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The 2-block splitting in symmetric groups
Christine Bessenrodt

In 1956, Brauer showed that there is a partitioning of the p-regular conjugacy
classes of a group according to the p-blocks of its irreducible characters with
close connections to the block theoretical invariants. But an explicit block split-
ting of regular classes has not been given so far for any family of finite groups.
Here, this is now done for the 2-regular classes of the symmetric groups. To
prove the result, a detour along the double covers of the symmetric groups is
taken, and results on their 2-blocks and the 2-powers in the spin character values
are exploited. Surprisingly, it also turns out that for the symmetric groups the
2-block splitting is unique.

1. Introduction

A half-century ago, Richard Brauer [1956] introduced the idea of not only dis-
tributing characters into p-blocks but also to associate p-regular conjugacy classes
to p-blocks. He showed that it is possible to distribute the p-regular classes in such
a way into blocks that it fits with the blocks of irreducible Brauer characters (and
suitable subsets of ordinary irreducible characters in the blocks); this is to say that
the determinant of the corresponding block part of the Brauer character table (or
a suitable part of the ordinary character table) is not congruent to 0 modulo p (a
prime ideal over p). Given such a splitting of p-regular classes into blocks, Brauer
showed that the elementary divisors of the Cartan matrix of a block are then exactly
the p-parts in the orders of the centralizers of elements in the classes corresponding
to the block. But while it is known how to determine the p-blocks of irreducible
characters, for the p-regular classes only the existence of such a block splitting
is known by Brauer’s work — concrete examples for providing such a distribution
for families of groups have not been known so far. Brauer also observed that in
general there may be several such block splittings, and there did not seem to be
any natural choice for a given finite group.

In the present paper, such an explicit block splitting in the sense of Brauer is
exhibited for the conjugacy classes of odd order elements and the 2-blocks of the

MSC2000: primary 20C30; secondary 20C15, 20C20.
Keywords: symmetric groups, p-regular conjugacy classes, Cartan matrix, irreducible characters,

Brauer characters, p-blocks, spin characters.
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symmetric groups; in fact, it turns out that for these groups this is the unique 2-
block splitting of the 2-regular classes. Surprisingly, the strategy employed here
takes a detour along the double covers of the symmetric groups and exploits results
on the 2-powers in the spin character values of these groups. Also our knowledge
on the 2-block distribution of the spin characters is an important ingredient.

Here is a brief outline of the sections. In Section 2, some notation and results
for the symmetric groups and its representation theory are collected, and we recall
Brauer’s results on block splittings for arbitrary finite groups. As already men-
tioned above, we will not only work in the context of characters of the symmetric
group Sn , but we want to use results on the spin characters of the double cover
groups S̃n . For this, we have to introduce further combinatorial notions in Section
3, and in particular we recall the Glaisher bijection between partitions into odd
parts and partitions into distinct parts which plays a crucial rôle here; we also
review a number of results on spin characters, mostly of the last decade, which
will be used in the proof of our main result. In preparation for the application
in Section 4, also a new result on spin character values is proved in this section
(Theorem 3.4). In the final section, the class labels for the 2-block splitting of Sn are
defined; for a 2-block B of Sn we take the 2-regular classes labelled by partitions
into odd parts whose Glaisher image has a 4̄-core corresponding to the 2-block
B̃ of S̃n containing B (see Definition 4.1). In the main Theorem 4.2 properties
of the determinants of the corresponding block character tables are proved which
imply that the construction gives indeed a block splitting of the classes; in fact, the
proof allows to refine the result on the determinants further to a result on the Smith
normal forms given in Theorem 4.3. An analysis of the proof of the main Theorem
shows that the information from Section 3 on spin character values exploited there
may also be applied to prove uniqueness of our splitting system.

2. Preliminaries

We have to introduce some notation. For the symmetric groups Sn , the correspond-
ing combinatorial notions and their representation theory, we will follow mostly
the usual notation in [James and Kerber 1981]; for the double cover groups S̃n and
the corresponding background we refer the reader to [Hoffman and Humphreys
1992] and [Morris 1962].

Let n ∈ N. For a partition λ of n, the number of its (nonzero) parts is called
its length and is denoted by l(λ). The complex irreducible character of Sn corre-
sponding to λ is denoted by [λ]. Given a second partition µ of n,

[λ](σµ)

is then the character value on an element σµ in Sn of cycle type µ.
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Let µ= (1m1(µ), 2m2(µ), . . . ) be a partition, written in exponential notation; then
we set

aµ =

∏
i≥1

imi (µ), bµ =

∏
i≥1

mi (µ)!

