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We obtain two types of results on positive scalar curvature metrics for compact
spin manifolds that are even-dimensional. The first type of result are obstructions
to the existence of positive scalar curvature metrics on such manifolds, expressed
in terms of end-periodic eta invariants that were defined by Mrowka, Ruberman
and Saveliev (Mrowka et al. 2016). These results are the even-dimensional
analogs of the results by Higson and Roe (2010). The second type of result
studies the number of path components of the space of positive scalar curva-
ture metrics modulo diffeomorphism for compact spin manifolds that are even-
dimensional, whenever this space is nonempty. These extend and refine certain
results in (Botvinnik and Gilkey 1995) and also (Mrowka et al. 2016). End-
periodic analogs of K -homology and bordism theory are defined and are utilised
to prove many of our results.
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1. Introduction

Eta invariants were originally introduced by Atiyah, Patodi and Singer [Atiyah
et al. 1975a; 1975b; 1976] as a correction term appearing in an index theorem for
manifolds with odd-dimensional boundary. The eta invariant itself is a rather sen-
sitive object, being defined in terms of the spectrum of a Dirac operator. However,
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when one considers the relative eta invariant (or rho invariant), defined by twisting
the Dirac operator by a pair of flat vector bundles and subtracting the resulting eta
invariants, many marvellous invariance properties emerge. For example, Atiyah,
Patodi and Singer showed that the mod Z reduction of the relative eta invariant of
the signature operator is in fact independent of the choice of Riemannian metric
on the manifold. Key to the approach is their index theorem for even-dimensional
manifolds with global boundary conditions, which they show is equivalent to study-
ing manifolds with cylindrical ends and imposing (weighted) L2 decay conditions.

The links between eta invariants and metrics of positive scalar curvature metrics
have been studied using different approaches by Mathai [1992a; 1992b], Keswani
[1999] and Weinberger [1988]. A conceptual proof of the approach by Keswani,
was achieved by Higson and Roe [2010] using K -homology; see also [Deeley and
Goffeng 2016; Benameur and Mathai 2013; 2014; 2015; Piazza and Schick 2007a;
2007b].

Our goal in this paper to use the results of Mrowka, Ruberman and Saveliev
[Mrowka et al. 2016] instead of those by Atiyah, Patodi and Singer [Atiyah et al.
1975a]. Manifolds with cylindrical ends studied in [Atiyah et al. 1975a] are special
cases of end-periodic manifolds studied in [Mrowka et al. 2016]. More precisely,
let Z be a compact manifold with boundary Y and suppose that Y is a connected
submanifold of a compact oriented manifold X that is Poincaré dual to a primitive
cohomology class γ ∈ H 1(X,Z). Let W be the fundamental segment obtained by
cutting X open along Y (Figure 1).

If Wk are isometric copies of W , then we can attach X1 =
⋃

k≥0 Wk to the
boundary component Y of Z , forming the end-periodic manifold Z∞ (Figure 2).
Often in the paper, we also deal with manifolds with more than one periodic end.
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The motivations for considering such manifolds are from gauge theory; it was
Taubes [1987] who originally developed the analysis of end-periodic elliptic op-
erators on end-periodic manifolds, and successfully calculated the index of the
end-periodic antiself dual operator in Yang–Mills theory.

We adapt the results by Higson and Roe [2010], using end-periodic K -homology,
to obtain obstructions to the existence of positive scalar curvature metrics in terms
of end-periodic eta invariants (see Section 3) that were defined by Mrowka, Ru-
berman and Saveliev [Mrowka et al. 2016] for even-dimensional manifolds, using
the b-trace approach of Melrose [1993]. These obstructions are for the compact
manifold X , and not the end-periodic manifold Z∞; the end-periodic manifold is
only a tool used to obtain the obstructions. This is established in Section 6. Roughly
speaking, end-periodic K -homology is an analog of geometric K -homology, where
the representatives have in addition, a choice of degree 1 cohomology class deter-
mining the codimension 1 submanifold. It is defined and studied in Section 2.

We also adapt the results by Botvinnik and Gilkey [1995], using end-periodic
bordism, to obtain results on the number of components of the moduli space of
Riemannian metrics of positive scalar curvature metrics in terms of end-periodic
eta invariants. Such results have been obtained by Mrowka, Ruberman and Saveliev
[Mrowka et al. 2016], and the introduction of end-periodic bordism provides a con-
ceptualisation of their approach. Again, the information on path components is for
the compact manifold X , and the end-periodic manifold is but a means to obtaining
this information. End-periodic bordism is defined and studied in Section 4.

In Section 5 we define the end-periodic analogs of the structure groups of Higson
and Roe, and study the end-periodic rho invariant on these groups.

Section 6 contains applications to positive scalar curvature, using the established
end-periodic K -theory and end-periodic spin bordism of the previous sections.

In Section 7 we give a proof of the vanishing of the end-periodic rho invariant
of the twisted Dirac operator with coefficients in a flat Hermitian vector bundle
on a compact even dimensional Riemannian spin manifold X of positive scalar
curvature using the representation variety of π1(X).

It seems to be a general theme that for any geometrically defined homology the-
ory, there is an analogous theory tailored to the setting of end-periodic manifolds,
and that this end-periodic theory is isomorphic to the original geometric theory in
a natural way. These isomorphisms are built on the foundation of Poincaré duality.

2. End-periodic K -homology

2.1. Review of K-homology. We begin by reviewing the definition of K -homology
of Baum and Douglas [1982], using the (M,S, f )-formulation introduced by Keswani
[1999], and used by Higson and Roe [2010].
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Definition 2.1. A K -cycle for a discrete group π is a triple (M, S, f ), where M is a
compact oriented odd-dimensional Riemannian manifold, S is a smooth Hermitian
bundle over M with Clifford multiplication c : T M→ End(S), and f : M→ Bπ
is a continuous map to the classifying space of π .

Such a bundle S with the above data is called a Dirac bundle. We remark that
M may be disconnected, and that its connected components are permitted to have
different odd dimensions.

Definition 2.2. Two K -cycles (M, S, f ) and (M ′, S′, f ′) for Bπ are said to be iso-
morphic if there is an orientation preserving diffeomorphism ϕ : M→ M ′ covered
by an isometric bundle isomorphism ψ : S→ S′ such that

ψ ◦ cM(v)= cM ′(ϕ∗v)

for all v ∈ T M , and such that f ′ ◦ϕ = f .

A Dirac operator for the cycle (M, S, f ) is any first-order linear partial differ-
ential operator D acting on smooth sections of S whose principal symbol is the
Clifford multiplication. That is to say, for any smooth function φ : M→ R one has

[D, φ] = c(gradφ) : 0(S)→ 0(S).

The K -homology group K1(Bπ) will consist of geometric K -cycles for π mod-
ulo an equivalence relation, which we will now describe.

Definition 2.3. A K -cycle (M, S, f ) is a boundary if there exists a compact ori-
ented even-dimensional manifold W with boundary ∂W = M such that:

(a) W is isometric to the Riemannian product (0, 1]×M near the boundary.

(b) There is a Z2-graded Dirac bundle over W that is isomorphic to S⊕ S in the
collar with Clifford multiplication given by

cW (v)=

(
0 cM(v)

cM(v) 0

)
, cW (∂t)=

(
0 −I
I 0

)
for v ∈ T M .

(c) The map f : M→ Bπ extends to a continuous map f :W → Bπ .

Remark 2.4. Our orientation convention for boundaries is the following: If W is
an oriented manifold with boundary ∂W then the orientation on W at the bound-
ary is given by the outward unit normal followed by the orientation of ∂W . The
isometry in part (a) is required to be orientation preserving.

We define the negative of a K -cycle (M, S, f ) to be (−M,−S, f ), where −M
is M with its orientation reversed, and −S is S with the negative Clifford mul-
tiplication c−S = −cS . Two K -cycles (M, S, f ) and (M ′, S′, f ′) are bordant
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if the disjoint union (M, S, f ) q (−M ′,−S′, f ′) is a boundary, and we write
(M, S, f ) ∼ (M ′, S′, f ′). This is the first of the relations defining K -homology;
there are two more to define:

(1) Direct sum/disjoint union:

(M, S1, f )q (M, S2, f )∼ (M, S1⊕ S2, f ).

(2) Bundle modification: Let (M, S, f ) be a K -cycle. If P is a principal SO(2k)-
bundle over M , we define

M̂ = P ×ρ S2k .

Here ρ denotes the action of SO(2k) on S2k given by the standard embedding of
SO(2k) into SO(2k+ 1). The metric on M̂ is any metric agreeing with that of M
on horizontal tangent vectors and with that of S2k on vertical tangent vectors. The
map f̂ : M̂→ Bπ is the composition of the projection M̂→ M and f : M→ Bπ .
Over S2k is an SO(2k)-equivariant vector bundle C`θ (S2k)⊂ C`(T S2k), defined
as the +1 eigenspace of the right action by the oriented volume element θ on the
Clifford bundle C`(T S2k). The SO(2k)-equivariance of this bundle implies that it
lifts to a well-defined bundle over M̂ . We thus define the bundle

Ŝ = S⊗C`θ (S2k)

over M̂ . Clifford multiplication on Ŝ is given by

c(v)=
{

cM(v)⊗ ε if v is horizontal,
I ⊗ cS2k (v) if v is vertical,

where ε is the grading element of the Clifford bundle over S2k . The K -cycle
(M̂, Ŝ, f̂ ) is called an elementary bundle modification of (M, S, f ), and we write
(M, S, f )∼ (M̂, Ŝ, f̂ ). We remark also that individual bundle modifications are
allowed to be made on connected components of M .

Remark 2.5. If D is a given Dirac operator for the cycle (M, S, f ), then there is a
preferred choice of Dirac operator for an elementary bundle modification (M̂, Ŝ, f̂ )
of (M, S, f ). If Dθ denotes the SO(2k)-equivariant Dirac operator acting on
C`(S2k), then the Dirac operator on S⊗C`θ (S2k) is

D̂ = D⊗ ε+ I ⊗ Dθ ,

where ε is the grading element of C`θ (S2k).

Definition 2.6. The K -homology group K1(Bπ) is the abelian group of K -cycles
modulo the equivalence relation generated by isomorphism of cycles, bordism,
direct sum/disjoint union, and bundle modification. The addition of equivalence
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classes of K -cycles is given by disjoint union

(M, S, f )q (M ′, S′, f ′)= (M qM ′, Sq S′, f q f ′).

One must of course check that this operation descends to a well-defined binary op-
eration on K -homology which satisfies the group axioms. The details are straight-
forward.

Remark 2.7. There is another group K0(Bπ) defined in terms of even-dimensional
cycles, which is well suited to the original Atiyah–Singer index theorem. We will
not need it here.

2.2. Definition of end-periodic K-homology. With the definition of K -homology
reviewed, we now adapt the definition to the setting of manifolds with periodic
ends.

Definition 2.8. An end-periodic K -cycle, or simply a K ep-cycle for a discrete
group π is a quadruple (X, S, γ, f ), where X is a compact oriented even-dimensional
Riemannian manifold, S = S+ ⊕ S− is a Z2-graded Dirac bundle over X , γ ∈
H 1(X,Z) is a cohomology class whose restriction to each connected component
of X is primitive, and f is a continuous map f : X→ Bπ .

