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Contracted ideals and the Gröbner fan of
the rational normal curve

Aldo Conca, Emanuela De Negri and Maria Evelina Rossi

The paper has two goals: the study of the associated graded ring of contracted
homogeneous ideals in K [x, y] and the study of the Gröbner fan of the ideal P
of the rational normal curve in Pd . These two problems are, quite surprisingly,
very tightly related. We completely classify the contracted ideals with Cohen–
Macaulay associated graded ring in terms of the numerical invariants arising
from Zariski’s factorization. We determine explicitly the initial ideals (monomial
or not) of P , that are Cohen–Macaulay.

1. Introduction

The goal of the paper is twofold:

(1) to describe the Cohen–Macaulay initial ideals of the defining ideal P of the
rational normal curve in Pd in its standard coordinate system and for every
positive integer d , and

(2) to identify the homogeneous contracted ideals in K [x, y] whose associated
graded ring is Cohen–Macaulay.

The two problems are closely related. Indeed they are essentially equivalent, as
we proceed to explain. Let K be a field, R = K [x, y] and I be a homogeneous
ideal of R with

√
I = m = (x, y). Denote by grI (R) the associated graded ring⊕

k

I k/I k+1

of I . The ideal I is said to be contracted if it is contracted from a quadratic exten-
sion, that is, if there exists a linear form z in R such that

I = I R[m /z] ∩ R.

Contracted ideals have been introduced by Zariski in his studies on the factoriza-
tion property of integrally closed ideals; see [Zariski and Samuel 1960, App. 5]

MSC2000: primary 13A30; secondary 13P10, 13D40.
Keywords: Gröbner fan, contracted ideal, Rees algebra, rational normal curve, Cohen–Macaulay

ring.
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or [Huneke and Swanson 2006, Chap. 14]. Every integrally closed ideal I is con-
tracted and has a Cohen–Macaulay associated graded ring grI (R); see [Lipman
and Teissier 1981; Huneke 1989]. On the contrary, the associated graded ring of
a contracted ideal does not need to be Cohen–Macaulay. Zariski proved a factor-
ization theorem for contracted ideals, asserting that every contracted ideal I has a
factorization I = L1 · · · Ls where L i are themselves contracted but of a very special
kind. In the homogeneous case and with K assumed to be algebraically closed,
each L i is a lex-segment monomial ideal in a specific coordinate system depending
on i . Recall that a monomial ideal L in R is a lex-segment ideal if that xa yb

∈ L
with b > 0 implies that xa+1 yb−1

∈ L also. In [Conca et al. 2005, Corollary 3.14]
it is shown that the Cohen–Macaulayness of grI (R) is equivalent to the Cohen–
Macaulayness of grL i

(R) for every i = 1, . . . , s. Therefore to answer (2) one has
to characterize the lex-segment ideals L with Cohen–Macaulay associated graded
ring. Any lex-segment ideal L of initial degree d can be encoded by a vector
a = (a0, a1, . . . , ad) with increasing integral coordinates and a0 = 0. Given L
associated to a, we show that grL(R) is Cohen–Macaulay if and only if ina(P)
defines a Cohen–Macaulay ring. Here ina(P) denotes the ideal of the initial forms
of P with respect to the vector a. Therefore (1) and (2) are indeed equivalent
problems. In Section 4 we solve problem (1) by showing first that P has exactly
2d−1 Cohen–Macaulay initial monomial ideals; see Theorem 4.11. Then we show
that every Cohen–Macaulay initial ideal of P has a Cohen–Macaulay monomial
initial ideal; see Theorem 4.13. In terms of the Gröbner fan of P , Theorem 4.13
can be rephrased as that ina(P) is Cohen–Macaulay if and only if a belongs to the
union of 2d−1 maximal closed cones. These cones are explicitly described by lin-
ear homogeneous inequalities. The fact that P has exactly 2d−1 Cohen–Macaulay
monomial initial ideals can be derived by combining the results of Hoşten and
Thomas [2003] and those of O’Shea and Thomas [2005]; see Remark 4.20.

In Section 5 we give an explicit characterization, in terms of the numerical
invariants arising from Zariski’s factorization, of the Cohen–Macaulay property
of the associated graded ring of a contracted homogeneous ideal in K [x, y]. In
Section 6 we describe the relationship between the Hilbert series of grL(R) and
the multigraded Hilbert series of ina(P). We discuss also how the formulas for the
Hilbert series and the polynomials of grL(R) change by varying the corresponding
cones of the Gröbner fan of P . This has a conjectural relation with the hyperge-
ometric Gröbner fan introduced by Saito, Sturmfels and Takayama in [Saito et al.
2000]. In Section 7 we show that the union of a certain subfamily of the 2d−1

Cohen–Macaulay cones is itself a cone. We call it the big Cohen–Macaulay cone.
Indeed, the big Cohen–Macaulay cone is the union of fd Cohen–Macaulay cones
of the Gröbner fan of P , where fd denotes the (d + 1)-th Fibonacci number. In
Section 8 we present some examples.
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2. Notation and preliminaries

Let S be a polynomial ring over a field K with maximal homogeneous ideal m. For
a homogeneous ideal I of S we denote by grI (S),Rees(I ) and F(I ) respectively
the associated graded ring

⊕
k∈N I k/I k+1 , the Rees algebra

⊕
k∈N I k and the

fiber cone
⊕

k∈N I k/m I k of I . By the very definition F(I ) is a standard graded
K -algebra. Furthermore Rees(I ) can be identified with the S-subalgebra of the
polynomial ring S[t] generated by f t with f ∈ I .

Let I ⊂ S = K [x1, . . . , xn] be a homogeneous ideal. We may consider the
(standard) Hilbert function, Hilbert polynomial and Hilbert series of S/I . The
Hilbert series of S/I is

∑
i≥0 dimK (S/I )i zi and we denote it by HS/I (z). The

series HS/I (z) has a rational expression h(z)/(1 − z)d where h(z) ∈ Z[z] and d
is the Krull dimension of S/I . The polynomial h(z) is called the (standard) h-
polynomial of S/I . In particular, h(0)= 1 and h(1) is the ordinary multiplicity of
S/I , denoted by e(S/I ).

If I is m-primary, we may consider also the (local) Hilbert functions, Hilbert
polynomials and Hilbert series of I (or of grI (S)). There are two Hilbert functions
associated with I in this context. We denote them by H(I, k) and H 1(I, k) and
they are defined by

H(I, k)= dimK (I k/I k+1) and H 1(I, k)= dimK (S/I k+1).

The corresponding Hilbert series are

HI (z)=

∑
k≥0

H(I, k)zk and H 1
I (z)=

∑
k≥0

H 1(I, k)zk .

Obviously, HI (z)= (1 − z)H 1
I (z). The series H 1

I (z) has a rational expression

H 1
I (z)=

h(z)
(1 − z)n+1

where h(z) is a polynomial with integral coefficients and is called the (local) h-
polynomial of I or of grI (S). The Hilbert functions H(I, k) and H 1(I, k) agree
for large k with polynomials PI (z) and P1

I (z) at z = k. The polynomials PI (z) and
P1

I (z) are called the Hilbert polynomials of I . Their coefficients, with respect to
an appropriate binomial basis, are integers and are called Hilbert coefficients of I
and are denoted by ei (I ). Precisely,

P1
I (z)=

n∑
i=0

(−1)i ei (I )
(

n − i + z
n − i

)
.

In particular, h(0)= dimK S/I and h(1)= e0(I ) that is the multiplicity of I .
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Definition 2.1. Let I ⊂ S = K [x1, . . . , xn] be a homogeneous ideal of codimension
c and not containing linear forms. Then

(1) S/I has minimal multiplicity if e(S/I )= c + 1, and

(2) S/I has a short h-vector if its h-polynomial is 1 + cz, that is, if the Hilbert
series of S/I is (1 + cz)/(1 − z)n−c.

We denote the Castelnuovo–Mumford regularity of a graded S-module M by
reg(M). For results on the Castelnuovo–Mumford regularity and the minimal mul-
tiplicity we refer the readers to [Eisenbud and Goto 1984]. We just recall that if
S/I has a short h-vector, then it has minimal multiplicity. On the other hand, if
S/I is Cohen–Macaulay with minimal multiplicity, then it has a short h-vector.
We will need the next lemma whose easy proof follows from the standard facts.

Lemma 2.2. Let I ⊂ S be a homogeneous ideal. Assume S/I has a short h-vector.
Then S/I is Cohen–Macaulay if and only if reg(I )= 2.

Every vector a = (a0, . . . , ad) ∈ Qd+1
≥0 induces a graded structure on the poly-

nomial ring K [t0, . . . , td ] by letting deg ti = ai . Every monomial tα is then homo-
geneous of degree

dega tα = aα =

d∑
i=0

aiαi .

For every nonzero polynomial f =
∑k

i=1 λi tαi we set

dega f = max
{
aαi : λi 6= 0

}
and ina( f )=

∑
aαi =dega f

λi tαi .

Then for every ideal I one defines the initial ideal ina(I ) of I with respect to a to
be

ina(I )=
(
ina( f ) : f ∈ I, f 6= 0

)
.

Similarly, given a term order τ , we denote by inτ (I ) the ideal of the initial
monomials of elements of I . Given a ∈ Qd+1

≥0 the term order defined by

tα ≥ tβ if and only if aα > aβ or
(
aα = aβ and tα ≥ tβ with respect to τ

)
is denoted by τa.

One easily shows that inτ (ina(I ))= inτa(I ). Hence ina(I ) and I have a common
monomial initial ideal. This shows (1) of the following lemma.

Lemma 2.3. Let I be a homogeneous ideal with respect to the ordinary grading
deg ti = 1 and let a ∈ Qd+1

≥0 . Then

(1) S/I and S/ ina(I ) have the same Hilbert function, and

(2) depth S/ ina(I )≤ depth S/I .
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Part (2) follows from the standard one-parameter flat family argument; for details
see [Eisenbud 1995, Chap. 15] or [Bruns and Conca 2003].

Definition 2.4. Let P be the ideal of the rational normal curve of Pd in its standard
embedding. Namely, P is the kernel of the K -algebra map

S = K [t0, t1, . . . , td ] → K [x, y]

sending ti to xd−i yi .

