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This paper provides a generalization of excision theorems in controlled alge-
bra in the context of equivariant G-theory with fibred control and families of
bounded actions. It also states and proves several characteristic features of this
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1. Introduction

The bounded K-theory construction due to Pedersen and Weibel [1985] has been
shown to be extremely useful in the analysis of versions of the Novikov conjec-
ture [Carlsson 1995; Carlsson and Goldfarb 2004a; Carlsson and Pedersen 1995;
1998; Ramras et al. 2014]. This conjecture asserts the split injectivity of a nat-
ural transformation called the assembly. The present paper is the culmination
of a series of papers [Carlsson and Goldfarb 2011; 2016; 2019] that extend the
techniques sufficient to address the much more difficult Borel conjecture in al-
gebraic K-theory for a group I, which asserts that the K-theory assembly map
ar : BI'y A K(Z) — K(Z[TI']) is an equivalence of spectra. What we have found
is that substantial extensions are necessary.

Since the construction of the equivariant fibred G-theory is quite involved and
technical, we provide the reader with a discussion of how we arrived at it. Recall
that the integral K-theoretic Novikov conjecture asserts that the assembly map
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ar can be identified with a split inclusion on a direct summand of the spectrum
K (Z[T']). Consider the basic geometric situation of a finitely generated group I"
acting properly and freely on R”. It is shown in [Carlsson 1995; 2005; Carlsson
and Goldfarb 2004a; Carlsson and Pedersen 1995; 1998] that a successful strategy
for proving the Novikov conjecture proceeds by recognizing the following.

(1) The spectra BI'y A K(Z) and K(Z[I']) can be realized as the fixed point
spectra of I"-actions on certain spectra hl-(R", K (Z)) and K*4(R"; Z). The
spectrum hlrf(X , K(2)) is an equivariant version of Borel-Moore homology
with coefficients in the spectrum K (Z), and has the property that for proper
discontinuous free actions on locally compact spaces,

(X, K@) =h"(X/T, K(Z)).

The spectrum K®4(R”, Z) is the bounded K-theory due to Pedersen and
Weibel [1985]. It depends on a choice of I'-invariant metric on R".

(2) The assembly map ar is the restriction to the fixed point sets of an equivariant
map of spectra

o™ (R, K (2)) — KPYR"; Z).

(3) The I'-equivariant spectrum S = Wt (R", K (Z)) has the homotopy invariance
property that the canonical map ST — S"T is an equivalence.

It turns out that @®™ can often be proved to be an equivalence by using the
excision properties of the functor K%, When one can do this for a metric on R
which is I'-invariant, the integral K-theoretic Novikov conjecture follows immedi-
ately, using the fact that if f : X — Y is a map of spaces with I"-action, and f
is an equivalence when regarded as a nonequivariant map, then the map T on
homotopy fixed point sets is an equivalence.

Our approach to the K-theoretic Borel conjecture is to use similar techniques
to prove that the map p : K(Z[T']) — KPR, 7)" = BT, A K(Z) can also
be identified with an inclusion onto a spectrum summand. This result together
with the Novikov conjecture will prove that ar is an equivalence. Of course, as
stated, this appears to be difficult since the homotopy fixed point set W"T of a
spectrum with I'-action is defined as the function spectrum of equivariant maps
from ET'4 to W, and therefore is not in any sense finite dimensional or equipped
with any reasonable geometric cell structures. However, due to the fact that we
are working with stable homotopy theory, there is a proper version of Spanier—
Whitehead duality that allows us to obtain a geometric model for the homotopy
fixed point spectrum of a spectrum with I"-action, when I" is the fundamental group
of a K(I', 1)-manifold M. Consider any embedding i of M in R" for some n. We let
N denote any open tubular neighborhood of i (M). Clearly, 7;(N) =m (M) =T,
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and we consider the universal cover N. Using a version of equivariant Spanier—
Whitehead duality for free, proper I'-spaces, it is possible to show that for any
spectrum W with T'-action, there is an equivalence W"T = pf(N, W)

To understand how we use this equivalence, we need to describe some of the
properties of the construction K%, For any commutative ring A, K*4(—, A) is a
functor on a category of proper metric spaces 1. It is functorial for coarse maps
f : X = Y of metric spaces defined as maps that are both proper, in the sense that
preimages of bounded subsets of Y are bounded in X, and uniformly expansive, in
the sense that there is a function ¢ : R — R such that if x, x’ € X are any two points
with d(x, x") <t, then d(f(x), f(x)) < c(r). We let MM denote enlargement
of the category M to pairs (X, d), where the distance function d is permitted to
take the value +o0, and refer to objects of 91°° as generalized metric spaces. The
axioms for a metric space extend naturally, and the functor K" also extends to
these generalized metric spaces. It is now immediate that the functor can also be
extended to the category of simplicial objects in the category 90t*°. For a group T',
we can consider the category 9Mp° of generalized metric spaces with I"-actions by
coarse maps. There is an equivariant version K ltldd of the functor K" which is
defined on 9", and which carries a generalized metric space X with I"-action to
a spectrum with I"-action. It is now possible to prove that we have a sequence of
maps

SRR, AT~ hE(N, KR, AT — KR x N, A

which means that we can now work geometrically in bounded K-theory to construct
the splitting map. The main idea is to once again use excision properties to obtain
information about KRY(I" x N, A)F.

Remark 1.1. One observation about these properties is that the required excision
theorems must be fibrewise in the N-direction. The reason is that we must in an
appropriate sense “leave I" alone” since we are trying to detect K (Z[I']). Secondly,
the excision theorems must be equivariant since the I'-action is what creates the
group ring Z[I']. The third observation is that the computation should end up with
an appropriate suspension of K (Z[I']), which was the source of the map p, so that
the composition of all intermediate maps is an equivalence. This latter requirement
is the source of very weak geometric conditions on I" and algebraic conditions on
the ground ring R that are needed and will be carried out in a separate paper.

As it stands, we do not have adequate excision properties for K ltldd(F x N, A)F
so that all of the three properties hold. However, we can construct further relaxation
maps out to another construction we call fibred homotopy fixed points in G-theory
which does enjoy such properties (Theorems 6.11 and 6.13). There are three sep-
arate “axes” of relaxation that we need, and it is the constructions of the present
paper that will allow us to perform all three.
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(1) Bounded control to fibred bounded control. We will need to use different no-
tions of control on the morphisms in our category of modules. Of course, one could
use the control on the product metric space I" x N, but that does not possess the right
properties. In [Carlsson and Goldfarb 2019] we proved that there is another notion
of control which roughly insists that morphisms must be controlled in each fiber
(copy of N), but where the bound may vary from fiber to fiber. Fibred control is the
analogue of the notion of “parametrized homotopy theory” or “homotopy theory
over a base”, where X is the base and Y is the fiber; cf. [May and Sigurdsson 2006].
In the equivariant case, where X is equal to a group I" regarded as a metric space
using the word length metric, the fixed points of the I'-action are analogous to the
bundles over a classifying space BI" obtained from I"-spaces Y by the construction
Y — ET' xrY. To realize our results, we will need excision properties holding for
coverings of Y.

(2) Free to nonfree modules. We will need to enlarge the category of modules we
consider. The coarse actions on metric spaces can no longer be assumed to be free,
and so the fixed point spectra need to be modeled on a larger module category.
In [Carlsson and Goldfarb 2011], we have defined bounded versions of G-theory
and developed appropriate techniques for proving excision properties. The paper
[Carlsson and Goldfarb 2019] constructs a fibrewise version of that theory, and
in this paper we construct the actual equivariant fibrewise excision properties we
require. The idea of relaxing the kinds of modules we deal with is very analogous
to a situation studied in the context of localization in [Thomason and Trobaugh
1990]. It is well understood that localization theorems for K-theory are much more
sensitive and difficult to construct than the corresponding results for G-theory.

(3) A natural covering metric to left-bounded metric. Even with the excision prop-
erties in place, we must also modify the metric on the N-factor in the product
I'x N. To give intuition about this, we observe that the bundle ET° xrN — BT
is a topologically trivial R”-bundle. We would like to have a situation where it
is actually a bundle with structure group contained in the bounded automorphisms
group of N. That does not in general happen, but it is possible to modify the metric
on N so that it does. The new metric will be smaller than or equal to the original
metric. When this metric is used, we are able to work as if the action actually is
trivial. This result is also proved in this paper (Theorem 7.4).

Numerous details had to be suppressed in this roughly accurate outline of how
the results of this paper are used to prove the K-theoretic Borel conjecture. In the
last section, we include a worked out example of the argument for the simple case
of the infinite cyclic group. The details for the much more general case of a group
with finite decomposition complexity will appear elsewhere.
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The main goal of this paper is to prove excision results that incorporate all gen-
eralizations (1)—(3) above simultaneously. Because we will only need the excision
results where the action on the space Y is bounded in the sense defined above,
we will only prove them in that situation. That is, we prove excision theorems
(Theorems 6.11 and 6.13) for equivariant G-theory with fibred control of bounded
I"-spaces Y. Additionally we obtain the results suggested above as part of equivari-
ant fibred G-theory.

We will now state the versions of main results that allow us to do so concisely.
The full relative versions are stated and proved in the course of the paper.

In what follows we use the following notation for enlargements in products of
metric spaces. Given a subset U of X x Y, a number K > 0, and a function
k: X — [0, +00), let U[K, k] be the subset of those points (x, y) for which there
is (x', ¥") in U with d(x, x") < K and d(y, y') < k(x').

