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Finite descent obstructions and
rational points on curves

Michael Stoll

Let k be a number field and X a smooth projective k-variety. In this paper, we
study the information obtainable from descent via torsors under finite k-group
schemes on the location of the k-rational points on X within the adelic points.
Our main result is that if a curve C/k maps nontrivially into an abelian variety
A/k such that A(k) is finite and X(k, A) has no nontrivial divisible element,
then the information coming from finite abelian descent cuts out precisely the
rational points of C . We conjecture that this is the case for all curves of genus at
least 2. We relate finite descent obstructions to the Brauer–Manin obstruction;
in particular, we prove that on curves, the Brauer set equals the set cut out by
finite abelian descent. Our conjecture therefore implies that the Brauer–Manin
obstruction against rational points is the only one on curves.

An errata was posted on 20 March 2017 in an online supplement.

1. Introduction

In this paper we explore what can be deduced about the set of rational points on a
curve (or a more general variety) from the knowledge of its finite étale coverings.

Given a smooth projective variety X over a number field k and a finite étale,
geometrically Galois covering π : Y → X , standard descent theory tells us that
there are only finitely many twists π j : Y j → X of π such that Y j has points
everywhere locally, and then X (k) =

∐
j π j (Y j (k)). Since X (k) embeds into the

adelic points X (Ak), we obtain restrictions on where the rational points on X can
be located inside X (Ak), that is, we must have

X (k)⊂
⋃

j

π j (D j (Ak))=: X (Ak)
π .

Putting the information from all such finite étale coverings together, we arrive at

X (Ak)
f-cov
=

⋂
π

X (Ak)
π .
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Since the information we get cannot tell us more than on which connected compo-
nent a point lies at the infinite places, we make a slight modification by replacing
the v-adic component of X (Ak) with its set of connected components, for infinite
places v. In this way, we obtain X (Ak)• and X (Ak)

f-cov
•

.
We can be more restrictive in the kind of coverings we allow. We denote the

set cut out by restrictions coming from finite abelian coverings only by X (Ak)
f-ab
•

and the set cut out by solvable coverings by X (Ak)
f-sol
•

. Then we have the chain of
inclusions

X (k)⊂ X (k)⊂ X (Ak)
f-cov
•
⊂ X (Ak)

f-sol
•
⊂ X (Ak)

f-ab
•
⊂ X (Ak)• ,

where X (k) is the topological closure of X (k) in X (Ak)•; see Section 5 below.
It turns out that the set cut out by the information coming from finite étale abelian

coverings on a curve C coincides with the “Brauer set”, which is defined using the
Brauer group of C ,

C(Ak)
f-ab
•
= C(Ak)

Br
•
.

This follows easily from the descent theory of Colliot-Thélène and Sansuc; see
Section 7. It should be noted, however, that this result seems to be new. It says that
on curves, all the information coming from torsors under groups of multiplicative
type is already obtained from torsors under finite abelian group schemes.

In this way, it becomes possible to study the Brauer–Manin obstruction on curves
via finite étale abelian coverings. For example, we provide an alternative proof of
the main result in Scharaschkin’s thesis [1999] characterizing C(Ak)

Br
•

in terms
of the topological closure of the Mordell–Weil group in the adelic points of the
Jacobian; see Corollary 7.4.

Let us call X “good” if it satisfies X (k) = X (Ak)
f-cov
•

and “very good” if it
satisfies X (k)= X (Ak)

f-ab
•

.
Then another consequence is that the Brauer–Manin obstruction is the only ob-

struction against rational points on a curve that is very good. More precisely, the
Brauer–Manin obstruction is the only one against a weak form of weak approxima-
tion, namely weak approximation with information at the infinite primes reduced
to connected components.

An abelian variety A/k is very good if and only if the divisible subgroup of
X(k, A) is trivial. For example, if A/Q is a modular abelian variety of analytic
rank zero, then A(Q) andX(Q, A) are both finite, and A is very good. A prin-
cipal homogeneous space X for A such that X (k) = ∅ is very good if and only
if it represents a nondivisible element ofX(k, A). See Corollary 6.2 and the text
follows it.

The main result of this paper says that if C/k is a curve that has a nonconstant
morphism C→ X , where X is (very) good and X (k) is finite, then C is (very) good
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(and C(k) is finite); see Proposition 8.5. This implies that every curve C/Q whose
Jacobian has a nontrivial factor A, namely a modular abelian variety of analytic
rank zero, is very good; see Theorem 8.6. As an application, we prove that all
modular curves X0(N ), X1(N ) and X (N ) (over Q) are very good; see Corollary
8.8. For curves without rational points, we have the following corollary.

Corollary. If C/Q has a nonconstant morphism into a modular abelian variety
of analytic rank zero, and if C(Q) = ∅, then the absence of rational points is
explained by the Brauer–Manin obstruction.

This generalizes a result due to Siksek [2004] by removing all assumptions
related to the Galois action on the fibers of the morphism over rational points.

The paper is organized as follows. After a preliminary section (Section 2) setting
up the notation, we prove in Section 3 some results on abelian varieties, which will
be needed later on, but are also interesting in themselves. Then, in Section 4, we
review torsors and twists and set up some categories of torsors for later use. Section
5 introduces the sets cut out by finite descent information, as sketched above, and
Section 6 relates this to rational points. Next we study the relationship between our
sets X (Ak)

f-cov/f-sol/f-ab
• and the Brauer set X (Ak)

Br
•

together with its variants. This
is done in Section 7. We then discuss certain inheritance properties of the notion
of being “excellent” (which is stronger than “good”) in Section 8. This is then the
basis for the conjecture formulated and discussed in Section 9.

2. Preliminaries

In the following, k will always denote a number field.
Let X be a smooth projective variety over k. We modify the definition of the set

of adelic points of X in the following way.1

X (Ak)• =
∏
v-∞

X (kv)×
∏
v|∞

π0(X (kv)) .

In other words, the factors at infinite places v are reduced to the set of connected
components of X (kv). We then have a canonical surjection X (Ak) −→−→ X (Ak)•.
Note that for a zero-dimensional variety (or reduced finite scheme) Z , we have
Z(Ak)= Z(Ak)•. We will occasionally be a bit sloppy in our notation, pretending
that canonical maps like X (Ak)• → X (AK )• (for a finite extension K ⊃ k) or
Y (Ak)• → X (Ak)• (for a subvariety Y ⊂ X ) are inclusions, even though they in
general are not at the infinite places. For example, the intersection X (K )∩X (Ak)•

means the intersection of the images of both sets in X (AK )•.

1This notation was introduced by Bjorn Poonen.
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If X = A is an abelian variety over k, then∏
v-∞

{0}×
∏
v|∞

A(kv)0 = A(Ak)div

is exactly the divisible subgroup of A(Ak). This implies that

A(Ak)•/n A(Ak)• = A(Ak)/n A(Ak)

and then that

A(Ak)• = lim
←−

A(Ak)•/n A(Ak)• = lim
←−

A(Ak)/n A(Ak)= Â(Ak)

is (isomorphic to) its own componentwise profinite completion and also the com-
ponentwise profinite completion of the usual group of adelic points.

We will denote by Â(k)= A(k)⊗ZẐ the profinite completion lim
←−

A(k)/n A(k) of
the Mordell–Weil group A(k). By a result of Serre [1971, Thm. 3], the natural map
Â(k)→ Â(Ak)= A(Ak)• is an injection and therefore induces an isomorphism with
the topological closure A(k) of A(k) in A(Ak)•. We will reprove this in Proposition
3.7 below, and even show something stronger than that; see Theorem 3.10. (Our
proof is based on a later result of Serre.) Note that we have an exact sequence

0−→ A(k)tors −→ Â(k)−→ Ẑr
−→ 0 ,

where r is the Mordell–Weil rank of A(k); in particular,

Â(k)tors = A(k)tors .

Let Sel(n)(k, A) denote the n-Selmer group of A over k, as usual sitting in an
exact sequence

0−→ A(k)/n A(k)−→ Sel(n)(k, A)−→X(k, A)[n] −→ 0 .

If n | N , we have a canonical map of exact sequences

0 // A(k)/N A(k) //

��

Sel(N )(k, A) //

��

X(k, A)[N ] //

·N/n
��

0

0 // A(k)/n A(k) // Sel(n)(k, A) //X(k, A)[n] // 0

and we can form the projective limit

Ŝel(k, A)= lim
←−

Sel(n)(k, A) ,

which sits again in an exact sequence

0−→ Â(k)−→ Ŝel(k, A)−→ TX(k, A)−→ 0 ,
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where TX(k, A) is the Tate module ofX(k, A) (and the exactness on the right
follows from the fact that the maps A(k)/N A(k)→ A(k)/n A(k) are surjective).
If X(k, A) is finite, or more generally, if the divisible subgroup X(k, A)div is
trivial, then the Tate module vanishes, and Ŝel(k, A)= Â(k). Note also that since
TX(k, A) is torsion-free, we have

Ŝel(k, A)tors = Â(k)tors = A(k)tors .

