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L∞ structures on mapping cones
Domenico Fiorenza and Marco Manetti

We show that the mapping cone of a morphism of differential graded Lie al-
gebras, χ : L → M , can be canonically endowed with an L∞-algebra structure
which at the same time lifts the Lie algebra structure on L and the usual differen-
tial on the mapping cone. Moreover, this structure is unique up to isomorphisms
of L∞-algebras.

Introduction

There are several cases where the tangent and obstruction spaces of a deformation
theory are the cohomology groups of the mapping cone of a morphism χ : L→M
of differential graded Lie algebras. It is therefore natural to ask if there exists a
canonical differential graded Lie algebra structure on the complex (Cχ , δ), where

Cχ =
⊕

C i
χ , C i

χ = L i
⊕

M i−1, δ(l,m)= (dl, χ(l)− dm),

such that the projection Cχ→ L is a morphism of differential graded Lie algebras.
In general we cannot expect the existence of a Lie structure. In fact the canonical

bracket

l1⊗ l2 7→ [l1, l2], m1⊗ l2 7→
1
2 [m1, χ(l2)],

l1⊗m2 7→
1
2(−1)deg(l1)[χ(l1),m2], m1⊗m2 7→ 0

satisfies the Leibniz rule with respect to the differential δ but not the Jacobi identity.
However, the Jacobi identity for this bracket holds up to homotopy, and so we can
look for the weaker requirement of a canonical L∞ structure on Cχ .

More precisely, let K be a fixed characteristic zero base field, denote by DG the
category of differential graded vector spaces, by DGLA the category of differen-
tial graded Lie algebras, by L∞ the category of L∞ algebras and by DGLA2 the

MSC2000: primary 17B70; secondary 13D10.
Keywords: differential graded Lie algebra, symmetric coalgebra, L 8 -algebra, functor of Artin ring.
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category of morphisms in DGLA. The four functors,

DGLA→ L∞ by natural inclusion,

L∞→ DG by forgetting higher brackets,

DGLA2
→ DG by {L

χ
−→ M} 7→ Cχ ,

DGLA→ DGLA2 by L 7→ {L→ 0},

give a commutative diagram

DGLA

��

// L∞

��
DGLA2 C // DG.

Theorem 1. There exists a functor C̃ : DGLA2
→ L∞ making the diagram

DGLA

��

// L∞

��
DGLA2 C //

C̃
::vvvvvvvvv
DG

commutative.

Moreover, the functor C̃ is essentially unique, that is, if F :DGLA2
→ L∞ has

the same properties, then for every morphism χ of differential graded Lie algebras,
the L∞-algebra F(χ) is (noncanonically) isomorphic to C̃(χ).

The L∞ structure C̃(χ) on the mapping cone of a DGLA morphism χ : L→M
is actually a particular case of a more general construction of an L∞ structure
on the total complex of a semicosimplicial DGLA. More precisely, the category
DGLA2 of morphisms of DGLAs can be seen as a full subcategory of the category
DGLA1mon of semicosimplicial DGLAs via the functor

{L
χ
−→ M} 

{
L

0 //
χ

// M
////// 0

//////// · · ·

}
and we have a commutative diagram

DGLA2

��

C̃ // L∞

��
DGLA1mon

Tot //

T̃ot
66mmmmmmmmmmmmmmm
DG.

The functor C̃ can be explicitly described. The linear term of the L∞-algebra
C̃(χ) is by construction the differential δ on Cχ , and the quadratic part which turns
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out to coincide with the naive bracket described at the beginning of the Introduc-
tion. An explicit expression for the higher brackets is given in Theorem 5.2.

The second main result of this paper is to prove that the deformation functor
DefC̃(χ) associated with the L∞ algebra C̃(χ) is isomorphic to the functor Defχ
defined in [Manetti 2005].

Given χ : L→ M , it defines a functor Defχ :Art→ Set, with Art the category
of local Artinian K-algebras with residue field K,

Defχ (A)

=

{
(x, ea) ∈ (L1

⊗mA)× exp(M0
⊗mA) | dx + 1

2 [x, x] = 0, ea
∗χ(x)= 0

}
gauge equivalence

where ∗ denotes the gauge action in M , and (l0, em0) is defined to be gauge equiv-
alent to (l1, em1) if there exists (a, b) ∈ (L0 ⊕

M−1)⊗mA such that

l1 = ea
∗ l0, em1 = edbem0e−χ(a).

Theorem 2. With the notation above, for every morphism of differential graded
Lie algebras, χ : L→ M , we have

DefC̃(χ) ' Defχ .

The importance of Theorem 2 lies in that it allows one to study the functors Defχ ,
which are often naturally identified with geometrically defined functors, using the
whole machinery of L∞-algebras. In particular this gives, under some finiteness
assumption, the construction and the homotopy invariance of the Kuranishi map
[Fukaya 2003; Goldman and Millson 1990; Kontsevich 2003], as well as the local
description of the corresponding extended moduli spaces.

Keywords and general notation. We assume that the reader is familiar with the
notion and main properties of differential graded Lie algebras and L∞-algebras
(we refer to [Fukaya 2003; Grassi 1999; Kontsevich 2003; Lada and Markl 1995;
Lada and Stasheff 1993; Manetti 2004b] as the introduction of such structures);
however the basic definitions are recalled in this paper in order to fix notation and
terminology.

For the whole paper, K is a fixed field of characteristic 0 and Art is the category
of local Artinian K-algebras with residue field K. For A ∈ Art we denote by mA

the maximal ideal of A.

1. Conventions on graded vector spaces

In this paper we will work with Z-graded vector spaces. We write a graded vector
space as V =

⊕
n∈Z V n , and call V n the degree n component of V ; an element v
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of V n is called a degree n homogeneous element of V . The shift functor is defined
as (V [k])i := V i+k . We say that a linear map ϕ : V→W is a degree k map if it is a
morphism V →W [k], that is, if it is a collection of linear maps ϕn

: V n
→W n+k .

The set of degree k liner maps from V to W will be denoted Homk(V,W ).
Graded vector spaces form a symmetric tensor category with

(V ⊗W )k =
⊕

i+ j=k

V i
⊗W j ,

and σV,W : V ⊗ W → W ⊗ V given by σ(v ⊗ w) := (−1)deg(v)·deg(w)w ⊗ v on
the homogeneous elements. We adopt the convention according to which degrees
are “shifted on the left”. By this we mean that we have a natural identification,
called the suspension isomorphism, V [1] ' K[1] ⊗ V where K[1] denotes the
graded vector space consisting of the field K concentrated in degree −1. With this
convention, the canonical isomorphism is

V ⊗K[1] ' V [1], v⊗ 1[1] 7→ (−1)deg(v)v[1].

More in general we have the following decalage isomorphism

V1[1]⊗ · · ·⊗ Vn[1]
∼
−→ (V1⊗ · · ·⊗ Vn)[n],

v1[1]⊗ · · ·⊗ vn [1] 7→ (−1)
∑n

i=1(n−i)·deg vi (v1⊗ · · ·⊗ vn)[n].

Since graded vector spaces form a symmetric category, for any graded vector space
V and any positive integer n we have a canonical representation of the symmetric
group Sn on ⊗nV . The space of coinvariants for this action is called the n-th sym-
metric power of V and is denoted by �nV . Twisting the canonical representation
of Sn on ⊗nV by the alternating character σ 7→ (−1)σ and taking the coinvariants
one obtains the n-th antisymmetric (or exterior) power of V , denoted by

∧n V . By
the naturality of the decalage isomorphism, we have a canonical isomorphism

n⊙
(V [1])

∼
−→

( n∧
V

)
[n].

