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We show that every fusion system on a p-group S is equal to the fusion system
associated to a discrete group G with the property that every p-subgroup of G is
conjugate to a subgroup of S.

1. Introduction

Let p be a prime number. By a p-group we shall mean a finite group whose order
is a power of p. A fusion system on a p-group S is a category F whose objects are
the subgroups of S, and whose morphisms are injective group homomorphisms,
subject to certain axioms. The notion of a fusion system is intended to axiomatize
the p-local structure of a discrete group G > § in which every p-subgroup is
conjugate to a subgroup of S. Every such G gives rise to a fusion system Fs(G)
on S, and we say that G realises F if F5(G) = %.

The notion of a saturated fusion system is intended to axiomatize the p-local
structure of a finite group in which S is a Sylow p-subgroup. It is known that
there are saturated fusion systems & which are not realised by any finite group G,
although showing that this is the case is very delicate. In the case when p = 2, the
only known examples are certain systems discovered by Solomon [1974] (see also
[Benson 1994; Levi and Oliver 2002]).

In contrast, we show that every fusion system on any p-group S is realised by
some discrete group G > § in which every maximal p-subgroup is conjugate to S.
The groups G that are used in our proofs are constructed as graphs of finite groups.
In particular each of our groups G contains a free subgroup of finite index. In an
appendix we give a brief account of those parts of the theory of graphs of groups
that we use.

While preparing this paper, we learned that Robinson [2006] has proved a simi-
lar, but not identical result. Since his article was already submitted when we started
to write this paper, we have taken it upon ourselves to compare and contrast the two
results. Robinson’s construction realises a large class of fusion systems, including
all saturated fusion systems, but does not realise all fusion systems. The groups
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that Robinson constructs are iterated free products with amalgamation, whereas
the groups that we construct are iterated HNN extensions. In both cases the groups
may be viewed as graphs of finite groups.

We state and outline the proof of a version of Robinson’s theorem, along the
lines of the proof of our main result. We also give examples of fusion systems
that cannot be realised by Robinson’s method, we give examples of nonsaturated
fusion systems that are realised by Robinson’s method, and we prove an analogue
of Cayley’s theorem for fusion systems.

2. Definitions and results

Let p be a prime, and let G be a discrete group. The p-Frobenius category ®,(G)
of the group G is a category whose objects are the p-subgroups of G. If P and
Q are p-subgroups of G, or equivalently objects of ®,(G), the morphisms from
P to Q are the group homomorphisms f : P — Q that are equal to conjugation
by some element of G. Thus f : P — Q is in ®,(G) if and only if there exists
g € G with f(u) = g~ 'ug for all u € P. (Note that the element g is not part of
the morphism. If g’ = zg for some element z in the centralizer of P, then g and g’
define the same morphism.)

Now suppose that S is a p-subgroup of G, and let F5(G) denote the full sub-
category of ®,(G) with objects the subgroups of S. Such categories as these are
examples of fusion systems on S. According to Puig, a fusion system or ‘Frobenius
system’ on § is a category %. The objects of & are the subgroups of §, and the
morphisms from P to Q form a subset of the set Inj(P, Q) of injective group
homomorphisms from P to Q. These are subject to the following axioms:

(1) Forany s € S, and any P, Q < S with s~! Ps < Q, the morphism ¢ : P — Q
defined by ¢ : u > s~ 'us is in . (Equivalently, F5(S) C F.)

QIff:P— Qisin%, with R= f(P) < Q, thenso are f: P — R and
f':R— P.

It is easily checked that these axioms are satisfied in the case when & = F¢(G) as

defined above.

Now consider the special case in which § is a p-subgroup of G that is maximal,
and further suppose that every p-subgroup of G is conjugate to a subgroup of S.
In this case, every object of ®,(G) is isomorphic within the category ®,(G) to a
subgroup of §. It follows that the full subcategory Fs(G) is equivalent to ®,(G).
This was one of the main motivating examples for Puig’s definition.

We say that the pair (G, S) realises the fusion system & if S is a p-subgroup of
G, ¥ is a fusion system on S, and Fs(G) = F. If G is a group in which every p-
subgroup is conjugate to a subgroup of some p-subgroup S, we say that G realises
% if the pair (G, S) realises F.
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Remark 1. Another source of fusion systems on a p-group S is the Brauer category
of a p-block b [Alperin and Broué 1979; Linckelmann 2006]. Here H is a finite
group, S is the defect group of the p-block b, and the morphisms in the category are
those conjugations by elements of H that preserve some extra structure associated
to b. In the case when b is the principal block, § is the Sylow p-subgroup of
H and this fusion system is just Fg(H). One corollary of our Theorem 2 is that
every such fusion system is realised by some group G in which every p-subgroup
is conjugate to a subgroup of S.

Let % be a fusion system on S and let % be a fusion system on S’. A morphism
o 1 F — F consists of a group homomorphism o : S — S’ and a functor « from
F to ¥ such that

(1) forall P < S, ag(P) =a(P);
(2) for each P, Q < S and each ¢ € Homg (P, Q), a(¢) o g = g o ¢.

With this notion of morphism, the class of all fusion systems on p-groups becomes
a category. If S is a p-subgroup of G and S’ is a p-subgroup of H, then any
group homomorphism f : G — H with the property that f(S) < S’ gives rise to a
morphism of fusion systems f, : F5(G) - Fg(H).

