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The Topological Period-Index Conjecture is a hypothesis which relates the pe-
riod and index of elements of the cohomological Brauer group of a space. It was
identified by Antieau and Williams as a topological analogue of the Period-Index
Conjecture for function fields.

In this paper we show that the Topological Period-Index Conjecture holds and
is in general sharp for spinc 6-manifolds. We also show that it fails in general for
6-manifolds.

1. Introduction

This paper is about the Topological Period-Index Problem (TPIP), which was iden-
tified by Antieau and Williams [2014a; 2014b] as an important analogue of period-
index problems in algebraic geometry. We give a brief introduction to the TPIP
and refer the reader to [Antieau and Williams 2014a; 2014b] for more information.

Let X be a connected space with the homotopy type of a finite CW -complex.
The cohomological Brauer group of X is defined to be the torsion subgroup of its
third integral cohomology group:

Br′(X) := T H 3(X).

Here and throughout integer coefficients are omitted. For α ∈ Br′(X), the period
of α is defined to be the order of α,

per(α) := ord(α).

Let PU (n) :=U (n)/U (1) be the n-dimensional projective unitary group, which
is the quotient of the unitary group U (n) by its centre. By a theorem of Serre
[Grothendieck 1968, Corollaire 1.7], every class α ∈ T H 3(X) arises as the ob-
struction to lifting the structure group of some principal PU (n)-bundle P→ X to
the group U (n). In this case one writes α = δ(P) and defines the index of α by

ind(α) := gcd(n : α = δ(P) for a PU (n)-bundle P),
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so that the index defines the homotopy-invariant function

ind : T H 3(X)→ Z, α 7→ ind(α).

From the definitions, one sees that per(α) | ind(α) and by [Antieau and Williams
2014a, Theorem 3.1] the primes dividing per(α) and ind(α) coincide. The TPIP is
the problem of relating the index of a class α to its period and properties of X , like
its dimension.

To investigate the TPIP, Antieau and Williams [2014b, Straw Man] formulated
what is often called the Topological Period-Index Conjecture (TPIC) for X :

TPIC. If X is homotopy equivalent to a CW -complex of dimension 2d and if α is
an element of Br′(X), then

ind(α) | per(α)d−1.

Warning. The TPIC should be regarded as a hypothesis for investigating the TPIP
and not as a conjecture, in the usual sense of the word.

Indeed, while the obstruction theory developed by Antieau and Williams [2014b,
Theorem A] shows that the TPIC holds for any 4-dimensional complex, they also
prove that the TPIC fails in general for 6-dimensional complexes, but at most by a
factor of two.

Theorem 1.1 (cf. [Antieau and Williams 2014b, Theorems A and B]). Let X be a
6-dimensional CW -complex, α ∈ Br′(X) have period n, and set ε(n) := gcd(n, 2).
Then ind(α) | ε(n)n2.

Moreover, if X is a 6-skeleton of the Eilenberg–Mac Lane space K (Z/2, 2) and
we take the generator α ∈ H 3(X) = Z/2 (so that per(α) = 2), then ind(α) = 8 >
per(α)2.

An important motivation for Antieau and Williams in identifying the TPIC was
the Algebraic Period-Index Conjecture (APIC) which was identified in the work
of Colliot-Thélène [2002]. This is a statement in algebraic geometry concerning
the Brauer group of certain algebras A. When A = C(V ) is the function field
of a smooth complex variety V , then the APIC for C(V ) implies the TPIC for V .
When the variety V has complex dimension d = 1, the APIC is trivially true, it was
proven for d = 2 by de Jong [2004], and for d ≥ 3 we have the Antieau–Williams
alternative:

(A) either there exits a V violating the TPIC, in which case the APIC fails in
general,

(B) or every V satisfies the TPIC (in which case we have identified an a priori
new topological property of smooth complex varieties).
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In this paper we show that for d = 3 the latter statement holds. This may be
regarded as evidence for the APIC in complex dimension 3.

A smooth complex projective variety V is in particular a manifold: here and be-
sides Remark 1.9, we use the word “manifold” to mean “closed smooth manifold”.
Recall that a manifold M admits a spinc structure if it is orientable and the second
Stiefel–Whitney class of M has an integral lift. For example, every variety V as
above admits a spinc structure. More generally, it is well known that a 6-manifold
admits a spinc structure if and only if it admits an almost complex structure (as can
be easily deduced from results in [Massey 1961]).

Theorem 1.2. The Topological Period-Index Conjecture holds for spinc 6-manifolds.