Remark 1.1. Using the natural isomorphisms

Homi (V,W [l])' Homi+l(V,W )

and the decalage isomorphism, we obtain the natural identifications

dec : Homi
( k∧

V,W
)
∼
−→ Homi+k−1

( k⊙
(V [1]),W [1]

)
,

dec( f )(v1[1]� · · ·� vk[1])= (−1)ki+
∑k

j=1(k− j)·deg(v j ) f (v1 ∧ · · · ∧ vk)[1].
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2. Differential graded Lie algebras and L∞-algebras

A differential graded Lie algebra (DGLA) is a Lie algebra in the category of graded
vector spaces, endowed with a compatible degree 1 differential. Via the decalage
isomorphisms one can look at the Lie bracket of a DGLA V as a morphism

q2 ∈ Hom1(V [1]� V [1], V [1]), q2(v[1]�w[1])= (−1)deg(v)
[v,w][1].

Similarly, the suspended differential q1 = d[1] = idK[1]⊗d is a degree 1 morphism

q1 : V [1] → V [1], q1(v[1])= − (dv)[1].

Up to the canonical bijective linear map V → V [1], v 7→ v[1], the suspended
differential q1 and the bilinear operation q2 are written simply as

q1(v)= − dv, q2(v�w)= (−1)degV (v)[v,w],

that is, “the suspended differential is the opposite differential and q2 is the twisted
Lie bracket”.

Define morphisms qk ∈ Hom1(�k(V [1]), V [1]) by setting qk ≡ 0, for k ≥ 3.
The map

Q1
=

∑
n≥1

qn :
⊕
n≥1

n⊙
V [1] → V [1]

extends to a coderivation of degree 1

Q :
⊕
n≥1

n⊙
V [1] →

( ⊕
n≥1

n⊙
V [1]

)
on the reduced symmetric coalgebra cogenerated by V [1], by the formula

Q(v1� · · ·� vn)

=

n∑
k=1

∑
σ∈S(k,n−k)

ε(σ )qk(vσ(1)� · · ·� vσ(k))� vσ(k+1)� · · ·� vσ(n), (2-1)

where S(k, n− k) is the set of unshuffles and ε(σ )=±1 is the Koszul sign, deter-
mined by the relation in

⊙n V [1]

vσ(1)� · · ·� vσ(n) = ε(σ )v1� · · ·� vn.

The axioms of differential graded Lie algebra are then equivalent to Q being a
codifferential, that is, Q Q = 0. This description of differential graded Lie algebra
in terms of the codifferential Q is called the Quillen construction [1969]. By drop-
ping the requirement that qk ≡ 0 for k ≥ 3 one obtains the notion of L∞-algebra
(or strong homotopy Lie algebra); see for example [Lada and Markl 1995; Lada
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and Stasheff 1993; Kontsevich 2003]. Namely, an L∞ structure on a graded vector
space V is a sequence of linear maps of degree 1,

qk :

k⊙
V [1] → V [1], k ≥ 1,

such that the induced coderivation Q on the reduced symmetric coalgebra cogen-
erated by V [1], given by (2-1) is a codifferential, that is, Q Q = 0. This condition
implies q1q1=0 and therefore an L∞-algebra is in particular a differential complex.
By the preceding discussion, every DGLA can be naturally seen as an L∞-algebra;
namely, a DGLA is an L∞-algebra with vanishing higher multiplications qk , k≥ 3.

A morphism f
∞

between two L∞-algebras

(V, q1, q2, q3, . . . ) and (W, q̂1, q̂2, q̂3, . . . )

is a sequence of linear maps of degree 0

fn :

n⊙
V [1] →W [1], n ≥ 1,

such that the morphism of coalgebras

F :
⊕
n≥1

n⊙
V [1] →

⊕
n≥1

n⊙
W [1]

induced by F1
=

∑
n fn :

⊕
n≥1

⊙n V [1] → W [1] commutes with the codiffer-
entials induced by the two L∞ structures on V and W [Fukaya 2003; Kontsevich
2003; Lada and Markl 1995; Lada and Stasheff 1993; Manetti 2004b]. An L∞-
morphism f

∞
is called linear (sometimes strict) if fn = 0 for every n ≥ 2. Note

that a linear map f1 : V [1] →W [1] is a linear L∞-morphism if and only if

q̂n( f1(v1)�· · ·� f1(vn))= f1(qn(v1�· · ·�vn)), for all n≥ 1, v1, . . . , vn ∈V [1].

The category of L∞-algebras will be denoted by L∞ in this paper. Morphisms
between DGLAs are linear morphisms between the corresponding L∞-algebras, so
the category of differential graded Lie algebras is a (nonfull) subcategory of L∞.

If f∞ is an L∞ morphism between (V, q1, q2, q3, . . . ) and (W, q̂1, q̂2, q̂3, . . . ),
then its linear part f1 : V [1] → W [1] satisfies the equation f1 ◦ q1 = q̂1 ◦ f1,
that is, f1 is a map of differential complexes (V [1], q1)→ (W [1], q̂1). An L∞-
morphism f

∞
is called a quasiisomorphism of L∞-algebras if its linear part f1 is

a quasiisomorphism of differential complexes.
A major result in the theory of L∞-algebras is the following homotopical trans-

fer of structure theorem, dating back to Kadeishvili’s work on the cohomology of
A∞ algebras [Kadeishvili 1982]; see also [Huebschmann and Kadeishvili 1991].
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Theorem 2.1. Let (V, q1, q2, q3, . . .) be an L∞-algebra and (C, δ) be a differential
complex. If there exist two morphisms of differential complexes

ı : (C[1], δ[1])→ (V [1], q1) and π : (V [1], q1)→ (C[1], δ[1])

such that the composition ıπ is homotopic to the identity, then there exist an L∞-
algebra structure (C, 〈 〉1, 〈 〉2, . . .) on C extending its differential complex struc-
ture and an L∞-morphism ı

∞
extending ı .

Explicit formulas for the quasiisomorphism ı∞ and the brackets 〈 〉n have been
described by Merkulov [1999]; it has then been remarked by Kontsevich and
Soibelman [2000; 2001] (see also [Fukaya 2003; Schuhmacher 2004]) that Merku-
lov’s formulas can be nicely written as the summations over rooted trees. Let
K ∈ Hom−1(V [1], V [1]) be an homotopy between ıπ and IdV [1], that is,

q1K + K q1 = ıπ − IdV [1],

and denote by TK ,n the groupoid whose objects are directed rooted trees with
internal vertices of valence at least two and exactly n tail edges. Trees in TK ,n are
decorated as follows: each tail edge of a tree in TK ,n is decorated by the operator
ı , each internal edge is decorated by the operator K and also the root edge is
decorated by the operator K . Every internal vertex v carries the operation qr , where
r is the number of edges having v as endpoint. Isomorphisms between objects in
TK ,n are isomorphisms of the underlying trees. Denote the set of isomorphism
classes of objects of TK ,n by the symbol TK ,n . Similarly, let Tπ,n be the groupoid
whose objects are directed rooted trees with the same decoration as TK ,n except
for the root edge, which is decorated by the operator π instead of K . The set of
isomorphism classes of objects of Tπ,n is denoted Tπ,n .

Via the usual operadic rules, each decorated tree 0 ∈ TK ,n gives a linear map

Z0(ı, π, K , qi ) : C[1]�n
→ V [1].

Similarly, each decorated tree in Tπ,n gives rise to a degree 1 multilinear operator
from C[1] to itself.