The Z2-graded structure of S includes a Clifford multiplication by tangent vec-
tors to X which swaps the positive and negative subbundles. Again, the manifold
X is allowed to be disconnected, with the connected components possibly having
different even dimensions. Note that the definition of a K ep-cycle imposes topolog-
ical restrictions on X , namely each connected component of X must have nontrivial
first cohomology in order for the class γ to be primitive on each component.

Definition 2.9. Two K ep-cycles (X, S, γ, f ) and (X ′, S′, γ ′, f ′) are isomorphic if
there exists an orientation preserving diffeomorphism ϕ : X→ X ′ which is covered
by a Z2-graded isometric bundle isomorphism ψ : S→ S′ such that

ψ ◦ cX (v)= cX ′(ϕ∗v)

for all v ∈ T X . The diffeomorphism ϕ must additionally satisfy ϕ∗(γ ′)= γ , and
f ′ ◦ϕ = f .

We now define what it means for a K ep-cycle (X, S, γ, f ) to be a boundary.
First, let Y ⊂ X be a connected codimension-1 submanifold that is Poincaré dual
to γ . The orientation of Y is such that for all closed forms α of codimension 1
(over each component of X ), ∫

Y
ι∗(α)=

∫
X
γ ∧α,
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where ι : Y → X is the inclusion and we abuse notation by writing γ for what is
really a closed 1-form representing the cohomology class γ . In other words, the
orientation of Y is such that the signs of the above two integrals always agree. Now,
cut X open along Y to obtain a compact manifold W with boundary ∂W = Y q−Y ,
with our boundary orientation conventions as in Remark 2.4. Glue infinitely many
isometric copies Wk of W end to end along Y to obtain the complete oriented Rie-
mannian manifold X1 =

⋃
k≥0 Wk with boundary ∂X1 =−Y . There is a canonical

map X1 → X sending a point of Wk to its corresponding point in X . Pull back
the Dirac bundle S on X via this map to get a Z2-graded Dirac bundle on X1, also
denoted S, and pull back the map f to get a map f : X1→ Bπ .

Definition 2.10. The K ep-cycle (X, S, γ, f ) is a boundary if there exists a compact
oriented Riemannian manifold Z with boundary ∂Z = Y , which can be attached
to X1 along Y to form a complete oriented Riemannian manifold Z∞ = Z ∪Y X1,
such that the bundle S extends to a Z2-graded Dirac bundle on Z∞ and the map f
extends to a continuous map f : Z∞→ Bπ .

Remark 2.11. Being a boundary is clearly independent of the choice of Y ; if Y ′ is
another choice of submanifold Poincaré dual to γ we simply embed Y ′ somewhere
in the periodic end of Z∞, and take Z ′ to be the compact piece in Z∞ bounded by
Y ′.

Definition 2.12. The manifold Z∞ from Definition 2.10 is called an end-periodic
manifold. It is convenient to say the end is modelled on (X, γ ), or sometimes just
X if γ is understood. Any object on Z∞ whose restriction to the periodic end X1

is the pullback of an object from X is called end-periodic. For example, the bundle
S, the map f , and the metric on Z∞ in the previous definition are all end-periodic.

Remark 2.13. We allow end-periodic manifolds to have multiple ends. This situ-
ation arises when the manifold X , on which the end of Z∞ is modelled, is discon-
nected.

The negative of a K ep-cycle (X, S, γ, f ) is simply (X, S,−γ, f ). This is so
that the disjoint union of a K ep-cycle with its negative is a boundary — it is clear
that the Z-cover X̃ of X corresponding to γ is an end-periodic manifold with end
modelled on (X q X, γ q−γ ). The definitions of bordism and direct sum/disjoint
union are exactly the same as before, with the class γ left unchanged. In the case
of bundle modification, the class γ̂ on X̂ = P ×ρ S2k is the pullback of γ by the
projection p : X̂→ X , and we endow the tensor product bundle S⊗C`θ (S2k) with
the standard tensor product grading of Z2-graded modules. There is also one more
relation we define which relates the orientation on X to the one-form γ :

(X, S,−γ, f )∼ (−X,5(S), γ, f )
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where −X is X with the reversed orientation and 5(S) is S with its Z2-grading
reversed. We call this relation orientation/sign, as it links the orientation on X to
the sign of γ . The need for this relation will become apparent in (2) of the proof
of Lemma 2.16.

Definition 2.14. The end-periodic K -homology group, K ep
1 (Bπ), is the abelian

group consisting of K ep-cycles up to the equivalence relation generated by isomor-
phism of K ep-cycles, bordism, direct sum/disjoint union, bundle modification, and
orientation/sign. Addition is given by disjoint union of cycles

(X, S, γ, f )q (X ′, S′, γ ′, f ′)= (X q X ′, Sq S′, γ q γ ′, f q f ′).

Remark 2.15. As for K -homology we could also define the group K ep
0 (Bπ) using

odd-dimensional K ep-cycles, although we will not pursue this here.

2.3. The isomorphism. We will now show that there is a natural isomorphism
K1(Bπ)∼= K ep

1 (Bπ).
First we describe the map K1(Bπ)→ K ep

1 (Bπ). Let (M, S, f ) be a K -cycle
for Bπ . Define X = S1

× M an even-dimensional manifold with the product
orientation and Riemannian metric, the Dirac bundle S ⊕ S → X with Clifford
multiplication as in (b) of Definition 2.3, γ = dθ ∈ H 1(X,Z) the standard generator
of the first cohomology of S1, and f : X → Bπ the extension of f : M → Bπ .
We map the equivalence class of (M, S, f ) in K1(Bπ) to the equivalence class of
(S1
×M, S⊕ S, dθ, f ) in K ep

1 (π).

Lemma 2.16. The map sending a cycle (M, S, f ) to the end-periodic cycle (S1
×

M, S⊕ S, dθ, f ) descends to a well-defined map of K -homologies.

Proof. It must be checked that each of the relations defining K0(Bπ) are preserved
by this map.

(1) Boundaries: Let (M, S, f ) be a boundary. Then we have a compact manifold
W with boundary ∂W = M satisfying conditions (a) and (b) in Definition 2.3. To
show that (S1

× M, S ⊕ S, dθ, f ) is a boundary, we attach W to the half-cover
X1 =R≥0×M to obtain a Riemannian manifold Z∞. Over X1 is the bundle S⊕ S,
and over W is a bundle isomorphic to S ⊕ S. We use the isomorphism to glue
the bundles together and define S⊕ S over Z∞. The assumptions on the Clifford
multiplication imply that it extends over this bundle. Since the map f on M extends
to W , the map f on S1

×M extends to Z∞.

(2) Negatives: The negative of (M, S, f ) is (−M,−S, f ), which maps to (−S1
×

M,−S⊕−S, dθ, f ). The negative of (−S1
×M,−S⊕−S, dθ, f ) is

(−S1
×M,−S⊕−S,−dθ, f )∼ (S1

×M,5(−S⊕−S), dθ, f )
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by the orientation/sign relation. The only difference between this cycle and (X, S⊕
S, dθ, f ) is that the Clifford multiplication is negative; Clifford multiplication by
vectors tangent to M has become negative and reversing the Z2-grading has caused
∂θ to act negatively. This cycle is isomorphic to

(S1
×M, S⊕ S, dθ, f )

via the identity map ϕ : M→ M and the isometric bundle isomorphism ψ : −S⊕
−S→ S⊕ S, ψ(s⊕ t)= c(ω)(s⊕ t), where ω is the oriented volume element of
S1
×M . Hence negatives are preserved by the mapping.

(3) Disjoint union: Obvious.

(4) Bordism: Since negatives map to negatives, boundaries map to boundaries,
and disjoint union is preserved, it follows that bordism is also preserved.

(5) Direct sum/disjoint union: Also obvious.

(6) Bundle modification: Let (M̂, Ŝ, f̂ ) be an elementary bundle modification
for (M, S, f ) associated to the principal SO(2k)-bundle P → M . We pullback
P to a bundle over X = S1

×M , and use it to construct our bundle modification
(X̂ , (S⊕ S)ˆ, dθ, f ) of (S1

×M, S⊕ S, dθ, f ). It is clear that X̂ = S1
× M̂ . Now

Ŝ = S⊗C`θ (S2k), so

Ŝ⊕ Ŝ ∼= (S⊕ S)⊗C`θ (S2k)= (S⊕ S)ˆ.

It is straightforward yet tedious to verify that Clifford multiplication is preserved
by this isomorphism. So the K ep-cycle obtained via bundle modification then map-
ping, is isomorphic to the K ep-cycle obtained by mapping then bundle modifica-
tion. �

Now for the inverse map. Let (X, S, γ, f ) be an end-periodic cycle. Choose
a submanifold Y ⊂ X Poincaré dual to γ , oriented as in the paragraph after
Definition 2.9. We map the cycle (X, S, γ, f ) to (Y, S+, f ), where S+ and f
are restricted to Y . If ω is an oriented volume form for Y then we let ∂t be the unit
normal to Y such that ∂t ∧ω is the orientation on X . The Clifford multiplication
on S+ is then defined to be

cY (v)= cX (∂t)cX (v)

for v ∈ T Y . Note that this agrees with the conventions of (b) in Definition 2.3. One
easily verifies that this indeed defines a Clifford multiplication on S+.

Lemma 2.17. The map sending an end-periodic cycle (X, S, γ, f ) to the cycle
(Y, S+, f ) described above, descends to a well-defined map of K -homologies.
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Y
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Figure 3. Compact bordism between Y1 and Y2.

Proof. We must not only check that the relations defining end-periodic K -homology
are preserved, but that the class in K -homology obtained is independent of the
choice of Y .

(1) Boundaries: Let (X, S, γ, f ) be a boundary. Then there is a compact oriented
manifold Z with boundary ∂Z = Y over which the Z2-graded Dirac bundle S and
map f extend. We modify the metric near the boundary of Z to make it a product.
It follows that the cycle (Y, S+, f ) is a boundary.

(2) Choice of Y : Suppose Y1 and Y2 are submanifolds of X that are Poincaré dual
to γ . We can take functions f1, f2 : X→ S1 both having 1 ∈ S1 as a regular value
and satisfying f −1

i (1)= Yi for i = 1, 2. Since Y1 and Y2 are both Poincaré dual to
γ , the functions fi are homotopic. Let f̃i : X̃→R be the lift of fi : X→ S1, where
X̃→ X is the Z-cover determined by γ . The preimage f̃ −1

i (m) gives an embedding
of Yi in X̃ for any m ∈ Z. Choosing a tubular neighbourhood Y1× (−ε, ε) ⊂ X̃ ,
we can homotopy f̃1 into f̃2 over the interval (−ε, ε). Letting F be the resulting
function on X̃ , we may take F−1

[−m,m] for some large integer m to be a bordism
W between Y1 and Y2. Since f1 and f2 are proper, so is F , and the resulting
bordism is compact; see Figure 3.

We pull back the bundle S and the map f to W , and modify the metric near the
boundary so that it is a product. The result is that Y1q−Y2 is a boundary.

(3) Negatives: Reversing the sign of γ changes the orientation of Y . Clifford
multiplication on Y also becomes negative, since changing the orientation on Y
reverses the unit normal to Y . Hence negatives of cycles map to negatives.