By the definition of the Selmer group, we get maps

Sel(n)(k, A)−→ A(Ak)/n A(Ak)= A(Ak)•/n A(Ak)•

that are compatible with the projective limit, so we obtain a canonical map

Ŝel(k, A)−→ A(Ak)•

through which the map Â(k)→ A(Ak)• factors. We will denote the elements of
Ŝel(k, A) by P̂ , Q̂ and the like, and we will write Pv, Qv and the like for their
images in A(kv) or π0(A(kv)), so the map Ŝel(k, A) → A(Ak)• is specified as
P̂ 7−→ (Pv)v. (It will turn out that this map is injective; see Proposition 3.7.)

If X is a k-variety, then we use notation like PicX , NSX , and so forth, to denote
the Picard group, Néron–Severi group, and so forth, of X over k̄, as a k-Galois
module.

Finally, we will denote the absolute Galois group of k by Gk .

3. Some results on abelian varieties

In the following, A is an abelian variety over k of dimension g. For N ≥ 1, we set
kN = k(A[N ]) for the N -division field, and k∞ =

⋃
N kN for the division field.

The following lemma, based on a result due to Serre on the image of the Galois
group in Aut(Ators), forms the basis for the results of this section.

Lemma 3.1. There is some m ≥ 1 such that m kills all the cohomology groups
H 1(kN/k, A[N ]).

Proof. By a result of Serre [2000, p. 60], the image of Gk in Aut(Ators)=GL2g(Ẑ)

meets the scalars Ẑ× in a subgroup containing S = (Ẑ×)d for some d ≥ 1. We can
assume that d is even.

Now we note that in

H 1(kN/k, A[N ])
inf
↪→ H 1(k∞/k, A[N ])−→ H 1(k∞/k, Ators) ,

the kernel of the second map is killed by #A(k)tors. Hence it suffices to show that
H 1(k∞/k, Ators) is killed by some m.
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Let G =Gal(k∞/k)⊂GL2g(Ẑ), then S⊂G is a normal subgroup. We have the
inflation-restriction sequence

H 1(G/S, AS
tors)−→ H 1(G, Ators)−→ H 1(S, Ators) .

Therefore it suffices to show that there is some integer D≥ 1 killing both AS
tors and

H 1(S, Ators)= H 1((Ẑ×)d ,Q/Z)2g.
For a prime p, we define

νp =min{vp(ad
− 1) : a ∈ Z×p } .

It is easy to see that when p is odd, we have νp = 0 if p − 1 does not divide d,
and νp = 1+ vp(d) otherwise. Also, ν2 = 1 if d is odd (which we excluded), and
ν2 = 2+ v2(d) otherwise. In particular,

D =
∏

p

pνp

is a well-defined positive integer.
We first show that AS

tors is killed by D. We have

AS
tors =

(⊕
p
(Qp/Zp)

(Z×p )
d )2g

,

and for an individual summand, we see that

(Qp/Zp)
(Z×p )

d
= {x ∈Qp/Zp : (ad

− 1)x = 0 ∀a ∈ Z×p }

= {x ∈Qp/Zp : pνp x = 0}

is killed by pνp, whence the claim.
Now we have to look at H 1(S, Ators). It suffices to consider H 1((Ẑ×)d ,Q/Z).

We start with
H 1((Z×p )

d ,Qp/Zp)= 0 .

To see this, note that (Z×p )
d is procyclic (for odd p, Z×p is already procyclic; for

p= 2, Z×2 is {±1} times a procyclic group, and the first factor goes away under ex-
ponentiation by d, since d was assumed to be even). Let α∈ (Z×p )

d be a topological
generator. By evaluating the cocycles at α, we obtain an injection

H 1((Z×p )
d ,Qp/Zp) ↪→

Qp/Zp

(α− 1)(Qp/Zp)
=

Qp/Zp

pνp(Qp/Zp)
= 0 .

We then can conclude that H 1((Ẑ×)d ,Qp/Zp) is killed by pνp . To see this, write

(Ẑ×)d = (Z×p )
d
× T ,
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where T =
∏

q 6=p(Z
×
q )

d . Then, by inflation-restriction again, there is an exact
sequence

0= H 1((Z×p )
d ,Qp/Zp)−→ H 1((Ẑ×)d ,Qp/Zp)−→ H 1(T,Qp/Zp)

(Z×p )
d
,

and we have (note that T acts trivially on Qp/Zp)

H 1(T,Qp/Zp)
(Z×p )

d
= Hom(T, (Qp/Zp)

(Z×p )
d
) .

This group is killed by pνp, since (Qp/Zp)
(Z×p )

d
is. It follows that

H 1((Ẑ×)d ,Q/Z)=
⊕

p

H 1((Ẑ×)d ,Qp/Zp)

is killed by D =
∏

p pνp .
We therefore find that H 1(G, Ators) is killed by D2, and that H 1(kN/k, A[N ])

is killed by D2 #A(k)tors, for all N . �

Remark 3.2. A similar statement is proved for elliptic curves in [Viada 2003,
Prop. 7].

Lemma 3.3. For all positive integers N , the map

Sel(N )(k, A)−→ Sel(N )(kN , A)

has the kernel killed by m, where m is the number from Lemma 3.1.

Proof. We have the following commutative and exact diagram.

0

��

0

��

0 // ker

��

// H 1(kN/k, A[N ])

inf
��

0 // Sel(N )(k, A)

��

// H 1(k, A[N ])

res
��

0 // Sel(N )(kN , A) // H 1(kN , A[N ]).

So the kernel in question injects into H 1(kN/k, A[N ]), and by Lemma 3.1, this
group is killed by m. �

Lemma 3.4. Let Q ∈ Sel(N )(k, A), and let n be the order of m Q, where m is
the number from Lemma 3.1. Then the density of places v of k such that v splits
completely in kN/k and such that the image of Q in A(kv)/N A(kv) is trivial is at
most 1/(n[kN : k]).
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Proof. By Lemma 3.3, the kernel of Sel(N )(k, A)→ Sel(N )(kN , A) is killed by m.
Hence the order of the image of Q in Sel(N )(kN , A) is a multiple of n, the order
of m Q. Now consider the following diagram for a place v that splits in kN and a
place w of kN above it,

Sel(N )(k, A)

��

// Sel(N )(kN , A)

��

� � // H 1(kN , A[N ])

��

Hom(GkN , A[N ])

��

A(kv)/N A(kv)
∼=

// A(kN ,w)/N A(kN ,w)
� � // H 1(kN ,w, A[N ]) Hom(GkN ,w , A[N ]) .

Let α be the image of Q in Hom(GkN , A[N ]). Then the image of Q is trivial in
A(kv)/N A(kv) if and only if α restricts to the zero homomorphism on GkN ,w . This
is equivalent to saying that w splits completely in L/kN , where L is the fixed field
of the kernel of α. Since the order of α is a multiple of n, we have [L : kN ] ≥ n,
and the claim now follows from the Chebotarev Density Theorem. �

Recall the definition of Ŝel(k, A) and the natural maps

A(k) ↪→ Â(k) ↪→ Ŝel(k, A)−→ A(Ak)• ,

where we denote the rightmost map by

P̂ 7−→ (Pv)v .

Also recall that Ŝel(k, A)tors = A(k)tors under the identification given by the inclu-
sions above.

Lemma 3.5. Let Q̂1, . . . , Q̂s ∈ Ŝel(k, A) be elements of infinite order, and let
n ≥ 1. Then there is some N such that the images of Q̂1, . . . , Q̂s in Sel(N )(k, A)
all have order at least n.

Proof. For a fixed 1≤ j≤ s, consider (n−1)!Q̂ j 6=0. There is some N j such that the
image of (n−1)!Q̂ j in Sel(N j )(k, A) is nonzero. This implies that the image of Q̂ j

has order at least n. Because of the canonical maps Sel(l N j )(k, A)→Sel(N j )(k, A),
this will also be true for all multiples of N j . Therefore, any N that is a common
multiple of all the N j will do. �

Proposition 3.6. Let Z ⊂ A be a finite subscheme of an abelian variety A over k
such that Z(k) = Z(k̄). Let P̂ ∈ Ŝel(k, A) be such that Pv ∈ Z(kv) = Z(k) for a
set of places v of k of density 1. Then P̂ is in the image of Z(k) in Ŝel(k, A).