Definition 1.2. An object of the category Gx(Y) is a module F over a Noetherian
ring R together with a filtration, also denoted by F, indexed by the entire power
set P(X x Y) and subject to a number of conditions:

e F(XxY)=F, F(©)=0,

e F(S)is afinitely generated submodule of F for every bounded subset S C X x Y,

o F can be equipped with another filtration F indexed by P(Y)x [0, 00) x [0, 00) X
so that the value F(C, D, §) is nested between two submodules

F(XxO)D,é]) and F((XxC)[D+K,5+k])

for some K > 0 and a function k%,

o when the submodule F = F(C, D, §) is given the standard induced (X, Y)-
filtration defined by F(U) = F N F(U), the result has the following property:
there is a number d > 0 and a function A : X — [0, +00) such that

— for every subset S of X, the associated X-filtered module Fx satisfies

Fx () C Y Fx(x[dD),

xeS

— for each pair of subsets U; and U, of X x Y, the (X, Y)-filtered module
F satisfies both

FUUUp) C F(Uild, AD) + F(Uxld, A])
and
FU)NFWU) C F(Uild, AINUs[d, A)).

It should be emphasized that the auxiliary filtration F is not part of the structure
of the object; there is no specific choice of a filtration that is specified.
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A morphism f : F — G in Gx(Y) is an R-linear homomorphism F (X x Y) —
G(X x Y) such that fF(U) C G(U[b, 0]) for some number b > 0 and for some
function 6, but for all subsets U C X x Y. We will refer to the pair (b, 6) as control
data for f.

We specialize to the case of X =T, a finitely generated group with a chosen
word metric. Suppose I" acts on Y via bounded coarse equivalences, in the sense
that for every y € I, there exists an R, > O such that d(y, y(y)) <R, forall y €Y.
The diagonal action on I" x Y induces an action on Gr(Y).

Definition 1.3. The fibred homotopy fixed points is the category G"T'(Y) with ob-
jects which are sets of data ({F}, }, {{,}), where

 F, is an object of Gr(Y) for each y in I,

e 1, is an isomorphism F, — F, in Gr(Y),

* v, has control data with » =0 and 6 = +o0,
s Yo =id,

* Yy =1y, 0y, forall yy, ypin T

The morphisms ({F }, (¢, }) — ({F}’,}, {1//)’,}) of G"T(Y) are collections of mor-
phisms ¢, : F}, — F)’, in Gr(Y) such that ¢, oy, = 1//}’, o ¢, forall y.

Both of these categories can be given exact structures resembling the exact
structures in G-theory. We obtain in Section 6 a nonconnective delooping of the
equivariant K-theory of Gx(Y). The fixed points of this theory are modeled by the
nonconnective K-theory of G"'(Y) (Proposition 6.5). This fixed point spectrum
will be denoted aF(Y ). As soon as one chooses any subset Y| of Y, there is a
full subcategory of G"'(Y) on objects where all relevant modules are supported
on fibred enlargements of I x ¥} in [ x Y. This subcategory is invariant under
bounded actions, and so we have a nonconnective fixed point spectrum Gy )l;yl.
Similarly, for two subsets Y; and Y, of Y, restricting to modules supported on
fibred enlargements of both I' x Y| and I x Y> gives a spectrum GF(Y)I; Y10y

We can finally state the absolute version of the main theorem of this paper.
Theorem 1.4 (part of the equivariant fibred excision theorem, Theorem 6.11). Sup-
pose Y1 and Y, are subsets of a metric space Y on which I" acts by bounded coarse
equivalences, and Y = Y, UY,. There is a homotopy pushout diagram of spectra

GF(Y)EYI’

| l

G'ML, —— G M’

y, — (N;F(Y)EY1

where the maps are induced from the exact inclusions.
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2. Homotopy fixed points in categories with action

Given an action of a group I' on a space X, one has the subspace of fixed points X"
This subspace often has geometric significance for the study of X and I'. A dif-
ferent powerful idea in topology is to model an interesting space or spectrum as
the fixed point space or spectrum X! for a specifically designed X with an action
by a related group I'. In either case, there is always the homotopy fixed point
spectrum X hT' which is easier to understand than X', and the canonical reference
map p : X! — X''T,

Now suppose we have a group action on a category. This automatically produces
an action on the nerve and therefore a space. Suppose the category is then fed into
a machine such as the algebraic K-theory, and we are interested in the fixed points
of the K-theory. Therefore we want to look at the homotopy fixed points. In many
important cases it is possible to construct a spatial or categorical description of
what we get. Thomason defined the lax limit category whose K-theory turns out
to be exactly the homotopy fixed points of the old action.

Definition 2.1. Let ET be the category with the object set I and the unique mor-
phism u : 1 — y» for any pair y;, y» € I'. There is a left ["-action on ET induced
by the left multiplication in I'. If C is a category with a left I"-action, then the
category of functors Fun(ET, C) is another category with the I'-action given on
objects by the formulas y (F)(y") =y F(y~'y) and y (F)(u) =y F(y ' ). It is
nonequivariantly equivalent to C.

The category Fun(ET, C) is an interesting and useful object in its own right.
There are several manifestations of this, for example in the work of Mona Merling
and coauthors [Guillou et al. 2017; Malkiewich and Merling 2019; Merling 2017]
or the work of these authors [Carlsson 1995; Carlsson and Goldfarb 2004a; 2004b;
2013]. While in both applications it is crucial to work with the category itself, in
this paper we concentrate on approximating the fixed points in Fun(ET, C).

The following construction has been used by Thomason [1983]. We refer to it
as the homotopy fixed points of a category, following Merling [2017].

Definition 2.2 (homotopy fixed points). The fixed point subcategory Fun(ET, C)"
of the category of functors Fun(ET, C) consists of equivariant functors and equi-
variant natural transformations. We denote it by C"T.

Explicitly, the objects of C"T" are the pairs (C, 1) where C is an object of C
and 1 is a function from I" to the morphisms of C with (y) € Hom(C, y C) that
satisfies 1 (e) = id for the identity group element e, and satisfies the cocycle identity
Y (y1y2) = y1¥ (»2) ¥ (y1) for all pairs y; and y; in I'. These conditions imply that
Y (y) is always an isomorphism. The set of morphisms (C, ¥) — (C’, ) consists
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of the morphisms ¢ : C — C’ in C such that the squares

c v(y) e

¢l lwf)
V()

C——yC
commute for all y € I'.
Remark 2.3. As pointed out in [Merling 2017], the homotopy fixed points of a
category are not necessarily identical with space level constructions. It is for ex-
ample not true in general that the nerve of the homotopy fixed point category of
a category is the same as the geometric homotopy fixed points of the nerve of the
category. It is however true in the case where the category is a discrete I"-groupoid.

Example 2.4. Let C denote a category, and equip it with the trivial action by I'.
Then the category C"T is the category of representations of I' in C. In particular, if C
is the category of R-modules for a commutative ring R, then C"T may be identified
with the category of (left) R[I"]-modules.

Example 2.5. Let F' € E denote a Galois field extension, with Galois group G.
We consider the skew group ring A = E’[G], and consider the category Cg whose
objects are E’[G]-modules and whose morphisms are the E-linear maps. There
is a G-action on Cg, which is the identity on objects and which is defined by the
group action on the morphisms. In this case, Cfér is equivalent to the category of
F-vector spaces.

In Example 2.4, we saw that the group ring of a group I' with coefficients in a
commutative ring R may be realized as the fixed point subcategory of the action of
I on Fun(ET, C), where C denotes the category of all R-modules. In many cases,
however, it is important to understand the category of free and finitely generated
left R[I"]-modules as a fixed point category. This is the case in the papers [Carlsson
2005] and [Carlsson and Goldfarb 2004a], for instance, where the injectivity of the
assembly map is proved in a large family of cases. In the case of these two papers,
this is achieved by defining a subcategory of Fun(ET, C) by restricting the mor-
phisms 1 (y). The restriction in this case arises by the selection of a subcategory of
the category of all R-modules based on the Pedersen—Weibel construction, which
is endowed with a filtration and an action of the group I'. The restricted version of
Cﬁ’;r requires that all of the morphisms 1 (y) have filtration zero. In order to attack
the surjectivity problem for the assembly, we are led to the construction of more
general forms of restriction of the maps 1/ (y). This leads us to the concept of the
relative homotopy fixed points of a category, which we now define.

Definition 2.6 (relative homotopy fixed points). The category C"T (M) is defined
using input data consisting of a category C equipped with an action by a group I
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and a subcategory M C C closed under the action of I'. It is the full subcategory
of C"T" on objects (C, y) with the additional condition that v (y) is in M for all
elements y € T.

Example 2.7. Clearly, if M is the entire category C, the relative homotopy fixed
points are the genuine homotopy fixed points.

Example 2.8. In the case where C is a filtered category, we can consider the sit-
uation where M is the subcategory of the filtration zero morphisms. This is the
situation used in [Carlsson 2005] and [Carlsson and Goldfarb 2004a].

We will exploit the relative homotopy fixed points in two applications. The
first construction required in [Carlsson 1995] allows us to model the K-theory of a
group ring whenever the group has a finite classifying space. It is based on bounded
K-theory of the group given a word metric with the isometric action on itself given
by the left multiplication. It turns out that the categorical homotopy fixed point
construction requires a constraint. We review that construction in Section 3.

3. Bounded K-theory and the K-theory of group rings

Bounded control is the simplest version of a “control condition” that can be im-
posed in various categories of modules, to which one can apply the algebraic
K-theory construction. It was introduced in [Pedersen 1984] and [Pedersen and
Weibel 1985] and has become crucial for K-theory computations in geometric
topology.

Let X be a metric space and let R be an arbitrary associative ring with unity.
We always assume that metric spaces are proper in the sense that closed bounded
subsets are compact.