The ideal P is minimally generated by the 2-minors of the matrix

Td =

(
t0 t1 t2 . . . . . . td−1

t1 t2 . . . . . . td−1 td

)
and it contains the binomials of the form ti1 ti2 · · · tik − t j1 t j2 · · · t jk with

0 ≤ iv, jv ≤ d and i1 + i2 + · · · + ik = j1 + j2 + · · · + jk .

The Hilbert series of S/P is (1 + (d − 1)z)/(1 − z)2.

3. Contracted ideals in dimension 2

We briefly recall from [Zariski and Samuel 1960, App. 5], [Huneke and Swanson
2006, Chap. 14] and [Conca et al. 2005] a few facts about contracted ideals. As we
deal only with homogeneous ideals, we will state the results in the graded setting.

Assume K is an algebraically closed field. Let R = K [x, y] and denote by m
its maximal homogeneous ideal. An m-primary homogeneous ideal I of R is said
to be contracted if it is contracted from a quadratic extension, that is, if there exists
a linear form z ∈ R such that I = I S ∩ R, where S = R[m /z]. The property of
being contracted can be described in several ways; for instance see [Conca et al.
2005, Prop. 3.3]. To a contracted ideal I one associates a form, the characteristic
form of I , defined as GCD(Id) where d is the initial degree of I . For our goals, it
is important to recall the following definition and theorem.

Definition 3.1. Let I be a homogeneous m-primary ideal in R and let Q = I Rm.
Let J ⊂ Rm be a minimal reduction of Q. The deviation of I is the length of
Q2/J Q. It will be denoted by V (I ).

Theorem 3.2. Let I be a homogeneous m-primary ideal in R. One has

(1) grI (R) is Cohen–Macaulay if and only if V (I )= 0, and

(2) V (I )= e0(I )− dimK (R/I 2)+ 2 dimK (R/I ).

See [Huckaba and Marley 1993, Prop. 2.6, Thm. A] for a proof of (1) and [Valla
1979, Lemma 1] for a proof of (2). Similar results are proved also in [Verma 1991].
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We recall now Zariski’s factorization theorem for contracted ideals and a related
statement, [Conca et al. 2005, Cor. 3.14], concerning associated graded rings. In
our setting they can be stated as follows.

Theorem 3.3. (1) Any contracted ideal I has a factorization I = L1 · · · Ls where
L i are homogeneous m-primary contracted ideals with characteristic form of
type `αi

i for pairwise linearly independent linear forms `1, . . . , `s .

(2) With respect to the factorization in (1) one has

depth grI (R)= min
{
depth grL i

(R) : i = 1, . . . , s
}
.

Lemma 3.4. The fiber cone F(I ) of a contracted ideal I has a short h-vector. Its
Hilbert series is (1 + (d − 1)z)/(1 − z)2, where d is the initial degree of I .

Proof. A contracted ideal of initial degree d is minimally generated by d + 1
elements and products of contracted ideals are contracted. The initial degree of I k

is kd . Hence I k has kd + 1 minimal generators. It follows that the Hilbert series
of F(I ) is (1 + (d − 1)z)/(1 − z)2. �

A monomial m-primary ideal I of R = K [x, y] can be encoded in various ways.
We use the following. Let d ∈ N be such that xd

∈ I and, for i = 0, . . . , d, set
ai (I ) = min{ j : xd−i y j

∈ I }. Then we have 0 = a0(I ) ≤ a1(I ) ≤ · · · ≤ ad(I ).
Obviously, the map

I → a = (a0(I ), . . . , ad(I ))

establishes a bijective correspondence between the set of m-primary monomial
ideals containing xd and the set of weakly increasing sequences a = (a0, . . . , ad)

of nonnegative integers with a0 = 0. The inverse map is

a = (0 = a0 ≤ a1 · · · ≤ ad)→ (xd−i yai : i = 0, . . . , d).

It is easy to see that if a corresponds to I , then dimK R/I =
∑d

i=0 ai . Further-
more, if a′ corresponds to J , then the sequence associated to the product I J is
(c0, c1, c2, . . . ) where ci = min{a j + a′

k : j + k = i}. In particular:

Lemma 3.5. Let I be a monomial ideal and a = (a0, . . . , ad) be the corresponding
sequence. Then the Hilbert function of I is given by

H 1(I, k)=

(k+1)d∑
i=0

min
{
a j1 + · · · + a jk+1 : j1 + · · · + jk+1 = i

}
.

We set bi (I )= ai (I )−ai−1(I ) for i = 1, . . . , d and observe that the ideal I can
be as well described via the sequence b1(I ), . . . , bd(I ) of nonnegative integers.

A monomial ideal I is a lex-segment ideal if x i y j
∈ I for some j > 0 implies

x i+1 y j−1
∈ I . The m-primary lex-segment ideals are contracted and correspond
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exactly to strictly increasing a-sequences (equivalently, positive b-sequences) in
the above correspondence, provided one takes d = min{ j ∈ N : x j

∈ I }.

Remark 3.6. With respect to suitable coordinate systems the ideals L i in Theorem
3.3 are lex-segment ideals.

It follows from Theorem 3.3 and Remark 3.6 that the study of the depth of the
associated graded ring of contracted ideals boils down to the study of the depth
of grL(R) for a lex-segment ideal L . One has depth grL(R) = depth Rees(L)− 1
since R is regular; see [Huckaba and Marley 1993, Cor. 2.7]. Therefore we can as
well study the depth of Rees(L) for lex-segment ideals L . Trung and Hoa gave in
[Trung and Hoa 1986] a characterization of the Cohen–Macaulay property of affine
semigroup rings. Since Rees(L) is an affine semigroup ring one could hope to use
their results to describe the lex-segment ideals L such that Rees(L) is Cohen–
Macaulay. In practice, however, we have not been able to follow this idea.

Let L be the lex-segment ideal with the associated a-sequence a = (a0, . . . , ad)

and b-sequence (b1, . . . , bd). We present Rees(L) as a quotient of R[t0, . . . , td ]

by the R-algebra map

ψ : R[t0, . . . , td ] → Rees(L)⊂ R[t]

obtained by sending ti 7→ xd−i yai t . Set

1 = (1, 1, . . . , 1) ∈ Nd+1, and d = (d, d − 1, d − 2, . . . , 0) ∈ Nd+1.

Lemma 3.7. With the above notation, kerψ is generated by the binomials

(1) xti − ybi ti−1 with i = 1, . . . , d , and

(2) tα − yu tβ where α, β ∈ Nd+1 satisfy

1(α−β)= 0, d(α−β)= 0, u = a(α−β)≥ 0.

Proof. Let J be the ideal generated by the binomials of type (1) and (2). Obviously
J ⊆ kerψ . Since kerψ is generated by the binomials it contains, it is enough to
show that every binomial M1 − M2 ∈ kerψ with GCD(M1,M2) = 1 belongs to
J . Up to multiples of elements of type (1), we may assume that if x divides one
of the Mi , say M1, then M1 = x i y j tk

0 . But this clearly contradicts the fact that
M1 − M2 ∈ kerψ . In other words, every binomial in kerψ is, up to multiples of
elements of type (1), a multiple of an element of type (2). �

Lemma 3.8. Let L be a lex-segment ideal and a = (a0, . . . , ad) its associated
a-sequence, then we have

(1) Rees(L)/(y)Rees(L)= K [x, t0, . . . , td ]/x(t1, . . . , td)+ ina(P),

(2) F(L)= K [t0, . . . , td ]/ ina(P), and
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(3) depth grL(R)= depth Rees(L)− 1 = depth F(L),

where P is the ideal introduced in Definition 2.4.

Proof. Set F = F(L), G = grL(R) and R = Rees(L). First note that (2) follows
from (1) since F = R/(x, y)R. To prove (1) we have to show that

kerψ + (y)= x(t1, . . . , td)+ ina(P)+ (y).

For the inclusion ⊆ we show that the generators of kerψ of type (1) and (2) in
Lemma 3.7 belong to the ideal on the right hand side. This is obvious for those of
type (1). For those of type (2), note that for any such tα− yu tβ one has tα− tβ ∈ P
and ina(tα − tβ)= tα if u > 0 and ina(tα − tβ)= tα − tβ if u = 0.

The inclusion ⊇ for the elements of x(t1, . . . , td) is obvious. Further, since P is
generated by binomials, one knows that ina(P) is generated by ina(tα − tβ) with
tα − tβ ∈ P; see [Sturmfels 1996, Chap. 1]. If a(α− β) = 0, then ina(tα − tβ) =

tα − tβ and tα − tβ ∈ kerψ . If instead u = a(α− β) > 0, then ina(tα − tβ) = tα

and tα − yu tβ ∈ kerψ so tα ∈ kerψ + (y).
To prove (3) note that P ⊆ (t1, . . . , td) and hence ina(P) ⊆ (t1, . . . , td). It

follows that

(t1, . . . , td)⊆
(
x(t1, . . . , td)+ ina(P)

)
: x ⊆ (t1, . . . , td) : x = (t1, . . . , td).

Hence
(t1, . . . , td)=

(
x(t1, . . . , td)+ ina(P)

)
: x

and we get a short exact sequence

0 → K [x, t0](−1)→ R/(y)R → F → 0.

By Lemma 3.4 the ring F is 2-dimensional with short h-vector. It follows that
the same is true for R/(y)R with respect to the standard grading. Using the depth
formula for short exact sequences [Bruns and Herzog 1993, Prop. 1.2.9], we have
that if depth R/(y)R is 0 or 1, then depth F = depth R/(y)R. Finally, if R/(y)R
is Cohen–Macaulay then reg(R/(y)R) = 1 and it follows that reg F = 1. Then
from Lemma 2.2 we can conclude that F is Cohen–Macaulay.