Having introduced these notations, we can write Kontsevich–Soibelman’s for-
mulas as follows.

Proposition 2.2. In the above set-up the brackets 〈 〉n , and the L∞ morphism ı∞
can be expressed as sums over decorated rooted trees via the formulas

ın =
∑
0∈TK ,n

Z0(ı, π, K , qi )

|Aut0|
, 〈 〉n =

∑
0∈Tπ,n

Z0(ı, π, K , qi )

|Aut0|
, n ≥ 2.
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3. The suspended mapping cone of χ : L → M.

The suspended mapping cone of the DGLA morphism χ : L → M is the graded
vector space

Cχ = Cone(χ)[−1],

where Cone(χ)= L[1]
⊕

M is the mapping cone of χ . More explicitly,

Cχ =
⊕

i

C i
χ , C i

χ = L i
⊕

M i−1.

The suspended mapping cone has a natural differential δ ∈ Hom1(Cχ ,Cχ ) given
by

δ(l,m)= (dl, χ(l)− dm), l ∈ L ,m ∈ M.

Denote M[t, dt] = M ⊗K[t, dt] and define, for every a ∈ K, the evaluation mor-
phism

ea : M[t, dt] → M, ea(
∑

mi t i
+ ni t i dt)=

∑
mi ai .

It is easy to prove that every morphism ea is a surjective quasiisomorphism of
DGLA. The integral operator

∫ b
a :K[t, dt]→K extends to a linear map of degree

−1 ∫ b

a
: M[t, dt] → M,

∫ b

a

( ∑
i

t i mi + t i dt · ni

)
=

∑
i

(∫ b

a
t i dt

)
ni .

Consider the DGLA

Hχ =
{
(l,m) ∈ L ×M[t, dt] : e0(m)= 0, e1(m)= χ(l)

}
.

The morphism

ı : Cχ → Hχ , ı(l,m)= (l, tχ(l)+ dt ·m)

is an injective quasiisomorphism of complexes. If we denote by

〈 〉1 ∈ Hom1(Cχ [1],Cχ [1]), and q1 ∈ Hom1(Hχ [1], Hχ [1])

the suspended differentials, namely

〈(l,m)〉1 = (−dl,−χ(l)+ dm), l ∈ L ,m ∈ M,

q1(l,m)= (−dl,−dm),

then ı induces naturally an injective quasiisomorphism

ı : Cχ [1] → Hχ [1], ı(l,m)= (l, tχ(l)+ dt ·m).

Consider now the linear maps

π ∈ Hom0(Hχ [1],Cχ [1]), K ∈ Hom−1(Hχ [1], Hχ [1])
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defined as

π(l,m(t, dt))=
(

l,
∫ 1

0
m(t, dt)

)
, K (l,m)=

(
0,

∫ t

0
m− t

∫ 1

0
m

)
.

It is easy to check that π is a morphism of complexes and

π ı = IdCχ [1], ı π = IdHχ [1]+K q1+ q1K .

We are therefore in the hypotheses of Theorem 2.1 and we can transfer the DGLA
structure on Hχ to an L∞ structure on Cχ . We denote by C̃(χ) the induced L∞
structure on Cχ . The universal formulas for the homotopy transfer described in
Proposition 2.2 imply that the above construction is functorial. Namely, for every
commutative diagram

L1
fL //

χ1
��

L2

χ2
��

M1
fM // M2

of morphisms of differential graded Lie algebras, the natural map

( fL , fM) : C̃(χ1)→ C̃(χ2)

is a linear L∞-morphism. Summing up:

Theorem 3.1. For any morphism χ : L → M of differential graded Lie algebras,
let C̃(χ)= (Cχ , Q̂) be the L∞-algebra structure defined on Cχ by the above con-
struction. Then

C̃ : DGLA2
→ L∞

is a functor making the diagram

DGLA

��

// L∞

��
DGLA2 //

C̃
::vvvvvvvvv
DG

commutative.

Remark 3.2. As an instance of the functoriality, note that the projection on the first
factor p1 : C̃(χ)→ L is a linear morphism of L∞-algebras. To see this, consider
the morphism in DGLA2

L
IdL //

χ

��

L

��
M // 0
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Remark 3.3. The above construction of the L∞ structure on Cχ commutes with
the tensor products of differential graded commutative algebras. This means that
if R is a DGCA, then the L∞-algebra structure on the suspended mapping cone of
χ ⊗ idR : L ⊗ R→ M ⊗ R is naturally isomorphic to the L∞-algebra Cχ ⊗ R.

Remark 3.4. The functorial properties of C̃ determine the L∞ structure C̃(χ) up
to (noncanonical) isomorphism. Namley, if F : DGLA2

→ L∞ is a functor such
that the diagram

DGLA

��

// L∞

��
DGLA2 //

F
::vvvvvvvvv
DG

commutes, then for every morphism χ of differential graded Lie algebras, the L∞-
algebra F(χ) is isomorphic to C̃(χ). To see this, let

P =
{
(l,m) ∈ L ×M[t, dt] : e1(m)= χ(l)

}
.

We have a commutative diagram of morphisms of differential graded Lie algebras

L

χ

��

f // P

η

��

Hχ

��

oo

M
IdM // M 0oo

and then two L∞-morphisms F(χ)→F(η)
h∞
←− Hχ whose linear parts are the two

injective quasiisomorphisms

Cχ → Cη
h
←− Hχ , h(l,m)= ((l,m), 0).

A morphism of complexes p : Cη→ Hχ such that ph = IdHχ can be defined as

p((l,m), n)= (l,m+ (t − 1)e0(m)+ dt · n).

The composition of p with the injective quasiisomorphism Cχ → Cη gives the
map ı . By general theory of L∞ algebras, there exists a (noncanonical) left in-
verse of h∞ with linear term equal to p. We therefore get an injective L∞-
quasiisomorphism

ı̂∞ : F(χ)→ Hχ
with linear term ı . The composition of

ı∞ : C̃(χ)→ Hχ

with a left inverse of ı̂∞ is an isomorphism of L∞-algebras between C̃(χ) and
F(χ).



L∞ structures on mapping cones 311

4. The case of semicosimplicial DGLAs

The L∞ structure on the mapping cone of a DGLA morphism described in Section
3 is actually a particular case of a more general construction of an L∞ structure
on the total complex of a semicosimplicial DGLA; see also [Cheng and Getzler
2006], where this construction is described for cosimplicial commutative algebras.

Let 1mon be the category of finite ordinal sets, with order-preserving injective
maps between them. A semicosimplicial differential graded Lie algebra is a co-
variant functor 1mon→ DGLA. Equivalently, a semicosimplicial DGLA g1 is a
diagram

g0
// // g1

////// g2
//////// · · ·

where each gi is a DGLA, and for each i > 0 there are n morphisms of DGLAs

∂k,i : gi−1→ gi , k = 0, . . . , i,

such that ∂k+1,i+i∂l,i = ∂l,i+1∂k,i , for any k ≤ l. Therefore, the maps

∂i = ∂i,i − ∂i−1,i + · · ·+ (−1)i∂0,i

endow the vector space
⊕

i gi with the structure of a differential complex. More-
over, being a DGLA, each gi is in particular a differential complex

gi =
⊕

j

g
j
i , di : g

j
i → g

j+1
i ,

and since the maps ∂k,i are morphisms of DGLAs, the space

g•
•
=

⊕
i, j

g
j
i

has a natural bicomplex structure. The associated total complex is denoted by
(Tot(g1), δ), which has no natural DGLA structure. Yet, it can be endowed with a
canonical L∞-algebra structure by homotopy transfer from the homotopy equiva-
lent Thom–Whitney DGLA TotTW (g

1).
For every n ≥ 0, denote by �n the differential graded commutative algebra of

polynomial differential forms on the standard n-simplex 1n:

�n =
K[t0, . . . , tn, dt0, . . . , dtn](∑

ti − 1,
∑

dti
) .