Proof. In the following, we identify A(k) with its image in Ŝel(k, A). We first
show that P̂ ∈ Z(k)+ A(k)tors. Assume the contrary. Then none of the differences
P̂−Q for Q ∈ Z(k) has finite order. Let n > #Z(k). Then by Lemma 3.5, we can
find a number N such that the image of m(P̂−Q) under Ŝel(k, A)→ Sel(N )(k, A)
has order at least n, for all Q ∈ Z(k).
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By Lemma 3.4, the density of places of k such that v splits in kN and at least
one of P̂ − Q, for Q ∈ Z(k), maps trivially into A(kv)/N A(kv) is at most

#Z(k)
n[kN : k]

<
1

[kN : k]
.

Therefore, there is a set of places v of k of positive density such that v splits
completely in kN/k and such that none of P̂−Q maps trivially into A(kv)/N A(kv).
This implies Pv 6= Q for all Q ∈ Z(k), contrary to the assumption on P̂ and the
fact that Z(kv)= Z(k).

It therefore follows that P̂ ∈ Z(k)+ A(k)tors ⊂ A(k). Take a finite place v of k
such that Pv ∈ Z(k) (the set of such places has density 1 by assumption). Then
A(k) injects into A(kv). But the image Pv of P̂ under Ŝel(k, A)→ A(kv) is in Z ;
therefore we must have P̂ ∈ Z(k). �

The following is a simple, but useful consequence.

Proposition 3.7. If S is a set of places of k of density 1, then

Ŝel(k, A)−→
∏
v∈S

A(kv)/A(kv)0

is injective. (Note that A(kv)0 = 0 for v finite.) In particular,

Â(k)−→
∏
v∈S

A(kv)/A(kv)0

is injective, and the canonical map Â(k)→ A(Ak)• induces an isomorphism be-
tween Â(k) and A(k), the topological closure of A(k) in A(Ak)•.

This is essentially Serre’s result in [Serre 1971, Thm. 3].

Proof. Let P̂ be in the kernel. Then we can apply Proposition 3.6 with Z = {0},
and we find that P̂ = 0.

In the last statement, it is clear that the image of the map is A(k), whence the
result. �

From now on, we will identify Ŝel(k, A) with its image in A(Ak)•. We then
have a chain of inclusions

A(k)⊂ A(k)⊂ Ŝel(k, A)⊂ A(Ak)•, and Ŝel(k, A)/A(k)∼= TX(k, A)

vanishes if and only if the divisible subgroup ofX(k, A) is trivial.
We can prove a result stronger than the above. For a finite place v of k, we

denote by Fv the residue class field at v. If v is a place of good reduction for A,
then it makes sense to speak of A(Fv), the group of Fv-points of A. There is a
canonical map

Ŝel(k, A)−→ A(kv)−→ A(Fv) .
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Lemma 3.8. Let 0 6= Q̂ ∈ Ŝel(k, A). Then there is a set of (finite) places v of k
(of good reduction for A) of positive density such that the image of Q̂ in A(Fv) is
nontrivial.

Proof. First assume that Q̂ /∈ A(k)tors. Then m Q̂ 6= 0, so there is some N such that
m Q̂ has nontrivial image in Sel(N )(k, A) (where m is, as usual, the number from
Lemma 3.1). By Lemma 3.4, we find that there is a set of places v of k of positive
density such that Qv /∈ N A(kv). Excluding the finitely many places dividing N∞
or of bad reduction for A does not change this density. For v in this reduced set,
we have A(kv)/N A(kv)∼= A(Fv)/N A(Fv), and so the image of Q̂ in A(Fv) is not
in N A(Fv), let alone zero.

Now consider the case that Q̂ ∈ A(k)tors \ {0}. We know that for all but finitely
many finite places v of good reduction, A(k)tors injects into A(Fv), so in this case,
the statement is even true for a set of places of density 1. �

Remark 3.9. Note that the corresponding statement for points Q ∈ A(k) is trivial;
indeed, there are only finitely many finite places v of good reduction such that Q
maps trivially into A(Fv). To see this, consider some projective model of A; then
Q and 0 are two distinct points in projective space. They will reduce to the same
point mod v if and only if v divides certain nonzero numbers (2× 2 determinants
formed with the coordinates of the two points). The lemma above says that things
can not go wrong too badly when we replace A(k) by its completion Â(k) or
even Ŝel(k, A).

Theorem 3.10. Let S be a set of finite places of k of good reduction for A and of
density 1. Then the canonical homomorphisms

Ŝel(k, A)−→
∏
v∈S

A(Fv) and Â(k)−→
∏
v∈S

A(Fv)

are injective.

Proof. Let Q̂ be in the kernel. If Q̂ 6=0, then by Lemma 3.8, there is a set of places v
of positive density such that the image of Q̂ in A(Fv) is nonzero, contradicting the
assumptions. So Q̂ = 0, and the map is injective. �

For applications, it is useful to remove in Proposition 3.6 the requirement that
all points of Z have to be defined over k.

Theorem 3.11. Let Z ⊂ A be a finite subscheme of an abelian variety A over k.
Let P̂ ∈ Ŝel(k, A) be such that Pv ∈ Z(kv) for a set of places v of k of density 1.
Then P̂ is in the image of Z(k) in Ŝel(k, A).

Proof. Let K/k be a finite extension such that Z(K ) = Z(k̄). By Proposition
3.6, we have that the image of P̂ in A(AK )• is in Z(K ). Since P̂ is k-rational,
this implies that the image of P̂ in A(AK )• is in Z(k). Now the canonical map
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A(Ak)• → A(AK )• is injective except possibly at some of the infinite places, so
Pv ∈ Z(k) for all but finitely many places. Now, replacing Z by Z(k) and applying
Proposition 3.6 again (this time over k), we find that P̂ ∈ Z(k), as claimed. �

We have seen that for zero-dimensional subvarieties Z ⊂ A, we have

Z(Ak)• ∩ A(k)= Z(k),

or even more generally,

Z(Ak)• ∩ Ŝel(k, A)= Z(k)

(writing intersections for simplicity). One can ask if this is valid more generally
for subvarieties X ⊂ A, that do not contain the translate of an abelian subvariety
of positive dimension.

Question 3.12. Is there such a thing as an “Adelic Mordell–Lang Conjecture”?
A possible statement is as follows. Let A/k be an abelian variety and X ⊂ A

a subvariety not containing the translate of a nontrivial subabelian variety of A.
Then there is a finite subscheme Z ⊂ X such that

X (Ak)• ∩ Ŝel(k, A)⊂ Z(Ak)• .

If this holds, Theorem 3.11 above implies that

X (k)⊂ X (Ak)• ∩ Ŝel(k, A)⊂ Z(Ak)• ∩ Ŝel(k, A)= Z(k)⊂ X (k)

and therefore X (k)= X (Ak)• ∩ Ŝel(k, A). In the notation introduced in Section 5
below and by the discussion in Section 6, this implies

X (k)⊂ X (Ak)
f-ab
•
⊂ X (Ak)• ∩ A(Ak)

f-ab
•
= X (Ak)• ∩ Ŝel(k, A)= X (k) ,

and so X is excellent with respect to the abelian coverings (and hence “very good”).

Remark 3.13. Note that the Adelic Mordell–Lang Conjecture formulated above is
true when k is a global function field, A is ordinary, and X is not defined over k p

(where p is the characteristic of k); see [Voloch 1991]. (The result is also implicit
in [Hrushovski 1996].)

4. Torsors and twists

We now introduce torsors (under finite étale group schemes) and twists, and de-
scribe various constructions that can be done with these objects.

Let X be a smooth projective (reduced, but not necessarily geometrically con-
nected) variety over k.

We will consider the following category Cov(X). Its objects are X -torsors Y
under G (see for example [Skorobogatov 2001] for definitions), where G is a finite
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étale group scheme over k. More concretely, the data consist of a k-morphism
µ : Y ×G→ Y describing a right action of G on Y , together with a finite étale k-
morphism π : Y→ X such that the following diagram is cartesian, id est, identifies
Y ×G with the fiber product Y ×X Y ,

Y ×G

pr1

��

µ
// Y

π

��

Y
π

// X.

We will usually just write (Y,G) for such an object, with the maps µ and π being
understood. Morphisms (Y ′,G ′)→ (Y,G) in Cov(X) are given by a pair of maps,
as k-morphisms of (group) schemes, φ : Y ′ → Y and γ : G ′ → G such that the
obvious diagram

Y ′×G ′

φ×γ

��

µ′
// Y ′

φ

��

π ′
// X

Y ×G
µ

// Y
π

// X

commutes. Note that γ is uniquely determined by φ: if y′ ∈ Y ′, g′ ∈ G ′, there is a
unique g ∈ G such that φ(y′) · g = φ(y′ · g′), so we must have γ (g′)= g.