Definition 3.1. The objects of the category of geometric R-modules over X are lo-
cally finite functions F from points of X to the category of finitely generated free R-
modules Freeg, (R). Following Pedersen and Weibel, we denote by F, the module
assigned to the point x of X and denote the object itself by writing down the collec-
tion {F,}. The local finiteness condition requires precisely that for every bounded
subset S C X the restriction of F to S has finitely many nonzero modules as values.
Let d be the distance function in X. The morphisms ¢ : {F,} — {G,} are collec-
tions of R-linear homomorphisms ¢, , : Fxy — G, for all x and x” in X, with the
property that ¢, , is the zero homomorphism whenever d(x, x") > D for some fixed
real number D = D(¢) > 0. One says that ¢ is bounded by D. The composition
of two morphisms ¢ : {Fy} - {G,} and ¥ : {G,} — {H,} is given by the formula
(W od)ew =) Voxopy:. (%)
zeX

This sum is finite because of the local finiteness property of G.
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We will want to enlarge this category, and so we use instead an equivalent cat-
egory B(X, R) that is better for this purpose.

The objects are functors F : P(X) — Free(R) from the power set P(X) to
the category of free modules, both viewed as posets ordered by split inclusions.
There are two additional requirements. For every bounded subset C of X the value
F(C) has to belong to the subcategory of finitely generated modules Frees, (R). In
the codomain, the values are required to satisfy the equality F(S) =@, ¢ F(x)
for all S C X. The morphisms in this reformulation are R-linear homomorphisms
¢ : F(X)— G(X) such that the components ¢, , : F (x) — G (x') are zero whenever
d(x,x") > D for some D. The composition of two morphisms ¢ : F — G and
¥ : G — H is the usual composition of R-linear homomorphisms; its components
are the maps (¥ o ¢), v in the formula (x) above.

Definition 3.2. A map f : X — Y between metric spaces is called uniformly
expansive if there is a function A : [0, co) — [0, co) such that

dx(x1,x2) <r implies dy(f(x1), f(x2)) <A(r).

A map f is proper if f~1(S) is a bounded subset of X for each bounded subset S
of Y. We say f is a coarse map if it is uniformly expansive and proper.

Extensively used instances of coarse maps in geometry are quasi-isometries.

It is elementary to check that the geometric R-modules over X is an additive
category and that coarse maps between metric spaces induce additive functors. A
coarse map f is a coarse equivalence if there is a coarse map g : ¥ — X such that
fogand go f are bounded maps. It follows that an action of a group on a metric
space by coarse equivalences induces an additive action on 5(X, R).

We will treat the group I' equipped with a finite generating set 2 closed under
taking inverses as a metric space. The word-length metric d = dg is induced from
the condition that d(y, yw) = 1 whenever y € I" and w € Q. It is well-known
that varying €2 only changes I to a quasi-isometric metric space. The word-length
metric makes I" a proper metric space with a free ['-action by isometries via left
multiplication.

An important observation. A free action of I' on X by isometries always gives
a free action on C = B(X, R). In contrast, Fun(ET, C) with the induced group
action does have the subcategory C"T of equivariant functors. These homotopy
fixed points, however, are not the correct notion for modeling the finitely generated
free modules over R[G] and the K-theory of R[G].

Definition 3.3. The category B™°(X, R)" is the relative homotopy fixed point
spectrum C"T'(M) with the following data: C is the category of geometric modules
B(X, R) and M consists of those morphisms in C that are bounded by 0.
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The additive category B7%(X, R)' has the associated nonconnective K-theory
spectrum K~®°(X, R)" constructed as in [Pedersen and Weibel 1985]. There is
now the following desired identification.

Theorem 3.4. Suppose I acts on X freely, properly discontinuously by isometries
so that the orbit space X/ " with the orbit metric is bounded.

It follows that K=°°(X, R)" is weakly homotopy equivalent to the nonconnective
spectrum K=°°(R[I']). The stable homotopy groups of the nonconnective spectrum
are the Quillen K-groups of R[G] in nonnegative dimensions and the negative K-
groups of Bass in negative dimensions.

Proof. The result follows from Corollary VI.8 in [Carlsson 1995]. ([

This geometric situation occurs, for example, when I' acts cocompactly, freely
properly discontinuously on a contractible connected Riemannian manifold X or
when it acts on itself with a word metric via left multiplication.

4. Fibred homotopy fixed points in K-theory

Let A be an additive category. Generalizing Definition 3.1, one has the bounded
category with coefficients in A.

Notation 4.1. Given a subset S of a metric space and a number k£ > 0, S[k] is used
for the k-enlargement of S defined as the set of all points x with d(x, S) < k.

Recall that A is a subcategory of its cocompletion A* which is closed under
colimits. For example, a construction based on the presheaf category was given in
[Kelly 1982, 6.23].

Definition 4.2. B(X, A) has objects which are covariant functors F : P(X) — A*
from the power set P(X) to .A*, both ordered by inclusion. Just as in Definition 3.1,
there are several requirements:

» F(x) is an object of A for every point x in X,
« the resulting function F : X — A is locally finite, so only finitely many values
are nonzero when restricted to any compact subset of X,

o for all subsets S C X,
F(S) =P Fw).

xe§
e the inclusion F (S C X) is onto a direct summand for each subset S.
A morphism in B(X, A) is a morphism ¢ : F(X) — G(X) in A* with a number

D > 0 such that ¢ restricted to F(S) factors through G(S[D]) for all S C X. We
say a morphism which admits such a number D is D-controlled.
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This context, which produces a category isomorphic to B(X, R) when A is the
category of free finitely generated R-modules, allows us to iterate the bounded
control construction as follows.

Definition 4.3 (fibred control for geometric modules). Given two metric spaces X
and Y and any ring R, the category Bx (Y, R), or simply By (Y) when the choice
of ring R is clear, is the bounded category B(X, A) with A = B(Y, R).

Among many options for relativizing homotopy fixed points in this setting, there
is one of specific interest.

Let A = B(Y, R) as before and A" = Mod(R) be the category of arbitrary R-
modules. There is a forget control functor t : B(Y, R) — Mod(R) which only
remembers that the objects are R-modules and the morphisms are R-linear homo-
morphisms. From ¢ we may induce the functor 7 : B(X, A) — B(X, A).

For this construction we assume that I" acts on X by isometries and so, therefore,
on B(X, A’). On the other hand, we allow the action of I" on Y to be by coarse
equivalences. This can also be used to induce an action on B(X, A).

Definition 4.4 (fibred homotopy fixed points in bounded K-theory). These are rel-
ative homotopy fixed points with the following choice of ingredients:

— the category C is Bx (Y, R),

— the subcategory M consists of all morphisms ¢ such that 7' (¢) is a controlled
morphism bounded by 0.

Notation 4.5. When X is the group I' itself with the left multiplication action and
the word metric with respect to some choice of a finite set of generators, we obtain
a particularly useful case of this construction. We use the special notation B"T(Y)
for the fibred homotopy fixed points C""(M) and K;(Y) for the nonconnective
K-theory spectrum of B"T(Y).

5. Summary of bounded G-theory with fibred control

A comprehensive exposition of bounded G-theory with fibred control is available
in [Carlsson and Goldfarb 2019]. Compared to K-theory with fibred control from
Definition 4.3, G-theory replaces free modules with arbitrary modules over a Noe-
therian ring R and replaces the split exact sequences with a more general kind of
exact sequence. This is a summary of that theory and a number of facts in the form
we can refer to in the next section.

Throughout the rest of the paper, R will be a Noetherian ring.

At the basic level, bounded G-theory with fibred control is an analogue of the
algebraic K-theory of By (Y, R) locally modeled on finitely generated R-modules.
The result is an exact category By (Y) where the exact sequences are not necessarily
split but which contains By (Y) as an exact subcategory.
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Definition 5.1. Given an R-module F, an (X, Y)-filtration of F is a covariant
functor P(X x Y) — Z(F) from the power set of the product metric space to the
partially ordered family of R-submodules of F, both ordered by inclusion. It is
convenient to denote the value of this functor on a subset U C X x Y by F(U) and
assume that F(X xY) = F and F(Z) =0.

The associated X-filtered R-module Fyx is given by Fx(S) = F(S x Y). Simi-
larly, for each subset S C X, one has the Y-filtered R-module F*S given by F5(T) =
F(S x T). In particular, FX(T) = F(X x T).

Notation 5.2. We will use the following notation generalizing enlargements in a
metric space. Given a subset U of X x Y and a function k : X — [0, 4-00), let

Ulk]l ={(x,y) € X x Y | there is (x, y") € U with d(y, y') < k(x)}.
If in addition we are given a number K > 0 then
UIK,k]={(x,y) € X x Y| thereis (x, y) € U[k] with d(x, x") < K}.

For a product set U = S x T, it is more convenient to use the notation (S, T)[K, k]
in place of (S x T)[K, k]. We refer to the pair (K, k) in the notation U[K, k] as
the enlargement data.

Let xo be a fixed point in X. Given a monotone function 4 : [0, 4-00) — [0, +00),
there is a function £,, : X — [0, +00) defined by

hy, (x) = h(dx (xo, x)).

Definition 5.3. Given two (X, Y)-filtered modules F' and G, an R-homomorphism
f:F(XxY)— G(X x7Y) is boundedly controlled if there are a number b > 0
and a monotone function 6 : [0, +00) — [0, +00) such that

JFWU) CGUD, bx]) ()

for all subsets U C X x Y and some choice of xy € X. It is easy to see that this
condition is independent of the choice of xg. If a homomorphism f is boundedly
controlled with respect to some choice of parameters b and 6, we say that f is
(b, 0)-controlled.

The unrestricted fibred bounded category Uy (Y) has (X, Y)-filtered modules as
objects and the boundedly controlled homomorphisms as morphisms.