We let zµ denote the order of the centralizer of an element of cycle type µ in Sn;
then zµ = aµbµ.

Let p be a prime. Then a partition is called p-regular if no part is repeated p or
more times, and a partition is called p-class regular if no part is divisible by p.

We let D(n) denote the set of partitions of n into distinct parts; these partitions
are thus the 2-regular partitions of n and they are also called bar partitions in
connection with the theory of the double cover groups. We let O(n) denote the
set of partitions of n into odd parts; these are thus the 2-class regular partitions
of n.

We then define the 2-regular character table of the symmetric group Sn to be

X2 = ([λ](σα)) λ∈D(n)
α∈O(n)

where the partitions are ordered in a suitable way. More generally, the p-regular
character table is defined with λ running through the p-regular partitions and α

running through the p-class regular partitions. Its determinant has been studied by
Olsson, who showed in [2003, Theorem 2] that its absolute value equals the product
of all parts of all p-class regular partitions. Hence, | det(X2)| =

∏
µ∈O(n) aµ, and

in particular it is thus known that

2 - det([λ](σα)) λ∈D(n)
α∈O(n)

.

Our main result below will provide a block version of this property, by distributing
not only the characters but also the 2-regular conjugacy classes into blocks in a
suitable way.

This block distribution of conjugacy classes gives a block splitting in the sense
of Brauer; we first introduce the general context.

Let G be a finite group, p a prime. Let `(G) be the cardinality of the set Clp′(G)

of p-regular conjugacy classes in G. For each K ∈ Clp′(G) we let xK denote an
element in K . A defect group of K is a Sylow p-subgroup of CG(x) for some
x ∈ K ; if this has order pd , then d is called the p-defect of K . We let IBr(G)

denote the set of modular irreducible characters of G; then

8G = (ϕ(xK )) ϕ∈ IBr(G)
K∈Clp′ (G)

is the Brauer character table of G. It is well known that the Brauer character table
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is nonsingular modulo p; that is,

det 8G 6≡ 0 (mod p).

Further, we let
D = (dχ ϕ)χ∈ Irr(G)

ϕ∈ IBr(G)

denote the p-decomposition matrix for G, and we let C = Dt D denote its Cartan
matrix. Let Blp(G) be the set of p-blocks of G. For B ∈ Bl(G), Irr(B) is the set
of ordinary irreducible characters in B, IBr(B) is the set of modular irreducible
characters in B, `(B) = |IBr(B)|,

D(B) = (dχ,ϕ)χ∈ Irr(B)
ϕ∈ IBr(B)

denotes the p-decomposition matrix for B, and C(B) is the Cartan matrix for B.
Then C and D are the block direct sums of the matrices C(B) and D(B), for

B ∈ Blp(G).

Theorem 2.1 [Brauer 1956, §5]. There exists a disjoint decomposition of Clp′(G)

into blocks of p-regular conjugacy classes

Clp′(G) =

⋃
B∈Blp(G)

Clp′(B)

and a selection of characters Irr′(B) ⊆ Irr(B) for each p-block B of G such that
the following conditions are fulfilled:

(1) | Clp′(B)| = | Irr′(B)| = `(B) for all B ∈ Blp(G).

(2) For X B = (χ(xK )) χ∈Irr′(B)
K∈Clp′ (B)

, we have det X B 6≡ 0 (mod p).

(3) For 8B = (ϕ(xK )) ϕ∈IBr(B)
K∈Clp′ (B)

, we have det 8B 6≡ 0 (mod p).

(4) For DB = (dχϕ) χ∈Irr′(B)
ϕ∈IBr(B)

, we have det DB 6≡ 0 (mod p).

Furthermore, the elementary divisors of the Cartan matrix C(B) are then exactly
the orders of the p-defect groups of the conjugacy classes in Clp′(B), for all B in
Blp(G).