We will denote by Sol(X) and Ab(X) the full subcategories of Cov(X) whose
objects are the torsors (Y,G) such that G is solvable or abelian, respectively.

If X ′→ X is a k-morphism of (smooth projective) varieties, then we can pull
back X -torsors under G to obtain X ′-torsors under G. This defines covariant func-
tors Cov(X)→ Cov(X ′), Sol(X)→ Sol(X ′) and Ab(X)→Ab(X ′).

The following constructions are described for Cov(X), but they are similarly
valid for Sol(X) and Ab(X).

If (Y1,G1), (Y2,G2) ∈ Cov(X) are two X -torsors, then we can construct their
fiber product (Y,G)∈Cov(X), where Y = Y1×X Y2 and G =G1×G2. More gen-
erally, if (Y1,G1)→ (Y,G) and (Y2,G2)→ (Y,G) are two morphisms in Cov(X),
there is a fiber product (Z , H)∈Cov(X), where Z = Y1×Y Y2 and H =G1×G G2.

If (Y,G)∈Cov(X) is an X -torsor, where now everything is over K with a finite
extension K/k, then we can apply restriction of scalars to obtain

(RK/kY, RK/k G) ∈ Cov(RK/k X).

If (Y,G) ∈ Cov(X) is an X -torsor and ξ is a cohomology class in H 1(k,G),
then we can construct the twist (Yξ ,Gξ ) of (Y,G) by ξ . Here Gξ is the inner
form of G corresponding to ξ (compare, for example, [Skorobogatov 2001, pp. 12,
20]). We will denote the structure maps by µξ and πξ . Usually, H 1(k,G) is just
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a pointed set with distinguished element corresponding to the given torsor; if the
torsor is abelian, H 1(k,G) is a group, and Gξ = G for all ξ ∈ H 1(k,G).

If (φ, γ ) : (Y ′,G ′)→ (Y,G) is a morphism and ξ ∈ H 1(k,G ′), then we get an
induced morphism

(Y ′ξ ,G ′ξ )→ (Yγ∗ξ ,Gγ∗ξ )

where γ∗ is the induced map H 1(k,G ′)→ H 1(k,G). Similarly, twists are com-
patible with pull-backs, fiber products and restriction of scalars.

Twists are transitive in the following sense. If (Y,G) ∈ Cov(X) is an X -
torsor and ξ ∈ H 1(k,G), η ∈ H 1(k,Gξ ), then there is a ζ ∈ H 1(k,G) such that
((Yξ )η, (Gξ )η) ∼= (Yζ ,Gζ ). Conversely, if ξ and ζ are given, then there is an
η ∈ H 1(k,Gξ ) such that the relation above holds.

The following observation does not hold in general for Sol(X) and Ab(X). If
Y

π
→ X is any finite étale morphism, then there is some (Ỹ ,G)∈Cov(X) such that

π̃ : Ỹ → X factors through π . Also, if we have (Y,G) ∈ Cov(X) and (Z , H) ∈
Cov(Y ), then there is some (Z̃ , 0) ∈ Cov(X) such that Z̃ maps to Z over X and
such that the induced map Z̃→ Y gives rise to a Y -torsor (Z̃ , H̃) ∈ Cov(Y ). This
last statement is also valid with Sol(X) and Sol(Y ) in place of Cov(X) and Cov(Y )
(since extensions of solvable groups are solvable).

5. Finite descent conditions

In this section, we use torsors and their twists, as described in the previous section,
in order to obtain obstructions against rational points. The use of torsors under
finite abelian group schemes is classical; it is what is behind the usual descent
procedures on elliptic curves or abelian varieties (and so one can claim that they
go all the way back to Fermat). The nonabelian case was first studied by Harari
and Skorobogatov [2002]; see also [Harari 2000].

The following theorem (going back to Chevalley and Weil [1932]) summarizes
the standard facts about descent via torsors. Compare also [Harari and Skoroboga-
tov 2002, Lemma 4.1] and [Skorobogatov 2001, pp. 105, 106].

Theorem 5.1. Let (Y,G) ∈ Cov(X) be a torsor, where X is a smooth projective
k-variety. Then

(1) X (k)=
∐

ξ∈H1(k,G)
πξ (Yξ (k));

(2) the (Y,G)-Selmer set

Sel(Y,G)(k, X)= {ξ ∈ H 1(k,G) : Yξ (Ak)• 6=∅}

is finite: there are only finitely many twists (Yξ ,Gξ ) such that Yξ has points
everywhere locally.
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At least in principle, the Selmer set in the second statement can be determined
explicitly, and the union in the first statement can be restricted to this finite set.

The idea behind the following considerations is to see how much information
one can get out of the various torsors regarding the image of X (k) in X (Ak)•.
Compare Definition 4.2 in [Harari and Skorobogatov 2002] and Definition 5.3.1 in
Skorobogatov’s book Skorobogatov [2001].

Definition 5.2. Let (Y,G) ∈ Cov(X) be an X -torsor. We say that a point P ∈
X (Ak)• survives (Y,G), if it lifts to a point in Yξ (Ak)• for some twist (Yξ ,Gξ )

of (Y,G).

There is a cohomological description of this property. An X -torsor under G
is given by an element of H 1

ét(X,G). Pull-back through the map Spec k → X
corresponding to a point in X (k) gives a map

X (k)−→ H 1(k,G) .

Note that it is not necessary to refer to nonabelian étale cohomology here: the map
X (k)→ H 1(k,G) induced by a torsor (Y,G) simply arises by associating to a
point P ∈ X (k) its fiber π−1(P) ⊂ Y , which is a k-torsor under G and therefore
corresponds to an element of H 1(k,G).

We get a similar map on adelic points,

X (Ak)• −→
∏
v

H 1(kv,G) .

There is the canonical restriction map

H 1(k,G)−→
∏
v

H 1(kv,G) ,

and the various maps piece together to give a commutative diagram

X (k) //

��

H 1(k,G)

��

X (Ak)• //
∏
v H 1(kv,G).

A point P ∈ X (Ak)• survives (Y,G) if and only if its image in
∏
v H 1(kv,G) is in

the image of the global set H 1(k,G). The (Y,G)-Selmer set is then the preimage
in H 1(k,G) of the image of X (Ak)•; this is completely analogous to the definition
of a Selmer group in case X is an abelian variety A, and G = A[n] is the n-torsion
subgroup of A.

Here are some basic properties.
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Lemma 5.3. (1) If (φ, γ ) : (Y ′,G ′)→ (Y,G) is a morphism in Cov(X), and if
P ∈ X (Ak)• survives (Y ′,G ′), then P also survives (Y,G).

(2) If (Y ′,G) ∈ Cov(X ′) is the pull-back of (Y,G) ∈ Cov(X) under a morphism
ψ : X ′ → X , then P ∈ X ′(Ak)• survives (Y ′,G) if and only if ψ(P) sur-
vives (Y,G).

(3) If (Y1,G1), (Y2,G2) ∈ Cov(X) have fiber product (Y,G), then P ∈ X (Ak)•

survives (Y,G) if and only if P survives both (Y1,G1) and (Y2,G2).

(4) Let X be over K , where K/k is a finite extension, and let (Y,G)∈Cov(X) be
an X-torsor. Then P ∈ (RK/k X)(Ak)• survives (RK/kY, RK/k G) if and only
if its image in X (AK )• survives (Y,G).

(5) If (Y,G) ∈ Cov(X) and ξ ∈ H 1(k,G), then P ∈ X (Ak)• survives (Y,G) if
and only if P survives (Yξ ,Gξ ).

Proof. (1) By assumption, there are ξ ∈ H 1(k,G ′) and Q ∈ Y ′ξ (Ak)• such that
π ′ξ (Q)= P . We have the morphism φξ : Y ′ξ → Yγ∗ξ over X ; hence πγ∗ξ (φξ (Q))=
π ′ξ (Q)= P , whence P survives (Y,G).

(2) Assume that P survives (Y ′,G). There are ξ ∈ H 1(k,G) and Q ∈ Y ′ξ (Ak)•

such that π ′ξ (Q) = P . There is a morphism 9ξ : Y ′ξ → Yξ over ψ , and hence
we have that πξ (9ξ (Q)) = ψ(P), so ψ(P) survives (Y,G). Conversely, assume
that ψ(P) survives (Y,G). Then there are ξ ∈ H 1(k,G) and Q ∈ Yξ (Ak)• such
that πξ (Q) = ψ(P). The twist (Y ′ξ ,Gξ ) is the pull-back of (Yξ ,Gξ ) under ψ ; in
particular, Y ′ξ = Yξ ×X X ′, and so there is Q′ ∈ Y ′ξ (Ak)• mapping to Q in Yξ and
to P in X ′. Hence P survives (Y ′,G).