We have shown that depth R−1=depth R/(y)R =depth F . Since by [Huckaba
and Marley 1993, Cor. 2.7] depth G = depth R−1, the proof of (3) is complete. �

Summing up, we have shown:

Proposition 3.9. Let L be a lex-segment ideal in R = K [x, y] with associated
a-sequence a = (a0, . . . , ad). Then

depth grL(R)= depth K [t0, . . . , td ]/ ina(P)

where P is the ideal in Definition 2.4.
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4. Cohen–Macaulay initial ideals of the ideal of the rational normal curve

The results of the previous sections show that the study of the contracted ideals
of K [x, y] whose associated graded ring is Cohen–Macaulay is equivalent to the
study of the initial ideals of P defining Cohen–Macaulay rings. In this section we
describe the initial ideals of P (with respect to vectors and in the given coordinates)
defining Cohen–Macaulay rings. We will say that an ideal I is Cohen–Macaulay if
the quotient ring defined by I is Cohen–Macaulay. The steps of the classification
are

(1) to classify the 2-dimensional Cohen–Macaulay monomial ideals with minimal
multiplicity,

(2) to identify those of the form inτ (P) for some term order τ among the ideals
of (1), and

(3) to identify the vectors a ∈ Qd+1
≥0 such that ina(P) is Cohen–Macaulay (mono-

mial or not).

We start by classifying the 2-dimensional Cohen–Macaulay square-free mono-
mial ideals with minimal multiplicity. Square-free monomial ideals are in bijective
correspondence with simplicial complexes. In particular, square-free monomial
ideals defining algebras of Krull dimension 2 are in bijective correspondence with
simplicial complexes of dimension 1, that is, graphs. The correspondence goes like
this: to any graph with vertex set V and edge set E one associates the monomial
ideal on variables V , whose generators are the products xy such that {x, y} is not
in E and the square-free monomials of degree 3.

Recall that a graph G with n vertices and e edges is a tree if it satisfies the
following equivalent conditions:

(1) For every distinct vertices x and y, there exists exactly one path in G connect-
ing x and y;

(2) G is connected and n − e = 1;

(3) G is connected and if we remove any edge the resulting graph is disconnected.

Lemma 4.1. The 2-dimensional Cohen–Macaulay square-free monomial ideals
with minimal multiplicity correspond to trees.

Proof. Let G be a graph with n vertices and e edges. Let A be the corresponding
quotient ring. The Hilbert series of A is given by

1 +
nz

(1 − z)
+

ez2

(1 − z)2
;
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see [Bruns and Herzog 1993, 5.1.7]. This implies immediately that A has minimal
multiplicity if and only if n − e = 1. The Cohen–Macaulay property of A corre-
sponds to the connectedness of G; see [Bruns and Herzog 1993, 5.1.26]. So we
are considering connected graphs with n − e = 1, that is, trees. �

Next we extend our characterization from the square-free monomial ideals to
general monomial ideals. We will make use of the following lemma, whose easy
proof belongs to the folklore of the subject.

Lemma 4.2. Let I be a monomial ideal generated in degree 2 and with linear
syzygies. Let x, y, z be variables. We have

(1) if x2, y2
∈ I then xy ∈ I , and

(2) if x2, yz ∈ I then either xy ∈ I or xz ∈ I .

Proof. Say I is generated by monomials m1 = x2 , m2 = y2 and other monomials
m3, ...,ms . Take a free module F with basis e1, e2, . . . es and map e j to m j . The
syzygy module Syz(I ) is generated by the reduced Koszul relations aei −be j with
a = m j/GCD(mi ,m j ) and b = mi/GCD(mi ,m j ). By assumption we know that
Syz(I ) is generated by the elements aei −be j with deg a = 1. Call this set G. Now
y2e1 − x2e2 is in Syz(I ) and therefore can be written as

∑
vi j (aei − be j ) where

the sum is extended to the elements aei − be j ∈ G. It follows that there must be
in G an element of the form ye1 − bei . We deduce that mi/GCD(mi , x2) = y,
forcing mi to be xy. Similarly one proves (2). �

The crucial inductive step is encoded in the following lemma.

Lemma 4.3. Let I ⊂ S = K [x1, . . . , xn] be a monomial ideal such that S/I is
Cohen–Macaulay of dimension 2 with minimal multiplicity. Let xi be a variable
such that x2

i ∈ I . Set S′
= K [x j : 1 ≤ j ≤ n, j 6= i].

(1) I : (xi ) is generated by exactly n − 2 variables.

(2) Write I + (xi ) = J + (xi ) where J is a monomial ideal of S′. Then S′/J is a
2-dimensional Cohen–Macaulay ring with minimal multiplicity.

Proof. First we show that I : (xi ) is generated by variables. Let m be one of the
generators of I . We have to show that if xi does not divide m then there exists a
variable x j such that x j |m and xi x j ∈ I . Let V be the set of the variables whose
square is not in I and let Q be the set of the variables whose square is in I . If m is
divisible by a variable in Q, then we are done by Lemma 4.2 (1). Otherwise, if m is
not divisible by a variable in Q, then m = x j xk with x j , xk ∈ V , j 6= k. By Lemma
4.2 (2) we have that either xi x j or xi xk is in I . Knowing that I : (xi ) is generated by
variables we deduce that I : (x) is a prime ideal, hence an associated prime of the
Cohen–Macaulay ideal I . Thus the codimension of I : (xi ) is n−2. This proves (1).
The standard short exact sequence 0 → S/I : (xi )(−1)→ S/I → S′/J → 0 shows
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that the Hilbert series of S′/J is 1 + (n − 3)z/(1 − z)2. Hence S′/J has a short
h-vector. Furthermore, the exact sequence implies that the regularity of S′/J is 1,
that is, reg(J )= 2. By Lemma 2.2 we conclude that S′/J is Cohen–Macaulay. �

Corollary 4.4. With the assumptions in Lemma 4.3 and the notation of its proof ,
there exist x j , xk ∈ V such that I : (xi ) = (xv : 1 ≤ v ≤ n and v 6∈ { j, k}) and
x j xk 6∈ I .

Proof. We know by Lemma 4.3 that there are variables x j and xk so that

I : (xi )= (xv : 1 ≤ v ≤ n and v 6∈ { j, k}).

If x j xk ∈ I , then x j xk ∈ I : (xi ). This is a contradiction. �

Definition 4.5. Let V and Q be disjoint sets of variables. Let G be a tree with vertex
set V and edge set E . Let φ : Q → E be a map. Let J be the square-free monomial
ideal associated with G. Let H = (Q)2 + (xy : x ∈ Q, y ∈ V and y 6∈ φ(x)). We
define

I (G, φ)= J + H.

Example 4.6. Let V = {v1, v2, v3, v4} and Q = {q1, q2, q3, q4, q5}. Let G be the
tree on V with edges E = {e1, e2, e3} where

e1 = {v1, v2}, e2 = {v1, v3}, e3 = {v3, v4}.

Let φ : Q → E be the map sending q1, q2, q3, q4, q5 to e2, e1, e1, e3, e2, respectively.
Then J = (v1v4, v2v3, v2v4) and

H =(q1, q2, q3, q4, q5)
2
+ q1(v2, v4)+ q2(v3, v4)

+ q3(v3, v4)+ q4(v1, v2)+ q5(v2, v4).

In the next proposition we achieve the first step of the classification.

Proposition 4.7. Let I ⊂ S be a monomial ideal. The following conditions are
equivalent:

(1) there exist a tree G and a map φ : Q → E such that I = I (G, φ);

(2) S/I is a 2-dimensional Cohen–Macaulay ring with minimal multiplicity.

Proof. First we show that every ideal of type I (G, φ) defines a Cohen–Macaulay,
2-dimensional ring with minimal multiplicity. We proceed by induction on the
cardinality of Q. If Q is empty, then the ideal I is 2-dimensional Cohen–Macaulay
with minimal multiplicity by Lemma 4.1. Now assume Q is not empty and pick
q ∈ Q. By construction I (G, φ) : (q) is generated by Q ∪ V \φ(q) and

I (G, φ)+ (q)= I (G, φ′)+ (q)
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where φ′ is the restriction of φ to Q′
= Q \ {q}. By induction we know that

I (G, φ′)⊂ K [V, Q′
] is 2-dimensional Cohen–Macaulay with minimal multiplicity.

The short exact sequence

0 →K [V, Q]/I (G, φ) : (q)(−1)→K [V, Q]/I (G, φ)→K [V, Q′
]/I (G, φ′)→0

shows that I (G, φ) is 2-dimensional with minimal multiplicity and since both
K [V, Q]/I (G, φ) : (q) and K [V, Q′

]/I (G, φ′) are 2-dimensional and Cohen–
Macaulay, K [V, Q]/I (G, φ) is Cohen–Macaulay.

We show now that every 2-dimensional Cohen–Macaulay monomial ideal I
with minimal multiplicity is of the form I (G, φ). Let Q be the set of variables
whose square is in I and V the remaining variables. We argue by induction on
the cardinality of Q. If Q is empty, then I is square-free and we know that I is
associated to a tree. If Q is not empty, let q ∈ Q. Write I + (q) = J + (q) with
J a monomial ideal not involving the variable q . By Lemma 4.3 we know that
J ⊂ K [V, Q \ {q}] is 2-dimensional Cohen–Macaulay with minimal multiplicity.
Therefore there exists a tree G with vertices V and edges E , and a map

φ′
: Q \ {q} → E

so that J = I (G, φ′). On the other hand I = J + q(I : q) and by Corollary 4.4
there are x, y ∈ V so that I : (q) = (Q ∪ V \ {x, y}) with xy 6∈ I . Hence {x, y}

belongs to E and we extend φ′ to Q by sending q to {x, y}. Call the resulting map
φ. By construction, I (G, φ)= I . �

Now we come to the second step of our classification: to describe the Cohen–
Macaulay monomial initial ideals of P . Let I be a monomial Cohen–Macaulay
initial ideal of P . Since P is 2-dimensional with a short h-vector, so is I . By
what we have shown above, there exist G and φ so that I = I (G, φ). We want to
describe which pairs (G, φ) arise in this way.

Lemma 4.8. Let I be a monomial initial ideal of P generated in degree 2.

(1) For every v, 0 ≤ v ≤ 2d, there exists exactly one monomial ti t j such that
i + j = v and ti t j 6∈ I . In particular, t2

0 and t2
d are not in I .