Theorem 3.1.6 of [Carlsson and Goldfarb 2019] shows that Ux(Y) is a cocom-
plete semiabelian category. When Y is the one point space, this construction re-
covers the controlled category U(X, R) of X-filtered R-modules used to construct
bounded G-theory in [Carlsson and Goldfarb 2011] and [Carlsson and Goldfarb
2019, Chapter 2]. In this case, boundedly controlled homomorphisms are charac-
terized by a single parameter b, so one can specify that by abbreviating the term to
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simply b-controlled. The construction of an X -filtration Fx from a given (X, Y)-
filtration in Definition 5.1 allows us to view a (b, 8)-controlled homomorphism
in Uy (Y) as a b-controlled homomorphism in U(X, R) via the forgetful functor
T:Ux(Y)— UX, R).

We now want to restrict to a subcategory of Uy (Y) that is full on objects with
particular properties. This process consists of two steps that result in a theory with
better localization properties.

Definition 5.4. An (X, Y)-filtered module F is called

o split or (D, A)-split if there is a number D > 0 and a monotone function
A : [0, 4+00) — [0, +00) such that

FU VU2 C F(UIID, Ax,]) + F(U2[D, Ay

for each pair of subsets Uy and U, of X x Y,

e lean/split or (D, A')-lean/split if there is a number D > 0 and a monotone
function A’ : [0, +00) — [0, +00) such that

— the X-filtered module Fy is D-lean, in the sense that

Fx(S)C Y Fx(x[D])

xes

for every subset S of X, while
— the (X, Y)-filtered module F is (D, A')-split,

o insular or (d, 8)-insular if there is a number d > 0 and a monotone function
6 : [0, +00) — [0, 400) such that

F(U)NF(Uy) C F(Uild, 8x,]1N Uald, 5y,
for each pair of subsets U; and U, of X x Y.

There are two subcategories nested in Ux (Y). The category LSx (Y) is the full
subcategory of Ux(Y) on objects F that are lean/split and insular. The category
Bx (Y) is the full subcategory of LSx (Y) on objects F such that F(U) is a finitely
generated submodule whenever U C X x Y is bounded.

We proceed to define appropriate exact structures in these categories. The ad-
missible monomorphisms are precisely the morphisms isomorphic in Ux(Y) to
the filtrationwise monomorphisms and the admissible epimorphisms are those mor-
phisms isomorphic to the filtrationwise epimorphisms. In other words, the exact
structure £ in Uy (Y) consists of sequences isomorphic to those

E: E-SELE
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which possess filtrationwise restrictions
EWU): EWU) -5 EU) L E®W)

for all subsets U C (X, Y), and each E*(U) is an exact sequence of R-modules.

Both LSx(Y) and Bx(Y) are closed under extensions in Ux(Y). Therefore,
they are themselves exact categories, and the inclusion Bx(Y) — Bx(Y) is an
exact embedding, as we projected.

There is a useful invariant of a finitely generated group I' that is defined in
terms of the exact category Br(point) in [Carlsson and Goldfarb 2016]. Here I
can be given the word metric associated to any of the finite generating sets. The
left multiplication action gives an action of I on B (point).

Recall that Theorem 3.4 provides an interpretation to the K-theory of a group
ring R[I'] in terms of relative homotopy fixed points of the additive category
B(X, R), which can be viewed as Br(point).

Example 5.5 (bounded G-theory of a finitely generated group). In the case where
C is the exact category Br(point) and M is the subcategory of the filtration zero
morphisms, the bounded G-theory of 1" is defined to be the nonconnective K-theory
of the relative homotopy fixed points Br(point)"", denoted G~>°(R[I']).

Notice that this definition makes sense even when the group ring is not Noe-
therian, unlike the much more restrictive situation with the usual G-theory defined
only for Noetherian rings.

Theorem 5.6. There is an exact subcategory of finitely generated I"-modules for
an arbitrary finitely generated group U such that its relative homotopy fixed points
have Quillen K-theory with features similar to G-theory of group rings. In partic-
ular, it has a Cartan map from the K-theory of R[I"].

Proof. The category is equivalent to Br(point). We refer to Sections 2 and 3 of
[Carlsson and Goldfarb 2016] for details. The clear resemblance to Definition 3.3
and the identification of B"°(X, R)I' with Br (Point)hF allow us to induce the
Cartan map K~ *°(R[I']) - G~*°(R[T']) from the exact inclusion Br(point) —
Br (point) above. O

Suppose C is a subset of Y. Let Bx(Y)-¢ be the full subcategory of Bx(Y) on

objects F such that
F(X,Y) C F((X, O)r, px,))

for some number r > 0 and an order preserving function p : [0, 4-00) — [0, 4-00).

Recall that a Serre subcategory of an exact category is a full subcategory which
is closed under exact extensions and closed under passage to admissible subob-
jects and admissible quotients. Proposition 3.3.3 of [Carlsson and Goldfarb 2019]
verifies that Bx (Y) ¢ is a Serre subcategory of Bx (Y).



736 GUNNAR CARLSSON AND BORIS GOLDFARB

The second step in restricting to subcategories with good localization properties
is done via introducing a structure called a grading.

Given an arbitrary R-submodule F’ of F in Ux(Y), we can assign to F’ the
standard (X, Y)-filtration F'(U) = F(U)N F’.

Let MZ° be the set of all monotone functions § : [0, +00) — [0, +00).

Let Px(Y) be the subcategory of P(X, Y) consisting of all subsets of the form
(X, O)[D, éy,] for some choices of a subset C C Y, a number D > 0, and a function
5§ e M=9,

Definition 5.7. Given an object F' of Bx(Y), a Y-grading of F is a functor

F :Px(Y)— I(F)
with the following properties:
« the submodule F((X, C)[D, 6,,1), with the standard (X, Y)-filtration induced
from F, is an object of Bx(Y),

« there is an enlargement data (K, k) such that
F((X, O)[D, éx)) CF(UX, O)D, éx]) C F(UX, C)[D+ K, 8z, + kxo 1),
for all subsets in Py (Y).

We say that an object F of Bx(Y) is Y-graded if there exists a Y-grading of F,
but the grading itself is not specified, and define Gx (Y) as the full subcategory of
Bx (Y) on Y-graded filtered modules.

The category Gx(Y) is of major importance. It is the category to which we
will apply the relative homotopy fixed points construction in Definition 6.4. It is
given in several stages, so the reader may find it helpful to refer to a compressed
Definition 1.2 of this category in the introduction. For some examples of inter-
esting nonprojective objects from Gx(Y) in an equivariant setting, we refer to
Example 4.2 in [Carlsson and Goldfarb 2016]. It is also true that the category
Bx (Y) introduced in Definition 4.3 is contained in Gx (Y).

Proposition 5.8. Bx(Y) is a full exact subcategory of Gx (Y).
Proof. The (X, Y)-filtration of the objects in Bx(Y) is given by

F(S) = @F(x).

xes

This ensures that for any pair of subsets 7 C S of X x Y one has
F(S)=F(T)®F(S\T).

This splitting is the reason the object F possesses the required gradings with all
required properties on the nose, with the enlargement data all equal to 0. The
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structure maps are the boundedly controlled inclusions and projections onto direct
summands. ([

We summarize some additional results from Section 3.4 of [Carlsson and Gold-
farb 2019].

Theorem 5.9. The subcategory Gx(Y) is closed under both isomorphisms and
exact extensions in Bx (Y). Therefore, Gx(Y) is an exact subcategory of Bx(Y).
The restriction to Y-gradings in Bx(Y) ¢ gives a full exact subcategory Gx(Y)~c
which is a Serre subcategory of Gx(Y).
Given a graded object F in Gx(Y), we assume that F is (D, A')-lean/split and
(d, §)-insular and is graded by F. For a subset U from the family Px(Y), the
submodule F(U) has the following properties:

(1) FU) is graded by Fy(T) = F(U)NF(T),
2) FWU) c F(U) C F(ULK, k)) for some fixed enlargement data (K , k),

Q) ifq : F — H is the quotient of the inclusion i : F(U) - F in Bx(Y) and F
is (D, N')-lean/split, then H is supported on (X \ U)[2D, 2A'],

(4) HU[-2D —2d, —2A"—268]) =0.

We assume that the reader is familiar with Quillen K-theory of exact categories.
This theory can be applied to both Gx (Y) and Gx(Y)-¢. The result can be viewed
as spectra Gx(Y) and Gx(Y)-¢. The stable homotopy groups of these spectra are
the Quillen K-groups of the exact categories.

Finally, the main goal of this section is a homotopy fibration

Gx(Y)<c = Gx(Y) = Gx(Y, 0),

where G x (Y, C) is the K-theory of a certain quotient category Gx(Y)/ Gx(Y)c.

For simplicity we use the notation G for Gy (Y) and C for the Serre subcategory
Gx(Y )<C of G.

There is a class of weak equivalences £ (C) in G which consist of all finite
compositions of admissible monomorphisms with cokernels in C and admissible
epimorphisms with kernels in C. We need the class X (C) to admit calculus of right
fractions. This follows from [Schlichting 2004, Lemma 1.13] and the fact that C
in G is right filtering, in the sense that each morphism f : F; — F; in G, where F»
is an object of C, factors through an admissible epimorphism e : F{ — F,, where
F, is in C. The latter fact is [Carlsson and Goldfarb 2019, Lemma 3.5.6].

The category G/C is the localization G[X(C )~!1. From [Carlsson and Gold-
farb 2019, Theorem 3.5.8], it is an exact category where the short sequences are
isomorphic to images of exact sequences from G.

