuous for each iy € €, we note that € c Dom%. In particular, since € is dense
in Co(Y, E), we know that G is densely defined. Moreover, since 9y is closed on
Dom %, it follows that also % is closed on Dom . By assumption, the operators
%y +i:€— E have dense range in E for all y € Y. Since CO(Y E) ®ev¥ = {0}
for x ¢ Y, it follows from Corollary A.3 that the operators D+i:é— Cy(Y,E)
have dense range in Cy(Y, E), and therefore % is regular and self-adjoint. O

Remark 1.16. We will apply the above lemma to construct operator-homotopies
over X =0, 1], and the two main cases of interest are Y = X or Y = (0, 1].

2. The unbounded homotopy relation

2A. The homotopy semigroup. For any ¢ € [0, 1], we have the surjective *-homo-
morphism ev; : C([0, 1], B) — B given by ev,(b) := b(¢). Given an unbounded
A-C([0, 1], B)-cycle (&, E, %), we then define

evt(n, E’ gzj) = (T[Z‘, Et’gbl) = (n® 11 E®6V; B,QD® 1)-
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Definition 2.1. Consider unbounded A-B-cycles (g, Eg, Do) and (rq, Eq, D1).
We introduce the following notions:

o Unitary equivalence. (1o, Eo, 99) and (7, E1, 91) are called unitarily equiv-
alent (denoted (g, Eg, Do) =~ (1, E1, D)) if there exists an even unitary
U:Ey— E;suchthat U9y =%1U and Ung(a) = m(a)U foralla € A.

o Homotopy. A homotopy between (mg, EO,QDO) and (mq, Eq,9,) is glven
by an unbounded A-C ([0, 1], B)-cycle (7, E Qb) such that ev; (7, E Qb)
(wj, Ej,9;) for j =0, 1.

e Operator-homotopy. A homotopy (7, E, @) is called an operator-homotopy
if there exists a Hilbert B-module E with a representation 7 : A — End} (E)
such that £ equals the Hilbert C([0, 1], B)-module C ([0, 1], E) with the nat-
ural representation 7 of A on C([0, 1], E) induced from 7.

We denote by ~,;, the equivalence relation on W(A, B) generated by operator-
homotopies and unitary equivalences. The homotopy relation is denoted ~

Remark 2.2. If (7, E, 9) is an unbounded A-B-cycle such that 7 (A) C End%(E )
(i.e., A is represented as compact operators), then (7, E, D) is operator-homotopic
to (mr, E, 0), via the operator-homotopy given by %, = t% for ¢ € [0, 1] (see also
Remark 1.2(2)).

We note that it was shown in [Kaad 2019, Proposition 4.6] that the homotopy
relation is an equivalence relation on unbounded Kasparov modules. We will show
next that the proof extends to our more general notion of unbounded cycles from
Definition 1.1, and for this purpose we recall some notation from [Kaad 2019, §4].
Consider two unbounded A-C ([0, 1], B)-cycles (r, E, %) and (/, E', 9'), and a
unitary isomorphism U : E ®ev1 B—FE @evo B satistying

U (a) ®ey, DU* =17/ (@) Bey, 1, U(D Rey, DU* =D Ry, 1,

for any a € A. For ¢ € [0, 1] we consider the localizations E, := E @av, B, and for
ec E wewritee, :=e ®ev, 1 € E; (as in the Appendix). We define the concatenation

ExyE :={(e,e) e E®E :Ue =¢}.

The space E xy E’ is endowed with the right action of C ([0, 1], B) and the inner
product described in [Kaad 2019, §4]. We note that 7 @ 7’ and @ & %' are well-
defined on E x E’, and that @ @ %’ is a regular self-adjoint operator (see the proof
of [Kaad 2019, Proposition 4.6]). For two linear subspaces W C Endc (0,17, 5)(E)
and W' C Endc(0,13,8)(E"), we write

Wxy Wi={w,w)eWeW :Uw e, DU* =w Rey, 1}.
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We note that we have the inclusion Lip(%) xy Lip(9') C Lip(9 @ 9'). In fact,
using [Kaad 2019, Lemma 4.5], we obtain

Lip(@) xy Lip®(@) C Lip(@ & 9).

Proposition 2.3 (cf. [Kaad 2019, Proposition 4.6]). The homotopy relation on un-
bounded A-B-cycles is an equivalence relation.

Proof. Reflexivity and symmetry are proven exactly as in [Kaad 2019, Proposition
4.6]. For transitivity, we need to show that the concatenation of two unbounded
A-C ([0, 1], B)-cycles is again an unbounded A-C ([0, 1], B)-cycle.

We will first show that we may assume (without loss of generality) that any
unbounded A-C ([0, 1], B)-cycle (r, E, D) is “constant near the endpoints”. We
define

E:=C(0, 11, E) xwE, #(@) =m@&r@, =&

Here 7y(a) and % denote the obvious extension to C([0, 1], Eg) of the operators
w(a) @evo 1 and @ ®6V0 1 on Ey, respectively. Now consider ¢ > 0 and a € A. Pick
Se LipO(QD) such that || (a) — S|| < €. Then we also have ||7rg(a) — So|| < & and
therefore ||77 (a) — Sp @ S|| < e. This proves that we have the inclusions

#(A) C Lip®(@o) x4 Lip’(@) C Lip® (@),

so (7, E, 95) is an unbounded A-C ([0, 1], B)-cycle which is constant on [0, %].
Now suppose we have two unbounded A-C([0, 1], B)-cycles (m, E, %) and
(n', E’, %), and a unitary isomorphism U : E ®ey, B — E’ ®ey, B satisfying

U (a) ®ey, DU* = 7' (@) Bey, 1, U(D Rey, DU* =D @y, 1,

for any a € A. As described above, we may assume (without loss of generality)
that (/, E’, %) is constant on [0, %]. We define

E':=E xy E', 7" (a) :=m(a) ®7'(a), 9" =Y.

Now consider ¢ > 0 and a € A. Pick S € Lipo(Qb) such that |7 (a) — S|| < €. Then
in particular we have

Img(@) = USIU* || = 71 (a) = Sill <e.

Pick a function y € C*°([0, 1]) such that 0 < x <1, x(0) =1, and x (¢) =0 for all
% <t <1. Since E’ is constant on [0, %], we note that x U S1U™ is a well-defined ad-
jointable operator on E’, which in fact lies in Lip®(%"). If we also pick R’ € Lip®(@')
such that ||7’(a) — R'|| < &, then we obtain T” :=S® (xUS1U*+ (1 — x)R') €
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Lip®(@) xy Lip®(@') and we have the estimate

=" (a) = T"|| < max{||w(a) — S|, I7'(a) — xUSiU* + (1 — )R’}
< max{llw(a) = S, sup (x()lmo@) = USIU*||+ (1 = x @)/ (@) — R'ID}

tel0,1]
<é&.

This proves that we have the inclusions

7"(A) c Lip®(@) xy Lip°(@') ¢ Lip®(@"),
and we conclude that (z”, E”, %") is again an unbounded A-C ([0, 1], B)-cycle. [J

Definition 2.4. We define UKK (A, B) as the set of homotopy equivalence classes
of unbounded A-B-cycles.

We recall from Lemma 1.4 that the direct sum of two unbounded cycles is well-
defined. Since the direct sum is also compatible with homotopies, we obtain a
well-defined addition on UKK (A, B) induced by the direct sum. Moreover, this
addition is associative and commutative (since homotopy equivalence is weaker
than unitary equivalence). Hence, UKK (A, B) is an abelian semigroup, with the
zero element given by the class of the zero cycle (0, 0).

2B. Functional dampening. The goal of this subsection is to show that, up to
operator-homotopy, we can replace an unbounded cycle (E, %) by (E, f(9)) for
suitable functions f which blow up towards infinity at a sublinear rate. One can
think of f(%) as a “dampened” version of %, and we refer to the transformation
D f(D) as “functional dampening”. Our proof is partly inspired by the proof
of [Kaad 2019, Proposition 5.1], where the special case f(x) :=x(1+ x2)~" (with
r e (0, %)) is considered.

Definition 2.5. A dampening function is an odd continuous function f : R — R
such that

lim f(x) = oo, lim f(x)(1+x>)~""2=0.

X—>00 X—>00

Proposition 2.6. Consider an unbounded A-B-cycle (E, %) and a dampening
function f. Assume that there exists a self-adjoint subset W C Lip® (%) NLip( f (%))
such that w(A) C W. Then (E, f (D)) is an unbounded A-B-cycle which is operator-
homotopic to (E, D).

Proof. By Lemma 1.14, f(9) is an odd regular self-adjoint operator on E. Since
the function x — (1 4+ f(x)?)~!/2 lies in Co(R), we find that

Lip®(@) NLip(f(@)) C Lip’(f (@)).

Hence (E, f(9)) is indeed an unbounded A-B-cycle. To see that it is operator-
homotopic to (E, D), consider the functions g(x) := (1 +x2)~ 121+ f(x)|) and
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h(x) := xg(x). Then g € Co(R) and since f —h € Cp(R), we see that h(D) is
a bounded perturbation of f(%) (in particular, (E, (%)) is operator-homotopic
to (E, f(D))).

It remains to show that (E, h (%)) is operator-homotopic to (E, @). We consider
the operator-homotopy given for ¢ € [0, 1] by

Dy =08 (D), &) = (1-0"+gx)".

We note that go(x) =1 and g;(x) = g(x). Since g(x) is bounded from below by
a positive constant for |x| < r, we see that the map [0, 1] > ¢ — g,(-) € Cp(R) is
uniformly continuous on compact subsets of R, and therefore t — g,(%) is strongly
continuous (see, e.g., [Kaad and Lesch 2012, Lemma 7.2]). Consequently, ¢ — %,
is strongly continuous on Dom %. Furthermore, for each ¢ € [0, 1], Dom% is a
core for ¥;, so from Lemma 1.15 we obtain a regular self-adjoint operator % on
C([0, 1], E).
Consider a self-adjoint element w € W. Let us fix 0 < ¢ < 1 and write

0:(D) := (1 -1+ g@),

so that g,(%) = Q,(%)". We note that Q,(%) € Lip(®) and [D, Q,(D)] =0, and
we find that

D[O1(D), w] =D[g(D), w] = [(D), w] - [D, w]g(D)

is bounded. Consider the integral formula (see the proof of [Pedersen 1979, Propo-
sition 1.3.8])

sin

0:(9) =

() [, -1
; AT 4+A0:(D) QD) dA. 2.7)

g

Since Q,(%) is bounded below by (1 — 1)'/2, we know that Q,(%) is invertible,
and that
I +2Q,@)~ ' <A -~ (2.8)

In particular, (1 +1Q,(%))~" is of order O(A~") as A — o0o. Using that Dom % is
a core for Q,(D) and ¥ commutes with Q,(%), we then compute

[(14+210:(2) ' 01(D), w]D = (1 +10,(D) "' [0/(D), w]D
— A1+ 20,(@) Q0 D), wIB(1 +10,(D) " 0, (D),

and we see that ||[[(1 + A1 Q;(%))~'Q;(D), w]F| is finite and of order O(1?) for
A — 0, and of order O(A~!) as A — oo. By applying the above integral formula,
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we obtain that

St :=[8:(D), wID =[0+(D)', w]D

_ sin(7rt) (1 +A20,(D) 10, (@), w]D dAr

is a norm-convergent integral. It follows that §; is a bounded operator. To show
that S; is in fact uniformly bounded in ¢, let us split the integral in two parts. First,
since ||(1 +10,(®))~ '] < 1, we have

sin(7rt)

1
/ A—’[<1+AQ,<@))—‘QI(@),w]@dxH
0

sm(nt)

= I[g (), ]@II(1+IIQ1(9D)II)f AT

sm(nt) _
< Ilg(@), wB[ 2+ Ig@) (1 —1)~"

Second, using (2.8) we estimate

sin(7rt) _,[(1+th(@))—th(@),w]@d)»”
< Sm(” L ltg@). w1 =)™+ (1 - 1) ||Qt(@>||)f A7
< Sm(”’) ILg(@), wIBN 21—~ 2+ (1= ig@) e

Using that sin(wt) = O(¢) as t — 0 and sin(;r¢) = 0(1 —¢) as t — 1, we see that
both integrals are uniformly bounded in #. Thus, S; is uniformly bounded. It then
suffices to check strict continuity on the dense submodule Dom %. Since g,(9) is
strongly continuous, we see that S; is strongly continuous on Dom %. Furthermore,
rewriting

D[g: (D), w] = [Dg (D), w] —[D, w]g, (D)
=[g:(D), WD + g(D)[D, w] — [D, w]g,(D),

we conclude that S} = —9[g,(D), w] is also strongly continuous on Dom %. Thus,
we have shown that the commutator

(D, w] = [D, w]g: (D) +D[g: (D), w]

is uniformly bounded and strictly continuous, and therefore [%, w] is bounded and
adjointable on C([0, 1], E).

Now consider the functions R; € Cy(R) given by R,(x) := (i £ xg; x)~'. We
claim that t — R, is continuous with respect to the supremum-norm on Cy(R). To
prove this claim, first observe that g,(x) > g(x)’ > min(1, g(x)) for all x € R and
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t € [0, 1]. Hence, for each ¢ > 0 there exists r € (0, co) such that for all ¢ € [0, 1]
we have sup|x|>,|R, (x)| <e&. Then for ¢, s € [0, 1] we can estimate

[R: — Ryl = 2¢ + sup [[R;(x) — Ry(x)|| < 2¢ + sup |lxg; (x) — xgs (x|

[x|<r |x|<r

<2e+r sup|lg(x) — gs(X)Il.
|x|<r
Since g;(x) is uniformly continuous for |x| < r, we see that f — R, is norm-
continuous. Consequently, we conclude that ¢t — (i & 9%,)~! is a norm-continuous
map such that w(i & P, is compact for each w € W and ¢ € [0, 1]. Hence,
w(QNB +i)~! is compact on C([0, 1], E). This completes the proof that %, yields
an operator-homotopy (C([0, 1], E), 95). [l

Remark 2.9. A higher order unbounded Kasparov module is a pair (£, %) such
that there exist 0 < & < 1 and a dense *x-subalgebra sd C A for which the operators
(D, a](1+D%)~1=)/2 (for a € s) extend to bounded operators. The class of higher
order Kasparov modules contains all ordinary unbounded Kasparov modules. In
[Goffeng et al. 2019, Theorem 1.37] it was shown that the C I_function

sgnlog(x) := sgn(x) log(1 + |x|)

can be used to turn a higher order unbounded Kasparov module into an ordinary
unbounded Kasparov module. In fact, the proof of [Goffeng et al. 2019, Theorem
1.37] shows that for any unbounded cycle (E, %) (as in Definition 1.1) we have
the inclusion Lip(%) C Lip(sgnlog(%)). It then follows from Proposition 2.6 that
any unbounded cycle (E, %) is operator-homotopic to (E, sgnlog(%)).

Using the natural notion of homotopy for higher order modules, one can ask
whether the transformation (E, 9) — (E, sgnlog(%)) can be implemented as an
operator-homotopy within the class of higher order unbounded Kasparov modules,
so that every higher order module would be operator-homotopic to an ordinary
unbounded Kasparov module. It is not immediately clear if this is indeed the case.

2C. From bounded to unbounded homotopies. Recall the x-homomorphism ev; :
C([0, 1], B) — B given by b — b(t). For a Hilbert C([0, 1], B)-module E we
write E; := E @ev, B for the localization of E at ¢t € [0, 1]. Moreover, for any
h € Endj (E), we consider the localization h; := h ® 1 on E,. We describe some
basic facts regarding these localizations in the Appendix.

Now consider two unbounded A-B-cycles (Eg, @) and (£, @), and assume
that their bounded transforms are homotopic. Thus, there exists a homotopy (E, F)
between (Ey, Fg,) and (Eq, Fg,), where E is a module over C([0, 1], B). For
simplicity, let us assume thatev; (E, F) is equal to (E, Fg,) (i.e., there is no unitary
equivalence involved). We are ready to derive our main technical result.
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Proposition 2.10. Suppose A is separable, and B o-unital. Consider two un-
bounded A-B-cycles (Eg, 9¢) and (E1, %), and let (E, F) be a homotopy be-
tween (Eq, Fg,) and (E1, Fg,), satisfying F = F* and F2<1. Let W; C Lipo(gbj)
be countable subsets consisting of products of elements in Lip® (% i), such that A C
ij (for j =0, 1). Then there exists a positive operatorl € Jr C Endz([o,u,B)(E)
with dense range in E such that

(1) the (closure of the) operator & = %(Fl_1 + I7'F) makes (E,9) into an
unbounded A-C ([0, 1], B)-cycle, and

(2) writingl; :=ev;(l) and ¥j :=ev;(¥) (for j =0, 1), we have
lj e CX((1+2H)7, $j = Fa,l;", W; C Lip(Z;") NLip(#)),
and the operator lj_1 1+ @3)_1/ 4 extends to an adjointable endomorphism.

Proof. Note that (1) can be obtained by an application of Proposition 1.12. In
order to achieve (2) simultaneously, we need to construct our lift more carefully.
Consider again the o-unital C*-algebra Jp = Endc([o 1.5 (E) + Cr. Letk €
Endc([0 11.8)(E) be an even strlctly positive element and x € C([0, 1]) be given by
x(t):=t(1 —1t). Then xk € Endc([o 1. B)(E) (see Lemma A.1), and we define

h:=xk+(1—=F*eJp.
Consider the localizations
hy = evi(h) = X (O + (1= F}).

For ¢t € (0, 1) we have that x (¢) > 0, and x (¢)k; has dense range in E; by Corollary
A.3. Since x (t)k; < hy, h, has dense range in E; by [Lance 1995, Corollary 10.2].
For ¢ € {0, 1}, we have h; = (1 — Fz)l/2 (1 —I-sz) 12 which has dense range as
well. Thus, applying Corollary A.3 again, we conclude that h has dense range in E.
Moreover, from Lemma 1.10 it follows that % is a strictly positive element in JF.

Let o :={a;}ien C A be a countable dense subset of A, let {c;};en be a countable
dense subset of C*(h), and let {w; ;};en be an enumeration of W;. We have the
inclusions AJg, JpA, FJp, JpF C Jr (see Lemma 1.10). Since ev; (F) = Fy, and
W; CLip"(@;), we have forall w € W; that w(l — F3 ) =w(1+33)" leEnd%(E ).
Moreover, by assumption any w € W; is of the form wj T, T for T 1, T e L1p (D).
Since [ Fg @ T1]1T, is compact, as explained in the proof of Proposition 1.7, it fol-
lows that also [ngj, w] e End%(Ej). It thus holds that

WjJF@j, JF@J. Wj, ngjjfpaj, ]ng F@j C JF@(,"

Furthermore, since ev; : C([0, 1], B) — B = End%(B) is a surjective x-homo-
morphism we have End% (E))= Endg([o’ 11.8) (E) @evj 1 and hence JF%J, =Jr @evj 1.
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Therefore, any approximate unit u, € Jr gives an approximate unit ev;(u,) for
J Fy, - The C*-subalgebra C*(h) C JF thus contains a commutative approximate
unit u, for Jr which is quasicentral for A and F, and such that for j € {0, 1},
ev;(uy,) is quasicentral for W; [Akemann and Pedersen 1977, Theorem 3.2].

By fixing a choice of 0 < ¢ < 1 and selecting a suitable subsequence of u,, we
can achieve that, for each n € N, d,, :== u, | — u,, satisfies properties (a)—(e) of the
proof of Proposition 1.12 as well as

(c") llevj(d)lev;(F), w;j;]ll < e2" for all i <n and for j =0, 1, and
(d) Illev;(dy), w;1ll < &> foralli <n and for j =0, 1.

As in Proposition 1.12, property (c’) follows because ev (u,) is an approximate
unit for J Fa, and (d') follows because ev (u,) is quasicentral for W;. Thus, as in
Proposition 1.12, we can construct a strictly positive element / € Jr, such that the
(closure of the) operator

$:=HFI"" +17'F)

is a densely defined and regular self-adjoint operator on E, and (E, &) is an un-
bounded Kasparov A-C ([0, 1], B)-module for which we have sd C Lipo(ff). This
proves (1).

For (2), we first note that /; € C*(h;) and h; = (1 +9b2) ! for j=0,1. In
particular, /; commutes with ng and &j = Fy, l ! Propertles (¢") and (d’) ensure
that [¢, w] and [l , w] are bounded for all w e W (j =0, 1). Furthermore, from
property (b) it follows that /~!(1 — F?)!/* is everywhere defined and bounded, and
localizing in j = 0, 1 then shows that lj_l(l —{—9155)‘1/4 is bounded. O

Theorem 2.11. Suppose A is separable, and B o -unital. Consider two unbounded
A-B-cycles (g, Ey, Do) and (11, E1, D). Any homotopy (w, E, F) between (7,
Ey, Fg,) and (m1, Ey, Fg,) can be lifted to an unbounded A-C ([0, 1], B)-cycle
(m, E, ¥) such that, for j =0, 1,

e the endpoints ev(w, E,¥) are unitarily equivalent to (;, E;, f;(D;)) for
dampening functions f;: R — R, and

o there exist countable self-adjoint subsets W; C Lipo (@;)NLip(f;(%;)) such
that 7t ;(A) C W;.

Moreover, if (r, E, F) is an operator-homotopy, then (rw, E,¥) is an operator-
homotopy.

Proof. We may assume (without loss of generality) that F = F* and F? < 1
[Blackadar 1998, Proposition 17.4.3]. For j =0, 1, we have unitary equivalences
Uj:ev;(E)— E; suchthatev;(F) = U;F@j U;. Then %; on E; is unitarily equiv-
alent to U;‘Qb jU;j on ev;(E). To simplify notation, we will from here on ignore
this unitary equivalence and simply assume that ev;(E, F) is equal to (E;, Fg,).
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We know by Lemma 1.6 that, for j = 0, 1, there exist countable self-adjoint
subsets W; C Lip® (@ ;) consisting of products of elements in Lip® (@ ), such that
mi(A) C 17] From Proposition 2.10, we obtain an unbounded A-C ([0, 1], B)-
cycle (E, ¥ := %(Fl_l +1~1'F)), which provides a homotopy between (Eq, o) and
(E1, %1), where ¥ :=ev;(¥). By property (2) of Proposition 2.10, we know that
1j € C* (14937, 9 = Fy,l;', W; CLip(l; ) NLip(¥,), and I (1+2%) /4
is bounded. It follows that we can write ¥; = f;(% ;) for some dampening function
fj» which proves the first statement. Furthermore, if we have in fact an operator-
homotopy (E, F), then it is clear that the lift (£, &) obtained from Proposition 2.10
is also an operator-homotopy. U

2D. The isomorphism with KK-theory. Using the results from the previous sec-
tions, we can now prove that our semigroup UKK(A, B) is isomorphic to Kas-
parov’s KK-group.
Theorem 2.12. Suppose A is separable, and B o -unital. The bounded transform
induces a semigroup isomorphism UKK(A, B) — KK(A, B), given by [(E, D)] —
[(E, Fa)l.
Proof. If there exists a homotopy (E, &) between unbounded A-B-cycles (Eg, %)
and (E1, 91), then (E, Fg) provides a homotopy between (Ey, Fg,) and (Eq, Fg,).
Moreover, the bounded transform is compatible with direct sums, so it induces
a well-defined semigroup homomorphism. Furthermore, this homomorphism is
surjective by Theorem 1.13, so it remains to prove that it is also injective.
Consider two unbounded A-B-cycles (Eq, %) and (Eq, 91), with [(Ey, Fg,)] =
[(E1, Fg,)]. Then there exists a homotopy (E, F) between (Eo, Fg,) and (E1, Fg,).
From Theorem 2.11 we obtain an unbounded A-C ([0, 1], B)-cycle (E, ¥) such
that, for j =0, 1, the endpoints ev; (E, &) are unitarily equivalent to (E;, f;(%;))
for dampening functions f; : R — R, and there exist self-adjoint subsets W; C
Lipo (@;)NLip(f;(%;)) such that r;(A) C W_/j It then follows from Proposition 2.6
that % is operator-homotopic to ;. Thus, we have the composition of homotopies

Do ~on Fo ~n F1 ~on D1,
which proves that [(Eq, @0)] = [(E1, 91)]. g
Remark 2.13. A priori, UKK(A, B) is a semigroup, and the isomorphism
UKK(A, B) — KK(A, B)

is an isomorphism of semigroups. Since KK(A, B) is a group, it of course fol-
lows that UKK (A, B) is also a group. However, the isomorphism UKK (A, B) —
KK(A, B) requires the assumption that A is separable. In Theorem 4.16 we will
give a direct proof that UKK (A, B) is a group, which avoids the bounded transform
and therefore also works for nonseparable (o -unital) C*-algebras.
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For any dense *-subalgebra s{ C A, we define W (s, B) as the set of those
(, E, %) € W,(A, B) for which 7(sl) C LipO(QZJ), and we define UKK (A, B) as
the homotopy equivalence classes of elements in W (s, B) (where it is understood
that the homotopies are given by elements in W (4, C ([0, 1], B))). The natural in-
clusion W (sd, B) — W;(A, B) induces a well-defined semigroup homomorphism
UKK (s, B) — UKK(A, B). We say that s is countably generated if s contains
a countable subset that generates it as a x-algebra over C. We emphasize that this
does not involve taking closures of any kind. While, as we explained in Remark 1.5,
it is not necessary to fix a countably generated dense *-subalgebra s C A, we will
show next that it is nevertheless possible to define unbounded KK-theory using any
such fixed choice for s{ C A.

Proposition 2.14. Suppose A is separable, and B o -unital. For any countably
generated dense x-subalgebra A C A, the map UKK(d, B) — UKK(A, B) is an
isomorphism.

Proof. We have the following commuting diagram:

UKK (A, B) UKK(A, B)

o~

KK(A, B)

We know from Theorem 2.12 that the map UKK(A, B) — KK(A, B) is an iso-
morphism. Thus, we need to show that also UKK(#A, B) — KK(A, B) is an iso-
morphism. The assumption that A is separable ensures that the bounded transform
UKK (s, B) — KK(A, B) is surjective (see Theorem 1.13). Moreover, the proofs
of Theorems 2.11 and 2.12 with the special choice W; = m;(s4) show that the
bounded transform is also injective. O

3. Degenerate cycles

In this section, we will consider two notions of degenerate cycles in unbounded
KK-theory, namely “algebraically degenerate” and “spectrally degenerate” cycles.
Our aim is to prove the following:

« any degenerate cycle is null-homotopic, i.e., homotopic to the zero cycle (0, 0),
and

» any homotopy can be implemented as an operator-homotopy modulo addition
of degenerate cycles.
3A. Algebraically degenerate cycles.

Definition 3.1. An unbounded A-B-cycle (7, E, %) is called algebraically degen-
erate if m = 0.
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By considering the obvious homotopy (Cy((0, 1], E), @), we easily obtain:

Lemma 3.2. An algebraically degenerate unbounded A-B-cycle (E, %) is null-
homotopic.

As an application of the above lemma, we will show that two unbounded cy-
cles (, E, %) and (7, E,%’) are homotopic if the difference @ — %’ is “locally
bounded”.

Proposition 3.3. Let (w, E, D) and (, E, %") be unbounded A-B-cycles. Suppose
there exists a subset W C Lip0 (@D)N LipO(QZ)’ )y with w(A) C W such that for each
w € W, the operator (9 — 9" )w extends to a bounded operator. Then (7, E, D)
and (r, E, 9") are homotopic.
Proof. Consider the unbounded A-C ([0, 1], B)-cycle («r, C([0, 1], E®E), DD%’)
with the representation given for ¢ € [0, 1] by 7;(a) := (a @ a) P, in terms of the
norm-continuous family of projections
. cosz(%nt) cos(%nt) sin(%nt)

e cos(37t) sin(37t) sinz(%m)

We note that Pp =16 0 and P; =06 1. For homogeneous w € W we compute

(DOD, (wSw)P]=
[, w]cosz(%nt) (@w—(—l)degww@/)cos(%nt) sin(%nt)
(@'w—(—1D)%*¥wD)cos(3t)sin(3t) (9, w]sin®(37t) '

We observe that Gw — (—1)9€¥w%" = (9 — B )w + [, w] is bounded, and
similarly for &'w — (— 142wy, Hence, [DDD, (wDw) P,] is uniformly bounded
and norm-continuous in 7, and we obtain (w@®w) P, C Lip(@@%’). Moreover, since
the resolvents of 9@ %’ are constant in ¢, we have in fact (w®w) P, C Lip0 (@DDD).
Thus, we have

T (A) C{(wdw)P.:we W} CLip> @ D),

and we have a homotopy between (7 ©0, E®E, BDD’) and (0D7, EDE, DDHD).
Finally, since algebraically degenerate cycles are null-homotopic by Lemma 3.2,
we note that (r ®0, E® E, % @ %) is homotopic to (7, E, @), and that (0 @ 7,
E®E,9®%') is homotopic to (7, E, D). O

Remark 3.4. The assumption that (% — %")w is bounded for all w € W is inter-
preted as saying that 9 — 9@’ is locally bounded. In the above proposition, we
have assumed that both (E, @) and (E, 9’) are unbounded cycles. Under certain
conditions, it suffices to assume only that (£, %) is an unbounded cycle; using
local boundedness of % — %' one can then prove that (E, %) is also an unbounded
cycle. We refer to [van den Dungen 2018] for further details.
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3B. Spectrally degenerate cycles. We denote by sgn: R\ {0} — {£1} the function
sgn(x) = ﬁ We say that a regular self-adjoint operator % : Dom% — E is
invertible if there exists 9! € End}(E) that satisfies 997! = 719 = 1. It
then follows that Dom% = Ran%~! = Ran|%|~!' and Ran® = E. Thus, if 9 is
invertible, sgn(%) is well-defined and equal to ||~

Definition 3.5. An unbounded A-B-cycle (7, E, D) is called spectrally degener-
ate if 9 is invertible and there exists W C Lip®(@) such that 7(A) ¢ W and
[sgn(@), w] =0 forall w e W.

Lemma 3.6. Let % : Dom% — E be self-adjoint, regular, and invertible. If w €
End(E) is such that w : Dom% — Dom % and [sgn(9), w] = 0, then [D, w] is
bounded if and only if [|9D|, w] is bounded.

Proof. This follows from the simple observation that sgn(%) is a self-adjoint unitary
and 9 = sgn(¥)|D|. We have

(D, w] = sgn(@)[|D], w], [1D], w] = sgn(D)[D, w],
whence [9, w] is bounded if and only if [|2]|, w] is bounded. O

We have already seen in Lemma 3.2 that any algebraically degenerate cycle is
null-homotopic. Here we shall prove that also any spectrally degenerate cycle (E, &)
is null-homotopic. The easiest way to prove this is by observing that the bounded
transform (E, Fg) is operator-homotopic to the degenerate cycle (E, sgn(%)) (which
is null-homotopic), and then applying Theorem 2.11. However, we can only apply
Theorem 2.11 if A is separable. But with only a bit more effort, we can in fact
explicitly construct an unbounded homotopy between any spectrally degenerate
cycle and the zero module.

Proposition 3.7. Any spectrally degenerate unbounded A-B-cycle (E, D) is null-
homotopic.

Proof. Consider for t € (0, 1] the family of regular self-adjoint operators
G, =1 sgn(@)|D|".

Since ¢t — |@|'~! is norm-continuous and |¥|' = |%|'~1|F|, we see that ||’
is strongly continuous on Dom%. Since Dom% is a core for %, for each t €
(0, 1], we obtain from Lemma 1.15 a regular self-adjoint operator % on the Hilbert
C([0, 1], B)-module E := Co((0, 1], E). We claim that (E, %) is an unbounded
cycle, and therefore it provides a homotopy between ev (ENE , @) = (E,9) and
evo(E, D) = (0, 0).

To prove the claim, choose W C Lip0 (%) such that 7(A) C W and [sgn(%), w] =
0 for all w € W. First consider the resolvents of %,. We compute

(@, £i)"" = Fit sgn(@)|D| ™ (t sgn(@)|D| " Fi) 7. (3.8)
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Since @ is invertible, the operators w|%|~" are compact for 0 < ¢ < 1 and for
w € W, and hence so are w (%, +i)~!. Moreover, ¢ — |%|~ is norm-continuous
on (0, 1], and therefore ¢ > £ sgn(%)|%|~" is norm-continuous on (0, 1]. But then
the composition with x — x(x £i)~! gives again a continuous function, and we
see from (3.8) that 1 — (%, £ i)' is norm-continuous on (0, 1]. Furthermore,
since |%|~" is uniformly bounded and ¢ sgn(%)|%|~" is self-adjoint, it also follows
from (3.8) that

lim||(%; +i) 7' || = lim ¢||sgn(@)|D| ™ (¢ sgn(@)|D| " Fi)~'| =0,
™NO N0

so we also obtain continuity at 0. Hence, w(@ +i )~ ! is compact on E.

Next, we consider the commutator [, w] = ¢! sgn(P)[|9|", w] for some self-
adjoint w € W. We have seen above that || is strongly continuous on Dom %,
and hence also [%,, w] is strongly continuous on Dom %. To show that [%,, w] is
strongly continuous everywhere, it then suffices to show that [9);, w] is uniformly
bounded. For this purpose, we consider the operator inequality

(197", w]l = Fi (D 1D], wl|D] ™" < 111D, w]ll|D] 2,

where [|%|, w] is bounded by Lemma 3.6. Applying [Kucerovsky 2000, Proposi-
tion 2.11] to the function f(x) := x’, we then find that

+i[|D]7, wl = [ F(1D]7), wl < (DI HIND], wll D2
= 119" 10D, wlll|D] 72 = 111D, w]l||B| ™.
For any ¥ € Dom %, we therefore have
(W1 Zi[1DI, wly) = |Fi 1D 1D, wlD|"Y) = (D" | Fil|D] ", w]|D|'y)
<D [ I1D], wllD| ) = (W 110D, wllD] ).

Since both ||[|%|, w]|| |2|"~" and [|%|’, w] are bounded for ¢ € [0, 1] (for the latter,
see for instance [Gracia-Bondia et al. 2001, Lemma 10.17]), we have the norm-
inequality

Il will =lI£il®l, will <t 10S], w1 < 10S], wllmax{1, (2]~}
We finally obtain
1127, wlll < ¢~ sen@)[I1DI, wlll < 11|, wll max{1, [/|%]~"]]}.

Hence, [9;, w] is uniformly bounded and strongly continuous as a function of
t € (0, 1], and therefore the commutator [9), w] is bounded on E. Thus, we have
shown that W € Lip®(@) and therefore 7 (A) € W C Lip®(®). O
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3C. Operator-homotopies modulo degenerate cycles. In bounded KK-theory, it
was shown by Kasparov that any homotopy can be implemented as an operator-
homotopy modulo addition of degenerate modules [Kasparov 1980, §6, Theo-
rem 1]. Using this result, we will prove that a similar statement holds in unbounded
KK-theory.

Let ~,5+4 denote the equivalence relation on U, (A, B) given by operator-homo-
topies, unitary equivalences, and addition of spectrally degenerate and algebraically
degenerate cycles. We already know from Lemma 3.2 and Proposition 3.7 that
degenerate cycles are null-homotopic, so ~,p,+4 is stronger than ~j,. We will prove
here that in fact these two relations coincide.

Lemma 3.9. Suppose A is separable, and B o -unital. Let (E, F) be a (bounded)
Kasparov A-B-module, such that F = F*, F?=1,and [F,a] = Oforallae A
(in particular, (E, F) is degenerate). Let % := FI~! be a lift of F, where l is a
positive element in Jr with dense range in E obtained from Proposition 1.12. Then
the unbounded A-B-cycle (E, D) is spectrally degenerate.

Proof. Since F 2=1and [F, ] =0, we have that @ is invertible and that sgn(P)=F
(graded) commutes with the algebra A. Thus, (E, 9) is spectrally degenerate. [J

Theorem 3.10. Suppose A is separable, and B o -unital. Then the homotopy equiv-
alence relation ~j, on V1 (A, B) coincides with the equivalence relation ~ ,j 4.

Proof. We need to prove that the relation ~,;4 is weaker than ~. To this end let
(Eo, 99) and (E1, @) be unbounded A-B-cycles which are homotopic. We then
know that the bounded transforms (o, Eo, Fg,) and (71, E1, Fg,) are also homo-
topic. By [Kasparov 1980, §6, Theorem 1], there exist degenerate bounded Kas-
parov modules (1, E(), F)) and (7r{, E}, F|) such that (0@, Eo® E, Fa,® F)
is operator-homotopic to (7| @ 7{, E; @ E|, F3, ® F|). Denote by E}Op the Hilbert
B-module E ; equipped with the opposite Z,-grading. By adding the algebraically
degenerate module (0, E(,)Op, —F)® (0, E f)p , —F/), we obtain the top line in the
following diagram:

h
Fa, ® F® —F,® —F| ~*~ Fa, ® F{ ® —F; & —F|

o o

Fa, ® F)® — F] Fa, ®F|© —F} (3.11)

oh oh

oh

Fu, & Fgy @ —Fy, ~~ Fy, & Foy @ —Fy,
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Since Fj/. is degenerate, we know for all a € A that [F]’., 71,;. (a)] :n} (@)1 — (F]’.)z) =
0. As in [Blackadar 1998, §17.6], (n} D 0, E; e Ej()p, FJ/. @D —F;) is operator-

homotopic to the degenerate module

L F (1= (FH'2
’ / /Op )2 /A
(m; @0, E;®@E;" F), Fj:= ((1—(F§/-)2)”2 —lé} '

This yields the vertical operator-homotopies between the first two lines in (3.11).

By construction, (F]’.)2 = 1 and [F]’., J'rj’. (a)] = 0. Hence, by Lemma 3.9 and
Proposition l 12 we can lift F j’ to spectrally degenerate unbounded cycles (7 j’ @0,
E; @ E;.Op, Qb;), such that F j’ ~oh F@j. Moreover, using again Proposition 1.12,
we can lift — F J’ to algebraically degenerate unbounded cycles (0, E}Op, —QD’J.) such
that — F J’ ~oh —F@/j. This yields the vertical operator-homotopies between the
last two lines in (3.11). Finally, by transitivity we obtain the horizontal operator-
homotopy on the bottom line, and by Theorem 2.11 this operator-homotopy lifts
to an unbounded operator-homotopy

oh

%o B D) & D~ B DD, & —D).
Thus, we have shown that (Eg, D¢) ~on+d (E1, D1). O

4. Symmetries and the group structure

In this section we discuss various notions of symmetries for unbounded cycles.
The presence of such symmetries induces homotopical triviality and can be used
to give a direct proof of the fact that the semigroup UKK (A, B) is a group for any
two o -unital C*-algebras.

4A. Lipschitz regularity. Let0 <o < 1 and f,, € Co(R) be a function that behaves
like x towards infinity. We will show here that we can use the functional damp-
ening of Proposition 2.6 to replace any unbounded cycle (E, %) by a Lipschitz
regular cycle (E, fy(D)).

Definition 4.1. An unbounded A-B-cycle (m, E, D) is called Lipschitz regular if
7 (A) c Lip®(@) NLip(|D|).

Remark 4.2. Since the map x — |x| — (1 + x2)172 lies in Cy(R), we have for
T € Endj(E) that [|%], T'] is bounded if and only if [(1 +92)1/2 T is bounded,
and therefore Lip(|%|) = Lip((1 + %2)'/?).

The following result generalizes [Kaad 2019, Proposition 5.1], where the spe-
cific function x > x (1 +x2)©@~D/2 was considered.

Proposition 4.3. Let (E, %) be an unbounded cycle, 0 < o < 1, and let f, :
R — R be any odd continuous function such that lim,_, o f,(x) — x% exists. Then
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(E, fo (D)) defines a Lipschitz regular unbounded cycle that is operator homotopic
to (E, D).