(2) Let 0 ≤ i < j < k ≤ d. Assume that t2
i , t2

j and t2
k are not in I . Then ti tk ∈ I .

(3) Let 0 ≤ i < j < k ≤ d. Assume that t2
i 6∈ I and ts t j 6∈ I for every s with

i ≤ s ≤ j . Then ti tk ∈ I .

Proof. (1) By definition, K [t0, . . . , td ]/P is bigraded by setting deg ti = (d −

i, i) and 1-dimensional in each bihomogeneous component. Therefore the ring
K [t0, . . . , td ]/I is also bigraded and 1-dimensional in each bihomogeneous com-
ponent. This proves the assertion. (2) Since tk− j

i t j−i
k − tk−i

j ∈ P , we have that

either tk− j
i t j−i

k or tk−i
j belongs to I . If tk−i

j belongs to I , since I is generated in
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degree 2, then t2
j belongs to I ; a contradiction. So we have tk− j

i t j−i
k ∈ I . Since t2

i

and t2
k are not in I we conclude that ti tk ∈ I . (3) We show that there exist a positive

integer a and i ≤ s ≤ j so that ta
i tk − ts ta

j ∈ P . Then since, by assumption, the
factors of degree 2 of ts ta

j are not in I , we have that a factor of degree 2 of ta
i tk is

in I . Since t2
i 6∈ I , it follows that ti tk ∈ I . To show that a and s as above exist, note

that the condition ta
i tk − ts ta

j ∈ P translates into s = k − a( j − i). So we have to
show that there exists a positive integer a such that

i ≤ k − a( j − i)≤ j,

or equivalently
k − j
j − i

≤ a ≤
k − i
j − i

.

But this interval has length 1 so it contains an integer which is positive since i <
j < k. �

The matrix Td appearing in the following theorem is defined in Section 2.

Theorem 4.9. Let I be a monomial ideal of K [t0, . . . , td ]. The following conditions
are equivalent.

(1) There exists a sequence 0 = i0 < i1 < i2 · · · < ik = d such that I (G, φ) = I
where V = {ti0, ti1, . . . , tik }, Q = {t0, . . . , td} \ V , G is the tree (a line) with
vertex set V and with edge set E = {{ti j , ti j+1} : 0 ≤ j ≤ k − 1} and the map
φ : Q → E sends ts to {ti j , ti j+1} where i j < s < i j+1.

(2) There exists a sequence 0 = i0 < i1 < i2 · · ·< ik = d such that I is generated
by
(a) the main diagonals tv−1tr of the 2-minors of the matrix Td with column

indices v, r such that v ≤ i j < r for some j , and
(b) the antidiagonals tvtr−1 of the 2-minors of the matrix Td with column

indices v, r such that i j < v < r ≤ i j+1 for some j .

(3) I is a Cohen–Macaulay initial ideal of P.

Proof. To prove that (1) and (2) are equivalent is just a direct check. To prove that
(1) and (2) imply (3), it is enough to describe a term order τ such that

inτ (P)= I (G, φ).

Indeed, the inclusion inτ (P)⊇ I (G, φ) is enough because the two ideals have the
same Hilbert function. To do so, consider a vector b = (b1, b2, . . . , bd) such that
br > bv if v ≤ i j < r for some j and bv > br if i j < v < r ≤ i j+1 for some j .
In Remark 4.10 we will show a canonical way to construct such a vector. Define
a = (a0, a1, . . . , ad) by setting a0 = 0 and ai =

∑i
j=1 b j . Consider a term order τ

refining (no matter how) the order defined by the vector a. We claim that the initial
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term with respect to τ of the minor with column indices v, r (v<r ) of the matrix Td

is the one prescribed by (2). The minor with those column indices is tv−1tr −tvtr−1.
The weights with respect to a of the two terms are av−1 +ar and av+ar−1. Hence
av−1 +ar > av+ar−1 if and only if br > bv and av−1 +ar < av+ar−1 if and only
if br < bv. Therefore, by construction, the initial forms of the minors of Td with
respect to a are exactly the monomials prescribed by (2).

We prove now that (3) implies (1). Assume that I is a Cohen–Macaulay initial
ideal of P . Then I has regularity 2 and, in particular, is generated by elements of
degree 2. Set V = {ti : t2

i 6∈ I } and Q = {ti : t2
i ∈ I }. We know by Lemma 4.8

(1) that t0 and td are in V . So with 0 = i0 < i1 < i2 · · · < ik = d we may write
V = {ti0, ti1, . . . , tik }. Since I is 2-dimensional Cohen-Macaulay with minimal
multiplicity, it has the form I = I (G ′, φ′). We prove that G ′

= G and φ′
= φ

where G and φ are those described in (1). Note that, by Lemma 4.8 (2), we have
that tiv tir ∈ I whenever r − v > 1 so that {tv, tr } is not an edge of G ′. This implies
that the underlying tree G ′ is exactly the line G. It remains to prove that φ = φ′.
In other words, we have to prove that for every t j ∈ Q, say ir < j < ir+1, one has
t j tir 6∈ I and t j tir+1 6∈ I . By contradiction, let j be the smallest element of Q that
does not satisfy the required condition, say ir < j < ir+1.

Claim. If 0 ≤ v < r and q ≥ j then tiv tq ∈ I .

To prove the claim, note that, by the choice of j , we know that ts tiv+1 6∈ I for
every iv ≤ s ≤ iv+1 and iv+1 ≤ ir < j . Therefore we may apply Lemma 4.8 (3) to
the indices iv, iv+1, q and we conclude that tiv tq ∈ I . In particular, for q = j the
claim says that tiv t j ∈ I for every v < r . So φ′(t j ) must be an edge of the form
{tiu , tiu+1} with u > r . It follows that tir t j ∈ I . But, according to Lemma 4.8 (1),
there exists (exactly one but we do not need this) a monomial tatb (say a ≤ b) such
that a + b = ir + j and tatb 6∈ I . We distinguish now three cases.

Case 1. ir < a and b < j , so that a and b are both in Q. A contradiction (the
square of Q is contained in I ).

Case 2. a< ir , b> j and a ∈ V . The claim above says that tatb ∈ I . A contradiction.

Case 3. a < ir , b > j and a ∈ Q. Say iu < a < iu+1. By induction we know
that {tv : tvta 6∈ I } = {tiu , tiu+1} and therefore b > j > ir ≥ iu+1. So tatb ∈ I . A
contradiction.

This concludes the proof. �

Remark 4.10. Given 0 = i0 < i1 < i2 · · · < ik = d , in the proof of Theorem 4.9
we have used a vector b = (b1, b2, . . . , bd) ∈ Qd

≥0 with the property that br > bv if
v≤ i j <r for some j and bv>br if i j <v<r ≤ i j+1 for some j . Of course there are
many vectors with this property. But there is just one “permutation” vector, whose
entries are the numbers 1, . . . , d permuted in some way, with this property. It arises
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as follows: for j = 1, . . . , k, consider the vector c j = (i j , i j −1, . . . , i j−1 +1) and
define the vector b to be the concatenation of c1, c2 . . . , ck .

The following theorem summarizes what we have proved so far.

Theorem 4.11. (1) The ideal P has exactly 2d−1 distinct Cohen–Macaulay mono-
mial initial ideals.

(2) They are in bijective correspondence with the sequences 0 = i0 < i1 < · · · <

ik = d , namely with their radical.

(3) Each of them can be obtained with a term order associated to a vector a =

(a0, a1, . . . , ad) ∈ Nd+1 with 0 = a0 < a1 < · · ·< ad .

(4) Each of them is obtained by taking the appropriate initial terms of the 2-
minors of the matrix Td .

(5) The reduced Gröbner basis of P giving the Cohen–Macaulay initial ideal
corresponding to the sequence 0 = i0 < i1 < i2 · · · < ik = d is the set of
polynomials

ts tr − tiv ts+r−iv , if 2iv ≤ s + r ≤ iv + iv+1,

ts tr − tiv+1 ts+r−iv+1, if iv + iv+1 ≤ s + r ≤ 2iv+1,

where the initial terms are underlined.

Definition 4.12. For every sequence i= (i0, i1, . . . , ik)with 0= i0< i1<· · ·< ik =d
we denote by C(i) the open cone in Qd+1

≥0 of the points (a0, . . . , ad) satisfying the
inequalities

as + ar > aiv + as+r−iv , if 2iv ≤ s + r ≤ iv + iv+1,

as + ar > aiv+1 + as+r−iv+1, if iv + iv+1 ≤ s + r ≤ 2iv+1,

and by C(i) the corresponding closed cone, that is, the subset of Qd+1
≥0 described

by the inequalities above where > is replaced throughout by ≥.

We are ready to state and prove the main theorem of this section.

Theorem 4.13. Let a ∈ Qd+1
≥0 . Then ina(P) is Cohen–Macaulay if and only if

ina(P) has a Cohen–Macaulay initial monomial ideal. In other words,{
a ∈ Qd+1

≥0 : ina(P) is Cohen–Macaulay
}

=

⋃
i

C(i)

where the union is indexed by the 2d−1 sequences i=(0=i0<i1<. . .<ik =d).

Proof. First we prove the inclusion ⊇. Let a ∈ C(i). To see that ina(P) is Cohen–
Macaulay it is enough to prove that it has a Cohen–Macaulay initial ideal. Just
take a′ in the open cone C(i) and check that ina′(ina(P)) = ina′(P). This is easy
since it is enough to check that ina′(ina(P))⊇ ina′(P).
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In order to prove the opposite inclusion, let a ∈ Qd+1
≥0 be such that ina(P) is

Cohen–Macaulay. We have to show that a ∈ C(i) for some i. We know already
that if ina(P) is monomial then a ∈ C(i) where i is the sequence of the indices i
such that no power of ti belongs to ina(P). So we are left with the case ina(P)
is nonmonomial. To treat this case we first note that, without loss of generality,
we may assume that a = (a0, . . . , ad) with ai ∈ N, a0 = 0, and ai < ai+1. This is
because cleaning denominators and adding to a multiples of the vectors (1, . . . , 1)
and (0, 1, 2, . . . , d) change neither ina(P) nor the membership in the cones. Then
we may associate to a a lex-segment ideal L in R = K [x, y] as described in Section
3. We compute the deviation V (L) of L in terms of the ai ’s. It is well-know, see
for instance [Delfino et al. 2003], that the multiplicity e0(L) of L is twice the area
of the region R2

+
\New(L) where New(L) is the Newton polytope of L , that is the

convex hull of the set of elements (a, b) ∈ N2 such that xa yb
∈ L . To determine

e0(L) we describe the vertices of New(L). The generators of L are the elements
xd−i yai . Set i0 = 0 and assume that it < d is already defined. Then we set

m = min
{
(a j − ait )/( j − it) : j = it + 1, . . . , d

}
,

it+1 = max
{

j : it + 1< j ≤ d and (a j − ait )/( j − it)= m
}
.