Denote by δk,n
: �n → �n−1, k = 0, . . . , n, the face maps then we have natural

morphisms of DGLAs

δk,n
:�n ⊗ gn→�n−1⊗ gn, ∂k,n :�n−1⊗ gn−1→�n−1⊗ gn
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for every 0≤ k ≤ n. The Thom–Whitney DGLA is defined as

TotTW (g
1)=

{
(xn)n∈N ∈

⊕
n

�n ⊗ gn | δ
k,nxn = ∂k,nxn−1, for all 0≤ k ≤ n

}
.

We denote by dTW the differential of the DGLA TotTW (g
1). It is a remarkable

fact that the integration maps∫
1n
⊗ Id :�n ⊗ gn→ K[n]⊗ gn = gn[n]

give a quasiisomorphism of differential complexes

I : (TotTW (g
1), dTW )→ (Tot(g1), δ).

Moreover, Dupont has described in [Dupont 1976; Dupont 1978] an explicit mor-
phism of differential complexes

E : Tot(g1)→ TotTW (g
1)

and an explicit homotopy

h : TotTW (g
1)→ TotTW (g

1)[−1]

such that
I E = IdTot(g1), E I − IdTotTW (g1) = [h, dTW ].

We also refer to the papers [Cheng and Getzler 2006; Getzler 2004; Navarro Aznar
1987] for the explicit description of E, h and for the proof of the above identities.
Here we point out that E and h are defined in terms of integration over standard
simplexes and multiplication with canonical differential forms and in particular,
the construction of TotTW (g

1), Tot(g1), I , E and h is functorial in the category
DGLA1mon of semicosimplicial DGLAs.

Therefore we are in the position to use the homotopy transfer of L∞ structures
in Theorem 2.1 in order to get a commutative diagram of functors,

DGLA

��

// L∞

��
DGLA1mon

Tot //

T̃ot
66lllllllllllllll
DG.

The L∞ structure C̃(χ) on the mapping cone of a DGLA morphism χ : L→M
is actually a particular case of this more general construction of the L∞-algebra
T̃ot(g1). More precisely, the category DGLA2 of morphisms of DGLAs can be
seen as a full subcategory of the category of semicosimplicial DGLAs via the



L∞ structures on mapping cones 313

functor

{L
χ
−→ M} 

{
L

0 //
χ

// M
////// 0

//////// · · ·

}
,

and we have a commutative diagram

DGLA2

��

C̃ // L∞

��
DGLA1mon

Tot //

T̃ot
66mmmmmmmmmmmmmmm
DG.

To check the commutativity of this diagram, one only needs to identify the
suspended mapping cone Cχ with the total complex Tot(χ1) of the cosimplicial
DGLA

L
0 //
χ

// M
////// 0 ,

the Thom–Whitney DGLA TotTW (χ
1) with the DGLA we have called Hχ in the

main body of the paper, and the Dupont maps I, E, h with the maps we have
denoted ι, π, K .

For instance, to see that Tot(χ1)'Cχ one only needs to notice that the double
complex associated to the cosimplicial DGLA χ1 is

L i+1
χ //

OO

M i+1 //

OO

0

OO

L i
χ //

dL

OO

M i //

dM

OO

0

OO

L i−1
χ //

dL

OO

M i−1 //

dM

OO

0

OO

OO OO OO

an so the total complex Tot(χ1) is the graded vector space

Tot(χ1)i = L i
⊕

M i−1

endowed with the total differential

δ : Tot(χ1)i → Tot(χ1)i+1, (l,m) 7→ (dLl, χ(l)− dM m).
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Therefore, the differential complex (Tot(χ1), δ) is nothing but the suspended map-
ping cone Cχ endowed with its usual differential.

Setting t = t0 = 1− t1 we get an identification �1 ' K[t, dt] and therefore the
Thom–Whitney complex of the semicosimplicial DGLA

L
0 //
χ

// M
////// 0

is isomorphic to the sub-DGLA of L
⊕
(K[t, dt]⊗M) consisting of the differential

forms (l,m(t, dt)) such that m(0)= 0 and m(1)= χ(l), that is, TotTW (χ
1)= Hχ .

Moreover, the Dupont maps [Dupont 1976; Navarro Aznar 1987]

E : Tot(χ1)→ TotTW (χ
1),

(l,m) 7→ (l, t0∂1,1(l)− t1∂0,1(l)− (t0dt1− t1dt0)m)

and
I : TotTW (χ

1)→ Tot(χ1),

(l,m(t0, t1, dt0, dt1)) 7→
(∫
10 l,

∫
11 m(t0, t1, dt0, dt1)

)
are identified with the maps

ı : Cχ → Hχ ,

(l,m) 7→ (l, tχ(l)+ dt ·m)
and

π : Hχ → Cχ ,

(l,m(t, dt)) 7→
(
l,

∫ 1
0 m(t, dt)

)
.

Finally, we identify the Dupont map h : TotTW (χ
1)→ TotTW (χ

1)[−1] with the
map K : Hχ → Hχ [−1]. By definition,

h : TotTW (χ
1)→ TotTW (χ

1)[−1]

(l,m(t0, t1, dt0, dt1)) 7→ (0, t0 · h0(m)+ t1 · h1(m)),

where h0 and h1 are the Poincaré homotopies corresponding to the linear contrac-
tions of the affine hyperplane {t0 + t1 = 1} ⊆ A2 on the points (1, 0) and (0, 1)
respectively:

hi (m)=
∫

s∈[0,1]
φ∗i (m) with φ0(s; t0, t1)= ((1− s)t0+ s, (1− s)t1),

and φ1(s; t0, t1)= ((1− s)t0, (1− s)t1+ s).

Under the identification �1 ' K[t, dt] above, these homotopies read

h0(m(t, dt))=
∫ 1

t
m, h1(m(t, dt))=

∫ 0

t
m,

so

t0h0(m)+ t1h1(m)= t
∫ 1

t
m+ (1− t)

∫ 0

t
m = t

∫ 1

0
m−

∫ t

0
m.
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5. A closer look at the L∞ structure on Cχ

We now look for the explicit expressions for the degree 1 linear maps

〈 〉n :

n⊙
Cχ [1] → Cχ [1], n ≥ 2,

defining the L∞ structure C̃(χ), using the Kontsevich–Soibelman formulas de-
scribed in Proposition 2.2.

The L∞ structure on the differential graded Lie algebra Hχ is given by the
brackets

qk :

k⊙
(Hχ [1])→ Hχ [1],

where qk = 0 for every k ≥ 3,

q1(l,m(t, dt))= (−dl,−dm(t, dt))

and

q2
(
(l1,m1(t, dt))� (l2,m2(t, dt))

)
= (−1)degHχ (l1,m1(t,dt))(

[l1, l2], [m1(t, dt),m2(t, dt)]
)
.

The properties

q2(Im K ⊗ Im K )⊆ kerπ ∩ ker K , qk = 0 for all k ≥ 3,

imply that, fixing the number n ≥ 2 of tails, there exists at most one isomorphism
class of rooted trees giving a nontrivial contribution to 〈 〉n .