Proof. We will show that Lip(%@) C Lip(f(2)) NLip(| fo(9)]), and the statement
then follows from Proposition 2.6. Given two such functions f, and g,, both
Jo—8w and | fo| =8l lie in Cp(R). Thus, fo(D)—go(D) and | fo(D)| — (8 (D)] are
bounded operators, and we see that Lip( fy (%)) = Lip(gy(9)) and Lip(] 5 (D)]) =
Lip(|g«(D)|). Hence, it suffices to prove the statement for f (x) :=x(1 +x2)@=Dh/2,
Using for s € (0, 1) the integral formula (which can be derived from (2.7) by
replacing Q, (@) by (1 4+ %)~ 1)

sin

1+3%)7° =

o0
(’”)/ A+ +9Y) " dn,
V4 0

it is shown in the proof of [Kaad 2019, Proposition 5.1] that [(1 +%2)©@~D/2 T1%
extends to a bounded operator for each T € Lip(@). Hence, Lip(D) C Lip(fo (D)).

To prove the Lipschitz regularity, we consider instead the function g, (x) :=
sgn(x)(1 4+ x2)%/2. Using again the above integral formula, one can show similarly
that

[18«(@)], T1=1[(14+2)*? T1=—(1+2*)*[(1+ 2%, T1(1 +2*)*/
is indeed bounded for each T € Lip(%), and therefore Lip(%) C Lip(|g,(2)]). U

Remark 4.4. In addition to the two functions x +— x(1 + x2)©@~D/2 and x >
sgn(x)(1 + x2)%/2 considered in the proof of Proposition 4.3, another typical exam-
ple of a function f, as in Proposition 4.3 is the function sgnmod* : R — R given
by x — sgn(x)|x|*. Note that if & is invertible, then sgnmod® (D) = sgn(D)|D|* =
||t

Remark 4.5. Recall from Remark 2.9 the function sgnlog(x) :=sgn(x) log(1+|x]).
In [Goffeng et al. 2019, Theorem 1.16], it is proved that the transformation % —
sgnlog(%) turns Lipschitz regular twisted unbounded Kasparov modules into or-
dinary unbounded Kasparov modules. Incorporating this “untwisting” procedure
into the homotopy framework using Proposition 2.6 is of interest in the study of
twisted local index formulae. This is beyond the scope of the present paper.

4B. Spectral symmetries.

Definition 4.6. An unbounded A-B-cycle (E, %) is called

o spectrally symmetric if there exist an odd self-adjoint unitary S on E and a
W c Lip®(@) such that 7(A) ¢ W, [S, w] =0 forall w € W, S : Dom% —
Dom %, %S — S% = 0, and S9 is positive, and

« spectrally decomposable if there exists a spectral symmetry S such that both
(S £ 1) are positive.
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The definition of spectrally decomposable cycle is adapted from [Kaad 2019,
Definition 4.1] (where it is phrased in terms of the projection P = %(1 +5)). By
definition, every spectrally decomposable cycle is also spectrally symmetric. More-
over, any spectrally degenerate cycle (E, %) is clearly spectrally decomposable
(hence spectrally symmetric) with spectral symmetry sgn(%).

Spectrally symmetric cycles are actually not much more general than spectrally
degenerate cycles. Indeed, the following lemma shows that any spectral symmetry
S more or less acts like sgn(%) (except that 2 may not be invertible, so there could
be some freedom in how S acts on Ker %).

Lemma 4.7. Let (E, %) be an unbounded A-B-cycle with spectral symmetry S.
Then % = S|9|, and (E, D) is Lipschitz regular.

Proof. On the Z,-graded module E = E & E_ we can write

0 9_ 0 U
g_]j = =
(o %) =0 %),
where U : E; — E_ is unitary. Since @S = S%, we see that UD_ =D, U*. We
then compute

g (B-T+ 0\ _ (UG UG, 0
0 D, .9_ 0 UD_UD_)"

Since S9 is positive, we know that U*% and U%_ are positive, and we obtain

(U3, 0\
|9b|_( 0 U@_>_S@.

As in Lemma 3.6, it then follows that Lip(|%|) = Lip(%), so in particular (E, &)
is Lipschitz regular. O

Furthermore, the next proposition shows that any spectrally symmetric cycle is
in fact just a bounded perturbation of a spectrally degenerate cycle.

Proposition 4.8. Let (E, D) be an unbounded A-B-cycle with spectral symmetry S.
Then (E,% + S) is a spectrally degenerate unbounded A-B-cycle.

Proof. Since S is bounded, self-adjoint, and odd, we know that (E,% + §) is
again an unbounded A-B-cycle. Furthermore, since (% 4 §)?> = %2 + 1 +25% is
positive and invertible, we know that also % + S is invertible. Moreover, noting
that (9 + S)? = (14 5%)? and that 14 S% is positive, we see that |9 + S| = 1+ S%.
Hence, we find that

sen(@+8) = (D+8)|D+ S| =SB+ 1)(145D) =5,

and we conclude that (E, % + §) is degenerate. U
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In [Kaad 2019, Definition 4.8], the notion of spectrally decomposable module
was used to define the equivalence relation of “stable homotopy” for unbounded
Kasparov modules (i.e., homotopies modulo addition of spectrally decomposable
modules). Here, we point out that in fact any spectrally symmetric cycle (E, &) is
null-homotopic. If A is separable, this follows from Theorem 2.11 by observing
that, if S is a spectral symmetry of (E, @), then the bounded transform (E, Fg)
is operator-homotopic to the degenerate cycle (E, S) (since [Fg, S] = 2SFg is
positive [Blackadar 1998, Proposition 17.2.7]). In general, we simply combine
Propositions 4.8 and 3.7 to obtain:

Corollary 4.9. Any spectrally symmetric unbounded A-B-cycle is null-homotopic.
Consequently, the relation of stable homotopy equivalence of [Kaad 2019, Defini-
tion 4.8] coincides with the relation ~, of homotopy equivalence.

In [Kaad 2019, Theorem 7.1] it was shown that, for any countable dense x*-
subalgebra s C A, the stable homotopy equivalence classes of elements in W; (s, B)
form a group which is isomorphic to KK (A, B). In particular, this group is inde-
pendent of the choice of {. We emphasize here that Corollary 4.9, combined
with [Kaad 2019, Theorem 7.1], then gives a second independent proof of the
isomorphism UKK (A, B) ~ KK(A, B) from Theorem 2.12.

As a further application of Corollary 4.9, the following proposition (adapted
from the results of [Kaad 2019]) gives a criterion that ensures that two given un-
bounded cycles are homotopic.

Proposition 4.10 (cf. [Kaad 2019, Proposition 6.2]). Let (7, E, D) and (7, E, %D')
be unbounded A-B-cycles such that w(A) C Lip®(@) NLip%(@'). Suppose there
exists an odd self-adjoint unitary F : E — E such that F commutes with both %
and @', and such that we have the equalities FD = |%| and FY' = |9'|. Then
(E, D) is homotopic to (E, D).

Proof. Using Proposition 4.3, we may assume (without loss of generality) that
(E, %) and (E, %') are Lipschitz regular, and that 7 (A) C W for some

W c Lip®(@) NLip(|%|) N Lip®(@") N Lip(|9'|).

We then note that the operator F satisfies the assumptions of [Kaad 2019, Proposi-
tion 6.2] (with the dense *-subalgebra s{ C A replaced by W), where we point out
that the Lipschitz regularity of % ensures that

DF, w]=[DF, w]—[D, wlF =[|2], w] = [D, w]F

is bounded for w € W (and similarly for %"). Then we know from (the proof of)
[Kaad 2019, Proposition 6.2] that (E, %) — (E,9') is homotopic to a spectrally
decomposable cycle. Using Corollary 4.9 we conclude that (E, @) — (E, ') is
null-homotopic, and therefore (E, %) is homotopic to (E, 9'). U
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Corollary 4.11. Let (, E, %) and (7w, E, 9") be unbounded A-B-cycles. Suppose
that 9 and 9’ are both invertible, and that sgn(®) = sgn(%’). Then (E, D) is
homotopic to (E, 9').

4C. Clifford symmetries.

Definition 4.12. An unbounded Kasparov A-B-cycle (E, D) is called Clifford sym-
metric if there exists an odd self-adjoint unitary y on E and a W C Lip’(%) such
that w(A) C W, [y,w]=0forall we W,y :Dom% — Dom%, and Dy = —y%.

The idea here is that a Clifford symmetric A-B-cycle is in fact an A ® Cl;-B-
cycle, and the image of the map KK(A ® Cl;, B) — KK(A, B) is zero. Indeed,
one easily checks that the bounded transform (E, Fg) of a Clifford symmetric
unbounded cycle is operator-homotopic to the degenerate Kasparov module (E, y).
We prove here an analogous statement for unbounded cycles.

Lemma 4.13. Let (E, %) be an unbounded A-B-cycle with a Clifford symmetry y
and 0 <« < 1. Then (E, D) is operator-homotopic to the spectrally symmetric
unbounded cycle (E, y|9|%).

Proof. Since y commutes with |9|* and (v |9|%)? = |9|>*, we know that y|%|® is
regular and self-adjoint, and T (1 + (y |99|*)?)~1/2 is compact for any T € Lipo(@).
Moreover, since Lip(y|9|*) = Lip(|%|¥) contains Lip(%), we see that m(A) C
Lip®(@) C Lip%(y |%|%). Thus, (E, y|%|*) is indeed an unbounded cycle. We note
that y provides a spectral symmetry for (E, y|9|*). The operator-homotopy is
obtained by composing the operator-homotopy between % and sgnmod® (%) (see
Proposition 4.3 and Remark 4.4) with the operator-homotopy given for ¢ € [0, 1] by

%, := cos(3t) sgnmod® (D) + sin(371)y |D|*. (4.14)

Note that y anticommutes with sgnmod® (%) as the latter is given by an odd func-
tion of & (see Lemma 1.14). We then compute that thz =|9|?*, and thus LipO(QD) -
Lip’(%,) for all 7 € [0, 1], so %, is indeed an operator-homotopy. (]

As in [Deeley et al. 2018, Definition 3.1], we say that an unbounded cycle (E, &)
is weakly degenerate if % is given by a sum & = %y + ¥, such that

e %9 and ¥ are odd regular self-adjoint operators with Dom % = Dom %y N
Dom ¢,

o ¥ is invertible, A C Lip(¥), and ¥a —a¥ =0 for all a € A, and

e there is a common core € C Dom($%%g) N Dom(%¢¥) for 9y and & such that
Do + S99 =0 on €.

Roughly speaking, this means that & is degenerate and 9 has Clifford symmetry
y = sgn(¥). The proof of Lemma 4.13 can be adapted to weakly degenerate cycles.
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Lemma 4.15. Any weakly degenerate unbounded A-B-cycle (E, % =%+ ¥) is
operator-homotopic to spectrally symmetric unbounded A-B-cycle (E, sgn(¥)|%2|%)
forany O < «a < 1. In particular, (E, D) is null-homotopic.

Proof. The proof is the same as for Lemma 4.13, but we need to show that (4.14)
is again an operator-homotopy (with y = sgn(¥)). We compute

B; = |D[** +2sin(37t) cos(3t)[sgnmod® (D), y1|D|*.
Since & is invertible, also 9 is invertible, and we find that
[sgnmod® (D), y]1=[D, y112|*~" = 2|9 |B|*".

In particular, [sgnmod® (D), y1|%|* is a positive operator and therefore thz > ||
for all ¢ € [0, 1]. Hence, if T (1 4+%2)~!/? is compact for some T € Endg(E), then
also T'(1 +|%|?*)~1/2 is compact, and therefore

T+~ 2 =T+ 2+ 1@ 21+ 272

is compact. Thus, Lip0 (%) C Lip0 (9,) for all t € [0, 1], so 9, is indeed an operator-
homotopy. Finally it follows from Corollary 4.9 that (E,y |%|%) is null-homotopic. []

4D. The unbounded KK-group. As mentioned in Remark 2.13, the isomorphism
UKK(A, B) ~ KK (A, B) from Theorem 2.12 implies in particular that UKK (A, B)
is a group. Here we give a direct proof of this fact, working only in the unbounded
picture of KK-theory (hence avoiding the bounded transform entirely). In partic-
ular, the proof we give here (in contrast with Theorem 2.12) does not require the
assumption that A is separable.

Given an unbounded A-B-cycle (rr, E, %), define its “inverse” as

— (7, E, D) := (P, EP, —9),
where E°P = FE with the opposite grading and the representation
7% (@) = (=" (a)
for homogeneous elements a € A.

Theorem 4.16. For any o-unital C*-algebras A and B, the abelian semigroup
UKK(A, B) is in fact a group. To be more precise, the inverse of [(w, E, D)] €
UKK(A, B) is given by [—(m, E, D)].

Proof. The sum (i, E, D) — (7w, E, D) is given by the Clifford symmetric cycle

G 0 01
_ = op op =
(m, E,9) — (7, E, D) <nean ,E®E ,(0 _QD)>, Y (1 0)’
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where y denotes the Clifford symmetry. From Lemma 4.13 we know that a Clif-
ford symmetric cycle is operator-homotopic to a spectrally symmetric cycle. Fur-
thermore, by Corollary 4.9, every spectrally symmetric cycle is null-homotopic.
Thus, we have shown that (7, E, D) — (7, E, D) is null-homotopic, and therefore
[—(@r, E, )] is indeed the inverse of [(7, E, 9D)]. O

Appendix: On localizations of dense submodules

Let X be a locally compact Hausdorft space, B a C*-algebra, and E a Hilbert
Co(X, B)-module. We will show in this appendix that a submodule of E is dense
if and only if it is pointwise dense. One way to prove this could be by showing
that £ can be viewed as a continuous field of Banach spaces (where each Banach
space is in fact a Hilbert B-module), and then applying the theory of continuous
fields [Dixmier and Douady 1963] (for this approach, see for instance [Ebert 2018,
Lemma 2.7, Corollary 2.8, and Proposition 2.21]). Here, we prefer instead to give
our proof in the language of Hilbert C*-modules.

For x € X we denote by ev, : Co(X, B) — B the x-homomorphism f +— f(x).
Let ¢ : B — BT be the embedding of B into its (minimal) unitization B*. We
define the localization E, := E ®evx BT, and we note that there is a map E — E,
via e > e, := e ® 1. For a submodule F C E we write

F..={fi€E,: feF}CE,,

for the image of F under the map e — e,. We collect some basic facts regarding
these localizations in the following lemma.

Lemma A.1. (1) The Hilbert Co(X, B)-module E is a central bimodule over
Co(X), and the left Co(X) action is by adjointable operators.

(2) The map E — E, given by e > e, := e ® 1 is surjective.

(3) We have a unitary isomorphism E, ~ E @evx B.

(4) We have the equality |le||g =sup,yllex ||, and the map x — ||lex|| lies in Co(X).
Proof. For (1), see for instance [Kasparov 1988, Definition 1.5] and the discussion
following it. For (2), it suffices to consider elements e ® b € E, with ¢ € E and
b € B. Picking f € Cy(X) such that f(x) = 1 and defining b € Cy(X, B) by
b(y) := f(y)b for y € X, we see that e ®b=eb® 1, which proves (2). For (3), we

note that the map d®:: E @evx B— E @evx BT is an isometry, so we only need to
check that the range is dense. Using an approximate unit u, € B, we indeed find

le®1—e@ull> =lle® (1 —u)|* = [I(1 — un) evy((e, e))(1 —u,)|| — O.
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The equality in (4) follows by direct calculation:

lell% = ll{e, €)llcycx. ) = supll(e, e)(x) | = supll(e @ 1, e ® 1) £, || p = supllex ||*.

xeX xeX xeX
Finally, for continuity of the norm, we use that |le,| = || (e, e)'/2(x)|| and that the
map x — (e, e)!'/2(x) is continuous. U

Proposition A.2. If F C E is a submodule, then F is dense in E if and only if for
each x € X, Fy is dense in E,.

Proof. We will freely use the facts from Lemma A.1. If F is dense in E, the equality
lelle = sup,cxllex|l shows that F, is dense in E, for each x € X. Conversely,
suppose F is dense in E, for all x € X. Fix e>0andy € E. Foreach x € X,
there exists ¢ € F' such that ||/, — x|l < 5. By continuity of the norm, there exists
a precompact open neighborhood U, of x in X such that

sup |y — ¢yl <e.

yeUx
There exists a compact subset K C X such that sup, . X\ k)| <e. By com-
pactness of K, we can choose finitely many points {x,} *; such that K C U, 1 Uy,
Thus, on each U; := U,, there exists ¢; € I such that Sup,ey, Iy — iyl <e. Let
Up:= X\ K, and let x; be a partition of unity subordinate to {Ul-}lN: o- Let {u,} be
an approximate unit for B, and choose n large enough such that ||¢; , — ¢; yu,ll <&
foralli=1,..., N and y € U;. Let n; € Co(X, B) be given by n;(x) := x; (x)u,.
Then the element ¢ := Z,NZI ¢in; € F is supported on V := UlN:1 U;, and we
compute

||W—¢|I§Su‘r/>||1/fx—¢xll+ sup || — éxl

xeX\V
< sup (1—Zx,<x)>wx + sup Zx,u)(m Pix)
xeV\K xeV
+ sup Zx,<x)<¢,x i xtn)| + sup 9]
xeV xeX\V
<de.
It follows that F is dense in E. U

For any adjointable operator 7 on E, we write Ty :=ev,(T) :=T ® 1 for the
corresponding operator on E, = E @evx B

Corollary A.3. Let E be a Co(X, B)-module and h € Endy(E). Then h has dense
range in E if and only if for all x € X, hy has dense range in E,.
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We prove that for a quasiregular semiperfectoid Z‘;yd-algebra R (in the sense
of Bhatt—-Morrow—Scholze), the cyclotomic trace map from the p-completed K-
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1. Introduction

Fix a prime p. The aim of this paper is to concretely identify in degree 2, for a
certain class of p-complete rings R, the p-completed cyclotomic trace

ctr: K(R; Z,) — TC(R; Z))

from the p-completed K-theory spectrum K (R; Z,) of R to the topological cyclic
homology TC(R; Z,) of R. Our main result is that on ; the p-completed cyclo-
tomic trace is given by a g-logarithm

-2 X =D —q)--- (x —g"
[n]q

log, (x) =) (=1)""'q

n=1

9
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which is a g-deformation of the usual logarithm (where ¢ is a parameter to be
defined later). Before stating a precise version of the theorem, let us try to put it
in context and to explain what the involved objects are.

K-theory and topological cyclic homology. We start with K-theory. For any com-
mutative ring A, [Quillen 1973] defined the algebraic K-theory space K (A) of
A as a generalization of the Grothendieck group Ky(A) of vector bundles on the
scheme Spec(A). The (connective) K-theory spectrum K (A) of aring A is obtained
by group completing' the E,-monoid of vector bundles on Spec(A) whose addition
is given by the direct sum. In other words, for the full K-theory one mimics in a
homotopy-theoretic context the definition of K¢(A) with the set of isomorphism
classes of vector bundles replaced by the groupoid of vector bundles. Algebraic
K-theory behaves like a cohomology theory but has the nice feature — compared
to other cohomology theories, like étale cohomology — that it only depends on
the category of vector bundles on the ring (rather than on the ring itself) and thus
enjoys strong functoriality properties, which makes it a powerful invariant attached
to A.
Unfortunately, the calculation of the homotopy groups

Ki(A) :=m(K(A), i=1,
is in general rather intractable. There is for example a natural embedding
A" — (K (A)),

which is an isomorphism if A is local, but the higher K-groups are much more
mysterious. One essential difficulty comes from the fact that K-theory, although
it is a Zariski (and even Nisnevich) sheaf of spaces (see [Thomason and Trobaugh
1990]), does not satisfy étale descent. One could remedy this by étale sheafification,
but one would lose the good properties of K-theory. This lead people to look for
good approximations of K-theory, at least after profinite completions. By this,
we mean invariants, still depending only on the category of vector bundles on the
underlying ring, satisfying étale descent— and therefore, easier to compute — and
close enough to (completed) K-theory, at least in some range.

The work of Thomason [1985] provides a good illustration of this principle.
Thomason shows that the K (1)-localization of K-theory, with respect to a prime
¢ invertible in A, satisfies étale descent” and coincides with ¢-adically completed
(for short: £-adic) K-theory in high degrees under some extra assumptions, later
removed by [Rosenschon and @stveer 2006], building upon the work of Voevodsky

I'See [Nikolaus 2017] for a discussion of homotopy-theoretic group completions and Quillen’s
+-construction.
2In fact, it even coincides with £-adic étale K-theory on connective covers.
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and Rost. When the prime p is not invertible in A, the situation is much more
subtle. For instance, a theorem of Gabber [1992] shows that ¢-adic K-theory is
insensitive to replacing A by A/I if (A, I) forms a henselian pair; in particular,
the computation of £-adic K-theory of henselian rings (which form a basis of the
Nisnevich topology) is reduced to the computation of the £-adic K-theory of fields.
This is not true anymore for p-adic K-theory. Nevertheless, the recent work of
Clausen, Mathew and Morrow [Clausen et al. 2018], expresses this failure in terms
of another noncommutative invariant attached to A, the topological cyclic homol-
ogy of A, whose definition will be recalled below. Topological cyclic homology is
related to K-theory via the cyclotomic trace

ctr: K(A) = TC(A)

(see [Blumberg et al. 2013, Section 10.3; Bokstedt et al. 1993, Section 5]). Clausen,
Mathew and Morrow prove, extending earlier work of Dundas, Goodwillie and
McCarthy [Dundas et al. 2013] in the nilpotent case,® that the cyclotomic trace
induces, for any ideal / C A such that the pair (A, I) is henselian, an isomorphism

K(A, I)/n =TC(A, I)/n

from the relative K-theory
KA, I)/n:=fib(K(A)/n — K(A/I)/n)
to the relative topological cyclic homology
TC(A, I)/n :=fib(TC(A)/n — TC(A/I)/n),

for any integer n. This has the consequence that p-completed TC provides a good
approximation of p-adic K-theory, at least for rings henselian along (p): namely,
it satisfies étale descent (because topological cyclic homology does) and coincides
with p-adic K-theory in high degrees. Under additional hypotheses, one can even
get better results: for instance, Clausen, Mathew and Morrow prove, among other
things, that the cyclotomic trace induces an isomorphism

K(R; Z,) =1-0TC(R; Z,)

for all rings R which are henselian along (p) and such that R/p is semiperfect

(i.e., such that Frobenius is surjective); see [Clausen et al. 2018, Corollary 6.9].
Examples of such rings are the quasiregular semiperfectoid rings of [Bhatt et al.

2019]. A ring R is called quasiregular semiperfectoid if R is p-complete with

3This is not a generalization though, since the result of Dundas—Goodwillie-McCarthy applies
also to noncommutative rings and is not restricted to finite coefficients.
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bounded p>°-torsion,* the p-completed cotangent complex L/R_/z\,, has p-complete
Tor-amplitude in [—1, 0] and there exists a surjective morphism R’ — R with
R’ (integral) perfectoid. This class of rings is interesting as for R quasiregular
semiperfectoid, the topological cyclic homology 7, (TC(R; Z,)) can be computed
in more concrete terms.

Let us recall the description of topological cyclic homology 74(TC(R; Z,))
from [Bhatt et al. 2019], which builds heavily on the foundational work of Nikolaus
and Scholze [2018]. For this, we need some definitions. From now on, all spectra
are assumed to be p-completed. One starts with the (p-completed) topological
Hochschild homology spectrum THH(R; Z,,) of R, which is equipped with a nat-
ural T = S'-action and a T-equivariant map, the cyclotomic Frobenius,

@eyel : THH(R; 7)) — THH(R; Z,)'¢"

to the Tate fixed points of the cyclic group C, € T. Then one takes the homotopy
fixed points, the negative topological cyclic homology,

TC™(R; Z,) := THH(R; Z,)""
and the Tate fixed points, the periodic topological cyclic homology,
TP(R; Z,) := THH(R; Z,)"".
From the cyclotomic Frobenius on THH(R; Z,) one derives a map5
Qe i TCT(R: Z,)) — TP(R: Z,).

Then the topological cyclic homology TC(R; Z,) of R is defined via the fiber

sequence can—glT
TC(R; Z,) — TC™(R; Z)) —94 TP(R; Z,),

where can : TC™(R; Z,) — TP(R; Z,) is the canonical map from homotopy to
Tate fixed points. The ring

A :=m0(TC™(R; Z,)) = mo(TP(R; Z,,))

is p-complete, p-torsion free® and the cyclotomic Frobenius goé’y{l

nius lift ¢ on Ag; see [Bhatt and Scholze 2019, Theorem 11.10].

induces a Frobe-

4This means that there exists N > 0 such that R[p>®]=R][ pN ]. This technical condition is useful
when dealing with derived completions.

SHere one needs [Nikolaus and Scholze 2018, Lemma I1.4.2], which implies TP(R; Zp) =
(THH(R; Z,)'Cr)"T.

SIndeed, any element killed by p is killed by ¢, as in the proof of [Bhatt and Scholze 2019,
Lemma 2.28], and thus lies in all the steps of the Nygaard filtration.
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Remark 1.1. The prismatic perspective of [Bhatt and Scholze 2019] gives an
alternative description of Ag: it is the completion with respect to the Nygaard
filtration of the (derived) prismatic cohomology A of R. In particular, using the
theory of §-rings, one can give, when R is a p-complete with bounded p°°-torsion
quotient of a perfectoid ring by a regular sequence, a construction of Ay as the
Nygaard completion of a concrete prismatic envelope; see [Bhatt and Scholze 2019,
Proposition 3.12].

The choice of a morphism R’ — R with R’ perfectoid yields a distinguished
element £ (up to a unit) of the ring Ag. Using & one defines the Nygaard filtration

N=Ag:=¢71(E)
on ZR. The graded rings 7, (TC™ (R; Z,)) and 7.(TP(R; Z,)) are then concen-
trated in even degrees and
mi(TC™(R; Z,,)) ENZ' A, 12 (TP(R; Z)) = Ag

for i € Z; see [Bhatt and Scholze 2019, Theorem 11.10].” Moreover, on 7,; the
cyclotomic Frobenius

Qa0 (TCT(R; 7)) — 72 (TP(R; 7))

identifies with the divided Frobenius ¢/£'. Thus, from the definition of TC(R; Z »)
we obtain exact sequences

0— i (TC(R: Z,) = A% 5 N2 A W50 Rp > i1 (TC(R: Z,)) — 0.

As mentioned in Remark 1.1, the ring A tends to be computable. For example,
if R is perfectoid, then A R = Ainr(R) is Fontaine’s construction applied to R and
if pR = 0, then Ag is the Nygaard completion of the universal PD-thickening
Acrys(R) of R. Thus, for quasiregular semiperfectoid rings the target of the cyclo-
tomic trace is rather explicit.

Main results. The results of [Clausen et al. 2018] (together with those of [Bhatt
et al. 2019]) therefore give a way of computing higher p-completed K-groups of
quasiregular semiperfectoid rings. But there is at least one degree (except 0) where
one can be more explicit, without using the cyclotomic trace map: namely, after
p-completion of K (R) there is a canonical morphism

Tp(R™) = mo(K(R; Z)))

"These identifications depend on the choice of a suitable generator v € m_»(TC™ (R; Zp)). If R
is an algebra over Z;yd we will clarify our choice in Section 6 carefully.
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from the Tate module 7,(R*) of the units of R, which is an isomorphism in many
cases. The results explained in the previous paragraph show that the cyclotomic
trace identifies 72 (K (R; Z,)) with

72(TC(R; Z,)) = A%

What does the composite map

T,(R*) — m(K (R; Z,)) <% ma(TC(R; Z,)) = A%
look like? The main result of this paper, which we now state, provides a concrete
description of it. Let R be a quasiregular semiperfectoid ring which admits a com-
patible system of morphisms Z[{,»] — R for n > 0. These morphisms give rise to
the elements

~ . P_1
8=(1,§p,...)€Rb=l(i£1R, q:=lelo € Arp and $:=q .
xX—=>xP q—l

Here
[-1o: R” — Ag

is the Teichmiiller lift coming from the surjection 6 : A — R (see the proof of
Lemma 2.4).
Theorem 1.2 (cf. Theorem 6.7). The composition®

ctr =&

T,(R*) — my(K (R Z,)) <5 mo(TC(R; Z,)) = A%

is given by the q-logarithm

= vt e Xlo =D (xle —q) - (Ixlg — g™ )
xmogq([xm::;(—l) lqgTh2 ], '

Here we embed

T,(R*)C R, (ro€ R*[pl,ri,..) (1,0, 71,...).
By

we denote the g-analog of n € Z.

Remark 1.3. A similar result can be found in Lemma 4.2.3 of [Geisser and Hes-
selholt 1999], but only before p-completion, on 7} and in terms of TR,, which is
not enough to deduce Theorem 1.2 from their result.

8See Section 6 for a more precise description of the isomorphism 72 (TC(R; Zp)) = 3‘;?5. We
note that it depends on the choice of some compatible system & = (1, ¢p, Ep2r - .) of primitive p”-th
roots of unity.
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As a consequence of [Clausen et al. 2018] and Theorem 1.2, one gets the fol-
lowing result.

Corollary 1.4. Let R be a quasiregular semiperfectoid Z;,yd—algebra. The map

~p=t
log, ([~ 10) : T,(R*) — A
is a bijection.

This corollary is used in [Anschiitz and Le Bras 2019], which studies a pris-
matic version of Dieudonné theory for p-divisible groups, and was our original
motivation for proving Theorem 1.2.

Here is a short description of the proof of Theorem 1.2. By testing the uni-
versal case R = 7Y (x'/P™y /(x — 1) one is reduced to the case where the pair
(p, é) forms a regular sequence on A R, 1.e., the prism (A R 5 ) is transversal (see
Definition 3.2). In this situation, we prove that the reduction map

~p=f PN PN
Ay = N='Ap/NZ2 A
is injective (Corollary 3.11). Thus it suffices to identify the composition

T,(R* )C—“>AR —>N>1AR/N>2AR

Using the results of [Bhatt et al. 2019] the quotient N=' A g /A'Z2A g identifies with
the p-completed Hochschild homology 7> (HH(R; Z,)) (see Section 5) and thus
the above composition identifies with the p-completed Dennis trace. A straight-
forward computation then identifies the p-completed Dennis trace (see Section 2),
which allows us to conclude. We expect the results in Section 2 to be known, in
some form, to the experts, but we did not find the results anywhere in the literature.

Let us end this introduction by a remark and a question. One could try to reverse
the perspective from Corollary 1.4 and try to recover a (very) special case of the
result of Clausen, Mathew and Morrow [Clausen et al. 2018] regarding the cyclo-
tomic trace map using the concrete description furnished by Theorem 1.2. If R is
of characteristic p, we have ¢ = 1 and then the g-logarithm becomes the honest

logarithm
log([_]é) : Tp(RX) - Acrys(R)(p:p-

In [Scholze and Weinstein 2013], it is proven (using the exponential) that the map
log([—]) is an isomorphism, when R is the quotient of a perfect ring modulo a reg-
ular sequence. If R is the quotient of a perfectoid ring by a finite regular sequence
and is p-torsion free, it is not difficult to deduce from Scholze and Weinstein’s
result that the map

log, ([=10) : T,(R*) — A%y *
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is a bijection when p is odd. Is there a way to prove it directly in general, for any
p and any quasiregular semiperfectoid ring?

Plan of the paper. In Section 2 we concretely identify the p-completed Dennis
trace on the Tate module of units (see Proposition 2.5) in the form we need it.
In Section 3 we prove the crucial injectivity statement, namely Corollary 3.11,
for transversal prisms. In Section 4 we make sense of the g-logarithm. Finally, in
Section 6 we prove our main result, Theorem 1.2, and its consequence, Corollary 1.4.

2. The p-completed Dennis trace in degree 2

Fix some prime p and let A = R/I be the quotient of a (p, I)-complete ring R.
The aim of this section is to concretely describe in degree 2 the composition

Ty (AX) —> my(K (A: Z,)) 25 mo(HH(A; Z,)) — m(HH(A/R: Z,)).

Here
K(A; 7))

denotes the p-completed (connective) K-theory spectrum of A,
HH(A; Z,) and HH(A/R;Z,)

are the p-completed (derived) Hochschild homology of A as a Z-algebra and R-
algebra, respectively, and Dtr is the Dennis trace map. Before stating precisely our
result, let us start by some reminders on the objects and the maps involved in the
previous composition.

We first recall the construction of the first map 7,,(A*) — m2(K(A; Z,)). Let

GL(A) = lim GL, (A)

be the infinite general linear group over A. There is a canonical inclusion
A* =GL;(A) - GL(A)
of groups which on classifying spaces induces a map
B(A™) — B(GL(A)).

Composing with the morphism to Quillen’s 4--construction yields a canonical mor-
phism
B(A*) — BGL(A) — K(A) := BGL(A)" x Ko(A)

into the K-theory space K (A) of A.° After p-completion of spaces we obtain a
canonical morphism

L1 B(AY), — K(A;Z)) := K(A)).

9We use space as a synonym for Kan complex.
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We recall (see [May and Ponto 2012, Theorem 10.3.2]) that the space B(AX)Q has
two nontrivial homotopy groups which are given by

m1(B(A*)h) = HO(R lim(A™ ®% Z/p™)),

T (B(AX))) = H ' (RIm(A™ ®} Z/p")) = T,(A).

In degree 2 we thus get a morphism
Tp(A*) = 12 (B(AX)})) — ma(K (A; Z))),

which is the first constituent of the map

Tp(A%) = m(K (A Z,)) =5 ma(HH(A; Z,,)) — ma(HH(A/R: Z,,))
we want to describe.
Now we turn to the construction of Hochschild homology and the Dennis trace

Dtr: K(A) — HH(A).
Let R be a (commutative) ring and A a (commutative) R-algebra. Let
T:=8'=B7
be the circle group. Then the Hochschild homology spectrum
HH(A/R)

(simply denoted HH(A) when R = Z) is the initial T—equivariantlo E~ — R-algebra
with a nonequivariant map A — HH(A/R) of E, — R-algebras [Bhatt et al. 2019,
Remark 2.4]. For a comparison with classical definitions, we refer to [Hoyois
2015].

The functor A — HH(A/R) extends to all simplicial R-algebras and as such
is left Kan extended (as it commutes with sifted colimits) from the category of
finitely generated polynomial R-algebras. By left Kan extending the (decreasing)
Postnikov filtration 7>,HH(A/R) on HH(A/R) for A a finitely generated polyno-
mial R-algebra one obtains the T-equivariant HKR-filtration

Filf,cxk HH(A/R)

on HH(A/R) for A a general R-algebra. The co-category of T-equivariant objects
in the derived oco-category D(R) of R is equivalent to the co-category of R[T]-

modules, where
R[TI=RQXT

10For an oo-category C the category of T-equivariant objects of C is by definition the co-category
of functors BT — C.
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is the group algebra of T over R; see [Hoyois 2015, page 5]. Let
vy € Hi(T, R) = Homp(g)(R[1], R[T])
be a generator.!! The multiplication by y induces a differential
d :HH;(A/R) — HH;1(A/R)

which makes HH, (A/R) into a graded commutative dg-algebra over R all of whose
elements of odd degree square to zero; see [Krause and Nikolaus 2017, Lemma 2.3].
By the universal property of the de Rham complex 7% /R the canonical morphism
A — HHp(A/R) extends therefore to a morphism

a, 1 Qg — HH(A/R).

The Hochschild—Kostant—Rosenberg theorem affirms that c,, is an isomorphism if
R — A is smooth. By left Kan extension, one obtains for arbitrary R — A the
natural description

@, \'La/gli]l = grigg HH(A/R)

of the graded pieces of the HKR-filtration via exterior powers of the cotangent
complex of A over R; see [Bhatt et al. 2019, Section 2.2].

In particular, we get after p-completion the following consequence in degree 2,
which will be used to formulate our description of the Dennis trace below.

Lemma 2.1. Let R be a ring and I C R an ideal. Let A= R/I. Fix a generator y
of H\(T, Z). There is a natural isomorphism

ay o (I/17)) Z m(HH(A/R; Z,)).

Here (and in the rest of the paper) we denote by M Q the derived p-adic comple-
tion of an abelian group M, i.e.,

M) :=H*(Rlim M @3 Z/p").
n

Proof. The first assertion follows from the HKR-filtration on HH(A/R; Z,,) de-
scribed above and the fact there is a canonical isomorphism

I/, = H™ (Lasr)}),
which is implied by [Stacks 2005—, Tag O8RA]. U

The Dennis trace can be defined abstractly [Blumberg et al. 2013, Section 10.2]
as the composition of the unique natural transformation

K — THH

e will mostly assume that y is obtained by base change from some generator of H{ (T, Z).
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of additive invariants of small stable co-categories from K-theory to topological
Hochschild homology, which induces the identity on

7 = my(K(S)) — mo(THH(S)) = Z,

and the natural transformation (on rings) THH — HH.

The only thing we need to use as an input regarding the Dennis trace is the
following explicit description in degree 1. Recall from above that if A is a ring,
each choice of a generator y of H(T, Z) gives rise to an isomorphism

ay I (HH(A/2) = Q) 7

as HO(LA/Z) = Q}A/Z for any A.
Lemma 2.2. Let A be a commutative ring. There exists a unique bijection

81 : {generators of H\(T, Z2)} = {£1}
such that

Ay
A* = (BA) 25 m(HH(A) = Q) 5. ar> 8(y) dlog(a)
for any generator y € H|(T, Z).

Proof. Let A be any commutative ring. The Hochschild homology HH(A) can be
calculated as the geometric realization

HH(A) 1= lim A®% "
A°p
Note that this representation, which relies on the standard simplicial model of the
circle A'/dA', depends implicitly on the choice of a generator y of H,(T, Z); see
[Hoyois 2015, Theorem 2.3].'? Replacing the derived tensor product by the non-
derived one produces the classical, nonderived Hochschild homology HH""#(A)

of A. As
71 (HH(A)) = 7 (HH""(A))

we may argue using HH""¥ instead of HH.

Using the above description of the classical Hochschild homology, the Dennis
trace can be described more concretely; see [Bokstedt et al. 1993, Section 5; Loday
1992, Chapter 8.4]. It factors (on homotopy groups) through the integral group
homology of GL(A), i.e., through H,(BGL(A), Z), which is by definition (and
the Dold—Kan correspondence) the homotopy of the space Z[ BGL(A)] obtained
by taking the free simplicial abelian group on the simplicial BGL(A). As the +-

construction
BGL(A) — BGL(A)™

1211 this reference, ¥ is called y.
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is an equivalence on integral homology [Weibel 2013, Chapter IV, Theorem 1.5],

the morphism
Z[BGL(A)] ~ Z[BGL(A) 1]

is an equivalence of simplicial abelian groups, and using the canonical inclusion
BGL(A)" — Z[BGL(A)™"]
we arrive at a canonical morphism
K(A) - BGL(A)* — Z[BGL(A)"] ~ Z[BGL(A)].

We observe that for » = 1 the morphism BGL;(A) — BGL;(A)" is an equiv-
alence as GL;(A) = A* is abelian. Thus there is a commutative diagram (up to

homotopy)
BGL{(A) — Z[BGL(A)]

| |

K(A) — Z[BGL(A)]

with each morphism being the canonical one.
The Dennis trace factors as a composition

Dtr: K(A) — Z[BGL(A)] Dur, HH"" (A7),
where by construction
Dtr’ : Z[BGL(A)] — HH""¥(A)
is given as the colimit of compatible maps'?

Dtr’ : Z[BGL,(A)] — HH*"(A).

When r = 1, which is the only case relevant for us, the map Dtr) is the linear
extension of the map

BA™ — HH""™!(A)

which in simplicial degree n is given by

(ai,...,a,) —

®ar®---Qay.

1+ ay

Fix a generator y of H{(T, Z). The choice of y gives the HKR-isomorphism

o, (HH™"(A)) = 7y (HH(A/2)) = Q) 5.