The procedure stops when we have reached, say after k steps, ik = d . By
construction the points (d − c, ac) with c ∈ {i0, i1, . . . , ik} are the vertices of
New(L). Taking into account that twice the area of the triangle with vertices (0, 0),
(d − it , ait ), (d − it+1, ait+1) is ait+1(d − it)− ait (d − it+1) and that a0 = 0, i0 = 0
we obtain

e0(L)= a0(i1 − i0)+

k−1∑
t=1

ait (it+1 − it−1)+ aik (ik − ik−1).

For j = 0, . . . , 2d set α j = min{as + ar : s + r = j} and

β j =

{
ait + a j−it if 2it ≤ j ≤ it + it+1,

ait+1 + a j−it+1 if it + it+1 ≤ j ≤ 2it+1.

Since dimK (R/L)=
∑d

i=0 ai and dimK (R/L2)=
∑2d

i=0 αi we have

V (L)= e0(L)−
2d∑

i=0

αi + 2
d∑

i=0

ai

= e0(L)−
2d∑

i=0

βi + 2
d∑

i=0

ai +

2d∑
i=0

(βi −αi )

= Z +

2d∑
i=0

(βi −αi )
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where

Z = a0(i1 − i0)+

k−1∑
t=1

ait (it+1 − it−1)+ aik (ik − ik−1)−

2d∑
i=0

βi + 2
d∑

i=0

ai .

We claim that Z = 0 identically as a linear form in the ai ’s. This can be checked
directly. That Z =0 follows also from the fact that Z , as a linear function in the ai ’s,
computes the deviation V (H) where H is any lex-segment with associated vector
a in the cone C(i). Since every such lex-segment ideal has a Cohen–Macaulay
associated graded ring, we have V (H)= 0. Therefore Z vanishes when evaluated
at the points of C(i) ∩ {a ∈ Nd+1

: 0 = a0 < a1 < · · · < ad} and so it vanishes
identically. Summing up, we have

V (L)=

2d∑
i=0

(βi −αi ).

Now, by assumption ina(P) is Cohen–Macaulay, thus by Proposition 3.9 grL(R)
is Cohen–Macaulay and by Theorem 3.2 V (L) = 0. Since βi ≥ αi for every i , it
follows that βi = αi for every i , which in turn implies that a ∈ C(i). �

Remark 4.14. Let a = (a0, . . . , ad) be the vector associated to a lex-segment ideal
L . Denote by Y the convex hull of {(i, j) : x i y j

∈ L}, by V the set of the vertices
of Y and by V ′ the set of the elements (d − i, ai ) belonging to the lower boundary
of Y . Clearly V ⊆ V ′. Assume that grL(R) is Cohen–Macaulay. The proof above
shows that a ∈ C(i) where {(d − j, a j ) : j ∈ i} = V . The same argument shows
also that a ∈ C(i) for every i such that V ⊆ {(d − j, a j ) : j ∈ i} ⊆ V ′. In particular,
a belongs to 2u of the cones C(i) where u = #V ′

− #V .

The next example illustrates the remark above.

Example 4.15. Let a = (0, 2, 4, a3, a4, a5) with

4< a3 < a4 < a5, a3 > 4 + (a5 − 4)/3, a4 > 4 + 2(a5 − 4)/3.

Then V = {(5, 0), (3, 4), (0, a5)} and V ′
= V ∪ {(4, 2)}. By the remark above we

have that if ina(P) is Cohen–Macaulay then a ∈ C(i)∩ C(j) with i = (0, 1, 2, 5)
and j = (0, 2, 5). In this case the Cohen–Macaulay property is equivalent to the
inequalities

a4 ≥ a3 + 2, a5 ≥ a4 + 2, 2a3 ≥ a4 + 4, 2a4 ≥ a3 + a5.

Definition 4.16. Let σ ∈ Sd be a permutation. We may associate to σ a cone

Cσ =
{

a ∈ Qd+1
≥0 : bσ−1(1) < · · ·< bσ−1(d)

}
where bi = ai − ai−1. We call Cσ the permutation cone associated to σ .
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Remark 4.17. As shown in the proof of Theorem 4.9 and Remark 4.10 each cone
C(i) contains a specific permutation cone Cσ . The permutations involved in the
construction are indeed permutations avoiding the patterns “231” and “312”. More
precisely, there is a bijective correspondence between the permutations σ ∈ Sd

avoiding the patterns “231” and “312” and the cones C(i) so that C(i) ⊇ Cσ .
However, as we will see, the inclusion Cσ ⊆ C(i) can be strict in general. The
study of permutation patterns is an important subject in combinatorics; see for
instance [Wilf 2002].

The following example illustrates Theorem 4.11.

Example 4.18. Suppose d = 6 and take the sequence i=(i0=0, i1=3, i2=4, i3=6).
The corresponding Cohen–Macaulay initial ideal I of P is obtained by dividing
the matrix T6 into blocks (from column iv + 1 to iv+1)

T6 =

(
t0 t1 t2 | t3 | t4 t5
t1 t2 t3 | t4 | t5 t6

)
and then taking the antidiagonals of minors whose columns belong to the same
block:

t2
1 , t1t2, t2

2 , t2
5 ,

and the main diagonals from minors whose columns belong to different blocks:

t0t4, t0t5, t0t6, t1t4, t1t5, t1t6, t2t4, t2t5, t2t6, t3t5, t3t6.

The ideal I is the initial ideal of P with respect to every term order refining the
weight a = (0, 3, 5, 6, 10, 16, 21) obtained from the “permutation” vector

σ = (3, 2, 1|4|6, 5) ∈ S6

by setting a0 = 0 and ai =
∑i

j=1 σ j . With respect to this term order the 2-minors of
T6 are a Gröbner basis of P but not the reduced Gröbner basis. The corresponding
reduced Gröbner basis is

t2
1 − t0t2, t1t2 − t0t3, t2

2 − t1t3, t0t4 − t1t3 t0t5 − t2t3,
t1t4 − t2t3, t0t6 − t2

3 , t1t5 − t2
3 , t2t4 − t2

3 , t1t6 − t3t4,
t2t5 − t3t4, t2t6 − t2

4 , t3t5 − t2
4 , t3t6 − t4t5, t2

5 − t4t6.

So for every vector a = (a0, a1, . . . , a6) ∈ Q7
≥0 satisfying the system of linear

inequalities

2a1 > a0 +a2∗, a1 +a2 > a0 +a3, 2a2 > a1 +a3∗, a0 +a4 > a1 +a3∗,

a0 +a5 > a2 +a3, a1 +a4 > a2 +a3, a0 +a6 > 2a3, a1 +a5 > 2a3,

a2 +a4 > 2a3, a1 +a6 > a3 +a4, a2 +a5 > a3 +a4, a2 +a6 > 2a4,

a3 +a5 > 2a4, a3 +a6 > a4 +a5∗, 2a5 > a4 +a6∗,
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we have ina(P)= I . The 15 linear homogeneous inequalities above define the open
Cohen–Macaulay cone C(i). The description is however far from being minimal.
The inequalities marked with ∗ are indeed sufficient to describe C(i). In terms of
bi = ai − ai−1 the inequalities can be described by b3 < b2 < b1 < b4 < b6 < b5,
that is, C(i)= Cσ .

Remark 4.19. (1) There exist Cohen–Macaulay ideals of dimension 2 with min-
imal multiplicity and without Cohen–Macaulay initial monomial ideals in the
given coordinates. For instance, let J be the ideal of K [t0, . . . , t4] generated
by the 2-minors of the matrix(

t0 t2 t4 − t0 0
t1 t3 0 t4 + t0

)
.

Then J has the expected codimension and hence it is 2-dimensional Cohen–
Macaulay with minimal multiplicity. No monomial initial ideal of J is qua-
dratic since the degree 2 part of every monomial initial ideal has codimension
2. Hence no monomial initial ideal of J is Cohen–Macaulay. This example
shows that Theorem 4.13 does not hold for 2-dimensional binomial Cohen–
Macaulay ideals with minimal multiplicity.

(2) ina(P) can be monomial, quadratic and non-Cohen–Macaulay. For example,
for d = 4 the ideal I = (t2

3 , t2t3, t1t3, t0t4, t0t3, t2
1 ) is a non-Cohen–Macaulay

(indeed nonpure) monomial initial ideal of P . The corresponding cone is
described in terms of bi = ai −ai−1 by the inequalities b3 > b1 > b2 > b4 and
b3 + b4 > b1 + b2.

(3) ina(P) can be quadratic with linear 1-syzygies and not Cohen–Macaulay. For
instance, with d = 7 the ideal generated by

t2
2 , t2

4 , t2
6 , t1t2, t0t4, t0t5, t1t4, t0t6, t1t5, t2t4, t0t7, t1t6, t3t4,

t1t7, t2t6, t3t6, t3t7, t4t6, t2
1 + t0t2, −t4t5 + t2t7, −t5t6 + t4t7

is an initial ideal of P with linear 1-syzygies and a nonlinear 2-syzygy.

(4) We do not know any example as the one in (3) if we further assume that ina(P)
is a monomial ideal. Note however that 2-dimensional non-Cohen–Macaulay
quadratic monomial ideals with a short h-vector and linear 1-syzygies exist,
for example (t1t3, t1t5, t0t2, t2t5, t0t3, t2

2 , t2t4, t2t3, t0t4, t4t5).