As we explain in Section 2, Theorem 1.2 is an elementary consequence of results
of Antieau and Williams [2014b] and:

Theorem 1.3. Let N be a closed spinc 6-manifold and let x ∈ H 2(N ;Z/2). Then
there exists a class ex ∈ H 2(N ) such that

βZ/2(x2)= βZ/2(x)ex ∈ H 5(N ),

where βZ/2
: H∗(N ;Z/2)→ H∗+1(N ) denotes the mod 2 Bockstein.

To discuss the TPIP further for 6-manifolds we recall that Teichner [1995] has
already constructed orientable 6-manifolds N with x ∈ H 2(N ;Z/2) such that
βZ/2(x2) 6= 0. The manifolds in Teichner’s examples are all the total-spaces of
2-sphere bundles over 4-manifolds, where the class x restricts to a generator of
H 2(S2

;Z/2). We call pairs (N , x) coming from Teichner’s examples Teichner
pairs (see Definition 5.3) and investigating their construction we prove:

Theorem 1.4. For a Teichner pair (N , x), let α := βZ/2(x) ∈ T H 3(N ).

(1) If the base 4-manifold of a Teichner pair (N , x) is orientable, then N is spinc,
per(α)= 2, and ind(α)= 4.

(2) There exist Teichner pairs (N , x) over nonorientable 4-manifolds where we
have per(α)= 2 but ind(α)= 8.

Summarising Theorems 1.2 and 1.4 we obtain the following result on the TPIP
for 6-manifolds.

Theorem 1.5. The TPIC fails in general for 6-manifolds but it holds and is in
general sharp for spinc 6-manifolds.

Remark 1.6. One may view Theorem 1.3 as giving a cohomological obstruction to
a closed 6-manifold admitting a spinc structure. For instance, we do not currently
know how to prove that the Teichner manifold N appearing in Theorem 1.4(2) (and
Proposition 5.9) is not spinc, except by invoking Theorem 1.3.
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Remark 1.7. The nonvanishing of βZ/2(x2) ∈ H 5(N ) is related to various nonre-
alisability phenomena, for which the examples in [Teichner 1995] are of minimal
dimension. For example, βZ/2(x2) vanishes if x ∈ H 2(N ;Z/2) can be realised
as the second Stiefel–Whitney class w2(E) of some real vector bundle E over N ,
since w2(E)2 is the mod 2 reduction of the integral class p1(E), the first Pontrjagin
class.

It is a classical result of Thom [1954] that βZ/2(x2) vanishes if the Poincaré
dual of x in H4(N ;Z/2) is realised as the fundamental class of an embedded 4-
manifold in N . More recently, in [Grant and Szűcs 2013] the second author and
Szűcs showed that βZ/2(x2) vanishes if the Poincaré dual of x is realised by the
fundamental class of an immersion of a 4-manifold in N and more precisely that
the Poincaré dual of βZ/2(x2) is realised by the singular set of a generic smooth
map realising the Poincaré dual of x . Notwithstanding Remarks 1.6 and 1.8, the
geometric significance of the condition βZ/2(x2) /∈ βZ/2(x)H 2(N ) appearing in
Section 2 remains somewhat mysterious.

Remark 1.8. The TPIP also arises in twisted K -theory, where classes α ∈ T H 3(X)
define the twisting used to define the K -groups, K ∗α(X), of α-twisted vector bun-
dles over X [Donovan and Karoubi 1970]. For α ∈ T H 3(X) and i : ∗ → X the
inclusion of a point, by [Antieau and Williams 2014a, Proposition 2.21], we have

i∗(K 0
α(X))= ind(α)K 0(∗)= ind(α)Z.

Hence ind(α) is the index of the intersection
⋂
∞

i=1 Ker(di ) ⊆ H 0(X; K 0) ∼= Z,
where di : H 0(X; K 0)→ H i (X; K i−1) is the i-th differential in the twisted Atiyah–
Hirzebruch spectra sequence computing K ∗α(X).

This perspective is behind the index formula [Antieau and Williams 2014b, The-
orem A], which we use in Section 2, and also the recent work of Gu [2019] on
the TPIP for 8-complexes. Gu shows that the 3-primary TPIP for 8-complexes
involves controlling βZ/3(x3)/βZ/3(x)H 4(X) for classes x ∈ H 2(X;Z/3), just as
the TPIP for 6-complexes involves controlling βZ/2(x2)/βZ/2(x)H 2(X) for classes
x ∈ H 2(X;Z/2). We expect that the methods of this paper involving the integrality
of Wu classes and the bilinear algebra of the subsection beginning on page 613
will generalise to combine with the work of Gu and prove the TPIC for odd-order
Brauer classes over orientable 8-manifolds.