Note that the properties in (2), (3) and (4) are not independent of each other, as
X B = DB 8B . In particular, if we have a suitable choice Irr′(B) of characters that
satisfies (4), and a suitable choice of classes that satisfies (3), then these together
are a suitable choice for (2). If we have a basic set of irreducible characters, i.e.,
a subset Irr′(G) ⊆ Irr(G) giving a Z-basis for the character restrictions to the p-
regular classes, then the p-block decomposition of this set will give a suitable
choice of sets Irr′(B) satisfying (4).
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We now turn to the symmetric groups. In this case, the so-called Nakayama
Conjecture (proved by Brauer and Robinson) gives a combinatorial description for
the block distribution of characters. If λ is a partition of n and p a prime, we
remove rim hooks of length p from the Young diagram of λ as often as possible;
this results in a unique partition λ(p) which has no rim hook of length p, called
the p-core of λ . The number of rim hooks removed from λ on the way to λ(p) is
called the p-weight of λ. We refer the reader to [James and Kerber 1981] for more
details on this and the following.

“Nakayama Conjecture”. Two irreducible characters [λ], [µ] of Sn belong to the
same p-block if and only if λ(p) = µ(p).

Hence each p-block B has a well-defined p-weight w(B) and p-core κ(B),
namely the common p-weight and p-core of all the labels of the irreducible char-
acters in B. Note that then |λ| = pw(B) + |κ(B)|, for all [λ] ∈ Irr(B).

The situation at p = 2 is particularly nice, as we may then easily describe all the
2-core partitions: these are exactly the staircase partitions ρk = (k, k−1, . . . , 2, 1),
k ∈ N0. The removal of a rim hook of length 2 from a partition is just the removal
of a “domino piece” from the rim of its Young diagram.

The irreducible characters labelled by the p-regular partitions form a basic set
[James and Kerber 1981; Külshammer et al. 2003]; thus with respect to a suitable
ordering, the determinant of the corresponding part of the decomposition matrix
is 1. We take the corresponding choice Irr′(B) ⊆ Irr(B) of characters for Brauer’s
Theorem in our situation at p = 2. This means the following. Let Bl2(n) be the
set of 2-blocks of Sn . For a given 2-block B we set

D(B) := {λ ∈ D(n) | [λ] ∈ Irr(B)} = {λ ∈ D(n) | λ(2) = κ(B)} .

This gives a set partition according to the 2-blocks:

D(n) =

⋃
B∈Bl2(n)

D(B).

Then |D(B)| equals p(w(B)), the number of partitions of w(B); see [James and
Kerber 1981] or [Olsson 1993]. In the notation of Theorem 2.1 we then take
Irr′(B) = {[λ] | λ ∈ D(B)}.

By Brauer’s Theorem there must exist a suitable block splitting of the 2-regular
conjugacy classes; i.e., there must be a set partition

O(n) =

⋃
B∈Bl2(n)

O(B)
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such that for all B ∈ Bl2(n) we have

2 - det(ϕλ(σµ)) λ∈D(B)
µ∈O(B)

, (1)

where for µ ∈ D(n) we denote by ϕµ the corresponding Brauer character of Sn;
note that ϕµ belongs to the 2-block B exactly if µ(2) = κ(B). By the remarks above
this condition is equivalent to having

2 - det([λ](σµ)) λ∈D(B)
µ∈O(B)

. (2)

As noted above, for any such block splitting, the elementary divisors of the Cartan
matrix of B are then the defect group orders of the conjugacy classes labelled
by O(B).

The aim of this article is to define explicit subsets O(B) of O(n) satisfying the
equivalent conditions (1) and (2), thus giving a 2-block splitting of conjugacy
classes for the symmetric groups.

3. Spin characters

We collect here a number of results on spin characters that will be needed in the
sequel; the reader is referred to [Hoffman and Humphreys 1992] and [Olsson 1993]
for more background on the double cover groups S̃n and their representation theory.

The sets D+(n) and D−(n) are the subsets of partitions λ ∈ D(n) with n − l(λ)

even or odd, respectively. For µ ∈ D+(n), we denote by 〈µ〉 the corresponding
complex irreducible spin character of S̃n , for µ ∈ D−(n), we let 〈µ〉 and 〈µ〉

′
=

sgn·〈µ〉 be the corresponding pair of associate complex irreducible spin characters
of S̃n . We recall that the only conjugacy classes of Sn that split over the double
cover groups are those of type O and of type D−; the irreducible spin characters
vanish on all other conjugacy classes. More precisely, for any such partition α

one of the two corresponding conjugacy classes in S̃n is chosen in accordance
with [Schur 1911], and we denote a corresponding representative by σ̃α. While
the spin character values on the D− classes are known explicitly (but they are in
general not integers, and mostly not even real), for the values on the O-classes we
have a recursion formula due to A. Morris which is analogous to the Murnaghan–
Nakayama formula (and which shows in particular, that these are integers).