Define the category of pairs to have objects the pairs (G, S), where G is a group
and S is a p-subgroup, where the morphisms from the pair (G, S) to the pair
(H, §’) are the group homomorphisms f : G — H such that f(S) < §’. With these
definitions, there is a realisation functor from the category of pairs to the category
of fusion systems, which takes the object (G, S) to the fusion system Fs(G) on S,
and takes the homomorphism f to the morphism f.

There is a fusion system & ¢"* on S, in which the set of morphisms from P to Q
consists of all injective group homomorphisms from P to Q. Any fusion system
on S is a subcategory of % ¢, and the intersection of a family of fusion systems
on § is itself a fusion system. If ® = {¢y, ..., ¢} is a collection of morphisms in
F ¢, where ¢; : P, — Q;, the fusion system generated by ® is defined to be the
smallest fusion system that contains each ¢;.

Theorem 2. Suppose F is the fusion system on S generated by ® = {¢y, ..., ¢, }.
Let T be a free group with free generators ty, ..., t., and define G as the quotient
of the free product S x T by the relations t;lut,- = ¢;(u) for all i and for all u € P;.
Then S embeds as a subgroup of G, every p-subgroup of G is conjugate to a
subgroup of S, and F5(G) = F. Moreover, every finite subgroup of G is conjugate
to a subgroup of S, and G has a free normal subgroup of index dividing |S|!.

As was pointed out to us by the referee, the group constructed in Theorem 2
enjoys a universal property.
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Corollary 3. Suppose that H is a group containing S as a subgroup, and that the
fusion system F as in the statement of Theorem 2 is realised by the pair (H, S). Let
hi, ..., h, be any elements of H such that conjugation by h; induces the morphism
¢i : P, = Q;. For G as defined in the statement of Theorem 2 there is a unique
group homomorphism f : G — H such that f(s) = s for all s € S and such that
f(t;) = h;. Furthermore f, : %5(G) — Fs(H) is an isomorphism.
Corollary 4. The category of fusion systems is a retract of the category of pairs
as defined above. In other words, there is a functor from the category of fusion
systems to the category of pairs which is a preinverse to the realisation functor.

If f:S — S is an injective group homomorphism between p-groups, and F
is a fusion system on ', then there is a functor f; from & to & ¢"**, which sends
P <S8 to f(P)and ¢ : P — Q' to

fog¢ ofti f(P)— F(O.

Theorem 5. Suppose that F is the fusion system on S generated by the images
(fi)1(Fs,(Gy)) for injective group homomorphisms f; 1 S; — S for 1 <i <r, where
G, is a finite group with S as a Sylow p-subgroup. Define G as the quotient of
the free product S x G| * - -- x G, by the relations s = f;(s) for all i and for all
s € S]. Then S embeds as a subgroup of G, every p-subgroup of G is conjugate to a
subgroup of S, and F¥5(G) = F. Moreover, every finite subgroup of G is conjugate
to a subgroup of one of the G;, or to a subgroup of S, and G has a free normal
subgroup of index dividing N, where N is the least common multiple of |S| and
the |Gi|.

Remark 6. The theorem can be obtained from Theorem 1 of [Robinson 2006]
by induction. The main result of that paper is Theorem 2, which is similar to
the statement above except that extra conditions are put on the G;. These extra
conditions allow Robinson to improve the bound on the index of a free normal
subgroup, and to deduce some information about the finite quotient by such a
subgroup. Another slight difference is that Robinson describes his group as a free
product with amalgamation G| *- - - % G,, where G| has § as a Sylow p-subgroup.
The groups that arise in this way are the same groups as those that arise from our
statement, since if S is a subgroup of G1, then S x5 G| = G;.

Theorem 7. Let ¥ denote the group of all permutations of the elements of a p-
group S, and identify S with a subgroup of X via the Cayley embedding. Every
fusion system on S is equal to a subcategory of the Frobenius category ® ,(%) of X.

3. Saturated fusion systems

In this section we present the definition of a saturated fusion system, due to Puig
[2002], although we shall describe an equivalent definition due to Broto, Levi and
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Oliver [Broto et al. 2003]. There are two additional axioms as well as the axioms
for a fusion system. These axioms necessitate some preliminary definitions.

As usual, if G is a group and H is a subgroup of G, we write Cg(H) for the
centralizer of H in G and Ng(H) for the normalizer of H in G.

Suppose that & is a fusion system on S. Say that P < § is fully &-centralized if

|Cs(P)| = |Cs(P)]

for every P’ which is isomorphic to P as an object of %. Suppose that F = F5(G)
for some discrete group G in which every p-subgroup is conjugate to a subgroup
of S. In this case, if P is fully %-centralized, one sees that Cs(P) is a p-subgroup
of C¢(P) of maximal order.

Similarly, say that P is fully %-normalized if

INs(P)| > [Ns(P")|

for every P’ which is isomorphic to P as an object of &. If ¥ = F4(G) as above
and P is fully F-normalized, one sees that Ng(P) is a p-subgroup of Ng(P) of
maximal order.

Now suppose that & = %g(G) for some finite group G, and that P < S is
fully F-normalized. In this case, Ng(P) must be a Sylow p-subgroup of the finite
group N (P). Moreover, Cg(P)NNs(P)=Cs(P) must be a Sylow p-subgroup of
Cc(P),and Autg(P)= Ng(P)/Cs(P) must be a Sylow p-subgroup of Autg(P) =
Ng(P)/Cg(P). This gives the first of two extra axioms for a saturated fusion
system:

(3) If P is fully F-normalized, then P is also fully Z-centralized, and Autg(P)
is a Sylow p-subgroup of Autg(P).