Remark 1.9. It is natural to wonder whether the singular spaces Z underlying sin-
gular complex 3-dimensional projective varieties satisfy the TPIC. In this direction,
we note that the complement of the singular set in Z can often be compactified to
give a spinc manifold with boundary (N , ∂N ). The arguments of this paper can be
generalised to prove that if (N , ∂N ) is a compact spinc manifold with boundary
where the first Chern class of N vanishes on ∂N and T H1(∂N )⊗Z/2 = 0, then
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the TPIC holds for quotients N/∂N . As a consequence we believe that the TPIC
holds for singular spaces underlying certain complex 3-dimensional varieties with
isolated conical singularities.

Organisation. The rest of this paper is organised as follows. In Section 2 we prove
Theorem 1.2 assuming Theorem 1.3. In Section 3 we establish some preliminary re-
sults about linking pairings and bilinear forms. In Section 4 we prove Theorem 1.3
and in Section 5 we discuss Teichner’s examples and prove Theorem 1.4.

2. The Topological Period-Index Conjecture for spinc 6-manifolds

In this section we prove that the Topological Period-Index Conjecture holds for
spinc 6-manifolds. This is an elementary consequence of Theorem 1.3 and results
in [Antieau and Williams 2014b].

Let α ∈ Br′(X)= T H 3(X) with ord(α)= n and let

βZ/n
: H∗(X;Z/n)→ H∗+1(X)

be the mod n Bockstein, which lies in the exact sequence

H∗(X;Z/n)
βZ/n

−−→ H∗+1(X)
×n
−→ H∗+1(X).

As ord(α)= n, we see that α = βZ/n(ξ) for some ξ ∈ H 2(X;Z/n). We consider
the Pontrjagin square

P2 : H 2(X;Z/2m)→ H 4(X;Z/4m)

and following Antieau and Williams define Q̃(ξ) ∈ H 5(X)/αH 2(X) by the equa-
tion

Q̃(ξ) :=
{
[βZ/n(ξ 2)] n is odd,
[βZ/2n(P2(ξ))] n is even,

where [γ ] ∈ H 5(X)/αH 2(X) denotes the coset of γ ∈ H 5(X). By [Antieau and
Williams 2014b, Theorem A], the element Q̃(ξ) depends only on α and when X
is a 6-dimensional CW-complex,

ind(α)= ord(Q̃(ξ)) per(α).

Hence to verify the Topological Period-Index Conjecture in dimension 6, it suffices
to show that ord(Q̃(ξ)) | n, i.e., nQ̃(ξ)= 0. For this we consider the commutative
diagram

H 2(X;Z/2k)

ρ2
��

βZ/2k
// H 3(X)

×k
��

H 2(X;Z/2)
βZ/2

// H 3(X)
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where ρ2 denotes reduction modulo 2 and the diagram commutes as a consequence
of the commutative diagram of coefficient short exact sequences

Z

×k
��

×2k
// Z

=

��

ρ2k
// Z/2k

ρ2

��

Z
×2
// Z

ρ2
// Z/2

Hence for all ξ ∈ H 2(X;Z/2k) we have the equation

βZ/2(ρ2(ξ))= kβZ/2k(ξ). (2.1)

Proof of the Topological Period-Index Conjecture for spinc 6-manifolds. Let (N , c1)

be a spinc 6-manifold and α ∈ Br′(N ) have order n, and choose ξ ∈ H 2(N ;Z/n)
such that α = βZ/n(ξ). If n is odd, then nQ̃(ξ) = 0 and so by [Antieau and
Williams 2014b, Theorem A(3)] the Topological Period-Index Conjecture holds
for α. If n = 2m, then set

x := ρ2(ξ) ∈ H 2(N ;Z/2).

By Theorem 1.3, there is a y ∈ H 2(N ) such that βZ/2(x2)= βZ/2(x)y. Applying
(2.1) we obtain

βZ/2(x2)= βZ/2(x)y = mβZ/2m(ξ)y = mαy ∈ αH 2(N )⊆ H 5(N ) (2.2)

and so [βZ/2(x2)] = 0 ∈ H 5(N )/αH 2(N ). Applying (2.1) and (2.2) we obtain

2m Q̃(ξ)= 2m[βZ/4m(P2(ξ))] = [2mβZ/4m(P2(ξ))]

= [βZ/2(ρ2(P2(ξ)))] = [β
Z/2(x2)] = 0,

where the second to last equality holds since P2 satisfies ρ2m(P2(ξ))= ξ
2, where

ρ2m denotes reduction to modulo 2m. �

3. Linking pairings and bilinear forms

In this section we establish some elementary results used in the proof of Theorem 1.3.