In contrast to odd characteristic, the 2-blocks of S̃n are mixed, i.e., they contain
ordinary as well as spin characters. The simple S̃n-modules in characteristic 2
may be identified with the simple Sn-modules Dλ which are labelled by partitions
λ ∈ D(n).

For a partition λ = (λ1, . . . , λm) ∈ D(n) we set

dbl(λ) =

([
λ1 + 1

2

]
,

[
λ1

2

]
,

[
λ2 + 1

2

]
,

[
λ2

2

]
, . . . ,

[
λm + 1

2

]
,

[
λm

2

])
,
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the doubling of λ. For example, the staircase partition ρk = (k, k − 1, . . . , 2, 1) is
the doubling of the partition τk = (2k − 1, 2k − 5, . . . ).

The 2-block distribution of the spin characters is described by the following
result (which confirmed a conjecture by Knörr and Olsson):

Theorem 3.1 [Bessenrodt and Olsson 1997]. Let λ ∈ D(n). Then 〈λ〉 and [dbl(λ)]

belong to the same 2-block of S̃n .

Thus, the 2-block of 〈λ〉 is determined by the 2-core of dbl(λ). But in fact,
the spin combinatorics in this case may also be viewed as a 4̄-combinatorics (see
[Bessenrodt and Olsson 1997] for more details). Indeed, we have a 4̄-abacus for
the bar partitions with one runner for all even parts (the 0-th runner), on which
we can slide by steps of 2, and two conjugate runners for the residues 1 and 3
modulo 4. A bar partition is then a 4̄-core exactly if the 0-th runner is empty (i.e.,
there are no even parts), at most one of the two conjugate runners is nonempty, and
a nonempty runner has only beads at the top; thus the 4̄-cores are the partitions τk

defined above. We will denote the 4̄-core of a bar partition λ by λ(4̄).

It is well known that |D(n)| = |O(n)|. In fact, J. W. L. Glaisher [1883] defined
a bijection between partitions with parts not divisible by a given number k on the
one hand and partitions where no part is repeated k times on the other hand; in
particular for k = 2 this gives a bijection between O(n) and D(n). In this case,
Glaisher’s map G is defined as follows. Suppose that α = (1m1, 3m3, · · · ) ∈ O(n).
Write each multiplicity mi as a sum of distinct powers of 2, i.e., in its 2-adic
decomposition: mi =

∑
j 2ai j . Then G(α) ∈ D(n) consists of the parts (2ai j i)i, j ,

sorted in descending order to give a partition. Surprisingly, this map has turned up
naturally in connection with spin characters of the symmetric groups (see below).

For any integer m ≥ 0, let s(m) be the number of summands in the 2-adic
decomposition of m. Then for α = (1m1, 3m3, · · · ) ∈ O(n) the length of G(α) is
l(G(α)) =

∑
i odd

s(mi ). We define

kα =

∑
i odd

(mi − s(mi ))

and set σ(α) = (−1)kα ; note that we thus have

kα = l(α) − l(G(α)).

We denote by Oε(n) the set of partitions α in O(n) with the sign of σ(α) being
ε ∈ {±}. With this definition of signs, it is easy to see that the Glaisher map G
induces bijections Oε(n) → Dε(n); see [Bessenrodt and Olsson 2000].

The integer kα also comes up naturally in the group-theoretic context. For any
nonzero integer m, we denote by ν(m) the exponent to which 2 divides m; 2ν(m) is
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the exact 2-power dividing m. Let α = (1m1(α)3m3(α), . . . ) ∈ O(n), σα an element
of cycle type α in Sn . Then ν(|CSn (σα)|) =

∏
i odd ν(mi (α)!) = kα. Hence kα is the

2-defect of Kα, the conjugacy class of Sn labelled by α ∈ O(n).

In joint work with J. Olsson, we have previously investigated the 2-powers ap-
pearing in the spin character values on a given 2-regular conjugacy class:

Theorem 3.2. Let α ∈ O(n).

(i) [Bessenrodt and Olsson 2000] For all λ ∈ D(n) we have

ν(〈λ〉(σ̃α)) ≥ bkα/2c .

(ii) [Bessenrodt and Olsson 2005] Let G(α) ∈ D(n) be the Glaisher image of α.
Then

ν(〈G(α)〉(σ̃α)) = bkα/2c,

and if α ∈ O−(n), then 〈G(α)〉 and 〈G(α)〉′ are the only spin characters where
this equality holds.