There is an intrinsic reformulation of the homotopy fibration because the essen-
tial full image of the evident inclusion of Gx(C) in G is precisely C. This gives a
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homotopy fibration
Gx(C)— Gx(Y)—> Gx(Y,C).

One quick consequence is the ability to relativize the old constructions. If Y’ is
any subset of Y, one obtains the relative theory Gx (Y, Y’).

Another easy application is a nonconnective delooping that applies to all of the
theories we have defined. For example in the basic case,

Gx>(Y) = hocolim Q¥Gx (¥ x RF).
k>0

This uses the usual Eilenberg swindle trick and can be seen in Section 4.2 of [Carls-
son and Goldfarb 2019].

6. Fibrewise excision in equivariant fibred G-theory

It is well-known that Quillen K-theory of an exact category can be obtained equiv-
alently as Waldhausen’s K-theory of bounded chain complexes in the category.
The cofibrations are then the chain maps which are the degreewise admissible
monomorphisms. The weak equivalences are the chain maps whose mapping cones
are homotopy equivalent to acyclic complexes. An exposition with a number of
details verified specifically for bounded G-theory can be found in [Carlsson and
Goldfarb 2011, Section 4]. The Waldhausen theory setting is crucial in proving the
excision theorem in that the approximation theorem [Carlsson and Goldfarb 2011,
Theorem 4.5] becomes essential. We indicate passage from an exact category to
the derived category of bounded chain complexes by prefixing “ch” in front of the
name of the exact category.

We proceed to define the equivariant fibred G-theory. The basic setting consists
of

two proper metric spaces X and Y,

an arbitrary subset Y’ of Y,

a I'-action on X by isometries, and

a bounded action of I" on Y. This is an action such that for each y in I" the
set of real numbers W,, = {d(x, y (x))} is bounded from above.

Remark 6.1. In a number of situations, we will be specifying subcategories closed
under the I"-action by subsets that are arbitrary, and therefore certainly not closed
under the action. This works due to the boundedness of the action. For example, if
we have a subset C € X and define a subcategory as the set of modules supported
on some neighborhood of C, then this subcategory is closed under the I'-action
provided the action is bounded. This would definitely not hold were the action not
bounded.
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Consider the exact category Gr(Y) with the induced action by I', in the case
X is the group I' with a word metric, acting on itself by isometries via the left
multiplication. Since the action on Y is bounded, we have the quotient exact cate-
gory Gr (Y, Y').
Notation 6.2. If Z is another arbitrary subset of Y, it is also useful to consider the

full exact subcategory Gr (Y, Y’) .z, which we denote Gr (Y, Y, Z).

Recasting the definition from Definition 4.4, we define the Waldhausen category
Gr.o(Y,Y’, Z) to be the full subcategory of Fun(ET, chGr (Y, Y’, Z)) on those
functors that send morphisms in ET to degreewise 0-controlled homomorphisms
of I"-filtered modules.

Definition 6.3. The equivariant fibred G-theory is
G' (V.Y Z)= QK (|wS.Gro(Y. Y, 2))).

This is a functor from the category of triples (Y, Y’, Z), where both Y’ and Z
are subspaces of Y but not necessarily subspaces of each other, and uniformly
expansive maps of triples to the category of spectra.

Now we turn to the construction of fibred homotopy fixed points. There is a
forget control functor T : Gx(Y,Y’, Z) — Ux (Y, Y’, Z) sending F to Fx. Since
" acts on X by isometries, it also acts on Ux (Y, Y’, Z). The combination of this
action and a bounded action on Y induces an action on Gy (Y, Y’, Z). With these
choices, T is an equivariant functor.

Definition 6.4 (fibred homotopy fixed points in bounded G-theory). This is a spe-
cial case of relative homotopy fixed points, as defined in Definition 4.4, with the
choices of C and M as follows:

— the category C is Gx (Y, Y’, Z),

— the subcategory M consists of all controlled morphisms ¢ in C with the prop-
erty that 7'(¢) is bounded by 0 as homomorphisms controlled over X.

Let us recapitulate what this definition entails in the case X is the group I" with
a word metric.

The fibred homotopy fixed points of a triple (Y, Y', Z) is the category G"(Y, Y’, Z)
with objects which are sets of data ({F), }, {/, }) where

 F, is an object of Gr (Y, Y, Z) foreach y in T,

* Y, is an isomorphism F, — F, in Gr(Y,Y’, Z),

* 1, is O-controlled when viewed as a morphism in Ur(Y, Y, Z),
. Yo =id

e Uy = V1V¥y, 0¥y, forall yi, o in T
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A morphism ({F,, }, {¢,, }) — ({F;}, {w;}) is a collection of morphisms ¢, : F), — F]//
in Gr(Y, Y’, Z) such that the squares

v
F,——F,

®e l l@/
vy

F,—— F)
commute for all y.

The exact structure on Ghr(Y ,Y’, Z) is induced from that on Gr(Y, Y’, Z) as fol-
lows. A morphism ¢ in G"(Y, Y, Z)is an admissible monomorphism if ¢, : F — F’
is an admissible monomorphism in Gr (Y, Y’, Z). This of course implies that all
structure maps ¢, are admissible monomorphisms. Similarly, a morphism ¢ is an
admissible epimorphism if ¢, : F — F’ is an admissible epimorphism. This gives
G"(Y, Y/, Z) an exact structure.

Since the induced I'-action on S.Gr o(Y, Y’, Z) commutes with taking fixed
points, we have the following fact.

Proposition 6.5. The fixed point spectrum G'(Y,Y', Z)' is equivalent to the K-
theory of the relative homotopy fixed point category G"' (Y, Y', Z).

We proceed to consider multiple bounded actions of I" on Y. Let 8(Y) be the
set of all such actions. Let F be the functor that assigns to a set Z the partially
ordered set of finite subsets of Z.

Definition 6.6. For any S in F(8(Y)) we define Ys as the metric space which is
the disjoint union | | g Ys, where Y are copies of ¥ with the specified action. The
metric on Y is induced by the requirement that it restricts to the metric from Y
in each Y, and for the same point y in different components the distance d(yy, yy)
equals 1.

Clearly, the action of I" on Yy is bounded.

As a consequence of Proposition 6.5, for each choice of finite subset S of 8(Y),
the spectrum G'(Ys, Y & Z)" is the Quillen K-theory spectrum of G"''(Ys, Y  Z),
where Z is a subset of Y.

Theorem 6.7. Let C be an arbitrary subset of Y. There is a homotopy fibration
G'(Ys, Y5, )20 — G' (Y5, Y5, 2)" — G' (Y5, Y5, D)L,

where G'(Yy, Y¢, Z)EC stands for K-theory of the exact quotient G" (Y, Y, Z)-c
of G"(vs, Yg, Z) by G (vs, Y, Z)<c. In the absolute case, there is an equiva-
lence GhF(Y)<C ~ G"'(C), and so there is a homotopy fibration

G'O)Y - G - GT()L,.
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Proof. In view of Remark 6.1, the fact that Gr(Ys, Y g Z) ¢ is an idempotent com-
plete Serre subcategory of Gr(Ys, Y, Z) implies immediately that GM(ys, Y - Z )ﬁrc
is an idempotent complete Serre subcategory of G"'(Ys, Y{, Z). The main technical
result of [Schlichting 2004] is a fibration theorem which requires GhF(Y s, Ys, Z)<c
to satisfy two additional properties: right filtering and right s-filtering. Both of
these properties follow directly from the estimates in the proofs of Lemma 3.5.6
and Theorem 3.5.8 in [Carlsson and Goldfarb 2019]. U

Our first application of the fibration is to deloop G'(Ys, Y & Z)" and related
spectra following the strategy of [Pedersen and Weibel 1985].

Let R, R=°, and R=Y denote the metric spaces of the reals, the nonnegative reals,
and the nonpositive reals with the Euclidean metric. Then there is the following
map of homotopy fibrations:

G'(Ys)" ——— GT (Vs xRZOT — GT(rs x R*HL, ¢

R

GT(Ys x REOT —— G (s x B —— GTs x BT, oo

The map K (/) is induced by the inclusion I of the quotient categories.
Theorem 6.8. K (1) is a weak equivalence of connective spectra.

Proof. This follows from the approximation theorem applied to /. The first con-
dition of the theorem is evident. To check the second condition, consider a chain
complex F" in GhF(YS X IRZO)>YSX0. By the nature of the objects and the expla-
nation in Remark 6.1, all maps in F* and their control features are determined by
the values on the objects F! of Gr(Ys x R). So we can specify F* by the chain

complex
d))l*l

F: 0-F 2 p2®

e

F!'—0

in Gr(Ys x R=%)_y, 0. Given a chain complex G in G (v x R). y,xr=0, We can
apply the same reasoning to G°. Now a chain map g : F* — G" is given uniquely
by a chain map F, — G, where G, is the chain complex

0_)Gi (2 Gg Y2 Yn—1

G, —0

in Gr(Ys x R). y,xg=0. Also observe that if F! is supported on a neighborhood
of C C'Y then so are all of the F,. This allows us to transport from [Carlsson
and Goldfarb 2019] the rest of the argument for a nonequivariant Lemma 4.2.4.
Alternatively, we can refer to the end of the proof of Theorem 6.11, where the
details are spelled out in even greater generality. U
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The spectra GT'(Ys x RZ)T and GT'(Yg x R=%)T are contractible as K-theory
spectra of flasque categories. This is the standard consequence of the shift functor
T in the positive (resp. negative) direction along R=? (resp. R=C) interpreted as an
exact endofunctor. A natural equivalence of functors 1 & 7 = T and the additivity
theorem give contractibility.