Remark 4.20. As Rekha Thomas pointed out to us, one can deduce from results
in [Hoşten and Thomas 2003; O’Shea and Thomas 2005] that P has exactly one
Cohen–Macaulay monomial initial ideal for each regular triangulation of the un-
derlying point configuration A. In [Hoşten and Thomas 2003, Theorem 5.5(ii)] it is
proved that for every regular triangulation of A there exists exactly one initial ideal
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having no embedded primes (they are called Gomory initial ideals in that paper).
In [O’Shea and Thomas 2005] it is proved that every Gomory initial ideal coming
from a 1-normal configuration is Cohen–Macaulay. Since every triangulation of
A is 1-normal, one can conclude that the Gomory ideals of P are indeed Cohen–
Macaulay. Hence these results imply that P has exactly 2d−1 Cohen–Macaulay
monomial initial ideals.

5. Contracted ideals whose associated graded ring is Cohen–Macaulay

In this section we use the results of Section 4 to solve the problem (2) men-
tioned in Section 1. Since the ideal P is homogeneous with respect to the vectors
(1, 1, . . . , 1) and (0, 1, 2, . . . , d) of Qd+1, each cone of the Gröbner fan of P is
determined by its intersection with

Wd =
{
(a0, a1, . . . , ad) ∈ Nd+1

: 0 = a0 < a1 < · · ·< ad
}
.

As explained in Section 3, Wd parametrizes the lex-segment ideals of initial degree
d . For a given d ∈ N, d > 0, we set

C Md =
{
a ∈ Qd+1

≥0 : ina(P) is Cohen–Macaulay
}

the “Cohen–Macaulay region” of the Gröbner fan of P . According to Theorem
4.13 we have

C Md =

⋃
i

C(i)

where the union is extended to all of the 2d−1 sequences i =(0=i0<i1<. . .<ik=d).

Theorem 5.1. Let d1, . . . , ds be positive integers and a1, . . . , as be vectors such
that ai ∈ Wdi . Let `1, . . . , `s, z be linear forms in R = K [x, y] such that each pair
of them is linearly independent. For every i = 1, . . . , s, consider the lex-segment
ideals L i associated to ai with respect to `i , z, that is,

L i = (`
di − j
i zai j : j = 0, . . . , di ).

Set I = L1 · · · Ls . We have

(1) I is contracted and every homogeneous contracted ideal in R = K [x, y] arises
in this way, and

(2) grI (R) is Cohen–Macaulay if and only if ai ∈ C Mdi for all i = 1, . . . , s.

Proof. (1) is a restatement of Zariski’s factorization theorem for contracted ideals.
(2) follows from Theorem 3.3, Proposition 3.9 and Theorem 4.13. �

Theorem 5.1 can be generalized as follows.
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Theorem 5.2. Let I ⊂ K [x, y] be a monomial ideal (not necessarily contracted)
and let a = (a0, . . . , ad) be its associated sequence. Then grI (R) is Cohen–
Macaulay if and only if a ∈ C Md .

Proof. If a is strictly increasing, then I is a lex-segment ideal. Hence I is contracted
and the statement is a special case of Theorem 5.1. If a is not strictly increasing,
then we set a′

= a + (0, 1, . . . , d) and let L be the monomial ideal associated to
a′. Since a′ is strictly increasing, L is a lex-segment ideal. The cones C(i) are
described by the inequalities that are homogeneous with respect to (0, 1, . . . , d).
Therefore a belongs to C Md if and only if a′ does. By construction, I is the
quadratic transform of the contracted ideal L in the sense of [Conca et al. 2005,
Sect. 3]. Further we know that depth grI (R) = depth grL(R) according to [Conca
et al. 2005, Thm. 3.12]. In summary, grI (R) is Cohen–Macaulay if and only if
grL(R) is Cohen–Macaulay if and only if a′

∈ C Md if and only if a ∈ C Md . �

Remark 5.3. (1) In K [x, y] denote by C the class of contracted ideals, by C1 the
class of the ideals in C with Cohen–Macaulay associated graded ring and by
C2 the class of integrally closed ideals. We have C ⊃ C1 ⊃ C2. One knows
that C and C2 are closed under product. On the other hand C1 is not: the
lex-segment ideals associated to the sequences (0, 4, 6, 7) and (0, 2) belong
to C1 and their product does not. However, C1 is closed under powers: if
I ∈ C1 then I k

∈ C1. This can be seen, for instance, by looking at the Hilbert
function of I . Furthermore we will show in Section 7 that a certain subset of
C1 is closed under product.

(2) For a lex-segment ideal L in K [x, y] we have seen that grL(R) and F(L)
have the same depth. We believe that grI (R) and F(I ) have the same depth
for every contracted ideal I . In [D’Cruz et al. 1999, Thm. 3.7, Cor. 3.8]
D’Cruz, Raghavan and Verma proved that the Cohen–Macaulayness of grI (R)
is equivalent to that of F(I ). Note however that for a monomial ideal I the
rings grI (R) and F(I ) might have different depth. For instance, for the ideal
I associated to (0, 2, 2, 3) one has depth grI (R)= 1 and depth F(I )= 2.

Remark 5.4. Two of the cones of the Cohen–Macaulay region C Md are special as
they correspond to opposite extreme selections.

(1) If i = (0, 1, 2, . . . , d), then the closed cone C(i) is described by the inequality
system ai +a j ≥ au +av with u = b(i + j)/2c, v = d(i + j)/2e for every i , j
or, equivalently, by bi+1 ≥ bi for every i = 1, . . . , d −1. In other words, C(i)
equals its permutation cone Cid , where id ∈ Sd is the identity permutation. In
this case the initial ideal of P is (ti t j : j − i > 1) and it can be realized by the
lex-order t0 < t1 < · · ·< td or by the lex-order t0 > t1 > · · ·> td . This is the
only radical monomial initial ideal of P . The points in Wd ∩C(i) correspond
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to integrally closed lex-segment ideals. Indeed, they are the products of d
complete intersections of type (x, yu).

(2) If i = (0, d) then the closed cone C(i) is described by the inequality system

ai + a j ≥ a0 + ai+ j , if i + j ≤ d and

ai + a j ≥ ad + ai+ j−d , if i + j ≥ d.

It can be realized by the revlex order with t0 < t1 < · · · < td or by the
revlex order with t0 > t1 > · · · > td . The corresponding initial ideal of P is
(t1, . . . , td−1)

2. The lex-segment ideals L belonging to the cone are character-
ized by the fact that L2

= (xd , yad )L , that is, they are exactly the lex-segment
ideals with a monomial minimal reduction and the reduction number 1. It
is not difficult to show that the simple homogeneous integrally closed ideals
of K [x, y] are exactly the ideals of the form (xd , yc), with GCD(d, c) = 1.
In other words, C(i) contains (the exponent vectors of) all the simple inte-
grally closed ideals of order d. The associated permutation cone is Cσ with
σ = (d, d − 1, . . . , 1). For d ≤ 3 one has C(i) = Cσ . For d = 4 one has
C(i)) Cσ and C(i)= Cσ ∪Cτ with τ = (4, 2, 3, 1). For d > 4 the cone C(i)
is not the union of the closure of the permutation cones it contains. For d = 5,
for example, the cone C(i) is described by the inequalities

b1 + b2 ≥ b3 + b4, b2 + b3 ≥ b4 + b5, b1 ≥ bi ≥ b5 with i = 2, 3, 4,

and hence it intersects but it does not contain the cone associated with the
permutation (5, 2, 4, 3, 1).

(3) Apart from the example discussed in (1), the other Cohen–Macaulay mono-
mial initial ideals of P arising from lex orders are exactly those associated
to sequences i = (0, 1, . . . , ĵ, . . . , d) for some 0 < j < d. Apart from the
example discussed in (2), the other Cohen–Macaulay monomial initial ideals
of P arising from revlex orders are exactly those associated to sequences
i = (0, j, d) for some 0 < j < d . Therefore, starting from d = 5, there are
Cohen–Macaulay monomial initial ideals of P not coming from lex or revlex
orders. For instance, the initial ideal associated to i = (0, 1, 4, 5) is such an
example.

6. Describing the Hilbert series of grL(R)

Let L be a lex-segment ideal in R = K [x, y] with associated a-sequence a =

(a0, a1, . . . , ad). We have seen in the proof of Theorem 4.13 that the multiplicity
e0(L) can be expressed as a linear function in ai ’s. In terms of initial ideals of P ,
that assertion can be rephrased as follows. Let I be a monomial initial ideal of P
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and let C I be the corresponding closed cone in the Gröbner fan of P ,

C I =
{

a ∈ Qd+1
≥0 : inτ (ina(P))= I

}
where τ is a given term order such that inτ (P)= I . Let i=(0=i0<i1<. . .<ik=d)
and let the set of the integers 0 ≤ j ≤ d be such that t j 6∈

√
I . Then

√
I = (t j : j 6∈ i)+ (tiv tir : r − v > 1).

Consider the linear form in Z[A0, . . . , Ad ] given by

eI
0 = A0(i1 − i0)+

k−1∑
t=1

Ait (it+1 − it−1)+ Aik (ik − ik−1),

where the Ai are variables. For every lex-segment ideal L with the associated
sequence a belonging to C I one has that e0(L) is equal to eI

0 evaluated at A = a.
So the “same” formula holds in all the cones of the Gröbner fan associated with

the same radical, that is, in all the cones of which the union forms a maximal cone
of the secondary fan [Sturmfels 1996, p. 71]. We establish now similar formulas
for the Hilbert function H 1(L , k) and the h-polynomial of grL(R).

To this end, consider S = K [t0, t1, . . . , td ] equipped with its natural Zd+1-graded
structure. The quotient S/I is Zd+1-graded and we denote by HS/I (t) its Zd+1

graded Hilbert series, namely

HS/I (t)=

∑
α∈Nd+1

dim[S/I ]αtα =

∑
tα 6∈I

tα

where tα = tα0
0 · · · tαd

d . The key observation is contained in the following lemma.