13Here compatible means up to some homotopy. To obtain strict compatibility one has to use the
normalized Hochschild complex; see [Loday 1992, Section 8.4].
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Using the above description of Hochschild homology as a geometric realization,
the isomorphism «,, is given by

m(HH™(A) = Q) 7, a®br> adb
with inverse adb — a ® b if y = yp, and by
m (HH™(A) = Q) ;. a®b > bda

with inverse bda — a ® b if y = —yy; this can be checked by analyzing compatibil-
ity with differentials and using [Hoyois 2015, Theorem 2.3]. In the first case, we
set §;(y) = 1; in the second case, we set 61(y) = —1. Then on homotopy groups
the map Dtr; is given by

X A~ * b d
A" ZEm(BA™) — m(HH(A)) = Q},‘/Z, a > 81(y)dlog(a) :=6,(y) f,

as claimed. O

Remark 2.3. Let A be a flat Z-algebra. The description of HH(A) = HH"'4!(A)
as the geometric realization of the simplicial object

HH(A/Z) :=lim A®2""
AP

shows that HH(A; Z,) is computed by the complex
> (A®z A®z A), —> (A®z A), — A},

One can then show that the p-completed Dennis trace (BA X); — HH(A; Z,) sends
an element
(a1, a2, ...) € TH(A™) = m((BA™)))

to the element represented, up to a sign, by the cycle

oo
1®1®1+Zp"‘l(aiz®an®an+$®aﬁ®an+---+aip®a,{’—1®an).

n=1 n

We omit the proof, since we will not use this result.

We can now state and prove the main result of this section. Fix a generator y of
Hy (T, Z). We describe the image of some element 7),(A*) under the composition

Tp(A*) =% my(HH(A: Z,)) — ma(HH(A/R: Z,,)) = (/1)

using the notation of Lemma 2.1. Recall first the following standard lemma.
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Lemma 2.4. Let R be a ring, I € R an ideal and assume that R is (p, I)-adically
complete. Then the canonical map

R := lim R— A" := lim A,
xX+—=>xP xXt+=>xP

with A = R/1, is bijective.
Proof. 1t suffices to construct a well-defined, multiplicative map
[-]: A" = R
reducing to the first projection modulo /. Let
ri=(ro,r1,...) € A”

be a p-power compatible system of elements in A with lifts 7/ € R of each r;. Then
the limit

lim (/)"
n—oo
exists and is independent of the lift. Thus
[r]:= lim (r;)""
n—oo
defines the desired map. (]
The morphism
[-]: A" >R
is the Teichmiiller lift for the surjection # : R — R/I. If we want to make its
dependence of the surjection clear, we write [—],;. Let
TpAX = l(&Il AX[p"]
X>xP

be the Tate module of A*. Then we embed T,A* into A” as the sequences with
first coordinate 1. For any a € A” we define

[a] :=ro,

where r =(rg, r1,...) € R" is the unique element reducing toa. Ifa=(1, ay, az, ...)
liesin T,A*, then [a] € 1 + 1.

Proposition 2.5. Fix a generator y € H\(T, Z). Let R be a ring and I C R an
ideal such that R is (p, I)-adically complete. Let A = R/I. Then the composition

T,(A%) = ma((BAX))) 25 ma(HH(A/R: 7,)) = (1/1%))

is given by sending a € T,(A™) to

Si(y)([al = 1),
where §1(y) € {£1} is the sign from Lemma 2.2.
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Proof '*. Fix a € T,(A*). Then there exists, by (p, I)-adic completeness of R, a
unique morphism Z[1/p] — R* of abelian groups such that

1/p" > [a"/""].
By naturality, it therefore suffices to check that for
R:=2Z[t""P"1=7[Z[1/p]] and A:=R/(t—1)=Z[Q,/Z,],
under the morphism
Dtr

T,A* — HHy(A; Z,) - HHy(A/R; Z,) = Lor[—11=(t —1)/(t — 1)?

the element (1, ¢/7, tl/pz, ...) € A" is mapped to the class of §;(y)(t — 1).
Observe first that the Hochschild homology

HH(A)

vanishes. Indeed, it is easy to see that L 4,7 is concentrated in degree 0. Moreover,
Q 2 /Z = L,z is generated by one element. This implies that

70(A\"Lajz) =0

for n > 2 (see the proof of [Bhatt 2012, Corollary 3.13]). By the HKR-filtration,
we get that HH>(A) = 0. Passing to p-completions we can conclude that

Ay
HH,(A: Z,) = T,HH; (A) = T,(2} ).

where the last isomorphism is the HKR-isomorphism (for y).
There is a commutative diagram

11

HH>(A; Z,) HH>(A/R; Z)p)
TpQY =i (Lajz))) —— mi((La/p)h) = (= D/t = 1))
Using Lemma 2.2, the element

(A, P 4Py e T, A%

is mapped to the element

81(1)(0, dlog(t"/?), dlog(t'/7), ..) € T,(2} ).

14The following argument is simpler than our original argument and was suggested by the referee.
We thank her/him for allowing us to include it.
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The effect of the bottom row can be calculated using the exact triangle
Lriz®RA— Lajz LN Lar
and applying p-completions. More precisely, rotating plus the isomorphisms
Lrz = Qpz. Lag= -1/ — D[]
yield the exact triangle
=D/t -5 QL@ A— QY g — (1 — 1/t — D1,

where the first morphism is the differential. Now, applying (derived) p-completion
to this exact triangle, the resulting connecting morphism

Tp(Qy ) — =1/ —1)?
sends (0, d log(¢'/P), dlog(¢'/P*), .. Jtot —last—1 = % mod (r — 1)? and

dit—1)

=dlog(t) = p"dlog(t'/"")
for all n > 0.1 Thus,
B0, dlog(t'/P), dlog(t'/7"), .. ) =1 —1
as claimed. O

We recall the following lemma. For a perfect ring S we denote its ring of Witt
vectors by W (S).

Lemma 2.6. Let S be a perfect ring and let A be a W (S)-algebra. Then the canon-

ical morphism
HH(A; Z,) — HH(A/W(S); Z,)

is an equivalence.

Proof. By the HKR-filtration, it suffices to see that the canonical morphism
Laz — Lajws)

of cotangent complexes is a p-adic equivalence, i.e., an equivalence after — ®% Z/p.
Computing the right-hand side by polynomial algebras over W (S) we see that it
suffices to consider the case that A is p-torsion free. Then by base change

L ~ L ~
Lp/z®z2Z/p=La/pyr, and  Lajws) ®zZ/p = Liapys
151f0 > M > N — Q — 0 is a short exact sequence of abelian groups, then the boundary map

T,0 - M If has the following desqription: Take x :=(g;);>0 € Tp Q and lift each g; to some n; € N.
Then p'n; € M and the limit lim p'n; € M[f exists and is the image of x.
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and the claim follows from the transitivity triangle

L
A/p®s Lssr, = Leaspy/r, = Leasp)/ss

using the fact that S is perfect, which implies that the cotangent complex Ly, of
S over [, vanishes. ]

3. Transversal prisms

In this section we want to prove the crucial injectivity statement (Corollary 3.11)
mentioned in the introduction. Let us recall the following definition from [Bhatt
and Scholze 2019].

Definition 3.1. A §-ring is a pair (A, §), where A is a commutative ring, § : A — A
a map of sets, with §(0) =0, §(1) =0, and

S(x+y) = 8(x) +8(y) 4 Y Z @ ANT
D

§(xy) = xP8(y) + yP8(x) + pd(x)3(y),
for all x, y € A.
A prism (A, I) is a 6-ring A with an ideal I defining a Cartier divisor on Spec(A),
such that A is derived (p, I)-adically complete and p € (I, ¢(1)).
Here, the map
p:A—> A, x> &) :=x"4+pdkx)
denotes the lift of Frobenius induced from the §-structure on A. We make the

(usually harmless) assumption that / = (5) is generated by some distinguished
element £ € A, i.e., £ is a nonzero divisor and §(&) is a unit.

Definition 3.2. We call a prism transversal if (p, £) is a regular sequence on A.

Let us fix a transversal prism (A, 7). In particular, A is p-torsion free. Moreover,
A is classically (p, I)-adically complete. Indeed, (p, £) being a regular sequence

implies that . .
A @y ZLx, 1/ (X", y ) = A/(p", E")
and therefore

AZ RIm(A®Y,, , Zlx, y1/(x", y") = Rlim(A/(p", E") =lim A/(p", &"),

using Mittag-Leffler for the last isomorphism.

We set .
L:=1TpI)---¢" " (I)

for r > 1 (where ¢°(I) := I). Then I, = (é,) with
E =Ep@E) -9 ().
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Lemma 3.3. Forallr > 1 the element

¢ ()
is a nonzero divisor and (¢" (£), p) is again a regular sequence. In particular, the
elements ér, r > 1, are nonzero divisors.

Proof. The regularity of the sequence (p, ¢’ (£)), or equivalently of (p, 7"), fol-
lows from that of (p, §). The regularity of (¢ (5 Py, p) follows from this and the
fact that in any ring R with a regular sequence (r, s) such that R is r-adically
complete the sequence (s, r) is again regular.'6 U

Lemma 3.4. The ring A is complete for the topology induced by the ideals 1., i.e.,

AZlimA/I,.

Proof. Each A/I, is p-torsion free by Lemma 3.3. Therefore, both sides are p-
complete and p-torsion free. Hence, it suffices to check the statement modulo p
(note that by p-torsion freeness of each A/I,, modding out p commutes with the
inverse limit). But modulo p the topology defined by the ideals I, is just the £-adic
topology and A/p is &-adically complete. U

Lemma 3.5. Forr > 1 there is a congruence
¢ (&)= pu modulo (§)
with u € A* some unit.

Proof. For r = 1 this follows from
9(§) =&+ ps (&)

because by definition of distinguishedness the element §(¢) € A* is a unit. For
r > 2 we compute

o E)=¢ TN EP 4+ psE)) = ¢ E) + pe" T (8(E)).

By induction we may write ¢’ 1 (§) = pu 4+ a& with u € A* some unit, and thus
modulo & we calculate

9" (€)= (pu)? + pe8(£)) = p(p(8(€)) + p?~'ul)
with ¢(8(§)) + pP?~'uP € A* some unit. O

Lemma 3.6. For all r > 1 the sequences (¢" (é), 5) and (é, Q" (5)) are again regu-
lar. Moreover, I, = ﬂlr;é o' (I) forall r > 1.

16passing to the inverse limit of the injections R/r" <> R/r" implies that s € R is a nonzero
divisor. Thus, (r, s) is regular and s is regular, which implies that (s, r) is regular.
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Proof. We can write go(§) = p8(§) +§1’, where 8(§) € A* is a unit. By Lemma 3.5
we get @” (§ ) = pu modulo (§ ) with u € A* aunit. As (§ , p) 1s a regular sequence
we conclude (using [Stacks 2005—, Tag 07DW] and Lemma 3.3) that (¢” (§ ), § )
is a regular sequence. To prove the last statement we proceed by induction on r.
First note the following general observation: If R is some ring and (f, g) a regular
sequence in R, then (f) N (g) = (fg). Infact, if r =sg € (f)N(g), then sg =0
modulo f, and hence s = 0 modulo f as desired. Thus, it suffices to prove that
(5,, q)’(é)) is a regular sequence for r > 1 (recall that §r = éga(é) e <p’*1(§)). By
induction, the morphism

r—1

AlG) = TTAI@ @)

i=0
is injective. Hence, it suffices to show that for eachi =0, ..., r — 1 the element
¢" () maps to a nonzero divisor in A/(¢'(£)). But this follows from Lemma 3.5,
which implies ¢” (§) = pu modulo ¢ (£) for some unit u € AX. O

We can draw the following corollary.
Lemma 3.7. Define p: A — [[A/¢"(I), x = (x mod ¢" (I)). Then p is injective.
r>0

Proof. This follows from Lemma 3.4 and Lemma 3.6, as the kernel of p is given

We now define the Nygaard filtration of the prism (A, I) (see [Bhatt and Scholze
2019, Definition 11.1]).

Definition 3.8. Define
NZ"A:={x e A|pkx)el"A},
the n-th filtration step of the Nygaard filtration.
By definition, the Frobenius on A induces a morphism
0 NZ'A > I

Note that we do not divide the Frobenius by £. Moreover, we define

o:[JA/e' () —[]A/ D).  (x0.x1....) > 0, 9(x0), 9(x1), ...).

i>0 i>0

Here we use the fact that if ¢ = b mod ¢’ (1), then ¢(a) = ¢(b) mod ¢' (1) to
get that o is well-defined. Then the diagram
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NZEA L T A/ (D)
i>0
l“’ l” (3.9)

I—" 1A/ (D)

i>0
commutes, where p is the homomorphism from Lemma 3.7.
Lemma 3.10. The reduction map
A% A/I, x> x mod (£)
is injective.
Proof. Let x € A= N 1. We want to prove that x = 0. Clearly, x € N='A. By
Lemma 3.7 it suffices to prove that

x=0 mod goi(l)

for all i > 0. Write
p(x) = (x0, X1, ...)

By the commutativity of the square (3.9) we get

p(p(x)) =0 (p(x)) = (0, p(x0), p(x1), ...).

As p(x) = éx and therefore p(p(x)) = §p(x), we thus get

(Exo, Ex1,...) = (0, p(x0), p(x1), ...).

We assumed that x € I, and thus xo = 0 € A/I. Now we use that £ is a nonzero
divisor modulo (pi (I) (see Lemma 3.6) for i > 0. Hence, if x; = 0, then

0=p(x;)=Exip1 € Ao (D)

implies x; 1 = 0. Beginning with xo = 0, this shows that x; = 0 for all i > 0, which
implies our claim. O

The same proof shows that also the reduction map
A= s AT

is injective for n > 1.
The following corollary is crucially used in Theorem 6.7.

Corollary 3.11. The reduction map
AP=E 5 NZTA/NZ2A

is injective.
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Proof. Let x € A%~ N A'=2A. Then
Ex=g(x) =&

for some y € A. As £ is a nonzero divisor in A we get x € I = (£). But then x =0
by Lemma 3.10. U

Similarly, for each n > 0 the morphism
A= s NEANEIHA (3.12)

is injective. Let R be a quasiregular semiperfectoid ring (see [Bhatt et al. 2019,
Definition 4.19]) which is p-torsion free. In this case,

A= ER
is transversal and (3.12) implies that for i > 0,
72i (TC(R)) — m2; (THH(R))

is injective; see [Bhatt et al. 2019, Theorem 1.12]. We ignore if there exists a direct
topological proof, i.e., one which does not invoke prisms. Note that the p-torsion
freeness is necessary. Indeed, by [Bhatt et al. 2019, Remark 7.20], 72; (TC(R)) is
always p-torsion free.

4. The g-logarithm

In this section we recall the definition of the g-logarithm and prove some properties
of it. Several statements in g-mathematics that we use are probably standard; see,
e.g., [Scholze 2017] for more on g-mathematics. Recall that the g-analog of the

integer n € Z is defined to be
n

q" —1
—1

[n), := € Z[lg*'.
If n > 1, then we can rewrite
My =1+q+--+q""

and then the g-number actually lies in Z[g]. For n > 0, we moreover get the relation

[-nly=—"—1"=4 o =—q "[nly. (4.1)
The g-numbers satisfy some basic relations, for example
[n +klg = ¢"[n]g + k] 4.2)

forn,keZ,or

=(61")"—161"—1_(61")k—1

lmlg gn—1 g—1  gn—1

[n], ifn|m.
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As further examples of g-analogs let us define the g-factorial for n > 1 as

[n]q' = [l]q : [2]q T [n]q €Z[q]

(with the convention that [0],! := 1) and, for 0 < k < n, the g-binomial coefficient

as
(n) .: [n],!
k), Kl — k1,

Lemma 4.3. (1) For 0 <k <n, the g-binomial (Z)q isin Z[q].
(2) For 1 <k <n, the analog

(0, = ("), ()
=q

k/, k ), \k—=1/,
of Pascal’s identity holds.

n

Proof. Part (1) follows from part (2) using induction and the easy case (O)q =1.
Then part (2) can be proved as follows: Let 1 < k < n; then

' n—l) (n—l) B [n—1],! (qk 1 )
+ ~ +
1 ( k), T \k=1), T k=11l — 1=K\ K], K],

_ [n—1],! q*[n — kg + [k,
k—11,ln—1—kl,!  [klg[n— k],
[n—1]g! [nlq

T k= 11,'[n — 1 —kl,! [k],[n — k],

()
k/,
using the addition rule (4.2). O
Let us define a generalized g-Pochhammer symbol by
@y @ = (AN +yg) - (0 +yg" ) € ZIgT x, ]

for n > 1. Note that setting x = 1 and y := —a recovers the known g-Pochhammer

symbol
@ q)n=>0-a)1—aq)---(1—aq""") = (1, —a; q).

Moreover, we make the convention
(X, ¥ @)= 1.
In the g-world the generalized ¢g-Pochhammer symbol replaces the polynomial

x+ "
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For example one can show (using Lemma 4.3) the g-binomial formula

n
@ yi Q=Y q"* V"2 (Z) x"TRYE (4.4)
k=0 q

Let us now come to g-derivations. We recall that the g-derivative V, f of some
polynomial f € Z[¢g*'][xF!] is defined by

Vo f ()= LA =T gy
gx —x

Thus, for example, if f(x) = x", n € Z, then we can calculate

xl’l—l — [n]qxl’l—l .

n.,.n n
— -1

D e
gx —x q—1

The g-derivative satisfies an analog of the Leibniz rule, namely
Vo (f(0)g(x) =V (f(x))g(gx) + f(x)V4(g(x)).
Similarly to the classical rule
Vi +y)") = nVe((x + )",
we obtain the following relation for the generalized g-Pochhammer symbol.

Lemma 4.5. Let V, :=V,  denote the q-derivative with respect to x. Then the
formula

Vo ((x, y: @)n) = [nlg(x, y; @)n—1
holds in Z[qil][xil, yil].
Proof. We proceed by induction on n. Let n = 1. Then (x, y; ¢), =x + y and
Vy((x+y)=1.
Now let n > 2. We calculate using induction
Vg ((, y3 @n) = Vg ((x, y: @1 (x + ")

= (6, Y, D1 Vg + 34"+ (gx + 4" )V (%, ¥ @a1)
= (0 Y @u-t - 1+ +¢" ) =11, (x, y: @2
= +gln—1lg)Cx, y; g)n-1
=[nlq(x, y: @n-1,

where we used the g-Leibniz rule and (4.2). U
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Similarly, as the polynomials
(x —1)? (x—=D"
o200 7Tl

are useful for developing some function into a Taylor series around x = 1 (because
the derivative of one polynomial is the previous one), the g-polynomials

1,x—1

9 e e

(x, =1 ¢) (x,—1;q)
17(x7_1;q)17 ! 9 ey | -
[2]q : [n]q :
are useful for developing a g-polynomial into some “g-Taylor series” around x = 1.
However, for this to make sense we have to pass to suitable completions and local-
ize at {[n],},>1. Let us be more precise about this. The (¢ — 1, x — 1)-completion

Zlqg — 1, x — 1] of Z|q, x] contains expressions of the form

o0
Y an(x, —1;9)a
n=0

5 e e

with a, € Z[[q — 1] because

1—
x,—Lgh=x-1Dx—-1+1-g)--- <x—1+(1—q)%

n—1

) €(@—1,x—1".
q
Finally, the next calculations will take place in the ring!”

Qlg -1, x—-11=2Zllg —1,x = 1][1/[n]; |n > ”(Aq—l,x—l)

because
(x, =1;9)n

[n]q!

The ring Qg — 1, x — 1] admits a surjection

€(g—1,x—Dapg—1,x-17-

Qg —1,x— 1] — Q[lx — 1]
with kernel generated by ¢ — 1. Similarly, there is a morphism
ev :Qlg—1,x—1] — Qg — 1]

with kernel generated by x — 1. Finally, the g-derivative V, extends to a g-derivation
on Qg — 1, x — 1]] and it induces the usual derivative after modding out ¢ — 1. We
denote by V' the n-fold decomposition of V4 and by

fX) =1 :=evi(f(x))

the evaluation at x = 1 of an element f € Q[lg — 1, x — 1]

7Note that inverting [n]4 for n > 0 and then (¢ — 1)-adically completing is the same as inverting
n for n > 0 and then (g — 1)-adically completing.
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Lemma 4.6. Take f(x) € Qg — 1,x — 1]. If V;(f(x))u:l =0 foralln >0,
then f(x)=0.

Proof. As V, reduces to the usual derivative modulo ¢ — 1, we see that f must be
divisible by ¢ — 1, i.e., we can write f(x)=(g—1)g(x) with g(x) € Q[lg —1, x —1]).
But then V;’ (g(x))x=1 = 0 for all » > 0, and we can conclude as before that
g — 1| g(x), which in the end implies

fxe(\g-D* =10}

k=1
because Qg — 1, x — 1] is (¢ — 1)-adically separated. (I

Now we can describe the g-Taylor expansion around x = 1 for elements in

Qg — 1, x —1].
Proposition 4.7. For any f(x) € Qllg — 1, x — 1]] there is the Taylor expansion

= (x, ~1:g)
sy T 4y n
fo=)" Vo @emt =

n=0

Proof. Because
v ((x, —l;q)n) =1 q)n
T\ Iy [n—1],!

we can directly calculate that both sides have equal higher derivatives at x = 1.
Thus they agree by Lemma 4.6. (Il

Using this in Lemma 4.9 we can motivate the below formula for the g-logarithm.

Definition 4.8. We define the g-logarithm as

o
) _15
log, (x) = Z(—l)"*lq*"m*”/zu € Qg —1,x —1].
el [n]q
Note that log, (x) is contained in a much smaller subring of Qg — I, x — 1]I:
it suffices to adjoin the elements (x, —1; g),/[n], for n > 0 to Z[qil, x*!7 and
(x — 1)-adically complete.
In the ring Q[¢ — 1, x — 1] the element x is invertible, as
1__ 1
x 1—(1-x)

The g-derivative of the g-logarithm is 1/x, like the usual logarithm.

=1+(1-x)+(0—x)>+ .

Lemma 4.9. The q-logarithm log, (x) is the unique f(x) € Qllg — 1, x — 1] satis-
fying f(1) =0and V,(f(x)) = 1/x. Moreover,

qg—1

log(q)

log, (x) = -—— log(x)

as elements in Qg — 1, x — 1]|.
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Proof. That log, (x) has g-derivative 1/x can be checked using Proposition 4.7 after
writing 1/x in its g-Taylor expansion. Moreover, log, (1) = 0. For the converse
pick f as in the statement. By Proposition 4.7 we can write

(x, =1L, @)

f(x)—ZV"(f(x)nxl NI
J!

and thus we have to determine
= VI (f ()t
for n > 0. By assumption we must have ap = f (1) = 0. Moreover, for n > 1,
an = Vg (f @)=t = Vg T Dt = [=n +1]g - [= 1,
Using [—k], = —q7k [k], for k € Z, the last expression simplifies to
[—n+ g [=1lg = (=1)" gD — 17,1,

Thus we can conclude

fx) = Z(_l)n—lq—ﬂ(n—l)/zm = logq(x).
[n]4

n=1

For the last statement note that

fx) =

—1
log(x)
< ) %
exists in Qg — 1, x — 1]] (because n € qu for all n > 1) and satisfies f(1) = 0.
Moreover,
flgx)—f(x)  g—1 log(g) +log(x) —log(x) 1

ViU =TT Tl @-bx . x

which implies f(x) = log, (x) by the proven uniqueness of the g-logarithm. [
We now turn to prisms again. Define
E=[plg=1+q+ - +q""
and N o 5
& i=85p@®) ¢ ()

for r > 1. Here, ¢ is the Frobenius lift on Z[¢g*'] satisfying ¢(¢) = ¢”. Then £
is a distinguished element in the prism Z,[[q — 1]|. The &, are again g-numbers,
namely
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Let us recall the following situation from crystalline cohomology. Assume that
A is a p-complete ring with an ideal J C A equipped with divided powers

Vo:J—>J, n=>1.

In this situation the logarithm

oo
log(x) := ) (="' (n = Dlya(x — 1)
n=1
converges in A for every element x € 1 4+ J. We now want to prove an analo-
gous statement for the g-logarithm. Recall that for a prism (A, I) we defined in
Definition 3.8 the Nygaard filtration

NT"A:={xecAl|lpkx)el"}, n=>0.

From now on, we assume that the prism (A, I) lives over (Z,[q — 111, (§)). The
expression

n—1

x=y&x—=qgy)---(x—=qg"""y)

[n]q'

is called the n-th g-divided power of x — y; see [Pridham 2019, Remark 1.4].'3
We study the divisibility of

Vng(X—y) = € Zpllg—1lx, yl[1/[m]q | m = 0]

n—1

(x=»x—gy) - (x—q"y)

by _
E,9&),....

The following statement is clear.
Lemma 4.10. For r > 1 the polynomial (in q)
r—1,8y _ qp’ —1
(p (S) - qp,<_| _ 1
is the minimal polynomial of a p"-th root of unity ¢, i.e., the morphism
ZIg)/ (@'~ €)= Zlgy), g &y

is injective.

Thus, reducing modulo ¢’ ~!(£) is the same as setting g = ¢pr. Moreover, in
Z[&,r] there is the equality

p—1
F—1=]]G@=t.
i=0

18This terminology is, however, quite bad. The g-divided power depends on the pair (x, y) and
not simply their difference x — y.
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Setting z = x/y one thus arrives at the congruence
=y =@ = —gy) - (x—g” 'y mod (&), (4.11)
which will be useful.

Lemma 4.12. Let n > 1, and for r > 1 write n = a, p" + b, with a,, b, > 0 and
b, < p". Thenin Z,lq — 1],

! =u] e &
r>1

for some unitu € 7 ,[[q — 11*.

Proof. We may prove the statement by induction on n. Thus let us assume that it is
true form =n — 1, and for r > 1 write m = ¢, p" +d, with ¢,,d, > 0and d, < p".
If n is prime to p, then [n], is a unit in Z,[[q — 1] and it suffices to see that the
right-hand side is equal (up to some unit in Z,[[g — 1])) to

o0

[[e &

r>1
But n being prime to p implies that b, > 0 for all » > 1. Thus ¢, =a, and d, = b, —1,
which implies that both products are equal. Now assume that p divides n and write
n = p’n’ with n’ prime to p. Moreover, write m =n—1=c, p" +d, as above. Then
we can conclude a, = ¢, forr > s whilec, =a, — 1 for1 <r <s(asd, =p " —1
for such r). Altogether we therefore arrive at

[n)y! = [nlgln— ! =u'In), [ [ ' @ =uv [ o' E)",

r>1 r>1

u' € Z,llqg — 11, where we used the fact that
[nly = v[p’ly =ve’ ' (€)---§
for some unit v € Z,[[q — 1] ]

Proposition 4.13. Let (A, I) be a prism over (Z,[lq — 11, (§)) andlet x,y € A be
elements of rank 1 such that p(x — y) = xP — y? € EA. Then for all n > 1 the ring
A contains a q-divided power

(=N —gy) - @—g""y)
yn,q(x - y) == )
[n]q-
of x — y.'2 Moreover, Yn,q lies in fact in the n-th step N="A of the Nygaard
filtration of A.

19By this we mean that there exists an element, called y; 4 (x — ¥), such that [n]g!yy g (x — y) =
x=—yx—-—gy) - (x— q”fly). The element y; 4(x — y) need not be unique, but it is if A is
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Proof. Replacing A, x, y by the universal case we may assume that A is flat
over Zpyllg — 1]I. In particular, this implies that &, ¢ (&), ... are pairwise regular
sequences (see Lemma 3.6). Fix n > 1. For r > 1 we write n as

n=ap +b
with a,, b, > 0 and 0 < b" < p". We claim that for each r > 0

o &)™
divides

n—1

x=»x—gy) - (x—q"y).

This implies the proposition, namely by Lemma 4.12 we have

! =u] o™ &

r>1

for some unit u € A* while furthermore the morphism

A/(nly) — [T A/ ED™

r>1

is injective by the proof of Lemma 3.6. Thus fix r > 1. To prove our claim we may
replace n by n — b, as

n—b,—1

(x=y)x—gy)---(x—gq y)

divides
n—1

x=y)x—qy)---(x—q""y).

Thus let us assume that n = a, p”. We claim that each of the a,-many elements

x=yx—gy) - (x—q" 'y,

(x—g” y)(x —q" Ty) - (x —g*" ),

(a,—1)p" (a,—Dp"+1 arp"—1

(x—gq x—gq Y- (x—gq y)

(note that their product is (x —y) - - - (x —g"~'y)) is divisible by ¢"~!(£). For this re-
call the congruence (4.11). Replacing in this congruence y by ¢”' y, ..., g @ D"y
shows that each of the above a, elements is congruent modulo ¢” -1 (§ ) to an ele-
ment of the form

[n]4-torsion free for any n > 0. Note that even in this torsion free case yy,q (x — y) depends on the
pair (x, y) and not merely on the difference x — y.
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with k > 0 divisible by p”. But we have
=gy = =y P (=g

and we claim that under our assumptions both summands are divisible by ¢~ ().
For the first summand we use that x, y are of rank 1 to write

oy = -y = B (0.
&
which makes sense as we assumed that
xP —yP € EA.
For the second summand we note that

qk

1— o~ r—1
1-¢= N E(M =g )
1—g?

with all factors in Z,[[¢ — 1]] as p" divides k. It remains to prove that

n—1

x=y)x—qy)---(x—q""y)
[n]q'

yn,q(x —Y) =

lies in N="A. But
(xP —yPY(xP — gPyP) .- (xP — gP=DyP)
@([nlgh

(p()/n,q) =

and as we saw above & divides each of the n factors
(a7 =yP), P —gPyP), . (P = g" " IyP).
But £ and ¢([n],!) form a regular sequence by Lemma 3.6, which implies that
(P = yP) P = gPyP) - (xF —gP D yP)

is divisible by & "@([n],) as was to be proven. This finishes the proof of the propo-
sition. (]

As the proof shows there exists unique choice of a g-divided power

Vn,q(x )

which is functorial in the triple (A, x, y) (with x, y € A satisfying the assumptions
in Proposition 4.13). From now on we always assume that these g-divided powers
are chosen. Moreover, we get the following lemma concerning the convergence of
the g-logarithm.
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Lemma 4.14. Let (A, I) be a prism over (Z,[lq — 111, (é)). Then for every element
x € 1 + N='A of rank 1 the series

(o]
log, (x) =Y (=1)""'g™" " VP [n = 1],y (x — 1)

n=1

is well-defined and converges in A. Moreover, log, (x) € NZTA,

log,(x)=x—1 mod NZ2A
and
log, (xy) =log, (x) +log, (y)

forany x,y € 1 + N=' A of rank 1.

Proof. By our assumption on x we get ¢(x — 1) € £A, and thus we may apply
Proposition 4.13 to x = x and y = 1. Thus the (canonical choice of) g-divided

powers 1
- 1) = x—D&x—=q)---(x—q""")
Vg = [n],!

in A are well-defined. Moreover, as

o
log, (x) =Y (=1)""'g™"" VP [n = 1],y g (x — 1)

n=1
and the elements [n — 1],! tend to zero in A for the (p, I)-adic topology, we can
conclude that the series log, (x) converges because A is E-adically complete. The
claim concerning the Nygaard filtrations follows directly from y, ,(x — 1) e N="A,
which was proven in Proposition 4.13. That log, is a homomorphism can be seen
in the universal case in which A is flat over Z,[[¢g — 1] (by [Bhatt and Scholze
2019, Proposition 3.13]). Then the formula logq (xy) = logq (x)+ logq(y) can be
checked after base change to Q,[[¢g — 1], where it follows from Lemma 4.9 as the
usual logarithm is a homomorphism. O

5. Prismatic cohomology and topological cyclic homology

This section is devoted to the relation of the prismatic cohomology developed by
Bhatt and Scholze [2019] with topological cyclic homology (as described by Bhatt,
Morrow and Scholze [Bhatt et al. 2019]) following [Bhatt and Scholze 2019, Sec-
tion 11.5].

Let R be a quasiregular semiperfectoid ring, and let S be any perfectoid ring
with a map S — R.
Proposition 5.1. The category of prisms (A, I) with a map R — A/l admits an
initial object (A
the derived prismatic cohomology A a,.s), for any choice of S as before.

, I), which is a bounded prism. Moreover, Ai;;it identifies with
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Proof. See [Bhatt and Scholze 2019, Propositions 7.2 and 7.10] or [Anschiitz and
Le Bras 2019, Proposition 3.4.2]. U

In the following, we simply write Ag = AR = Ag 4. (5).

Theorem 5.2. Let R be a quasiregular semiperfectoid ring. There is a functorial
(in R) 8-ring structure on Z‘,‘;" :=m0(TC™ (R; Z))) refining the cyclotomic Frobe-
nius. The induced map Ag = Ai};i‘ — Zt;;p identifies K;?p with the completion with
respect to the Nygaard filtration (Definition 3.8) of Ag, and is compatible with the
Nygaard filtration on both sides.

Proof. See [Bhatt and Scholze 2019, Theorem 11.10]. O

The Nygaard filtration on Z‘,‘Qp is defined as the double-speed abutment filtration
for the (degenerating) homotopy fixed point spectral sequence

Ej := H'(T, 7_;(THH(R; Z,))) = 7_;_ ;}(TC™ (R Z,))

for the T = S'-action on THH(R; Z p).lineH (T, Z) is a generator, then multipli-
cation by any lift verr_>(TC™(R; Z,)) of the image of 1 in H?*(T, mo(THH(R; Z,)))
induces isomorphisms

i (TC™ (R Z,)) SNZ A
fori e 7.

Remark 5.3. We will only use the fact that Agis a prism in this paper (as we
will apply the results of Section 3 to 7wo(TC™ (R; Z,))) and that the topological
Nygaard filtration, defined via the homotopy fixed point spectral sequence, agrees
with the Nygaard filtration from Definition 3.8, but the way one proves this is by
showing the stronger statement that Kt,ﬁp is the Nygaard completion of Ag. We
ignore whether there is a more direct way to produce the §-structure on Ag; see
[Bhatt and Scholze 2019, Remark 1.14].

6. The p-completed cyclotomic trace in degree 2

Now we are ready to prove our main theorem on the identification of the p-completed
cyclotomic trace. Recall that for any ring A the cyclotomic trace

ctr: K(A) — TC(A)

from the algebraic K-theory of A to its topological cyclic homology is a natural
morphism20 refining the Dennis trace Dtr: K (A) — HH(A) introduced in Section 2;
see [Blumberg et al. 2013, Section 10.3; Bokstedt et al. 1993, Section 5]. Let us
carefully fix some notation. For the whole section we fix a generator y € H(T, Z),

20When upgraded to a natural transformation of functors on small stable co-categories the cyclo-
tomic trace is uniquely determined by these properties; see [Blumberg et al. 2013, Section 10.3].
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but note that the formulas in Theorem 6.7 will be independent of this choice. Set
Zf,yd as the p-completion of Z,[u ] and choose some p-power compatible sys-
tem of p-power roots of unity

e:=(10p. Epor .. ) €T
with ¢, # 1. This choice determines several elements as we now discuss. Set
q = [elo € Aint(ZS) 1= W((ZS)") = mo(TC™ (29 Z,)),
wi=q—1,

_a’ -1
=1

=1+q+-+q"",

and

£:=9 ' ().

Note that the ring Ainf(ZZyCl) is the (p, g — 1)-adic completion of Z p[ql/ P*]. We
now construct elements

uemy(TC (294 Z,).,  vemn o(TC (23 Z,))
such that uv = & € mop(TC™ (chd Zpy)). 2l The elements u, v will be uniquely

determined by ¢. Let
ctr: T, (Z9)* — ma(TC(ZY: Z,))
be the cyclotomic trace in degree 2. We denote by the same symbol the composition
ctr: T, (ZYY* — mo(TC™ (29 Z,))
with the canonical morphism TC(—; Z,) — TC™ (-; Z,). Let
can: TC™(—;Z,) — TP(—; Z))
be the canonical morphism (from homotopy to Tate fixed points).
Lemma 6.1. The element
can(ctr(g)) € Jrz(TP(ZC-‘/Cl Zp))
is divisible by 1.

A similar statement (in terms of TF) is proven in [Hesselholt 2006, Proposi-
tion 2.4.2] (see also [Hesselholt 2018, Definition 4.1]) using the explicit description
of the cyclotomic trace in degree 1 via TR from [Geisser and Hesselholt 1999,
Lemma 4.2.3].

21'We need a finer statement than [Bhatt et al. 2019, Propositions 6.2 and 6.3], Wthh asserts the
existence of some u, v as above with uv = a& for some unspecified unit a € Amf(chc )*.
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Proof. Fix a generator
o' € my(TP(ZY: Z,)).

It suffices to show that can o ctr(e) maps to 0 under the composition
—1
T (TP(ZY: Z,,)) = mo(TP(ZS: Z,)) = Aing(ZF) — W (Z)

because the kernel of Ainf(Z;yCI) — W(Z;yd) is generated by u; see [Bhatt et al.
2018, Lemma 3.23]. It therefore suffices to prove the statement for O¢ for C/ @(;,yd
an algebraically closed, complete nonarchimedean extension. Over O¢ we can
(after changing o) find

W € m(TC™(Oc:i Z,)), v €ma(TC™(Oc: Z,)

such that
7

o~ (n)’

and the cyclotomic Frobenius maps u’ to ¢’; see [Bhatt et al. 2019, Proposition

1

uv =€ = can(v') =o'~

6.2., Proposition 6.3]. Then multiplication by v’ induces an isomorphism
m2(TC(O¢; 7)) = Aini(Oc)=.

By [Fargues and Fontaine 2018, Proposition 6.2.10]

(Aing(OO)[1/p])#=

is 1-dimensional over @, and thus generated by u (as i # 0 and () = § ). But

w is not divisible by p in Aiy¢(Oc) as it maps to a unit in W(C). This proves that

Aint(O¢)¥=% = Z , 1, which implies the claim. O
Let us define

ctr(e)
o=

e my(TP(ZY: Z,)) and u:=&0 € m(TC™(ZF).

More precisely, the element u is defined via can(u#) = £o. Note that £o lies indeed
in the image of

can : 1y (TC™(Z9": Z,)) — ma(TP(ZS; Z,)),

due to the fact that the abutment filtration for the Tate fixed point spectral sequence
on 1, (TP(Z?,yCI; Z,)) is the &-adic filtration.

Lemma 6.2. The element u defined above lifts the class of

81(1)E € m(THH(ZS,; Z,)) = my(HH(ZSY; Z,)) = (£)/(ED).
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Proof. By definition
can(u) = ictr(g) € my(TP(ZS: Z,)).
o

Now

& 1

)
and (§)/(&?) is ¢! (u)-torsion free as a module over Ainf(Z;yCl), since
O~ (W) =¢p—1#£0e 3

Moreover, the cyclotomic trace lifts the Dennis trace in Hochschild homology.
Thus, by Proposition 2.5,

ay (Dtr(e)) = 81 (y)([e] — 1) € (§)/ (&)

[e]—1 5
——— =85 &)/E)
o= (1)

as desired. O

and therefore
u=2s(y)

In particular, we see that the element

o € m(TP(ZY: Z,))
is a generator. Set

can

vi=0' € o(TCT(ZY; Z,)) = my(TP(ZY: Z))).

Then
uv =E£.

Recall that for any morphism of rings R — A, the negative cyclic homology is

defined to be
HC~(A/R) :=HH(A/R)"T,

where (=)"T .= lim 5+ (-); see [Hoyois 2015] for a comparison with the classical
definition in [Loday 1992, Definition 5.1.3]. The homotopy fixed point spectral

sequence _
H'(BT,n_;(HH(A/R)) = n_;_j(HC™ (A/R))

endows 7, (HC™ (A/R)) with a (multiplicative) decreasing filtration, which we de-

note by
NZ*HC (A/R).

Each generator y € H;(T, Z) defines canonically a generator n,, € H 2(BT, 7).
We abuse notation and denote by y € H{(T, R) the image of y € H|(T, Z), and
similarly for 7, .
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Proposition 6.3. Let y € H|(T, Z) be a generator and assume A = R/(f) for
some nonzero divisor f € R. Then

(1) HH,(A/R) is concentrated in even degrees and the homotopy fixed point spec-
tral sequence

H' (BT, 7_;(HH(A/R)) = m_;_;(HC™ (A/R))

degenerates.