Some properties of Bockstein homomorphisms. For a space X and a positive in-
teger n recall that

βZ/n
: H∗(X;Z/n)→ H∗+1(X)

is the Bockstein associated to the coefficient sequence Z→ Z
ρn
−→ Z/n.

Lemma 3.1. Let x ∈H∗(X;Z/n) and y∈H i (X), and consider xy∈H∗+i (X;Z/n).
Then

βZ/n(xy)= βZ/n(x)y.
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Proof. Let y ∈ C i (X) be a cocycle representative for y and ρn denote reduction
modulo n, and consider the commutative diagram below, in which the rows are
short exact sequences of chain complexes:

0 // C∗(X)
×n

//

∪y
��

C∗(X)
ρn

//

∪y
��

C∗(X;Z/n) //

∪ρn(y)
��

0

0 // C∗+i (X)
×n
// C∗+i (X)

ρn
// C∗+i (X;Z/n) // 0

Observe that the vertical arrows are chain maps, since the coboundary is a deriva-
tion and y is a cocycle. The result now follows from the naturality of connecting
homomorphisms. (Compare to [Brown 1982, Chapter V, §3.3].) �

We also consider the Bockstein homomorphism

βQ/Z
: H∗(X;Q/Z)→ H∗+1(X),

which is associated to the coefficient sequence Z→Q
π
−→Q/Z. Let

ιn : Z/n→Q/Z

be the inclusion defined by sending [1] ∈ Z/n to
[ 1

n

]
and also write

ιn : H∗(X;Z/n)→ H∗(X;Q/Z)

for the map on homology induced by ιn . The commutative diagram of coefficient
sequences

Z

=

��

×n
// Z

×
1
n

��

// Z/n

ιn

��

Z // Q // Q/Z

gives rise to the equality

βZ/n
= βQ/Z

◦ ιn : H∗(X;Z/n)→ H∗+1(X). (3.2)

The linking pairings of an oriented manifold. Let G and H be finite abelian
groups. Recall that a bilinear pairing

φ : G× H →Q/Z

is called perfect if g= 0∈G if and only if φ(g, h)= 0 for all h ∈ H and h = 0∈ H
if and only if φ(g, h)= 0 for all g ∈ G.

Remark 3.3. A useful property of perfect pairings, which we leave for the reader
to verify, is that h1 = h2 ∈ H if and only if φ(g, h1)= φ(g, h2) for all g ∈ G. An
analogous statement holds for g1, g2 ∈ G.
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Now let M be a closed, connected, oriented m-manifold with [M] ∈ Hm(M) the
fundamental class of M . For each k = 2, . . . ,m − 2, the linking pairing of M is
the pairing

bM : T H k+1(M)× T H m−k(M)→Q/Z, ( f, y) 7→ bM( f, y) := 〈 f̃ y, [M]〉,

where f̃ ∈ H k(M;Q/Z) is any class such that βQ/Z( f̃ )= f . The pairing bM is well
defined because if f̃ ′ is some other lift of f , then f̃ − f̃ ′ itself lifts to H k(M;Q)
and then 〈 f̃ y, [M]〉− 〈 f̃ ′y, [M]〉 = 〈( f̃ − f̃ ′)y, [M]〉 = 0, since y is torsion.

Lemma 3.4. The linking pairing bM : T H k+1(M) × T H m−k(M) → Q/Z is a
perfect pairing such that for all w ∈ H k(M;Z/n) and all y ∈ T H m−k(M)

bM(β
Z/n(w), y)= ιn(〈wy, [M]〉).

Proof. That bM is perfect is well known. The case m = 2k+1 is part of [Davis
and Kirk 2001, Exercise 55]. The general case follows from results in [Seifert and
Threlfall 1934]. Since we did not find a definitive reference in the literature, we
give a proof below.

For a finite abelian group G, let G∧ := Hom(G,Q/Z) denote the torsion dual
of G. A pairing φ : G× H →Q/Z of finite abelian groups induces adjoint homo-
morphisms φ̂ : H→G∧, h 7→ [g 7→φ(g, h)] and φ̂′ :G→ H∧, g 7→ [h 7→φ(g, h)],
and it is easily checked that φ is perfect if and only if either one of φ̂ or φ̂′ is an
isomorphism.