Next, suppose that F = F(G) for some finite group G and that f: P - Q < S
is an isomorphism in & such that Q is fully %-centralized. This implies that Cs(Q)
is a Sylow p-subgroup of Cs(Q). Pick an element & € G so that f is equal to
conjugation by h, i.e., so that f(u) = ¢, (u) = h~'uh for all u € P. The image
cp(Cs(P))is a p-subgroup of Cg(ci(P)) =Cs(Q), and so there exists A’ € C;(Q)
so that ¢y o ¢y (Cs(P)) < Cs(Q). Since cjy acts as the identity on Q, if we define
k = hh', we see that ¢; extends f and ¢, (Cs(P)) < Cs(Q).

The map ¢y clearly extends to a map from N = NS(P)ﬂck_1 (Ns(Q))to Ns(Q).
But since Cgs(P) is a subgroup of ck_1 (Ns(Q)), we may rewrite this as

Nj={geNs(P): cyocgoc; ' € Auts(Q)} ={g € Ns(P): focgof~' € Auts(Q)},

which does not depend on choice of k. This leads to the second extra axiom:
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@GHIf.P— Q is an isomorphism in &F and Q is fully %-centralized, then f
extends in % to a map from Ny to Ng(Q), where

N;y={g € Ns(P): focgof7 € Auts(Q)}.

Remark 8. It was shown in [Kessar and Stancu 2007] that the axioms for a satu-
rated fusion system can be simplified to:

(3) Autg(S) is a Sylow p-subgroup of Autg(S).

@) If f: P — Q is an isomorphism in % and Q is fully %-normalized, then f
extends in & to a map from Ny to Ng(Q), where Ny is as defined in axiom 4.

Remark 9. In the case when § is abelian, axioms 3 and 4 simplify. In this case,
every subgroup of § is fully %-centralized and fully %-normalized for any fusion
system &, and for any f € ¥, Ny = §. Hence a fusion system % on an abelian
p- subgroup S is saturated if and only if Autg(S) is a p’-group and every morphism
f P — S in & extends to an automorphism of S.

Remark 10. As mentioned in the introduction, there are saturated fusion systems
which are not realised by any finite group. One source of saturated fusion systems
is the fusion systems associated to p-blocks of finite groups [Alperin and Broué
1979; Linckelmann 2006]. The question of whether every such fusion system can
be realised by a finite group is a long-standing open problem.

4. Examples

Let E be an elementary abelian p-group of rank at least three, i.e., a direct product
of at least three copies of the cyclic group of order p. Let A = Aut(E) be the full
group of automorphisms of E, which is of course isomorphic to a general linear
group over the field of p elements. Let B be a subgroup of A of order a power of
p, and let C be a nontrivial subgroup of A of order coprime to p. Note that A is
generated by its subgroups of order coprime to p.

Each of A, B and C may be viewed as a collection of morphisms in the fusion
system F 7. For X = A, B or C, let £ (X) denote the fusion system generated
by all the morphlsms in X.

Example 11. The fusion system Fg(C) is saturated, and is equal to the fusion
system % (G), where G is the semidirect product G = ExC.

Example 12. The fusion system g (A) is not saturated, since in %z (A) the auto-
morphism group of the object E does not have E/Z(E) as a Sylow p-subgroup.
However, % (A) can be realised by the procedure of Theorem 5. Let Cy, ..., C,
be p’-subgroups of A that together generate A. If we put G; = ExC; with f; the
identity map of E, then the fusion system generated by all of the (f;)(Fr(G;)) is
equal to Fg(A).
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Example 13. The fusion system ¥ (B) cannot be realised by the procedure used in
Theorem 5. For suppose that G, . .., G, are finite groups with Sylow p-subgroups
Ei, ..., E,, each of which is isomorphic to a subgroup of E, and suppose that
% g (B) is generated by the fusion systems (f;)1%g, (G;). Those G; for which f; :
E; — E is not an isomorphism do not contribute any morphisms to Autg(E).
If f; : E; — E is an isomorphism, then either Autg,(E;) contains nonidentity
elements of p’ order, implying that % # % (B), or E; is central in G; and G; does
not contribute any morphisms to Autg(E).

Next we consider some examples of fusion systems % on an abelian p-group E
in which Autz(E) is a p’-group, but for which some isomorphisms between proper
subgroups of E do not extend to elements of Autg(E).

Example 14. Let F and F’ be distinct order p subgroups of E, and let ¢ : F —
F’ be an isomorphism. Let Fg(¢) be the fusion system generated by ¢. Every
morphism in Fg(¢) is equal to either an inclusion map or the composite of either
¢ or ¢! with an inclusion map. In particular, in % (¢), the automorphism group
of each object E’ < E is trivial. The fusion system % g(¢) cannot be realised by
the procedure of Theorem 5, as will be explained below.

In view of Remark 9, & ¢ (¢) is not a saturated fusion system, since the morphism
¢ : F — F’ does not extend to an automorphism in % g (¢) of the group E.

Now suppose % is a fusion system on E generated by the images (f;)1F g, (G;)
of some fusion systems for finite groups. If ¢ : F — F’ is a morphism in %,
then there exists i so that F, F' < f;(E;) and ¢ € (fi)1%FE,(G;). But then (by the
same argument as used above) there is a morphism é: fi(E;) — fi(E;) extending
¢ : F — F’. Thus % cannot be equal to the fusion system % g (¢), since this fusion
system contains no such ¢.