(2) There exists a unique element 8, € {1}, independent of the choice of y, such
that the morphism

(/P 2> my(HH(A/R)) 5 7o (HC™ (A/R))/NZ2HC™ (A/R)

sends the class of f 10 62 f - 1 e (a/Rr)) n=2HC (A R)- Here the first isomor-
phism is the one from Lemma 2.1. The second morphism is the multiplication
by some lift ij,, € T_o(HC™(A/R)) of n, € H*(BT, mo(HH(A/R)).*?

Proof. The first claim follows from the HKR-filtration as the exterior powers

N Layrlil
are concentrated in even degrees for all i > 0. For the second claim we can reduce
by naturality to the universal case R = Z[x], f = x, in which case it is well-known
that the elements

My (o (F)s - Lyyeca/ry)/N=2HC (A/R)

are generators of the free A-module N=!7o(HC™(A/R)/NZ?m9(HC™(A/R))) of
rank 1. This implies the existence of 6, as A = Z. As the composition 7, o a,, is
independent of the choice of y € H(T, Z) (because both «,, and 7, are changed
by a sign), the proof is finished. (]

Remark 6.4. We expect that §, = 1, but did not make the explicit computation,
since we do not need it.

We need the following relation of v to 7,,.

Lemma 6.5. Letn,, ve H>(T, mo(HH(Zy"; Z,,))) be the images of n,, € H*(T, Z)
andv € n_z(TC_(ZprCI; Z,)) under the canonical morphisms
H*(T,7) - H*(T, mo(HH(Z$; Z,,)))

and
7 o(TC™ (29 Z,)) - H*(T, mo(HH(Z$; Z,))),

respectively. Then v = 6,8 1()/)77_]/.

22 As we mod out by M 22 and the spectral sequence degenerates, the second morphism does not
depend on the choice of a lift.
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Proof. By Lemma 6.2 we know that the image of u in

m(HH(ZY: Z p)) = (£)/(82)

ay (81(y)8).

As Ny V€ H*(T, 710(HH(ZCy ol Z,))) there exists some unit r € ch ! such that
rn, = v. We can caleulate in mo(HC™ (Z3""; Z,,))/N'Z2mr(HC™ (ZCYC Z,)) that
§ =uv=va,(81(y)§) =rn,a,(81(y)§) =rdééi(y)é
using Proposition 6.3. Thus, r = 6,81(y). (I

One has the following (important) additional property (which, up to changing &
by some unit, is implied by the conjunction of [Bhatt et al. 2019, Propositions 6.2
and 6.3]).

Lemma 6.6. The cyclotomic Frobenius
T my(TC™ (29 Z,)) — m(TP(Z: Z,))
sends u to o.

Proof. The cyclotomic Frobenius go” is linear over the Frobenius on A;,s. Thus,
noting £/ = 1/¢~' (1), we can calculate

1
" =o(2)e o)) = ¢ etrte)).
% %

But
W(ctr(e)) = can(ctr(e))

cycl

as the cyclotomic trace has image in 72 (TC(Z; "; Z,)). This implies that

hT ctr(s)
(u) =
By Lemma 6.6 one can conclude that there is a commutative diagram

hT

72(TC(R; Z,)) —— m2(TC™(R; Z)) ~—— 7,(TP(R; Z,,))

b P b

~p= -~ (p/&)—1 ~
A%= NZ1AR Ar

c cl
whose vertical arrows are isomorphisms, for any quasiregular semiperfectoid Z; )

algebra R. We remind the reader that the induced isomorphism

Be o (TC(R; Z,) = Ay

depends only on ¢, not on y.
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For a quasiregular semiperfectoid ring R we denote the Teichmiiller lift by
[—]éZsz l(£n R — Ap.
X=>xP

More precisely, the canonical morphism R — A induces a morphism ¢ : R” — Z'}Q
and [ -] is the composition of ¢ with the Teichmiiller lift for the surjection

AR — ZR.
We set?3
[0 :=[(—)"P];.

We consider the p-adic Tate module

T,R* =lim R*[p"]

of R* as being embedded into R as the elements with first coordinate equal to 1.
We are ready to state and prove our main theorem.

Theorem 6.7. Let R be a quasiregular semiperfectoid Z(;,yd—algebra. Then the
composition

TR — (K (R: Z,)) 5 mo(TC(R: 7)) = A

is given by sending x € T,,(R*) to

> — — _ on—1
log, (1) = 3 (—1yr-1g o2 Ll = Dxlo = a) - (el =97 )

[n]q

n=1

Proof. Replacing R by the universal case chd( 1/P%y /(x — 1), we may assume
that R is p-torsion free and (thus) that (A R (S )) is transversal (by Lemma 3.3 it
suffices to see that (p, &) is a regular sequence, which follows as Ar JEE La, .
by [Bhatt et al. 2019, Theorem 7.2.(5)], is p-torsion free).

Let us define

R/7Y"
ctry : T,R* — 12 (K (R; Z,,)) <> 15(TC(R; Z,)).
By Theorem 5.2 the canonical morphism
t: Ag — 1o(TC™(R; Zp))

is compatible with the Nygaard filtrations and identifies 7o(TC™ (R; Z,)) with the
Nygaard completion Ag of Ag. By Corollary 3.11 the morphism

A s NP AR/NZE AR N AR INZ2 AR

23This agrees with the definition of [ —]g made in the introduction.
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is injective. Hence it suffices to show that the morphisms log, ([-1]s) and B, o ctr
agree modulo N 227 g. Multiplication by the element v € w_,(TC™ (chCl Z,))
constructed after Lemma 6.2 and the HKR-isomorphism (which depends on y)
induce an isomorphism

172 % 5 (THH(R: Z,)) = N2 A g /N2 A,
where J is the kernel of the surjection
0:W(R") — R.
By Proposition 6.3 and Lemma 6.5 this isomorphism sends the class of j € J to
5%51()/) T AR N2, =01(V) - T 1R =2,
for the canonical W(Rb)—algebra structure on
Ar/NZ2Ag = 7o(TC(R; Z,)/N=*mo(TC™ (R; Z,))
= mo(HC™ (R/ W (R"))) /N Z2mo(HC™ (R/ W (R")))
(which lifts the morphism 6). Let x € T, R*. By Lemma 4.14
log, ([x]p) = [x]yg —1 mod NZ2Ap.

On the other hand, as the cyclotomic trace reduces to the Dennis trace Dtr, we can
calculate, using Proposition 2.5 and Lemma 6.5,

Be (ctr(x)) = v Dtr(x)
=051 () ([xlo = D =811 (1xlo = D) 1z, /n=25, mod N=2Ap
=(xlo—1) mod NZ2Ag.

Thus we can conclude
log, ([x]s) = B octr(x)
as desired. O

Corollary 6.8. Let R be a quasiregular semiperfectoid Z;’,yd-algebra. The map

N
log,([-1¢) : TH(R™) — Ap
is a bijection.
Proof. Since both sides satisfy quasisyntomic descent,>* one can assume, as in

[Bhatt et al. 2019, Proposition 7.17], that R is w-local and R* is divisible. In this

24 For Tp(=)* this follows from p-completely faithfully flat descent on p-complete rings with
bounded p°°-torsion [Anschiitz and Le Bras 2019, Appendix]. For A‘/’_S it is proven in [Bhatt et al.
2019].
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case, the map
Tp(R*) — ma(K(R; Z)))

is a bijection. Moreover, [Clausen et al. 2018, Corollary 6.9] shows that
ctr: m(K(R; Zp)) — mo(TC(R; Z)))

is also bijective. As by Theorem 6.7 the composite of these two maps is the map
logq([— 1), this proves the corollary. O

Remark 6.9. As explained at the end of the introduction, one can give a direct and
more elementary proof of Corollary 6.8 when R is the quotient of a perfect ring by
a finite regular sequence [Scholze and Weinstein 2013] or when R is a p-torsion
free quotient of a perfectoid ring by a finite regular sequence and p is odd. But we
do not know how to prove it directly in general.
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In the theory of motives a la Voevodsky, the Nisnevich topology on smooth
schemes is used as an important building block. We introduce a Grothendieck
topology on proper modulus pairs, which is used to construct a non-homotopy-
invariant generalization of motives. We also prove that the topology satisfies
similar properties to the Nisnevich topology.
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1. Introduction

In the theory of motives a la Voevodsky [2000], the Nisnevich topology on the
category of smooth schemes over a field k plays a fundamental role. In this paper,
we introduce a Grothendieck topology on proper modulus pairs, which is used to
construct a non-homotopy-invariant generalization of motives. We also prove that
the topology satisfies similar properties to the Nisnevich topology.

A Nisnevich cover f : Y — X is an étale cover such that any point x € X admits
apoint y € Y with f(y) = x and k(y) = k(x). Therefore, the Nisnevich topology
is finer than the Zariski topology and is coarser than the étale topology. Voevodsky
defined the category of effective motives DM®" as the derived category of the
abelian category of Nisnevich sheaves with transfers NST, modulo A!-homotopy

invariance: DVET i D(NST)

(Al -homotopy invariance)

(1.1.1)
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We briefly recall the definition of NST. Let PST be the category of additive
abelian presheaves on the category of finite correspondences Cor. We have a
natural functor Sm — Cor, where Sm denotes the category of smooth schemes
over k. Then NST is defined to be the full subcategory of PST which consists of
F € PST such that the restriction F'|gy, is a Nisnevich sheaf on Sm.

The definition of NST is simple, but it is nontrivial that NST is an abelian
category. It follows from the existence of a left adjoint to the inclusion functor
NST — PST. A key ingredient of the proof of its existence is the following fact:
for any Nisnevich cover U — X, the Cech complex

oo > Zo(U xx U) = Zy(U) > Zy(X) > 0

is exact as a complex of Nisnevich sheaves, where Z.(-) : Cor — PST denotes the
Yoneda embedding (see for example [Mazza et al. 2006, Proposition 6.12]). More-
over, the Nisnevich topology is subcanonical, i.e., every representable presheaf in
Sm is a sheaf.

The category of motives DM has provided vast applications to the study of
arithmetic geometry, but on the other hand, it has a fundamental constraint that
it cannot capture non-A'-homotopy-invariant phenomena, e.g., wild ramification.
Indeed, the arithmetic fundamental group 7| (X), which captures the information
of ramifications, is not A'-homotopy invariant.

An attempt to develop a theory of motives which captures non-A'-homotopy-
invariant phenomena started in [Kahn et al. 2015]. The strategy is to extend Voevod-
sky’s theory to modulus pairs. A modulus pair is a pair M = (M, M) of a scheme
M and an effective Cartier divisor M> on M such that the interior M°® := M — M
is smooth over k. We can define a reasonable notion of morphisms between mod-
ulus pairs, and we obtain a category of modulus pairs MSm. A modulus pair M
is proper if M is proper over k, and we denote by MSm the full subcategory of
MSm consisting of proper modulus pairs (see Definition 2.1.1 for details).

These categories embed in categories of “modulus correspondences” MCor
and MCor, just as Sm embeds in Cor (see Definition 2.3.2). In [Kahn et al.
2015], categories of “modulus sheaves with transfers” MNST (relative to MCor)
and MNST (relative to MCor) were introduced, in order to parallel the definition
of (1.1.1). However, the proof that these categories are abelian was found to contain
a gap. This gap was filled in [Kahn et al. 2019a] for MNST, by showing that its
objects are indeed the sheaves with transfers for a suitable Grothendieck topology
on MSm.

In this paper, we construct a Grothendieck topology on MSm with nice proper-
ties. It will be shown in [Kahn et al. 2019b], using [Kahn and Miyazaki 2019], that
the objects of MNST are the sheaves (with transfers) for this topology and that this
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category is abelian. Thus the present paper contains the tools to finish filling the
gap of [Kahn et al. 2015]. Moreover, we prove an important exactness result.

Our guide is the following characterization of the Nisnevich topology on Sm:
the Nisnevich topology is generated by coverings U LI V — X associated with some
commutative square S in Sm of the form

W—YV

| |

U—X
which satisfies the following properties:

(1) S is a cartesian square,
(2) the horizontal morphisms are open immersions,
(3) the vertical morphisms are étale, and

(4) the morphism (V — W)eq = (X — U)yeq 1S an isomorphism.

Such squares are called elementary Nisnevich squares. Elementary Nisnevich
squares form a cd-structure on Sm in the sense of [Voevodsky 2010]. A remarkable
property of the Nisnevich cd-structure is the following fact: a presheaf of sets F
on Sm is a Nisnevich sheaf if and only if F (&) = {*} and for any elementary
Nisnevich square as above, the square

F(X)— F(U)

|

F(V)— F(W)

is cartesian. This equivalence holds for any cd-structure which is complete and
regular; see [Voevodsky 2010, Definitions 2.3, 2.10, Corollary 2.17].

In [Kahn et al. 2019a], a cd-structure on MSm is introduced. It is denoted Puv,
and satisfies properties similar to elementary Nisnevich squares. Its definition will
be recalled in Section 4.1. For short, we call the topology on MSm associated with
Pyv the MV-topology.

Our main result is the following.
Theorem. The category of proper modulus pairs MSm admits a cd-structure Pyry

such that the following assertions hold. For short, we call the topology associated
with Py the MV-topology.

(1) (Theorems 4.3.1, 4.4.1, 4.4.2) The cd-structure Pyy is complete and regular.
In particular, a presheaf of sets F on MSm is a sheaf for the MV -topology if
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and only if F () = {*} and for any square T € Pyry of the form
W—V

|

U—M
the square
F(M)— F(U)

|

F(V)— F(W)
is cartesian.
(2) (Theorem 4.5.1) The MV-topology and the MV -topology are subcanonical.

(3) (Corollary 5.2.7) For any M € MSm, consider the presheaf Zy(M) on MCor
represented by M, which is a sheaf for the MV-topology by [Kahn et al. 2019a,
Theorem 2(2)]. Then, for any square as above, the following complex of
sheaves for the MV-topology is exact:

0—> Zy(W) = 2,(U) ® Ly(V) = Zyy(M) — 0.

The organization of the paper is as follows. In Section 2, we recall basic def-
initions and results on modulus pairs from [Kahn et al. 2019a]. In Section 3, we
introduce “the off-diagonal functor”, which is a key ingredient to define the cd-
structure on the category of proper modulus pairs. In Section 4, we define the
cd-structure on the category of proper modulus pairs, and prove that it satisfies
completeness and regularity. Finally, in Section 5, we prove the exactness of the
Mayer—Vietoris sequences associated with the distinguished squares with respect
to the cd-structure.

Notation and convention. Throughout the paper, we fix a base field k. Let Sm be
the category of separated smooth schemes of finite type over k, and let Sch be the
category of separated schemes of finite type over k. For any scheme X and for any
closed subscheme F C X, we denote by Bl (X) the blow-up of X along F'.

2. Basics on modulus pairs

In this section, we introduce basic notions which we use throughout the paper.

2.1. Category of modulus pairs. We recall basic definitions on modulus pairs, in-
troduced in [Kahn et al. 2019a]. We also introduce some new notation. In particular,
the canonical model of fiber product is often useful (see Definition 2.2.2). Though
our main interest in this paper is on proper modulus pairs, we introduce the general
definition of modulus pairs for later use.
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Definition 2.1.1. (1) A modulus pair is a pair M = (M, M) consisting of a
scheme M € Sch (the ambient space) and an effective Cartier divisor M*° on M
(the modulus divisor) such that the interior M° := M \ |M*°| belongs to Sm, where
|M°°| denotes the support of M,

Note that M° is a dense open subset of M. Moreover, we can prove that M must
be a reduced scheme by using the smoothness of M° and the assumption that M*°
is an effective Cartier divisor.

(2) A modulus pair M is called proper if the ambient space M is proper over k.

(3) An admissible morphism f : M — N of modulus pairs is a morphism between
the interiors f°: M° — N° in Sm which satisfies the properness condition:

— Let I' be the graph of the rational map f : M --» N which is induced by f°.
Then the natural morphism I" — M is proper.

and the modulus condition:

— Let T'V be the normalization of I'. Then we have the inequality
MOO|1"N Z Noolr*N

of effective Cartier divisors on I'"V, where M|y and N*°|pv denote the
pullbacks of M and N*° along the natural morphisms 'V — M and TV — N.
Note that the pullbacks are defined since the rational map f restricts to a
morphism f°, and since M° is dense in M.

If f:M — N and g: N — L are admissible morphisms, then the composite
g°o f°: M° — L° defines an admissible morphism M — N; see [Kahn et al.
2019a]. If N is proper, then the properness condition above is always satisfied.

(4) We let MSm denote the category whose objects are modulus pairs and whose
morphisms are admissible morphisms. The full subcategory of MSm consisting of
proper modulus pairs is denoted by MSm.

(5) A morphism f : M — N in MSm is called ambient if f°: M° — N° extends
to a morphism M — N in Sch. Such an extension is unique since M is reduced,
M° is dense in M, and N is separated. We let MSm™" (resp. MSm™) denote the
(nonfull) subcategory of MSm (resp. MSm) whose objects are modulus pairs (resp.
proper modulus pairs) and whose morphisms are ambient morphisms.

(6) A morphism f: M — N in MSm is called minimal if f is ambient and satisfies
M>® = JF* N>,
(7) We let X5, denote the subcategory of MSm whose objects are the same as

MSm and whose morphisms are those morphisms f : M — N in MSm'™ such
that f is minimal, f : M — N is proper, and f°: M° — N° is an isomorphism
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in Sm. Then the canonical functor MSm™ — MSm induces an equivalence of
categories gﬁ;l MSm"™ = MSm [Kahn et al. 2019a, Proposition 1.9.2].

(8) Let Sq be the product category [0]x[0], where [0] = {0— 1}. For any category C,
we define S to be the category of functors from Sq to C. An object T of €S9 is
given by a commutative diagram

T(00) — T(01)

L

T(10) — T(11)

in C, and a morphism 77 — 75 in €34 is given by a set of morphisms 71 (ij) — T>(ij),
i, j =0, 1, which are compatible with all the edges of the squares.

(9) A morphism T} — T> in MSm® is called ambient if for any i, j = 0, 1, the
morphisms 71(ij) — T>(ij) in MSm are ambient. A square T € MSm® is called
ambient if it is contained in (MSm™)S4 ¢ MSm"S.

The following lemma is often useful.

Lemma 2.1.2. For any square T € I\_/ISqu, there exists an ambient square T’
which admits an ambient morphism T' — T which is an isomorphism in I\_/ISqu.

Proof. This is just a consequence of a repeated use of the graph trick [Kahn et al.
2019a, Lemma 1.3.6]. Or, the reader can consult the calculus of fractions in [Kahn
et al. 2019a, Proposition 1.9.2]. The details are left to the reader. O

2.2. Fiber products. We discuss fiber products in MSm and MSm.

Lemma 2.2.1. Let X be a scheme, and let Dy and D, be effective Cartier divisors
on X. Assume that the scheme-theoretic intersection inf(D1, D3) := Dy xx D3 is
also an effective Cartier divisor on X. Set X*° := D; + D, —inf(Dy, D).

Then for any morphism f : Y — X in Sch such that Y is normal and the image
of any irreducible component of Y is not contained in | X*°| = |D| U | D3|, we have

fTX% =sup(f*Dy, f*Dy),
where sup is the supremum of Weil divisors on the normal scheme Y.

Proof. Since inf(D1, D;) xx Y = inf(f*Dy, f*D,), we are reduced to the case
X =Y. Moreover, an easy local computation shows that D; — inf(D;, D;) and
D, —inf(Dy, D,) do not intersect. The assertion immediately follows from this.
See [Kahn et al. 2019a, Lemma 1.10.1, Definition 1.10.2, Remark 1.10.3] for more
details. O

Definition 2.2.2. Let f1: M| — N and f, : M, — N be morphisms in 1\_/[Smﬁn, and
assume that the fiber product P° := M7 X yo M5 exists in Sm. We define a modulus
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pair P as follows. Let P be the scheme-theoretic closure of P° in M x I M, and
let po; : Po— M1 x5 M> Py M; be the composite of the closed immersion
followed by the i-th projection for i =1, 2. Let

— g mp =
P = Bl(ﬁé.lMloo)XﬁO(ﬁé,zMzoo)(PO) —> P()

be the blow-up of P along the closed subscheme ( ﬁg’lM ) x P ( ﬁ(’;’ZM;O). Set
P :=mp o M{® +mppo My — E,

where E := n;l((ﬁ(’)"] M) x p, (Py ,M5°)) denotes the exceptional divisor. Then
we have P — |P*°| = P° € Sm by construction, and we obtain a modulus pair
P = (P, P®).

We call P the canonical model of fiber product of f and f,, and we often write

M1 X;“V Mz = P.

By construction, we have a commutative diagram

P2
M] X?\/ M2 e M2

ml lfz

M —— N
h

in MSm"™". Moreover, we have (M, x§ M2)° = MY x yo M3.

Theorem 2.2.3. Let fi : M; — N and f> : My — N be morphisms in MSm™,
Assume that the fiber product M} x yo M3 exists in Sm. Then the canonical model of
fiber product M x§, M represents the fiber product My x y M> in MSm. Moreover,
if My, M>, N are proper, then My x§, M (hence My x y M>) is proper.

Remark 2.2.4. M; x§, M does not necessarily represent a fiber product in MSm'™",
and it is not functorial in 1\_/ISmﬁ“. However, under some minimality conditions,
they behave nicely in MSm'™,

Proof. We prove that P := M; x§, M, satisfies the universal property of fiber
product in MSm. Let g, : L — M, and g, : L — M, be morphisms in MSm which
coincide at N. Since MSm = Egnl MSm™, we can find morphisms L; — L in
Y in such that the composite morphisms L; — L — M; are ambient fori =1, 2,
and such that L is normal. Since L; — L is an isomorphism in MSm, we replace
L with L; and assume that L is normal, and that g1 and g, are ambient. Let
p1: P — M and p; : P — M, be the ambient morphisms as in Definition 2.2.2.

There exists a unique morphism g° : L° — P° = M} X o M3 in Sm which is
compatible with g7, g3, p{, and p3. It suffices to prove that ¢g° defines a morphism
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L — PinMSm. Let I' C L x P be the closure of the graph of g°, and let I'N be
the normalization of . Let s : TV — L and ¢ : 'V — P be the natural projections.
Then, for i =1, 2, we obtain a commutative diagram

rv_'.p

l o “l
s| 8. Pi

LM,
8i

where the commutativity follows from the fact that p;¢ and g;s coincide on the
dense open subset s (L°) c TV,
By the construction of P and by Lemma 2.2.1, we have

t* P =sup(t* pyM°, t* p; M5°) = sup(s* gy M{°, s*gT M5°),

where the second equality follows from the commutativity of the above diagram.
Since g; and g, are ambient and L is normal, we have g7 M < L. Therefore,
we obtain

t*P® <s*L*,
which shows that g° defines a morphism g : L — P. This proves the first assertion.
The last assertion is obvious by construction. U

Corollary 2.2.5. Let fi : M; — N and f, : My — N be morphisms in MSm.
Assume that the fiber product MY x yo M3 exists in Sm. Then there exists a fiber
product My xy M> in MSm. Moreover, if M|, M, and N are proper, then
M| X M, is proper.

Proof. By [Kahn et al. 2019a, Lemma 1.3.6], for each i = 1, 2, there exists a
morphism M/ — M; in MSm™ which is invertible in MSm and such that the
composite M — M; — N is ambient. Theorem 2.2.3 shows that the fiber product
M/ x y M, exists in MSm. This also represents a fiber product My x y M, prov-
ing the first assertion. The second assertion follows from the construction of the
canonical model of fiber product. (]

Remark 2.2.6. The inclusion functor 7, : MSm — MSm preserves fiber products
by construction.

Given some minimality assumptions, we can say more about the canonical
model of fiber product. We do not need this in this paper, but it will be used
in the other papers, including [Kahn and Miyazaki 2019].

Proposition 2.2.7. (1) Let fi : M — N and f> : My — N be morphisms in
MSm™, and assume that fi is minimal, M? x yo M3 is smooth over k and
M, X 5 M3° is an effective Cartier divisor on M, X § M. Then we have

Ml X?VM2=(A7[1 Xﬁﬂz,Mlxlngo).
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(2) Consider the commutative diagram
Uy — V+— U,

j.l ’l ljz

My — N +— M,

in MSmﬁ“, such that j; and j are minimal, and such that M} x yo M3 and
U} xyo Uy are smooth over k. Then the morphism

Ji X jo: U X5 Uy = My X M
in MSm, induced by the universal property of fiber product, belongs to 1\_/[Smﬁn
and is minimal.

(3) In the situation of (2),if j, ji, jo are open immersions, if Uy — V is minimal,
and ifl71 Xy U, is normal, then

j1 ij:ljl XVUZZUI X?/U2—>M1 X%/MZ
is an open immersion, where the equality follows by (1).

Proof. (1): This follows from the construction of canonical model of fiber product;
see also [Kahn et al. 2019a, Corollary 1.10.7].

(2): Let P be the closure of M? X no M3 in M, X § M, and Q the closure of

UY xyo U7 in U, Xy U,. Then the morphisms j; and j, induce a morphism
J:0— P.

Then we obtain the commutative diagrams

J
—

qi Di

[+— Q]
[ +—— ™3

U - M;

in Sch for i = 1,2, where p; and ¢; are the natural i-th projections. Set F :=
pPIM® xp p3M3° C P and G :=qU® x5 p5U;° C Q. Then the commutativity
of the diagrams shows

J'F:=F x5 Q=(q/ji M) x5 (q] s M5°) = ¢} U{* x5 4;Us° =G,

where the equality in the second line follows from the minimality of j; and j,. Let
7p :Blp(P) — P and T : Bl;(Q) — O be the blow-ups. Then, by the universal
property of blow-up, J lifts to a morphism

J1:Up x$, Uy =Blg(Q) — Blp(P) = M x§; My,
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which makes the diagram

Bls(0) -5 Bl (P)

W |

0——P

commute. Moreover, letting F’ := n;](F ), G = né 1(G) be the exceptional
divisors, the commutativity of the two diagrams as above shows

TT (M Xy Mo)™® = J{(p piMP° + 5 pyMY° — F')
=y T pM + pp Ty M5° — G’
= ngquf‘M{’O + ngq;j;Mgo -G
=757 U +75q5U5° — G
= (U x5, Up)™,

where the equality in the fourth line follows from the minimality of j; and j,.
Therefore, the morphism J | defines a minimal morphism U; x§, Uy — M x§; M3,
as desired.

(3): We take the notation as above. Then U x % U, is an open subset of P. Since
J*F =G, the minimality of Uy — V shows FNU, x‘7172 =U, x Us°, where the
right-hand side is an effective Cartier divisor on U x % U,. Therefore, the blow-up
7p is an isomorphism over U; xy U», and the open immersion U xy; Uy — P
uniquely lifts to an open immersion U x v U, — Blg(P). (]

2.3. A remark on elementary correspondences. In this subsection, we observe a
relationship between cartesian squares and elementary correspondences. First we
provide some definitions.

Definition 2.3.1. For any M, M, € MSm, we define 1\_/[Corel to be the set of
elementary finite correspondences V : M7 — M3 which satisfy the following ad-
missibility conditions: let V be the closure of V in M| x M, and let VN — V be
the normalization of V. Let pr; : V¥ — M; be the i-th projections.

(1) pr, is proper.

(2) priM{° > pryM5°.
Definition 2.3.2 [Kahn et al. 2019a, Definitions 1.1.1, 1.3.3]. A category MCor is
defined as follows: the objects are the same as MSm, and for M, N € MCor, the
set of morphisms is defined as the free abelian group generated on MCor® (M, N).
Note that MCor(M, N) C Cor(M°, N°) by definition. The composition is given
by the composition of finite correspondences. Define MCor as the full subcategory
of MCor whose objects are proper modulus pairs.
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Proposition 2.3.3. For any modulus pair M, for any f : N — L in MSm, and for
any V € MCor® (M, N), the image

Fo(V) = (Idye x £O) (V) C MO x L°

is an irreducible closed subset, and we have f(V) € MCor® (M, L).
Thus, any modulus pair M is associated a covariant functor

MCor® (M, -) : MSm — Set.

Proof. By [Kahn et al. 2019a, Proposition 1.2.3], the composition of finite cor-
respondences W := I'fo o V belongs to MCor(M, L), where I' ;o denotes the
graph of f°: M° — N°. By the definition of composition, we can verify that
|W| = f+(V). This implies that f (V) is a component of W. Therefore, we have
We MCor(M, L), as desired. O

Proposition 2.3.4. Let T be a pull-back square in MSm of the form

T(00) —— T(01)

qu lpr (23.5)

T(10) — T(11)

and let M be a modulus pair. Consider the associated commutative diagram of sets

MCor® (M, T(00)) —-» MCor®!(M, T (01))

(1T+l JPT+

MCor (M, T(10)) —5 MCor®/(M, T(11))
and set

IT:= Mcorel(M7 T(lo)) XMCOFSI(M,T(]])) MCOrel(M, T(Ol))

Then the induced map p : MCorel(M , T(00)) — Il is surjective. Moreover, it is
bijective if v is an immersion.

Remark 2.3.6. We can formulate another statement by replacing MCor® with
MCor and (-)4 with (—),, but it is false. Indeed, if «; and oy are distinct
elementary correspondences which have the same image 8 under pr,, then the
image of the (nonelementary) finite correspondence « := o] — oy is zero, which is
trivially contained in the image of ur,. But there is no reason why « is contained
in the image of vr,.

Proof. The latter statement is clear, since the composite pr, o p is equal to vy,
which is injective if v3. is an immersion.
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We prove the surjectivity of p. Consider any o € MCorel(M , T(10)) and
oy € MCor® (M, T(01)), and assume B := urs+(a1) = pr+(az). Let & be the
generic point of «; fori =1, 2.

We need to prove that there exists an element y € I\_/ICOI’el(M , T(00)) which
maps to oy and .

Let

¢ € (MO X T(lO)O) XMoxTo(11) (MO X T(O])O) =M° x T(]O)O XTo(11) T(Ol)o
= M° x T(00)°

be a point which lies over £; and &. Let y := {¢} be the closure of ¢ in M° x T (00)°,
endowed with the reduced scheme structure.

Claim 2.3.7. y is an elementary correspondence from M° to T (00)°.

Proof. We have to prove that y is finite and surjective over a component of M°.
Since ¢ = (&1, &) € o) X p0 a2, the scheme y is naturally a closed subscheme of
a1 X pmo . Moreover, since ¢ maps to &; via the projection pr; : a1 X po g —
for each i =1, 2, we obtain dominant maps y — «;. These maps are finite (hence
surjective) since each «; is finite over M°. Since the natural map y — M factors
as y — ] — MP°, and since « is finite and surjective over a component, we obtain
the claim. O

Claim 2.3.8. y € MCor®' (M, T (00)).

Proof. We make a preliminary reduction as follows: since the assertion depends
only on the isomorphism class of 7 in MSm®4, we may assume that 7' is ambient
by Lemma 2.1.2. Moreover, since T is a pull-back diagram, we have 7 (00) =
T(10) xCT(M) T(01), where the right-hand side is the canonical model of fiber
product in Definition 2.2.2. Therefore, by replacing 7 (00) with (the normaliza-
tion of) T'(10) x5, (11 T (01) (this preserves the condition that 7" is ambient by the
construction of canonical model), we may assume that g7 7 (10)* and v} 7*(01)
have a universal supremum in the sense of [Kahn et al. 2019a, Definition 1.10.2]
and that 7'(00)*° = sup(g7 T (10)>°, v7T (01)).

Let 7 be the closure of y in M x T (00). First we check that ¥ is proper over M.
Note that the natural map ¥ — M factors as ¥ — &) xj; @2 — M. The first
map is proper since the natural map 7 (00) — 7 (10) XFa1) T(01) is proper by
construction of the canonical model of fiber product, and the latter map is proper
since the @; are proper over M by assumption. This shows that ¥ — M is proper,
as desired.

Next we check the modulus condition. Let ¥V be the normalization of ¥. Simi-
larly, let @1 be the closure of oy in M x T(10), &, the closure of a» in M x T (01),
and &IN the normalization of ¢;. By assumption, we have o € MCorel(M , T(10))
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and oy € MCor® (M, T (01)), which means
M®|gn = TA0)® ey and Mgy = TOD™ gy

Since y — «; are dominant for i = 1, 2, we obtain morphisms 7V — &IN by the
universal property of normalization. Therefore, the above inequalities imply

M®|gn = q7rT(10)7 v and  M®|pn > 07T (017 |pn
Thus, since g7 7 (10)*° and v} 7 (01)* have a universal supremum and 7' (00)*>° =
sup(q; T (10)*°, v3.T(01)>) by assumption, we obtain
M*®[5n > sup(@ T (10)® [y, T3 T (01) % |5x)
=sup(g7 T (10)>, 03T (01)*) |3~
= T(00) |5~
by [Kahn et al. 2019a, Remark 1.10.3(3)]. This finishes the proof of the claim. [

By construction, we have o = g7+ (y) and oy = v+ (y). This finishes the proof
of Proposition 2.3.4. ([

3. Off-diagonal functor

We introduce the “off-diagonal” functor, which is a key notion used in the definition
of the cd-structure on MSm.

Definition 3.1.1. Define MEt as a category such that

(1) objects are those morphisms f : M — N in MSm such that f°: M° — N°is
étale, and

(2) morphisms of f: My — N; and g : M, — N, are those pairs of morphisms
(s : My — My, t: Ny - N,) which are compatible with f, g such that s® and
t° are open immersions.

Define MEt as the full subcategory of MEt consisting of those f : M — N such
that M, N € MSm.

Definition 3.1.2. For modulus pairs M and N, we define the disjoint union of M

and N by o
MUN:=(MUuUN, M*uUN®).

We have (M LUN)® = M°U N°, and M U N represents a coproduct of M and N in
the category MSm.

Theorem 3.1.3. There is a functor

OD : MEt - MSm
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such that for any f : M — N, there exists a functorial decomposition
M xy M= MuOD(f).

Moreover, we have OD(f)° = M° x yo M°\ A(M°), where A : M°® — M° X yoM° is
the diagonal morphism. In particular, if f° is an open immersion, then OD(f)° =&,
and hence OD( f) = . Moreover, the functor OD restricts to a functor

OD : MEt — MSm.

We call these functors the off-diagonal functors.

Proof. First, we prove that for any f : M — N in MEt, there exists a morphism
i: X — M xun M such that the induced morphism

MUX 2 MxyM

is an isomorphism in MSm. Take any object f : M — N in MEt. Since f° is étale
and separated by the assumption, the diagonal morphism A : M°® — M° x yo M°
is an open and closed immersion. Therefore, we obtain a decomposition into two
connected components:

MO X no M® = A(M°) LI (M® X yo M° — A(M®)).

Let P denote the canonical model of fiber product M x$, M as in Definition 2.2.2.
Note that P° = M° x yo M°.

Define a closed immersion i : A( f)— P as the scheme-theoretic closure of
the open immersion A(M°) — P° — P. Set

A(H)® =iy P® and A(f):= (A(f), A(HD).

Then i 5 induces a minimal morphism in : A(f) — P, and we have A(f)°=A(M°).
Similarly, define a closed immersion igp : OD(f) — P as the scheme-theoretic
closure of the open immersion M° x yo M® — A(M°) — P° — P. Set

OD(f)® := z_'E")DPoo and OD(f) := (OD(f), OD(f)*>).
Then iop induces a minimal morphism igp : OD(f) — P. Moreover, we have

OD(f)° = M° X yo M° — A(MP°).
The morphisms i and iop induce a minimal morphism in 1\_/[Smﬁn

ialiop : A(f)LOD(f) — P.

By (7) in Definition 2.1.1, this morphism is an isomorphism in MSm (not in
MSm'™") since (ix Uiop)° =i U 110 ¢ A(F)°UOD(f)° = P° = M° x o MC is
an isomorphism in Sm, and since ix Uiop : A(f) UOD(f) — P is proper by con-
struction.
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We claim A(f)EM. Let A: M — P (= M xy M) be the diagonal morphism.
Then the composite M A px A(f)uOD(f) factors through A(f). The inverse
morphism is given by A(f) — P 2> M, where pr, denotes the first projection
PEMxyM— M.

Thus, for any f : M — N in MEt, we have obtained a decomposition

M xy M= MUOD(f).

Next we check the functoriality of OD(f). Let (f1 : M| — N1) — (f2: My — N»)
be a morphism in MEt, i.e., a commutative diagram

where f1, f2, s, and t are morphisms in MSm such that f{° and f}’ are étale and
s° and t° are open immersions.
We claim that there exists a unique morphism OD( f;) — OD( f) such that the

diagram
M1 XN, M1 —>M2 XN, M2

;T T;

M, uOD(f1) — M> U OD(f2)

commutes. The uniqueness is obvious by the commutativity of the above diagram.
For the existence, we need to show that the composite

OD(f1) = My xn, M1 — M> XN, My = M, LOD( f2)

factors through OD(f>). To see this, it suffices to prove that the image of the
morphism

MY xyo MY\ AMY) — MY x o MY 25 M3 x o M3
lands in M3 x yo M3\ A(M3), which easily follows from the injectivity of the open
immersion s°. This finishes the proof. U

The off-diagonal functor is compatible with base change.

Proposition 3.1.4. Let f : M — N be an object of MEt, and N' — N any mor-
phism in MSm. Then the base change g := f xn N’ belongs to MEt, and we have
a natural isomorphism OD(g) = OD(f) xy N'.

Proof. The first assertion holds since g° = f° x o N'° is étale as a base change
of an étale morphism. We prove the second assertion. Note (M xy M) xy N' =
M’ x M', where M’ := M x y N’'. Consider the following diagram in MSm:
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(M xy M) Xy N «—— (MUOD(f)) xy N «<—— M' U (OD(f) xy N’)

| |

M xn M’ M'LuOD(g)

where all the arrows, except for &, are natural isomorphisms in MSm, and / is
defined to be the composite. By diagram chase, & restricts to the identity map on
M’ and an isomorphism OD(f) xy N' — OD(g). O

4. The cd-structure

In this section, we introduce a cd-structure on MSm, and prove its fundamental
properties.

4.1. MV-squares. First, let us recall from [Kahn et al. 2019a] the cd-structure
on MSm.

Definition 4.1.1. (1) An MVf"-square is a square S € (MSm'")S4 such that the
morphisms in S are minimal, and such that the resulting square

S(00) — S(01)

L

S(10) — S(11)

is an elementary Nisnevich square (on Sch).
(2) An MV-square is a square S € MSm®? which is isomorphic to the image of
an MV "_square by the inclusion functor (MSm")S4 — MSmS4.
Proposition 4.1.2 [Kahn et al. 2019a, Proposition 3.2.2]. The MV-squares form a

complete and regular cd-structure Pyy on MSm. U

Definition 4.1.3. The topology on MSm associated with the cd-structure Pyry is
called the MV-topology.

In the following, we describe OD for MV and MV-squares.
Lemma 4.1.4. Let f : U — M be a minimal morphism such that f : U — M is
étale. Then we have
OD(f)=U x5 U—AU) and OD(f)® =n*M>*NOD(f),
where A - U — U X i U is the diagonal, and 7w : U X i U — M is the natural
morphism.

Proof. Since U° X pr0 U° — A(U®) is dense in U X i U — A(U) (as a complement

)
of the divisor U™ x; U\ A(D)), and since U>® xy U= U Xz U® ="M,
the assertion follows from the construction of OD( f). U
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Proposition 4.1.5. Let S be an MV™-square of the form

S(00) 25 S(01)
%‘l lPs
S(10) =5 s(11)

Then the morphism OD(gs) — OD(ps) is an isomorphism in MSm"™.

Proof. Let S be an MVi"-square. Then, since S is an elementary Nisnevich square,
we have a natural isomorphism

5(00) X510y S(00) — Ag(S(00)) = S(01) x5, S(01) — A1 (5(01)),

where A, : S(0i) — S(0i) X51i) S(0i) is the diagonal for each i =0, 1. Then, in
view of Lemma 4.1.4, the minimality of ug, ps, gs shows that the isomorphism as
above induces an isomorphism OD(gs) — OD(ps) in MSm"™". (Il

Corollary 4.1.6. Let S be an MV-square. The natural morphism OD(gs)—OD(ps)
is an isomorphism in MSm.