• n = 2:
◦

•
GGG

GG
##

◦

•wwwww
;;• ◦//  

ı
JJJ

ıttt

ı
q2

JJJ $$

ı

q2ttt
:: q2 ππ //

This graph gives

〈γ1� γ2〉2 = πq2(ı(γ1)� ı(γ2)).

• n ≥ 3:

◦

•
GGG

GG
##

◦

wwwwww

;;

◦

•wwwww
;;

◦

##

◦

•
GGG

GG
##

◦

•wwwww
;;

•
GGG

GGG

##

◦

•wwwww
;;

• ◦//  

q2

q2
$$

ıttt
ı

q2tttt
::

ıttt
ı

q2tttt
::

ıttt
ı

q2tttt
::

ı
JJJ

ı

q2
JJJ

J
$$

ıttt
ı

q2tttt
::

q2

K
JJJ

K

q2
JJJ $$

q2

K
JJJ

K

q2
JJJ $$

q2 ππ //
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This graph gives, for every n ≥ 3, the formula

〈γ1� · · ·� γn〉n =

=
1
2

∑
σ∈Sn

ε(σ )πq2
(
ı(γσ(1))�K q2

(
ı(γσ(2))�· · ·�K q2(ı(γσ(n−1))�ı(γσ(n))) · · ·

))
=

∑
σ∈Sn

σ(n−1)<σ(n)

ε(σ )πq2
(
ı(γσ(1))�K q2

(
ı(γσ(2))�· · ·�K q2(ı(γσ(n−1))� ı(γσ(n))) · · ·

))
.

A more refined description involving the original brackets in the differential
graded Lie algebras L and M is obtained by decomposing the symmetric powers
of Cχ [1] into types

n⊙
(Cχ [1])=

n⊙
Cone(χ)=

⊕
λ+µ=n

( µ⊙
M

)
⊗

( λ⊙
L[1]

)
.

The operation 〈 〉2 decomposes into

l1� l2 7→ (−1)degL (l1)[l1, l2] ∈ L , m1�m2 7→ 0,

m⊗ l 7→
(−1)degM (m)+1

2
[m, χ(l)] ∈ M.

For every n ≥ 2, it is easy to see that 〈γ1 � · · · � γn+1〉n+1 can be nonzero
only if the multivector γ1 � · · · � γn+1 belongs to

⊙n M ⊗ L[1]. For n ≥ 2,
m1, . . . ,mn ∈ M , and l ∈ L[1], the formula for 〈 〉n+1 described above becomes

〈m1� · · ·�mn ⊗ l〉n+1 =∑
σ∈Sn

ε(σ )πq2
(
(dt)mσ(1)� K q2

(
(dt)mσ(2)� · · ·� K q2((dt)mσ(n)⊗ tχ(l)) · · ·

))
.

Define recursively a sequence of polynomials φi (t) ∈ Q[t] ⊆ K[t] and rational
numbers In by the rule

φ1(t)= t, In =

∫ 1

0
φn(t)dt, φn+1(t)=

∫ t

0
φn(s)ds− t In.

By the definition of the homotopy operator K we have, for every m ∈ M ,

K
(
(φn(t)dt)m

)
= φn+1(t)m.

Therefore, for every m1,m2 ∈ M we have

K q2
(
(dt ·m1)�φn(t)m2

)
=−(−1)degM (m1)φn+1(t)[m1,m2].
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Therefore, we find

〈m1� · · ·�mn ⊗ l 〉n+1

=

∑
σ∈Sn

ε(σ )πq2
(
dt mσ(1)� K q2

(
dt mσ(2)� · · ·� K q2(dt mσ(n)⊗ tχ(l)) · · ·

))
= (−1)1+degM (mσ(n))

∑
σ∈Sn

ε(σ )πq2
(
dt mσ(1)

�K q2
(
dt mσ(2)�· · ·�φ2(t)[mσ(n), χ(l)] · · ·

))
= (−1)n−1+

∑n
i=2 degM (mσ(i))

∑
σ∈Sn

ε(σ )πq2
(
dt mσ(1)�φn(t)[mσ(2), . . . ,

[mσ(n), χ(l)] · · · ]
)

= (−1)n+
∑n

i=1 degM (mi ) In

∑
σ∈Sn

ε(σ )[mσ(1), [mσ(2), . . . , [mσ(n), χ(l)] · · · ]],

which lies in M .
We also have an explicit expression for the coefficients In appearing in the for-

mula for 〈 〉n+1; in the next lemma we show that they are, up to a sign, the Bernoulli
numbers.

Lemma 5.1. For every n ≥ 1 we have In = − Bn/n!, where Bn are the Bernoulli
numbers, that is, the rational numbers defined by the series expansion identity

∞∑
n=0

Bn
xn

n!
=

x
ex − 1

= 1−
x
2
+

x2

12
−

x4

720
+

x6

30240
−

x8

1209600
+ · · ·

Proof. Keeping in mind the definition of Bn , we have to prove that

1−
∑
n=1

Inxn
=

x
ex − 1

.

Consider the polynomials ψ0(t) = 1 and ψn(t) = φn(t)− In for n ≥ 1. Then, for
any n ≥ 1,

d
dt
ψn(t)= ψn−1(t),

∫ 1

0
ψn(t)dt = 0.

Setting

F(t, x)=
∞∑

n=0

ψn(t)xn,

we have

d
dt

F(t, x)=
∞∑

n=1

ψn−1(t)xn
= x F(t, x),

∫ 1

0
F(t, x)dt = 1.
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Therefore, F(t, x)= F(0, x)et x ,

1=
∫ 1

0
F(t, x)dt = F(0, x)

∫ 1

0
et x dt = F(0, x)

ex
− 1
x

,

and then
F(0, x)=

x
ex − 1

.

Since ψn(0)= − In for any n ≥ 1 we get

x
ex − 1

= F(0, x)= 1−
∞∑

n=1

Inxn.

In fact an alternative proof of the equality In = − Bn/n! can be done by observing
that the polynomials n!ψn(t) satisfy the recursive relations of the Bernoulli poly-
nomials; see for example [Remmert 1991]. �

Summing up the results of this section, we have the following explicit descrip-
tion of the L∞ algebra C̃(χ).

Theorem 5.2. The L∞ algebra C̃(χ) is defined by the multilinear maps

〈 〉n :

n⊙
Cχ [1] → Cχ [1]

given by

〈(l,m)〉1 = (−dl,−χ(l)+ dm),

〈m1�m2〉2 = 0,

〈m1� · · ·�mn ⊗ l1� · · ·� lk〉n+k = 0

〈l1� l2〉2 = (−1)degL (l1)[l1, l2],

〈m⊗ l〉2 =
1
2(−1)degM (m)+1

[m, χ(l)],

if n+ k ≥ 3 and k 6= 1,

and

〈m1� · · ·�mn ⊗ l 〉n+1

= − (−1)
∑n

i=1 degM (mi )
Bn

n!

∑
σ∈Sn

ε(σ )
[
mσ(1), [mσ(2), . . . , [mσ(n), χ(l)] · · · ]

]
if n ≥ 2. Here the Bn are the Bernoulli numbers, that is, the rational numbers
defined by the series expansion identity

∞∑
n=0

Bn
xn

n!
=

x
ex − 1

= 1−
x
2
+

x2

12
−

x4

720
+

x6

30240
−

x8

1209600
+ · · ·

Remark 5.3. Via the decalage isomorphism
⊙n

(Cχ [1])
∼
−→ (

∧n Cχ )[n], the linear
maps 〈 〉n defining the L∞-algebra C̃(χ) correspond to multilinear operations [ ]n :



L∞ structures on mapping cones 319∧n Cχ → Cχ [2− n] on Cχ . In particular, the linear map 〈 〉1 corresponds to the
differential δ on Cχ ,

δ : (l,m) 7→ (dl, χ(l)− dm),

whereas the map 〈 〉2 corresponds to the degree-zero bracket

[ ]2 : Cχ ∧Cχ → Cχ

given by

[l1, l2]2 = [l1, l2], [m, l]2 =
1
2 [m, χ(l)], [m1,m2]2 = 0.