(3) We have obvious morphisms (Y,G)→ (Yi ,Gi ). So by part (1), if P survives
(Y,G), then it also survives (Y1,G1) and (Y2,G2). Now assume that P survives
both (Y1,G1) and (Y2,G2). Then there are ξ1 ∈ H 1(k,G1) and ξ2 ∈ H 1(k,G2) and
points Q1 ∈ Y1,ξ1(Ak)•, Q2 ∈ Y2,ξ2(Ak)• such that π1,ξ1(Q1)= P and π2,ξ2(Q2)=

P . Consider ξ = (ξ1, ξ2) ∈ H 1(k,G) = H 1(k,G1)× H 1(k,G2). We have that
Yξ = Y1,ξ1 ×X Y2,ξ2 ; hence there is Q ∈ Yξ (Ak)• mapping to Q1 and Q2 under
the canonical maps Yξ → Yi,ξi (i = 1, 2), and to P under πξ : Yξ → X . Hence P
survives (Y,G).

(4) We have H 1(k, RK/k G) = H 1(K ,G), and the corresponding twists are com-
patible. For any ξ in this set, we have RK/kYξ = (RK/kY )ξ , and the adelic points
(RK/kYξ )(Ak)• and Yξ (AK )• are identified. The claim follows.

(5) This comes from the fact that every twist of (Y,G) is also a twist of (Yξ ,Gξ )

and vice versa. �
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By the Descent Theorem 5.1, it is clear that (the image in X (Ak)• of) a rational
point P ∈ X (k) survives every torsor. Therefore it makes sense to study the set of
adelic points that survive every torsor (or a suitable subclass of torsors) in order to
obtain information on the location of the rational points within the adelic points.
Note that the set of points in X (Ak)• surviving a given torsor is closed — it is a
finite union of images of compact sets Yξ (Ak)• under continuous maps.

We are led to the following definitions.

Definition 5.4. Let X be a smooth projective variety over k.

(1) X (Ak)
f-cov
•
= {P ∈ X (Ak)• : P survives all (Y,G) ∈ Cov(X)} .

(2) X (Ak)
f-sol
•
= {P ∈ X (Ak)• : P survives all (Y,G) ∈ Sol(X)} .

(3) X (Ak)
f-ab
•
= {P ∈ X (Ak)• : P survives all (Y,G) ∈Ab(X)} .

(The “f” in the superscripts stands for “finite”, since we are dealing with torsors
under finite group schemes only.)

By the remark made before the definition above, we have

X (k)⊂ X (k)⊂ X (Ak)
f-cov
•
⊂ X (Ak)

f-sol
•
⊂ X (Ak)

f-ab
•
⊂ X (Ak)• .

Here, X (k) is the topological closure of X (k) in X (Ak)•.
Recall the “evaluation map” for P ∈ X (Ak)• and G a finite étale k-group scheme,

evP,G : H 1
ét(X,G)−→

∏
v

H 1(kv,G)

(the set on the left can be considered as the set of isomorphism classes of X -torsors
under G) and the restriction map

resG : H 1(k,G)−→
∏
v

H 1(kv,G) .

In these terms, we have

X (Ak)
f-cov
•
=

⋂
G

{P ∈ X (Ak)• : im(evP,G)⊂ im(resG)} ,

where G runs through all finite étale k-group schemes. We obtain X (Ak)
f-sol
•

and
X (Ak)

f-ab
•

in a similar way, by restricting G to solvable or abelian group schemes.
In the definition above, we can restrict to (Y,G) with Y connected (over k) if

X is connected: if we have (Y,G) with Y not connected, then let Y0 by a con-
nected component of Y , and let G0 ⊂ G be the stabilizer of this component. Then
(Y0,G0) is again a torsor of the same kind as (Y,G), and we have a morphism
(Y0,G0)→ (Y,G). Hence, by Lemma 5.3, (1), if P survives (Y0,G0), then it also
survives (Y,G).
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However, we cannot restrict to geometrically connected torsors when X is ge-
ometrically connected. The reason is that there can be obstructions coming from
the fact that a suitable geometrically connected torsor does not exist.

Lemma 5.5. Assume that X is geometrically connected. If there is a torsor
(Y,G) ∈ Cov(X) such that Y and all twists Yξ are k-connected, but not geomet-
rically connected, then X (Ak)

f-cov
•
= ∅. The analogous statement holds for the

solvable and abelian versions.

Proof. If Yξ is connected, but not geometrically connected, then Yξ (Ak)• = ∅
(this is because the finite scheme π0(Yξ ) is irreducible and therefore satisfies the
Hasse Principle, compare the proof of Proposition 5.12). Hence no point in X (Ak)•

survives (Y,G). �

Let us briefly discuss how this relates to the geometric fundamental group of X
over k̄, assuming X to be geometrically connected. In the following, we write
X̄ = X×k k̄ and so forth, for the base-change of X to a variety over k̄. Every torsor
(Y,G)∈Cov(X) (Sol(X) or Ab(X), respectively) gives rise to a covering Ȳ→ X̄
that is Galois with (solvable or abelian) Galois group G(k̄). The stabilizer 0 of a
connected component of Ȳ is then a finite quotient of the geometric fundamental
group π1(X̄). If we fix an embedding k→ C, then π1(X̄) is the profinite comple-
tion of the topological fundamental group π1(X (C)), so 0 is also a finite quotient
of π1(X (C)). If 0 is trivial, then π0(Y ) is a k-torsor under G, and (Y,G) is the
pull-back of (π0(Y ),G) under the structure morphism X → Spec k. We call such
a torsor trivial. Note that all points in X (Ak)• survive a trivial torsor (since their
image in (Spec k)(Ak)•= (Spec k)(k)= {pt} survives everything); therefore trivial
torsors do not give information.

Conversely, given a finite quotient 0 of π1(X̄) or of π1(X (C)), there is a corre-
sponding covering Ȳ → X̄ that will be defined over some finite extension K of k.
Let π : Y → X K be the covering over K ; it is a torsor under a K -group scheme G
such that G(k̄) = 0. We now construct a torsor (Z , RK/k G) ∈ Cov(X) that
over K factors through π . By restriction of scalars, we obtain (RK/kY, RK/k G) ∈
Cov(RK/k X K ). We pull back via the canonical morphism X→ RK/k X K to obtain
(Z , RK/k G) ∈ Cov(X). Over K , we have the following diagram

Z K //

(RK/k G)K

��

(RK/kY )K
can

//

(RK/k G)K

��

Y

G
��

X K
can

// (RK/k X K )K
can

// X K .

(Here the right hand horizontal maps come from the identity morphism W→W of
a K -variety W, under the identification of Mork(V, RK/k W ) with MorK (VK ,W ),
taking V = RK/k W ; for W = Y and W = X K , respectively.) The composition
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of the lower horizontal maps is the identity morphism; hence (Z K , (RK/k G)K ) ∈

Cov(X K ) maps to (Y,G). Note that the torsor we construct is in Sol(X) (respec-
tively, Ab(X)) when 0 is solvable (respectively, abelian).

Lemma 5.6. Let X be geometrically connected, (Y,G), (Y ′,G ′) ∈ Cov(X) such
that Y is geometrically connected and such that (Ȳ , Ḡ) maps to (Ȳ ′, Ḡ ′) as torsors
of X̄ . Then there is a twist (Y ′ξ ,G ′ξ ) of (Y ′,G ′) such that (Y,G) maps to (Y ′ξ ,G ′ξ ).

Proof. Let (φ, γ ) : (Ȳ , Ḡ)→ (Ȳ ′, Ḡ ′) be the given morphism. Note that by as-
sumption, the covering maps π : Y → X and π ′ : Y ′→ X are defined over k. For
σ ∈ Gk , this implies that (σφ, σγ ) is also a morphism (Ȳ , Ḡ)→ (Ȳ ′, Ḡ ′). We can
then consider the composite morphism

Ȳ
(φ,σφ)
−→ Ȳ ′×X̄ Ȳ ′

∼=
−→ Ȳ ′× Ḡ ′

pr2
−→ Ḡ ′ .