Proof. By definition of MV-square, there exists an MV'"-square S’ which is iso-
morphic to S. Then, noting that there are natural isomorphisms OD(gs) = OD(gs’)
and OD(ps) = OD(ps) in MSm, the assertion follows from Proposition 4.1.5. [J

4.2. MV-squares.

Definition 4.2.1. Let T be an object of MSm3? of the form (2.3.5). Then T is
called an MV-square if the following conditions hold:

(1) T is a pull-back square in MSm.

(2) There exist an MV-square S such that S(11) € MSm and a morphism § — T
in MSm®? such that the induced morphism $° — T° is an isomorphism in
Sm®! and S (11) — T(11) is an isomorphism in MSm. In particular, 7° is an
elementary Nisnevich square.

(3) OD(gr) — OD(pr) is an isomorphism in MSm.

We let Py be the cd-structure on MSm consisting of MV-squares. The topol-
ogy on MSm associated with the cd-structure Pypy is called the MV-topology for
short.

Remark 4.2.2. (1) For any T € MSm®Y with 7° an elementary Nisnevich square,
the induced morphism OD(pr)® — OD(gr)° between interiors is an isomor-
phism in Sm. This follows easily from the definition of elementary Nisnevich
squares.
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(2) If p% and g7 are open immersions, then OD(g7) = OD(p7) = @. In particular,
we have OD(¢g7) = OD(pr).

Proposition 4.2.3. Let T be a square in MSm3Y which satisfies condition (1), (2),
or (3) of Definition 4.2.1. Then, for any morphism M — T (11) in MSm, the base
change square Ty :=T X711y M also satisfies (1), (2), or (3), respectively.

Proof. Since base change of a pull-back diagram is a pull-back diagram, condition
(1) is preserved by base change. Proposition 3.1.4 shows that (3) is preserved by
the base change.

Finally, we prove that (2) is preserved by base change. Let S — T be a morphism
as in (2), and let M — T (11) be any morphism in MSm. Then we obtain a
morphism Sy — Ty, where Sy := S xga1y M and Ty ;=T X711y M. Since
S(11) = T(11), we obtain Sy;(11) = Ty (11). Moreover, Sy, is an MV-square as
the base change of an MV-square (see [Kahn et al. 2019a, Theorem 4.1.2]), and
we have S}, = T};. Therefore, the morphism Sy, — T satisfies the requirement
in (2). This finishes the proof. O

4.3. Completeness.

Theorem 4.3.1. The cd-structure Py is complete.

Proof. By [Voevodsky 2010, Lemma 2.5], it suffices to prove the following:
(1) Any morphism with values in @ = (&, &) is an isomorphism.

(2) Forany T € Pyy and any M — T (11) in MSm, the square Ty :=T X711y M,
which is obtained by base change, belongs to Pypy.

But (1) is obvious, and (2) is a direct consequence of Proposition 4.2.3. U

4.4. Regularity.
Theorem 4.4.1. The cd-structure Pyyy is regular.

Proof. By [Voevodsky 2010, Lemma 2.11], it suffices to prove that for any T € Py,
the following assertions hold:

(1) T is a pull-back square in MSm.
(2) ur : T(10) — T (11) is a monomorphism.

(3) The fiber products T'(01) X711y T(01) and 7 (00) x 710y T'(00) exist in MSm,
and the derived square

T(00) T(01)

AqTJ JA,,,

T(OO) XT(10) T(OO) —_— T(Ol) XT(11) T(Ol)

which we denote by d(T), belongs to Py .
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The definition of MV-squares gives (1), and (2) holds since u3. : T°(10) — T°(11)
is an open immersion. We prove (3) by checking the conditions in Definition 4.2.1
for d(T).

Since A;’,T and A;’T are open immersions, we have OD(A,,) =@ = 0D(A ;)
by Theorem 3.1.3. Hence d(T) satisfies (3) in Definition 4.2.1.

Note that d(T) is isomorphic in MSm®? to the diagram

T(00) ————=T1(0l)

| |

T(00) UOD(qr) — T(01) LOD(pr)

where the vertical maps are the canonical inclusions, and the horizontal maps are
induced by vr. It is easy to see that this diagram is a pull-back diagram, i.e.,
d(T) satisfies (1) in Definition 4.2.1. Indeed, suppose that we are given a pair
of morphisms f: M — T(01) and g : M — T(00) U OD(gr) which coincide
at T(01) u OD(pr). Then, one sees that g° : M° — T (00)° L OD(gr)° factors
through 7'(00)°, which implies that g factors through 7' (00).

We are reduced to checking Definition 4.2.1(2) for d(T"). Consider the following
diagram in MSm:

(T(00)°, &) —  T(01)

| |

(T'(00)°, @) LOD(gr) — T(01) LOD(p7)

which we denote by d(T)o, where the vertical maps are the canonical inclusions.
Then d(T)g is an MV-square since OD(gr) = OD(pr), and there exists a natural
morphism d(T)o — d(T). It induces an isomorphism d(T)g = d(T)°, and we
have d(T)o(11) =d(T)(11). Therefore, d(T') satisfies (2) in Definition 4.2.1. This
finishes the proof. O

Theorem 4.4.2. Let F be a presheaf with values in Sets on MSm. Then F is a
sheaf with respect to the MV-topology if and only if F(2) = 0 and for any MV-
square T € Py, the square

F(T(1)) — F(T(10))

| |

F(T(01)) — F(T(00))

is cartesian.

Proof. This follows from [Voevodsky 2010, Corollary 2.17], Theorem 4.3.1, and
Theorem 4.4.1. |
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4.5. Subcanonicity. In this subsection, we prove the following result. Recall that
a Grothendieck topology is subcanonical if every representable presheaf is a sheaf.

Theorem 4.5.1. The MV-topology and the MV -topology are subcanonical.
We need the following elementary observation.

Lemma 4.5.2. Let P be a complete and regular cd-structure on a category C. Then
the topology associated with P is subcanonical if and only if every square T € P
is cocartesian in C.

Proof. Let Y denote the Yoneda embedding of C into the category of presheaves
on C. All squares T € P are cocartesian in C if and only if for any 7" € P and for
any X € C, the square

YX)(T(11)) —— Y(X)(T(10))

o l lq; 45.3)

Y(X)(T (01)) —— Y(X)(T (00))

is cartesian in C. The latter condition is equivalent to that for any X € C, the
representable presheaf ) (X) is a sheaf for the topology associated with P by [Vo-
evodsky 2010, Corollary 2.17]. This finishes the proof. U

We also need the following results:

Lemma 4.5.4 [Krishna and Park 2012, Lemma 2.2]. Let f : X — Y be a surjective
morphism of normal integral schemes, and let D, D' be two Cartier divisors on'Y.
If f*D' < f*D, then D' < D. O

Proposition 4.5.5. (1) Any MV-square is cocartesian in MSm.

(2) Any MV-square is cocartesian in MSm, and hence in MSm.

Proof. (1): Let S be an MV-square. We may assume that S is an MV"-square
since cocartesianness is stable under isomorphisms. Let S(10)— M and S(01) > M
be morphisms in MSm which coincide after restricting to S(00). Since S° is an
elementary Nisnevich square, it is cocartesian in Sm. Therefore, the morphisms
S(10)° — M° and S(01)° — M° induce a unique morphism A°: S(11)° — M°. It
suffices to check that 4° induces a morphism S(11) — M in MSm.

Let I be the graph of the rational map S(11) --» M, and let TV — T be the
normalization. For any (ij) € Sq, set

S1GJ) == (S X501 TV, $%G)) x50, TY).

The minimal morphisms S;(ij) — Si(k/) are induced by S(ij) — S(kl) for all
(ij) — (kl) in Sq, and they form an mﬁn—square S1. Moreover, S (ij) are normal
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for all (ij) € Sq, and the composites
hij: S1(ij) — S(11) --» M

are morphisms of schemes for all (ij) € Sq by construction. Moreover, the mor-
phisms S (ij) — S(ij) are proper (by the properness of I" over S(11)). Therefore,
by the minimality of S;(ij) — S(ij), the morphism S§; — S is an isomorphism
in MSm®4.

Claim 4.5.6. S>°(11) > h% M.

Proof. The admissibility of S(10) — M and S(01) — M implies that of S;(10) - M
and §7(01) — M. Since 51(102 and S; ((11) are norrr_lal, we have S1 (i) > l_zj.‘jMoo
for (ij) = (10), (01). Since S;(10) 1 §;(01) — S1(11) is a surjection between
normal schemes and since S;(10) — S;(11) and $;(01) — S;(11) are minimal,

Lemma 4.5.4 implies _
S1(11)* > hi M. ]

By Claim 4.5.6, we have a morphism $;(11) — M in MSm"™. The composite
S(11) <= S1(11) — M gives the desired morphism. The uniqueness of the mor-
phism follows from the fact that the elementary Nisnevich square S° is cocartesian
in Sm. This finishes the proof of (1).

(2): Let T be an MV-square. Then condition (2) of Definition 4.2.1 shows that
there are an MV-square S and a morphism S— 7" in 1\_/ISqu suchthat S(IDHET(11).
Let f:T(10) > M and g : T(01) — M be morphisms in MSm which coincide
after restriction to 7'(00). Then the composites

fs:S(10)— T(10) - T(11) and gs:S5(01)—TO1)—T11)
coincide after restriction to §$(00). Then fs and gs induce a unique morphism
h:T(11) = S(11) — M since S is cocartesian in MSm by (1). Since S° = T°, we
have hour = f and h o pr = g. This finishes the proof of Proposition 4.5.5. [

Proof of Theorem 4.5.1. This follows from Lemma 4.5.2 and parts (1) and (2) of
Proposition 4.5.5. O

5. Mayer—Vietoris sequence

5.1. Easy Mayer-Vietoris.

Definition 5.1.1. For any sheaf F on a site C, we denote by ZF the sheaf associated
with the presheaf C 5 X — Z(F (X)), where for any set S, we denote by ZS the
free abelian group generated on S.

For any M € MSm (or MSm), we set Z(M) := Z)Y (M), where Y (M) denotes
the presheaf of sets represented by M.
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Theorem 5.1.2. Let T be an MV-square. Then the complex
0— Z(T(00)) = Z(T(10)) 8 Z(T(01)) — Z(T(11)) = O

of sheaves on MSm is exact.

Proof. This follows from [Voevodsky 2010, Lemma 2.18], Theorem 4.4.1, and
Theorem 4.5.1. O
5.2. Mayer-Vietoris with transfers.

Theorem 5.2.1. Let T € MSm®Y. Assume that T° is an elementary Nisnevich
square, and that T satisfies (1) and (3) in Definition 4.2.1. Recall the notation

T(00) — T'(01)
qu ll’r (5.2.2)
T(10) — T(11)

from Definition 4.2.1. Then for any M € MSm, the complex

(qTy,VT+)

0 — Zy(T (00))(M) ——— Zu(T(10))(M) & Z(T (01))(M)

DPTs«—UTx

Z(T(A1)(M) (5.2.3)

of abelian groups is exact.

Proof. The assertion is equivalent to requiring that the commutative square

MCor(M, T(00)) AN MCor(M, T(01))
qr*l lm (5.2.4)
MCor(M, T(10)) —= MCor(M, T (11))
be cartesian. Note that the horizontal maps are injective.
The following lemma is key. Recall the notation from Proposition 2.3.3.

Lemma 5.2.5. Let o1,y € I\_/ICorel(M , T(01)) be elementary correspondences
with a1 # ap. Assume that pr4 (1) = pr+ (o) holds in I\_/ICorel(M, T (11)). Then
o1 and oy belong to the image of vr.

Proof. Set P :=T(01) x7(11) T(01), and consider the commutative diagram

MCor® (M, P) — MCor®™ (M, T(01))

[ |

MCor® (M, T (01)) — MCor® (M, T(11))

in Set. By Proposition 2.3.4, there exists an element y € MCor® (M, P) such that
pri4(y) = oy and pry, (y) = 2.
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We have a canonical identification
MCor® (M, P) = MCor® (M, T(01)) uMCor® (M, OD(pr))

induced by P = T'(01) U OD(pr). Through this identification, we may regard
MCor®' (M, OD(pr)) as a subset of MCor®' (M, P).

Claim 5.2.6. y € MCor® (M, OD(pr)).

Proof. Let &1, &, and ¢ be the generic points of oy, a2, and y. Then ¢ lies over &
and &,. Since & # &, by the assumption that oy # «p, we have ¢ ¢ M° x A(T(01)°),
where A(T(01)°) denotes the image of A : 7(01)° — T (01)° x7(11ye T(01)°. This
implies that { € M° x OD(p7)°. Therefore, we have

y € Cor(M°, OD(pr)°) NMCor® (M, P) = MCor® (M, OD(pr)). O
By construction, we have o; = pr; () = |(pr;)«(y)|, where
pr; ¢ T(Ol)o XT(ll)“ T(Ol)o ard T(Ol)o, i = 1, 2,

are the projections. Thus, in order to prove «; € MCor(M, T (00)) fori =1, 2,
it suffices to prove that y € MCor(M, T (00) x 710y 7(00)). Since by the above
claim y € MCor(M, OD(pr)), and since OD(g7) = OD(pr) by condition (3) of
Definition 4.2.1, we have y e MCor(M, OD(q7)) CMCor(M, T (00) X 7(10yT (00)).
This finishes the proof of Lemma 5.2.5. ]

Now we are ready to prove that (5.2.4) is cartesian. Let « € MCor(M, T (01))
and assume pr.(a) € MCor(M, T'(10)). Write = ), _, m;a;, where I is a finite
set, m; € Z — {0}, and the ¢; are elementary correspondences which are distinct
from each other. Then we have «; € MCor(M, T(01)) for all i € I. Set

Ji={iel|3jel—{i}, |pr«(a)| = |pr«(a)l}.

Then by Lemma 5.2.5, we have o; € MCor(M, T(00)) foralli € J. Leti € I — J,
and set 8 := |pr«(e;)|. Then the coefficient of 8 in pr.(«) is nonzero, and
therefore € MCor®'(M, T(10)). By Proposition 2.3.4, there exists a unique
element y € MCorel(M, T(00)) such that vr4(y) = «; and g7+ (y) = B. Since
T (00)° — T(01)° is an open immersion, this implies o; =y € MCor®' (M, T (00)).
This finishes the proof of the exactness of (5.2.3). [l

Recall from [Kahn et al. 2019a, Theorem 2(2)] that for any M € MSm, the
presheaf Z,(M) on MSm is a sheaf for the MV-topology.

Corollary 5.2.7. Let T be an MV-square. Then the complex

(G714 vT) DT+—UTx

0 — Zy(T(00)) —— Z(T'(10)) & Z(T (01)) Ly(T(11)) = 0

of sheaves on MSm for the MV -topology is exact.
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Proof. By Theorem 5.2.1, it suffices to prove the surjectivity of the last maps of
the complexes. Take a morphism § — 7 in MSm®Y as in (2) of Definition 4.2.1.
Then the map

Z(S(10)) @ Zi(S(01)) = Z(S(11)) = £ (T (11))

is epi in MNST by [Kahn et al. 2019a, Theorem 4.5.7]. Since the map factors
through
Zu(T(10)) @ Z(T (01)),

we are done. O
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The Topological Period-Index Conjecture
for spin® 6-manifolds

Diarmuid Crowley and Mark Grant

The Topological Period-Index Conjecture is a hypothesis which relates the pe-
riod and index of elements of the cohomological Brauer group of a space. It was
identified by Antieau and Williams as a topological analogue of the Period-Index
Conjecture for function fields.

In this paper we show that the Topological Period-Index Conjecture holds and
is in general sharp for spin® 6-manifolds. We also show that it fails in general for
6-manifolds.

1. Introduction

This paper is about the Topological Period-Index Problem (TPIP), which was iden-
tified by Antieau and Williams [2014a; 2014b] as an important analogue of period-
index problems in algebraic geometry. We give a brief introduction to the TPIP
and refer the reader to [Antieau and Williams 2014a; 2014b] for more information.

Let X be a connected space with the homotopy type of a finite C W-complex.
The cohomological Brauer group of X is defined to be the torsion subgroup of its
third integral cohomology group:

Br'(X) :=TH>(X).

Here and throughout integer coefficients are omitted. For « € Br/(X), the period
of « is defined to be the order of «,

per(o) := ord(«).

Let PU (n) :=U(n)/U (1) be the n-dimensional projective unitary group, which
is the quotient of the unitary group U(n) by its centre. By a theorem of Serre
[Grothendieck 1968, Corollaire 1.7], every class « € TH 3(X) arises as the ob-
struction to lifting the structure group of some principal PU (n)-bundle P — X to
the group U (n). In this case one writes @ = § (P) and defines the index of « by

ind(«) :=gcd(n : « = §(P) for a PU (n)-bundle P),

MSC2010: primary 57R19; secondary 14F22, 19L50.
Keywords: Brauer groups, twisted K -theory, period-index problems.
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so that the index defines the homotopy-invariant function
ind: TH*(X) - Z, «r> ind(e).

From the definitions, one sees that per(«) | ind(«w) and by [Antieau and Williams
2014a, Theorem 3.1] the primes dividing per(«) and ind(«) coincide. The TPIP is
the problem of relating the index of a class « to its period and properties of X, like
its dimension.

To investigate the TPIP, Antieau and Williams [2014b, Straw Man] formulated
what is often called the Topological Period-Index Conjecture (TPIC) for X:

TPIC. If X is homotopy equivalent to a CW -complex of dimension 2d and if a is
an element of Br' (X), then

ind(a) | per(a)?~'.
Warning. The TPIC should be regarded as a hypothesis for investigating the TPIP
and not as a conjecture, in the usual sense of the word.

Indeed, while the obstruction theory developed by Antieau and Williams [2014b,
Theorem A] shows that the TPIC holds for any 4-dimensional complex, they also
prove that the TPIC fails in general for 6-dimensional complexes, but at most by a
factor of two.

Theorem 1.1 (cf. [Antieau and Williams 2014b, Theorems A and B]). Let X be a
6-dimensional CW -complex, a € Br'(X) have period n, and set €(n) := ged(n, 2).
Then ind(«) | €(n)n>.

Moreover, if X is a 6-skeleton of the Eilenberg—Mac Lane space K (7 /2, 2) and
we take the generator o € H3(X) = Z]2 (so that per(a) = 2), then ind(a) = 8 >
per(a)z.

An important motivation for Antieau and Williams in identifying the TPIC was
the Algebraic Period-Index Conjecture (APIC) which was identified in the work
of Colliot-Thélene [2002]. This is a statement in algebraic geometry concerning
the Brauer group of certain algebras A. When A = C(V) is the function field
of a smooth complex variety V, then the APIC for C(V) implies the TPIC for V.
When the variety V has complex dimension d = 1, the APIC is trivially true, it was
proven for d = 2 by de Jong [2004], and for d > 3 we have the Antieau—Williams
alternative:

(A) either there exits a V violating the TPIC, in which case the APIC fails in
general,

(B) or every V satisfies the TPIC (in which case we have identified an a priori
new topological property of smooth complex varieties).
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In this paper we show that for d = 3 the latter statement holds. This may be
regarded as evidence for the APIC in complex dimension 3.

A smooth complex projective variety V is in particular a manifold: here and be-
sides Remark 1.9, we use the word “manifold” to mean “closed smooth manifold”.
Recall that a manifold M admits a spin® structure if it is orientable and the second
Stiefel-Whitney class of M has an integral lift. For example, every variety V as
above admits a spin® structure. More generally, it is well known that a 6-manifold
admits a spin® structure if and only if it admits an almost complex structure (as can
be easily deduced from results in [Massey 1961]).

Theorem 1.2. The Topological Period-Index Conjecture holds for spin© 6-manifolds.

As we explain in Section 2, Theorem 1.2 is an elementary consequence of results
of Antieau and Williams [2014b] and:

Theorem 1.3. Let N be a closed spin 6-manifold and let x € H>(N; Z/2). Then
there exists a class e, € H*(N) such that

B2 (%) = BT (x)ex € HX(N),
where B2/* : H*(N; Z/2) — H**'(N) denotes the mod 2 Bockstein.

To discuss the TPIP further for 6-manifolds we recall that Teichner [1995] has
already constructed orientable 6-manifolds N with x € H*(N; Z/2) such that
B%/?(x?) # 0. The manifolds in Teichner’s examples are all the total-spaces of
2-sphere bundles over 4-manifolds, where the class x restricts to a generator of
H?(S%,7/2). We call pairs (N, x) coming from Teichner’s examples Teichner
pairs (see Definition 5.3) and investigating their construction we prove:

Theorem 1.4. For a Teichner pair (N, x), let o := ﬁz/z(x) e TH3(N).
(1) If the base 4-manifold of a Teichner pair (N, x) is orientable, then N is spin®,
per(o) = 2, and ind(a) = 4.
(2) There exist Teichner pairs (N, x) over nonorientable 4-manifolds where we
have per(a) = 2 but ind(a) = 8.
Summarising Theorems 1.2 and 1.4 we obtain the following result on the TPIP

for 6-manifolds.

Theorem 1.5. The TPIC fails in general for 6-manifolds but it holds and is in
general sharp for spin® 6-manifolds.

Remark 1.6. One may view Theorem 1.3 as giving a cohomological obstruction to
a closed 6-manifold admitting a spin® structure. For instance, we do not currently
know how to prove that the Teichner manifold N appearing in Theorem 1.4(2) (and
Proposition 5.9) is not spin®, except by invoking Theorem 1.3.
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Remark 1.7. The nonvanishing of 87/?(x?) € H>(N) is related to various nonre-
alisability phenomena, for which the examples in [Teichner 1995] are of minimal
dimension. For example, B%/%(x?) vanishes if x € H>(N; Z/2) can be realised
as the second Stiefel-Whitney class w;(E) of some real vector bundle E over N,
since w(E)? is the mod 2 reduction of the integral class p;(E), the first Pontrjagin
class.

It is a classical result of Thom [1954] that 87/%(x?) vanishes if the Poincaré
dual of x in H4(N; Z/2) is realised as the fundamental class of an embedded 4-
manifold in N. More recently, in [Grant and Sztics 2013] the second author and
Sziics showed that 87/%(x?) vanishes if the Poincaré dual of x is realised by the
fundamental class of an immersion of a 4-manifold in N and more precisely that
the Poincaré dual of 8%/%(x?) is realised by the singular set of a generic smooth
map realising the Poincaré dual of x. Notwithstanding Remarks 1.6 and 1.8, the
geometric significance of the condition ﬁz/ 2(x?) ¢ ,BZ/ 2(x)H?(N) appearing in
Section 2 remains somewhat mysterious.

Remark 1.8. The TPIP also arises in twisted K -theory, where classes « € T H 3(X)
define the twisting used to define the K-groups, K (X), of a-twisted vector bun-
dles over X [Donovan and Karoubi 1970]. For « € TH3(X) and i : * — X the
inclusion of a point, by [Antieau and Williams 2014a, Proposition 2.21], we have

i*(K2(X)) = ind(e) K (%) = ind()Z.

Hence ind(«) is the index of the intersection ()72, Ker(d;) € H'(X; K°) = 7,
where d; : HO(X; K — H!(X; K'~") is the i-th differential in the twisted Atiyah—
Hirzebruch spectra sequence computing K (X).

This perspective is behind the index formula [Antieau and Williams 2014b, The-
orem A], which we use in Section 2, and also the recent work of Gu [2019] on
the TPIP for 8-complexes. Gu shows that the 3-primary TPIP for 8-complexes
involves controlling BL3(x3) /B3 (x)H*(X) for classes x € H*(X; Z/3), just as
the TPIP for 6-complexes involves controlling B4/ (x%)/ B4/ (x) H*(X) for classes
x € H*(X; Z/2). We expect that the methods of this paper involving the integrality
of Wu classes and the bilinear algebra of the subsection beginning on page 613
will generalise to combine with the work of Gu and prove the TPIC for odd-order
Brauer classes over orientable 8-manifolds.

Remark 1.9. It is natural to wonder whether the singular spaces Z underlying sin-
gular complex 3-dimensional projective varieties satisfy the TPIC. In this direction,
we note that the complement of the singular set in Z can often be compactified to
give a spin® manifold with boundary (V, 0 N). The arguments of this paper can be
generalised to prove that if (N, dN) is a compact spin® manifold with boundary
where the first Chern class of N vanishes on N and TH{(dN) ® Z/2 = 0, then
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the TPIC holds for quotients N/dN. As a consequence we believe that the TPIC
holds for singular spaces underlying certain complex 3-dimensional varieties with
isolated conical singularities.

Organisation. The rest of this paper is organised as follows. In Section 2 we prove
Theorem 1.2 assuming Theorem 1.3. In Section 3 we establish some preliminary re-
sults about linking pairings and bilinear forms. In Section 4 we prove Theorem 1.3
and in Section 5 we discuss Teichner’s examples and prove Theorem 1.4.

2. The Topological Period-Index Conjecture for spin® 6-manifolds

In this section we prove that the Topological Period-Index Conjecture holds for
spin® 6-manifolds. This is an elementary consequence of Theorem 1.3 and results
in [Antieau and Williams 2014b].

Let « € Br'(X) = TH3(X) with ord() = n and let

gm H*(X; Z/n) — H*1(X)

be the mod n Bockstein, which lies in the exact sequence

* vy, BY" *+1 xn *+1
H*(X;Z/n) — H* (X) — H"" (X).

As ord() = n, we see that o = £/ (&) for some & € H*(X; Z/n). We consider
the Pontrjagin square

P HX(X: Z/2m) — H*(X; Z/4m)

and following Antieau and Williams define é(";‘ ) e HY(X) JoH 2(X) by the equa-
tion
[B7/"(E%)] n is odd,

[B%/%"(Py(§))] n is even,
where [y] € H5(X)/ozH2(X) denotes the coset of y € H3(X). By [Antieau and

Williams 2014b, Theorem A], the element Q (&) depends only on o and when X
is a 6-dimensional CW-complex,

ind(er) = ord(Q (£)) per(a).

Hence to verify the Topological Period-Index Conjecture in dimension 6, it suffices
to show that ord(Q(§)) | n, i.e., nQ(£) = 0. For this we consider the commutative
diagram

0() = {

ﬂZ/Zk
H?(X;Z/2k) — H*(X)

lﬂz l xk
B2

H*(X;7/2) —— H3(X)
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where p; denotes reduction modulo 2 and the diagram commutes as a consequence
of the commutative diagram of coefficient short exact sequences

7227 Py 0k
xkl Jz lﬂz
727" 7

Hence for all £ € H*(X; Z /2k) we have the equation

B 2 (02(6)) = kB (8). @.1)
Proof of the Topological Period-Index Conjecture for spin© 6-manifolds. Let (N, c)
be a spin® 6-manifold and o € Br'(N) have order n, and choose & € H?*(N;Z/n)
such that « = B%/"(&). If n is odd, then nQ(£) = 0 and so by [Antieau and
Williams 2014b, Theorem A(3)] the Topological Period-Index Conjecture holds
for . If n = 2m, then set

x = () € HX(N: Z/2).
By Theorem 1.3, thereisa y € H?(N) such that 8%/%(x?) = B%/2(x)y. Applying
(2.1) we obtain

BH2 (%) = BT (x)y =mptP" (€)y =may e aHAN) S HO(N)  (2.2)

and so [B%/?(x?)] =0 H (N)/aH*(N). Applying (2.1) and (2.2) we obtain

2mQ (&) = 2m[BL/*" (Py(£))] = [2mBL/*™ (P2(€))]
= B2 (pa(P2(E))] = [BY*(x*)] =0,

where the second to last equality holds since P, satisfies py,, (P2(§)) = £2, where
P2 denotes reduction to modulo 2m. |

3. Linking pairings and bilinear forms
In this section we establish some elementary results used in the proof of Theorem 1.3.

Some properties of Bockstein homomorphisms. For a space X and a positive in-
teger n recall that
BY" H*(X;Z/n) — H*T(X)

is the Bockstein associated to the coefficient sequence Z — Z LNy /n.

Lemma3.1. Letx € H*(X;Z/n) and y € H (X), and consider xy € H*t'(X; 7 /n).
Then
BY" (xy) = B (x)y.
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Proof. Let y € C'(X) be a cocycle representative for y and p, denote reduction
modulo n, and consider the commutative diagram below, in which the rows are
short exact sequences of chain complexes:

xXn Pn

0—— C*(X) C*(X) C*(X;Z/n) —— 0

Uyl Uyl Upn (y)l

0 —— C¥H(X) " C*H (X) L (X5 Z/n) —— 0

Observe that the vertical arrows are chain maps, since the coboundary is a deriva-
tion and y is a cocycle. The result now follows from the naturality of connecting
homomorphisms. (Compare to [Brown 1982, Chapter V, §3.3].) O

We also consider the Bockstein homomorphism
YL HY(X; Q/Z) — H*M (X)),
which is associated to the coefficient sequence Z — Q 50 /Z. Let
h:Z/n— Q/Z
be the inclusion defined by sending [1] € Z/n to [1] and also write
tn: H*(X;Z/n) - H*(X; Q/Z)

for the map on homology induced by ¢,,. The commutative diagram of coefficient

sequences
757 ——7/n
L
7—— Q——Q/7
gives rise to the equality
rn =B o1, H*(X; Z/n) — H*T(X). (3.2)

The linking pairings of an oriented manifold. Let G and H be finite abelian
groups. Recall that a bilinear pairing

¢:GxH—Q/7
is called perfectif g=0€ G ifandonly if p(g, h) =0forallhe Handh=0€ H
if and only if ¢ (g, h) =0forall g € G.

Remark 3.3. A useful property of perfect pairings, which we leave for the reader
to verify, is that iy = h, € H if and only if ¢ (g, h1) = ¢ (g, hy) forall g € G. An
analogous statement holds for g1, g» € G.
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Now let M be a closed, connected, oriented m-manifold with [M] € H,,(M) the
fundamental class of M. For each k =2, ..., m — 2, the linking pairing of M is
the pairing

by : TH (M) x TH" ™8 (M) — Q/Z,  (f,y) + bu(f,y) = (fy, [M]),

where f € H*(M; Q/Z) is any class such that BYL(f f)= f. The pairing by is well
defined because if f” is some other lift of f then f — f itself lifts to H*(M; Q)
and then (fy, 1) — (f v, [M]) = ((f f )y, [M]) =0, since y is torsion.

Lemma 3.4. The linking pairing by : TH*"'(M) x TH" *(M) - Q/Z is a
perfect pairing such that for all w € H*(M; Z/n) and all y € T H" % (M)

by (B (w), y) = ta((wy, [M1)).

Proof. That by, is perfect is well known. The case m = 2k+1 is part of [Davis
and Kirk 2001, Exercise 55]. The general case follows from results in [Seifert and
Threlfall 1934]. Since we did not find a definitive reference in the literature, we
give a proof below.

For a finite abelian group G, let G* := Hom(G, Q/Z) denote the torsion dual
of G. A pairing ¢ : G x H — Q/Z of finite abelian groups induces adjoint homo-
morphisms ¢: H — G”, h+> [gr> ¢ (g, h)]and ¢’ : G — H", g+ [h— ¢ (g, h)],
and it is easily checked that ¢ is perfect if and only if either one of é or ¢’ is an
isomorphism.

Standard properties of cup and cap products give ( fy, M) = (f, yN[M]).
Hence the adjoint homomorphism of by,

by : TH™ X (M) — TH*\(M)",  y > [f = bu(f, y) = (f, yNIMD)],

is equal to the composition qBM o PD, where PD : TH"*(M) — T H,(M) is the
Poincaré duality isomorphism and ¢y : THy (M) - TH L(M)” is an adjoint of
the pairing

¢um : TH* (M) x TH, (M) — Q/Z, (f,b) > (f,b),

for f € H*(M; Q/Z) alift of f. Hence it suffices to prove that ng is an isomor-
phism or equivalently that the other adjoint ¢}, : T H**'(M) — T Hy(M)" is an
isomorphism. Since the finite groups T H k1(M) and T Hy(M)” have the same
order by the universal coefficient theorem, it suffices to show that ¢A>jw is injective.

Suppose that (2);” (f)=0and let f € H*(M; Q/Z) be a lift of f. Then for all
beTHy (M)

(f,by=0ecQ/Z.
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Since (/7 is an injective Z-module, another application of the universal coefficient
theorem gives

H*(M; Q/7) = Hom(Hy (M), Q/Z) = T Hy(M)" & Hom(F H.(M); Q/2),

where FHy(M) := Hy(M)/T H,(M). With respect to the above decomposition
we have f = (0, z) for some z € Hom(F Hy(M); Q/Z). Now z can be lifted to
z€ H*(M; Q) so that f —7(z) =0 but then f = BYZL(f) = BYL(f —7(2)) =0
and so (1%,, is injective.

The second statement follows directly from the definition of by, and (3.2). O

Bilinear forms over Z /2. In this subsection we establish a basic fact about sym-
metric bilinear forms over Z/2. Let V be a finitely generated (Z/2)-vector space
and let

AV XV —>Z)2

be a symmetric bilinear form on V. If V* := Hom(V, Z/2) is the dual vector space
to V, then the adjoint homomorphism of A is the homomorphism

AV VE v (we A, w)).

The form (A, V) is nonsingular if AV > V*¥an isomorphism. Notice that the
map

yA):V—>2/2, vi> A(v,v)
is linear since

Av+w,v+w) =AW, v)+ A0, w) + A(w, v) + A(w, w)
=A(v,v) + 21 (v, w) + A(w, w) = A(v, v) + A(w, w).

Thus y (1) € V*.
Lemma 3.5. Forall A, y(A) € Im(}).

Proof. For the orthogonal sum of bilinear forms, Ao @ 1|, we have

Yo @A) =y (o) @y (Xy).

The lemma follows since every symmetric bilinear form over a finite field is iso-
morphic to the orthogonal sum of the zero form and a nonsingular form. U

Remark 3.6. Although we will not use this fact, it is worthwhile to note that
Lemma 3.5 is equivalent to the following statement: let A be a symmetric matrix
over Z/2; then the diagonal of A lies in the column space of A.
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Example 3.7. Let N be a closed, connected, oriented 6-manifold, and let x €
H?(N; Z/2). We identify H(N; Z/2) = Z/2 and for the (Z/2)-vector space

V :=TH?*(N)/2T H*(N)
we define the symmetric bilinear form
Aot Vx V=272, (Iyl, [z]) — yxz.

By Lemma 3.5, there is a vector [d] € V such that ):x([d]) =y (Ay) € V*. Hence
for any d, € [d] C TH*(N) and all y € T H?>(N), we have

y2x = yxy = 2 ([y], [y]) = Ax (Y], [di]) = yxd,.

4. The proof of Theorem 1.3

Let N be a closed, connected, oriented spin® 6-manifold. To prove Theorem 1.3 it
suffices to prove the following: for x € H*(N; Z/2) and all y € T H*(N), there is
a class e, € H*(N) such that

xzyzxexyeH6(N; Z7]2). “4.1)
To see this we use the linking pairing of N, which is a perfect pairing by Lemma 3.4:
by :TH>(N) x TH*(N) —» Q/Z.
From (4.1) and Lemmas 3.4 and 3.1, for all y € T H*(N) we have

by (BY*(x%), y) = u({x*y, [N1) = a((xery, [N])
= by (B *(xer), y) = by (B (x)ey, y).

Thus ,BZ/Z(xz) = ,BZ/Z(x)ex, since by is perfect; see Remark 3.3.

To find e,, we start with vy (N), the second Wu class of N. Since N is orientable,
v2(N) coincides with wy (), the second Stiefel-Whitney class of N. Since N is
spin®, the class w,(N) lifts to an integral class ¢; € H 2(N). In summary, we have

v (N) = wy(N) = pa(cy) € H(N; Z/2). 4.2)
By definition of the Wu class v, (N) we have
xyva(N) = Sq°(xy) = x*y +xy?, (4.3)

where we have used the Cartan formula for Sq2 (xy) and the fact that Sq1 (p2(y)) =0.
By (4.2) we can replace v2(/N) by ¢ in (4.3) and rearranging we obtain

xzy =xyc] —|—xy2. “4.4)
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By Example 3.7, there is an element d, € T H>(N) such that xy?> = xyd, and so
x2y = xyer +xydy = xyey,

where e, := c¢| +d,. Hence we have found e, as in (4.1), finishing the proof of
Theorem 1.3.

5. Teichner’s examples

In this section we recall a construction due to Teichner [1995] which produces
closed smooth 6-manifolds N with classes x € H*(N; Z/2) such that 8Z/2(x2) # 0.
The manifolds N are constructed as total spaces of sphere bundles of rank-3 vec-
tor bundles E over closed 4-manifolds. In the following, Z*1¥) denotes integral
coefficients twisted by the first Stiefel-Whitney class of the bundle E.

Lemma 5.1 [Teichner 1995, Lemma 1]. Let E be a 3-dimensional vector bundle
over a path-connected space X, with sphere bundle N = SE.

(i) There exists a class x € H*(N; Z/2) which restricts to the generator in the
cohomology H*(S%; Z/2) of the fibre if and only if w3(E) = 0.

(ii) Assume that wy(E) is not the reduction of a class in H*(X; 7" ®)). Then any
class x as in (i) has 0 # B2/?(x*) € H(N; 7).

The next lemma guarantees the existence of such bundles with base X = M a
closed connected 4-manifold.

Lemma 5.2 [Teichner 1995, Lemma 2]. Let M be a closed connected 4-manifold
with fundamental group 7 /4. Then there exists a 3-dimensional bundle E over M
with w3(E) = 0, wi(E) = wi(M), and wy(E) not the reduction of a class in
H>(M; 7%(E)), O

Definition 5.3. The total space N of the sphere bundle of a bundle E satisfying the
conditions of Lemma 5.2 is a closed connected 6-manifold, which by Lemma 5.1
supports a class x € H>(N; Z/2) satisfying B7/?(x?) # 0. We will call such a total
space N a Teichner manifold and the pair (N, x) a Teichner pair.

Spin¢ 6-manifolds N with ﬂz/ 2(x2) # 0 € H3(N). In this subsection we show
that a Teichner manifold over an orientable base is spin®.

Lemma 5.4. Let N be a Teichner manifold over a closed connected 4-manifold M.
Then

(1) N is orientable,

(i) and if M is orientable, then N is spin‘.
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Proof. Let m : N — M be the bundle projection. Since the normal bundle of the
sphere bundle in the total space of E is trivial, there are bundle isomorphisms

TN®RETE|NZ=a*(TM)®n"(E).
Now part (i) follows from the equation
wi(N) =7*wi (M) +7*w(E) =0.
For (ii), assume w; (M) = 0 so that
wa2(N) =7 wry(M) + m*wi(M)m*wi (E) + 7*wy(E) = n*wr (M) + ¥ wy (E).
Then
B2 (wy(N)) = (B> (wa(M))) + 7*(B7* (w2 (E))).

The first term vanishes since any orientable 4-manifold is spin®; see [Morgan 1996]
for example. The second term vanishes since 82/2(w»(E)) € H3(M) is the Euler
class of the orientable bundle E. O

The following proposition proves Theorem 1.4(i).

Proposition 5.5. Let (N, x) be a Teichner pair over a closed, connected, orientable
4-manifold. Then N is spin® and B%/*(x*) # 0, but B%/*(x*) € B%?(x) H*(N).
Furthermore, the element o = %/*(x) € T H3(N) has per() =2 and ind(«) = 4.

Proof. The first statement is a consequence of Lemmas 5.4 and 5.1 and Theorem 1.3.

To prove the second statement, we recall that by [Antieau and Williams 2014b,
Theorem A],

ind(@) = ord(Q (x)) per(a),

where O(x) = [BZ/4(P,(x))] € H3(N)/a H2(N). Note that by Theorem 1.3 and
(2.1),

20 (x) = 2[BY*(Po(x))] = 2874 (Py(x)] = [BZ*(x%)] = 0,

since N is spin‘. However é (x) # 0, since any element of o« H 2(N) is 2-torsion,
while

2874 (Py(x)) = B2 (%) #£0.
Hence ord(é (x)) =2 and we’re done. O

6-manifolds violating the TPIC. In this subsection we give examples of Teichner
pairs (N, x) over a nonorientable base which violate the Topological Period-Index
Conjecture, i.e., BL/2(x?) ¢ BZ/2(x)H*(N). We first prove an extension of [Teich-
ner 1995, Lemma 2].
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Lemma 5.6. Let M be a closed connected 4-manifold with an element a € H\ (M)
of order 4. Then there exists a 3-dimensional bundle E over M with w\(E) =
w1 (M), wa(E) not coming from H2(M; 7" B, and w3(E) = 0.