(4) Disjoint union: Obvious.

(5) Bordism: Since boundaries map to boundaries, negatives map to negatives,
and disjoint union is preserved, it follows that bordism is also preserved.

(6) Direct sum/disjoint union: Obvious.

(7) Orientation/sign: From (3) in this proof, the K -cycle obtained from (X, S,−γ,
f ) is the negative of the cycle (Y, S+, f ). Now consider the K -cycle obtained from
(−X,5(S), γ, f ). Reversing the orientation on X will also reverse it on Y . Instead
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of S+, we now take S− with Clifford multiplication

cS−(v)= c(−∂t)c(v)=−c(∂t)c(v)

where v ∈ T Y and −∂t is the unit normal to −Y . We now show (−Y, S+, f ) and
(−Y, S−, f ) are isomorphic. Let ω be the oriented volume element of +Y (or −Y ,
it does not matter) and define a map ψ : S+→ S− by ψ(s)= c(ω)s. Then

ψ ◦ cS+(v)= cS−(v) ◦ψ

and the cycles are therefore isomorphic.

(8) Bundle modification: Let (X̂ , Ŝ, γ̂ , f̂ ) be an elementary bundle modification
for (X, S, γ, f ), associated to the principal SO(2k)-bundle P → X . We restrict
this principal bundle to Y and consider the corresponding bundle modification
(Ŷ , Ŝ+, f̂ ) for (Y, S+, f ). It is clear that Ŷ ⊂ X̂ is Poincaré dual to γ̂ . The bundle

Ŝ = S⊗C`θ (S2k)

has even part

Ŝ+ = (S+⊗C`+θ (S
2k))⊕ (S−⊗C`−θ (S

2k)),

while over Ŷ we have the bundle

Ŝ+ = S+⊗C`θ (S2k).

Identifying S+ with S− via the isomorphism c(∂t), we see that Ŝ+ ∼= Ŝ+. It is
routine to check that the Clifford multiplications are preserved under this isomor-
phism. �

Theorem 2.18. The above maps between K -homologies define an isomorphism of
groups K1(Bπ)∼= K ep

1 (Bπ).

Proof. We must check that the above maps on K -homologies are inverse to each
other. If we begin with a cycle (M, S, f ), this maps to (S1

× M, S ⊕ S, dθ, f ).
Mapping this again, we get (M, S, f ) back, so this direction is easy. Now suppose
we begin with a cycle (X, S, γ, f ). This maps to (Y, S+, f ) which then maps
to (S1

× Y, S+ ⊕ S+, dθ, f ). We will show this cycle is bordant to the original
cycle (X, S, γ, f ). Consider the half cover X1 of X obtained using −γ . Near the
boundary, this is diffeomorphic to a product (−δ, 0]×Y . The half cover of S1

×Y
obtained from dθ is R≥0×Y . The two half covers clearly glue together to produce
and end-periodic manifold with two ends. The Dirac bundles and maps to Bπ
extend over this manifold, and hence the two cycles are bordant. �
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3. Relative eta/rho invariants

In this section, we use the end-periodic eta invariant of Mrowka, Ruberman and
Saveliev [Mrowka et al. 2016] to define homomorphisms from the end-periodic
K -homology group K ep

1 (Bπ) to R/Z. Any pair of unitary representations σ1, σ2 :

π→U (N ) will determine such a homomorphism, and we see that this homomor-
phism agrees with that constructed in Higson and Roe [2010] under the natural
isomorphism K1(Bπ)∼= K ep

1 (Bπ).

3.1. Rho invariant for K-homology. Let (M, S, f ) be a K -cycle. Any Dirac op-
erator for this cycle is a self-adjoint elliptic first-order operator on S, and so has a
discrete spectrum of real eigenvalues. The eta function of this operator is defined
to be the sum over the nonzero eigenvalues of D

η(s)=
∑
λ 6=0

sign(λ)|λ|−s,

which converges absolutely for Re(s) sufficiently large. It is a theorem of Atiyah,
Patodi and Singer (APS) that this function admits a meromorphic continuation to
the complex plane, and that this continuation takes a finite value η(0) at the origin.
The eta invariant of the chosen Dirac operator D is by definition

η(D)= 1
2(η(0)− h) (3.1)

where h = dim ker(D) is the multiplicity of the zero eigenvalue.
The eta invariant plays a central role in the Atiyah–Patodi–Singer index theorem,

appearing as a correction term for the boundary. Suppose W is an even-dimensional
manifold with boundary ∂W = M , equipped with a Dirac bundle satisfying the
conditions of Definition 2.3. Further, suppose we have a Dirac operator D(W ) on
W so that

D(W )=

(
0 −∂t + D

∂t + D 0

)
(3.2)

in a product neighbourhood of the boundary, where D is the Dirac operator on M .
In this instance we say that D(W ) bounds D. Then the APS index theorem [Atiyah
et al. 1975a] states

IndAPS D+(W )=

∫
W

I(D+(W ))− η(D). (3.3)

The left-hand side is the index of D+(W ) with respect to a certain global boundary
condition — the projection onto the nonnegative eigenspace of D must vanish. The
integrand I(D+(W )) is the constant term in the asymptotic expansion of the super-
trace of the heat operator for D+(W ), called the index form of the Dirac operator.
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Remark 3.1. In (3.3), the eta invariant is as in (3.1), where the sign of the term
h = dim ker D is negative. This is contingent on the orientation of M being con-
sistent with the boundary orientation inherited from W . If the orientations are not
compatible, then the sign of h is reversed in (3.3).

The map f in the cycle (M, S, f ) determines a principle π-bundle over M .
Given a representation σ1 : π → U (N ), we can then form a flat vector bundle
E1→ M and twist the Dirac operator D on S to obtain a Dirac operator D1 acting
on sections of S ⊗ E1. Given a second representation σ2 : π → U (N ) we form
another operator D2 on S⊗ E2 in the same way.

Definition 3.2. The relative eta invariant, or rho invariant associated to the two
unitary representations σ1, σ2 : π→U (N ), the K -cycle (M, S, f ) for Bπ , and the
choice of Dirac operator D for the K -cycle, is defined to be

ρ (σ1, σ2 ;M, S, f )= η(D1)− η(D2).

The eta invariant of an operator depends sensitively on the operator itself, whereas
the relative eta invariant is much more robust. The following is a restatement of
[Higson and Roe 2010, Theorem 6.1], and is the reason for our omission of D in
the above notation for the rho invariant.

Theorem 3.3. The mod Z reduction of the rho invariant ρ(σ1, σ2 ;M, S, f ) for
representations σ1, σ2 : π → U (N ), depends only on the equivalence class of
(M, S, f ) in K1(Bπ), and on σ1, σ2. There is therefore a well-defined group
homomorphism

ρ (σ1, σ2) : K1(Bπ)→ R/Z.

The most complicated part of the proof is showing invariance under bundle
modification. We will not repeat the full proof, however we will show invariance
under bordism since the argument serves to motivate the end-periodic case.

Proof. Let (M, S, f ) be a boundary — we will show that the rho invariant ρ (σ1, σ2;

M, S, f ) vanishes modulo Z. Let W be as in Definition 2.3 and let D(W ) be a
Dirac operator on W which bounds the Dirac operator D on M . Since the map f
to Bπ extends to W , we find twisted Dirac operators D1(W ) and D2(W ) on W
bounding the twisted operators D1 and D2 on M . Applying the APS index theorem
separately to these operators gives

IndAPS D+i (W )=

∫
W

I(D+i (W ))− η(Di ) (3.4)

for i = 1, 2. Since D1(W ) and D2(W ) are both twists of the same Dirac operator
D(W ) by flat bundles of dimension N , we have

I(D+1 (W ))= I(D+2 (W ))= N · I(D+(W )).
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Subtracting the two equations (3.4) from each other therefore yields

ρ(σ1, σ2 ;M, S, f )= η(D1)− η(D2)= IndAPS D+2 (W )− IndAPS D+1 (W ),

which is an integer.
Now, consider the negative cycle (−M,−S, f ) for (M, S, f ). If D is a Dirac

operator for (M, S, f ), then −D is a Dirac operator for (−M,−S, f ). From the
definition of the eta invariant (3.1) and from Remark 3.1, we see that η(−D) =
−η(D). Finally, the eta invariant is clearly additive under disjoint unions of cycles.
It follows that if two cycles are bordant, then their eta invariants agree modulo
integers. �

Higson and Roe [2010] used this map on K -homology to obtain obstructions
to positive scalar curvature for odd-dimensional manifolds. Our isomorphism of
K -homologies will allow us to transfer their results to the even-dimensional case.

3.2. Index theorem for end-periodic manifolds [Mrowka et al. 2016]. Mrowka,
Ruberman and Saveliev [2016] proved an index theorem for end-periodic Dirac
operators on end-periodic manifolds, which generalises the Atiyah–Patodi–Singer
index theorem. Rather than the eta invariant appearing as a correction term for the
end, a new invariant called the end-periodic eta invariant appears, and this new
invariant agrees with the eta invariant of Atiyah–Patodi–Singer in the case of a
cylindrical end. In this section, we review the end-periodic index theorem of MRS,
and give the necessary definitions and theorems required to define the end-periodic
rho invariants. There is nothing new here, so the reader who is already familiar
with the MRS index theorem may safely skip to Section 3.3

Let (X, S, γ, f ) be a K ep-cycle, and let D(X) be a Dirac operator for the cycle.
Let X̃ be the Z-cover associated to γ , and let F : X̃→R be the map which covers the
classifying map X→ S1 for the Z-cover X̃ . Then F satisfies F(x+1)= F(x)+1,
where x+1 denotes the image of x ∈ X̃ under the fundamental covering translation.
It follows that d F descends to a well-defined one-form on X , also denoted d F .
Fixing a branch of the complex logarithm, define a family of operators

Dz(X)= D(X)− ln(z) c(d F)

on X , where c(d F) is Clifford multiplication by d F , and z ∈ C∗. These are in fact
the operators obtained by conjugating the Dirac operator on X̃ with the Fourier-
Laplace transform — see Section 2.2 of [Mrowka et al. 2016] for more details. The
spectral set of this family of operators is defined to be the set of z for which Dz(X)
is not invertible. The spectral sets of the families D±z (X) are defined similarly.

Henceforth, we will take Z∞ to be an end-periodic manifold with end mod-
elled on (X, γ ). All objects on Z∞ will be taken to be end-periodic, unless stated
otherwise. Now, the Fredholm properties of the end-periodic operator D+(Z∞)
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are linked to the spectral set of the family D+z (X). In fact, it follows from [Taubes
1987, Lemma 4.3], that D+(Z∞) is Fredholm if and only if the spectral set of the
family D+z (X) is disjoint from the unit circle S1

⊂ C. Thus, a necessary (but not
sufficient) condition for D+(Z∞) to be Fredholm is that Ind D+(X)= 0.

Definition 3.4 (Mrowka et al. 2016). Suppose that the spectral set of the family
D+z (X) is disjoint from the unit circle S1

⊂ C. The end-periodic eta invariant for
the Dirac operator D+(X) is then defined as

ηep(D+(X))= 1
π i

∫
∞

0

∮
|z|=1

Tr
(
c(d F) · D+z exp(−t D−z D+z )

)dz
z

dt,

where the Dirac operators in the integral are on X , and the contour integral over
the unit circle is taken in the anticlockwise direction.