This is precisely the naive bracket described in the Introduction.

Remark 5.4. The occurrence of Bernoulli numbers is not surprising. It had al-
ready been noticed by K. T. Chen [1957] how Bernoulli numbers are related to the
coefficients of the Baker–Campbell–Hausdorff formula.

More recently, the relevance of Bernoulli numbers in deformation theory has
been also remarked by Ziv Ran [2004]. In particular, Ran’s “JacoBer” complex
provides an independent description of the L∞ structure C̃(χ); see also [Merkulov
2005].

Bernoulli numbers also appear in some expressions of the gauge equivalence in
a differential graded Lie algebra [Sullivan 2007; Getzler 2004]. In fact the relation
x = ea

∗ y can be written as

x − y =
eada − 1

ada
([a, y] − da).

Applying to both sides the inverse of the operator (eada − 1)/ ada we get

da = [a, y] −
∑
n≥0

Bn

n!
adn

a(x − y).

The multilinear brackets 〈 〉n on Cone(χ)=Cχ [1] can be related to the Koszul (or
“higher derived”) brackets 8n of a differential graded Lie algebra as follows. Let
(M, ∂, [ , ]) be a differential graded Lie algebra. The Koszul brackets

8n :

n⊙
M→ M, n ≥ 1

are the degree-1 linear maps defined as 81 = 0 and

8n(m1 · · ·mn)=
1
n!

∑
σ∈6n

ε(σ )
[
· [[∂mσ(1),mσ(2)],mσ(3)], . . . ,mσ(n)

]
for n ≥ 2. Let L be the differential graded Lie subalgebra of M , given by ∂M and
let χ : L→ M be the inclusion. We can identify M with the image of the injective
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linear map M ↪→Cone(χ) given by m 7→ (∂m,m). Then we have 〈(∂m,m)〉1= 0,

〈(∂m1,m1)� (∂m2,m2)〉2 = (∂82(m1,m2),82(m1,m2))

and, for n ≥ 2,

〈(∂m1,m1)� · · ·� (∂mn+1,mn+1)〉n+1

=
(
0, Bn(−1)n(n+ 1)8n+1(m1� · · ·�mn+1)

)
.

Since the multilinear operations 〈 〉n define an L∞-algebra structure on Cχ =
Cone(χ)[−1], they satisfy a sequence of quadratic relations. Due to the already
mentioned correspondence with the Koszul brackets, these relations are translated
into a sequence of differential or quadratic relations between the odd Koszul brack-
ets, defined as {m}1 = 0 and

{m1, . . . ,mn}n =
1
n!

∑
σ∈6n

ε(σ )(−1)σ [·[[∂mσ(1),mσ(2)],mσ(3)], . . . ,mσ(n)]

for n≥2. For instance, if m1,m2,m3 are homogeneous elements of degree i1, i2, i3

respectively, then

{{m1,m2}2,m3} + (−1)i1i2+i1i3{{m2,m3}2,m1}2

+(−1)i2i3+i1i3{{m3,m1}2,m2}2 =
3
2 ∂{m1,m2,m3}3.

The occurrence of Bernoulli numbers in the L∞-type structure defined by the
higher Koszul brackets has been recently remarked by K. Bering [2006].

6. The Maurer–Cartan functor

Having introduced an L∞ structure on Cχ in Section 5, we have a correspond-
ing Maurer–Cartan functor [Fukaya 2003; Kontsevich 2003] MCCχ : Art→ Set,
defined as

MCCχ (A)=
{
γ ∈ Cχ [1]0⊗mA :

∑
n≥1

〈γ�n
〉n

n!
= 0

}
, A ∈ Art.

With γ = (l,m), l ∈ L1
⊗mA and m ∈ M0

⊗mA, the Maurer–Cartan equation
becomes

0=
∞∑

n=1

〈(l,m)�n
〉n

n!
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= 〈(l,m)〉1+ 1
2〈l
�2
〉2+〈m⊗ l〉2+ 1

2〈m
�2
〉2+

∑
n≥2

n+ 1
(n+ 1)!

〈m�n
⊗ l〉n+1

= − dl − 1
2 [l, l],−χ(l)+ dm− 1

2 [m, χ(l)] +
∑
n≥2

1
n!
〈m�n

⊗ l〉n+1,

which lies in (L2
⊕M1)⊗mA.

According to Theorem 5.2, since degM(m)= degCχ [1](m)= 0, we have

〈m�n
⊗ l〉n+1 = −

Bn

n!

∑
σ∈Sn

[m, [m, . . . , [m, χ(l)] · · · ]] = − Bn adn
m(χ(l)),

where for a ∈ M0
⊗ mA we denote by ada : M ⊗ mA → M ⊗ mA the operator

ada(y)= [a, y].
The Maurer–Cartan equation on Cχ is therefore equivalent to

dl + 1
2 [l, l] = 0,

χ(l)− dm+ 1
2 [m, χ(l)] +

∞∑
n=2

Bn

n!
adn

m(χ(l))= 0.

Since B0 = 1 and B1 = −
1
2 , we can write the second equation as

0= χ(l)− dm+ 1
2 [m, χ(l)] +

∞∑
n=2

Bn

n!
adn

m(χ(l))

= [m, χ(l)] − dm+
∞∑

n=0

Bn

n!
adn

m(χ(l))= [m, χ(l)] − dm+
adm

eadm − 1
(χ(l)).

Applying the invertible operator (eadm − 1)/ adm we get

0= χ(l)+
eadm − 1

adm
([m, χ(l)] − dm).

On the right-hand side of the last formula we recognize the explicit description
of the gauge action

exp(M0
⊗mA)×M1

⊗mA
∗
−→ M1

⊗mA,

ea
∗ y = y+

+∞∑
n=0

adn
a

(n+ 1)!
([a, y] − da)= y+

eada − 1
ada

([a, y] − da).

Therefore, the Maurer–Cartan equation for the L∞-algebra structure on Cχ is
equivalent to {

dl + 1
2 [l, l] = 0,

em
∗χ(l)= 0.
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7. Homotopy equivalence and the deformation functor

Recall that the deformation functor associated to an L∞-algebra g is

Defg =MCg /∼ ,

where ∼ denotes homotopy equivalence of solutions of the Maurer–Cartan equa-
tion: two elements γ0 and γ1 of MCg(A) are called homotopy equivalent if there
exists an element γ (t, dt) ∈MCg[t,dt](A) with γ (0)= γ0 and γ (1)= γ1.

Remark 7.1. The homotopy equivalence is an equivalence relation and a proof of
this fact can be found in [Manetti 2004b, Ch. 9]. The same conclusion also follows
immediately from the more general result [Getzler 2004, Prop. 4.7] that the sim-
plicial set {MCg⊗�n (A)}n∈N is a Kan complex, where �n is the DG commutative
algebra of polynomial differential forms on the standard n-simplex.

We have already described the functor MCCχ in terms of the Maurer–Cartan
equation in L and the gauge action in M . Now we want to prove a similar result
for the homotopy equivalence on MCCχ . We need some preliminary results.