Proof. We use multiplicative notation for elements of H;(M) = m1(M)a. The
Poincaré dual of a? in H3(M; Z*'™)) has order 2 and hence is the image of an
element z € H>*(M; Z /2) under the twisted Bockstein. As in Teichner’s proof of
[1995, Lemma 2], there are no obstructions to constructing a 3-bundle £ with
(wi(E), w2(E)) = (w1 (M), 2).

It remains to show that w3(E) = 0. This follows from Theorem 2.3 of [Green-
blatt 2006], which states that for any space X and twisting w € H'(X; Z/2), the
composition of the twisted Bockstein 8 : H' (X;Z/2) — H i+1(X; 7") with re-
duction mod 2 is given by

pro B (@) =Sq' (2) + zw.
Hence we have
w3 (E) = Sq' (w2(E)) + w2 (E)wi (E)
= p20 "M (wy(E))
=0,

since B (wy(E)) = 1M (7) is even. O

In order to find an example with 2/2(x?) ¢ B%/*>(x)H*(N) it turns out to be
sufficient that there is an element a € H (M) of order 4 such that 0 # 7, (@ e
H (M), where 71 : Hi (M) — H;(M) is the transfer associated to the orientation

o~

double covert: M — M.
To this end, we shall use a closed connected 4-manifold M with

T(M)=CgxCr={a,b|b lab=ad’,ab, b

and with wi(M) : m (M) — C, the projection onto the base of the semidirect
product. Note that

H\(M)=(a,b|a=a’,a® b* [a,b]) = Cyx C,

has an element a of order 4. It is well known (see, e.g., [Ranicki 2002, Propostion
11.75]) that every homomorphism w : # — Z/2 from a finitely presented group 7
arises as (1(X), wi(X)) for a 4-manifold X, so a 4-manifold M as above exists.

Lemma 5.7. The transfer homomorphism v, : H{(M) — H, (M ) does not map the
element a*> € H;(M) to 0.

Proof. Let G = (M) and let H = ker(w;(M)) = Cg, so that [G : H] = 2. The
definition of the transfer in terms of coset representatives gives

7: G — Hw, glG, Gl g*[H, H].

Therefore 71(a?) = a* # 0 as claimed. [l
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Before continuing, we record the following lemma which will be useful in the
proof of Proposition 5.9 below.

Lemma 5.8 [Dold 1980, Chapter VII, §8.10]. Leti : A — X denote the inclusion
of a CW-pair (X, A), and let § : H*(A) — H*1(X, A) be the connecting homo-
morphism in the long exact cohomology sequence (with any coefficients). Then for
all x € H*(A) and y € H*(X) we have

S(xi*(y)) =d(x)y. 0
The following proposition proves Theorem 1.4(ii).

Proposition 5.9. Let (N, x) be a Teichner pair over a nonorientable 4-manifold M
with wy(M) : ty(M) — Z/2 as above. Then BL/2(x?) ¢ BL/2(x)H?(N).
Furthermore, the element o = ,BZ/2 (x) e TH3(N) has per(a) =2 and ind(a) = 8.

Proof. We first prove that 8%/ (x?) ¢ p%/>(x)H*(N). Suppose towards a contra-
diction that BZ/?(x?) = p%/>(x)Y for some Y € H*(N). Leti : N < DE be
the inclusion of the unit sphere bundle in the unit disc bundle of E. From the long
exact sequence of the pair (DE, N), the twisted Thom isomorphism H 3(DE,N)=
HO(M; 7"), and the fact that M is nonorientable, we see that i* : H*(DE) —
H?(N) is surjective. Hence Y = i*(y) for some y € H>(DE) = H*(M).

Let tgeH3(DE, N;Z%) be the twisted Thom class of E and 1z H>(DE, N; Z]2)
its mod 2 reduction. From the fact that x restricts to a generator in each fibre, it fol-
lows that tz =8 (x), where 8 : H*(N; Z/2) — H*T'(DE, N; Z/2) is the connecting
homomorphism (see the proof of Lemma 1 in [Teichner 1995]). Now we have

8(x%) = 8(S¢°(x)) = S¢*(8(x)) = S¢* (1) = wa(E)1p
and since Bocksteins commute with connecting homomorphisms

8(BY2(x?)) = B2 (8(x%) = BY*(wa(E)tE).
On the other hand, 8%/%(x?) = B%/?(x)i*(y) and so

S(B7*(x%) = (B> (0)i* ()
= 8(B”(xi*(p2())))
= BB (xi* (02(1))))
= B2 (8(x)p2(»))
= Bt p2 ().

Here we have used Lemmas 3.1 and 5.8.
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The above argument shows that BL/2(wr(ENtg) = BY2(tg pa(y)), or equivalently
te(wa(E) — p2(y)) is the reduction of an integral class. From the square

H3(DE,N) 2 H>(DE, N;7/2)

Uth; UzET;
HA(M; 7" — 2 H2(M; 2)2)

which commutes since the Thom isomorphisms commute with reduction mod 2, we
see that wy(E) — pa(y) is the reduction of a twisted integral class, or equivalently

B (wa(E)) = B* (p2(y))-
Next we lift this equation to the orientation cover, using the commutative square

—~ Z/2 —~
H*(M;7)2) _~, H3(M)

r*T ‘[*T
w

H>*(M;Z/2) —— H3(M; 7")
to conclude that
T BY (wa(E)) = B (02(3)) = B2 (t* (p2())) = B ? pa(t*(y)) = 0.

However, Poincaré duality gives a commutative square

H3(M: 7Y —— H3(M)

ﬂ[M]wl; m[ﬁ]l;

Hy (M) —=— H,(M)

Since the bundle E was chosen as in Lemma 5.6 so that % (w2 (E)) N [M], = a2,
and 7(a?) # 0 by Lemma 5.7, we see that t*8% (w,(E)) # 0, a contradiction.

To prove the second statement, we have per(e) = 2 and since BL/2(x?%) ¢
BZ/2(x)H*(N),

20(x) = [BL*(Po(x)] = [2BY/* (P (x)] = [B2(x*)] # 0.

Hence ord(é(x)) =4. Asind(a) = ord(é (x)) per() by [Antieau and Williams
2014b, Theorem A], ind(«) = 8. U
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Weibel’s conjecture for twisted K-theory

Joel Stapleton

We prove Weibel’s conjecture for twisted K -theory when twisting by a smooth
proper connective dg-algebra. Our main contribution is showing we can kill
a negative twisted K-theory class using a projective birational morphism (in
the same twisted setting). We extend the vanishing result to relative twisted
K -theory of a smooth affine morphism and describe counterexamples to some
similar extensions.

1. Introduction

The so-called fundamental theorem for K| and K states that for any ring R there
is an exact sequence

0— K1(R) — Ki(R[t]) ® K1(R[t™']) — Ki(R[¥]) = Ko(R) — 0.

We see Ky can be defined using K. There is an analogous exact sequence, trun-
cated on the right, for Ky. Bass defines K_1(X) as the cokernel of the final mor-
phism. He then iterates the construction to define a theory of negative K-groups
[Bass 1968, §XII.7 and §XII.8].

Weibel’s conjecture [1980] asks if K_;(R) = 0 for i > dim R when R has fi-
nite Krull dimension. Kerz, Strunk, and Tamme [Kerz et al. 2018] have proven
Weibel’s conjecture for any Noetherian scheme of finite Krull dimension (see the
introduction for a historical summary of progress) by establishing pro cdh-descent
for algebraic K -theory. Land and Tamme [2019] have shown that a general class
of localizing invariants satisfy pro cdh-descent. With this improvement, we extend
Weibel’s vanishing to some cases of twisted K -theory.

Theorem 1.1. Let X be a Noetherian d-dimensional scheme and s a sheaf of
smooth proper connective quasicoherent differential graded algebras over X; then
K_;(Perf(A)) vanishes fori > d.

The original goal of this paper was to extend Weibel’s conjecture to an Azumaya
algebra over a scheme. To an Azumaya algebra s{ of rank 7% on X we can associate
a Severi—Brauer variety P of relative dimension » — 1 over X. Such a variety is

MSC2010: primary 16E20, 19D35; secondary 14F22, 16K50.
Keywords: algebraic K -theory, Brauer groups, excision.
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étale-locally isomorphic over X to [P’;(_l. Quillen [1973] generalizes the projective
bundle formula to Severi—Brauer varieties showing (for i > 0)

r—1
Ki(P) = D Ki(A®").

n=0
At the root of this computation is a semiorthogonal decomposition of Perf(P).
Consequently, the computation lifts to the level of nonconnective K -theory spectra.
Statements about the K-theory of Azumaya algebras can generally be extracted
through this decomposition. In our case, the dimension of the Severi—Brauer vari-
ety jumps and so Weibel’s conjecture (for our noncommutative dg-algebra) does
not follow from the commutative setting.

We could remedy this by characterizing a class of morphisms to X, which should
include Severi—Brauer varieties, and then show the relative K-theory vanishes un-
der —d — 1. In Remark 4.4, we show that smooth and proper morphisms (in fact,
smooth and projective) are not sufficient. We warn the reader that we will use the
overloaded words “smooth and proper” in both the scheme and dg-algebra settings.

For dg-algebras and dg-categories, properness and smoothness are module and
algebraic finiteness conditions [Toén and Vaquié 2007, Definition 2.4]. Together,
the two conditions characterize the dualizable objects in Modpod, (Pr';t’w), whose
objects are w-compactly generated R-linear stable presentable co-categories. More
surprisingly, the invertible objects of Modmody, (Prl;’ »,) are exactly the module cate-
gories over derived Azumaya algebras [Antieau and Gepner 2014, Theorem 3.15].
So Theorem 1.1 recovers the discrete Azumaya algebra case.

However, any connective derived Azumaya algebra is discrete. After base-
changing to a field k, oy = H,dy is a connective graded k-algebra and H,sd; ®x
(H,sdi)°P is Morita equivalent to k. So H, sy, is discrete. The scope of Theorem 1.1
is not wasted as smooth proper connective dg-algebras can be nondiscrete [Raed-
schelders and Stevenson 2019, §4.3].

The proof of Theorem 1.1 follows [Kerz 2018]. In Section 2, we define and study
twisted K-theory. We kill a negative twisted K-theory class using a projective
birational morphism in Section 3. Lastly, Section 4 holds the main theorem and
we consider some extensions.

Conventions. We make very little use of the language of oo-categories. For a
commutative ring R, there is an equivalence of co-categories between the [E;-ring
spectra over H R and differential graded algebras over R localized at the quasi-
isomorphisms [Lurie 2017, Proposition 7.1.4.6]. For a dg-algebra (or E;-ring) A,
we can consider the co-category RMod(s4) of spectra which have a right sd-module
structure. We will refer to this co-category as the derived category of « and denote
it by D(sd). The subcategory Perf(s{) consists of all compact objects of RMod (),
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or the right sd-modules which corepresent a functor that commutes with filtered
colimits. We shall refer to objects of Perf(sd) as perfect complexes over .

We use K (—) undecorated as nonconnective algebraic K -theory and consider it
as a localizing invariant in the sense of Blumberg, Gepner, and Tabuada [Blumberg
et al. 2013]. In particular, it is an co-functor from Catggrf, the oco-category of idem-
potent complete small stable infinity categories with exact functors, taking values
in Sp, the oo-category of spectra. For X a quasicompact quasiseparated scheme,
K (Perf(X)) is equivalent to the nonconnective K -theory spectrum of Thomason
and Trobaugh [1990]. The co-category Catgf,rt has a symmetric monoidal structure
which we will denote by ®. For R an Eo-ring spectrum, Perf(R) is an Eo, algebra
in Catggrf. We will restrict the domain of algebraic K-theory to Modperf(r) (Catggrf).

2. Twisted K-theory

In Grothendieck’s original papers [1968a; 1968b; 1968c¢], he globalizes the notion
of a central simple algebra over a field.

Definition 2.1. A locally free sheaf of Ox-algebras o is a sheaf of Azumaya alge-
bras if it is étale-locally isomorphic to Jl, (&) for some n.

An Azumaya algebra is then a PGL,-torsor over the étale topos of X and so,
by Giraud, isomorphism classes are in bijection with Hélt(X , PGL,). The central
extension of sheaves of groups in the étale topology

1-> G, - GL, — PGL, — 1
leads to an exact sequence of nonabelian cohomology
.- — H\(X,G,) - H\(X,GL,) - H\(X, PGL,) — H}(X,G).

For d | n we have a morphism of exact sequences

| — G, — GL, — PGL, — 1
1 — G, — GL; — PGL; — 1

with the two right arrows given by block-summing the matrix along the diagonal
n/d times. The Brauer group is the filtered colimit of cofibers

Br(X) := colim(cofib(HJ (X, GL,) — HJ (X, PGLy,)))

along the partially ordered set of the natural numbers under division. This is
the group of Azumaya algebras modulo Morita equivalence with group operation
given by tensor product [Grothendieck 1968a]. We have an injection Br(X) —
HéQt(X , G;y) and when X is quasicompact this injection factors through the torsion
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subgroup. We will call Br'(X) := Hézt(X , Gm)tor the cohomological Brauer group.
Grothendieck asked if the injection Br(X) < Br/(X) is an isomorphism.

This map is not generally surjective. Edidin, Hassett, Kresch, and Vistoli [Edidin
et al. 2001] give a nonseparated counterexample by connecting the image of the
Brauer group to quotient stacks. There are two ways to proceed in addressing the
question. The first is to provide a class of schemes for when this holds. In [de Jong
2006], de Jong publishes a proof of O. Gabber that Br(X) = Br'(X) when X is
equipped with an ample line bundle. Along with reproving Gabber’s result for
affines, Lieblich [2004] shows that for a regular scheme with dimension less than
or equal to 2 there are isomorphisms Br(X) = Br'(X) = HZ (X, Gp).

The second perspective is to enlarge the class of objects considered. The Morita
equivalence classes of (3,,-gerbes over the étale topos of a scheme X are in bijection
with H;(X , G,y). Lieblich [2004] associates to any Azumaya algebra o a G,,-
gerbe of Morita-theoretic trivializations. Over an étale open U — X, the gerbe
gives a groupoid of Morita equivalences from o to &x. The gerbe of trivializations
represents the boundary class §([4]) =« € Hézt(X , Gp).

Any class o € Hézt(X, G,,) is realizable on a Cech cover. We can use this
data to build a well defined category of sheaves of &’x-modules which “glue up
to o” [Calddraru 2000, Chapter 1]. Let Mod$, denote the corresponding derived
oo-category and Perf5 the full subcategory of compact objects. K (Perf}) is the
classical definition of a-twisted algebraic K -theory. Determining when the coho-
mology class « is represented by an Azumaya algebra reduces to finding a twisted
locally free sheaf with trivial determinant on a G,,-gerbe associated to « [Lieblich
2004, §2.2.2]. The endomorphism algebra of the twisted locally free sheaf gives
the Azumaya algebra and the twisted module represents the tilt Mod$, >~ Mod.

Lieblich also compactifies the moduli of Azumaya algebras. This necessarily
includes developing a definition of a derived Azumaya algebra.

Definition 2.2. A derived Azumaya algebra over a commutative ring R is a proper
dg-algebra o such that the natural map of R-algebras

A Q% AP =5 RHomp g (s, 1)
is a quasi-isomorphism.

After Lieblich, Toén [2012] and (later) Antieau and Gepner [2014] consider
the analogous problem posed by Grothendieck in the dg-algebra and E,-algebra
settings, respectively. Antieau and Gepner construct an étale sheaf Br in the
00-topos Shvif. For any étale sheaf X, we can now associate a Brauer space
Br(X). For X a quasicompact quasiseparated scheme, they show mo(Br(X)) =
H}(X,Z) x H}(X, G,,) and every such Brauer class is algebraic. Now for any
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(possibly nontorsion) o € Hézt(X , G,y there is a derived Azumaya algebra s and
an equivalence Mod$, >~ Mody of stable co-categories.

This reframes classical twisted K -theory as K -theory with coefficients in a par-
ticularly special dg-algebra in D(X). For our purposes, we work with a generalized
definition of twisted K -theory which allows “twisting” by any dg-algebra.

Definition 2.3. Let R be a commutative ring. For a dg-algebra «f over R, we define
the sd-twisted K -theory K : Modper(g) (Catie™) — Sp by

K™ () := K (€ ®pert(r) Perf(sd)).

When the dg-algebra “s{” is clear, we just write twisted K -theory. If our input
to K is an R-algebra S, then

K (S) = K (Perf(S) ®peri(r) Perf(st)) =~ K (Perf(S @k 54)) =~ K (S ®g o).

Our definition recovers the historical definition of twisted K-theory when o is a
derived Azumaya algebra and we evaluate on the base ring R. The same definition
works for a scheme X and s € Algg (Dgc(X)). We will refer to such an o as a sheaf
of quasicoherent dg-algebras over X. By [Blumberg et al. 2013, Theorem 9.36],
twisted K-theory is a localizing invariant. When X is a quasicompact quasisepa-
rated scheme, Clausen, Mathew, Naumann, and Noel [Clausen et al. 2020, Propo-
sition A.15] establish Nisnevich descent when X is quasicompact quasiseparated.

Definition 2.4. A dg-algebra s over a ring R is proper if it is perfect as a complex
over R and smooth if it is perfect over A°P @ A.

The following is Lemma 2.8 of [Toén and Vaquié¢ 2007] and is an essential
property for our proof in Section 3.

Lemma 2.5. Let A be a smooth proper dg-algebra over a ring R. Then a complex
of D(HA) is perfect over s if and only if it is perfect as an object of D(R).

The previous definition and lemma both generalize to a sheaf of quasicoherent
dg-algebras over a scheme as perfection is a local property. For the remainder of
the section, we prove some basic properties of «-twisted K -theory, often assuming
s is connective. We will not use smooth and properness until the later sections.

Proposition 2.6. Let s, S be connective dg-algebras over R. Then the natural
maps induce isomorphisms

KMS) = K (m0(8)) = K0P (8) = K (m0(S))
Jori <0.
Proof. We have the following isomorphisms of discrete rings:

7o (A®r S) = mo(A g m0(S)) = mo(mo(A) @r S) = m0(70(A) @& 70 (S)).
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The lemma follows since K;(R) = K;(7w9(R)) for i < 0 [Blumberg et al. 2013,
Theorem 9.53]. O

The previous proposition suggests we can work discretely and then transfer the
results to the derived setting. This is true to some extent. However, taking g
of a connective dg-algebra does not preserve smoothness, which is a necessary
property for our proof of Proposition 3.2. We will also need reduction invariance
for low-dimensional K-groups.

Proposition 2.7. Let R be a commutative ring and A a connective dg-algebra
over R. Let S be a commutative ring under R, and let I be a nilpotent ideal of S.
Then the induced morphism ng(S) = Kfi(S/I) is an isomorphism for i <.

Proof. By naturality of the fundamental exact sequence of twisted K -theory (see
(1) and the surrounding discussion at the beginning of Section 3), we can restrict
the proof to Kgg. By Proposition 2.6, we can assume s is a discrete algebra. Let
¢ : S — §/I be the surjection. After — @ s we have a surjection (ker @) Qg A —
ker(¢ ®g s4). The nonunital ring (ker ¢) ® g 54 is nilpotent. So ker(¢ ®r ) is
nilpotent as well. The proposition follows from nil-invariance of K. ([

A Zariski descent spectral sequence argument gives us a global result.

Corollary 2.8. Let X be a quasicompact quasiseparated scheme of finite Krull
dimension d and A a sheaf of connective quasicoherent dg-algebras over X. The
natural morphism f : Xieq — X induces isomorphisms

KT (Xiea) = K2 (X)
fori>d.
Proof. We have descent spectral sequences
EVT =HY (X, (m,K™)™) = 7, K*(X),
E}Y = H, (X, fulmg KT ) = 1y KT (Xrea)

both with differential d, = (2, 1). We let F~ denote the Zariski sheafification of
the presheaf F'. The spectral sequences agree for ¢ < 0. By Corollary 3.27 of
[Clausen and Mathew 2019], the spectral sequences vanishes for p > d. (]

In Theorem 4.3, we extend our main theorem across smooth affine morphisms.
We will need reduction invariance in this setting.

Definition 2.9. For f: S — X a morphism of quasicompact quasiseparated schemes
and o a sheaf of quasicoherent dg-algebras over X, the relative d-twisted K -theory

of f is
K4(f) = fib(K(x) > k(s)).
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As defined, K*(f) is a spectrum. There is an associated presheaf of spectra on
the base scheme X given by U — K*(f,). This presheaf sits in a fiber sequence

K4(f)— K* - K}
where the presheaf K §q is also defined by pullback along f. Both presheaves K
and K §Q satisfy Nisnevich descent and so K**( f) does as well.

Corollary 2.10. Let f : S — X be an affine morphism of quasicompact quasisepa-
rated schemes. Suppose X has Krull dimension d and let A be a sheaf of connective
quasicoherent dg-algebras over X. Then the commutative diagram

Sre
Sred —d> Xred

Lol

s—1 o x

induces an isomorphism of relative twisted K -theory groups

*&q ~
Ki‘ (fred) = K%,(f)
fori>d+1.
Proof. We have two descent spectral sequences
EYY = Hy, (X, (mg KN = p KN ()X,
ED = H, (X, gu(y K (frea) ™) = 74— p K& (frea) (Krea)

with differential of degree d = (2, 1) and F~ the sheafification of the presheaf F.
For an open affine Spec R — X with pullback Spec A — S we examine the mor-
phism of long exact sequences when g < 0:

e g KN R) — g KHA) — 1y K () — g KHR) —> my KHA) — -

S

v = 71y K (Reeq) = g K (Areq) = g1 K (frea) = g—1 K™ (Ryeq) = g1 K (Apeq) = -
By the 5-lemma, this induces sheaf isomorphisms

8e(Tg K& (frea)™ = (g K™ ()™
for g < 0 and, as in Corollary 2.8, cohomology vanishes for p > d. (Il

We will need proexcision for abstract blow-up squares. Recall that an abstract
blow-up square is a pullback square

()

~<—U
P >

—
—
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with ¥ — X a closed immersion and X — X a proper morphism which restricts to
an isomorphism of open subschemes X \ D — X\Y. The theorem is stated using the
oo-category of prospectra Pro(Sp), where an object is a small cofiltered diagram,
E : A — Sp, valued in spectra. We write {E,,} for the corresponding prospectrum.
If the brackets and index are omitted, then the prospectrum is considered constant.
After adjusting equivalence class representatives, we may assume the cofiltered
diagram is fixed when working with a finite set of prospectra. Any morphism
can then be represented by a natural transformation of diagrams (also known as a
level map). We will need no knowledge of the co-category beyond the following
definition.

Definition 2.11. A square of prospectra

{En}) — {Fa}
L

{Xn} — {Yn}

is procartesian if and only if the induced map on the levelwise fiber prospectra is
a weak equivalence [Land and Tamme 2019, Definition 2.27].

The following is Theorem A.8 of [Land and Tamme 2019]. The theorem holds
much more generally for any k-connective localizing invariant [Land and Tamme
2019, Definition 2.5]. Twisted K -theory is 1-connective.

Theorem 2.12 [Land and Tamme 2019]. Given an abstract blow-up square (x) of
schemes and a sheaf of dg-algebras A on X, then the square of prospectra

K4X) —— KHX)
(K (Y} —— (K (D))
is procartesian (where Y, is the infinitesimal thickening of Y).
The procartesian square of prospectra gives a long exact sequence of progroups
= (KL (ED) = K40 = K4 @ (K2 (V) = (K4(E)) — -+

which is the key to our induction argument.

3. Blowing up negative twisted K -theory classes

We turn to our main contribution of the existence of a projective birational mor-
phism which kills a given negative twisted K-theory class (when twisting by a
smooth proper connective dg-algebra). Let X be a quasicompact quasiseparated
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scheme and o a sheaf of quasicoherent dg-algebras on X. We first construct geo-
metric cycles for negative twisted K -theory classes on X using a classical argument
of Bass [1968, §XII.7] which works for a general additive invariant. We have an
open cover

X[r*] —L X[

Lo

X[1] —— Pl

Since twisted K-theory satisfies Zariski descent, there is an associated Mayer—
Vietoris sequence of homotopy groups

skt ey Y ke @ kL (X))

f*_ * a
L2 gkt (XD > K Py > -

As an additive invariant, Kﬁ([lj’&) ~ KHNX)® K4 X) splits as a K*(X)-module
with generators

[O0®@py Al=[s4] and [O(]) ®gy ] = [d(1)]

corresponding to the Beilinson semiorthogonal decomposition. Adjusting the gen-
erators to [¢] and [A] — [s4(1)], we can identify the map (j*, k*) as it is a map
of K*/(X)-modules. The second generator vanishes under each restriction. This
identifies the map as

K4PY) = KX [sd] @ K (X) ([sh] — [(D]) 225 k(X[ @ K*H(X[17])

with A the diagonal map corresponding to pulling back along the projections
X[t] — X and X[r~] — X. As A is an embedding the long exact sequence splits as

0— K% (X) S K4 (XUD@K® (X[ ) S K2 (XD > K% (X)—0. (1)

—n—1
After iterating the complex
K (X[t) — K (X[t*]) - K (%),
we can piece together a complex

K3 AF™ = KGR — K2, (X).

Negative twisted K-theory classes have geometric representations as twisted per-
fect complexes on an’ x- There is even a sufficient geometric criterion implying a
given representative is 0; it is the restriction of a twisted perfect complex on A;.
Our proof of the main proposition of this section will use these representatives. We
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first need a lemma about extending finitely generated discrete modules in a twisted
setting.

Lemma 3.1. Let j: U — X be an open immersion of quasicompact quasiseparated
schemes. Let 9 be a sheaf of proper connective quasicoherent dg-algebras on X
and j*sd its restriction. Let N be a discrete j*sd-module which is finitely generated
as an Oy-module. Then there exists a discrete sd-module M, finitely generated
over Oy, such that j*M = N.

Proof. Note that H>;(j*s{) necessarily acts trivially on N. So the j*s{-module
structure on N comes from forgetting along the map j*s§ — Hy(j*sd) and the
natural Hy(j*s)-module structure. Under restriction,

J Ho(sA) = Ho(j* ).

We reduce to when s is a quasicoherent sheaf of discrete £'x-algebras, finite over
the structure sheaf. We have an isomorphism N = j* j, N. Write j,N as a filtered
colimit of its finitely generated «-submodules j,N'= colim, ;. The pullback is
exact, so we can write N' = colim, j*Jl; as a filtered colimit of finitely generated
submodules. As N is finitely generated itself, this isomorphism factors at some
stage and N = j* ;. O

Proposition 3.2. Let X be a reduced scheme which is quasiprojective over a Noe-
therian affine scheme. Let A be a sheaf of smooth proper connective quasicoherent
dg-algebras on X. Let y € K&q (X) fori > 0. Then there is a projective birational
morphism p : X — X so that,o y=0¢€ K&q (X)

Proof. We fix a diagram of schemes over X

G;X—>A’

For any morphism f : Y| — Y», we let £ : Gm v, an,yz denote the pullback. Lift y
toa K &Q(Gm y)-class [P,], with P, some 7] sd-twisted perfect complexes on an’ X

The induction step. We induct on the range of homology of P,. As m{d is a
sheaf of proper quasicoherent dg-algebras, P, is perfect on Gin, x by Lemma 2.5.
Since Gin’ x has an ample family of line bundles, we may choose P, to be strict
perfect without changing the quasi-isomorphism class. After some (de)suspension,
we may assume P, is connective as this only alters the Ky-class by +1. For the
lowest nontrivial differential of P,, d;, we utilize part (iv) of Lemma 6.5 of [Kerz
et al. 2018] (with the morphism an’ x — X) to construct a projective birational
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morphism p : X; — X so that coker(p*d;) (= Hy(p*P,)) has tor-dimension < 1
over X|. Consider the distinguished triangle of o* 7 #l-complexes on Gm X

F, — p*P, — Hy(p*P.) = coker p*d,.

In Lemma 3.3 below, we cover the base induction step, when the homology is
concentrated in a single degree. Using this, construct a projective birational mor-
phism ¢ : X, — X such that Lo*Hy(p*P,) is a perfect complex and is the restric-
tion of a perfect complex from A’ . By two out of three, L$*F, is perfect and
[¢*p*P,] = [L*F.] + L¢>*H0(,5*P )] in KS&(G ). We then repeat the entire
induction step with L$*F,

We need the induction to terminate, which is the purpose of the first projective bi-
rational morphism of each step. Since coker(p*d;) has tor-dimension < 1 over X,
by [Kerz et al. 2018, Lemma 6.5], L$* coker(p*d;) = ¢* coker(p*d;). This implies
L¢*F, will have no homology outside the original range of homology of P,. Since
é* coker(p*d;) = coker(¢d* p*d)), this guarantees Ho(L¢*F.,) =0, so the homology
of L$*F, lies in a strictly smaller range than ¢*5* P,. Proposition 3.2 follows from
the next lemma. U

m,X»

Lemma 3.3. Let X be a reduced scheme which is quasiprojective over a Noether-
ian affine scheme. Let s be a sheaf of smooth proper connective quasicoherent dg-
algebras on X. Let N be a discrete Ty “sd-module which is coherent on G:’ . Then
there exists a birational blow-up ¢ : X — X so that $*N is perfect over ¢* *sd on
G, 5 and is the restriction of a perfect complex over the pullback of A to N .

Proof. Using Lemma 3.1, extend N from Gm  to a coherent 77 sd-module .l on N
Using the ample family, choose a resolution in ﬁN -modules of the form

O H—>F—>M—>0

where % is a vector bundle and ¥ is the coherent kernel. As X is reduced, X is flat
over some dense open set U of X. By platification par éclatement [Raynaud and
Gruson 1971, Theorem 5.2.2], there is a U-admissible blow-up ¢ : X — X so that
the strict transform of J{ along the pullback morphism p : A — A is flat over X.
We now show the pullback p*Jl is perfect as a p*m) sd- module Let j: A’ — N
be the inclusion of the open set and Z the closed complement. For any sheaf of
modules % on NSZ’ we let Gz denote the subsheaf of sections supported on Z. We
have a short exact sequence natural in %

0— 9, —>9— j5'9—0.

We also obtain the following exact sequence of sheaves of abelian groups via pull-
back: .
0— Jor? i (p M, On ) = p*K — p*F — p*ll — 0.
X
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plo
To make our notation clearer, we set J ﬂorl s (p~ T, ﬁN ). We flesh
both these exact sequences out into a (nonexact) commutative dlagram of p~ ﬁA, -
modules

0 0 0
! ! !

0 > Tz > T T > 0
| ! !

0 —— (p*H); > p*A s JUp*H —— 0
1 !

0 —— (p*%F)z > p*F > JUp*F —— 0
I 1 !

0 —— (p*M)z y p*l > jStp*M —— 0
! ! !
0 0 0

We observe that every row and the middle column is exact. The first map in the left
column is an injection and the last map in the right column is a surjection. Since
p*% is flat, we have (p*%)z = 0. This induces a lifting of the injection

T, ——— 7
Lo

(p*H)yz; —— p*H

We finish the proof by showing ]*ﬁorp O Y(p~, ﬁA, )=0. Since j : A’ — A’
is flat, the sheaf is isomorphic to 90r1 v(j*p~ A, j ﬁA, ) and j ﬁ’N = ﬁA, . Our
big diagram can be rewritten as

0 0 0
[ !

0 » Iz ——— J > 0 >0
L= l l

0—— (p*H)2 > p*H > U —— 0
| !

0 > 0 > p*F > PN p*F —— 0
L | !

0 —— (p*i) s pr N L [ —
! ! !
0 0 0
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and we can glue together to get a flat resolution of p*.l as an &, -module
X
0— j"p*H - p*F — p*M— 0

implying globally finite Tor-amplitude. It remains to show the complex is pseudo-
coherent. This follows since A% is Noetherian and p*.l is coherent. Since p*m}si
is a sheaf of smooth quasicoherent dg-algebras over ﬁ%, the complex F*Jl/t is
perfect over p*nysd by Lemma 2.5. By commutativity, p*Jl restricts to ¢*\ on
an’ % This completes the proof of Proposition 3.2. U

We will need a relative version of Proposition 3.2.

Corollary 3.4. Let f : S — X be a smooth quasiprojective morphism of Noetherian
schemes with X reduced and quasiprojective over a Noetherian base ring. Let s
be a sheaf of smooth proper connective quasicoherent dg-algebras over X and
consider a negative twisted K -theory class y € K fi(S) fori < 0. Then there exists
a projective birational morphism p : X — X such that, under the pullback of the
pullback morphism, pgy = 0.

Proof. We will briefly check that we can run the induction argument in the proof
of Proposition 3.2. The assumptions of this corollary are invariant under pullback
along projective birational morphisms X — X. We need to ensure we can select
projective birational morphisms to our base X. Lemma 6.5 of [Kerz et al. 2018]
is stated in a relative setting. The proof also relies on platification par éclatement.
This can still be applied in our relative setting as X is reduced [Kerz and Strunk
2017, Proposition 5]. U

4. Twisted Weibel’s conjecture

We now prove Theorem 1.1 and an extension across a smooth affine morphism. We
begin with the base induction step for both theorems. Kerz and Strunk [2017] use a
sheaf cohomology result of Grothendieck along with a spectral sequence argument
to show vanishing for a Zariski sheaf of spectra can be reduced to the setting of
local ring.

Proposition 4.1. Let R be a regular Noetherian ring of Krull dimension d over a
local Artinian ring k. Let sl be a smooth proper connective dg-algebra over R;
then Klf‘ﬁ(R) =0fori <0.

Proof. By Corollary 2.10, we may assume k is a field. Proposition 5.4 of [Raed-
schelders and Stevenson 2019] shows that the t-structure on D(s{) restricts to a
t-structure on Perf(s{), which is observably bounded. The heart is the category of
finitely generated modules over Hy(sd). As Hy(sd) is finite-dimensional over k,
this is a Noetherian abelian category. By Theorem 1.2 of Antieau, Gepner, and
Heller [Antieau et al. 2019], the negative K -theory vanishes. U
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Theorem 1.1. Let X be a Noetherian scheme of Krull dimension d and A a sheaf of
smooth proper connective quasicoherent dg-algebras on X; then K f(ll. (X) vanishes
fori >d.
Proof. Proposition 4.1 covers the base case so assume d > 0. By the Kerz—Strunk
spectral sequence argument and Corollary 2.8, we may assume X is a Noetherian
reduced affine scheme.

Choose a negative K*-theory class y € K ﬁ. (X) fori > dimX + 1. Using
Proposition 3.2, construct a projective birational morphism that kills y and extend
it to an abstract blow-up square

E X

o

Yy — X

By [Land and Tamme 2019, Theorem A.8], there is a Mayer—Vietoris exact se-
quence of progroups

o (K (B} = K4 = K50 @ (K(Y)) = (KS(ED) = -+
When i > dim)ﬁ + 1, by induction every nonconstant progroup vanishes and
Kfqi(X)EKfqi(X) showing y = 0. O

By [Antieau and Gepner 2014, Theorem 3.15], we recover Weibel’s vanishing
for discrete Azumaya algebras.
Corollary 4.2. For X a Noetherian d-dimensional scheme and s a quasicoherent
sheaf of discrete Azumaya algebras, then K fii (X)=0fori >d.

The next result nearly covers the K-regularity portion of Weibel’s conjecture,
but we are missing the boundary case K iqd(X )EK %d (A%).

Theorem 4.3. Let f : S — X be a smooth affine morphism of Noetherian schemes
and s a sheaf of smooth proper connective quasicoherent dg-algebras on X. Then
K%(f)=0fori>dimX +1.

Proof. The base case is covered by Proposition 4.1 and our reductions are analo-
gous to those in the proof of Theorem 1.1. So assume X is a Noetherian reduced
affine scheme of dimension d. Choose y € K ﬁ. (S) with i > d. Using Corollary 3.4,
construct a projective birational morphism p : X — X that kills y. We then build
a morphism of abstract blow-up squares

D—3§
| e
P s

Y

L {?
SR
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By Theorem 2.12, we again get a long exact sequence of progroups corresponding
to the back square

o K (D)) = KE(S) = K (S) @ (K, (Vi) > (KX (D)) — -

When i > dim X + 1, every nonconstant progroup vanishes by induction and we
have an isomorphism K%, (S) = K. (S) implying y = 0. O

Remark 4.4. The conditions on the morphism in Corollary 3.4 are more general
than those of Theorem 4.3. We might hope to generalize Theorem 4.3 to a smooth
quasiprojective or smooth projective map of Noetherian schemes. Although the
induction step is present, both base cases fail. Consider the descent spectral se-
quence

EPY .= HP(X,K,) = K, p,(X) withdy=(2,1).

If dim X < 3, then
E§’1 = Egél = coker(H’(X, 2) & H*(X, 0%))

contributes to K_1(X). The differential is zero as the edge morphism

Ko(X) 225 0.0
identifies E2” with the rank component of Ky, implying Eg’o = E20. We now
construct a family of examples for schemes X with nontrivial H?(X, 0%). Let
Xrea be quasiprojective smooth over a field £ and form the cartesian diagram

f
X ——— Xred

| |

Spec(k[t]/(t?)) —— Speck
The pullback X will be our counterexample. We have an isomorphism

ﬁ;} g g*(ﬁ;} ) 69g*(ﬁxred)

red

of sheaves of abelian groups on X with g : X;.q — X the pullback of the reduction
morphism Spec k — Spec k[¢]/ (t2). Locally, (R[t]/ (t%))* consists of all elements
of the form u + v -t where u € R* and v € R. Sheaf cohomology commutes with
coproducts, so this turns into an isomorphism

H*(X, 0%) = H*(X, g.(0% ) ® H*(X, 8:(0x,))
= H*(Xred, 0% ) ® H* (Xred. Ox,0)-

Now the problem reduces to finding a surface or 3-fold X;.q with nontrivial degree-
2 sheaf cohomology. Take a smooth quartic in [P),f for a counterexample which is
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smooth and proper. Here is a counterexample which is smooth and quasiaffine.
Let (A, m) be a 3-dimensional local ring which is smooth over a field k. Take
X = Spec A \ {m} to be the punctured spectrum. Then H%(X, Ox) = HJ(A),
which is the injective hull of the residue field A /m.
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Positive scalar curvature metrics via
end-periodic manifolds

Michael Hallam and Varghese Mathai

We obtain two types of results on positive scalar curvature metrics for compact
spin manifolds that are even-dimensional. The first type of result are obstructions
to the existence of positive scalar curvature metrics on such manifolds, expressed
in terms of end-periodic eta invariants that were defined by Mrowka, Ruberman
and Saveliev (Mrowka et al. 2016). These results are the even-dimensional
analogs of the results by Higson and Roe (2010). The second type of result
studies the number of path components of the space of positive scalar curva-
ture metrics modulo diffeomorphism for compact spin manifolds that are even-
dimensional, whenever this space is nonempty. These extend and refine certain
results in (Botvinnik and Gilkey 1995) and also (Mrowka et al. 2016). End-
periodic analogs of K-homology and bordism theory are defined and are utilised
to prove many of our results.
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2. End-periodic K-homology 641
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4. End-periodic bordism groups 658
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7. Vanishing of end-periodic rho using the representation variety 672
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1. Introduction

Eta invariants were originally introduced by Atiyah, Patodi and Singer [Atiyah
et al. 1975a; 1975b; 1976] as a correction term appearing in an index theorem for
manifolds with odd-dimensional boundary. The eta invariant itself is a rather sen-
sitive object, being defined in terms of the spectrum of a Dirac operator. However,
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Figure 1. Pieces of an end-periodic manifold.