Standard properties of cup and cap products give 〈 f̃ y, [M]〉 = 〈 f̃ , y ∩ [M]〉.
Hence the adjoint homomorphism of bM ,

b̂M : T H m−k(M)→ T H k+1(M)∧, y 7→ [ f 7→ bM( f, y)= 〈 f̃ , y ∩ [M]〉],

is equal to the composition φ̂M ◦ P D, where P D : T H m−k(M)→ T Hk(M) is the
Poincaré duality isomorphism and φ̂M : T Hk(M)→ T H k+1(M)∧ is an adjoint of
the pairing

φM : T H k+1(M)× T Hk(M)→Q/Z, ( f, b) 7→ 〈 f̃ , b〉,

for f̃ ∈ H k(M;Q/Z) a lift of f . Hence it suffices to prove that φ̂M is an isomor-
phism or equivalently that the other adjoint φ̂′M : T H k+1(M)→ T Hk(M)∧ is an
isomorphism. Since the finite groups T H k+1(M) and T Hk(M)∧ have the same
order by the universal coefficient theorem, it suffices to show that φ̂′M is injective.

Suppose that φ̂′M( f )= 0 and let f̃ ∈ H k(M;Q/Z) be a lift of f . Then for all
b ∈ T Hk(M)

〈 f̃ , b〉 = 0 ∈Q/Z.
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Since Q/Z is an injective Z-module, another application of the universal coefficient
theorem gives

H k(M;Q/Z)∼= Hom(Hk(M),Q/Z)∼= T Hk(M)∧⊕Hom(F Hk(M);Q/Z),

where F Hk(M) := Hk(M)/T Hk(M). With respect to the above decomposition
we have f̃ = (0, z̄) for some z̄ ∈ Hom(F Hk(M);Q/Z). Now z̄ can be lifted to
z ∈ H k(M;Q) so that f̃ −π(z)= 0 but then f = βQ/Z( f̃ )= βQ/Z( f̃ −π(z))= 0
and so φ̂′M is injective.

The second statement follows directly from the definition of bM and (3.2). �

Bilinear forms over Z/2. In this subsection we establish a basic fact about sym-
metric bilinear forms over Z/2. Let V be a finitely generated (Z/2)-vector space
and let

λ : V × V → Z/2

be a symmetric bilinear form on V . If V ∗ :=Hom(V,Z/2) is the dual vector space
to V , then the adjoint homomorphism of λ is the homomorphism

λ̂ : V → V ∗, v 7→ (w 7→ λ(v,w)).

The form (λ, V ) is nonsingular if λ̂ : V → V ∗ an isomorphism. Notice that the
map

γ (λ) : V → Z/2, v 7→ λ(v, v)

is linear since

λ(v+w, v+w)= λ(v, v)+ λ(v,w)+ λ(w, v)+ λ(w,w)

= λ(v, v)+ 2λ(v,w)+ λ(w,w)= λ(v, v)+ λ(w,w).

Thus γ (λ) ∈ V ∗.

Lemma 3.5. For all λ, γ (λ) ∈ Im(λ̂).

Proof. For the orthogonal sum of bilinear forms, λ0⊕ λ1, we have

γ (λ0⊕ λ1)= γ (λ0)⊕ γ (λ1).

The lemma follows since every symmetric bilinear form over a finite field is iso-
morphic to the orthogonal sum of the zero form and a nonsingular form. �

Remark 3.6. Although we will not use this fact, it is worthwhile to note that
Lemma 3.5 is equivalent to the following statement: let A be a symmetric matrix
over Z/2; then the diagonal of A lies in the column space of A.
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Example 3.7. Let N be a closed, connected, oriented 6-manifold, and let x ∈
H 2(N ;Z/2). We identify H 6(N ;Z/2)= Z/2 and for the (Z/2)-vector space

V := T H 2(N )/2T H 2(N )

we define the symmetric bilinear form

λx : V × V → Z/2, ([y], [z]) 7→ yxz.

By Lemma 3.5, there is a vector [d] ∈ V such that λ̂x([d])= γ (λx) ∈ V ∗. Hence
for any dx ∈ [d] ⊂ T H 2(N ) and all y ∈ T H 2(N ), we have

y2x = yxy = λx([y], [y])= λx([y], [dx ])= yxdx .

4. The proof of Theorem 1.3

Let N be a closed, connected, oriented spinc 6-manifold. To prove Theorem 1.3 it
suffices to prove the following: for x ∈ H 2(N ;Z/2) and all y ∈ T H 2(N ), there is
a class ex ∈ H 2(N ) such that

x2 y = xex y ∈ H 6(N ;Z/2). (4.1)

To see this we use the linking pairing of N , which is a perfect pairing by Lemma 3.4:

bN : T H 5(N )× T H 2(N )→Q/Z.