Proposition 7.2. Let (L , d, [ , ]) be a differential graded Lie algebra such that

(1) L = M
⊕

C
⊕

D as graded vector spaces,

(2) M is a differential graded subalgebra of L , and

(3) d : C→ D[1] is an isomorphism of graded vector spaces.

Then, for every A ∈ Art there exists a bijection

α :MCM(A)× (C0
⊗mA)

∼
−→MCL(A), (x, c) 7→ ec

∗ x .

Proof. This is essentially proved in [Schlessinger and Stasheff 1979, Section 5] by
the induction of the length of A and using the Baker–Campbell–Hausdorff formula.
Here we sketch a different proof based on formal theory of deformation functors
[Schlessinger 1968; Rim 1972; Fantechi and Manetti 1998; Manetti 1999].

The map α is a natural transformation of homogeneous functors, so it is suf-
ficient to show that α is bijective on tangent spaces and injective on obstruction
spaces. Recall that the tangent space of MCL is Z1(L), while its obstruction space
is H 2(L). The functor A 7→C0

⊗mA is smooth with tangent space C0 and therefore
tangent and obstruction spaces of the functor

A 7→MCM(A)× (C0
⊗mA)

are respectively Z1(M)
⊕

C0 and H 2(M). The tangent map is

Z1(M)
⊕

C0
3 (x, c) 7→

ec
∗ x = x − dc ∈ Z1(M)

⊕
d(C0)= Z1(M)

⊕
D1
= Z1(L)
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and it is an isomorphism. The inclusion M ↪→ L is a quasiisomorphism, therefore
the obstruction to lifting x in M is equal to the obstruction to lifting x = e0

∗x in L .
We conclude the proof by observing that, according to [Fantechi and Manetti 1998,
Prop. 7.5], [Manetti 1999, Lemma 2.20], the obstruction maps of Maurer–Cartan
functor are invariant under the gauge action. �

Corollary 7.3. Let M be a differential graded Lie algebra, L = M[t, dt] and
C ⊆ M[t] the subspace consisting of polynomials g(t) with g(0) = 0. Then for
every A ∈ Art the map (x, g(t)) 7→ eg(t)

∗ x induces an isomorphism

MCM(A)× (C0
⊗mA)'MCL(A).

Proof. The data M,C and D = d(C) satisfy the condition of Proposition 7.2. �

Corollary 7.4. Let M be a differential graded Lie algebra. Two elements x0, x1 ∈

MCM(A) are gauge equivalent if and only if they are homotopy equivalent.

Proof. If x0 and x1 are gauge equivalent, then there exists g ∈ M0
⊗mA such that

eg
∗x0= x1. Then, by Corollary 7.3. x(t)= et g

∗x0 is an element of MCM[t,dt](A)
with x(0)= x0 and x(1)= x1, that is, x0 and x1 are homotopy equivalent.

Vice versa, if x0 and x1 are homotopy equivalent, there exists

x(t) ∈MCM[t,dt](A)

such that x(0)= x0 and x(1)= x1. By Corollary 7.3., there exists g(t)∈M0
[t]⊗mA

with g(0) = 0 such that x(t) = eg(t)
∗ x0. Then x1 = eg(1)

∗ x0, that is, x0 and x1

are gauge equivalent. �

Theorem 7.5. Let χ : L → M be a morphism of differential graded Lie algebras
and let (l0,m0) and (l1,m1) be elements of MCCχ (A). Then (l0,m0) is homo-
topically equivalent to (l1,m1) if and only if there exists (a, b) ∈ C0

χ ⊗mA such
that

l1 = ea
∗ l0, em1 = edbem0e−χ(a).

Remark 7.6. The condition em1 = edbem0e−χ(a) can be also written as m1•χ(a)=
db •m0, where • is the Baker–Campbell–Hausdorff product in the nilpotent Lie
algebra M0

⊗mA.
As a consequence, we get that in this case the homotopy equivalence is induced

by a group action, which is false for general L∞-algebras.

Proof. We shall say that two elements (l0,m0), (l1,m1) are gauge equivalent if and
only if there exists (a, b) ∈ C0

χ ⊗mA such that

l1 = ea
∗ l0, em1 = edbem0e−χ(a).

We first show that homotopy implies gauge. Let (l0,m0) and (l1,m1) be homo-
topy equivalent elements of MCCχ (A). Then there exists an element (l̃, m̃) of
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MCCχ [s,ds](A) with (l̃(0), m̃(0))= (l0,m0) and (l̃(1), m̃(1))= (l1,m1). According
to Remark 3.3, the Maurer–Cartan equation for (l̃, m̃) is{

dl̃ + 1
2 [l̃, l̃] = 0,

em̃
∗χ(l̃)= 0.

The first of the two equations above tells us that l̃ is a solution of the Maurer–Cartan
equation for L[s, ds]. So, by Corollary 7.3, there exists a degree zero element λ(s)
in L[s] ⊗ mA with λ(0) = 0 such that l̃ = eλ ∗ l0. Evaluating at s = 1 we find
l1= eλ1 ∗ l0. As a consequence of l̃ = eλ ∗ l0, we also have χ(l̃)= eχ(λ) ∗χ(l0). Set
µ̃= m̃•χ(λ)•(−m0), so that m̃= µ̃•m0•(−χ(λ)) and the second Maurer–Cartan
equation is reduced to eµ̃ ∗ (em0 ∗χ(l0))= 0, that is, to eµ̃ ∗ 0= 0, where we have
used the fact that (l0,m0) is a solution of the Maurer–Cartan equation in Cχ . This
last equation is equivalent to the equation dµ̃ = 0 in Cχ [s, ds] ⊗mA. If we write
µ̃(s, ds)= µ0(s)+ ds µ−1(s), then the equation dµ̃= 0 becomes{

µ̇0
− dMµ

−1
= 0,

dMµ
0
= 0,

where dM is the differential in the DGLA M . The solution is, for any fixed µ−1,

µ0(s)=
∫ s

0
dσ dMµ

−1(σ )= − dM

∫ s

0
dσ µ−1(σ ).

Set ν = −
∫ 1

0 ds µ−1(s). Then m1 = m̃(1)= (dMν)•m0 • (−χ(λ1)). In summary,
if (l0,m0) and (m1, l1) are homotopy equivalent, then there exists

(dν, λ1) ∈ (d M−1
⊗mA)× (L0

⊗mA)

such that {
l1 = eλ1 ∗ l0,

m1 = dν •m0 • (−χ(λ1)),

that is, (l0,m0) and (m1, l1) are gauge equivalent.
We now show that gauge implies homotopy. Assume (l0,m0) and (m1, l1) are

gauge equivalent. Then there exists

(dν, λ1) ∈ (d M−1
⊗m)× (L0

⊗m)

such that {
l1 = eλ1 ∗ l0,

m1 = dν •m0 • (−χ(λ1)).

Set l̃(s, ds) = esλ1 ∗ l0. By Corollary 7.3, l̃ satisfies the equation dl̃ + 1
2 [l̃, l̃] = 0.