Remark 3.5. There is an equivalent definition of the eta invariant in terms of the
von Neumann trace — see [Mrowka et al. 2016, Proposition 6.2], also [Atiyah
1976] for information on the von Neumann trace.

Suppose X = S1
× Y , where Y is a compact oriented odd dimensional manifold,

and X is endowed with the product Riemannian metric. Assume the Dirac operator
D(X) on X takes the form of that in the RHS of Equation (3.2), with D being the
Dirac operator on Y . Then it is shown in [Mrowka et al. 2016, §6.3] that for
d F = dθ ,

ηep(D+(X))= η(D).

We now state the end-periodic index theorem of Mrowka, Ruberman and Saveliev,
in the case when the end-periodic operator D+(Z∞) is Fredholm. Recall that for
D+(Z∞) to be Fredholm, it is necessary that Ind D+(X)= 0. The Atiyah–Singer
index theorem then implies that the index form I(D+(X)) is exact, so one can find
a form ω on X satisfying dω = I(D+(X)).

Theorem 3.6 (MRS index theorem, [Mrowka et al. 2016, Theorem A]). Suppose
that the end-periodic operator D+(Z∞) is Fredholm, and choose a form ω on X
such that dω = I(D+(X)). Then

Ind D+(Z∞)=
∫

Z
I(D+(Z)) −

∫
Y
ω+

∫
X

d F ∧ω − 1
2 η

ep(X). (3.5)

Remarks 3.7. The form ω is called the transgression class — see [Gilkey 1984b,
p. 306] for more details. In the case that the metric is a product near Y , one can
choose F so that the two integrals involving the transgression class cancel, leaving
a formula similar to the original APS formula. The theorem reduces to the APS
index theorem [Atiyah et al. 1975a] when Z∞ only has cylindrical ends.
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When D+(Z∞) is not Fredholm, Mrowka, Ruberman and Saveliev are still able
to prove an index theorem under the assumptions that the spectrum of the family
D+z (X) is discrete, which in particular implies Ind D+(X)= 0. This is analogous
to the case in the APS index theorem when the Dirac operator D on the boundary
has a nonzero kernel, and the correction h = dim ker D appears in the formula.

The key is to introduce the weighted Sobolev spaces on Z∞ as follows. First
recall that the Sobolev space L2

k(Z∞, S) for an integer k ≥ 0, is defined as the
completion of C∞0 (Z∞, S) in the norm

‖u‖2L2
k(Z∞,S)

=

∑
j≤k

∫
Z∞
|∇

j u|2

for a fixed choice of end-periodic metric and compatible end-periodic Clifford
connection on Z∞. Now, restrict the upstairs covering map F : X̃ → R to the
half-cover X1 =

⋃
k≥0 Wk , and choose an extension of this map to Z∞, which we

continue to denote F . Given a weight δ ∈ R and an integer k ≥ 0, we say that
u ∈ L2

k,δ (Z∞, S) if eδF u ∈ L2
k (Z∞, S). Define the L2

k,δ-norm by

‖u‖L2
k,δ(Z∞,S)

= ‖eδF u‖L2
k (Z∞,S)

.

It is easy to check that up to equivalence of norms, this is independent of the choice
of extension of F to Z∞, since the region over which we are choosing an extension
is compact. The spaces L2

k,δ(Z∞, S) are all complete in this norm, and the operator
D+(Z∞) extends to a bounded operator

D+(Z∞) : L2
k+1,δ (Z∞, S+)→ L2

k,δ (Z∞, S−) (3.6)

for every k and δ. The following theorem of [Taubes 1987] classifies Fredholmness
of the operator (3.6) in terms of the family D+z (X)= D+(X)− ln(z) c(d F).

Lemma 3.8 (Taubes 1987, Lemma 4.3). The operator

D+(Z∞) : L2
k+1,δ (Z∞, S+)→ L2

k,δ (Z∞, S−)

is Fredholm if and only if the operators D+z (X) are invertible for all z on the circle
|z| = eδ.

The usual L2-case corresponds to the weighting δ = 0, and hence we see by
setting z = 1:

Corollary 3.9. A necessary condition for the operator D+(Z∞) to be Fredholm is
that Ind D+(X)= 0.

The following result on the spectral set of the family is also due to Taubes, which
suffices for our purposes.
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Theorem 3.10 (Taubes 1987, Theorem 3.1). Suppose that Ind D+(X)= 0 and that
the map c(d F) : ker D+(X)→ ker D−(X) is injective. Then the spectral set of the
family D+z (X) is a discrete subset of C∗, and the operator D+(Z∞) is a Fredholm
operator.

It follows that the operator D+(Z∞) acting on the Sobolev spaces of weight δ
is Fredholm for all but a closed discrete set of δ ∈ R.

Remark 3.11. There are two important instances where the hypothesis of Theorem
3.10 is satisfied:

(1) When X = S1
×M with the product metric, and the Dirac operator on X taking

the form of Equation (3.2). In this case d F = dθ , and c(dθ) is as in part (b) of
Definition 2.3. This example shows that every class in K ep(Bπ) has a representa-
tive with discrete spectral set.

(2) When X is spin with positive scalar curvature and D+(X) is the spin Dirac
operator on X (or more generally, D+(X) twisted by a flat bundle). In this case
Lichnerowicz’ vanishing theorem implies that ker D+(X) and ker D−(X) are triv-
ial. In the applications to positive scalar curvature, we will always assume X to be
spin, so that this assumption is satisfied.

[Mrowka et al. 2016, Theorem C] extends Theorem 3.6 to the non-Fredholm
case that applies to operators such as the signature operator and is analogous to the
extended L2 case considered in [Atiyah et al. 1975a].

We allow for the case where the family has poles lying on the unit circle, in
which case the operator D+(X) is not Fredholm. By discreteness of the spectral
set, the family D+z (X) has no poles for z sufficiently close to (but not lying on) the
unit circle, and hence there is ε > 0 such that for all 0<δ<ε the operators D+z (Z∞)
acting on the δ-weighted Sobolev spaces are all Fredholm (see Lemma 3.8). The
index does not change under small variations of δ in this region, and we denote it
by IndMRS D+(Z∞). This is the regularised form of the index which appears in
the full MRS index theorem.

There are two more quantities to define which appear in the full MRS index
theorem. First of all, the end-periodic eta invariant in Definition 3.4 is no longer
well defined if the family D+z (X) has poles on the unit circle. Letting ε > 0 be
sufficiently small so that there are no poles in e−ε < |z|< eε except for those with
|z| = 1, define

ηep
ε (D

+(X))= 1
π i

∫
∞

0

∮
|z|=eε

Tr
(
d f · D+z exp(−t (D+z )

∗D+z )
)dz

z
dt, (3.7)
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where the integral is taken to be the constant term of its asymptotic expansion in
powers of t . Define

η
ep
± (D

+(X))= lim
ε→0±

ηep
ε (D

+(X)),

and
ηep(D+(X))= 1

2 [η
ep
+ (D

+(X))+ ηep
− (D

+(X))]. (3.8)

It is this incarnation of the eta invariant which will appear in the MRS index
theorem. Since (D+z )

∗
= D−z for |z| = 1 this definition of ηep(X) agrees with

Definition 3.4 when there are no poles on the unit circle.
The last term to define is the analog of h = dim ker D appearing in the APS

index theorem. The family D+z (X)
−1 is meromorphic, so if z ∈ S1 is a pole then it

has some finite order m. Define d(z), as in [Mrowka et al. 2011, §6.3], to be the
dimension of the vector space solutions (ϕ1, . . . , ϕm) to the system of equations

D+z (X)ϕ1 = c(d F)ϕ2,

...

D+z (X)ϕm−1 = c(d F)ϕm,

D+z (X)ϕm = 0.

For z not in the spectral set of the family D+z (X), we have d(z)= 0. The term h
in the MRS index theorem is defined as the finite sum of integers

h =
∑
|z|=1

d(z).

Remark 3.12. The integers d(z) give a formula for the change in index when one
varies the weight δ; if Indδ D+(Z∞) denotes the index of D+(Z∞) acting on the
δ-weighted Sobolev spaces, then one has for δ < δ′ that

Indδ D+(Z∞)− Indδ′ D+(Z∞)=
∑

eδ<|z|<eδ′
d(z).

Theorem 3.13 (MRS index theorem [Mrowka et al. 2016, Theorem C]). Suppose
the spectral set of D+z (X) is a discrete subset of C∗, and let ω be a form on X such
that dω = I(D+(X)). Then

IndMRS D+(Z∞)=
∫

Z
I(D+(Z))−

∫
Y
ω+

∫
X

d F ∧ω− 1
2(h+ η

ep (D+(X))).

3.3. End-periodic R/Z-index theorem. Let σ1, σ2 : π→U (N ) be unitary repre-
sentations of the discrete group π . Using the end-periodic eta invariant of MRS, we
will define an end-periodic rho invariant ρep(σ1, σ2) analogous to the rho invariant
in the APS case. This will determine a map from end-periodic K -homology to
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R/Z, however we must be more careful about how we define the rho invariant due
to the MRS index theorem not being applicable to all operators.

Definition 3.14. Let (X, S, γ, f ) be a K ep-cycle. Assume we can choose a cov-
ering function F : X̃ → R so that the spectral sets of the families of the twisted
operators D+1 (X) and D+2 (X) are discrete. Then we define the end-periodic rho
invariant to be

ρep(σ1, σ2; X, S, γ, f )= 1
2 [h1+ η

ep(D+1 (X))− h2− η
ep(D+2 (X))].

By [Mrowka et al. 2016, Lemma 8.2], this definition is independent of the choice
of such function F , if it exists.

Theorem 3.15. Whenever it is defined, the mod Z reduction of the end-periodic
rho invariant ρep(σ1, σ2 ; X, S, γ, f ) associated to σ1, σ2 : π → U (N ) depends
only on the representations σ1, σ2 and the equivalence class of (X, S, γ, f ) in
K ep

1 (Bπ). Moreover, every equivalence class has a representative with a well-
defined rho invariant. Hence there is a well-defined group homomorphism

ρep(σ1, σ2) : K
ep
1 (Bπ)→ R/Z.

Furthermore, the following diagram commutes:

K ep
1 (Bπ) K1(Bπ)

R/Z

ρep(σ1,σ2)

∼

ρ (σ1,σ2)

Hence, even if the spectral set of D+(X) is not discrete, we can still define
its R/Z end-periodic rho invariant in a perfectly reasonable and consistent man-
ner. This allows us to define the R/Z invariant, for instance, in the case where
Ind D+(X) 6= 0. For the applications to positive scalar curvature, the end-periodic
rho invariant is well-defined and given by the usual formula (3.8), since in Remark
3.11 we have noted that the spectral sets of its twisted operators are discrete.

Proof. That every equivalence class in K ep-homology has a representative with dis-
crete spectral set follows from the proof of Theorem 3.3 — the cycle (X, S, γ, f )
is bordant to the cycle (S1

× Y, S+⊕ S+, dθ, f ), which has discrete spectral set
by part (1) of Remark 3.11.