Lemma 6.1. Let L be a lex-segment ideal with associated vector a belonging to
C I . For k ∈ N set Mk(I ) = {α ∈ Nd+1

: tα 6∈ I, |α| = k}. Denote by
∑

Mk(I ) the
sum of the vectors in Mk(I ). By construction

∑
Mk(I ) ∈ Nd+1 and

H 1(L , k − 1)= a ·

∑
Mk(I )

for all k.

Proof. Set Ck = a ·
∑

Mk(I ). Writing tα as t j1 · · · t jk , we may rewrite Ck as the
sum a j1 + · · · + a jk over all monomials t j1 · · · t jk 6∈ I . By construction

a j1 + · · ·+ a jk = min
{
ai1 + ai2 + · · ·+ aik : i1 + i2 + · · ·+ ik = j1 + j2 + · · ·+ jk

}
if and only if t j1 · · · t jk 6∈ I . Therefore Ck is the sum over all v, 0 ≤ v ≤ kd of
min{ai1 + ai2 + · · ·+ aik : i1 + i2 + · · ·+ ik = v}. But this is exactly H 1(L , k − 1);
see Lemma 3.5. �

In terms of Hilbert series Lemma 6.1 can be rewritten as the follows.
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Lemma 6.2. Let L be a monomial ideal with associated sequence a belonging to
C I . Then

H 1
L(z)= a · ∇HS/I (t)ti =z

where ∇ = (∂/∂t0, . . . , ∂/∂td) is the gradient operator.

Remark 6.3. (1) The series HS/I (t) is rational and it can be described in terms
of the multigraded Betti numbers βi,α(S/I )= dimK TorS

i (S/I, K )α as

HS/I (t)=

∑
i,α(−1)i tαβi,α(S/I )

5d
i=0(1 − ti )

.

(2) A rational expression of HS/I (t) can be computed also from a Stanley decom-
position of S/I . For a monomial ideal I a Stanley decomposition of S/I is a
finite set � of pairs (σ, τ ) where σ ∈ Nd+1 and τ ⊆ {0, . . . , d} which induces
a decomposition

S/I =

⊕
(σ,τ )∈�

tσ K [ti : i ∈ τ ]

as a K -vector space. Stanley decompositions always exist but they are far
from being unique. There are algorithms to compute them; see [Maclagan
and Smith 2005] for more. For every Stanley decomposition � of S/I clearly
one has

HS/I (t)=

∑
(σ,τ )∈�

tσ

5i∈τ (1 − ti )
.

Combining Lemma 6.1, Remark 6.3 with Lemma 6.2 we obtain:

Corollary 6.4. For every cone C I and for a monomial ideal L whose associated
sequence a belongs to C I we have

H 1
L(z)= |a|

1 + (d − 1)z
(1 − z)3

+ a ·

∑
i≥1

(−1)i
∑
α

βi,α(S/I )
z|α|−1

(1 − z)d+1α,

where βi,α(S/I ) are the multigraded Betti numbers of S/I . Moreover

H 1
L(z)= a ·

∑
(σ,τ )∈�

z|σ |−1

(1 − z)|τ |+1 (zτ + (1 − z)σ ),

where� is a Stanley decomposition of S/I and we have identified the subset τ with
the corresponding 0/1-vector.

The next proposition summarizes what we have proved so far concerning for-
mulas for h I and related invariants.

Proposition 6.5. Given a cone C I of the Gröbner fan of P there are polynomials
h I

∈ Z[A, z] and Q I , Q I
1 ∈ Q[A, z] linear in the variables A = A0, . . . , Ad and

without constant term, such that
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(1) for every monomial ideal L with associated sequence a belonging to C I , the
polynomial h I evaluated at A = a equals the h-polynomial of L , Q I evaluated
at A = a equals the Hilbert polynomial PL of L , and Q I

1 evaluated at A = a
equals the Hilbert polynomial P1

L of L;

(2) h I , Q I and Q I
1 can be expressed in terms of the multigraded Betti numbers of

I ; they can also be expressed in terms of a Stanley decomposition of S/I ;

(3) in particular,

h I
= |A|(1 + (d − 1)z)+ A

∑
i≥1

(−1)i
∑
α

βi,α(S/I )
z|α|−1

(1 − z)d−2α,

where βi,α(S/I ) are the multigraded Betti numbers of S/I , and

h I
= A ·

∑
(σ,τ )∈�

z|σ |−1(1 − z)2−|τ | (zτ + (1 − z)σ ) ,

where � is a Stanley decomposition of S/I ; explicit expressions for Q I and
Q I

1 can be obtained from that of h I .

Similarly one has expressions for the Hilbert coefficients eI
i as a linear function

in the variables A. Now we discuss the dependence of the polynomials h I and Q I
1

on I .

Proposition 6.6. Let I, J be monomial initial ideals of P. Then

(1) eI
0 = eJ

0 if and only if
√

I =
√

J ,

(2) h I
= h J if and only if I = J , and

(3) Q I
1 = Q J

1 if and only if I and J have the same saturation, equivalently, they
coincide from a certain degree on.

Proof. Denote by A the vector of variables (A0, . . . , Ad). We have discussed
already the fact that the formula for the multiplicity eI

0 identifies and it is identified
by the radical of I . For statement (2), we have already seen that the coefficient Ck

of zk in the series h I /(1 − z)3 is exactly A ·
∑

Mk+1(I ). Hence h I
= h J holds if

and only if A ·
∑

Mk(I ) = A ·
∑

Mk(J ) for all k, that is,
∑

Mk(I ) =
∑

Mk(J )
as vectors for every k. By virtue of [Sturmfels 1996, Corollary 2.7], we conclude
that h I

= h J implies I = J . For (3) one just applies the same argument to all large
degrees. �

For an ideal I of dimension v we denote by I top the component of dimension v
of I , that is, the intersection of the primary components of I of dimension v.

Remark 6.7. Let I, J be monomial initial ideals of P . In terms of Mk(I ) the condi-
tion Q I

= Q J is equivalent to
∑

Mk(I )−
∑

Mk−1(I )=
∑

Mk(J )−
∑

Mk−1(J )
for all k � 0. There is some computational evidence that Q I

= Q J could be
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equivalent to I top
= J top. This is related with the hypergeometric Gröbner fan of

P; see [Saito et al. 2000, Section 3.3]. In particular Example 3.3.7 in [Saito et al.
2000] discusses the secondary fan, the hypergeometric fan and Gröbner fan of P
for d = 4.

7. The big Cohen–Macaulay cone

Starting from d = 3, the Cohen–Macaulay region C Md is not a cone, that is to say
it is not convex; see Section 8 for examples. However, a bunch of the cones C(i)
get together to form a big cone.

Proposition 7.1. Let Bd = ∪i C(i) where the union is extended to all the sequences
i = {0 = i0 < i1 < · · ·< ik = d} such that iv − iv−1 ≤ 2 for all v = 1, . . . , k. Then
Bd is the closed cone described in terms of the bi ’s by the inequalities b j ≤ b j+2

for all j = 1, . . . , d − 2.

Proof. Let B ′ be the cone described by the inequalities b j ≤ b j+2 for all j =

1, . . . , d − 2. We have to show that Bd = B ′. For the inclusion ⊆, let a ∈ Bd and
b j = a j − a j−1. Then a ∈ C(i) for a sequence i = {0 = i0 < i1 < · · · < ik = d}

such that iv− iv−1 ≤ 2 for all v= 1, . . . , k. For every j , 1 ≤ j ≤ d −2, at least one
among j and j + 1 is in i. We distinguish two cases.

Case 1. j ∈ i, say j = iv. Then set s = j −1 and r = j +2. We have 2iv ≤ s +r ≤

iv+ iv+1 and so, by Theorem 4.11 (5), as +ar ≥ aiv +as+r−iv is one of the defining
inequalities of C(i). Explicitly, a j−1 + a j+2 ≥ a j + a j+1, that is, b j ≤ b j+2.

Case 2. j + 1 ∈ i, say j + 1 = iv+1. Then set s = j − 1 and r = j + 2. We have
iv+ iv+1 ≤ s +r ≤ 2iv+1 and so, by Theorem 4.11 (5), as +ar ≥ aiv+1 +as+r−iv+1 is
one of the defining inequalities of C(i). Explicitly, a j−1 + a j+2 ≥ a j + a j+1, that
is, b j ≤ b j+2.

For the inclusion ⊇, let a ∈ B ′ and bi = ai − ai−1. Set

U =
{

j : 1 ≤ j ≤ d − 1, b j > b j+1
}
.

Since b j ≤ b j+2 for all j , U does not contain pairs of consecutive numbers. Set
i = {0, 1, . . . , d} \U = (0 = i0 < · · ·< ik = d). Note that for all 0 ≤ r, s ≤ d such
that s −r ≥ 2 one has bs +bs−1 ≥ br+1 +br and hence as +ar ≥ as−2 +ar+2. This
fact, together with the definition of U , implies that for all 0 ≤ r, s ≤ d one has

as + ar ≥


a j + a j+1, if s + r = 2 j + 1,
2a j , if s + r = 2 j and j ∈ i,
a j−1 + a j+1, if s + r = 2 j and j 6∈ i.

Using this information one proves directly that a satisfies the inequalities in The-
orem 4.11 (5) defining C(i). �
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Remark 7.2. (1) The number fd of the cones C(i) appearing in the description
of Bd satisfies the recursion fd = fd−1 + fd−2 with f1 = 1 and f2 = 2. Hence
fd is the (d + 1)-th Fibonacci number.

(2) One also has Bd = ∪ Cσ where σ ∈ Sd satisfies σ( j) < σ( j + 2) for j =

1, . . . , d − 2. There are
( d
bd/2c

)
such permutations.

(3) Indeed, each cone C(i) appearing in the description of Bd is the union of
permutation cones Cσ . Precisely, the permutations involved are those σ ∈ Sd

such that σ( j)<σ( j+2) for all j =1, . . . , d−2 and such that σ( j)>σ( j+1)
if and only if j 6∈ i. The number of these permutations, say n(i), is a product of
Catalan numbers. Recall that the n-th Catalan number is c(n)= (n+1)−1

(2n
n

)
.