Example 15. Let F be a proper subgroup of E, and suppose that D is a nontrivial
p’-group of automorphisms of F. Let F x D denote the semidirect product of F
and D, let G be the free product with amalgamation G = E xr (F X D), and let &
be the fusion system % (G). From this definition one sees that & can be obtained
by the procedure of Theorem 5. On the other hand, since Autg(FE) is trivial, one
sees that the nontrivial automorphisms of F do not extend to automorphisms of E,
and hence F is not saturated.

As remarked earlier, Robinson does not consider all fusion systems that can be
built by the procedure of Theorem 5, but only those that he calls Alperin fusion
systems [Robinson 2006]. With the notation of Theorem 5 (and bearing in mind
Remark 6), a fusion system is Alperin if the following conditions hold:

(1) Inside each G; there is a subgroup E; which is the largest normal p-subgroup
of G;, and the centralizer of this subgroup is as small as possible, in the sense
that Cg, (E;) = Z(E;);
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(2) The quotient G;/E; is isomorphic to Outz(E;) := Autg(E;)/Autg, (E;);

(3) Inside S, the image of the subgroup S/ (the Sylow p-subgroup of G; which is
to be identified with a subgroup of §) is equal to the normalizer of the image
of Ej, i.e., fi(S)) = Ns(fi(E)).

In terms of this definition, the content of Alperin’s fusion theorem [1967], with
some later embellishments [Goldschmidt 1970], is that the fusion system for any
finite group is Alperin. Robinson [2006] remarks that work of Broto, Castellana,
Grodal, Levi and Oliver implies that every saturated fusion system is Alperin [Broto
et al. 2005]. It is easy to see that a fusion system on an abelian p-group is Alperin
if and only if it is saturated. We finish this section by giving an example of a fusion
system that is Alperin but not saturated.

Example 16. Let p be an odd prime, let A = (C p)3, and let B be a subgroup of
Aut(A) of order p such that A is indecomposable as a B-module. (Equivalently,
the action of a generator for B on A should be a single Jordan block.) Let S
be the semidirect product S = AxB. The centre Z of S has order p. Let E =
Z x B < §, a subgroup isomorphic to C, x C),. It is readily seen that Cs(E) = E
and that P = Ng(FE) is isomorphic to a semidirect product (C p)2 X Cp, the unique
non-abelian group of order p* and exponent p. Let G be the semidirect product
G| = ExAut(E). Since the Sylow p-subgroups of Aut(E) are cyclic of order p,
there is an isomorphism between P and a Sylow p-subgroup of G that extends
the inclusion of E.

By construction, the fusion system & for the free product with amalgamation
S xp G is Alperin in the sense of [Robinson 2006], but this fusion system is not
saturated. For example, there are nonidentity self-maps of Z inside %, and if &
were saturated, any self-map of Z inside & would extend to a self-map of S. But
in &, S has only inner automorphisms, and these restrict to Z as the identity.

5. Proofs

Proof of Theorem 7. As in the statement, let X be the group of all permutations
of S, and identify S with a subgroup of X. Let P and Q be subgroups of § < X,
and let ¢ : P — Q be any injective group homomorphism. It suffices to show that
there is some o € ¥ such that for all u € P, 0 'uo = ¢ (u). Let Q denote the
group S viewed as a set with a left S-action. There are two ways to view 2 as a
set with a left P-action, via P < S and via ¢ : P — Q < §. Denote these two
P-sets by Q and ?Q respectively. Each of Q and ¢ is isomorphic as a P-set to
the disjoint union of |S : P| copies of P. In particular, there is an isomorphism of
P-sets o : ?Q — Q. Viewing o as an element of X, one has that 0 ¢ (u)w = uow
forall u € P and w € Q. Hence o ~'uo = ¢ (u) for all u as required. Il
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Remark 17. A version of Theorem 7 appeared in [Leary et al. 1997], although
fusion systems were not mentioned there.

Before proving Theorem 2 we give a result concerning extending group homo-
morphisms, and two corollaries, one of which will be used in the proof.

Lemma 18. Let S and G be as in the statement of Theorem 2, let j : S — G be
the natural map from S to G, let H be a group and let f : S — H be a group
homomorphism. There is a group homomorphism f :G — Hwith f = f ojif
and only if for each i, the homomorphisms f : P, — H and f o ¢; : P, — H differ
by an inner automorphism of H.

Proof. Given a homomorphism f as in the statement, one has that for each i and for
eachue P, fo;(u)= hl._l f(uw)h;, where h; = f (t;). For the converse, suppose that
there exists, for each i, an element h; satisfying the equation f¢;(u) =h; ! f)h;
for all u € P;. In this case one may define f on the generators of G by f(s) = f(s)
for all s € S and f(ti)zhi. Il

Corollary 19. With notation as in the statement of Theorem 2, there is a homo-
morphism from G to X, the group of all permutations of the set S, extending the
Cayley representation of S.

Proof. The argument used in the proof of Theorem 7 shows that the conditions of
Lemma 18 hold. U

Remark 20. Corollary 19 gives an alternative way to prove Corollary 26, at least
in the special case of a rose-shaped graph.

Corollary 21. With notation as in the statement of Theorem 2, a complex represen-
tation of S with character x extends to a complex representation of G if and only
if for each i and for each u € P;, x (u) = x (¢; (u)).

Remark 22. Of course, a representation of S will extend to G in many different
ways if it extends at all.