Since Ȳ is connected and Ḡ ′ is discrete, this morphism must be constant. Let
ξσ ∈ G ′(k̄) be its image. It can then be checked that ξ = (ξσ )σ∈Gk is a G ′-valued
cocycle and that after twisting (Y ′,G ′) by ξ , the morphism φ becomes defined
over k; since γ is uniquely determined by φ, the same is true for γ . �

We still assume X to be geometrically connected. Let us call a family of tor-
sors (Yi ,Gi ) ∈ Cov(X) (Sol(X) or Ab(X), respectively) with Yi geometrically
connected a cofinal family of coverings of X (respectively, of solvable or abelian
coverings of X ) if for every (respectively, every solvable or abelian) connected
(Ȳ , Ḡ) ∈ Cov(X̄) (respectively, Sol(X̄) or Ab(X̄)), there is a torsor (Yi ,Gi ) such
that (Ȳi , Ḡi ) maps to (Ȳ , Ḡ). We then have the following.

Lemma 5.7. Let X be geometrically connected.

(1) If X (Ak)
f-cov
•
6= ∅, then there is a cofinal family of coverings of X. A similar

statement holds for X (Ak)
f-sol
•

and solvable coverings, and for X (Ak)
f-ab
•

and
abelian coverings.

(2) If (Yi ,Gi )i is a cofinal family of coverings of X , then P ∈ X (Ak)• is in
X (Ak)

f-cov
•

if and only if P survives every (Yi ,Gi ). Similarly for the solvable
and abelian variants.

Proof.

(1) Let P ∈ X (Ak)
f-cov
•

, and let Ȳ → X̄ be a finite étale Galois covering with
Galois group 0. Then by the discussion before Lemma 5.6, there is a torsor
(Z ,G) ∈ Cov(X), which we can assume to be k-connected, such that (Z̄ , Ḡ)
maps to (Ȳ , 0). Without loss of generality (after perhaps twisting (Z ,G)), we
can assume that (Z ,G) lifts P . This implies that Z is geometrically connected
(compare Lemma 5.5). So if we take all torsors (Z ,G) obtained in this way,
we obtain a cofinal family of coverings of X . The proof in the solvable and
abelian cases is analogous.
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(2) The “only if” part is clear. So assume that P survives all (Yi ,Gi ), and let
(Z , 0)∈Cov(X) be arbitrary. Let Z̄0 be a connected component of Z̄ , and let
0̄0 be the stabilizer of Z̄0. Then there is some (Yi ,Gi ) such that (Ȳi , Ḡi )→

(Z̄0, 0̄0)→ (Z̄ , 0̄); hence by Lemma 5.6, there is a twist (Zξ , 0ξ ) such that
(Yi ,Gi ) maps to it. Since P survives (Yi ,Gi ) by assumption, it also survives
(Zξ , 0ξ ) and therefore (Z , 0), by Lemma 5.3. The proof in the solvable and
abelian cases is again analogous.

�

Lemma 5.8. Let X be geometrically connected.

(1) If π1(X̄) is trivial (that is, X is simply connected), then X (Ak)
f-cov
•
= X (Ak)•.

(2) If the abelianization π1(X̄)ab is trivial, then X (Ak)
f-ab
•
= X (Ak)•.

(3) If π1(X̄) is abelian (respectively, solvable), then X (Ak)
f-cov
•
= X (Ak)

f-ab
•

(re-
spectively, X (Ak)

f-cov
•
= X (Ak)

f-sol
•

).

Proof.

(1) In this case, all torsors are trivial and are therefore survived by all points
in X (Ak)•.

(2) Here the same holds for all abelian torsors.

(3) We always have X (Ak)
f-cov
•
⊂ X (Ak)

f-ab
•

. So let P ∈ X (Ak)
f-ab
•

; then by Lemma
5.7, (1), there is a cofinal family (Yi ,Gi ) of abelian coverings of X , and since
π1(X̄) is abelian, this is also a cofinal family of coverings without restriction.
By part (2) of the same lemma, it suffices to check that P survives all (Yi ,Gi ),
which we know to be true, in order to conclude that P ∈ X (Ak)

f-cov
•

. Similarly
for the solvable variant.

�

We now list some fairly elementary properties of the sets X (Ak)
f-ab/f-sol/f-cov
• .

Proposition 5.9. If X ′
ψ
→ X is a morphism, then ψ(X ′(Ak)

f-cov
•

) ⊂ X (Ak)
f-cov
•

.
Similarly for the solvable and abelian variants.

Proof. Let P ∈ X ′(Ak)
f-cov
•

, and let (Y,G) ∈ Cov(X) be an X -torsor. By as-
sumption, P survives the pull-back (Y ′,G) of (Y,G) under ψ , so by Lemma 5.3,
part (2), ψ(P) survives (Y,G). Since (Y,G) is arbitrary, ψ(P) ∈ X (Ak)

f-cov
•

. The
same proof works for the solvable and abelian variants. �

Lemma 5.10. Let Z = Spec kqSpec k = {P1, P2}. Then

{P1, P2} = Z(k)= Z(Ak)
f-ab
•
.

Proof. Let Q ∈ Z(Ak)• and assume that Q /∈ Z(k). We have to show that Q /∈

Z(Ak)
f-ab
•

. By assumption, there are places v and w of k such that Qv = P1 and
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Qw = P2. We will consider torsors under G = Z/2Z. Pick some α ∈ k× such
that α /∈ (k×v )

2 and α /∈ (k×w )
2. Let Y = Spec k(

√
α) q (Spec k q Spec k); then

(Y,G) ∈ Ab(Z) in an obvious way. We want to show that no twist (Yξ ,G) for
ξ ∈ H 1(k,G)= k×/(k×)2 lifts Q. Such a twist is of one of the following forms:

(Yξ ,G)= Spec k(
√
α)q (Spec kqSpec k),

(Yξ ,G)= (Spec kqSpec k)qSpec k(
√
α),

(Yξ ,G)= Spec k(
√
β)qSpec k(

√
γ ),

where in the last case, β and γ are independent in k×/(k×)2. In the first two cases,
Q does not lift, since in the first case, the first component does not lift Qv, and
in the second case, the second component does not lift Qw (by our choice of α).
In the third case, there is a set of places of k of density 1/4 that are inert in both
k(
√
β) and k(

√
γ ), so Yξ (Ak)• = ∅. In particular, Q does not lift to any of these

twists. �

Proposition 5.11. If X = X1q X2q · · · q Xn is a disjoint union, then

X (Ak)
f-cov
•
=

n∐
j=1

X j (Ak)
f-cov
•

,

and similarly for the solvable and abelian variants.

Proof. It is sufficient to consider the case n = 2. We have maps X1 → X and
X2→ X , so by Proposition 5.9, X1(Ak)

f-cov
•
q X2(Ak)

f-cov
•
⊂ X (Ak)

f-cov
•

(same for
the solvable and abelian variants). For the reverse inclusion, consider the morphism
X→Spec kqSpec k= Z mapping X1 to the first point and X2 to the second point.
If Q ∈ X (Ak)

f-ab
•

, then its image is in Z(Ak)
f-ab
•
= Z(k) (by Proposition 5.9 again

and Lemma 5.10). This means that Q ∈ X1(Ak)• q X2(Ak)•. The claim then
follows easily. �

Proposition 5.12. If Z is a (reduced) finite scheme, then Z(Ak)
f-ab
•
= Z(k).

Proof. By Proposition 5.11, it suffices to prove this when Z =Spec K is connected.
But in this case, it is known that Z satisfies the Hasse Principle. On the other hand,
if Z(k) 6=∅, then Z = Spec k and Z(Ak)• has just one point, so Z(k)= Z(Ak)•.

(The statement that Spec K as a k-scheme satisfies the Hasse Principle comes
down to the following fact.

Fact. If a group G acts transitively on a finite set X such that every g ∈ G fixes at
least one element of X , then #X = 1.

To see this, let n= #X and assume (without loss of generality) that G ⊂ Sn . The
stabilizer Gx of x ∈ X is a subgroup of index n in G. By assumption, G=

⋃
x∈X Gx ,
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so G\{1}=
⋃

x∈X (Gx\{1}). Counting elements now gives #G−1≤n(#G/n−1)=
#G− n, which implies n = 1.) �

Remark 5.13. Note that the Hasse Principle does not hold in general for finite
schemes. A typical counterexample is given by the Q-scheme

Spec Q(
√

13)qSpec Q(
√

17)qSpec Q(
√

13 · 17) .

Proposition 5.14. We have

(X × Y )(Ak)
f-cov
•
= X (Ak)

f-cov
•
× Y (Ak)

f-cov
•

.

Similarly for the solvable and abelian variants.

Proof. Proposition 5.9 implies that

(X × Y )(Ak)
f-cov
•
⊂ X (Ak)

f-cov
•
× Y (Ak)

f-cov
•

(and similarly for the solvable and abelian variants).
For the other direction, we can assume that X and Y are k-connected, compare

Proposition 5.11. If X (say) is not geometrically connected, then X (Ak)•=∅, and
hence (X × Y )(Ak)• = ∅ as well, and the statement is trivially true. So we can
assume that X and Y are geometrically connected.