As we shall see, it is only necessary to prove invariance of ρep under bordism,
and then Theorem 3.3 will imply invariance under the other relations defining
K ep-homology. First suppose that (X, S, γ, f ) is a boundary with Dirac opera-
tor D+(X) such that the families associated to the twisted operators D+1 (X) and
D+2 (X) have discrete spectral sets. We apply the MRS index theorem to each
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operator separately to get

IndMRS D+i (Z∞)=
∫

Z
I(D+i (Z))−

∫
Y
ωi +

∫
X

d F ∧ωi −
1
2 hi + η

ep(D+i (X))

for i = 1, 2. Now, since we are twisting by flat vector bundles, both the index form
and the transgression classes for the twisted operators are constant multiplies of
the index form and transgression class of the original operator. Hence when we
subtract the two equations, the terms involving these vanish and we are left with

ρep(σ1, σ2; X, S, γ, f )= IndMRS D+2 (Z∞)− IndMRS D+1 (Z∞),

which is an integer. The end-periodic rho invariant behaves additively under dis-
joint unions of cycles and changes sign when the negative of a cycle is taken. This
proves bordism invariance mod Z.

Now the K ep-cycle (X, S, γ, f ) with discrete spectral sets is bordant to (S1
×

Y, S+ ⊕ S+, dθ, f ), where Y is Poincaré dual to γ . By [Mrowka et al. 2016,
§6.3], the end-periodic rho invariant of (S1

× Y, S+⊕ S+, dθ, f ) is equal to the
rho invariant of the K -cycle (Y, S+, f ). Hence

ρep(σ1, σ2; X, S, γ, f )= ρ(σ1, σ2; Y, S+, f ) mod Z.

The isomorphism K1(Bπ)∼= K ep
1 (Bπ) then immediately implies the theorem. �

4. End-periodic bordism groups

In this section, we recall the definition of the spin bordism groups, and introduce the
analogous bordism groups in the end-periodic setting. As for K -homology, there
are natural isomorphisms between the spin bordism groups and the end-periodic
spin bordism groups. We also consider the PSC spin bordism groups described in
Botvinnik and Gilkey [1995], and define the corresponding end-periodic PSC spin
bordism groups. Throughout, we take m ≥ 5 to be a positive odd integer.

4.1. Spin bordism and end-periodic spin bordism. We recall the definition of the
spin bordism group �spin

m (Bπ) for a discrete group π .

Definition 4.1. An �spin
m -cycle for Bπ is a triple (M, σ, f ), where M is a compact

oriented Riemannian spin manifold of dimension m, σ is a choice of spin structure
on M , and f : M→ Bπ is a continuous map.

The negative of an �spin
m -cycle (M, σ, f ) is (−M, σ, f ), where −M is M with

the reversed orientation. An �spin
m -cycle (M, σ, f ) is a boundary if there exists a

compact oriented Riemannian manifold W with boundary ∂W =M , a spin structure
on W whose restriction to the boundary is the spin structure σ , and a continuous
map W → Bπ extending the map f . Two �spin

m -cycles (M, σ, f ) and (M ′, σ ′, f ′)
are bordant if (M, σ, f )q (−M ′, σ ′, f ′) is a boundary.
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Definition 4.2. The m-dimensional spin bordism group �spin
m (Bπ) for Bπ , con-

sists of �spin
m -cycles for Bπ modulo the equivalence relation of bordism. It is an

abelian group with addition given by disjoint union of cycles.

The end-periodic spin bordism group �ep,spin
m (Bπ), is defined in an analogous

way to the end-periodic K -homology group.

Definition 4.3. An �ep,spin
m -cycle for Bπ is a quadruple (X, σ, γ, f ) where X is

a compact oriented Riemannian spin manifold of dimension m + 1, σ is a spin
structure on X , γ is a cohomology class in H 1(X,Z) that is primitive on each
component of X , and f : X→ Bπ is a continuous map.

The definition of a boundary is essentially the same as for end-periodic K -
homology.

Definition 4.4. An �ep,spin
m -cycle (X, σ, γ, f ) is a boundary if there exists an end-

periodic oriented Riemannian spin manifold Z∞ with end modelled on (X, γ ),
such that the pulled back spin structure σ on the periodic end extends to Z∞, as
does the pulled back map f to Bπ .

The negative of a cycle (X, σ, γ, f ) is (X, σ,−γ, f ). As before, we introduce
the additional relation of orientation/sign:

(X, σ,−γ, f )∼ (−X, σ, γ, f ).

Two �ep,spin
m -cycles (X, γ, σ, f ) and (X ′, γ ′, σ ′, f ′) are bordant if (X, σ, γ, f )q

(X, σ,−γ, f ) is a boundary.

Definition 4.5. The m-dimensional end-periodic spin bordism group �ep,spin
m (Bπ)

consists of �ep,spin
m -cycles modulo the equivalence relation generated by bordism

and orientation/sign, with addition given by disjoint union.

Analogous to the K -homology groups from Section 2, there is a canonical iso-
morphism between the spin bordism and end-periodic spin bordism groups which
we will now describe.

The map�spin
m (Bπ)→�

ep,spin
m (Bπ) takes a�spin

m (Bπ)-cycle (M, σ, f ) to (S1
×

M, 1×σ, dθ, f ), where S1
×M has the product orientation and Riemannian metric,

1× σ is the product spin structure of the trivial spin structure 1 on S1 with the spin
structure σ on M , dθ is the standard generator of the first cohomology of S1, and
f is the obvious extension of f : M→ Bπ to S1

×M .

Proposition 4.6. The map which sends an �spin
m (Bπ)-cycle (M, σ, f ) to the

�ep,spin
m (Bπ)-cycle (S1

×M, 1× σ, dθ, f )

is well-defined on spin bordism groups.



660 MICHAEL HALLAM AND VARGHESE MATHAI

Proof. If (M, σ, f ) and (M ′, σ ′, f ′) are bordant, with W bounding their disjoint
union, then R≥0×M and R≤0×M ′ can be joined using W to form an end-periodic
manifold Z∞ with multiple ends. All structures extend to Z∞ by assumption, hence
the two�ep,spin

m (Bπ)-cycles (S1
×M, 1×σ, dθ, f ) and (−S1

×M, 1×σ ′,−dθ, f ′)
are bordant. Using the orientation/sign relation, we see that (S1

×M, 1×σ, dθ, f )
and (S1

×M ′, 1× σ ′, dθ, f ′) are equivalent. �

Now for the map �ep,spin
m (Bπ)→ �

spin
m (Bπ). Let (X, σ, γ, f ) be an �ep,spin

m -
cycle for Bπ , and Y be a submanifold of X Poincaré dual to γ . We equip Y with
the induced spin structure and orientation from γ . Explicitly, the orientation of Y is
as in the paragraph after Definition 2.9, and the restricted spin structure is obtained
first by cutting X open along Y to get a manifold W with boundary ∂W = Y q−Y ,
and then taking the boundary spin structure on the positively oriented component
Y of ∂W . This yields an �spin

m -cycle (Y, σ, f ), where σ and f are restricted to Y .

Proposition 4.7. The map taking an�ep,spin
m (Bπ)-cycle (X,σ,γ, f ) to the�spin

m (Bπ)-
cycle (Y, σ, f ) described above is well-defined on bordism groups.

Proof. Independence of the choice of Y is proved as for the K -homology case,
only with spin structures instead of Dirac bundles. It is clear that the orienta-
tion/sign relation is respected, since both (X, σ,−γ, f ) and (−X, σ, γ, f ) get
sent to (−Y, σ, f ). If (X, σ, γ, f ) and (X ′, σ ′, γ ′, f ′) are bordant, then there is a
compact manifold Z with boundary ∂Z = Y q−Y ′ such that the spin structures and
maps extend over Z . But this shows that (Y, σ, f ) and (Y ′, σ ′, f ′) are bordant. �

Theorem 4.8. The above maps of bordism groups are inverse to each other, and
so define a natural isomorphism of abelian groups �spin

m (Bπ)∼=�ep,spin
m (Bπ).

Proof. A cycle (M, σ, f ) gets mapped to (S1
× M, 1 × σ, dθ, f ), which gets

returned to (M, 1× σ, f ), where the latter two entries are restricted to M . It is
straightforward to check that the product spin structure 1×σ restricted to M yields
the original spin structure σ . Therefore we obtain our original cycle (M, σ, f ) after
mapping it to and from end-periodic bordism.

Now let (X, σ, γ, f ) be an end-periodic cycle, with submanifold Y Poincaré
dual to γ . This maps to a cycle (Y, σ, f ), where the latter two structures are
restricted from X , and this maps back to (S1

×Y, 1×σ, dθ, f ). The same argument
as in the proof of Definition 2.9 shows that this is bordant to (X, σ, γ, f ). �

4.2. PSC spin bordism and end-periodic PSC spin bordism. Botvinnik and Gilkey
[1995] use a variant of spin cobodism tailored to the setting of manifolds with
positive scalar curvature, which we now recall.

Definition 4.9. A �
spin,+
m -cycle is a quadruple (M, g, σ, f ), where M is a compact

oriented Riemannian spin manifold of dimension m with a metric g of positive
scalar curvature, σ is a spin structure on M , and f : M→ Bπ is a continuous map.
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The negative of (M, g, σ, f ) is (−M, g, σ, f ), as before. A cycle (M, g, σ, f )
is called a boundary if there is a compact oriented Riemannian spin manifold W
with boundary ∂W = M so that the spin structure σ and map f extend to W . It
is also required that W has a metric of positive scalar curvature that is a product
metric dt2

+ g in a neighbourhood of the boundary. Two cycles are bordant if the
disjoint union of one with the negative of the other is a boundary.

Definition 4.10. The PSC spin bordism group �spin,+
m (Bπ) for Bπ consists of

�
spin,+
m -cycles modulo bordism, with addition given by disjoint union.

We now define the end-periodic PSC spin bordism group �ep,spin,+
m (Bπ) for

Bπ .

Definition 4.11. An �ep,spin,+
m -cycle is a quintuple (X, g, σ, γ, f ), where X is a

compact oriented Riemannian spin manifold of dimension m+1 with a metric g of
positive scalar curvature, σ is a choice of spin structure on X , γ is a cohomology
class in H 1(X,Z) whose restriction to each component of X is primitive, and
f : X→ Bπ is a continuous map. We further require that there is a submanifold Y
of X that is Poincaré dual to γ , such that the induced metric on Y has positive scalar
curvature, and the metric on X is a product metric dt2

+gY in a neighbourhood of Y .

Let (X, g, σ, γ, f ) be an �ep,spin,+
m -cycle and take Y ⊂ X to be a submanifold

with PSC that is Poincaré dual to γ , having the product metric in a tubular neigh-
bourhood. As before we form X1 =

⋃
k≥0 Wk , where the Wk are isometric copies

of X cut open along Y . For (X, g, σ, γ, f ) to be a boundary means that there is a
compact oriented Riemannian spin manifold Z of positive scalar curvature, whose
metric is a product near the boundary, which can be attached to X1 along Y to form
a complete oriented Riemannian spin manifold of PSC Z∞ = Z ∪Y X1, such that
the pulled back spin structure σ and map f on X1 extend over Z .