Set m̃ = (d(sν)) •m0 • (−χ(sλ1)). Reasoning as above, we find

em̃
∗χ(l̃)= ed(sν)

∗ 0= 0.
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Therefore, (l̃, m̃) is a solution of the Maurer–Cartan equation in Cχ [s, ds]. More-
over l̃(0)= l0, l̃(1)= l1, m̃(0)=m0 and m̃(1)= dν •m0 • (−χ(λ1))=m1, that is,
(l0,m0) and (m1, l1) are homotopy equivalent. �

8. Examples and applications

Let χ : L → M be a morphism of differential graded Lie algebras over a field K

of characteristic 0. In the paper [Manetti 2005] one of the authors has introduced,
having in mind the example of embedded deformations, the notion of Maurer–
Cartan equation and gauge action for the triple (L ,M, χ); these notions reduce to
the standard Maurer–Cartan equation and gauge action of L when M = 0. More
precisely, there are two functors of Artin rings MCχ ,Defχ :Art→ Set, defined by

MCχ (A)={
(x, ea) ∈ (L1

⊗mA)× exp(M0
⊗mA) : dx + 1

2 [x, x] = 0, ea
∗χ(x)= 0

}
,

Defχ (A)=
MCχ (A)

gauge equivalence
,

where two solutions of the Maurer–Cartan equation are gauge equivalent if they
belong to the same orbit of the gauge action

(exp(L0
⊗mA)× exp(d M−1

⊗mA))×MCχ (A)
∗
−→MCχ (A)

given by the formula

(el, edm) ∗ (x, ea)= (el
∗ x, edmeae−χ(l))= (el

∗ x, edm•a•(−χ(l))).

The computations of Sections 6 and 7 show that MCχ and Defχ are canonically
isomorphic to the functors MCC̃(χ) and DefC̃(χ) associated with the L∞ structure
on Cχ .

Example 8.1. Let X be a compact complex manifold and let Z ⊂ X be a smooth
subvariety. Denote by 2X the holomorphic tangent sheaf of X and by NZ |X the
normal sheaf of Z in X .

Consider the short exact sequence of complexes

0→ kerπ
χ
−→ A0,∗

X (2X )
π
−→ A0,∗

Z (NZ |X )→ 0.

It is proved in [Manetti 2005] that there exists a natural isomorphism between Defχ
and the functor of embedded deformations of Z in X . Therefore, the L∞ algebra
C̃(χ) governs the embedded deformations in this case.
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The DGLA A0,∗
Z (2Z ) governs the deformations of Z ; the natural transformation

DefC̃(χ) = Defχ → DefA0,∗
Z (2Z )

,

{Embedded deformations of Z} → {Deformations of Z},

is induced by the morphism in DGLA2 given by the diagram

kerπ

χ

��

// A0,∗
Z (2Z )

��
A0,∗

X (2X )
// 0.

The next result was proved in [Manetti 2005] using the theory of extended de-
formation functors. Here we can prove it in a more standard way.

Theorem 8.2. Consider a commutative diagram

L1
fL //

χ1
��

L2

χ2
��

M1
fM // M2

of morphisms of differential graded Lie algebras and assume that

( fL , fM) : Cχ1
→ Cχ2

is a quasiisomorphism of complexes (for example, if both fL and fM are quasiiso-
morphisms). Then the natural transformation Defχ1

→ Defχ2
is an isomorphism.

Proof. The map ( fL , fM) : C̃(χ1)→ C̃(χ2) is a linear quasiisomorphism of L∞-
algebras and then induces an isomorphism of the associated deformation functors
[Kontsevich 2003]. �

Example 8.3. It is shown in [Fiorenza and Manetti 2006] how the L∞ structures
C̃(χ) are related to the period maps of a compact Kähler manifold X . Denote by
AX = F0

⊇ F1
⊇ · · · , the Hodge filtration of differential forms on X , that is, for

every p ≥ 0,
F p
=

⊕
i≥p

⊕
j

Ai, j
X .

For a fixed nonnegative integer p one considers the inclusion of differential graded
Lie algebras{

f ∈ Hom∗(AX , AX ) : f (F p)⊆ F p} χ
−→ Hom∗(AX , AX ).

The contraction of differential forms with vector fields

i : A0,∗
X (2X )→ Hom∗(AX , AX )[−1],
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and the holomorphic Lie derivative

l : A0,∗
X (2X )→

{
f ∈ Hom∗(AX , AX ) : f (F p)⊆ F p}

define a linear map pp
= (l, i) : A0,∗

X (2X )→ Cχ , which is actually a linear L∞-
morphism

pp
: A0,∗

X (2X )→ C̃(χ).

The induced morphism of deformation functors

Pp
: DefX → Defχ ' GrassH∗(F p),H∗(AX )

is the infinitesimal p-th period map of the Kähler manifold X . As immediate
corollaries of this L∞-algebra interpretation of period maps, one recovers Griffiths’
description of the differential of the period map, namely

dPp
= i : H 1(X, TX )→

⊕
i

Hom
(

F p H i (X,C),
H i (X,C)

F p H i (X,C)

)
,

and a proof of the so-called Kodaira’s Principle [Clemens 2005; Manetti 2004a;
Ran 1999] that obstructions to deformations of X are contained in the kernel of

i : H 2(X, TX )→
⊕

i

Hom
(

F p H i (X,C),
H i+1(X,C)

F p H i+1(X,C)

)
,

for every p ≥ 0.

Example 8.4. Let π : A→ B be a surjective morphism of associative K-algebras
and denote by I its kernel. The algebra B is an A-module via π ; this makes B a
trivial I -module. Let K be the suspended Hochschild complex

K = Hoch•(I, B)[−1].

The differential d of K is identically zero if and only if I ·I = 0.
The natural map

α : Hoch•(A, A)→ K [1] = Hoch•(I, B)

is a surjective morphism of complexes, and its kernel

kerα =
{

f : f (I⊗)⊆ I
}

is a Lie subalgebra of Hoch•(A, A) endowed with the Hochschild bracket. Denote
by χ : kerα ↪→ Hoch•(A, A) the inclusion. Since χ is injective, the projection on
the second factor induces a quasiisomorphism of differential complexes

pr2 : Cχ → Coker(χ)[−1] ' K ,
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where the isomorphism on the right is induced by the map α. Therefore we have a
canonical L∞ structure (defined up to homotopy) on K . This gives a Lie structure
on the cohomology of K , which is not trivial in general. Consider for instance the
exact sequence

0→ Kε→ K[ε]/(ε2)
π
−→ K→ 0

and take f ∈ K 1
= H 1(K ) with f (ε) = 1. Choose as a lifting the linear map

g : K[ε]/(ε2)→ K[ε]/(ε2) such that g(1)= 0 and g(ε)= 1. Then

dg(ε⊗ ε)= 2ε

and so dg ∈ kerα. Therefore, (dg, g) is a closed element of C1
χ representing the

cohomology class f ∈ H 1(K ) and so

[ f, f ] = α(pr2([(dg, g), (dg, g)]2))= α([g, dg]).

One computes

[ f, f ](ε⊗ ε)= π([g, dg](ε⊗ ε))

= π
(
g(dg(ε⊗ ε))− dg(g(ε)⊗ ε)+ dg(ε⊗ g(ε))

)
= π(g(2ε)− dg(1⊗ ε)+ dg(ε⊗ 1))= 2.

Hence [ f, f ] 6= 0.
On the other hand, if A = B

⊕
I as an associative K-algebra, then the L∞

structure on K is trivial. Indeed, as K [1] is considered to be a DGLA with trivial
bracket, the obvious map

K [1] = Hoch•(I, B)→ Hoch•(A, A)

gives a commutative diagram of morphisms of DGLAs

0 → kerαy yχ
K [1] → Hoch•(A, A)

such that the composition K→Cχ→ K is the identity. Therefore the L∞-algebra
structure induced on K is isomorphic to C̃(0 ↪→ K [1]), which is a trivial L∞-
algebra.
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