Proof of Theorem 2. As in Appendix 6.2, one sees that the group G presented in
the statement is the fundamental group of a graph of groups with one vertex group,
S, and one edge group P; for each ¢;, 1 <i < r. From Corollary 26 it follows
that S is a subgroup of G. From Corollary 30, it follows that any finite subgroup
of G, and in particular any p-subgroup of G, is conjugate to a subgroup of S. By
Theorem 28, there is a cellular action of G on a tree T, with one orbit of vertices
and r orbits of edges. By suitable choice of orbit representatives, we may choose
a vertex v whose stabilizer is S, and edges ey, . .., e, so that the stabilizer of ¢; is
P;, and so that the initial vertex of ¢; is v while the final vertex is ¢;-v.
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Since every p-subgroup of G is conjugate to a subgroup of §, there is a fusion
system Fg(G) associated to G. By construction Fg(G) contains each ¢;, which
corresponds to conjugation by ¢;.

Conversely, suppose that g € G has the property that g~!Pg < Q for some
subgroups P, Q of S. It suffices to show that conjugation by g, as a map from P
to @, is equal to a composite of (restrictions of) the maps ¢; and their inverses
with conjugation maps by elements of S.

Consider the action of P on the tree T. By hypothesis, the action of P fixes both
the vertex v and the vertex g-v. Since 7 is a tree, P must fix all the vertices and
edges on the unique shortest path from v to g-v. Let this path have length n. Define
go=1¢g,gn=g,andfor 1 <i <n—1, choose g; € G so that gy-v, g1-v, ..., gV
is the shortest path in 7 from v to g-v. For each i, P is contained in the stabilizer
of the vertex g;-v, and so P < g; Sgl._l, or equivalently gi_ng,- <S.

The edge joining g;-v and g;1-v is an edge of the form g;-e; or g;;1-¢; for some
Jj depending on i. Consider the two cases separately, first supposing that the edge
is of the form g;-e;. In this case it follows that P < g; P;g;” ! since P stabilizes
the edge g;-e;. Also one sees that g;;1-v = g;f;-v, and hence gl.;llg,-tj € S. Hence
conjugation by g;” ! gi+1, viewed as a map from g;” 'Pg; to gl._+11 Pgiy1 is equal to
the composite of the map ¢; (restricted to g; LPgi < P)) followed by conjugation
by an element of S.

The other case is similar. Here it follows that P < g;1 | P; 11 gi_+11 , and one has that
gi*v=_gi+1tj-v, from which gl._] gi+1tj=s € S. Inthis case conjugation by gi_] 8i+1s
as a map from g, 'Pgi to g;rll Pgiy1, is equal to the composite map given by
conjugation by s followed by the map (/51._1 (restricted to s ! gl._] Pgis <¢;j(Piy1)).

Thus conjugation by g = g, as a map from P to Q can be expressed as a
composite of maps inside the fusion system generated by the ¢;, and so Fs(G) is
equal to this fusion system.

It remains to show that the group G contains a free normal subgroup of index
at most |S|!. Let ¥ denote the symmetric group on the set S. By Corollary 19,
there is a homomorphism G — ¥ which extends the natural injection S — X. By
Corollary 31, the kernel of this homomorphism is a free normal subgroup of G,
and its index is a factor of |X| = |S|!. O

Proof of Corollary 3. Define a function f on the union of S and the generators of
T by f(s)=s and f(t;) = h;. This extends uniquely to a group homomorphism f
from G to H by an argument similar to that used in the proof of Lemma 18. Since
the pairs (G, §) and (H, S) both realise the same fusion system, it is immediate
that f, is an isomorphism of fusion systems. 0

Proof of Corollary 4. For & a fusion system on a p-group S, let ®(%F) be the
(finite) set of all morphisms in %, and define G, (%) to be the group constructed as
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in Theorem 2 using the set ® (%) as the chosen generators for . Any morphism
of fusion systems « : & — ¥’ will give rise to a function from ® (%) to ®(%’) and
hence a group homomorphism from G,, (%) to G,,(¥'). Hence the map sending
& to the pair (G, (%), S) is a functor from fusion systems to pairs. It is easily
checked that the fusion system on S realised by G, (%) is equal to &, which shows
that this functor is a preinverse to the realisation functor. U

Sketch of proof of Theorem 5. In this case, the group G is the fundamental group
of a star-shaped graph of groups, with one central vertex labelled S and r outer
vertices labelled Gy, ..., G,. The edge from G; to § is labelled by the group S;.
By Theorem 28, there is a cellular action of G on a tree 7, with r 4+ 1 orbit of
vertices and r orbits of edges. We may choose orbit representatives v, vy, ..., Uy
of vertices and ey, . . ., e, of edges so that the stabilizer of vy is S, and for 1 <i <r,
the stabilizer of v; is G; (resp. of e; is Sl.’ ). Moreover, we may assume that ¢; has
initial vertex v; and terminal vertex vy.

In this case, one sees that any finite subgroup of G is conjugate to either a
subgroup of S or to a subgroup of G; for some i. Since S; is a Sylow p-subgroup
of G;, any p-subgroup of G is conjugate to a subgroup of S as required.

As in the previous proof, it is clear that the fusion system Fs(G) contains the
image of each % (G;), but an argument is needed to show that these images gen-
erate F5(G). Given g € G and P, Q < S so that g_ng < Q, one argues that the
action of P fixes the vertices vy and g-vg in the tree T, and hence fixes the shortest
path (necessarily of even length, say 2n) that joins these vertices.