From (4.1) and Lemmas 3.4 and 3.1, for all y ∈ T H 2(N ) we have

bN (β
Z/2(x2), y)= ι2(〈x2 y, [N ]〉)= ι2(〈xex y, [N ]〉)

= bN (β
Z/2(xex), y)= bN (β

Z/2(x)ex , y).

Thus βZ/2(x2)= βZ/2(x)ex , since bN is perfect; see Remark 3.3.
To find ex , we start with v2(N ), the second Wu class of N . Since N is orientable,

v2(N ) coincides with w2(N ), the second Stiefel–Whitney class of N . Since N is
spinc, the class w2(N ) lifts to an integral class c1 ∈ H 2(N ). In summary, we have

v2(N )= w2(N )= ρ2(c1) ∈ H 2(N ;Z/2). (4.2)

By definition of the Wu class v2(N ) we have

xyv2(N )= Sq2(xy)= x2 y+ xy2, (4.3)

where we have used the Cartan formula for Sq2(xy) and the fact that Sq1(ρ2(y))= 0.
By (4.2) we can replace v2(N ) by c1 in (4.3) and rearranging we obtain

x2 y = xyc1+ xy2. (4.4)
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By Example 3.7, there is an element dx ∈ T H 2(N ) such that xy2
= xydx and so

x2 y = xyc1+ xydx = xyex ,

where ex := c1 + dx . Hence we have found ex as in (4.1), finishing the proof of
Theorem 1.3.

5. Teichner’s examples

In this section we recall a construction due to Teichner [1995] which produces
closed smooth 6-manifolds N with classes x ∈ H 2(N ;Z/2) such that βZ/2(x2) 6= 0.
The manifolds N are constructed as total spaces of sphere bundles of rank-3 vec-
tor bundles E over closed 4-manifolds. In the following, Zw1(E) denotes integral
coefficients twisted by the first Stiefel–Whitney class of the bundle E .

Lemma 5.1 [Teichner 1995, Lemma 1]. Let E be a 3-dimensional vector bundle
over a path-connected space X , with sphere bundle N = SE.

(i) There exists a class x ∈ H 2(N ;Z/2) which restricts to the generator in the
cohomology H 2(S2

;Z/2) of the fibre if and only if w3(E)= 0.

(ii) Assume that w2(E) is not the reduction of a class in H 2(X;Zw1(E)). Then any
class x as in (i) has 0 6= βZ/2(x2) ∈ H 5(N ;Z).

The next lemma guarantees the existence of such bundles with base X = M a
closed connected 4-manifold.

Lemma 5.2 [Teichner 1995, Lemma 2]. Let M be a closed connected 4-manifold
with fundamental group Z/4. Then there exists a 3-dimensional bundle E over M
with w3(E) = 0, w1(E) = w1(M), and w2(E) not the reduction of a class in
H 2(M;Zw1(E)). �

Definition 5.3. The total space N of the sphere bundle of a bundle E satisfying the
conditions of Lemma 5.2 is a closed connected 6-manifold, which by Lemma 5.1
supports a class x ∈ H 2(N ;Z/2) satisfying βZ/2(x2) 6= 0. We will call such a total
space N a Teichner manifold and the pair (N , x) a Teichner pair.

Spinc 6-manifolds N with βZ/2(x2) 6= 0 ∈ H5(N). In this subsection we show
that a Teichner manifold over an orientable base is spinc.

Lemma 5.4. Let N be a Teichner manifold over a closed connected 4-manifold M.
Then

(i) N is orientable,

(ii) and if M is orientable, then N is spinc.
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Proof. Let π : N → M be the bundle projection. Since the normal bundle of the
sphere bundle in the total space of E is trivial, there are bundle isomorphisms

T N ⊕R∼= T E |N ∼= π∗(T M)⊕π∗(E).

Now part (i) follows from the equation

w1(N )= π∗w1(M)+π∗w1(E)= 0.

For (ii), assume w1(M)= 0 so that

w2(N )= π∗w2(M)+π∗w1(M)π∗w1(E)+π∗w2(E)= π∗w2(M)+π∗w2(E).

Then
βZ/2(w2(N ))= π∗(βZ/2(w2(M)))+π∗(βZ/2(w2(E))).