In the case of partitions α ∈ O+(n), we may have spin characters different from
〈G(α)〉 such that the minimal 2-power is attained on σ̃α. At least we can have non-
selfassociate spin characters with this property, but it is not yet clear whether there
are also self-associate spin characters satisfying this; see [Bessenrodt and Olsson
2005]. For our later purposes the weaker statement in Theorem 3.4 below suffices.
For proving this result, we first have to recall some results due to Stembridge.

Stembridge [1989] has investigated a projective analogue of the outer tensor
product, called the reduced Clifford product, and has proved a shifted analogue of
the Littlewood–Richardson rule which we will need in the sequel. To state this, we
first have to define some further combinatorial notions.

Let A′ be the ordered alphabet {1′ < 1 < 2′ < 2 < ...}. The letters 1′, 2′, . . . are
said to be marked, the others are unmarked. The notation |a| refers to the unmarked
version of a letter a in A′. To a partition λ ∈ D(n) we associate a shifted diagram

Y ′(λ) = {(i, j) ∈ N2
| 1 ≤ i ≤ l(λ), i ≤ j ≤ λi + i − 1}

A shifted tableau T of shape λ is a map T : Y ′(λ) → A′ such that T (i, j) ≤

T (i + 1, j), T (i, j) ≤ T (i, j + 1) for all i, j , and every k ∈ {1, 2, . . .} appears at
most once in each column of T , and every k ′

∈ {1′, 2′, . . .} appears at most once
in each row of T . For k ∈ {1, 2, . . .}, let ck be the number of boxes (i, j) in Y ′(λ)

such that |T (i, j)| = k. Then we say that the tableau T has content (c1, c2, . . . ).
Analogously, we define skew shifted diagrams and skew shifted tableaux of skew
shape λ \ µ if µ is a partition with Y ′(µ) ⊆ Y ′(λ). For a (possibly skew) shifted
tableau S we define its associated word w(S) = w1w2 · · · by reading the rows of
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S from left to right and from bottom to top. By erasing the marks of w, we obtain
the word |w|.

Given a word w = w1w2 . . ., we define

mi ( j) = multiplicity of i among wn− j+1, . . . , wn for 0 ≤ j ≤ n,

mi (n + j) = mi (n) + multiplicity of i ′ among w1, . . . , w j for 0 < j ≤ n.

This function mi corresponds to reading the rows of the tableau first from right to
left and from top to bottom, counting the letter i on the way, and then reading from
bottom to top and left to right, counting the letter i ′ on this way.

The word w satisfies the lattice property if, whenever mi ( j)= mi−1( j), we have

wn− j 6= i, i ′ if 0 ≤ j < n,

w j−n+1 6= i−1, i ′ if n ≤ j < 2n.

For two partitions µ and ν we denote by µ ∪ ν the partition which has as its
parts all the parts of µ and ν together. Also define

ελ =

{
1 if λ ∈ D+(n)
√

2 if λ ∈ D−(n)
.

We can then state the spin version of the Littlewood–Richardson rule:

Theorem 3.3 [Stembridge 1989, 8.1 and 8.3]. Let µ∈D(k), ν ∈D(n−k), λ∈D(n),
and form the reduced Clifford product 〈µ〉 ×c 〈ν〉. Then we have

((〈µ〉 ×c 〈ν〉) ↑
S̃n , 〈λ〉) =

1
ελεµ∪ν

2(l(µ)+l(ν)−l(λ))/2 f λ
µν ,

unless λ is odd and λ = µ ∪ ν. In that latter case, the multiplicity of 〈λ〉 is 0 or 1,
according to the choice of associates.

The coefficient f λ
µν is the number of shifted tableaux S of shape λ\µ and content

ν such that the tableau word w=w(S) satisfies the lattice property and the leftmost
i of |w| is unmarked in w for 1 ≤ i ≤ l(ν).

For further properties of the reduced Clifford product, see [Humphreys 1986;
Michler and Olsson 1990; Schur 1911; Stembridge 1989].

Theorem 3.4. Let α ∈ O+(n), λ ∈ D+(n). If ν(〈λ〉(σ̃α)) = bkα/2c, then λ D G(α).
In particular, G(α) is the minimal D+-partition in lexicographic order where this
equality is attained.