We now use the fact that π1(X̄ × Ȳ ) = π1(X̄) × π1(Ȳ ). Let P ∈ X (Ak)
f-cov
•

and Q ∈ Y (Ak)
f-cov
•

. By Lemma 5.7, (1), there are cofinal families of coverings
(Vi ,Gi ) of X and (W j , H j ) of Y , which we can assume to lift P , respectively,
Q. Then the products (Vi × W j ,Gi × H j ) form a cofinal family of coverings
of X×Y , and it is clear that they lift (P, Q). By Lemma 5.7, (2), this implies that
(P, Q) ∈ (X × Y )(Ak)

f-cov
•

.
The solvable and abelian variants are proved similarly, using the corresponding

product property of the maximal abelian and solvable quotients of the geometric
fundamental group. �

Proposition 5.15. If K/k is a finite extension and X is a K -variety, then

(RK/k X)(Ak)
f-cov
•
= X (AK )

f-cov
•

(under the canonical identification (RK/k X)(Ak)• = X (AK )•), and similarly for
the solvable and abelian variants.

Proof. Let P ∈ (RK/k X)(Ak)
f-cov
•

, and let (Y,G) ∈ Cov(X). By assumption,
P survives (RK/kY, RK/k G) ∈ Cov(RK/k X), so by Lemma 5.3, part (4), P also
survives (Y,G). Since (Y,G) was arbitrary, P ∈ X (AK )

f-cov
•

, so the left hand side
is contained in the right hand side.

For the proof of the reverse inclusion, we can reduce to the case that X is
K -connected, by Proposition 5.11. If X is K -connected, but not geometrically
connected, then (RK/k X)(Ak)• = X (AK )• =∅, and there is nothing to prove. So
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we can assume that X is geometrically connected. Take P ∈ X (AK )
f-cov
•

. Then
by Lemma 5.7, there is a cofinal family (Yi ,Gi ) of coverings of X . We show that
(RK/kYi , RK/k Gi ) is then a cofinal family of coverings of RK/k X . Indeed, it is
known that RK/k X ∼= X̄ [K :k] (with the factors coming from the various embeddings
of K into k̄), so π1(RK/k X) ∼= π1(X̄)[K :k]. This easily implies the claim. Now,
viewing P as an element of (RK/k X)(Ak)•, we see by Lemma 5.3 that P survives
every (RK/kYi , RK/k Gi ), and hence P ∈ (RK/k X)(Ak)

f-cov
•

.
The same proof works for the solvable and abelian variants. �

Proposition 5.16. If K/k is a finite extension, then

X (Ak)
f-cov
•
⊂ X (Ak)• ∩ X (AK )

f-cov
•

and similarly for the solvable and abelian variants. Note that the intersection is to
be interpreted as the pullback of X (AK )

f-cov
•

under the canonical map X (Ak)•→

X (AK )•, which may not be injective at the infinite places.

Proof. We have a morphism X→ RK/k X K , inducing the canonical map

X (Ak)• −→ (RK/k X K )(Ak)• = X (AK )• .

The claim now follows from combining Propositions 5.9 and 5.15. �

We also have an analogue of the Descent Theorem 5.1.

Proposition 5.17. Let (Y,G) ∈ Cov(X) be an X-torsor. Then

X (Ak)
f-cov
•
=

⋃
πξ (Yξ (Ak)

f-cov
•

) ,

where the union is extended over all twists (Yξ ,Gξ ) of (Y,G), or equivalently, over
the finite set of twists with points everywhere locally. A similar statement holds for
the solvable variant, when G is solvable.

Proof. Note first that by Proposition 5.9, the right hand side is a subset of the left
hand side.

For the reverse inclusion, take P ∈ X (Ak)
f-cov
•

. To ease notation, we will sup-
press the group schemes when denoting torsors in the following. Let Y1, . . . , Ys ∈

Cov(X) (or Sol(X)) be the finitely many twists of Y such that P lifts.
Define τ( j)⊂{1, . . . , s} to be the set of indices i such that for every X -torsor Z

mapping to Y j (or an X -torsor Z over Y j for short), there is a twist Zξ that lifts P
and induces a twist of Y j that is isomorphic to Yi . We make a number of claims
about this function.

(i) τ( j) is nonempty. To see this, note first that for any given Z , the corresponding
set (call it τ(Z)) is nonempty, since by assumption P must lift to some twist of Z ,
and this twist induces a twist of Y j to which P also lifts, and hence this twist
must be one of the Yi . Second, if Z maps to Z ′ (as X -torsors over Y j ), we have
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τ(Z) ⊂ τ(Z ′). Third, for every pair of X -torsors Z and Z ′ over Y j , their relative
fiber product Z×Y j Z ′ maps to both of them. Taking these together, we see that τ( j)
is a filtered intersection of nonempty subsets of a finite set and hence nonempty.

(ii) If i ∈ τ( j), then τ(i) ⊂ τ( j). Let h ∈ τ(i), and let Z be an X -torsor over Y j .
By definition of τ( j), there is a twist Zξ of Z lifting P and inducing the twist Yi

of Y j . Now by definition of τ(i), there is a twist (Zξ )η of Zξ lifting P and inducing
the twist Yh of Yi . By transitivity of twists, this means that we have a twist of Z
lifting P and inducing the twist Yh of Y j . Since Z was arbitrary, this shows that
h ∈ τ( j).

(iii) For some j , we have j ∈ τ( j). Indeed, selecting for each j some σ( j)∈ τ( j)
(this is possible by (i)), the map σ will have a cycle: σm( j) = j for some m ≥ 1
and j . Then by (ii), it follows that j ∈ τ( j).

For this specific value of j , we have therefore proved that every X -torsor Z
over Y j has a twist that lifts P and induces the trivial twist of Y j . This means in
particular that this twist is also a twist of Z as a Y j -torsor.

Now assume that P does not lift to Y j (Ak)
f-cov
•

(or Y j (Ak)
f-sol
•

). Since the preim-
ages of P in Y j (Ak)• form a compact set and since surviving a torsor is a closed
condition, we can find a Y j -torsor V that is not survived by any of the preimages
of P . We can then find an X -torsor Z mapping to V , staying in Sol when working
in that category. (Note that this step does not work for Ab, since extensions of
abelian groups need not be abelian again.) But by what we have just proved, Z
has a twist as a Y j -torsor that lifts a preimage of P , a contradiction. Hence our
assumption that P does not lift to Y j (Ak)

f-cov
•

(or Y j (Ak)
f-sol
•

) must be false. �

Remark 5.18. The analogous statement for X (Ak)
f-ab
•

and G abelian is not true
in general: it would follow that X (Ak)

f-ab
•
= X (Ak)

f-sol
•

, but Skorobogatov (see
[Skorobogatov 2001, § 8] or [Skorobogatov 1999]) has a celebrated example of a
surface X such that

∅= X (Ak)
f-sol
•

( X (Ak)
f-ab
•
.

In fact, there is an abelian covering π : Y → X such that
⋃
ξ πξ (Yξ (Ak)

f-ab
•
) = ∅,

which therefore gives a counterexample to the abelian version of the statement.
Skorobogatov shows that the “Brauer set” X (Ak)

Br
•

is nonempty. In a later paper,
Harari and Skorobogatov [2002, § 5.1] show that there exists an obstruction coming
from a nilpotent, nonabelian covering (arising from an abelian covering of Y ). The
latter means that X (Ak)

f-sol
•
= ∅, whereas the former implies that X (Ak)

f-ab
•
6= ∅,

since X (Ak)
Br
•
⊂ X (Ak)

f-ab
•

; see Section 7 below. The interest in this result comes
from the fact that it is the first example known of a variety where there is no
Brauer–Manin obstruction, yet there are no rational points.
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6. Finite descent conditions and rational points

The ultimate goal behind considering the sets cut out in the adelic points by the
various covering conditions is to obtain information on the rational points. There
is a three-by-three matrix of natural statements relating these sets; see the diagram
below. Here, X (k) is the topological closure of X (k) in X (Ak)•.

X (Ak)
f-cov
• = X (k) +3 X (Ak)

f-cov
• = X (k) +3 X (k)=∅⇐⇒ X (Ak)

f-cov
• =∅

X (Ak)
f-sol
• = X (k) +3

KS

X (Ak)
f-sol
• = X (k) +3

KS

X (k)=∅⇐⇒ X (Ak)
f-sol
• =∅

KS

X (Ak)
f-ab
• = X (k) +3

KS

X (Ak)
f-ab
• = X (k) +3

KS

X (k)=∅⇐⇒ X (Ak)
f-ab
• =∅

KS
(6–1)

We have the implications shown. If X (k) is finite, then we obviously have
X (k)= X (k), and the corresponding statements in the left and middle columns are
equivalent. In particular, this is the case when X is a curve of genus at least 2.