From the map of fibrations, we obtain a map of spectra G' (Ys)!' — QG (YsxR)"
which induces isomorphisms of K-groups in positive dimensions. Iterating this
construction for k > 2 gives weak equivalences

QG (Y5 x R — @Gl (rs x REHT.

Definition 6.9. The nonconnective delooping of algebraic K-theory of the fibred
homotopy fixed points is the spectrum

G (Y5)F = hocolim QG (Yg x RO,
k>0

In the case Y is the one point space, ér(Y ) coincides with the nonconnective
G-theory of the group ring R[I'] defined in [Carlsson and Goldfarb 2016].

The discussion leading up to Definition 6.9 can be repeated verbatim for other
Serre subcategory pairs. For example, the subcategory G' (Y x [F\Rk)l; CxRk 18 evi-
dently a Serre subcategory of G'(Ys x RX)I" for any choice of subset C C Ys. We

define ~T r : kT N
G (Ys)_ ¢ :hoc_olgm QG (Ys xR ) —CxRE>

k>0

~T r _ : kT kT

G (Ys)_c,.c, = hocolim Q"G (Ys x R )<C|><R",C2><R"'
k>0

Definition 6.10. Let Y’, Y}, and Y, be arbitrary subsets of Y such that ¥; and Y,
form a covering of Y. There are corresponding subsets Y¢, Y; s, and Y, g of Yg
obtained as Y =| | Y|, Yy s =] | Yl/’s, and Y2 s =1 | Yé’s. It is now straightforward
to define nonconnective spectra

G"(Ys, Y5)" = hocolim QXG"(Ys x RF, Y§ x RF)T,

k>0
G (vs, Yoh, = hocolim QLG (Y5 x R, ¥§ x Rk)zy,-,sxu;ek’
k>0
~I r . k ~T k k\T"
G (Ys, Y§)<Y1,Y2 :hOC-Ol,lm QG (T xR, Yé xR )<Y1,s><Rk,Y2,s><Rk'
k>0

Theorem 6.11. Suppose Y| and Y, are subsets of a metric space Y on which I" acts
by bounded coarse equivalences, and Y = Y| UY,. There is a homotopy pushout
diagram of spectra
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G'(vs, YL, ,, — G (¥s, YOI,

| |

G (Ys, YLy, —— G (¥s, YT
where the maps of spectra are induced from the exact inclusions. If we define

E"(Y,Y’) = hocolim G"(Ys, Y{)',
—_—
UeF(B(Y))
the excision theorem also holds on the level of ET. There is a homotopy pushout
diagram of spectra

EF(Y9 Y/)<Y|,Y2 — EF(Y’ Y/)<Y]

l |

E'(Y,Y) .y, —— E"(Y,Y")
Proof. There is a homotopy pushout

~T 2%% ~T 2%%
G (YS’YS <Y.Y» » G (YS’YS <Y

l |

G (Y5, YL, —— G (¥, 9"
obtained from the map of the fibration sequences

G (Y5, YOy y, — GT(¥s, YL, —— GT(¥s, Y)"

| | |

G (¥s, YTy, —— G (¥, YT ——— GI(¥s, YpL .

both obtained from Theorem 6.7. The map

G (Y5, Y9y, oy, = G (¥s, Y§L

,>Y) >Y)

induced from the exact inclusion J : G"T'(Ys, Y oy >y, = G"(vs, Y¢)-y, is again
an equivalence. It should be instructive to spell out the crucial application of the
approximation theorem. Consider a chain complex F" in Ghr(YS, Y§)< Y,.>v,. All
maps in F* and their control features are determined by the values on the objects
F E’ of Gr (Y, Yé), so F’ can be given by the chain complex

e 0_)Fel o1 Fez o33 Dn—1

e

F!—=0
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in Gr(Ys, Y§)<y,,~v,- Applying the same reasoning to a chain complex G" in
G (v, Y¢)-y,, let G, be the chain complex

0—>G; ¥ Gg ) Yn—1 GZ—)O

inGr(Ys, Y§)-y,. Achainmap g: F'— G’ can be given by a chain map g': F, —G,,.
Since the action is bounded, if F! is supported near a neighborhood of Y| s C Ys
then so are all F;.

Suppose all Fei and Gi are (D, A)-lean/split and (d, §)-insular, and there is a
number r > 0 and a monotone function p : [0, +00) — [0, +00) such that there are
containments Fei C Fei((F, Y1,5)[r, px,]) for all 0 <i < n. Suppose also that (b, )
can be used as bounded control data for all maps ¢;, ¥;, and g.. Suppose also that
(K, k) is an enlargement data for the chosen grading of G,. We define a submodule
F!" as the submodule G ((T', Yy s)[r + 3ib, py, + 3i6y,]) in the chosen grading of
G, and define & : F.' — F/'*! to be the restrictions of v; to F,'. This gives a chain
subcomplex (F'', &) of (G', ¥;) in Gr(Ys, Y§) with the inclusion i : F'" — G'.
Notice that we have the induced chain map g : F* — F” in Gr (Y, Y§)<yI so that
g =1iJ(g). It remains to prove that the cokernel C* of i is in Gr (Y, Y¢)<y,. Since

F' CGL((T, Y1.9)r +3ib+ K, py, +3i6x, + ks, ),
each C' is supported on

(T, Ys \ Y1.9)[2D +2d —r —3ib — K, 20, + 28, — pry — 3i0y, — k]
C (I, Y2,9)[2D +2d, 27 + 285,

This shows that the complex C is indeed in Gr(Ys, Yg) <y, . O

Remark 6.12. This observation is warranted as we contrast Theorem 6.11 and its
proof with the inability to use other, more standard methods in bounded algebra
based on Karoubi filtrations in order to prove similar facts in K-theory. The key
idea in the proof is still the commutative diagram from [Cardenas and Pedersen
1997, Section 8] transported from bounded K-theory to fibred G-theory. Cardenas
and Pedersen use Karoubi quotients and the Karoubi fibrations in order to establish
their diagram. One of the crucial points in [Cardenas and Pedersen 1997] is that
the functor / between the Karoubi quotients is an isomorphism of categories. In
fibred G-theory the situation is more complicated: [ is not necessarily full and,
therefore, not an isomorphism of categories. However we can see here, just as in the
analogous Theorem 4.4.2 in [Carlsson and Goldfarb 2019], that the approximation
theorem suffices to prove that K (/) is nevertheless a weak equivalence.

We make an explicit statement that does not hold in K-theory. Let Vi (Y) be
the K-theory of the fibred homotopy fixed points B"T(Y) defined in Notation 4.5.
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In these terms, we don’t know whether, or under what conditions on I' and Y, the
natural map
hocolim VI'(U) — VI (Y)

N

UeUd
is an equivalence in the context of Theorem 6.11. Through indirect ways related
to the work on the Borel conjecture, we know that Karoubi filtrations should be
impossible to use to compute fibred homotopy fixed points in full generality, be-
cause otherwise the outcome would contradict the well-known counterexamples to
the integral K-theoretic Borel conjecture in cases of nonregular rings R.

Suppose U is a finite covering of Y that is closed under intersections and such
that the family of all subsets U in U/ together with Y’ are pairwise coarsely antithetic.
The extra conditions in the second statement ensure that the covering is in fact
by complete representatives of a covering by “coarse families” in the language
introduced in [Carlsson and Goldfarb 2019, Section 4.3].

We define the homotopy colimit

EV(Y, Y")~yy = hocolim EX (Y, Y _y.
e
Ueld
All of the above discussion can be restricted to full subcategories on objects
supported near an arbitrary subset Z of Y, so we have the following general state-
ment.

Theorem 6.13 (fibrewise bounded excision). The natural map
§:E° (Y, Z)au— EV(Y, Y, 2),
induced by inclusions Gr (Ys, Yg, Z).y — Gr(Ys, Yé, Z), is a weak equivalence.

Proof. Apply Theorem 6.11 inductively to the maximal sets in IA. U

7. Other properties of equivariant fibred G-theory

Fibred assembly map. The usual notion of metric assumes only finite values. We
will require a generalized metric on a set X. Itis a functiond : X x X —
[0, 0o) U {oo} which is reflexive, symmetric, and satisfies the triangle inequality
in the obvious way. The generalized metric space is proper if it is a countable
disjoint union of metric spaces X; on each of which the generalized metric d is
finite, and all closed metric balls in X are compact. The metric topology on a
generalized metric space is defined as usual.
The basic fibred assembly map

AX,Y) :hN(X; GT°(Y)) — Gx™(Y),

for proper generalized metric spaces X and Y, sends the locally finite homology of



746 GUNNAR CARLSSON AND BORIS GOLDFARB

X with coefficients in the spectrum G~°°(Y) to the nonconnective fibred G-theory
G > (Y) defined in Section 5.

The locally finite homology 2'f(X; S) we use was introduced in [Carlsson 1995,
Definition II.5] for any coefficient spectrum S. Let bs, X be the collection of all
locally finite families F of singular k-simplices in X which are uniformly bounded,
in the sense that each family possesses a number N such that the diameter of
the image im(o) is bounded from above by N for all simplices o € F. For any
spectrum S, the theory Ph(X; ) is the realization of the simplicial spectrum

k — hocolim K(C, S).
cebs x

There is an equivalence of spectra bt(x; 8) - h(X: S), for any proper general-
ized metric space X, from [Carlsson 1995, Corollary II.21].
A similar theory J" (X, A) is obtained as the realization of the simplicial spec-
trum
k — hocolim K~*°(C, A)
cersix

by viewing C as a discrete metric space and using the notation K~°°(C, A) for the
nonconnective delooping of the K-theory of B(C, A) from Definition 4.2. Using
the coefficients A = B¢ (Y), we obtain J"(X, A), which we denote J" (X, Y). The
proof of [Carlsson 1995, Corollary III.14] gives a weak homotopy equivalence

n:hN(X; G™®Y)) = J'(X,Y)

of functors from proper locally compact metric spaces and coarse maps to spectra.
We next define a natural transformation

CINX,Y) = G (Y).