Proof. We recall parts of the proof of [Bessenrodt and Olsson 2005, Theorem 1.2].
Let α = (imi )i=1,3,..., set αi

= (imi ), ai = imi , and let S̃a be the preimage of the
Young subgroup Sa1 × Sa3 × . . . in S̃n . Restricting 〈λ〉 to S̃a gives

〈λ〉S̃a
=

∑
µ=(µ1,µ3,...)

gλ
µ(×c〈µi 〉) +

∑
µ=(µ1,µ3,...)n.s.a.

g̃λ
µ(×c〈µi 〉)

′,
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where the gλ
µ are spin Littlewood–Richardson coefficients, and µ = (µ1, µ3, . . . )

runs over all sequences with µi a partition of ai . Moreover, µ is nonselfassociate
(n.s.a.) if the corresponding reduced Clifford product is nonselfassociate; this is
the case if and only if tµ = |{i | µi ∈ D−

}| is odd. As we assume that λ ∈ D+, by
[Stembridge 1989] we have gλ

µ = g̃λ
µ for any n.s.a. µ. Thus

〈λ〉(σ̃α) =

∑
µ=(µ1,µ3,...) s.a.

gλ
µ(×c〈µi 〉)(σ̃α) +

∑
µ=(µ1,µ3,...) n.s.a.

2gλ
µ(×c〈µi 〉)(σ̃α).

By [Bessenrodt and Olsson 2005, Proposition 3.3], the 2-value of each Clifford
product value is at least [kα/2]; hence we obtain for the n.s.a. µ a contribution of
nonminimal 2-value. The same proposition implies that, since α ∈ O+, the only
Clifford product value which is of 2-value [kα/2] occurs for the partition sequence
µ = g(α) = (G(α1), G(α3), . . . ), and thus gλ

g(α) has to be odd. In particular, 〈λ〉

is a constituent of ×c〈G(αi )〉↑S̃n . By the spin Littlewood–Richardson rule due to
Stembridge, 〈G(α)〉 is the lowest constituent in this induced character (with respect
to dominance, and thus also in lexicographic order). We have already seen before
that for this character we have indeed equality on the conjugacy class to α. �

We want to go beyond determinants and study the Smith normal forms of the
matrices under consideration. For any integral square matrix X we let S(X) denote
its Smith normal form, i.e., the diagonal matrix with the elementary divisors of X
as diagonal elements. The following property of the Smith normal form will be
used: If X and Y are square n × n matrices with relatively prime determinants,
then S(XY ) = S(X) S(Y ); see [Newman 1972, Theorem II.15], for instance. For
a finite family of numbers ci , i ∈ I , we mean by S(ci , i ∈ I ) the Smith normal
form of any diagonal matrix with the given numbers on the diagonal.

We define the reduced spin character table of S̃n as the integral square matrix

Zs = (〈λ〉(σ̃µ)) λ∈D(n)
µ∈O(n)

.

Then we have

Theorem 3.5 [Bessenrodt et al. 2005, Theorem 13]. The Smith normal form of the
reduced spin character table Zs of S̃n is given by

S(Zs) = S(2[kµ/2], µ ∈ O(n)) · S(bµ, µ ∈ O(n))2′ .

In the context of 2-modular representations, we consider the part of the 2-decom-
position matrix for S̃n corresponding to spin characters. Since the rows correspond-
ing to associate spin characters are equal, this part of the decomposition matrix is
determined by the submatrix Ds = Ds(n), where for each λ ∈ D(n) we keep only
one row for each associate class of spin characters. We call Ds the reduced spin
2-decomposition matrix; it is a square matrix of the same size as Zs .
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Theorem 3.6 [Bessenrodt and Olsson 2000]. Let B̃ ∈ Bl2(S̃n), B ∈ Bl2(Sn),
B ⊆ B̃. Suppose that 2c1, 2c2, . . . , 2c` are the elementary divisors of the Cartan
matrix C(B). Then the elementary divisors of Ds(B̃) are 2[c1/2], 2[c2/2], . . . , 2[c`/2].

Now the invariants of the Cartan matrix had been explicitly determined by Ols-
son (see [Bessenrodt and Olsson 2000] for the correction of the formula misstated
in [Olsson 1986]). For p = 2, this formula was recast in a nicer combinatorial way
by Uno and Yamada; we reformulate this here for our purposes.