The negative of (X, g, σ, γ, f ) is (X, g, σ,−γ, f ), and we have the orienta-
tion/sign relation

(X, g, σ,−γ, f )∼ (−X, g, σ, γ, f ).

Two �ep,spin,+
m -cycles are bordant if the disjoint union of one with the negative of

the other is a boundary.

Definition 4.12. The m-dimensional end-periodic PSC spin bordism group�ep,spin,+
m

(Bπ) for Bπ consists of �ep,spin,+
m -cycles modulo bordism and orientation/sign,

with addition given by disjoint union.

Theorem 4.13. There is a canonical isomorphism �
spin,+
m (Bπ)∼=�ep,spin,+

m (Bπ).

The maps are exactly as for the spin bordism theories, only when mapping from
�

ep,spin,+
m (Bπ) to �spin,+

m (Bπ) the Poincaré dual submanifold Y must be taken to
have PSC and a product metric in a tubular neighbourhood.
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Proof. As before. �

4.3. Rho invariants. Given a triple (M,σ, f ) and two unitary representations σ1, σ2 :

π → U (N ), we define the rho invariant ρ (σ1, σ2 ;M, σ, f ) as before, using the
spin Dirac operator for the cycle (M, S, f ). We also define the end-periodic rho
invariant for cycles (X, σ, γ, f ) in an entirely analogous manner, using the end-
periodic eta invariant of MRS instead. Of course, we must again be careful with
the definition, allowing only the rho invariant for cycles whose twisted operators
have discrete spectral sets to be defined in terms of the true end-periodic eta invari-
ants — all others are defined by taking bordant cycles with discrete spectra. We
remark also that in the case of positive scalar curvature, the h-terms appearing in
the definition of the rho invariants vanish.

Theorem 4.14. The rho invariant extends to a well-defined homomorphism

ρ (σ1, σ2) :�
spin
m (Bπ)→ R/Z,

as does the end-periodic rho invariant

ρep(σ1, σ2) :�
ep,spin
m (Bπ)→ R/Z.

Furthermore, the following diagram commutes:

�
ep,spin
m (Bπ) �

spin
m (Bπ)

R/Z

ρep(σ1,σ2)

∼

ρ (σ1,σ2)

Proof. Apply the APS and MRS index theorems respectively, and use the isomor-
phism of Theorem 4.8. �

Now for the positive scalar curvature case.

Theorem 4.15. The rho invariant extends to a well-defined homomorphism

ρ (σ1, σ2) :�
spin,+
m (Bπ)→ R,

as does the end-periodic rho invariant

ρep(σ1, σ2) :�
ep,spin,+
m (Bπ)→ R.

Furthermore, the following diagram commutes:

�
ep,spin,+
m (Bπ) �

spin,+
m (Bπ)

R
ρep(σ1,σ2)

∼

ρ (σ1,σ2)
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(- ∞, 0 ] × Y Y
W

Y
W

Y
W

Y
W

Y

Figure 4. End-periodic manifold with two ends.

Remark 4.16. The end-periodic rho invariant appearing in the theorem is given on
all representatives of equivalence classes as the genuine difference of the twisted
eta invariants as in formula (3.8), due to Remark 3.11.

For the proof, we will need the following (see [Mrowka et al. 2016, Proposition
8.5 (ii)]).

Lemma 4.17. If (X, g, σ, γ, f ) is an�ep,spin,+
m -cycle and (Y, g, σ, f ) is the�spin,+

m -
cycle it maps to, then

ρep(σ1, σ2 ; X, g, σ, γ, f )= ρ(σ1, σ2 ; Y, g, σ, f ).

Proof. We join R≥0 × Y to X1 =
⋃

k≥0 Wk together as in Figure 4 to form an
end-periodic spin manifold Z∞ with two ends. [Mrowka et al. 2016, Lemma 8.1]
(which uses the results of Gromov and Lawson [1983]) gives that the spin Dirac
operator D+(Z∞) is Fredholm and has zero index. The same holds for its twisted
counterparts. Applying the MRS index theorem to the two twisted spin Dirac
operators D+1 (Z∞) and D+2 (Z∞), and subtracting the equations as per usual then
yields the result. �

Proof of Theorem 4.15. See [Botvinnik and Gilkey 1995, Theorem 1.1] for the
proof that the map ρ (σ1, σ2) :�

spin,+
m (Bπ)→ R is well-defined. Lemma 4.17 and

the isomorphism of Theorem 4.13 then immediately imply the result. �

5. End-periodic structure group

Let σ1, σ2 :π→U (N ) be unitary representations of the discrete group π . Recall the
definition of the structure group S1(σ1, σ2) of Higson–Roe, starting from [Higson
and Roe 2010, Definition 8.7].

Definition 5.1. An odd (σ1, σ2)-cycle is a quintuple (M, S, f, D, n)where (M, S, f )
is an odd K -cycle for Bπ , D is a Dirac operator for (M, S, f ), and n ∈ Z.

A (σ1, σ2)-cycle (M, S, f, D, n) is a boundary if the K -cycle (M, S, f ) is bounded
by a manifold W (as in Definition 2.3) and there are Dirac operators D1(W ) and
D2(W ) on W which bound the twisted Dirac operators D1 and D2 on M , such that

IndAPS D+1 (W )− IndAPS D+2 (W )= n.
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Since we are no longer looking at rho invariants modulo integers or at spin Dirac
operators, we will denote by ρ(σ1, σ2 ; D, f ) the rho invariant of Definition 3.2,
indicating its possible dependence on the Dirac operator D.

Lemma 5.2 (Higson and Roe 2010, Lemma 8.10). If a (σ1, σ2)-cycle (M, S, f, D, n)
is a boundary, then ρ(σ1, σ2; D, f )+ n = 0.

Definition 5.3. The relative eta invariant, or rho invariant of the (σ1, σ2)-cycle
(M, S, f, D, n) is ρ(σ1, σ2 ; D, f )+ n.

The disjoint union of (σ1, σ2)-cycles is defined as,

(M, S, f, D, n)q (M ′, S′, f ′, D′, n′)= (MqM ′, Sq S′, f q f ′, DqD′, n+n′).

The negative of a (σ1, σ2)-cycle (M, S, f, D, n), is defined as,

−(M, S, f, D, n)= (M,−S, f,−D, h1− h2− n),

where h1 = dim ker(D1) and h2 = dim ker(D2). Two (σ1, σ2)-cycles are bordant
if the disjoint union of one cycle with the negative of the other is a boundary.

The two remaining relations to define are:

• Direct sum/disjoint union:

(M, S⊕ S′, f, D⊕ D′, n)∼ (M qM, Sq S′, f q f, Dq D′, n).

• Bundle Modification: If (M̂, Ŝ, f̂ ) is an elementary bundle modification of
(M, S, f ) with the Dirac operator D̂ from 2.5, then

(M, S, f, D, n)∼ (M̂, Ŝ, f̂ , D̂, n).

Definition 5.4. The structure group S(σ1, σ2), is the set of equivalence classes
of (σ1, σ2)-cycles under the equivalence relation generated by bordism, direct
sum/disjoint union, and bundle modification. It is an abelian group with addition
is given by disjoint union.

In [Higson and Roe 2010, Proposition 8.14], it is proved that the relative eta
invariant of a (σ1, σ2)-cycle depends only on the class that the cycle determines in
S(σ1, σ2). Hence there is a well-defined group homomorphism ρ : S(σ1, σ2)→ R,
defined by

ρ(M, S, f, D, n)= ρ(σ1, σ2 ; D, f )+ n.

5.1. End-periodic structure group. We define in a parallel manner the end-periodic
structure group Sep

1 (σ1, σ2).

Definition 5.5. An odd (σ1, σ2)
ep-cycle is a sextuple (X, S, γ, f, D, n) where

(X, S, γ, f ) is a K ep-cycle for Bπ , D is a Dirac operator for (X, S, γ, f ), and
n ∈ Z. We additionally assume that the spectral set of the family D+z (X) is discrete.
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A (σ1, σ2)
ep-cycle (X, S, f, γ, D, n) is a boundary if the K ep-cycle (X, S, γ, f )

is a boundary (Definition 2.10), and moreover there is a Dirac operator D(Z∞) on
the manifold Z∞ extending the Dirac operator D on X1 =

⋃
k≥0 Wk such that the

difference of the MRS indices

IndMRS(D+1 (Z∞))− IndMRS(D+2 (Z∞))= n.

Here the D+i (Z∞) are the twists of D+(Z∞) by the flat vector bundles determined
by the extension of f to Z∞ and by σ1, σ2. We can show the analog of Lemma 5.2

Lemma 5.6. If a (σ1, σ2)
ep-cycle (X, S, γ, f, D, n) is a boundary, then

ρep(σ1, σ2 ; D, f, γ )+ n = 0.

We call the quantity ρep(σ1, σ2 ; D, f, γ )+ n the end-periodic rho invariant of
the (σ1, σ2)

ep-cycle (X, S, γ, f, D, n).

The disjoint union of (σ1, σ2)
ep-cycles is defined as

(X, S, f, γ, D, n)q (X ′, S′, γ ′, f ′, D′, n′)

= (X q X ′, Sq S′, γ q γ ′, f q f ′, Dq D′, n+ n′).

The negative of a (σ1, σ2)
ep-cycle (X, S, γ, f, D, n), is

−(X, S, γ, f, D, n)= (X, S,−γ, f, D, h1− h2− n),

where h1, h2 are the integers occurring in the MRS index theorem associated to
σ1, σ2. Two (σ1, σ2)

ep-cycles are bordant if the disjoint union of one with the
negative of the other is a boundary. We also have:

• Direct sum/disjoint union:

(X, S⊕ S′, γ + γ ′ f, D⊕ D′, n)∼ (X qM, Sq S′, γ q γ ′, f q f, Dq D′, n).

• Bundle modification: If (X̂ , Ŝ, γ̂ , f̂ ) is an elementary bundle modification of
(X, S, γ, f ) and D̂ is the Dirac operator of Remark 2.5, then

(X, S, γ, f, D, n)∼ (X̂ , Ŝ, γ̂ , f̂ , D̂, n).

• Orientation/sign:

(X, S,−γ, f, D, n)∼ (−X,5(S), γ, f, D, n).

Definition 5.7. The end-periodic structure group, denoted by Sep
1 (σ1, σ2), is the set

of equivalence classes of (σ1, σ2)
ep-cycles under the equivalence relation generated

by bordism, direct sum/disjoint union, bundle modification, and orientation/sign.
It is an abelian group with unit and addition is given by disjoint union.
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Define the group homomorphism ρep
: Sep

1 (σ1, σ2)→ R by the formula

ρep(X, S, γ, f, D, n)= ρep(σ1, σ2; D, f, γ )+ n.

Then the following theorem is the analog of Theorem 3.15 is proved in a similar
way.

Theorem 5.8. The end-periodic rho invariant ρep(X, S, γ, f, σ1, σ2)+ n associ-
ated to the (σ1, σ2)

ep-cycle (M, S, γ, f, D, n) depends only on the equivalence
class of (M, S, γ, f, D, n) in Sep

1 (σ1, σ2). Hence there is a well-defined group
homomorphism

ρep
: Sep

1 (σ1, σ2)→ R.