In the case Y is a point and the coefficients are finitely generated free R-modules,
this kind of transformation is defined as part of the proof of Proposition II1.20
of [Carlsson 1995]. The definition is entirely in terms of maps between singular
simplices in X, so the construction can be generalized to give £ as above. For the
convenience of the reader, we present the necessary details.

Let us first note that controlled algebra can be used to build equivalent bounded
K-theory spectra using the symmetric monoidal category approach which we will
find useful in the rest of the paper. For the details we refer to Section 6 of [Carlsson
2005].

Let D be any collection of singular n-simplices of X and ¢ be any point of the
standard n-simplex. Define a function ¥, : D — X by ¥ (0) =0 ({). Since D is
viewed as a discrete metric space, if D is locally finite then ¥, is coarse, so we
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have the induced functor B(D, A) — B(X, A) given by

Dr-@ @ r

deD xeX ¥ (d)=x

which is the identity for each d € D. Therefore, there is the induced map of spectra

K@, A): K(D, A) — K (X, A).

Suppose further that D € S; X and that N is a bound required to exist for D
in ’S, X. If ¢ and 6 are both points in the standard n-simplex, we have a symmetric
monoidal natural transformation N E) : K¢, A) — K (¥, A) induced from the
functors which are identities on objects in the cocompletion of 4. Both of those
identity morphisms are isomorphisms in B(X, .4) because they and their inverses
are bounded by N.

Recall that the standard n-simplex can be viewed as the nerve of the ordered
setn ={0, 1, ..., n}, with the natural order, viewed as a category. Let D € bs, X.
We define a functor [(D, n) : iB(D, A) x n — iB(X, A) as follows. On objects,
(I(D,n)F), = @ﬂ(l’):x F4, where i denotes the vertex of A" = N.n corresponding
to i. On morphisms, [(D, n) is defined by the requirement that the restriction to the
subcategory i B(D, A) x j is the functor induced by 6;, and that (id x (i < j))(F)
is sent to Nij (F). This is compatible with the inclusion of elements in %S, X, so we
obtain a functor

colim iB(D, A) xn — iB(X, A),
DGTS,,)X
and therefore a map

hocolim N.iB(D, A) x A" — N.iB(X, A).
Debs, x

If M is a symmetric monoidal category, let the ¢-th space in Spt(M) be denoted by
Spt, (M), and let o; : STA Spt, (M) — Spt, (M) be the structure map for Spt(M).
The fact that the natural transformations NL.J are symmetric monoidal shows in
particular that we obtain maps

A; :hocolim Spt, (iB(D, A)) x A" — Spt,(iB(X, A)),
Debs, X

so that the diagrams
hocolim (S'A Spt, (i B(D, A))) x A" —— S'A Spt, (iB(X, A))

Debs, x
€Sy U’Xidl J(Ut
At+l

hocolim Spt, (i B(D, A)) x A" ———— Spt, _;(iB(X, A))
Debs, x
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commute. Further, for each ¢ we obtain a map

k — hocolim Spt, (i B(D, A))| — Spt,(iB(X, A))
Debs, x

respecting the structure maps in Spt,. This gives a map £ : ¥ (X; A) — K (X, A),
where /" (X; A) stands for the realization of the simplicial spectrum

k — hocolim K (C, A).
—>
Ccebsix
Since ¢ is natural in X and is compatible with delooping, it generalizes to the
homotopy natural transformation £x : J"(X; A) — K~*°(X, A). Composing this
with the Cartan natural transformation K~*°(X, A) — G ™ (Y) gives

€ INX,Y) = G (Y).

Definition 7.1 (fibred assembly map in G-theory). The homotopy natural transfor-
mation

AX,Y) : hT(X; GT2(Y)) — Gx™(Y)
is the composition of 7 and £.

Remark 7.2. Notice that if we use a different coefficient category A = Bx(Y), we
obtain a map

Ak (X, Y) : hN(X; K™°(Y)) — K™ (Y)
as the composition 1 and £g. It is called the fibred assembly map in K-theory.

Let I" be a finitely generated group with a word metric associated to some choice
of a finite generating set in I'. We assume that there is a finite K (I", 1) complex M,
and Y is its universal cover. We also assume that X is the universal cover of the
normal bundle to an embedding of M in a Euclidean space. This is the situation
we described in the introduction.

Recall from Notation 4.5 that the equivariant fibred K-theory spectrum for the
pair (I, X) is denoted K 11; (X). We finish this section by developing Ak (X, Y) into
the twisted assembly map

ag (X, T): h"(X; K(R[T]) > K} (X).
Given a small additive category A, we already have the fibred assembly map
AR(X,Y) : BN(X K™2(Y)) — K32 (Y).

Next note that the bounded K-theory spectrum K~°°(I") can be viewed as the ho-
motopy colimit of a family of nonconnective spectra

hocolim K[d](Y),
d
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where K[d](Y) is the spectrum associated with a ["-space given by the subspace
of the nerve of the category with bounded isomorphisms as morphisms, for which
a simplex is included if and only if all the maps which make up the simplex and
all the composites which are computed to obtain iterated face maps are bounded
by d in I'. This gives maps hlf(TY; K[d](Y)) — K~°°(Y x X) from which we can
induce

A : hocolim WX K[d](Y)) = K=Y x X).

d

The exact embedding I : B(Y x X) — By (X) comes from relaxing control on the
morphisms. The embedding induces the map of K-theory spectra

L : K™Y x X) — K, (X)
which, in general, is not an equivalence. The composition of I, with A* gives

Aext(Y, X) : hocolim (X5 K[d1(Y)) — K3 (X).
d
All of the maps we have defined are equivariant maps of spectra with group
actions induced from diagonal action on ¥ x X. So Aex (Y, X) is an equivariant map.
From the proper Spanier—Whitehead duality theorem (see Section 3 of [Ranicki
1980]), we have an equivalence Z"T!F(Y, K[d](Y)) =~ RE(X; K[d](Y)). This
yields the induced map on the fixed points

AL (Y. X) :hocolim ="' K[d](Y)"" — K, (X)".
d
On the other hand, there is a natural equivalence

K~°°(Y)"" ~ hocolim K[d](Y)"T,
d

because in this case when M is a finite K(I", 1) the homotopy inverse limit is a
finite limit which commutes past a filtered colimit.

Definition 7.3 (twisted assembly map). The result is the desired map
o (X K2 ()T ="K w)"T - KD (X))

Fibrewise trivialization. In this section we want to justify the claim from the in-
troduction that in the new equivariant theory we have built there are fibrewise
trivializations. First, we state the desired fact precisely.

Recall the proper metric space Ys described in Section 6. We assume that the
trivial action sg is in S and use the notation Yy for the space Y with the trivial
action.

Theorem 7.4. The equivariant inclusion of metric spaces Yo — Ys induces an equiv-
alence G'(Yo)" — GV'(Y5)''. Therefore, there is an equivalence G (Yy)— ET(Y).
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Before we prove this theorem, we want to emphasize the basic nature of triv-
ializations, a feature transverse to the special object conditions in Definition 1.2,
which are important only for excision properties. For clarity, we start with several
facts about filtrations of modules and describe the elementary case of trivialization
for bounded actions on B(Y), which is the category Bx(Y) with X a single point.

Let ®; : P(Y) — P(Y) denote the functor that assigns to a subset of Y its d-
neighborhood in Y. We can think of an object of B(Y) as a pair (F, ), where
6 is a filtration of F as in Definition 5.4. Given two Y-filtrations 6 and n, we
say 6 is contained in n if 6(S) C n(S) for all § C X, and write 6 < . We say
two Y-filtrations 6 and n are similar if there is a number d such that 6 < no ®
and n <6 o d,.

Lemma 7.5. If 6 and n are similar then the objects (F, 0) and (F, n) are isomor-
phic in B(Y).

Proof. The conditions ensure that the identity homomorphism is boundedly con-
trolled in both directions. ([

Let f: X — Y be a coarse map as defined in Definition 3.2. Given an X-
filtration € on an R-module F, we define f,(6) to be the Y-filtration on F given
by £.(0)(U) =6(f~1(U)). Similarly, given a Y -filtration # on F, we define f*(0)
to be the Y-filtration on F given by f*(6)(U) =0(f(U)). It is easy to see that for
a coarse map f these constructions applied to filtrations from B(Y) give filtrations
back in B(Y). We refer to Propositions 5.2 and 5.3 of [Carlsson and Goldfarb
2011].

Recall the definition of Yg in Definition 6.6. Let i : Y — Yy be the inclusion
y — (¥, So), an isometric embedding, and let 7 : Y5 — Y denote the projection, a
distance nonincreasing map.

Lemma 7.6. Let F be any R-module. Then any Ys-filtration on F is similar to one
of the form i,.0, where 0 is a Y -filtration on F.

Proof. Letex:P(Ys) — P(Yys) be defined by ex(U) = (U) x S. Itis clear from the
definition that U C ex(U). It is also readily checked that ex(U) C ®(U), which
shows that any Yg-filtration 8 on an R-module F is similar to the Yg-filtration 6 oex.
Let 0 denote the Y-filtration on F given by 8(U) = 0(U x S). Then it is clear that
0 oex = *(). It therefore suffices to show that for any Y-filtration n on F, we
have that i,n and 7 *n are similar. But it is clear that 7*n < i,n o &, which gives
the result. U

We also have the following useful fact.