Theorem 3.7 [Uno and Yamada 2006]. Let B be a 2-block of Sn with 2-core
ρk = (k, k − 1, . . . , 2, 1), and let τk = (2k − 1, 2k − 5, . . . ). Then the elementary
divisors of the Cartan matrix C(B) are given by

2l(α)−l(G(α)), α ∈ O(n), G(α)(4̄) = τk .

As kα = l(α) − l(G(α)) for any α ∈ O(n), we thus conclude

Corollary 3.8. Let B̃ ∈ Bl2(S̃n), B ∈ Bl2(Sn), B ⊆ B̃, τk as above. Then

S(Ds(B̃)) = S
(
2[kα/2], α ∈ O(n), G(α)(4̄) = τk

)
.

We observe also that by Brauer’s Theorem 2.1, the defect group orders of the
classes associated to B in a block splitting thus have to be the numbers 2kα , α ∈

O(n), α(4̄) = τB . We take this as a hint on how to choose the distribution of the
2-regular conjugacy classes into blocks in the next section.

4. The 2-block splitting for Sn

We fix the following notation.
Let B be a 2-block of Sn , with 2-core ρk = (k, k −1, . . . , 2, 1), k ∈ N0. Let B̃ be

the 2-block of S̃n containing B, with corresponding 4̄-core τk = (2k−1, 2k−5, . . . ).
As before, we let

D(B) = {µ ∈ D(n) | µ(2) = ρk}

and we set
D(B̃) = {λ ∈ D(n) | λ(4̄) = τk} .

An important point to note here is that these sets of partitions really fit to the 2-
block inclusion B ⊆ B̃, as the corresponding characters [µ], µ ∈ D(B), and 〈λ〉,
λ ∈ D(B̃), belong to the same 2-block B̃ of S̃n by Theorem 3.1.

Let w = w(B) be the 2-weight of B. Then

|D(B)| = |D(B̃)| = p(w);

see [Bessenrodt and Olsson 1997] or [Olsson 1993], for example. With this no-
tation, we can now introduce the crucial definition that will provide the 2-block
splitting of the 2-regular classes:
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Definition 4.1. With G : O(n) → D(n) still denoting the Glaisher map defined in
Section 3, we set

O(B) := {α ∈ O(n) | G(α)(4̄) = τk} =: O(B̃).

Thus by definition the Glaisher map restricts to blockwise bijections

G : O(B) → D(B̃).

In particular, we thus have |O(B)| = `(B), so the first condition of a block splitting
is satisfied for these labelling sets.

We now consider the following parts of the character table and spin character
table, respectively, which are all square matrices by the observations made above
(note that the spin character table is reduced in the sense that we take only one of
a pair of associate spin characters):

Z(B) = ([µ](σα))µ∈D(B)
α∈O(B)

, Zs(B̃) = (〈λ〉(σ̃α)) λ∈D(B̃)
α∈O(B)

.

We also consider the corresponding block part of the Brauer character table:

8(B) = (ϕµ(σα))µ∈D(B)
α∈O(B)

.

Finally we define a diagonal matrix associated to B by

1(B) = 1(2[kα/2], α ∈ O(B)).

After all these preparations, we can now state the following result on the deter-
minants of the matrices defined above, which tells us that the chosen distribution
of conjugacy classes given by the sets O(B) is indeed a 2-block splitting of the
2-regular classes:

Theorem 4.2. Let B ⊆ B̃ be as above. Then the following holds:

(i) The 2-part in the determinant of the block part of the spin character table is
given by

ν(det Zs(B̃)) =

∑
α∈O(B)

[
kα

2

]
.

(ii) The odd part of the determinant of the block part of the spin character table
satisfies

(det Zs(B̃))2′ = det 8(B) = det Z(B).

In particular, the sets O(B), B ∈ Bl2(n), define a 2-block splitting for Sn .

Proof. (i) By Theorem 3.2 we have

ν(det Zs(B̃)) ≥

∑
α∈O(B)

[
kα

2

]
.
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More precisely, for any bijection π : O(B) → D(B̃) we have

ν

( ∏
α∈O(B)

〈π(α)〉(σ̃α)

)
≥

∑
α∈O(B)

[
kα

2

]
.

We claim that the Glaisher bijection G : O(B) → D(B̃), α 7→ G(α) is the unique
bijection O(B) → D(B̃) such that equality holds. Then the assertion follows by the
Leibniz formula for the determinant.