Let go=1¢, g2» = &, and pick group elements so that the vertices on the shortest
path from vy to g-vg are

80°V0, &1°Vj(1)> &2°V0> &3°Vj(2)s ---» &2n—1"Vj(n)s &2n°V0s

for some function j : {1,...,n} — {1,...,r}. If i is even, then gi_IPgi < S, and
if i is odd then g;” "Pgi < Gj(it1))2) - Since P stabilizes each edge, one sees that
P < gflSkgi, where S; denotes the image of S inside S, and k = j((i +1)/2) if
i isodd and k = j(i/2) if i is even. In particular, each g;” ! Pg; is a subgroup of S.

One may show that in the case when i is odd, gl._lg,-H € Gj(i+1)/2 and that in
the case when i is even, glflg,-ﬂ € S. Thus the map from gi’ng,- to gl.jrll Pgii1
given by conjugation by g.- lgi1 is a map inside the fusion system generated by
the images of the & s;(Gi), and conjugation by g = g>, as amap from P to Q < S
is expressed as a composite of maps of the required form.

Finally, if € is a finite set so that |€2| is divisible by |S| and by each |G;|, one
may define free actions of S and each G; on €2 which give rise to the same (free)
action of S; = f;(S!). This gives rise to a group homomorphism from G to X, the
symmetric group on €2, whose kernel is free by Corollary 31. O



28 lan J. Leary and Radu Stancu

6. Appendix: graphs of groups

In this section we give proofs of those results about graphs of groups that we use.
Our treatment of graphs of groups is topological and follows that of Scott and Wall
[1979]; an alternative, more algebraic, treatment of this subject can be found in
[Serre 1980]. There is no direct correspondence between the two treatments but
we give references to the closest results following Serre’s approach.

For the purposes of this paper, a graph I" consists of two sets, the vertices V and
the directed edges E, together with two functions ¢, 7 : E — V. For e € E, ((e)
is called the initial vertex of e and 7 (e) is the terminal vertex of e. Multiple edges
and loops are allowed in this definition. I" is connected if the only equivalence
relation on V that contains all pairs (t(e), t(e)) is the relation with just one class.

A graph I' may be viewed as a category, with objects the disjoint union of V and
E and two nonidentity morphisms with domain e for each e € E, one morphism
e — t(e) and one morphism e — 7 (e).

A graph of groups is a connected graph I' together with groups G,, G, for
each vertex and edge, and injective group homomorphisms f,, : G, — G() and
fe.r :Ge— G foreach edge e. If T is viewed as a category, this is just a functor
from I' to the category of groups and injective group homomorphisms. Without
loss of generality, one may assume that each map f,, : G, — G(¢) is the inclusion
of a subgroup.

6.1. The fundamental group of a graph of groups. For a topologist, and arguably
for anybody, the easiest way to define the fundamental group of a graph of groups
is via the notion of a graph of spaces.

A graph of spaces is a connected graph I' together with topological spaces
Xy, X, for each vertex and edge, and continuous maps f,, : X, — X, and
Jfer : Xe = X:1(e). A graph of spaces is just a functor from the category I' to the
category of topological spaces and continuous functions. A graph of based spaces
is defined similarly: each X, and X, is equipped with a base point, and the maps
must preserve base points. Let I denote the closed unit interval [0, 1]. The total
space of a graph of spaces is the space X made from the disjoint union

[ X,u ][] Xex1

veV ecE
by identifying (x, 0) € X, x I with f,,(x) € X,() and identifying (x, 1) € X, x
I with f, -(x) € X¢(). As an example, consider the graph of spaces in which
each X, and X, is a single point. For this graph of spaces the total space is the
usual topological realization of the graph as a 1-dimensional CW-complex. The
reader who is familiar with the homotopy colimit construction will note that if one
views a graph of spaces as a functor X on the category I', then the total space
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X is naturally homeomorphic to the homotopy colimit of the functor X_), or in
symbols, X = hocolimr X _).

Given a graph of groups, one may define a graph of connected based spaces
by taking classifying spaces as the spaces X, = BG, = K(G,, 1) and X,BG, =
K(Gy, 1). For the continuous map f,, : X = X, @esp. fer : Xe = Xc(e)
one may take any continuous map that induces the given map G, — G, (resp.
G, — Gr() on fundamental groups. Define a total space X as the realization of
this graph of spaces.

For discrete groups K and H, the space BK is unique up to based homotopy,
and homotopy class of based maps from BK to B H are in bijective correspondence
with group homomorphisms from K to H. It follows that the homotopy type of
the space X defined above depends only on the graph of groups, rather than on the
particular choices of classifying spaces and maps between them. The fundamental
group G of the graph of groups can now be defined as the fundamental group of X.
This describes the fundamental group of the graph of groups up to isomorphism.
The inclusion of each X, in X defines a conjugacy class of homomorphism G, - G
(which will be shown to be injective, below). For many purposes one wants a more
precise description of G, together with a single choice of homomorphism G, — G.
This can be done by choosing a basepoint for the space X, and for each v, a path
in X from the basepoint for X to the basepoint for X, C X.

6.2. Presentations for graphs of groups. We shall only consider presentations for
graphs of groups where the underlying graph is either a rose, meaning a graph with
only one vertex (so every edge has the same initial and terminal vertices) or a star,
which is a connected graph with n 4 1 vertices and n edges, for some n > 0, with
one central vertex, such that all the edges have this vertex as their terminal vertex
and every other vertex is the initial vertex of exactly one edge.