Furthermore, the following diagram commutes:

Sep
1 (σ1, σ2) S1(σ1, σ2)

R
ρep

∼

ρ

Here the maps

Sep
1 (σ1, σ2)↔ S1(σ1, σ2)

are the analog of the maps in K -homologies given earlier.
Also, Higson and Roe establish a commuting diagram of short exact sequences;

see [Higson and Roe 2010], the paragraph below Definition 8.6,

0 // Z //

=

��

// S1(σ1, σ2) //

ρ

��

K1(Bπ)

ρ(σ1,σ2)

��

// 0

0 // Z //// R // R/Z // 0.

(5.1)

By Theorems 5.8 and 3.15, we deduce that there is a commuting diagram of
short exact sequences,

0 // Z //

=

��

// Sep
1 (σ1, σ2) //

ρep

��

K ep
1 (Bπ)

ρep(σ1,σ2)

��

// 0

0 // Z //// R // R/Z // 0.

(5.2)

This tells us when the R/Z-index theorem can be refined to an R-index theorem.
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6. Applications to positive scalar curvature

Using the above isomorphisms of K -homologies and cobordism theories, we can
immediately transfer results on positive scalar curvature from the odd-dimensional
case to the even-dimensional case in which a primitive 1-form is given.

6.1. Odd-dimensional results in the literature. First we will state the odd-dimen-
sional results that we will be generalising to the even-dimensional case using our
isomorphisms. The first ones are obstructions to positive scalar curvature.

Theorem 6.1 (Weinberger 1988; Higson and Roe 2010, Theorem 6.9). Let (M, S, f )
be an odd K -cycle for Bπ , where M is an odd dimensional spin manifold with a
Riemannian metric of positive scalar curvature, and S is the bundle of spinors on
M. Then for any pair of unitary representations σ1, σ2 : π→U (N ), the associated
rho invariant ρ(σ1, σ2 ;M, S, f ) is a rational number.

Theorem 6.2 (Higson and Roe 2010, Remark 6.10). Let (M, S, f ) be an odd K -
cycle for Bπ , where M is an odd dimensional spin manifold with a Riemannian
metric of positive scalar curvature, and S is the bundle of spinors on M. If the
maximal Baum–Connes map for π is injective, then for any pair of unitary repre-
sentations σ1, σ2 : π→U (N ), the associated rho invariant ρ(σ1, σ2 ;M, S, f ) is
an integer.

Remarks 6.3. The maximal Baum–Connes map for π is injective whenever for
instance π is a torsion-free linear discrete group [Guentner et al. 2005].

Theorem 6.4 (Higson and Roe 2010, Theorem 1.1; Keswani 2000). Let (M, S, f )
be an odd K -cycle for Bπ , where M is an odd dimensional spin manifold with
a Riemannian metric of positive scalar curvature, and S is the bundle of spinors
on M. If the maximal Baum–Connes conjecture holds for π , then for any pair of
unitary representations σ1, σ2 : π→U (N ), the associated rho invariant ρ(σ1, σ2;

M, S, f ) is zero.

Remarks 6.5. The maximal Baum–Connes conjecture holds for π whenever π is
K -amenable.

We now turn to a result on the number of path components of the moduli space
of PSC metrics modulo diffeomorphism, M+(M). Denote for a group π , the repre-
sentation ring R(π) consisting of formal differences of finite dimensional unitary
representations, and let R0(π) be those formal differences with virtual dimension
zero (an element of R0(π) can be thought of as an ordered pair of unitary repre-
sentations σ1, σ2 : π→U (N )). Following Botvinnik and Gilkey [1995], introduce
the subgroups

R±0 (π)= {α ∈ R0(π) : tr(α(λ))=± tr(α(λ−1)) for all λ ∈ π}
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and define

rm(π)=

{
rankZ R+0 (π) if m = 3 mod 4,
rankZ R−0 (π) if m = 1 mod 4.

The following is a result of Botvinnik and Gilkey on the number of path compo-
nents of the moduli space of PSC metrics modulo diffeomorphism.

Theorem 6.6 (Botvinnik and Gilkey 1995, Theorem 0.3). Let M be a compact con-
nected spin manifold of odd dimension m ≥ 5 admitting a metric of positive scalar
curvature. Suppose that π = π1(M) is finite and nontrivial, and that rm(π) > 0.
Then the moduli space of PSC metrics modulo diffeomorphism M+(M) has infin-
itely many path components.

Their proof involves finding a countably indexed family of metrics gi of positive
scalar curvature on M so that ρ(M, gi ) 6= ρ(M, g j ) for i 6= j . If these metrics
were homotopic through PSC metrics, then they would lie in the same PSC bor-
dism class and hence have equal rho invariants. We will extend this result to the
even-dimensional case under the additional hypothesis of “psc-adaptability”; see
Definition 6.11.

6.2. Our even-dimensional results. In the following theorems, we assume that Y
is a submanifold of X that is Poincaré dual to a primitive class γ ∈ H 1(X,Z)

such that the scalar curvature of Y in the induced metric is positive. In fact, the
theorems even hold under the weaker hypothesis that the induced metric on Y is
conformal to a metric of positive scalar curvature. By a theorem of [Schoen and
Yau 1979], if dim(X) = n ≤ 7, then every homology class in Hn−1(X,Z) has a
representative that is a smooth, orientable minimal hypersurface. It follows that if
X is spin with positive scalar curvature, then a Poincaré dual to a primitive class
γ ∈ H 1(X,Z) can be chosen to be a smooth, spin minimal hypersurface Y , such
that the induced metric on Y is conformal to one of positive scalar curvature. So
this weaker assumption is automatically true when dim(X)= n ≤ 7.

The following is our even-dimensional analog of Theorem 6.1.

Theorem 6.7. Let (X, S, γ, f ) be an odd K ep-cycle for Bπ , where X is an even-
dimensional spin manifold with a Riemannian metric of positive scalar curvature,
S is the bundle of spinors on X and γ a primitive class in H 1(X,Z) such that there
is a Poincaré dual submanifold Y whose scalar curvature in the induced metric
is positive. Then for any pair of unitary representations σ1, σ2 : π → U (N ), the
associated end-periodic rho invariant ρep(σ1, σ2 ; X, S, γ, f ) is a rational number.

Proof. The odd K ep-cycle for Bπ , (X, S, γ, f ) determines an odd K -cycle for
Bπ , (Y, S+, f ) where Y is a Poincaré dual submanifold for γ having positive
scalar curvature, and is given the induced spin structure from X . By Theorem 6.1,
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ρ(σ1, σ2 ; Y, S+, f )∈Q. By Theorem 3.15 it follows that ρep(σ1, σ2 ; X, S, γ, f )∈
Q as claimed. �

Next is our even-dimensional analog of Theorem 6.2, and is argued as above.

Theorem 6.8. Let (X, S, γ, f ) be an odd K ep-cycle for Bπ , where X is an even-
dimensional spin manifold with a Riemannian metric of positive scalar curvature,
S is the bundle of spinors on X and γ a primitive class in H 1(X,Z) such that there
is a Poincaré dual submanifold Y whose scalar curvature in the induced metric is
positive. If the maximal Baum–Connes map for π is injective, then for any pair
of unitary representations σ1, σ2 : π → U (N ), the associated end-periodic rho
invariant ρep(σ1, σ2 ; X, S, γ, f ) is an integer.

Proof. As for Theorem 6.7. �

Here is the even-dimensional analog of Theorem 6.4.

Theorem 6.9. Let (X, S, γ, f ) be an odd K ep-cycle for Bπ , where X is an even-
dimensional spin manifold with a Riemannian metric of positive scalar curvature,
S is the bundle of spinors on X and γ a primitive class in H 1(X,Z) such that there
is a Poincaré dual submanifold Y whose scalar curvature in the induced metric is
positive. If the maximal Baum–Connes conjecture holds for π , then for any pair
of unitary representations σ1, σ2 : π → U (N ), the associated end-periodic rho
invariant ρep(σ1, σ2 ; X, S, γ, f ) is zero.

Proof. The odd K ep-cycle for Bπ , (X, S, γ, f ) determines an odd K -cycle (Y, S+, f )
for Bπ , where Y is a Poincaré dual submanifold for γ having positive scalar cur-
vature, and is endowed with the induced spin structure. By Theorem 6.4,

ρ(σ1, σ2; Y, S+, f )= 0.

By 4.17 it follows that ρep(σ1, σ2 ; X, S, γ, f )= 0. �

Example 6.10. Although ρ-invariants are difficult to compute, nevertheless thanks
to many authors, there is now a decent set of computations that are available. We
can use these to compute end-periodic rho invariants, which we will show in a
simple example. Consider Y = S1 with the trivial spin structure. Then unitary
characters σ1, σ2 of the fundamental group of S1 can be identified with real num-
bers, and a computation (see [Gilkey 1984b, p. 82]) says that the rho invariant of the
spin Dirac operator is ρ(S1, σ1, σ2)= σ1− σ2 mod Z. In particular, ρ(S1, σ1, σ2)

can take on any real value mod Z. Let W be a spin cobordism from S1 to S1,
and 6 be the compact spin Riemann surface (whose genus is ≥ 1) obtained as a
result of gluing the two boundary components of W . Then S1 is a codimension
one submanifold of 6 that represents a generator a of π1(6). We can extend the
characters σ1, σ2 of aZ to all of π1(6) by declaring them to be trivial on the other
generators. Then by Theorem 3.15, it follows that ρep(6, γ, σ1, σ2) = σ1 − σ2
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mod Z, can take on any real value mod Z, where γ is the degree one cohomology
class on 6 which is Poincaré dual to S1. We conclude by Theorem 6.7 that the
Riemann surface 6 does not admit a PSC metric. This of course can also be proved
by the Gauss–Bonnet theorem and is well-known.

The construction generalises easily to any odd dimensional spin manifold Y with
nonzero rho invariant ρ(Y, σ1, σ2) 6= 0 mod Z. We conclude by Theorem 3.15 that
the resulting even dimensional spin manifold X constructed from a spin cobor-
dism from Y to itself, has nonzero end-periodic rho invariant ρep(X, γ, σ1, σ2) 6=

0 mod Z, where γ is the degree one cohomology class on X which is Poincaré
dual to the submanifold Y . In particular, such an X does not admit a PSC metric.
Examples of Y include odd-dimensional lens spaces L(p; Eq), where it is shown
in [Gilkey 1984a, Theorem 2.5, part (c)], that for any spin structure on L(p; Eq),
there is a representation σ of π1(L(p; Eq)) such that ρ(L(p; Eq), Id, σ ) 6= 0 ∈Q/Z.
Explicitly, for 3 dimensional lens spaces L(p, q), consider the representation σ :
π1(L(p; Eq))→U (1) taking the generator t ∈π1(L(p; q)) to the unit complex num-
ber exp(2π

√
−1/p). Then ρ(L(p; q), Id, σ )=−(d/2p)(p+1) 6= 0∈Q/Z where

d is a certain integer relatively prime to 48p. Then ρep(X, γ, Id, σ ) 6= 0 ∈ Q/Z.
These results confirm Theorem 6.7 in these examples.

6.3. Size of the space of components of positive scalar curvature metrics. Hitchin
[1974] proved the first results on the size of the space of components of the space
of Riemannian metrics of positive scalar curvature metrics on a compact spin
manifold, when nonempty. This sparked much interest in the topic and results
by Botvinnik–Gilkey, Piazza–Schick and many others.