By Theorem 3.2, each such map π has to be the Glaisher map on restriction to
O−(B), and thus π induces bijections Oε(B) → Dε(B̃), for both signs ε = ±. Now
we argue by induction on the lexicographic order on D+. Take α ∈ O+(B) such
that G(α) is highest among the partitions in D+(B̃). Then by Theorem 3.4, G(α)

is the unique partition in D+(B̃) such that

ν(〈G(α)〉(σ̃α)) =

[
kα

2

]
and hence (using again Theorem 3.2) we must have π(α) = G(α). Remove α from
O+(B) and π(α) = G(α) from D+(B̃) and continue, using Theorem 3.4 in each
step. This shows that π = G, and hence we are done.

(ii) Let
Ds(B̃) = (d̃λµ) λ∈D(B̃)

µ∈D(B)

be the reduced spin 2-decomposition matrix for the spin characters in B̃ (taking
only one of an associate pair). By Theorem 3.1 we have

Zs(B̃) = Ds(B̃)8(B).

By Corollary 3.8 and part (i) we know that

| det Ds(B̃)| =

∏
α∈O(B)

2[kα/2]
= (det Zs(B̃))2 ,

and hence the first equality in (ii) follows.
With DB = (dλµ) λ∈D(B)

µ∈D(B)
denoting the upper square part of the 2-decomposition

matrix for B (with the usual order where the characters to regular partitions come
first) we also have

Z(B) = DB 8(B).

As DB is well-known to be a lower unitriangular matrix, this immediately implies
det 8(B) = det Z(B). �

We can also deduce further information on the Smith normal forms of the matri-
ces defined above; these may also be considered as block versions of some results
in [Bessenrodt et al. 2005].



236 Christine Bessenrodt

Theorem 4.3. Let B ⊆ B̃ be as above.

(i) The 2-part of the Smith normal form of Zs(B̃) is given by

S(Zs(B̃))2 = S(1(B)).

(ii) The odd part of the Smith normal form of Zs(B̃) satisfies

S(Zs(B̃))2′ = S(8(B)) = S(Z(B)).

Proof. We have already seen above that

Zs(B̃) = Ds(B̃)8(B).

By Corollary 3.8 and Theorem 4.2 we know that Ds(B̃) and 8(B) have coprime
determinants, and more precisely, we then obtain

S(Zs(B̃))2 = S(Ds(B̃)) = S(1(B)),

S(Zs(B̃))2′ = S(8(B)).

Since Z(B) = DB 8(B) and det DB = 1, this immediately implies S(8(B)) =

S(Z(B)). �

Theorem 4.4. The block splitting of the 2-regular classes given by the sets O(B),
B ∈ Bl2(n), is the unique block splitting in the sense of Brauer (i.e., such that
Theorem 2.1(3) is satisfied).

Proof. We keep our previous choice of characters Irr′(B) ⊆ Irr(B), i.e., we take
the ordinary characters labelled by D(B), and we take the spin characters labelled
by D(B̃). For any choice O(B)′, B ∈ Bl2(n), of blocks of labels of the 2-regular
conjugacy classes, we have the analogous equality

Zs(B̃)′ = Ds(B̃)8(B)′

and hence det Zs(B̃)′ = det Ds(B̃) det 8(B)′. Thus the sets O(B)′ correspond to
a splitting system, i.e., condition (3) in Brauer’s Theorem is satisfied for all B, if
and only if

(det Zs(B̃)′)2 = (det Ds(B̃))2 =

∏
α∈O(B)

2[kα/2] for all B ∈ Bl2(n).

As in the proof of Theorem 4.2 we again consider the bijections on the block
level that give a summand with minimal 2-power in the Leibniz formula for the
determinant and use Theorem 3.2; one immediately observes that we must have
for any 2-block B of Sn:

O−(B)′ = G−1(D−(B)) = O−(B),
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i.e., the O−-part of the blocks in a block splitting of regular classes is uniquely
determined. In the next step, arguing similarly as before with Theorem 3.4 along
the lexicographic ordering on the D+-partitions (and considering all blocks in this
argument simultaneously) one also obtains

O+(B)′ = O+(B) for all B ∈ Bl2(n).

Thus the block splitting O(B), B ∈ Bl2(n), constructed above is the unique block
splitting of the 2-regular classes of Sn . �

Remark. While there is a nice formula for the determinant of the whole regular
character table of Sn (see Section 2), we do not have a formula for the determinant
of the block character table. A first guess might be that it is again the product of the
parts of the corresponding labelling O-partitions (or related to this), but examples
show that this is not the case — in fact, primes > n may appear in the determinant.
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