Suppose one is given a p-group S, subgroups P;, Q; < S, and injective group
homomorphisms ¢; : P, - Q; for 1 <i <r, as in the statement of Theorem 2.
Use this data to make a rose-shaped graph of groups with r edges. Let S be the
vertex group, let P; be the ith edge group, with the inclusion map P; < § (resp.
the composite ¢; : P; — Q; < S) as the ith initial (resp. terminal) homomorphism.
There is a model for B P; having just one 0-cell and one 1-cell for each element of
P;. Take a model for BS having just one O-cell and take this O-cell as the base point.
To make a CW-complex of the homotopy type of the total space of the graph of
groups, it suffices to add to B S one 1-cell ¢; for each i (with both ends at the unique
0O-cell), one 2-cell D;, for 1 <i <r and for each u € P;, and higher dimensional
cells (which will not affect the fundamental group). The attaching map for the
2-cell D;, spells out the word u #; ¢; (1) ti_l, and so the presentation coming from
this CW-structure is the presentation given in the statement of Theorem 2.
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Next suppose that one is given a p-group S, groups G; for 1 < i < r with
Sylow p-subgroups §;, and injective group homomorphisms f; : S; — S, i.e., the
data found in the statement of Theorem 5. In this case, define a star of groups
with central vertex group P, other vertex groups Gy, ..., G, and edge groups
S1, ..., Sr. The map of each edge group into its initial vertex group is the inclusion
Si — G, and the map of each edge group into its terminal vertex group is f; :
Si — S. An argument similar to that given in the previous paragraph shows that
the fundamental group of this graph of groups has the presentation given in the
statement of Theorem 5. Note that here one can make a space homotopy equivalent
to the total space of the graph of spaces by starting from the one-point union of
BS and the BG;, without adding any extra 1-cells. This is reflected in the fact that
the vertex groups generate the fundamental group of the graph of groups.

6.3. Properties of graphs of groups.

Proposition 23. Let G be the fundamental group of a graph of groups based on
a graph I'. Every subgroup H < G is itself the fundamental group of a graph of
groups, indexed by a graph A equipped with a map f : A — " which does not
collapse any edges. For each v and e € A, the group H, (resp. H,) is a subgroup

Of Gf(v) (resp. Gf(e)).

This proposition appears as [Scott and Wall 1979, Theorem 3.7] in the special
case when the graph is either an interval or a loop, i.e., the case when the funda-
mental group of the graph of groups is either a free product with amalgamation or
an HNN extension.

Proof. Use the bijection between connected covering spaces of a connected CW-
complex (with a choice of base point) and subgroups of its fundamental group. Let
X be the total space of the graph of spaces used in the definition of G, so that there
is a covering space of X whose fundamental group is H. Any connected covering
space of X can be expressed as the total space of a graph of spaces indexed by
some A as in the statement. This gives an expression for the fundamental group of
any connected covering space of X as the fundamental group of a graph of groups
as claimed. O

Theorem 24. Let X be the total space of the graph of spaces used in the definition
of the fundamental group G of a graph of groups. The universal covering space of
X is contractible, and hence X is homotopy equivalent to BG.

Proof. We shall build a space Y in such a way that it is clear that Y is contractible
and a covering space of X. For v a vertex, define the subspace X, of X by

X, =X,U U X.x[0,05 U [J X.x(0.5,1].

tle)=v T(e)=v
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Similarly, define for e an edge, X, = X, x (0, 1). The inclusions X, — X and
X, = X, x {0.5} = X/ are homotopy equivalences, and it may be useful to think
of X as a nice open neighbourhood of X, in X. Let Y,, ¥,, Y., and Y, be the
universal covering spaces of X,, X, X, and X/, respectively. Each Y, (resp. Y)) is
contractible since it is the universal covering space of the classifying space BG,
(resp. BG,).

The definition of the space X/, lifts to a description of the space Y. The com-
plement Y, — Y, is identified with a collection of disjoint copies of ¥, x (0, 0.5),
and Y, x (0.5, 1), for different edges e. There are copies of Y, x (0, 0.5) if and
only if t(e) = v. In this case the copies are in bijective correspondence with the
cosets of f,,(G,) in G,. Similarly, there are copies of Y, x (0.5, 1) for each e with
7(e) = v, and these copies are indexed by cosets of f, (G,.) in Gy.

By induction, we shall construct a sequence Yo € Y] C Y5 --- of spaces so that:
each Y, is contractible; there is a map = : ¥, — X which is locally a covering map
except at some points of X; forany x € X and any n >0, atleastoneof 7 : ¥, = X
and 7 : Y, 41 — X is locally a covering map at x.

Pick a vertex v of the graph I, and define Y, to be the space Y,. Define a map
7 : Y, — X as the composite of the map ¥, — X and the inclusion X C X. As
remarked earlier, Y, — Y, consists of lots of subspaces of the form Y, x (0, 0.5)
for ¢t(e) = v and lots of subspaces of the form Y, x (0.5, 1) for t(e) = v. Define
Y; by attaching to each such subspace a copy of Y,. The map = : ¥y — X extends
uniquely to 7 : ¥; — X by insisting that on each newly-added Y, subspace, 7
is equal to the composite map Y, — X, € X. From the construction of Yi, it is
apparent that Y is contractible.

In constructing Y, one attached to Y many spaces of the form Y, by identifying
one end of Y, with part of ¥y. For each copy of Y, that was attached via its initial
end, take a copy of Yr/(e), and attach this at the other end of Y. Similarly, for
each copy of Y, that was attached to Y by its terminal end, take a copy of YL’(E)
and attach this at the other end of Y,. This defines a space Y», which is clearly
contractible, and the map 7 extends uniquely to a map Y, — X which agrees with
the covering map Y, — X/, or Y, — X on each such subspace.