’
-

.
S

Figure 2. End-periodic manifold, where Zo, = Z J, Wo Uy Wi Uy W2 - - -.

when one considers the relative eta invariant (or rho invariant), defined by twisting
the Dirac operator by a pair of flat vector bundles and subtracting the resulting eta
invariants, many marvellous invariance properties emerge. For example, Atiyah,
Patodi and Singer showed that the mod Z reduction of the relative eta invariant of
the signature operator is in fact independent of the choice of Riemannian metric
on the manifold. Key to the approach is their index theorem for even-dimensional
manifolds with global boundary conditions, which they show is equivalent to study-
ing manifolds with cylindrical ends and imposing (weighted) L? decay conditions.

The links between eta invariants and metrics of positive scalar curvature metrics
have been studied using different approaches by Mathai [1992a; 1992b], Keswani
[1999] and Weinberger [1988]. A conceptual proof of the approach by Keswani,
was achieved by Higson and Roe [2010] using K-homology; see also [Deeley and
Goffeng 2016; Benameur and Mathai 2013; 2014; 2015; Piazza and Schick 2007a;
2007b].

Our goal in this paper to use the results of Mrowka, Ruberman and Saveliev
[Mrowka et al. 2016] instead of those by Atiyah, Patodi and Singer [Atiyah et al.
1975a]. Manifolds with cylindrical ends studied in [Atiyah et al. 1975a] are special
cases of end-periodic manifolds studied in [Mrowka et al. 2016]. More precisely,
let Z be a compact manifold with boundary Y and suppose that Y is a connected
submanifold of a compact oriented manifold X that is Poincaré dual to a primitive
cohomology class y € H'(X, Z). Let W be the fundamental segment obtained by
cutting X open along Y (Figure 1).

If Wy are isometric copies of W, then we can attach X; = J;., Wi to the
boundary component Y of Z, forming the end-periodic manifold Zoo (Figure 2).
Often in the paper, we also deal with manifolds with more than one periodic end.
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The motivations for considering such manifolds are from gauge theory; it was
Taubes [1987] who originally developed the analysis of end-periodic elliptic op-
erators on end-periodic manifolds, and successfully calculated the index of the
end-periodic antiself dual operator in Yang—Mills theory.

We adapt the results by Higson and Roe [2010], using end-periodic K-homology,
to obtain obstructions to the existence of positive scalar curvature metrics in terms
of end-periodic eta invariants (see Section 3) that were defined by Mrowka, Ru-
berman and Saveliev [Mrowka et al. 2016] for even-dimensional manifolds, using
the b-trace approach of Melrose [1993]. These obstructions are for the compact
manifold X, and not the end-periodic manifold Z,; the end-periodic manifold is
only a tool used to obtain the obstructions. This is established in Section 6. Roughly
speaking, end-periodic K -homology is an analog of geometric K-homology, where
the representatives have in addition, a choice of degree 1 cohomology class deter-
mining the codimension 1 submanifold. It is defined and studied in Section 2.

We also adapt the results by Botvinnik and Gilkey [1995], using end-periodic
bordism, to obtain results on the number of components of the moduli space of
Riemannian metrics of positive scalar curvature metrics in terms of end-periodic
eta invariants. Such results have been obtained by Mrowka, Ruberman and Saveliev
[Mrowka et al. 2016], and the introduction of end-periodic bordism provides a con-
ceptualisation of their approach. Again, the information on path components is for
the compact manifold X, and the end-periodic manifold is but a means to obtaining
this information. End-periodic bordism is defined and studied in Section 4.

In Section 5 we define the end-periodic analogs of the structure groups of Higson
and Roe, and study the end-periodic rho invariant on these groups.

Section 6 contains applications to positive scalar curvature, using the established
end-periodic K -theory and end-periodic spin bordism of the previous sections.

In Section 7 we give a proof of the vanishing of the end-periodic rho invariant
of the twisted Dirac operator with coefficients in a flat Hermitian vector bundle
on a compact even dimensional Riemannian spin manifold X of positive scalar
curvature using the representation variety of 7 (X).

It seems to be a general theme that for any geometrically defined homology the-
ory, there is an analogous theory tailored to the setting of end-periodic manifolds,
and that this end-periodic theory is isomorphic to the original geometric theory in
a natural way. These isomorphisms are built on the foundation of Poincaré duality.

2. End-periodic K-homology

2.1. Review of K-homology. We begin by reviewing the definition of K-homology
of Baum and Douglas [1982], using the (M, S, f)-formulation introduced by Keswani
[1999], and used by Higson and Roe [2010].
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Definition 2.1. A K-cycle for a discrete group = is a triple (M, S, f), where M is a
compact oriented odd-dimensional Riemannian manifold, S is a smooth Hermitian
bundle over M with Clifford multiplication ¢ : TM — End(S), and f : M — Bn
is a continuous map to the classifying space of 7.

Such a bundle S with the above data is called a Dirac bundle. We remark that
M may be disconnected, and that its connected components are permitted to have
different odd dimensions.

Definition 2.2. Two K-cycles (M, S, f) and (M', S’, f’) for Br are said to be iso-
morphic if there is an orientation preserving diffeomorphism ¢ : M — M’ covered
by an isometric bundle isomorphism v : S — S’ such that

Yoy (v) =cm(gsv)
for all v € TM, and such that f'op = f.

A Dirac operator for the cycle (M, S, f) is any first-order linear partial differ-
ential operator D acting on smooth sections of S whose principal symbol is the
Clifford multiplication. That is to say, for any smooth function ¢ : M — R one has

[D, ¢l =c(grad @) : T'(S) — I'(S).

The K-homology group K (B) will consist of geometric K-cycles for w mod-
ulo an equivalence relation, which we will now describe.

Definition 2.3. A K-cycle (M, S, f) is a boundary if there exists a compact ori-
ented even-dimensional manifold W with boundary 0 W = M such that:
(a) W is isometric to the Riemannian product (0, 1] x M near the boundary.

(b) There is a Z;-graded Dirac bundle over W that is isomorphic to S & S in the
collar with Clifford multiplication given by

_ 0 cy) (0 —1
CW(v)—(cM(v) 0 ) 0w(8t)—<1 0)

forve TM.
(c) The map f : M — Bm extends to a continuous map f : W — Bm.

Remark 2.4. Our orientation convention for boundaries is the following: If W is
an oriented manifold with boundary dW then the orientation on W at the bound-
ary is given by the outward unit normal followed by the orientation of dW. The
isometry in part (a) is required to be orientation preserving.

We define the negative of a K-cycle (M, S, f) tobe (—M, —S, f), where —M
is M with its orientation reversed, and —S is S with the negative Clifford mul-
tiplication c_g = —cs. Two K-cycles (M, S, f) and (M', S’, f') are bordant
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if the disjoint union (M, S, f) I (—=M’, —S’, f’) is a boundary, and we write
(M, S, Y~ (M',S’, f'). This is the first of the relations defining K-homology;
there are two more to define:

(1) Direct sum/disjoint union:
(Ma Sl7 f)H(M’ S2,f)'\’(M, SI@SZa f)

(2) Bundle modification: Let (M, S, f) be a K-cycle. If P is a principal SO (2k)-
bundle over M, we define

M:PxpSZk.

Here p denotes the action of SO (2k) on S?* given by the standard embedding of
SO (2k) into SO (2k + 1). The metric on M is any metric agreeing with that of M
on horlzontal tangent vectors and with that of $% on Vertlcal tangent vectors. The
map f M — B is the composition of the projection M — M and f:M — Bm.
Over S% is an SO (2k)- -equivariant vector bundle C¥y (S%) c Ce(T §?%), defined
as the +1 eigenspace of the right action by the oriented volume element 6 on the
Clifford bundle C£(T §%*). The SO (2k) -equivariance of this bundle implies that it
lifts to a well-defined bundle over M. We thus define the bundle

S=5®Cly(s*)
over M. Clifford multiplication on Sis given by

) cmy(V) ®e  if v is horizontal,
c(v) =
I ® cge(v) if v is vertical,

where € is the grading element of the Clifford bundle over S*. The K-cycle
(M , §, f ) is called an elementary bundle modification of (M, S, f), and we write
M, S, f)~ (1\//} , §, f ). We remark also that individual bundle modifications are
allowed to be made on connected components of M.

Remark 2.5. If D is a given Dirac operator for the cycle (M, S, f), then there is a
preferred choice of Dirac operator for an elementary bundle modification (M .S, f )
of (M, S, f). If Dy denotes the SO (2k)-equivariant Dirac operator acting on
C (53K, then the Dirac operator on S ® C{g (5% is

D=D®c+1® Dy,
where € is the grading element of C£g(S%%).

Definition 2.6. The K -homology group K,(B) is the abelian group of K-cycles
modulo the equivalence relation generated by isomorphism of cycles, bordism,
direct sum/disjoint union, and bundle modification. The addition of equivalence
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classes of K-cycles is given by disjoint union
M, S, HUM', S, fH=mum,SUs’, fL f).

One must of course check that this operation descends to a well-defined binary op-
eration on K-homology which satisfies the group axioms. The details are straight-
forward.

Remark 2.7. There is another group Ko(Br) defined in terms of even-dimensional
cycles, which is well suited to the original Atiyah—Singer index theorem. We will
not need it here.

2.2. Definition of end-periodic K-homology. With the definition of K-homology
reviewed, we now adapt the definition to the setting of manifolds with periodic
ends.

Definition 2.8. An end-periodic K-cycle, or simply a K°P-cycle for a discrete
group 7 is a quadruple (X, S, y, f), where X is a compact oriented even-dimensional
Riemannian manifold, S = ST @ S~ is a Z,-graded Dirac bundle over X, y €
H'(X, Z) is a cohomology class whose restriction to each connected component
of X is primitive, and f is a continuous map f : X — Bx.

The Z;-graded structure of S includes a Clifford multiplication by tangent vec-
tors to X which swaps the positive and negative subbundles. Again, the manifold
X is allowed to be disconnected, with the connected components possibly having
different even dimensions. Note that the definition of a K°P-cycle imposes topolog-
ical restrictions on X, namely each connected component of X must have nontrivial
first cohomology in order for the class y to be primitive on each component.

Definition 2.9. Two K®P-cycles (X, S, v, f) and (X', §’, v/, f') are isomorphic if
there exists an orientation preserving diffeomorphism ¢ : X — X’ which is covered
by a Z,-graded isometric bundle isomorphism v : § — S’ such that

Y ocx(v) = cx (@sv)

for all v € T X. The diffeomorphism ¢ must additionally satisfy ¢*(y’) = y, and
flop=Ff.
We now define what it means for a K°P-cycle (X, S, y, f) to be a boundary.

First, let Y C X be a connected codimension-1 submanifold that is Poincaré dual
to y. The orientation of Y is such that for all closed forms o of codimension 1

(over each component of X),
/ (e) =/ y A,
Y X
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where ¢ : Y — X is the inclusion and we abuse notation by writing y for what is
really a closed 1-form representing the cohomology class y. In other words, the
orientation of Y is such that the signs of the above two integrals always agree. Now,
cut X open along Y to obtain a compact manifold W with boundary oW =Y L1 Y,
with our boundary orientation conventions as in Remark 2.4. Glue infinitely many
isometric copies Wy of W end to end along Y to obtain the complete oriented Rie-
mannian manifold X; = (., Wi with boundary dX; = —Y. There is a canonical
map X; — X sending a pofnt of W to its corresponding point in X. Pull back
the Dirac bundle S on X via this map to get a Z,-graded Dirac bundle on X, also
denoted S, and pull back the map f to getamap f: X; — Bm.

Definition 2.10. The KP-cycle (X, S, y, f) is a boundary if there exists a compact
oriented Riemannian manifold Z with boundary 0Z = Y, which can be attached
to X along Y to form a complete oriented Riemannian manifold Z,, = Z Uy X,
such that the bundle S extends to a Z,-graded Dirac bundle on Z., and the map f
extends to a continuous map f : Zo, — Bm.

Remark 2.11. Being a boundary is clearly independent of the choice of Y; if Y is
another choice of submanifold Poincaré dual to y we simply embed Y’ somewhere
in the periodic end of Z,, and take Z’ to be the compact piece in Z., bounded by
Y.

Definition 2.12. The manifold Z., from Definition 2.10 is called an end-periodic
manifold. It is convenient to say the end is modelled on (X, y), or sometimes just
X if y is understood. Any object on Z., whose restriction to the periodic end X
is the pullback of an object from X is called end-periodic. For example, the bundle
S, the map f, and the metric on Z, in the previous definition are all end-periodic.

Remark 2.13. We allow end-periodic manifolds to have multiple ends. This situ-
ation arises when the manifold X, on which the end of Z, is modelled, is discon-
nected.

The negative of a K®-cycle (X, S, v, f) is simply (X, S, —y, f). This is so
that the disjoint union of a K°P-cycle with its negative is a boundary — it is clear
that the Z-cover X of X corresponding to y is an end-periodic manifold with end
modelled on (X LI X, y LI —y). The definitions of bordism and direct sum/disjoint
union are exactly the same as before, with the class y left unchanged. In the case
of bundle modification, the class y on X=Px oS 2k is the pullback of y by the
projection p : X — X, and we endow the tensor product bundle S ® C £y (S?*) with
the standard tensor product grading of Z;-graded modules. There is also one more
relation we define which relates the orientation on X to the one-form y:

(X’ S7 -V, f) ~ (_X’ H(S)7 Y, f)
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where —X is X with the reversed orientation and IT(S) is S with its Z;-grading
reversed. We call this relation orientation/sign, as it links the orientation on X to
the sign of y. The need for this relation will become apparent in (2) of the proof
of Lemma 2.16.

Definition 2.14. The end-periodic K-homology group, K fp(Bn), is the abelian
group consisting of KP-cycles up to the equivalence relation generated by isomor-
phism of K °P-cycles, bordism, direct sum/disjoint union, bundle modification, and
orientation/sign. Addition is given by disjoint union of cycles

X,S,y, HUX, Sy, fH=Xux, sus,yay’, fur.

Remark 2.15. As for K-homology we could also define the group Kgp(BJT) using
odd-dimensional K °P-cycles, although we will not pursue this here.

2.3. The isomorphism. We will now show that there is a natural isomorphism
Ki(Br) = K" (Bn).

First we describe the map K{(Bm) — K|"(Bw). Let (M, S, f) be a K-cycle
for Bmr. Define X = S' x M an even-dimensional manifold with the product
orientation and Riemannian metric, the Dirac bundle S & S — X with Clifford
multiplication as in (b) of Definition 2.3, y =d6 € H (X, Z) the standard generator
of the first cohomology of S!, and f : X — B the extension of f : M — Bm.
We map the equivalence class of (M, S, f) in K;(Bm) to the equivalence class of
(S'xM,S®S,do, f)in K{* (7).

Lemma 2.16. The map sending a cycle (M, S, f) to the end-periodic cycle (S' x
M,S®S,db, f)descends to a well-defined map of K-homologies.

Proof. 1t must be checked that each of the relations defining Ko(Br) are preserved
by this map.

(1) Boundaries: Let (M, S, f) be a boundary. Then we have a compact manifold
W with boundary W = M satisfying conditions (a) and (b) in Definition 2.3. To
show that (S' x M, S @ S, d60, f) is a boundary, we attach W to the half-cover
X1 =Rs>p x M to obtain a Riemannian manifold Z,. Over X is the bundle S & S,
and over W is a bundle isomorphic to S @ S. We use the isomorphism to glue
the bundles together and define S @ S over Z,. The assumptions on the Clifford
multiplication imply that it extends over this bundle. Since the map f on M extends
to W, the map f on S! x M extends to Z..

(2) Negatives: The negative of (M, S, f)is (—M, —S, f), which maps to (—S!x
M, —S@®—S,d0, f). The negative of (—S' x M, —S@® —S,do, f) is

(—=S'x M, —S®—S,—do, )~ (S' x M, TI(-S&® —S), db, f)
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by the orientation/sign relation. The only difference between this cycle and (X, S &
S,d0, f) is that the Clifford multiplication is negative; Clifford multiplication by
vectors tangent to M has become negative and reversing the Z,-grading has caused
dy to act negatively. This cycle is isomorphic to

(S'xM,S®S,do, f)

via the identity map ¢ : M — M and the isometric bundle isomorphism ¢ : —S @
-S> SBS, Y(sPt) =c(w)(s Pt), where w is the oriented volume element of
S! x M. Hence negatives are preserved by the mapping.

(3) Disjoint union: Obvious.

(4) Bordism: Since negatives map to negatives, boundaries map to boundaries,
and disjoint union is preserved, it follows that bordism is also preserved.

(5) Direct sum/disjoint union: Also obvious.

(6) Bundle modification: Let (1\7 , §, f ) be an elementary bundle modification
for (M, S, f) associated to the principal SO (2k)-bundle P — M. We pullback
P to a bundle over X = S! x M, and use it to construct our bundle modification
(X, (S S),do, f)of (S'x M,SS,do, f). Itis clear that X = S! x M. Now
S=85®Cly(5%*), s0

SOSZ(S®S)®Cl(S*)=(SaS)".

It is straightforward yet tedious to verify that Clifford multiplication is preserved
by this isomorphism. So the K°P-cycle obtained via bundle modification then map-
ping, is isomorphic to the K“P-cycle obtained by mapping then bundle modifica-
tion. O

Now for the inverse map. Let (X, S, y, f) be an end-periodic cycle. Choose
a submanifold ¥ C X Poincaré dual to y, oriented as in the paragraph after
Definition 2.9. We map the cycle (X, S, y, f) to (¥, ST, f), where St and f
are restricted to Y. If w is an oriented volume form for Y then we let 0, be the unit
normal to Y such that 9, A w is the orientation on X. The Clifford multiplication
on ST is then defined to be

cy(v) =cx(9)cx (v)

for v € TY. Note that this agrees with the conventions of (b) in Definition 2.3. One
easily verifies that this indeed defines a Clifford multiplication on S*.

Lemma 2.17. The map sending an end-periodic cycle (X, S, y, f) to the cycle
(Y, ST, f) described above, descends to a well-defined map of K -homologies.



648 MICHAEL HALLAM AND VARGHESE MATHAI

Figure 3. Compact bordism between Y; and Y.

Proof. We must not only check that the relations defining end-periodic K-homology
are preserved, but that the class in K-homology obtained is independent of the
choice of Y.

(1) Boundaries: Let (X, S, y, f) be a boundary. Then there is a compact oriented
manifold Z with boundary 0Z =Y over which the Z;-graded Dirac bundle S and
map f extend. We modify the metric near the boundary of Z to make it a product.
It follows that the cycle (Y, ST, f) is a boundary.

(2) Choice of Y: Suppose Y| and Y, are submanifolds of X that are Poincaré dual
to y. We can take functions fi, f>: X — S! both having 1 € S' as a regular value
and satisfying fi_l(l) =Y, fori =1, 2. Since Y, and Y are both Poincaré dual to
v, the functions f; are homotopic. Let f; : X — R be the lift of fi: X — S, where
X — X is the Z-cover determined by y. The preimage ffl (m) gives an embedding
of Y; in X for any m € Z. Choosing a tubular neighbourhood Y| x (—¢, €) C f,
we can homotopy f) into f> over the interval (—e, €). Letting F be the resulting
function on X, we may take F~![—m, m] for some large integer m to be a bordism
W between Y| and Y. Since f; and f> are proper, so is F, and the resulting
bordism is compact; see Figure 3.

We pull back the bundle S and the map f to W, and modify the metric near the
boundary so that it is a product. The result is that ¥ L1 —Y; is a boundary.

(3) Negatives: Reversing the sign of y changes the orientation of Y. Clifford
multiplication on Y also becomes negative, since changing the orientation on Y
reverses the unit normal to Y. Hence negatives of cycles map to negatives.

(4) Disjoint union: Obvious.

(5) Bordism: Since boundaries map to boundaries, negatives map to negatives,
and disjoint union is preserved, it follows that bordism is also preserved.

(6) Direct sum/disjoint union: Obvious.

(7) Orientation/sign: From (3) in this proof, the K -cycle obtained from (X, S, —y,
f) is the negative of the cycle (Y, ST, f). Now consider the K -cycle obtained from
(=X, I1(S), y, f). Reversing the orientation on X will also reverse it on Y. Instead
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of ST, we now take S~ with Clifford multiplication

cs-(v) = c(—0;)c(v) = —c(9r)c(v)

where v € TY and —9; is the unit normal to —Y. We now show (=Y, ST, f) and
(=Y, 87, f) are isomorphic. Let w be the oriented volume element of +Y (or —VY,
it does not matter) and define a map v : ST — S~ by ¥ (s) = c(w)s. Then

Yocst(v) =cs-(v) oy

and the cycles are therefore isomorphic.

(8) Bundle modification: Let ()? , §, 7, f ) be an elementary bundle modification
for (X, S, y, f), associated to the principal SO (2k)-bundle P — X. We restrict
this principal bundle to Y and consider the corresponding bundle modification
(Y, S*, f) for (Y, ST, f). Itis clear that Y C X is Poincaré dual to 7. The bundle

S=5®Cly(s*)
has even part

St=(stecef (™) @ (5™ ®Ct, (5%,
while over Y we have the bundle
St =5T®Cly(s%).

Identifying ST with S~ via the isomorphism c(3;), we see that ST = S*. It is
routine to check that the Clifford multiplications are preserved under this isomor-
phism. (]

Theorem 2.18. The above maps between K -homologies define an isomorphism of
groups K{(Bm) = Kfp(Bn).

Proof. We must check that the above maps on K-homologies are inverse to each
other. If we begin with a cycle (M, S, f), this maps to (S' x M, S @ S, db, f).
Mapping this again, we get (M, S, f) back, so this direction is easy. Now suppose
we begin with a cycle (X, S, y, f). This maps to (Y, ST, f) which then maps
to (S' x ¥, ST @ S, do, f). We will show this cycle is bordant to the original
cycle (X, S, y, f). Consider the half cover X of X obtained using —y. Near the
boundary, this is diffeomorphic to a product (=8, 0] x Y. The half cover of S! x Y
obtained from d6 is R>¢ x Y. The two half covers clearly glue together to produce
and end-periodic manifold with two ends. The Dirac bundles and maps to Bx
extend over this manifold, and hence the two cycles are bordant. U
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3. Relative eta/rho invariants

In this section, we use the end-periodic eta invariant of Mrowka, Ruberman and
Saveliev [Mrowka et al. 2016] to define homomorphisms from the end-periodic
K-homology group K fp(Bn) to R/Z. Any pair of unitary representations oy, 07 :
m — U(N) will determine such a homomorphism, and we see that this homomor-
phism agrees with that constructed in Higson and Roe [2010] under the natural
isomorphism K| (Bmw) = Kfp(BJT).

3.1. Rho invariant for K-homology. Let (M, S, f) be a K-cycle. Any Dirac op-
erator for this cycle is a self-adjoint elliptic first-order operator on S, and so has a
discrete spectrum of real eigenvalues. The eta function of this operator is defined
to be the sum over the nonzero eigenvalues of D

n(s) =) sign(W)IA|"",

270

which converges absolutely for Re(s) sufficiently large. It is a theorem of Atiyah,
Patodi and Singer (APS) that this function admits a meromorphic continuation to
the complex plane, and that this continuation takes a finite value 1(0) at the origin.
The eta invariant of the chosen Dirac operator D is by definition

n(D) = £(1(0) — h) 3.1)

where & = dimker(D) is the multiplicity of the zero eigenvalue.

The eta invariant plays a central role in the Atiyah—Patodi—Singer index theorem,
appearing as a correction term for the boundary. Suppose W is an even-dimensional
manifold with boundary dW = M, equipped with a Dirac bundle satisfying the
conditions of Definition 2.3. Further, suppose we have a Dirac operator D(W) on
W so that

3.2)

D(W):( 0 —at+D)

0 +D 0

in a product neighbourhood of the boundary, where D is the Dirac operator on M.
In this instance we say that D(W) bounds D. Then the APS index theorem [Atiyah
et al. 1975a] states

Indaps DT (W) = [ 1(D*(W)) = n(D). (3.3)
w

The left-hand side is the index of D* (W) with respect to a certain global boundary
condition — the projection onto the nonnegative eigenspace of D must vanish. The
integrand I (D" (W)) is the constant term in the asymptotic expansion of the super-
trace of the heat operator for D1 (W), called the index form of the Dirac operator.
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Remark 3.1. In (3.3), the eta invariant is as in (3.1), where the sign of the term
h = dimker D is negative. This is contingent on the orientation of M being con-
sistent with the boundary orientation inherited from W. If the orientations are not
compatible, then the sign of 4 is reversed in (3.3).

The map f in the cycle (M, S, f) determines a principle w-bundle over M.
Given a representation o) : 1 — U(N), we can then form a flat vector bundle
E| — M and twist the Dirac operator D on S to obtain a Dirac operator D; acting
on sections of S ® E;. Given a second representation o : @1 — U(N) we form
another operator D, on S ® E» in the same way.

Definition 3.2. The relative eta invariant, or rho invariant associated to the two
unitary representations o1, 03 : 1 — U(N), the K-cycle (M, S, f) for Bx, and the
choice of Dirac operator D for the K-cycle, is defined to be

p(o1,02; M, S, f) =n(D1) —n(D2).

The eta invariant of an operator depends sensitively on the operator itself, whereas
the relative eta invariant is much more robust. The following is a restatement of
[Higson and Roe 2010, Theorem 6.1], and is the reason for our omission of D in
the above notation for the rho invariant.

Theorem 3.3. The mod Z reduction of the rho invariant p(o1,02; M, S, f) for
representations o1, 0, : 1 — U(N), depends only on the equivalence class of
(M, S, f) in Ki(Bm), and on o1, 02. There is therefore a well-defined group
homomorphism

p (o1,00) : Ki(Bm) - R/Z.

The most complicated part of the proof is showing invariance under bundle
modification. We will not repeat the full proof, however we will show invariance
under bordism since the argument serves to motivate the end-periodic case.

Proof. Let (M, S, f) be aboundary — we will show that the rho invariant p (o7, 07;
M, S, f) vanishes modulo Z. Let W be as in Definition 2.3 and let D(W) be a
Dirac operator on W which bounds the Dirac operator D on M. Since the map f
to Brr extends to W, we find twisted Dirac operators D{(W) and D;(W) on W
bounding the twisted operators D and D, on M. Applying the APS index theorem
separately to these operators gives

Indaps D} (W) = fW 1(Df(W)) —n(Dy) (3.4

fori =1, 2. Since D (W) and D, (W) are both twists of the same Dirac operator
D (W) by flat bundles of dimension N, we have

I(Df(W)) = I(D; (W) = N - I(DT(W)).



652 MICHAEL HALLAM AND VARGHESE MATHAI

Subtracting the two equations (3.4) from each other therefore yields
p(o1,02; M, S, f)=n(D1) —n(D2) =Indaps Dy (W) — Indaps D} (W),

which is an integer.

Now, consider the negative cycle (—M, —S, f) for (M, S, f). If D is a Dirac
operator for (M, S, f), then —D is a Dirac operator for (—M, —S, f). From the
definition of the eta invariant (3.1) and from Remark 3.1, we see that n(—D) =
—n(D). Finally, the eta invariant is clearly additive under disjoint unions of cycles.
It follows that if two cycles are bordant, then their eta invariants agree modulo
integers. U

Higson and Roe [2010] used this map on K-homology to obtain obstructions
to positive scalar curvature for odd-dimensional manifolds. Our isomorphism of
K-homologies will allow us to transfer their results to the even-dimensional case.

3.2. Index theorem for end-periodic manifolds [Mrowka et al. 2016]. Mrowka,
Ruberman and Saveliev [2016] proved an index theorem for end-periodic Dirac
operators on end-periodic manifolds, which generalises the Atiyah—Patodi—Singer
index theorem. Rather than the eta invariant appearing as a correction term for the
end, a new invariant called the end-periodic eta invariant appears, and this new
invariant agrees with the eta invariant of Atiyah—Patodi—Singer in the case of a
cylindrical end. In this section, we review the end-periodic index theorem of MRS,
and give the necessary definitions and theorems required to define the end-periodic
rho invariants. There is nothing new here, so the reader who is already familiar
with the MRS index theorem may safely skip to Section 3.3

Let (X, S, y, f) be a K®-cycle, and let D(X ) be a Dirac operator for the cycle.
Let X be the Z-cover associated to y,and let F': X — Rbe the map which covers the
classifying map X — S! for the Z-cover X. Then F satisfies F x+D)=Fx)+1,
where x + 1 denotes the image of x € X under the fundamental covering translation.
It follows that d F descends to a well-defined one-form on X, also denoted d F'.
Fixing a branch of the complex logarithm, define a family of operators

D.(X) = D(X) —In(z) c(dF)

on X, where c(d F) is Clifford multiplication by d F, and z € C*. These are in fact
the operators obtained by conjugating the Dirac operator on X with the Fourier-
Laplace transform — see Section 2.2 of [Mrowka et al. 2016] for more details. The
spectral set of this family of operators is defined to be the set of z for which D, (X)
is not invertible. The spectral sets of the families D;t (X) are defined similarly.
Henceforth, we will take Z, to be an end-periodic manifold with end mod-
elled on (X, y). All objects on Z, will be taken to be end-periodic, unless stated
otherwise. Now, the Fredholm properties of the end-periodic operator D1 (Zy,)
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are linked to the spectral set of the family DZJr (X). In fact, it follows from [Taubes
1987, Lemma 4.3], that D" (Z,) is Fredholm if and only if the spectral set of the
family D} (X) is disjoint from the unit circle S ' C C. Thus, a necessary (but not
sufficient) condition for DV (Z4,) to be Fredholm is that Ind D*(X) = 0.

Definition 3.4 (Mrowka et al. 2016). Suppose that the spectral set of the family
DZJr (X) is disjoint from the unit circle S' C C. The end-periodic eta invariant for
the Dirac operator DT (X) is then defined as

oo
(DT (X)) = %/ % Tr(c(dF) . D; exp(—z‘DZ_D;r))d—Z dt,
0 JizI=1 Z

where the Dirac operators in the integral are on X, and the contour integral over
the unit circle is taken in the anticlockwise direction.

Remark 3.5. There is an equivalent definition of the eta invariant in terms of the
von Neumann trace — see [Mrowka et al. 2016, Proposition 6.2], also [Atiyah
1976] for information on the von Neumann trace.

Suppose X = §' x ¥, where Y is a compact oriented odd dimensional manifold,
and X is endowed with the product Riemannian metric. Assume the Dirac operator
D(X) on X takes the form of that in the RHS of Equation (3.2), with D being the
Dirac operator on Y. Then it is shown in [Mrowka et al. 2016, §6.3] that for
dF =dé,

n®(DT (X)) = n(D).

We now state the end-periodic index theorem of Mrowka, Ruberman and Saveliev,
in the case when the end-periodic operator D (Z,) is Fredholm. Recall that for
D™ (Z+) to be Fredholm, it is necessary that Ind D" (X) = 0. The Atiyah-Singer
index theorem then implies that the index form I (D™ (X)) is exact, so one can find
a form w on X satisfying dw = I(D"(X)).

Theorem 3.6 (MRS index theorem, [Mrowka et al. 2016, Theorem A]). Suppose
that the end-periodic operator DT (Z) is Fredholm, and choose a form w on X
such that dw = I(DV(X)). Then

IndD+(Zoo):/ 1(D"(2)) —/a)+/ dF no — 3 nP(X). (3.5)
V4 Y X

Remarks 3.7. The form w is called the transgression class— see [Gilkey 1984b,
p- 306] for more details. In the case that the metric is a product near Y, one can
choose F so that the two integrals involving the transgression class cancel, leaving
a formula similar to the original APS formula. The theorem reduces to the APS
index theorem [Atiyah et al. 1975a] when Z, only has cylindrical ends.
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When D" (Z4,) is not Fredholm, Mrowka, Ruberman and Saveliev are still able
to prove an index theorem under the assumptions that the spectrum of the family
D7 (X) is discrete, which in particular implies Ind D*(X) = 0. This is analogous
to the case in the APS index theorem when the Dirac operator D on the boundary
has a nonzero kernel, and the correction 7 = dim ker D appears in the formula.

The key is to introduce the weighted Sobolev spaces on Z, as follows. First
recall that the Sobolev space L,%(Zoo, S) for an integer k > 0, is defined as the
completion of C§°(Zx, §) in the norm

2 _ i
Il 3y =3 [ 19
J<k o>

for a fixed choice of end-periodic metric and compatible end-periodic Clifford
connection on Z,,. Now, restrict the upstairs covering map F : X — R to the
half-cover X; = ;- Wk, and choose an extension of this map to Z,, which we
continue to denote F. Given a weight 6 € R and an integer £ > 0, we say that
u €Ly s (Zoo S) if €Fu € L (Zoo, S). Define the L ;-norm by

5F
lullz (z..s) = lle™ ull 2z, s5)-

It is easy to check that up to equivalence of norms, this is independent of the choice
of extension of F' to Z, since the region over which we are choosing an extension
is compact. The spaces L,%’ s(Zoo, §) are all complete in this norm, and the operator
D™ (Z+) extends to a bounded operator

DY (Zo): Ly 5 (Zoo, ST) = Li 5 (Zoo, S7) (3.6)

for every k and 6. The following theorem of [Taubes 1987] classifies Fredholmness
of the operator (3.6) in terms of the family D} (X) = D*(X) —In(z) c(d F).

Lemma 3.8 (Taubes 1987, Lemma 4.3). The operator
DY (Zso): Ly 5 (Zoo, ST) = L} 5 (Zoo, S7)

is Fredholm if and only if the operators D; (X) are invertible for all 7 on the circle
lz| = é°.
The usual L?-case corresponds to the weighting § = 0, and hence we see by

setting z = 1:

Corollary 3.9. A necessary condition for the operator D (Z,) to be Fredholm is
that Ind D*(X) = 0.

The following result on the spectral set of the family is also due to Taubes, which
suffices for our purposes.
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Theorem 3.10 (Taubes 1987, Theorem 3.1). Suppose that Ind DV (X) =0 and that
the map c(dF) : ker DY(X) — ker D~ (X) is injective. Then the spectral set of the
family D} (X) is a discrete subset of C*, and the operator D" (Z«,) is a Fredholm
operator.

It follows that the operator D (Z,) acting on the Sobolev spaces of weight §
is Fredholm for all but a closed discrete set of § € R.

Remark 3.11. There are two important instances where the hypothesis of Theorem
3.10 is satisfied:

(1) When X = S! x M with the product metric, and the Dirac operator on X taking
the form of Equation (3.2). In this case d F = df, and c(df) is as in part (b) of
Definition 2.3. This example shows that every class in K°°(Br) has a representa-
tive with discrete spectral set.

(2) When X is spin with positive scalar curvature and D' (X) is the spin Dirac
operator on X (or more generally, D1 (X) twisted by a flat bundle). In this case
Lichnerowicz’ vanishing theorem implies that ker D™ (X) and ker D~ (X) are triv-
ial. In the applications to positive scalar curvature, we will always assume X to be
spin, so that this assumption is satisfied.

[Mrowka et al. 2016, Theorem C] extends Theorem 3.6 to the non-Fredholm
case that applies to operators such as the signature operator and is analogous to the
extended L? case considered in [Atiyah et al. 1975a].

We allow for the case where the family has poles lying on the unit circle, in
which case the operator D*(X) is not Fredholm. By discreteness of the spectral
set, the family D (X) has no poles for z sufficiently close to (but not lying on) the
unit circle, and hence there is € > 0 such that for all 0 < § < € the operators Dj (Zso)
acting on the §-weighted Sobolev spaces are all Fredholm (see Lemma 3.8). The
index does not change under small variations of § in this region, and we denote it
by Indyrs D (Z). This is the regularised form of the index which appears in
the full MRS index theorem.

There are two more quantities to define which appear in the full MRS index
theorem. First of all, the end-periodic eta invariant in Definition 3.4 is no longer
well defined if the family D (X) has poles on the unit circle. Letting € > 0 be
sufficiently small so that there are no poles in e~ € < |z| < e€ except for those with
|z| =1, define

nP(DH(X)) = % /°°7§ Tr(df - D exp(—t(D;r)*Dj))% dt, (3.7)
0 |z]=e€
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where the integral is taken to be the constant term of its asymptotic expansion in
powers of ¢. Define

nF (D (X)) = lim, nP (D (X)),

and
(DT (X)) = % P(DT (X)) + (DT (X))]. (3.8)

It is this incarnation of the eta invariant which will appear in the MRS index
theorem. Since (Dj)* = D for |z] = 1 this definition of n°?(X) agrees with
Definition 3.4 when there are no poles on the unit circle.

The last term to define is the analog of & = dimker D appearing in the APS
index theorem. The family D (X )~! is meromorphic, so if z € S! is a pole then it
has some finite order m. Define d(z), as in [Mrowka et al. 2011, §6.3], to be the
dimension of the vector space solutions (¢y, ..., ¢,) to the system of equations

DF (X)p1 = c(dF)¢,

D;_(X)(pm—l =c(dF)Pm,
DY (X)gu =0.

For z not in the spectral set of the family Dj (X), we have d(z) = 0. The term h
in the MRS index theorem is defined as the finite sum of integers

h = Z d(z).

lz|=1
Remark 3.12. The integers d(z) give a formula for the change in index when one

varies the weight §; if Inds D" (Z.,) denotes the index of DT (Z,) acting on the
8-weighted Sobolev spaces, then one has for § < &’ that

Inds D*(Zoo) —Indy DT (Zoo) = Y d(2).
e <|z]<e?
Theorem 3.13 (MRS index theorem [Mrowka et al. 2016, Theorem C]). Suppose

the spectral set of D; (X) is a discrete subset of C*, and let w be a form on X such
that dw = I(DV(X)). Then

Indymrs D+(Zoo):f I(D+(Z))—/a)+/ dF Ao —3(h+ P (DT (X))).
Z Y X

3.3. End-periodic R/Z-index theorem. Let o, 0, : 1 — U (N) be unitary repre-
sentations of the discrete group . Using the end-periodic eta invariant of MRS, we
will define an end-periodic rho invariant p°P (o, 07) analogous to the rho invariant
in the APS case. This will determine a map from end-periodic K -homology to
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R/Z, however we must be more careful about how we define the rho invariant due
to the MRS index theorem not being applicable to all operators.

Definition 3.14. Let (X, S, y, f) be a K®P-cycle. Assume we can choose a cov-
ering function F : X — R so that the spectral sets of the families of the twisted
operators D1+(X ) and D; (X) are discrete. Then we define the end-periodic rho
invariant to be

pP(o1,00; X, S, v, ) = 2[h1 + (D} (X)) — hy — (DT (X))].

By [Mrowka et al. 2016, Lemma 8.2], this definition is independent of the choice
of such function F, if it exists.

Theorem 3.15. Whenever it is defined, the mod Z reduction of the end-periodic
rho invariant p**(o1, 07 ; X, S, v, f) associated to 01,0, : 1 — U(N) depends
only on the representations o1, 05 and the equivalence class of (X, S, y, f) in
K lep(Bn). Moreover, every equivalence class has a representative with a well-
defined rho invariant. Hence there is a well-defined group homomorphism

(01, 02) : K{'(B) - R/Z.
Furthermore, the following diagram commutes:

K{"(Bm) «———— Ki(Bn)

PP (o ,% /Ul 02)

Hence, even if the spectral set of D1 (X) is not discrete, we can still define
its R/Z end-periodic rho invariant in a perfectly reasonable and consistent man-
ner. This allows us to define the R/Z invariant, for instance, in the case where
Ind DT (X) # 0. For the applications to positive scalar curvature, the end-periodic
rho invariant is well-defined and given by the usual formula (3.8), since in Remark
3.11 we have noted that the spectral sets of its twisted operators are discrete.

Proof. That every equivalence class in K°P-homology has a representative with dis-
crete spectral set follows from the proof of Theorem 3.3 —the cycle (X, S, y, f)
is bordant to the cycle (S'xY, St ST, do, f), which has discrete spectral set
by part (1) of Remark 3.11.