Lemma 7.7. Suppose that we are given two Y -filtrations 6 and n on an R-module F,
and that ¢ : F — F is bounded as a morphism from (F,0) to (F,n). Suppose
further that 0" and n' are also Y -filtrations, and that 0’ and n' are similar to 0
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and n, respectively. Then ¢ : F — F is bounded as a morphism from (F,0")
to (F,n).

Suppose a metric space Y has an action by a discrete group I" through coarse
equivalences. Recall that we say that such action is bounded if for each y € T,
there is b(y) > 0 such that d(y, yy) < b(y) for all y € Y. The following is an
elementary observation.

Lemma 7.8. Suppose Y is a proper metric space equipped with a bounded T -
action by coarse maps. Then, given any Y -filtration 6 on an R-module F, and any
y € I', we have that 6 and y.0 are similar.

An object of the category B¥'(Y) is given by data (F, 6, {¢y.y}y,y7er), where

(1) F is an R-module,

(2) 6 is a Y-filtration on F,

(3) @¢,., 1s an automorphism of F,

“4) ¢, =idrpand ¢y 0@, v =@, v forall y, y’, y”inT,

(5) ¢,,, is bounded when regarded as a homomorphism (F, v.0) = (F, yi0).
Lemmas 7.7 and 7.8 give that condition (5) on ¢, , is equivalent to ¢, , being
bounded as a homomorphism from (F, 8) to (F, 6).

The morphisms (F, 6, {¢, ,}) = (F', ¢, {(,b]’/’y,}) are boundedly controlled ho-
momorphisms f: F — F' with ¢/, o f=fod, .

Proposition 7.9. The equivariant inclusion Yo — Yy induces an equivalence of
categories iB'(Yy) — iB*T(Ys).

Proof. The inclusion exhibits iB*T(Yy) as a full subcategory of iB*"(Yy), and it
follows that it’s enough to prove that every object of iBY!(Ys) is isomorphic to an
object of iB”T(Yp). An object of iB*T(Yp) is given by data (F, 0, {¢y.,'}y.y7er)s
where 6 is an Yp-filtration on F', and where ¢q is an automorphism of F which is
bounded as a homomorphism from (F, 8) to (F, ). Note that the transformations
by y’s do not occur in this situation because the action of I' on Yj is trivial. The
inclusion functor iB*T(Yy) < iB¥T'(Yy) is given by

(F, 9, {(py,y’}y,y/ef‘) - (F» i0, {¢y,y’}y,y’el“)»

so an object (F, 0, {¢, ,},.,7er) is in the subcategory iB¥T'(Yy) if and only if 9 is
of the form i,n for some Yy-filtration n.

Next, we observe that if (F, 0, {¢, '}, er) 1S an object of BYT(Yy), and if 6’
is a Yg-filtration on F which is similar to 8, then

(@) (F,0',{¢y.,}y.yer) is also an object of (F, i.0, {¢y '}, ,7er), and
(b) (F1 0, {¢y,y/}y,y/€I‘) is isomorphic to (F: 9/, {¢y,y/}y,y/el")-
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But we have already observed in Lemma 7.6 that every Yg-filtration on F is equiv-
alent to one of the form i,n, for some Yy-filtration n on F, proving the result. [

Now we are ready to prove Theorem 7.4.

Observe that it suffices to verify that the inclusion Yy — Yg induces an equiv-
alence of categories iGhF(YO) — iGhF(YS). The equivalence then clearly extends
to categories of diagrams of objects in G"'(Ys), and Waldhausen’s S.-construction
used to produce the spectra in Definition 6.3 gives simplicial spaces which in every
level are the nerves of categories of isomorphisms of diagrams of cofibrations of
objects in G"'(Y). So Theorem 7.4 follows from the following lemma.

Lemma 7.10. The inclusion Yo — Yy induces an equivalence iGhr(YO) — iGhF(Yg).

Proof. The proof of Proposition 7.9 together with the preceding lemmas should be
applied verbatim in this case where objects have fibred control over I" and possess
Y-gradings. This is possible due to the facts that G"T(Y) is

(a) closed under the required constructions f* and f; for a coarse equivalence f,
and

(b) is equivalent to the analogue of BT (Y) applied to F in Gp(Y).

Fact (a) follows from Proposition 3.4.4 and Lemma 3.4.5 of [Carlsson and Goldfarb
2019]. We now proceed to prove (b).

When Lemmas 7.5 through 7.8 are transported to the fibred setting, the functor
®, needs to be interpreted as ® 4 ) : P(I' x ¥) — P(I" x ) for an enlargement
data (d, b). All other features remain the same. We have to state the fibred category
to which the proofs apply. An object of this category G*(Y) is given by data

(F,0,{¢y,,}y,yer), where

(1) F is an R-module,

(2) 6 isa (I, Y)-filtration on F which exhibits F' as an object of Gr(Y),

(3) ¢y, is an automorphism of F,

“4) ¢, =idrand ¢y 0@, ,» =@, v forall y, y’, y”inT,

(5) ¢y, is bounded by some enlargement data (B, b) when regarded as a homo-

morphism (F, y.0) — (F, y.0).

Again we remark that (5) is equivalent to ¢,, ,,» being bounded as a homomorphism
from (F, 0) to (F, 0). The morphisms (F, 6, {¢, ,/}) = (F', 0, {(b;’y,}) are bound-
edly controlled f : F — F’ with qb;’y/ of =fodpy,.

Finally, the only new requirement we need to add in the fibred setting is

(6) ¢, is O-controlled when viewed as a morphism over I'.
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We can draw the conclusion of Proposition 7.9 that the equivariant inclusion Yo — Y
induces an equivalence of categories iGVT(Yy) = iG""(Ys). On the other hand, it
is immediate that when the action of I' on Y is by bounded coarse equivalences,
the category G*T(Y) is equivalent to G"'(Y) as in Definition 6.4 by way of the

rule ¢, ,» =Y, 0 lpy_l. ]

8. A sample application

We show how the main theorem of this paper fits in a computation of the K-theory
of a finitely generated group in terms of group homology. This is done by proving
that the Loday assembly map is an equivalence. The basic idea and most of the
nontechnical issues can be illustrated in the simple case of R = Z, the ring of
integers, and I' = C, the infinite cyclic group. In a separate forthcoming paper, we
generalize this argument to all groups I with finite K (I", 1) and finite decomposi-
tion complexity.

Example 8.1. Let S! be the circle viewed as a Riemannian submanifold of R2.
The cyclic group C acts freely and properly discontinuously by translation on the
universal cover R of S'. Let N be the closure of the total space of the (trivial)
normal bundle to the embedding, also embedded in R? as a small closed tubular
neighborhood of S'. We denote by Y the universal cover of N. Now Y can be
given a metric so that the restriction to the zero section is commensurable with the
metric on an orbit of the translation action by C which comes from a fixed word
metric on C. It is important to observe that in this example the action of C on Y
is bounded. This is a consequence of the fact that C is an abelian group.

As explained in the introduction, we assume that the equivariant assembly map
Ac: hlf([R; K=>*(2)) - K~*°(R, Z) is a weak homotopy equivalence, which is
known. This fact shows that the Loday assembly is a split injection with a splitting
p: K@®R¢ — K(R)*C. Our goal is to split p.

A proper version of Spanier—Whitehead duality (see, for example, [Ranicki
1980, Section 3]) allows one to view the double suspension X2 p as a fixed point
map

D: 22K (R — Hi(y: K(®R)C.

We also have the twisted assembly map
a:h'(Y: KR) — K5 (Y)

from Definition 7.3. The composition «€ o D begins the following sequence:

22K @[C]) 22 KS()© S EC(Y) ~ 226G (ZIC)). (I
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The map « is induced by interpreting split exact sequences as exact sequences of
nonfree modules defining G-theory, usually referred to as the Cartan map. Its target
is the fibred homotopy fixed point G-theory spectrum (Section 6).

The equivalence E€(Y) ~ »2G(Z[C)) is the excision computation from the
main theorem. In this application, the normal bundle is trivial and so there is
an elementary choice of a coarsely antithetic covering of ¥ = R by products of
infinite rays in the fiber and in the base. The excision theorem represents E€ (Y)
as the homotopy colimit of a diagram of spectra indexed by cells in the standard
cellular structure of the square and the face relation. The only nontrivial spectrum
E€ (point) corresponds to the initial 2-dimensional cell. Finally, E€ (point) is the
spectrum G¢ (point)¢ = G(Z[C1), which was introduced in [Carlsson and Goldfarb
2016].

Now we need to explain the relationship between G(Z[C]) and K (Z[C]). It is
studied in general under the name regular coarse coherence in a separate paper.
We summarize it as follows. Suppose I' is a group with finite decomposition com-
plexity as in [Ramras et al. 2014] and has a finite K (I', 1). Suppose the ring R is
a Noetherian ring of finite global dimension. Under these assumptions, the Cartan
map K (R[I']) - G(RI[I']) is an equivalence. Of course, this holds when I' = C
and R = Z. In this particular case, what we need is already contained in [Carlsson
and Goldfarb 2004b], written about the smaller class of groups of finite asymptotic
dimension.

To conclude the argument, we notice that the domain and the target of the com-
position in () are equivalent, and the first map in the composition is D = X2p. It
is important to check, and is done in a forthcoming paper, that the composition of
these exhibited maps is indeed an equivalence. The use of the theory E€ is essential
for that purpose, as we already observed in Remark 1.1 in the introduction.

The same argument can be used for finitely generated free abelian groups, with
the only straightforward change occurring in a larger excision scheme for the com-
putation of E'(Y), where Y is similarly a higher-dimensional Euclidean space.
The extension to nonabelian groups with finite decomposition complexity requires
several new tools and will appear in a separate paper.
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