Vol. 6, No. 3, 2021

Download this article
Download this article For screen
For printing
Recent Issues
Volume 9, Issue 4
Volume 9, Issue 3
Volume 9, Issue 2
Volume 9, Issue 1
Volume 8, Issue 4
Volume 8, Issue 3
Volume 8, Issue 2
Volume 8, Issue 1
Volume 7, Issue 4
Volume 7, Issue 3
Volume 7, Issue 2
Volume 7, Issue 1
Volume 6, Issue 4
Volume 6, Issue 3
Volume 6, Issue 2
Volume 6, Issue 1
Volume 5, Issue 4
Volume 5, Issue 3
Volume 5, Issue 2
Volume 5, Issue 1
Volume 4, Issue 4
Volume 4, Issue 3
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 4
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 4
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 4
Volume 1, Issue 3
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN 2379-1691 (online)
ISSN 2379-1683 (print)
 
Author index
To appear
 
Other MSP journals
The spectrum of equivariant Kasparov theory for cyclic groups of prime order

Ivo Dell’Ambrogio and Ralf Meyer

Vol. 6 (2021), No. 3, 543–558
Abstract

We compute the Balmer spectrum of the equivariant bootstrap category of separable G-C*-algebras when G is a group of prime order.

Keywords
equivariant Kasparov theory, triangulated categories, spectrum
Mathematical Subject Classification
Primary: 18G80, 19K35, 19L47
Milestones
Received: 12 September 2020
Revised: 9 March 2021
Accepted: 30 March 2021
Published: 11 September 2021
Authors
Ivo Dell’Ambrogio
Laboratoire Paul Painlevé
Université de Lille
Villeneuve-d’Ascq
France
Ralf Meyer
Mathematisches Institut
Universität Göttingen
Göttingen
Germany