Decompose {1, . . . , d} \ i as a disjoint union ∪
t
i=1Vi where Vi are of the form

{a, a +2, . . . } and are maximal. Then n(i)= c(|V1|) · · · c(|Vt |). For instance,
if i = (0, 2, 3, 5, 7, 9, 10, 12, 14) then {1, . . . , 14}\i ={1}∪{4, 6, 8}∪{11, 13}

and hence C(i) is the union of c(1)c(3)c(2)= 10 permutation cones.

(4) The family Bd with d ∈ N is closed under multiplication, that is, if a ∈ Bd

and a′
∈ Be and c = a ·a′, then c ∈ Bd+e. Set c = (c0, c1, . . . , cd+e). To show

that c ∈ Bd+e one has to prove that c j+2 − c j+1 ≥ c j − c j−1, that is,

c j+2 + c j−1 ≥ c j+1 + c j .

By definition, c j+2 = av + a′
u with v + u = j + 2 and c j−1 = aw + a′

z with
w + z = j − 1. Since (v −w)+ (u − z) = (v + u)− (w + z) = 3 we may
assume that v−w ≥ 2. Then av + aw ≥ av−2 + aw+2 and hence

c j+2 + c j−1 = av + a′

u + aw + a′

z ≥ av−2 + a′

u + aw+2 + a′

z ≥ c j + c j+1.

8. Examples with small d

In this section we describe, for small d , the Gröbner fan and the Cohen–Macaulay
region, and give formulas for the Hilbert series associated to the various cones. For
simplicity, the cones will be described in terms of b1, . . . , bd where bi = ai −ai−1.

For d = 1, there is not much to say. The ideal P is 0, C M1 = Q2
≥0 and

C M1 ∩ W1 =
{
(0, a) ∈ N2

: a > 0
}
.

For d = 2 the Gröbner fan has two maximal cones, both Cohen–Macaulay. The
lex cone C(0, 1, 2) is described by b1 ≤ b2 and the revlex cone C(0, 2) is described
by b1 ≥ b2.

For d = 3 the Gröbner fan has 8 maximal cones. 4 of them are Cohen–Macaulay
and 4 have depth 1. We show below the cones. Each table shows

(1) an initial ideal I of P ,
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(2) the linear inequalities defining the corresponding cone in the Gröbner fan, and

(3) the coefficients of the h-vector of grL(R) for the ideal L corresponding to
points (a0, a1, a2, a3) in the cone.

The expressions of the h-vectors have been computed using Stanley decompo-
sitions and the formula in Corollary 6.4. The Stanley decompositions have been
computed by the algorithm presented in [Maclagan and Smith 2005]. Cones (a),
(b), (c) and (d) are Cohen–Macaulay cones. In particular (a) is the lex cone and (d)
is the revlex cone. The union of (a), (b) and (c) is the big cone B3 and it is defined
by b1 ≤ b3. The revlex cone (d) is isolated; it intersects B3 only at b1 = b2 = b3.
In particular the Cohen–Macaulay region is not a cone.

(a) (t1t3, t0t3, t0t2),
b1 ≤ b2 ≤ b3,

(h0) a0 + a1 + a2 + a3

(h1) a1 + a2

(b) (t1t3, t0t3, t2
1 )

b2 ≤ b1 ≤ b3,

(h0) a0 + a1 + a2 + a3

(h1) a0 − a1 + 2a2

(c) (t2
2 , t0t3, t0t2),

b1 ≤ b3 ≤ b2,

(h0) a0 + a1 + a2 + a3

(h1) 2a1 − a2 + a3

(d) (t2
2 , t1t2, t2

1 ),

b3 ≤ b2 ≤ b1,

(h0) a0 + a1 + a2 + a3

(h1) 2a0− a1− a2+2a3

The non-Cohen–Macaulay cones are

(e) (t2
2 , t1t2, t0t2, t2

0 t3),
b3 ≤ b1 ≤ b2 and b3 + b2 ≥ 2b1,

(h0) a0 + a1 + a2 + a3

(h1) a0 + a1 − 2a2 + 2a3

(h2) − a0 + a1 + a2 − a3

( f ) (t1t3, t1t2, t2
1 , t0t2

3 ),

b2 ≤ b3 ≤ b1 and b1 + b2 ≤ 2b3,

(h0) a0 + a1 + a2 + a3

(h1) 2a0 − 2a1 + a2 + a3

(h2) − a0 + a1 + a2 − a3

(g) (t1t3, t1t2, t2
1 , t3

2 ),

b2 ≤ b3 ≤ b1 and b1 + b2 ≥ 2b3,

(h0) a0 + a1 + a2 + a3

(h1) 2a0 − 2a1 + a2 + a3

(h2) a1 − 2a2 + a3

(h) (t2
2 , t1t2, t0t2, t3

1 ),

b3 ≤ b1 ≤ b2 and b3 + b2 ≤ 2b1,

(h0) a0 + a1 + a2 + a3

(h1) a0 + a1 − 2a2 + 2a3

(h2) a0 − 2a1 + a2

For d = 4 there are 42 cones of the Gröbner fan. 10 of them have depth 0,
24 have depth 1 and 8 are Cohen–Macaulay. The big Cohen–Macaulay cone is
the union of 5 of the 8 Cohen–Macaulay cones. The remaining 3 are isolated.
The following example illustrates Proposition 6.6 and Remark 6.7. The ideals I, J
below are non-Cohen–Macaulay initial ideals of P . They satisfy Q I

= Q J and
Q I

1 6= Q J
1 . We display the ideals and the formulas for the coefficients e0, e1, e2
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that have been computed via Stanley decompositions.

I (t1t3, t1t2, t0t2, t3
3 , t2

1 t4, t3
1 , t2t4, t2t3, t2

2 )

(e0) 4a0 + 4a4

(e1) 3a0 − a1 − 3a3 + 4a4

(e2) − a0 + 2a1 − 2a3 + a4

J (t1t3, t1t2, t2
1 , t3

3 , t2t4, t2t3, t2
2 )

(e0) 4a0 + 4a4

(e1) 3a0 − a1 − 3a3 + 4a4

(e2) a2 − 2a3 + a4

In this case I top
= J top

= (t1t3, t2, t3
3 , t2

1 ) as expected by Remark 6.7 and J =

J sat
6= I sat

= (t2, t1t3, t2
1 t4, t3

3 , t3
1 ) as proved in Proposition 6.6.
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[Hoşten and Thomas 2003] S. Hoşten and R. R. Thomas, “Gomory integer programs”, Math. Pro-
gram. 96:2, Ser. B (2003), 271–292. MR 2004f:90087 Zbl 1082.90068

[Huckaba and Marley 1993] S. Huckaba and T. Marley, “Depth properties of Rees algebras and
associated graded rings”, J. Algebra 156:1 (1993), 259–271. MR 94d:13006 Zbl 0813.13010



268 Aldo Conca, Emanuela De Negri and Maria Evelina Rossi

[Huneke 1989] C. Huneke, “Complete ideals in two-dimensional regular local rings”, pp. 325–338
in Commutative algebra (Berkeley, CA, 1987), edited by M. Hochster et al., Math. Sci. Res. Inst.
Publ. 15, Springer, New York, 1989. MR 90i:13020 Zbl 0732.13007

[Huneke and Swanson 2006] C. Huneke and I. Swanson, Integral closure of ideals, rings, and
modules, London Mathematical Society Lecture Note Series 336, Cambridge University Press,
Cambridge, 2006. MR 2266432 Zbl 1117.13001

[Lipman and Teissier 1981] J. Lipman and B. Teissier, “Pseudorational local rings and a theorem
of Briançon–Skoda about integral closures of ideals”, Michigan Math. J. 28:1 (1981), 97–116.
MR 82f:14004 Zbl 0464.13005

[Maclagan and Smith 2005] D. Maclagan and G. G. Smith, “Uniform bounds on multigraded regu-
larity”, J. Algebraic Geom. 14:1 (2005), 137–164. MR 2005g:14098 Zbl 1070.14006

[O’Shea and Thomas 2005] E. O’Shea and R. R. Thomas, “Toric initial ideals of 1-normal config-
urations: Cohen–Macaulayness and degree bounds”, J. Algebraic Combin. 21:3 (2005), 247–268.
MR 2006c:13031 Zbl 1082.13017

[Saito et al. 2000] M. Saito, B. Sturmfels, and N. Takayama, Gröbner deformations of hypergeomet-
ric differential equations, Algorithms and Computation in Mathematics 6, Springer, Berlin, 2000.
MR 2001i:13036 Zbl 0946.13021

[Sturmfels 1996] B. Sturmfels, Gröbner bases and convex polytopes, University Lecture Series 8,
American Mathematical Society, Providence, RI, 1996. MR 97b:13034 Zbl 0856.13020

[Trung and Hoa 1986] N. V. Trung and L. T. Hoa, “Affine semigroups and Cohen–Macaulay rings
generated by monomials”, Trans. Amer. Math. Soc. 298:1 (1986), 145–167. MR 87j:13032 Zbl 063-
1.13020

[Valla 1979] G. Valla, “On form rings which are Cohen–Macaulay”, J. Algebra 58:2 (1979), 247–
250. MR 80h:13025 Zbl 0428.13010

[Verma 1991] J. K. Verma, “Rees algebras of contracted ideals in two-dimensional regular local
rings”, J. Algebra 141:1 (1991), 1–10. MR 92j:13004 Zbl 0736.13016

[Wilf 2002] H. S. Wilf, “The patterns of permutations”, Discrete Math. 257:2-3 (2002), 575–583.
MR 2003h:05005 Zbl 1028.05002

[Zariski and Samuel 1960] O. Zariski and P. Samuel, Commutative algebra, vol. II, Van Nostrand,
Princeton, 1960. MR 22 #11006 Zbl 0121.27801

Communicated by Craig Huneke
Received 2007-02-01 Revised 2007-08-27 Accepted 2007-09-29

conca@dima.unige.it Dipartimento di Matematica, Università di Genova,
Via Dodecaneso 35, I-16146 Genova, Italy

denegri@dima.unige.it Dipartimento di Matematica, Università di Genova,
Via Dodecaneso 35, I-16146 Genova, Italy

rossim@dima.unige.it Dipartimento di Matematica, Università di Genova,
Via Dodecaneso 35, I-16146 Genova, Italy