As we shall see, it is only necessary to prove invariance of p°? under bordism,
and then Theorem 3.3 will imply invariance under the other relations defining
K*°P-homology. First suppose that (X, S, y, f) is a boundary with Dirac opera-
tor DT (X) such that the families associated to the twisted operators D;’(X ) and
D; (X) have discrete spectral sets. We apply the MRS index theorem to each
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operator separately to get
Indyrs D; (Zoo) = / 1(D{"(2)) - / w; +f dF Aw; — 5hi + 1P (D} (X))
z Y X

fori =1, 2. Now, since we are twisting by flat vector bundles, both the index form
and the transgression classes for the twisted operators are constant multiplies of
the index form and transgression class of the original operator. Hence when we
subtract the two equations, the terms involving these vanish and we are left with

pP(01,02; X, S, v, f) =Indurs D3 (Zs) — Indyrs D} (Zs0),

which is an integer. The end-periodic rho invariant behaves additively under dis-
joint unions of cycles and changes sign when the negative of a cycle is taken. This
proves bordism invariance mod Z.

Now the K®-cycle (X, S, y, f) with discrete spectral sets is bordant to (S Ix
Y,ST @ St,d, f), where Y is Poincaré dual to y. By [Mrowka et al. 2016,
§6.3], the end-periodic rho invariant of (§' x Y, S* @ ST, d6, f) is equal to the
rho invariant of the K -cycle (Y, S+, f). Hence

pP(01,02; X, S, v, f) = p(o1,02; Y, ST, ) mod Z.

The isomorphism K| (Br) = K fp(Bn) then immediately implies the theorem. [

4. End-periodic bordism groups

In this section, we recall the definition of the spin bordism groups, and introduce the
analogous bordism groups in the end-periodic setting. As for K-homology, there
are natural isomorphisms between the spin bordism groups and the end-periodic
spin bordism groups. We also consider the PSC spin bordism groups described in
Botvinnik and Gilkey [1995], and define the corresponding end-periodic PSC spin
bordism groups. Throughout, we take m > 5 to be a positive odd integer.

4.1. Spin bordism and end-periodic spin bordism. We recall the definition of the
spin bordism group Q,)" (B) for a discrete group 7.

Definition 4.1. An Q;fln-cycle for Bm is a triple (M, o, f), where M is a compact
oriented Riemannian spin manifold of dimension m, o is a choice of spin structure
on M, and f : M — B is a continuous map.

The negative of an Q;fm—cycle_: M, o, f)is (=M, o, f), where —M is M with
the reversed orientation. An foln—cycle (M, o, f) is a boundary if there exists a
compact oriented Riemannian manifold W with boundary 0 W = M, a spin structure
on W whose restriction to the boundary is the spin structure o, and a continuous
map W — B extending the map f. Two .} -cycles (M, o, f) and (M', o', f')
are bordant if (M, o, f)U(—M',o’, f') is a boundary.
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Definition 4.2. The m-dimensional spin bordism group Q;S,Ifin(Bn) for Bm, con-
sists of €7 "-cycles for B modulo the equivalence relation of bordism. It is an

abelian group with addition given by disjoint union of cycles.
The end-periodic spin bordism group 2,+*" in
way to the end-periodic K-homology group.

(Bm), is defined in an analogous

Definition 4.3. An Q""" _cycle for Br is a quadruple (X, o, y, f) where X is
a compact oriented Riemannian spin manifold of dimension m + 1, o is a spin
structure on X, y is a cohomology class in H'(X, Z) that is primitive on each
component of X, and f : X — B is a continuous map.

The definition of a boundary is essentially the same as for end-periodic K -
homology.

Definition 4.4. An Q,) """ -cycle (X, o, y, f) is a boundary if there exists an end-
periodic oriented Riemannian spin manifold Z,, with end modelled on (X, y),
such that the pulled back spin structure o on the periodic end extends to Z,, as
does the pulled back map f to Br.

The negative of a cycle (X, o, y, f) is (X, o, —y, f). As before, we introduce
the additional relation of orientation/sign:

(Xv o, =V, f) ~ (_Xv o,Y, f)

Two Q,e,f)’Spin—cycles (X, y,0, f)and (X', y', 0/, f') are bordant if (X, 0,7y, f)1I
(X, o, —y, f) is a boundary.

Definition 4.5. The m-dimensional end-periodic spin bordism group Qf,f’Spin(Bn)
consists of €, *""-cycles modulo the equivalence relation generated by bordism
and orientation/sign, with addition given by disjoint union.

Analogous to the K-homology groups from Section 2, there is a canonical iso-
morphism between the spin bordism and end-periodic spin bordism groups which
we will now describe. _ _

The map 5" (Brr) — 0 """ (Brr) takes a 0" (Bm)-cycle (M, o, f) to (S' x
M,1x0,d6, f), where S 1% M has the product orientation and Riemannian metric,
1 x o is the product spin structure of the trivial spin structure 1 on S' with the spin
structure o on M, d@ is the standard generator of the first cohomology of S', and
f is the obvious extension of f : M — Bx to S' x M.

Proposition 4.6. The map which sends an Q,S,Il)in(Bn)-cycle (M, o, f) to the
,Spi 1
QPSP (Br)-cycle (S° x M, 1 x 0,db, f)

is well-defined on spin bordism groups.
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Proof. If (M, o, f) and (M, o', f') are bordant, with W bounding their disjoint
union, then R>o x M and R<o x M’ can be joined using W to form an end-periodic
manifold Z., with multiple ends. All structures extend to Z, by assumption, hence
the two Q""" (Bxr)-cycles (S'x M, 1xo,d6, f)and (—S'x M, 1x0o’, —dO, f’)
are bordant. Using the orientation/sign relation, we see that (S L'y M, 1xo0,d6, )
and (S' x M’, 1 x o', df, f') are equivalent. O

Now for the map Qﬁf’sPin(Brr) — Qf,fin(Brr). Let (X, 0, y, f) be an Qf,f’sPin-
cycle for Bmr, and Y be a submanifold of X Poincaré dual to y. We equip ¥ with
the induced spin structure and orientation from y. Explicitly, the orientation of Y is
as in the paragraph after Definition 2.9, and the restricted spin structure is obtained
first by cutting X open along Y to get a manifold W with boundary oW =Y L1 Y,
and then taking the boundary spin structure on the positively oriented component
Y of aW. This yields an Q;g,ﬁ)m—cycle (Y, 0, f), where o and f are restricted to Y.

Proposition 4.7. The map taking an Q;?’Spin (Bm)-cycle (X,0,v, f) to the Qf,]fin(Bn)—
cycle (Y, o, f) described above is well-defined on bordism groups.

Proof. Independence of the choice of Y is proved as for the K-homology case,
only with spin structures instead of Dirac bundles. It is clear that the orienta-
tion/sign relation is respected, since both (X, o, —y, f) and (—X, o0, y, f) get
sentto (=Y, 0, f). If (X,0,y, f)and (X', o', y’, f) are bordant, then there is a
compact manifold Z with boundary dZ = Y LI —Y' such that the spin structures and
maps extend over Z. But this shows that (¥, o, f) and (Y’, o/, f’) are bordant. [J

Theorem 4.8. The above maps of bordism groups are inverse to each other, and
so define a natural isomorphism of abelian groups Q5 (Bm) = Q""" (B).

Proof. A cycle (M, o, f) gets mapped to (S'x M, 1 x 0,db, f), which gets
returned to (M, 1 x o, f), where the latter two entries are restricted to M. It is
straightforward to check that the product spin structure 1 x o restricted to M yields
the original spin structure o. Therefore we obtain our original cycle (M, o, f) after
mapping it to and from end-periodic bordism.

Now let (X, o, v, f) be an end-periodic cycle, with submanifold Y Poincaré
dual to y. This maps to a cycle (Y, o, f), where the latter two structures are
restricted from X, and this maps back to (S IxY, 1x0,d6, f). The same argument
as in the proof of Definition 2.9 shows that this is bordant to (X, o, y, f). ([

4.2. PSC spin bordism and end-periodic PSC spin bordism. Botvinnik and Gilkey
[1995] use a variant of spin cobodism tailored to the setting of manifolds with
positive scalar curvature, which we now recall.

Definition 4.9. A Q,S,?m’Jr—cycle is a quadruple (M, g, o, f), where M is a compact
oriented Riemannian spin manifold of dimension m with a metric g of positive
scalar curvature, o is a spin structure on M, and f : M — B is a continuous map.
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The negative of (M, g, 0, f)is (—M, g, o, f), as before. A cycle (M, g, o, f)
is called a boundary if there is a compact oriented Riemannian spin manifold W
with boundary 0W = M so that the spin structure o and map f extend to W. It
is also required that W has a metric of positive scalar curvature that is a product
metric dt* 4 g in a neighbourhood of the boundary. Two cycles are bordant if the
disjoint union of one with the negative of the other is a boundary.

Definition 4.10. The PSC spin bordism group Q"™ (Br) for Br consists of

Qzﬁ)i"’Jr—cycles modulo bordism, with addition given by disjoint union.

We now define the end-periodic PSC spin bordism group Qf,f’Spin’+(Bn) for
Bm.

Definition 4.11. An Q"™ _cycle is a quintuple (X, g, o, ¥, f), where X is a
compact oriented Riemannian spin manifold of dimension m + 1 with a metric g of
positive scalar curvature, o is a choice of spin structure on X, y is a cohomology
class in H'(X, Z) whose restriction to each component of X is primitive, and
f : X — B is a continuous map. We further require that there is a submanifold Y
of X that is Poincaré dual to y, such that the induced metric on Y has positive scalar
curvature, and the metric on X is a product metric d¢>+ gy in a neighbourhood of Y.

Let (X, g,0, v, f) be an Qf,f’Spin’Jr—cycle and take Y C X to be a submanifold
with PSC that is Poincaré dual to y, having the product metric in a tubular neigh-
bourhood. As before we form X; = J >0 Wk, where the W are isometric copies
of X cut open along Y. For (X, g, 0, y, }) to be a boundary means that there is a
compact oriented Riemannian spin manifold Z of positive scalar curvature, whose
metric is a product near the boundary, which can be attached to X along Y to form
a complete oriented Riemannian spin manifold of PSC Z,, = Z Uy X, such that
the pulled back spin structure o and map f on X; extend over Z.

The negative of (X, g,0,y, f) is (X, g,0, —y, f), and we have the orienta-
tion/sign relation

(X’ 8,0, Y, f)’\'(—X,g,O’, v, f)

Two Qf,?’Spm’Jr—cycles are bordant if the disjoint union of one with the negative of
the other is a boundary.

Definition 4.12. The m-dimensional end-periodic PSC spin bordism group Qﬁf’Spin’Jr

(Bm) for Bmr consists of Q,C,F’Spin’+—cycles modulo bordism and orientation/sign,
with addition given by disjoint union.
Theorem 4.13. There is a canonical isomorphism Q?,?in’Jr(Bn) = Qﬁf’SPin’Jr(Bﬂ).

The maps are exactly as for the spin bordism theories, only when mapping from
Qﬁf’Spm’Jr(Bn) to Qf,‘,)m’Jr(Bn) the Poincaré dual submanifold ¥ must be taken to
have PSC and a product metric in a tubular neighbourhood.
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Proof. As before. U

4.3. Rho invariants. Given a triple (M, o, f) and two unitary representations oy, 0 :
7w — U(N), we define the rho invariant p (o1, 02 ; M, o, f) as before, using the
spin Dirac operator for the cycle (M, S, f). We also define the end-periodic rho
invariant for cycles (X, o, ¥, f) in an entirely analogous manner, using the end-
periodic eta invariant of MRS instead. Of course, we must again be careful with
the definition, allowing only the rho invariant for cycles whose twisted operators
have discrete spectral sets to be defined in terms of the true end-periodic eta invari-
ants — all others are defined by taking bordant cycles with discrete spectra. We
remark also that in the case of positive scalar curvature, the s-terms appearing in
the definition of the rho invariants vanish.

Theorem 4.14. The rho invariant extends to a well-defined homomorphism
o (01, 02) : QPN(Br) - R/Z,
as does the end-periodic rho invariant
0P (01, 0p) : QPPN(Br) — R/Z.

Furthermore, the following diagram commutes:

QPPN By = QPN(py)

peP(alm Aﬂﬁz)
R/7Z

Proof. Apply the APS and MRS index theorems respectively, and use the isomor-
phism of Theorem 4.8. O

Now for the positive scalar curvature case.

Theorem 4.15. The rho invariant extends to a well-defined homomorphism
o (o1,00) : Qf,fin’Jr(Bn) — R,
as does the end-periodic rho invariant
PP (01, 0n) : QPPF(B) - R,

Furthermore, the following diagram commutes:

Qemp,spin,-i-(Bj_[) ~ Q;};in,-i-(Bn)

Pep(mﬁX‘ Alﬂz)
R
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Figure 4. End-periodic manifold with two ends.

Remark 4.16. The end-periodic rho invariant appearing in the theorem is given on
all representatives of equivalence classes as the genuine difference of the twisted
eta invariants as in formula (3.8), due to Remark 3.11.

For the proof, we will need the following (see [Mrowka et al. 2016, Proposition

8.5 (i)]).

Lemmad.17. If (X, g, 0.y, f)isan Q""" -cycleand (Y, g, o, f) is the 0" -
cycle it maps to, then

pP(o1,00;X,8,0,v, f)=p(o1,02; Y, 8,0, f).

Proof. We join R>g x Y to X; = ;. Wk together as in Figure 4 to form an
end-periodic spin manifold Z,, with two ends. [Mrowka et al. 2016, Lemma 8.1]
(which uses the results of Gromov and Lawson [1983]) gives that the spin Dirac
operator DV (Z,) is Fredholm and has zero index. The same holds for its twisted
counterparts. Applying the MRS index theorem to the two twisted spin Dirac
operators Dfr(Zoo) and D;“ (Zx), and subtracting the equations as per usual then
yields the result. U

Proof of Theorem 4.15. See [Botvinnik and Gilkey 1995, Theorem 1.1] for the
proof that the map p (o1, 02) : Qf,?ln’+(Bn) — R is well-defined. Lemma 4.17 and
the isomorphism of Theorem 4.13 then immediately imply the result. (]

5. End-periodic structure group

Let o1, 0 : 1 — U (N) be unitary representations of the discrete group 7. Recall the
definition of the structure group S (o7, 02) of Higson-Roe, starting from [Higson
and Roe 2010, Definition 8.7].

Definition 5.1. An odd (o1, 02)-cycle is aquintuple (M, S, f, D, n) where (M, S, f)
is an odd K-cycle for Bmr, D is a Dirac operator for (M, S, f), and n € Z.

A (o1, on)-cycle (M, S, f, D, n) is a boundary if the K -cycle (M, S, f) is bounded
by a manifold W (as in Definition 2.3) and there are Dirac operators D (W) and
D> (W) on W which bound the twisted Dirac operators D and D, on M, such that

Indaps D} (W) — Indaps DS (W) = n.
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Since we are no longer looking at rho invariants modulo integers or at spin Dirac
operators, we will denote by p(o1, 02 ; D, f) the rho invariant of Definition 3.2,
indicating its possible dependence on the Dirac operator D.

Lemma 5.2 (Higson and Roe 2010, Lemma 8.10). Ifa (o1, 02)-cycle (M, S, f, D, n)
is a boundary, then p(o1,02; D, f)+n=0.

Definition 5.3. The relative eta invariant, or rho invariant of the (o, 03)-cycle
(M’ S’ f7 D,I’l) is ,0(0’1,0'2; D, f)+n

The disjoint union of (o1, 02)-cycles is defined as,
M, S, f,D,n)UM’, S, f,D',ny=MUM',SUS, fUf,DUD ,n+n').
The negative of a (o1, 0n)-cycle (M, S, f, D, n), is defined as,
—-M, S, f,D,n)=WM,-S, f,—D,h1 —hy —n),

where h; = dimker(D;) and h; = dimker(D;). Two (o1, 02)-cycles are bordant
if the disjoint union of one cycle with the negative of the other is a boundary.
The two remaining relations to define are:

e Direct sum/disjoint union:
M,SeS', f,D®&D',n)~MUM,SUS’, fUf, DUD’, n).

e Bundle Modification: If (ﬂ .S, f ) is an elementary bundle modification of
(M, S, f) with the Dirac operator D from 2.5, then

(M., S, f.D,n)~ (M, S, f,D,n).

Definition 5.4. The structure group S(o1, 02), is the set of equivalence classes
of (o1, 02)-cycles under the equivalence relation generated by bordism, direct
sum/disjoint union, and bundle modification. It is an abelian group with addition
is given by disjoint union.

In [Higson and Roe 2010, Proposition 8.14], it is proved that the relative eta
invariant of a (o1, 02)-cycle depends only on the class that the cycle determines in
S(o1, 02). Hence there is a well-defined group homomorphism p : S(oy, 02) = R,
defined by

p(M,S, f,D,n)=p(o1,02; D, f)+n.

5.1. End-periodic structure group. We define in a parallel manner the end-periodic
structure group S‘fp (o1, 02).

Definition 5.5. An odd (o1, 02)P-cycle is a sextuple (X, S, y, f, D, n) where
(X, S,y, f)is a K®-cycle for Bmr, D is a Dirac operator for (X, S, y, f), and
n € 7. We additionally assume that the spectral set of the family D (X) is discrete.
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A (o1, 02)®P-cycle (X, S, f, v, D, n) is a boundary if the K*P-cycle (X, S, y, f)
is a boundary (Definition 2.10), and moreover there is a Dirac operator D(Z,) on
the manifold Z, extending the Dirac operator D on X; = >0 Wk such that the
difference of the MRS indices -

Indmrs (D] (Zoo)) — Indyirs (D (Zog)) = 1.

Here the D;r (Zo) are the twists of DV (Zs,) by the flat vector bundles determined
by the extension of f to Z and by oy, 0. We can show the analog of Lemma 5.2

Lemma 5.6. Ifa (o1, 02)P-cycle (X, S, y, f, D, n) is a boundary, then
p®P(o1,02; D, f,y)+n=0.
We call the quantity p°P(o, 02 ; D, f, y) + n the end-periodic rho invariant of

the (01, 02)®-cycle (X, S, y, f, D, n).

The disjoint union of (o1, 02)®P-cycles is defined as
X, S, f,y,D,n) (X', Sy, f,D',n)
=(Xux,sus,yuy', fUuf,pub, n+n).
The negative of a (o1, 02)P-cycle (X, S, y, f, D, n), is
X, Sy, f,D.n)=(X,S, -y, f, D, hy —hy—n),

where hp, h; are the integers occurring in the MRS index theorem associated to
o1, 07. Two (o1, 02)P-cycles are bordant if the disjoint union of one with the
negative of the other is a boundary. We also have:

 Direct sum/disjoint union:
X,SeS,y+y' f,D®D ,n)~(XUM,SUS,yUy', fUf,DUD, n).

o Bundle modification: If (X, S, 7, f ) is an elementary bundle modification of
(X, S, y, f) and D is the Dirac operator of Remark 2.5, then

(X,S,y. f,D,n)~(X,8,9. f,D,n).
 Orientation/sign:
(Xa S’ _)/7 f» Dan) N(_Xv H(S)a V, f» Dan)

Definition 5.7. The end-periodic structure group, denoted by Sfp (o1, 02), is the set
of equivalence classes of (a1, 02)°P-cycles under the equivalence relation generated
by bordism, direct sum/disjoint union, bundle modification, and orientation/sign.
It is an abelian group with unit and addition is given by disjoint union.
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Define the group homomorphism p°P : Sfp (o1, 02) = R by the formula

pP(X,S,y, f. D,n) = p®(oy,02; D, f,y)+n.

Then the following theorem is the analog of Theorem 3.15 is proved in a similar
way.

Theorem 5.8. The end-periodic rho invariant p**(X, S, y, f, o1, 02) + n associ-
ated to the (o1, 02)®P-cycle (M, S, y, f, D, n) depends only on the equivalence
class of (M, S, v, f, D,n) in Sfp(al, 02). Hence there is a well-defined group
homomorphism

0P Sfp(al, 07) — R.

Furthermore, the following diagram commutes:

S (01, 02) «——— Si(o1,02)
R

Here the maps

Sfp(Ul, 02) <> Si(01, 02)

are the analog of the maps in K-homologies given earlier.
Also, Higson and Roe establish a commuting diagram of short exact sequences;
see [Higson and Roe 2010], the paragraph below Definition 8.6,

0 ——2Z—— S§i(01,00) — K(Br) ——0

Jz lp lpm,@) 5.1)

0 zZ R R/Z — 0.

By Theorems 5.8 and 3.15, we deduce that there is a commuting diagram of
short exact sequences,

0——=27Z—— S{’(01,00) —= K" (Br) ——=0

\= Lpep lpep(ﬁl,oz) (5.2)

0 Z R R/Z — 0.

This tells us when the R/Z-index theorem can be refined to an R-index theorem.
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6. Applications to positive scalar curvature

Using the above isomorphisms of K-homologies and cobordism theories, we can
immediately transfer results on positive scalar curvature from the odd-dimensional
case to the even-dimensional case in which a primitive 1-form is given.

6.1. Odd-dimensional results in the literature. First we will state the odd-dimen-
sional results that we will be generalising to the even-dimensional case using our
isomorphisms. The first ones are obstructions to positive scalar curvature.

Theorem 6.1 (Weinberger 1988; Higson and Roe 2010, Theorem 6.9). Let (M, S, f)
be an odd K -cycle for Br, where M is an odd dimensional spin manifold with a
Riemannian metric of positive scalar curvature, and S is the bundle of spinors on
M. Then for any pair of unitary representations oy, oy : 1 — U (N), the associated
rho invariant p(o1,02; M, S, f) is a rational number.

Theorem 6.2 (Higson and Roe 2010, Remark 6.10). Let (M, S, f) be an odd K -
cycle for B, where M is an odd dimensional spin manifold with a Riemannian
metric of positive scalar curvature, and S is the bundle of spinors on M. If the
maximal Baum—Connes map for 1 is injective, then for any pair of unitary repre-
sentations oy, 0y : 1 — U(N), the associated rho invariant p(oy,02; M, S, f) is
an integer.

Remarks 6.3. The maximal Baum—Connes map for 7 is injective whenever for
instance 7 is a torsion-free linear discrete group [Guentner et al. 2005].

Theorem 6.4 (Higson and Roe 2010, Theorem 1.1; Keswani 2000). Let (M, S, f)
be an odd K -cycle for B, where M is an odd dimensional spin manifold with
a Riemannian metric of positive scalar curvature, and S is the bundle of spinors
on M. If the maximal Baum—Connes conjecture holds for m, then for any pair of

unitary representations oy, o3 : 1 — U (N), the associated rho invariant p(o1, 07;
M, S, f) is zero.

Remarks 6.5. The maximal Baum—Connes conjecture holds for 7 whenever 7 is
K -amenable.

We now turn to a result on the number of path components of the moduli space
of PSC metrics modulo diffeomorphism, 91" (M). Denote for a group m, the repre-
sentation ring R () consisting of formal differences of finite dimensional unitary
representations, and let Ry(rr) be those formal differences with virtual dimension
zero (an element of Ry(r) can be thought of as an ordered pair of unitary repre-
sentations o1, o : 1 — U (N)). Following Botvinnik and Gilkey [1995], introduce
the subgroups

RE(m) = {a € Ro(r) : tr(w(2)) = £ tr(@(A ")) for all & € )
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and define
ranky R{ (m) ifm=3 mod 4,

ranky Ry (w) ifm=1 mod 4.

rm () = !

The following is a result of Botvinnik and Gilkey on the number of path compo-
nents of the moduli space of PSC metrics modulo diffeomorphism.

Theorem 6.6 (Botvinnik and Gilkey 1995, Theorem 0.3). Let M be a compact con-
nected spin manifold of odd dimension m > 5 admitting a metric of positive scalar
curvature. Suppose that 1 = w1 (M) is finite and nontrivial, and that rp, () > 0.
Then the moduli space of PSC metrics modulo diffeomorphism SR (M) has infin-
itely many path components.

Their proof involves finding a countably indexed family of metrics g; of positive
scalar curvature on M so that p(M, g;) # p(M, g;) for i # j. If these metrics
were homotopic through PSC metrics, then they would lie in the same PSC bor-
dism class and hence have equal rho invariants. We will extend this result to the
even-dimensional case under the additional hypothesis of “psc-adaptability”; see
Definition 6.11.

6.2. Our even-dimensional results. In the following theorems, we assume that Y
is a submanifold of X that is Poincaré dual to a primitive class y € H (X, 2)
such that the scalar curvature of Y in the induced metric is positive. In fact, the
theorems even hold under the weaker hypothesis that the induced metric on Y is
conformal to a metric of positive scalar curvature. By a theorem of [Schoen and
Yau 1979], if dim(X) = n < 7, then every homology class in H,_;(X, Z) has a
representative that is a smooth, orientable minimal hypersurface. It follows that if
X is spin with positive scalar curvature, then a Poincaré dual to a primitive class
y € H'(X, Z) can be chosen to be a smooth, spin minimal hypersurface Y, such
that the induced metric on Y is conformal to one of positive scalar curvature. So
this weaker assumption is automatically true when dim(X) =n <7.
The following is our even-dimensional analog of Theorem 6.1.

Theorem 6.7. Let (X, S, y, f) be an odd KP-cycle for Br, where X is an even-
dimensional spin manifold with a Riemannian metric of positive scalar curvature,
S is the bundle of spinors on X and y a primitive class in H' (X, Z) such that there
is a Poincaré dual submanifold Y whose scalar curvature in the induced metric
is positive. Then for any pair of unitary representations o1, 0p : 1 — U(N), the
associated end-periodic rho invariant p°® (01,07 ; X, S, y, f) is a rational number.

Proof. The odd K®P-cycle for Br, (X, S, v, f) determines an odd K-cycle for
Bm, (Y, ST, f) where Y is a Poincaré dual submanifold for y having positive
scalar curvature, and is given the induced spin structure from X. By Theorem 6.1,
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p(o1,02;Y, ST, f)€Q. By Theorem 3.15 it follows that p*P (01, 02 ; X, S, y, f) €
Q as claimed. O

Next is our even-dimensional analog of Theorem 6.2, and is argued as above.

Theorem 6.8. Let (X, S, y, f) be an odd KP-cycle for Br, where X is an even-
dimensional spin manifold with a Riemannian metric of positive scalar curvature,
S is the bundle of spinors on X and y a primitive class in H' (X, Z) such that there
is a Poincaré dual submanifold Y whose scalar curvature in the induced metric is
positive. If the maximal Baum—Connes map for w is injective, then for any pair
of unitary representations oy, 0 : 1 — U(N), the associated end-periodic rho
invariant p** (o1, 07 ; X, S, vy, f) is an integer.

Proof. As for Theorem 6.7. (I
Here is the even-dimensional analog of Theorem 6.4.

Theorem 6.9. Let (X, S, v, f) be an odd K*P-cycle for Br, where X is an even-
dimensional spin manifold with a Riemannian metric of positive scalar curvature,
S is the bundle of spinors on X and y a primitive class in H' (X, Z) such that there
is a Poincaré dual submanifold Y whose scalar curvature in the induced metric is
positive. If the maximal Baum—Connes conjecture holds for 1, then for any pair
of unitary representations oy, 0, : 1 — U(N), the associated end-periodic rho
invariant p*(o1,00; X, S, y, f) is zero.

Proof. The odd K *P-cycle for Br, (X, S, v, f) determines an odd K -cycle (Y, ST, f)
for B, where Y is a Poincaré dual submanifold for y having positive scalar cur-
vature, and is endowed with the induced spin structure. By Theorem 6.4,

p(017027 Ya S+’ f) :0
By 4.17 it follows that p®(ay, 02; X, S, y, f) =0. O

Example 6.10. Although p-invariants are difficult to compute, nevertheless thanks
to many authors, there is now a decent set of computations that are available. We
can use these to compute end-periodic rho invariants, which we will show in a
simple example. Consider ¥ = S' with the trivial spin structure. Then unitary
characters o1, 0, of the fundamental group of S! can be identified with real num-
bers, and a computation (see [Gilkey 1984b, p. 82]) says that the rho invariant of the
spin Dirac operator is p(S!, o1, 02) = 01 — 02 mod Z. In particular, p(S', o1, 02)
can take on any real value mod Z. Let W be a spin cobordism from S! to S!,
and ¥ be the compact spin Riemann surface (whose genus is > 1) obtained as a
result of gluing the two boundary components of W. Then S' is a codimension
one submanifold of X that represents a generator a of m{(X). We can extend the
characters o7, 03 of aZ to all of 1 (X) by declaring them to be trivial on the other
generators. Then by Theorem 3.15, it follows that p*P(%, y, 01, 02) = 01 — 0
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mod Z, can take on any real value mod Z, where y is the degree one cohomology
class on ¥ which is Poincaré dual to S'. We conclude by Theorem 6.7 that the
Riemann surface ¥ does not admit a PSC metric. This of course can also be proved
by the Gauss—Bonnet theorem and is well-known.

The construction generalises easily to any odd dimensional spin manifold ¥ with
nonzero rho invariant p (Y, oy, 02) # 0 mod Z. We conclude by Theorem 3.15 that
the resulting even dimensional spin manifold X constructed from a spin cobor-
dism from Y to itself, has nonzero end-periodic rho invariant p°? (X, y, o1, 02) #
0 mod Z, where y is the degree one cohomology class on X which is Poincaré
dual to the submanifold Y. In particular, such an X does not admit a PSC metric.
Examples of Y include odd-dimensional lens spaces L(p; ), where it is shown
in [Gilkey 1984a, Theorem 2.5, part (c)], that for any spin structure on L(p; q),
there is a representation o of 71 (L(p; q)) such that p(L(p; g),1d, 0) #0 € Q/Z.
Explicitly, for 3 dimensional lens spaces L(p, g), consider the representation o :
71(L(p; q)) — U(1) taking the generator ¢ € 71 (L(p; q)) to the unit complex num-
ber exp(2m+/—1/p). Then p(L(p; q),1d, o) = —(d/2p)(p+1) #0 € Q/Z where
d is a certain integer relatively prime to 48p. Then p*?(X, y,1d, o) # 0 € Q/Z.
These results confirm Theorem 6.7 in these examples.

6.3. Size of the space of components of positive scalar curvature metrics. Hitchin
[1974] proved the first results on the size of the space of components of the space
of Riemannian metrics of positive scalar curvature metrics on a compact spin
manifold, when nonempty. This sparked much interest in the topic and results
by Botvinnik—Gilkey, Piazza—Schick and many others.

We now extend Theorem 6.6 to the even-dimensional case. We would like to
say something like “Given an even-dimensional manifold X with PSC having a
submanifold ¥ of PSC Poincaré dual to a primitive one-form y, if D™ (Y) has
infinitely many path components then so does 9% (X).” The argument would
involve using a countable family of PSC metrics on Y with distinct rho invariants
to find a countable such family on X. There are complications however, since given
an arbitrary PSC metric on Y, there is not necessarily a PSC metric on X whose
restriction to Y is the given metric. Because we are already assuming that there is
at least one PSC metric on X which restricts to a metric of PSC on Y, there are no
obstructions from topology preventing this from being the case.

Definition 6.11. Let X be a compact even-dimensional manifold, and y € H' (X, Z)
a primitive cohomology class with accompanying Poincaré dual submanifold Y.
Suppose that there is at least one PSC metric on X which restricts to a PSC metric
on Y. We say that X is psc-adaptable with respect to Y if for every PSC metric gy
on Y, there is a PSC metric gx on X that is a product metric d¢> 4 gy in a tubular
neighbourhood of Y.
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‘ -

Figure 5. Pushing a PSC metric across W using the Miyazaki—
Rosenberg construction.

Figure 6. Obtaining a psc-adaptable manifold through a symmetric bordism.

Some notes and comments on the notion of psc-adaptability. Let X and Y be
as in the above definition, and take an arbitrary PSC metric gy on Y. Cutting X
open along Y, we obtain a self cobordism W of Y; see Figure 5. Under suitable
assumptions on the topology of X and Y, a construction of Miyazaki [1984] and
Rosenberg [1986] (using the theory of Gromov and Lawson [1980a] and Schoen
and Yau [1979]) enables one to push the PSC metric on Y across the bordism
(pictured on the right in the figure) to get a PSC metric on W restricting to metrics
of PSC on each boundary component. One might then try to glue the manifold
back together to obtain a PSC metric on X which restricts to the given metric gy
on Y. The problem is that one doesn’t know whether the new psc metric on Y is
isotopic to the original. Hence the concept of psc-adaptability which hypothesizes
that this is true. It is the case when the bordism is symmetric for instance. That
is, starting with a bordism W’ from Y to Y’, we get a bordism from Y to itself by
thinking of W’ as a bordism from Y’ to Y and gluing to the original bordism; see
Figure 6.

Then one can use the Miyazaki—Rosenberg construction starting with the PSC
metric g on Y to get another PSC metric on Y’ halfway through, and then reverse
the Miyazaki—Rosenberg construction from the PSC metric on the halfway Y’ to
get a PSC metric g’ on Y on the other end, which isotopic to the original PSC
metric g on Y. Considering a small cylinder over Y, and using the fact that isotopy
implies concordance, see [Gromov and Lawson 1980a, Lemma 3], we can further
push g’ to g. Since the metrics agree on either end, the bordisms can be glued
together.
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Mrowka, Ruberman and Saveliev also note a class of psc-adaptable manifolds —
those of the form (S! x Y)#M where Y and M are manifolds of positive scalar cur-
vature; see [Mrowka et al. 2016, Theorem 9.2]. The end-periodic bordism groups
provide a more natural framework for their proof of the following:

Theorem 6.12 (Mrowka et al. 2016, Theorem 9.2). Let X be a compact even-
dimensional spin manifold of dimension > 6 admitting a metric of positive scalar
curvature. Suppose there is a submanifold Y C X of PSC that is Poincaré dual
to a primitive cohomology class y € H' (X, Z), such that m = m\(Y) is finite and
nontrivial. Further assume that the classifying map f : Y — Bm of the universal
cover extends to X, and that X is psc-adaptable with respectto Y. If ry,, (1 (Y)) > 0,
then wo(INT (X)) is infinite, where MM+ (X) denotes the quotient of the space of
positive scalar curvature metrics by the diffeomorphism group.

Proof. In the terminology of Section 4, we have an Q,e,f)’Spin’Jr(Bn)—cycle (X, g, o0,
v, f), with associated 0™ (Br)-cycle (Y, g, o, f). Botvinnik and Gilkey [1995]
construct a representation « : 1 — U(N) of 7w and a countable family of metrics
gi on Y with

p((x,1;Y,gl-,a,f);ép(oz,l;Y,gj,o,f)

fori # j, where 1 : m# — U(N) is the trivial representation. Our assumption of
psc-adaptability and Theorem 4.15 imply there is a countable family of metrics g;
on X with

PP, 1; X, g0y, f)#p, 1;X,gj.0,v, f)

for i # j. But [Mrowka et al. 2016, Theorem 9.1] says that homotopic metrics of
PSC on X should have the same rho invariants. O

7. Vanishing of end-periodic rho using the representation variety

In this section we give a proof of the vanishing of the end-periodic rho invariant
of the twisted Dirac operator with coefficients in a flat Hermitian vector bundle
on a compact even-dimensional Riemannian spin manifold X of positive scalar
curvature using the representation variety of 71 (X) instead.

Let¢: Y — X be a codimension one submanifold of X which is Poincaré dual
to a generator y € H' (X, 7).

Let R = Hom(zr, U (N)) denote the representation variety of 7 = m;(Y), and
R denote the representation variety of 71(X). We now construct a generalisation
of the Poincaré vector bundle % over Br x R. Let Emx — B be a principal
m-bundle over the space B with contractible total space Ex. Let h: Y — Bn
be a continuous map classifying the universal -covering of Y. We construct a
tautological rank N Hermitian vector bundle % over B x ‘R as follows: consider
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the action of w on Emr x 9% x CV given by
Ex xRAxCNxm— Ex xRxCV, ((g,0,v), 1) —> (g1, 0, a(r_l)v).

Define the universal rank N Hermitian vector bundle % over Bm x R to be the
quotient (E7 x R x CV) /. Then % has the property that the restriction 2| x (o}
is the flat Hermitian vector bundle over Br defined by o. Let I denote the closed
unit interval [0, 1] and B : I — R be a smooth path in R joining the unitary
representation « to the trivial representation. Define E = (f x 8)*® — Y x [ to
be the Hermitian vector bundle over Y x I, where f: Y — B is the classifying
map of the universal cover of Y. Let E;, — Y x {t} denote the restriction of E to
Y x {t}. Then E, is the flat unitary Hermitian vector bundle over Y determined by
the unitary representation 8(¢) of w. Thus E has a natural flat unitary connection,
whose restriction on each E;, t € [ is the flat unitary connection, which can be
extended to a full U (n)-connection VE on Y x I, which amounts to giving an
action of d/0d¢, or equivalently of identifying E with a bundle pulled back from Y.
With such a choice of connection, it follows that the curvature of E is a multiple of
dt, and so the only nonzero component of the Chern character form ch(VE) — N
is the first Chern form «; A dt in dimension 2, where «; is a closed 1-form on Y,
whose cohomology class « = [o;] € H! (Y, R) = H!(Bm, R) is independent of
tel.

Theorem 7.1 (PSC and vanishing of end-periodic rho). Let (X, g) be a compact
spin manifold of even dimension, and let .: Y — X be a codimension one sub-
manifold of X which is Poincaré dual to a primitive class y € H' (X, Z). Suppose
that

(1) g is a Riemannian metric of positive scalar curvature;

(2) the restriction g|y is also a metric of positive scalar curvature.

Let @ : w — U (N) be a unitary representation of 1 =mw(X),ando: w — U(N)
be the unitary representation of 1 = w1 (Y) defined by & o 1. Assume that « can
be connected by a smooth path  : I — R to the trivial representation in the
representation space *R.

Then pP(X, S, v, g; a, 1) =0, where the flat hermitian bundle Eg is determined
by a.

Proof. As observed above, the unitary connection V£ induced on E has curvature
which is a multiple of d¢, so that the Chern character form ch(VE) = N +a, Adt,
where a; A dt is the first Chern form of the connection on E and ¢ is the variable
on the interval 7. It follows that ch(E) = N + « A dt where « € H'(Y, R) is
the cohomology class of o Consider the integrand f YxI A(Y x I)ch(E). Since
A(Y x 1) = A(Y ), where A(Y) is the A-hat characteristic class of Y. From the
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- MMMM I: " [0’1] (Y ‘: W mmm ‘: -
H i W ;

Figure 7. End-periodic manifold with 2 ends.

discussion above

/ A\(Y)ch(E):/ X(Y)a/dt.
YxI Y 1

Since (Y, g) is a spin Riemannian manifold of positive scalar curvature, it follows
from [Gromov and Lawson 1980b, Theorem 2.1] that fY ;\\(Y ) f*(x) = 0 for all
x € H'(Br,R) = H' (Y, R).

Therefore we conclude that f YxI A (Y)ch(E) =0.

Consider the manifold ¥ x /. It can be made into an end-periodic manifold with
two ends as follows. Let W be the fundamental segment obtained by cutting X open
along Y, and W be isometric copies of W. Then we can attach X| = Uk>0 Wi
to one boundary component of ¥ x I and Xo = J,_, Wk to the other bouﬁdary
component. Call the resulting end-periodic manifold Z, (see the Figure 7). It is
clear that Z, is diffeomorphic to X, the cyclic Galois cover of X corresponding
to y. Let fo = —f and f; = f for a choice of real-valued function f on Z, such
that y = [df].

The flat hermitian bundle E; over X induces a flat hermitian bundle p*(Ejy)
over X, where p: X — X is the projection. The restriction of p*(Ej) to the subset
X is denoted by E;. Let E( denote the trivial bundle over Xy. We use the smooth
path y to define the bundle E over Y x I which has the property that the restriction
of E to the boundary components agree with Ey and E1, thereby defining a global
vector bundle E over Zoo.

We can apply Theorem C in [Mrowka et al. 2016] to see that

index(D(Zoo)) :/ A(Y x I) ch(E)
YxI

—/w+/ df/\a)—%(hl-i‘ﬂep(X, E&’va))

Y X

+/a)—/ df Ao —L((ho = nep(X, Eia 7. 9))
Y X

Since g and g|y are metrics of positive scalar curvature by hypothesis, it follows
that index(DjEr (Z~)) =0 Dby [Mrowka et al. 2016, Lemma 8.1] and that fY><1 A\(Y X
I)ch(E) = 0 by the earlier argument. Therefore p’(X, S, y,g; &, 1) = 0 as
claimed. U
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