We now extend Theorem 6.6 to the even-dimensional case. We would like to
say something like “Given an even-dimensional manifold X with PSC having a
submanifold Y of PSC Poincaré dual to a primitive one-form γ , if M+(Y ) has
infinitely many path components then so does M+(X).” The argument would
involve using a countable family of PSC metrics on Y with distinct rho invariants
to find a countable such family on X . There are complications however, since given
an arbitrary PSC metric on Y , there is not necessarily a PSC metric on X whose
restriction to Y is the given metric. Because we are already assuming that there is
at least one PSC metric on X which restricts to a metric of PSC on Y , there are no
obstructions from topology preventing this from being the case.

Definition 6.11. Let X be a compact even-dimensional manifold, and γ ∈H 1(X,Z)

a primitive cohomology class with accompanying Poincaré dual submanifold Y .
Suppose that there is at least one PSC metric on X which restricts to a PSC metric
on Y . We say that X is psc-adaptable with respect to Y if for every PSC metric gY

on Y , there is a PSC metric gX on X that is a product metric dt2
+ gY in a tubular

neighbourhood of Y .
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Y

X

Y

W

Y

Figure 5. Pushing a PSC metric across W using the Miyazaki–
Rosenberg construction.

Y

W'

Y' Y'

W'

Y

Figure 6. Obtaining a psc-adaptable manifold through a symmetric bordism.

Some notes and comments on the notion of psc-adaptability. Let X and Y be
as in the above definition, and take an arbitrary PSC metric gY on Y . Cutting X
open along Y , we obtain a self cobordism W of Y ; see Figure 5. Under suitable
assumptions on the topology of X and Y , a construction of Miyazaki [1984] and
Rosenberg [1986] (using the theory of Gromov and Lawson [1980a] and Schoen
and Yau [1979]) enables one to push the PSC metric on Y across the bordism
(pictured on the right in the figure) to get a PSC metric on W restricting to metrics
of PSC on each boundary component. One might then try to glue the manifold
back together to obtain a PSC metric on X which restricts to the given metric gY

on Y . The problem is that one doesn’t know whether the new psc metric on Y is
isotopic to the original. Hence the concept of psc-adaptability which hypothesizes
that this is true. It is the case when the bordism is symmetric for instance. That
is, starting with a bordism W ′ from Y to Y ′, we get a bordism from Y to itself by
thinking of W ′ as a bordism from Y ′ to Y and gluing to the original bordism; see
Figure 6.

Then one can use the Miyazaki–Rosenberg construction starting with the PSC
metric g on Y to get another PSC metric on Y ′ halfway through, and then reverse
the Miyazaki–Rosenberg construction from the PSC metric on the halfway Y ′ to
get a PSC metric g′ on Y on the other end, which isotopic to the original PSC
metric g on Y . Considering a small cylinder over Y , and using the fact that isotopy
implies concordance, see [Gromov and Lawson 1980a, Lemma 3], we can further
push g′ to g. Since the metrics agree on either end, the bordisms can be glued
together.
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Mrowka, Ruberman and Saveliev also note a class of psc-adaptable manifolds —
those of the form (S1

×Y )#M where Y and M are manifolds of positive scalar cur-
vature; see [Mrowka et al. 2016, Theorem 9.2]. The end-periodic bordism groups
provide a more natural framework for their proof of the following:

Theorem 6.12 (Mrowka et al. 2016, Theorem 9.2). Let X be a compact even-
dimensional spin manifold of dimension ≥ 6 admitting a metric of positive scalar
curvature. Suppose there is a submanifold Y ⊂ X of PSC that is Poincaré dual
to a primitive cohomology class γ ∈ H 1(X,Z), such that π = π1(Y ) is finite and
nontrivial. Further assume that the classifying map f : Y → Bπ of the universal
cover extends to X , and that X is psc-adaptable with respect to Y . If rm(π1(Y )) > 0,
then π0(M

+(X)) is infinite, where M+(X) denotes the quotient of the space of
positive scalar curvature metrics by the diffeomorphism group.

Proof. In the terminology of Section 4, we have an �ep,spin,+
m (Bπ)-cycle (X, g, σ,

γ, f ), with associated�spin,+
m (Bπ)-cycle (Y, g, σ, f ). Botvinnik and Gilkey [1995]

construct a representation α : π→U (N ) of π and a countable family of metrics
gi on Y with

ρ(α, 1; Y, gi , σ, f ) 6= ρ(α, 1; Y, g j , σ, f )

for i 6= j , where 1 : π → U (N ) is the trivial representation. Our assumption of
psc-adaptability and Theorem 4.15 imply there is a countable family of metrics gi

on X with
ρep(α, 1; X, gi , σ, γ, f ) 6= ρ(α, 1; X, g j , σ, γ, f )

for i 6= j . But [Mrowka et al. 2016, Theorem 9.1] says that homotopic metrics of
PSC on X should have the same rho invariants. �

7. Vanishing of end-periodic rho using the representation variety

In this section we give a proof of the vanishing of the end-periodic rho invariant
of the twisted Dirac operator with coefficients in a flat Hermitian vector bundle
on a compact even-dimensional Riemannian spin manifold X of positive scalar
curvature using the representation variety of π1(X) instead.

Let ι : Y ↪→ X be a codimension one submanifold of X which is Poincaré dual
to a generator γ ∈ H 1(X,Z).

Let R = Hom(π,U (N )) denote the representation variety of π = π1(Y ), and
R̃ denote the representation variety of π1(X). We now construct a generalisation
of the Poincaré vector bundle P over Bπ ×R. Let Eπ → Bπ be a principal
π-bundle over the space Bπ with contractible total space Eπ . Let h : Y → Bπ
be a continuous map classifying the universal π-covering of Y . We construct a
tautological rank N Hermitian vector bundle P over Bπ ×R as follows: consider
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the action of π on Eπ ×R×CN given by

Eπ ×R×CN
×π→ Eπ ×R×CN , ((q, σ, v), τ )→ (qτ, σ, σ (τ−1)v).

Define the universal rank N Hermitian vector bundle P over Bπ ×R to be the
quotient (Eπ ×R×CN )/π . Then P has the property that the restriction P|Bπ×{σ }
is the flat Hermitian vector bundle over Bπ defined by σ . Let I denote the closed
unit interval [0, 1] and β : I → R be a smooth path in R joining the unitary
representation α to the trivial representation. Define E = ( f ×β)∗P→ Y × I to
be the Hermitian vector bundle over Y × I , where f : Y → Bπ is the classifying
map of the universal cover of Y . Let Et → Y ×{t} denote the restriction of E to
Y ×{t}. Then Et is the flat unitary Hermitian vector bundle over Y determined by
the unitary representation β(t) of π . Thus E has a natural flat unitary connection,
whose restriction on each Et , t ∈ I is the flat unitary connection, which can be
extended to a full U (n)-connection ∇E on Y × I , which amounts to giving an
action of ∂/∂t , or equivalently of identifying E with a bundle pulled back from Y .
With such a choice of connection, it follows that the curvature of E is a multiple of
dt , and so the only nonzero component of the Chern character form ch(∇E)− N
is the first Chern form αt ∧ dt in dimension 2, where αt is a closed 1-form on Y ,
whose cohomology class α = [αt ] ∈ H 1(Y,R) = H 1(Bπ,R) is independent of
t ∈ I .

Theorem 7.1 (PSC and vanishing of end-periodic rho). Let (X, g) be a compact
spin manifold of even dimension, and let ι : Y ↪→ X be a codimension one sub-
manifold of X which is Poincaré dual to a primitive class γ ∈ H 1(X,Z). Suppose
that

(1) g is a Riemannian metric of positive scalar curvature;

(2) the restriction g|Y is also a metric of positive scalar curvature.

Let α̃ : π̃→U (N ) be a unitary representation of π̃ =π1(X), and α : π→U (N )
be the unitary representation of π = π1(Y ) defined by α̃ ◦ ι∗. Assume that α can
be connected by a smooth path β : I → R to the trivial representation in the
representation space R.

Then ρep(X, S, γ, g; α̃, 1)= 0, where the flat hermitian bundle Eα̃ is determined
by α̃.

Proof. As observed above, the unitary connection ∇E induced on E has curvature
which is a multiple of dt , so that the Chern character form ch(∇E)= N +αt ∧ dt ,
where αt ∧ dt is the first Chern form of the connection on E and t is the variable
on the interval I . It follows that ch(E) = N + α ∧ dt where α ∈ H 1(Y,R) is
the cohomology class of αt . Consider the integrand

∫
Y×I Â(Y × I ) ch(E). Since

Â(Y × I ) = Â(Y ), where Â(Y ) is the A-hat characteristic class of Y . From the
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Y × [ 0,1]
Y

W
Y

W
Y

W
Y

W
YY

W
Y

W
Y

W
Y

W
Y

Figure 7. End-periodic manifold with 2 ends.

discussion above ∫
Y×I

Â(Y ) ch(E)=
∫

Y
Â(Y )α

∫
I

dt.

Since (Y, g) is a spin Riemannian manifold of positive scalar curvature, it follows
from [Gromov and Lawson 1980b, Theorem 2.1] that

∫
Y Â(Y ) f ∗(x) = 0 for all

x ∈ H 1(Bπ,R)= H 1(Y,R).
Therefore we conclude that

∫
Y×I Â(Y ) ch(E)= 0.

Consider the manifold Y × I . It can be made into an end-periodic manifold with
two ends as follows. Let W be the fundamental segment obtained by cutting X open
along Y , and Wk be isometric copies of W . Then we can attach X1 =

⋃
k≥0 Wk

to one boundary component of Y × I and X0 =
⋃

k<0 Wk to the other boundary
component. Call the resulting end-periodic manifold Z∞ (see the Figure 7). It is
clear that Z∞ is diffeomorphic to X̃ , the cyclic Galois cover of X corresponding
to γ . Let f0 =− f and f1 = f for a choice of real-valued function f on Z∞ such
that γ = [d f ].

The flat hermitian bundle Eα̃ over X induces a flat hermitian bundle p∗(Eα̃)
over X̃ , where p : X̃→ X is the projection. The restriction of p∗(Eα̃) to the subset
X1 is denoted by E1. Let E0 denote the trivial bundle over X0. We use the smooth
path γ to define the bundle E over Y × I which has the property that the restriction
of Ẽ to the boundary components agree with E0 and E1, thereby defining a global
vector bundle Ẽ over Z∞.

We can apply Theorem C in [Mrowka et al. 2016] to see that

index(D+
Ẽ
(Z∞))=

∫
Y×I

Â(Y × I ) ch(E)

−

∫
Y
ω+

∫
X

d f ∧ω− 1
2(h1+ ηep(X, Eα̃, γ, g))

+

∫
Y
ω−

∫
X

d f ∧ω− 1
2((h0− ηep(X, Eid , γ, g))

Since g and g|Y are metrics of positive scalar curvature by hypothesis, it follows
that index(D+E (Z∞))= 0 by [Mrowka et al. 2016, Lemma 8.1] and that

∫
Y×I Â(Y×

I ) ch(E) = 0 by the earlier argument. Therefore ρep(X, S, γ, g; α̃, 1) = 0 as
claimed. �
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