The first term vanishes since any orientable 4-manifold is spinc; see [Morgan 1996]
for example. The second term vanishes since βZ/2(w2(E)) ∈ H 3(M) is the Euler
class of the orientable bundle E . �

The following proposition proves Theorem 1.4(i).

Proposition 5.5. Let (N, x) be a Teichner pair over a closed, connected, orientable
4-manifold. Then N is spinc and βZ/2(x2) 6= 0, but βZ/2(x2) ∈ βZ/2(x)H 2(N ).

Furthermore, the element α=βZ/2(x)∈ T H 3(N ) has per(α)= 2 and ind(α)= 4.

Proof. The first statement is a consequence of Lemmas 5.4 and 5.1 and Theorem 1.3.
To prove the second statement, we recall that by [Antieau and Williams 2014b,

Theorem A],
ind(α)= ord(Q̃(x)) per(α),

where Q̃(x) = [βZ/4(P2(x))] ∈ H 5(N )/αH 2(N ). Note that by Theorem 1.3 and
(2.1),

2Q̃(x)= 2[βZ/4(P2(x))] = [2βZ/4(P2(x))] = [βZ/2(x2)] = 0,

since N is spinc. However Q̃(x) 6= 0, since any element of αH 2(N ) is 2-torsion,
while

2βZ/4(P2(x))= βZ/2(x2) 6= 0.

Hence ord(Q̃(x))= 2 and we’re done. �

6-manifolds violating the TPIC. In this subsection we give examples of Teichner
pairs (N , x) over a nonorientable base which violate the Topological Period-Index
Conjecture, i.e., βZ/2(x2) /∈ βZ/2(x)H 2(N ). We first prove an extension of [Teich-
ner 1995, Lemma 2].
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Lemma 5.6. Let M be a closed connected 4-manifold with an element a ∈ H1(M)
of order 4. Then there exists a 3-dimensional bundle E over M with w1(E) =
w1(M), w2(E) not coming from H 2(M;Zw1(E)), and w3(E)= 0.

Proof. We use multiplicative notation for elements of H1(M) = π1(M)ab. The
Poincaré dual of a2 in H 3(M;Zw1(M)) has order 2 and hence is the image of an
element z ∈ H 2(M;Z/2) under the twisted Bockstein. As in Teichner’s proof of
[1995, Lemma 2], there are no obstructions to constructing a 3-bundle E with
(w1(E), w2(E))= (w1(M), z).

It remains to show that w3(E)= 0. This follows from Theorem 2.3 of [Green-
blatt 2006], which states that for any space X and twisting w ∈ H 1(X;Z/2), the
composition of the twisted Bockstein βw : H i (X;Z/2)→ H i+1(X;Zw) with re-
duction mod 2 is given by

ρ2 ◦β
w(z)= Sq1(z)+ zw.

Hence we have
w3(E)= Sq1(w2(E))+w2(E)w1(E)

= ρ2 ◦β
w1(M)(w2(E))

= 0,

since βw1(M)(w2(E))= βw1(M)(z) is even. �

In order to find an example with βZ/2(x2) /∈ βZ/2(x)H 2(N ) it turns out to be
sufficient that there is an element a ∈ H1(M) of order 4 such that 0 6= τ!(a2) ∈

H1(M̂), where τ! : H1(M)→ H1(M̂) is the transfer associated to the orientation
double cover τ : M̂→ M .

To this end, we shall use a closed connected 4-manifold M with

π1(M)= C8 oC2 = 〈a, b | b−1ab = a5, a8, b2
〉

and with w1(M) : π1(M)→ C2 the projection onto the base of the semidirect
product. Note that

H1(M)= 〈a, b | a = a5, a8, b2, [a, b]〉 ∼= C4×C2

has an element a of order 4. It is well known (see, e.g., [Ranicki 2002, Propostion
11.75]) that every homomorphism w : π→ Z/2 from a finitely presented group π
arises as (π1(X), w1(X)) for a 4-manifold X , so a 4-manifold M as above exists.

Lemma 5.7. The transfer homomorphism τ! : H1(M)→ H1(M̂) does not map the
element a2

∈ H1(M) to 0.

Proof. Let G = π1(M) and let H = ker(w1(M)) = C8, so that [G : H ] = 2. The
definition of the transfer in terms of coset representatives gives

τ! : Gab→ Hab, g[G,G] 7→ g2
[H, H ].

Therefore τ!(a2)= a4
6= 0 as claimed. �
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Before continuing, we record the following lemma which will be useful in the
proof of Proposition 5.9 below.