Now suppose that n is even, and that Y, has been constructed from Y,_; by
attaching subspaces Y, in such a way that the intersection of ¥,,_; and each new Y,
is equal to one of the components of ¥, — Y,. Furthermore, suppose that the map
7 on each new Y] is equal to the map ¥, — X, € X. Form Y, by attaching a
copy of Y, to each other component of Y, —Y,, for each of the copies of ¥, . Extend
the map 7 as before.

In the case when 7 is odd, suppose that ¥, has been constructed from Y,_; by
attaching subspaces Y, in such a way that the intersection of ¥,_; and each new
Y, is equal to one of the two components of ¥, — Y, x {0.5}. Suppose also that
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the map 7 on each of the new Y, is equal to the map ¥, — X € X. Form Y,
by attaching a copy of Y, to the other component of each Y, — Y, x {0.5}, where
v is either ¢(e) or 7(e) depending which component of Y, — Y, x {0.5} was used.
Extend the map 7 in the same way as before.

By construction, each Y, is contractible, and comes equipped with a map = :
Y, — X. If n is even, this map is locally a covering except possibly at points of X
contained in the union of the images of the X,. If n is odd, this map is a covering
except possibly at point of X contained in the union of the images of the X, x {0.5}.
Now define Y by Y = J,, Y,,. This space Y is contractible, and the map 7 : ¥ — X
is a covering map, since it is locally a covering map at every point of X. It follows
that Y is the universal covering space of X. Since the universal covering space of
X has been shown to be contractible, it follows that X is a model for BG. O

Remark 25. This proof relies on the fact that the edge groups map injectively to
the vertex groups. The theorem can be found in [Scott and Wall 1979, Proposition
3.2 (ii)]. There is no direct analogue in the more algebraic treatment of [Serre
1980]. The closest result to this theorem is arguably Serre’s Theorem 12.

Corollary 26. Each vertex group G, maps injectively into the fundamental group
of a graph of groups.

Proof. Given a vertex v, construct the universal covering space as in the proof
of Theorem 24, with Yy = Y,. The group of all deck transformations of Y is
naturally isomorphic to G, the fundamental group of X. Under this isomorphism,
the subgroup of those deck transformations that preserve Yy maps to G,. UJ

Remark 27. Corollary 26 is [Scott and Wall 1979, Proposition 3.2(i)]. There is
also an algebraic proof that each G, embeds in G; see for instance [Serre 1980,
Corollary 1 to Theorem 11]. In the case when the graph is a rose, this argument is
given in Corollary 19.

6.4. The action on a tree. Say that an action of a group on a tree is cellular if no
element of the group exchanges the ends of any edge. The following theorem is
implicit in [Scott and Wall 1979, Section 4].

Theorem 28. Let G be the fundamental group of a graph of groups indexed by
the graph I'. There is a tree T with a cellular G-action and an isomorphism f :
T/G ZT. If X is either a vertex or edge of T, and x = f(X) is the image of G-X
under f, then the stabilizer of X is conjugate to G.

Proof. Let X be the total space of the graph of spaces used in defining G. As
remarked earlier, the underlying topological space of the graph I" can be identified
with the total space of the constant graph of 1-point spaces indexed by I'. The
unique map from each X, and X, to a point induces a map from X to I'.
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Now let Y be the universal covering space of X, as constructed in the proof of
Theorem 24. This Y can be viewed as a graph of spaces over some graph A, with
vertex spaces copies of the spaces Y, and edges spaces copies of the spaces Y.
The group G acts on Y in such a way that the setwise stabilizer of each copy of ¥,
is a conjugate of G, and similarly the setwise stabilizer of each copy of Y, x (0, 1)
is a conjugate of G,. Define T to be the total space of the graph of 1-point spaces
over the graph A. By construction, 7" is a graph equipped with a G-action, an
equivariant map ¢ : Y — T, and an isomorphism f : 7/G — I'. To check that T
is a tree, let T, = ¢(Y,). As in the proof of Theorem 24, one shows inductively
that 7, is contractible, and T = |, . O

Lemma 29. Any cellular action of a finite group H on a tree T fixes a vertex.

Proof. Take any vertex t € T, and define a finite subtree T’ to be the union of all
the shortest paths between elements of the orbit H-z. If T’ is not itself fixed by H,
remove an H-orbit of ‘leaves’ (i.e., vertices of valency one) from 7', and continue
this process until a subtree fixed by H is all that remains. 0

As a consequence of the previous two results we get a very useful corollary,
which is stated as [Serre 1980, Corollary to Theorem 8] in the special case of an
interval of groups. (This is the case when the fundamental group of the graph of
groups is a free product with amalgamation.)

Corollary 30. Every finite subgroup of the fundamental group of a graph of groups
is conjugate to a subgroup of a vertex group.

Proof. Let G be the fundamental group of the graph of groups and let T be the
corresponding tree. If H is a finite subgroup of G then H fixes some vertex of 7.
The stabilizer of each vertex of T is a conjugate of one of the vertex groups G,. [J

The following corollary is stated as [Serre 1980, Proposition 18] in the special
case of an interval of groups.

Corollary 31. Let H be a subgroup of a graph of groups whose intersection with
each conjugate of each vertex group is trivial. Then H is a free group.

Proof. The hypotheses imply that H acts freely on the tree 7', and so the quotient
space T/H is a 1-dimensional classifying space for H. 0
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