Vol. 6, No. 2, 2021

Download this article
Download this article For screen
For printing
Recent Issues
Volume 9, Issue 4
Volume 9, Issue 3
Volume 9, Issue 2
Volume 9, Issue 1
Volume 8, Issue 4
Volume 8, Issue 3
Volume 8, Issue 2
Volume 8, Issue 1
Volume 7, Issue 4
Volume 7, Issue 3
Volume 7, Issue 2
Volume 7, Issue 1
Volume 6, Issue 4
Volume 6, Issue 3
Volume 6, Issue 2
Volume 6, Issue 1
Volume 5, Issue 4
Volume 5, Issue 3
Volume 5, Issue 2
Volume 5, Issue 1
Volume 4, Issue 4
Volume 4, Issue 3
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 4
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN 2379-1691 (online)
ISSN 2379-1683 (print)
 
Author index
To appear
 
Other MSP journals
The real cycle class map

Jens Hornbostel, Matthias Wendt, Heng Xie and Marcus Zibrowius

Vol. 6 (2021), No. 2, 239–317
Abstract

The classical cycle class map for a smooth complex variety sends cycles in the Chow ring to cycles in the singular cohomology ring. We study two cycle class maps for smooth real varieties: the map from the I-cohomology ring to singular cohomology induced by the signature, and a new cycle class map defined on the Chow–Witt ring. For both maps, we establish compatibility with pullbacks, pushforwards and cup products. As a first application of these general results, we show that both cycle class maps are isomorphisms for cellular varieties.

Keywords
I-cohomology, singular cohomology, Chow–Witt rings, real realization, real cellular varieties
Mathematical Subject Classification 2010
Primary: 14F25
Secondary: 19G12
Milestones
Received: 5 December 2019
Revised: 5 November 2020
Accepted: 22 November 2020
Published: 1 August 2021
Authors
Jens Hornbostel
Fachgruppe Mathematik und Informatik
Bergische Universität Wuppertal
Wuppertal
Germany
Matthias Wendt
Fachgruppe Mathematik und Informatik
Bergische Universität Wuppertal
Wuppertal
Germany
Heng Xie
Fachgruppe Mathematik und Informatik
Bergische Universität Wuppertal
Wuppertal
Germany
Marcus Zibrowius
Mathematisches Institut
Heinrich Heine University Düsseldorf
Düsseldorf
Germany