Lemma 5.8 [Dold 1980, Chapter VII, §8.10]. Let i : A→ X denote the inclusion
of a CW-pair (X, A), and let δ : H∗(A)→ H∗+1(X, A) be the connecting homo-
morphism in the long exact cohomology sequence (with any coefficients). Then for
all x ∈ H∗(A) and y ∈ H∗(X) we have

δ(xi∗(y))= δ(x)y. �

The following proposition proves Theorem 1.4(ii).

Proposition 5.9. Let (N , x) be a Teichner pair over a nonorientable 4-manifold M
with w1(M) : π1(M)→ Z/2 as above. Then βZ/2(x2) /∈ βZ/2(x)H 2(N ).

Furthermore, the element α=βZ/2(x)∈ T H 3(N ) has per(α)= 2 and ind(α)= 8.

Proof. We first prove that βZ/2(x2) /∈ βZ/2(x)H 2(N ). Suppose towards a contra-
diction that βZ/2(x2) = βZ/2(x)Y for some Y ∈ H 2(N ). Let i : N ↪→ DE be
the inclusion of the unit sphere bundle in the unit disc bundle of E . From the long
exact sequence of the pair (DE, N ), the twisted Thom isomorphism H 3(DE, N )∼=
H 0(M;Zw), and the fact that M is nonorientable, we see that i∗ : H 2(DE)→
H 2(N ) is surjective. Hence Y = i∗(y) for some y ∈ H 2(DE)∼= H 2(M).

Let twE ∈H 3(DE,N;Zw) be the twisted Thom class of E and tE∈H 3(DE,N;Z/2)
its mod 2 reduction. From the fact that x restricts to a generator in each fibre, it fol-
lows that tE = δ(x), where δ : H∗(N ;Z/2)→ H∗+1(DE, N ;Z/2) is the connecting
homomorphism (see the proof of Lemma 1 in [Teichner 1995]). Now we have

δ(x2)= δ(Sq2(x))= Sq2(δ(x))= Sq2(tE)= w2(E)tE

and since Bocksteins commute with connecting homomorphisms

δ(βZ/2(x2))= βZ/2(δ(x2))= βZ/2(w2(E)tE).

On the other hand, βZ/2(x2)= βZ/2(x)i∗(y) and so

δ(βZ/2(x2))= δ(βZ/2(x)i∗(y))

= δ(βZ/2(xi∗(ρ2(y))))

= βZ/2(δ(xi∗(ρ2(y))))

= βZ/2(δ(x)ρ2(y))

= βZ/2(tEρ2(y)).

Here we have used Lemmas 3.1 and 5.8.
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The above argument shows that βZ/2(w2(E)tE)=β
Z/2(tEρ2(y)), or equivalently

tE(w2(E)− ρ2(y)) is the reduction of an integral class. From the square

H 5(DE, N )
ρ2
// H 5(DE, N ;Z/2)

H 2(M;Zw)

∪twE ∼=

OO

ρ2
// H 2(M;Z/2)

∪tE ∼=

OO

which commutes since the Thom isomorphisms commute with reduction mod 2, we
see that w2(E)− ρ2(y) is the reduction of a twisted integral class, or equivalently

βw(w2(E))= βw(ρ2(y)).

Next we lift this equation to the orientation cover, using the commutative square

H 2(M̂;Z/2)
βZ/2

// H 3(M̂)

H 2(M;Z/2)

τ ∗

OO

βw
// H 3(M;Zw)

τ ∗

OO

to conclude that

τ ∗βw(w2(E))= τ ∗βw(ρ2(y))= βZ/2(τ ∗(ρ2(y)))= βZ/2ρ2(τ
∗(y))= 0.

However, Poincaré duality gives a commutative square

H 3(M;Zw) τ ∗
//

∩[M]w ∼=

��

H 3(M̂)

∩[M̂] ∼=
��

H1(M)
τ!

// H1(M̂)

Since the bundle E was chosen as in Lemma 5.6 so that βw(w2(E))∩ [M]w = a2,
and τ!(a2) 6= 0 by Lemma 5.7, we see that τ ∗βw(w2(E)) 6= 0, a contradiction.

To prove the second statement, we have per(α) = 2 and since βZ/2(x2) /∈

βZ/2(x)H 2(N ),

2Q̃(x)= [βZ/4(P2(x))] = [2βZ/4(P2(x))] = [βZ/2(x2)] 6= 0.

Hence ord(Q̃(x)) = 4. As ind(α) = ord(Q̃(x)) per(α) by [Antieau and Williams
2014b, Theorem A], ind(α)= 8. �
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