Let us discuss these statements. The ones in the middle column are perhaps the
most natural ones, whereas the ones in the left column are better suited for proofs
(as we will see below). The statements in the right column can be considered as
variants of the Hasse Principle; in some sense they state that the Hasse Principle
will eventually hold if one allows oneself to replace X by finite étale coverings.
Note that the weakest of the nine statements (the one in the upper right corner),
if valid for a class of varieties, would imply that there is an effective procedure to
decide whether there are k-rational points on a variety X within that class or not:
at least in principle, we can list all the X -torsors and for each torsor compute the
finite set of twists with points everywhere locally. If this set is empty, we know that
X (k) = ∅. In order to obtain the torsors, we can for example enumerate all finite
extensions of the function field of X (assuming that X is geometrically connected,
say) and check whether such an extension corresponds to an étale covering of X
that is a torsor under a finite group scheme. On the other hand, we can search for
k-rational points on X at the same time, and as soon as we find one such point, we
know that X (k) 6= ∅. The statement X (k) = ∅⇐⇒ X (Ak)

f-cov
•
= ∅ guarantees

that one of the two events must occur. (Note that X (Ak)
f-cov
•

can be written as a
filtered intersection of compact subsets of X (Ak)•, each coming from one specific
torsor, so if X (Ak)

f-cov
•
= ∅, then already one of these conditions will provide an

obstruction.)
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For X of dimension at least two, none of these statements can be expected to
hold in general. For example, a rational surface X has trivial geometric fundamen-
tal group, and so X (Ak)

f-cov
•
= X (Ak)•. On the other hand, there are examples

known of such surfaces that violate the Hasse principle, so we have ∅ = X (k) (
X (Ak)

f-cov
•
= X (Ak)•. The first example (a smooth cubic surface) was given by

Swinnerton-Dyer [1962]. There are also examples among smooth diagonal cubic
surfaces, see [Cassels and Guy 1966], and in [Colliot-Thélène et al. 1980], an
infinite family of rational surfaces violating the Hasse principle is given.

Let us give names to the properties in the left two columns in the diagram (6–1)
above.

Definition 6.1. Let X be a smooth projective k-variety. We call X

(1) good with respect to all coverings or simply good if X (k)= X (Ak)
f-cov
•

,

(2) good with respect to solvable coverings if X (k)= X (Ak)
f-sol
•

,

(3) good with respect to abelian coverings or very good if X (k)= X (Ak)
f-ab
•

,

(4) excellent with respect to all coverings if X (k)= X (Ak)
f-cov
•

,

(5) excellent with respect to solvable coverings if X (k)= X (Ak)
f-sol
•

,

(6) excellent with respect to abelian coverings if X (k)= X (Ak)
f-ab
•

.

Now let us look at curves in more detail. When C is a curve of genus 0, then it
satisfies the Hasse Principle, so

C(Ak)• =∅⇐⇒ C(k)=∅ ,

and then all the intermediate sets are equal and empty. On the other hand, when
C(k) 6=∅, then C ∼= P1, and C(k) is dense in C(Ak)•, so

C(k)= C(Ak)
f-cov
•
= C(Ak)

f-sol
•
= C(Ak)

f-ab
•
= C(Ak)• .

So curves of genus 0 are always very good.
Now consider the case of a genus 1 curve. If A is an elliptic curve, or more

generally, an abelian variety, then π1( Ā) is abelian, so by Lemma 5.8 we have

A(Ak)
f-cov
•
= A(Ak)

f-sol
•
= A(Ak)

f-ab
•
.

Furthermore, among the abelian coverings, we can restrict to the multiplication-
by-n maps A

n
→ A. (In the terminology used earlier, these coverings are a cofinal

family.) This shows that
A(Ak)

f-ab
•
= Ŝel(k, A) .

Since the cokernel of the canonical map

A(k)∼= Â(k)−→ Ŝel(k, A)
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is the Tate module ofX(k, A), we get the following.

Corollary 6.2. (1) A is very good if and only ifX(k, A)div = 0.

(2) A is excellent with respect to abelian coverings if and only if A(k) is finite and
X(k, A)div = 0.

See [Wang 1996] for a discussion of the situation when one works with A(Ak) in-
stead of A(Ak)•. Note that Wang’s discussion is in the context of the Brauer–Manin
obstruction, which is closely related to the “finite abelian” obstruction considered
here, as discussed in Section 7 below.

Corollary 6.3. If A/Q is a modular abelian variety of analytic rank zero, then A
is excellent with respect to abelian coverings. In particular, if E/Q is an elliptic
curve of analytic rank zero, then E is excellent with respect to abelian coverings.

Proof. In [Kolyvagin 1988; Kolyvagin and Logachëv 1989], it is proved that A(Q)
andX(Q, A) are both finite. Corollary 6.2 then implies that A(AQ)

f-ab
•
= A(Q).

For elliptic curves E/Q, Wiles [1995], Taylor and Wiles [1995], and Breuil,
Conrad, Diamond and Taylor [Breuil et al. 2001] have proved that E is modular,
and so the first assertion applies. �

Now let X be a principal homogeneous space for the abelian variety A. If
X (Ak)•=∅, then all statements in (6–1) are trivially true. So assume X (Ak)• 6=∅,
and let ξ ∈X(k, A) denote the element corresponding to X . By Lemma 5.8, we
have

X (Ak)
f-cov
•
= X (Ak)

f-sol
•
= X (Ak)

f-ab
•
,

and X (Ak)
f-ab
•
=∅ if and only if ξ /∈X(k, A)div. So for ξ 6= 0, X is very good if

and only if ξ /∈X(k, A)div (since X (k)=∅ in this case).
For curves C of genus 2 or higher, we always have that C(k) is finite, and so

the statements in the left and middle columns in (6–1) are equivalent. In this case,
we can characterize the set C(Ak)

f-ab
•

in a different way.

Theorem 6.4. Let C be a smooth projective geometrically connected curve over k.
Let A=Alb0

C be its Albanese variety, and let V =Alb1
C be the torsor under A that

parametrizes classes of zero-cycles of degree 1 on C. Then there is a canonical
map φ : C→ V , and we have

C(Ak)
f-ab
•
= φ−1(V (Ak)

f-ab
•
) .

Of course, since C is a curve, A is the same as the Jacobian variety JacC =Pic0
C ,

and V is its torsor Pic1
C , parametrizing divisor classes of degree 1 on C .

Proof. We know by Proposition 5.9 that φ(C(Ak)
f-ab
•
) ⊂ V (Ak)

f-ab
•

. It therefore
suffices to prove that φ−1(V (Ak)

f-ab
•
)⊂ C(Ak)

f-ab
•

.
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By [Serre 1988, § VI.2], all (connected) finite abelian unramified coverings
of C̄ = C ×k k̄ are obtained through pull-back from isogenies into V̄ ∼= Ā. From
this, we can deduce that the induced homomorphism φ∗ : H 1

ét(V̄ , Ḡ)→ H 1
ét(C̄, Ḡ)

is an isomorphism for all finite abelian k-group schemes G. Since the map φ
is defined over k, we obtain an isomorphism as k-Galois modules. The spectral
sequence associated to the composition of functors H 0(k, H 0

ét(V̄ ,−))= H 0
ét(V,−)

(and similarly for C) gives a diagram with exact rows,

0 // H 1(k,G) // H 1
ét(V,G) //

φ∗

��

H 0(k, H 1
ét(V̄ , Ḡ)) //

∼= φ∗

��

H 2(k,G)

0 // H 1(k,G) // H 1
ét(C,G) // H 0(k, H 1

ét(C̄, Ḡ)) // H 2(k,G).

By the 5-lemma, φ∗ : H 1
ét(V,G)→ H 1

ét(C,G) is an isomorphism.
Let P ∈ C(Ak)• such that φ(P) ∈ V (Ak)

f-ab
•

, and let (Y,G) ∈ Ab(C). Then
by the above, there is (W,G) ∈ Ab(V ) such that Y is the pull-back of W . By
assumption, φ(P) survives (W,G); without loss of generality, (W,G) already
lifts φ(P). (G is abelian, hence equal to all its inner forms.) Then (Y,G) lifts P ,
so P survives (Y,G). Since (Y,G) was arbitrary, P ∈ C(Ak)

f-ab
•

. �

Remark 6.5. The result in the preceding theorem will hold more generally for
smooth projective geometrically connected varieties X instead of curves C , pro-
vided all finite étale abelian coverings of X̄ can be obtained as pullbacks of isoge-
nies into the Albanese variety of X . For this, it is necessary and sufficient that the
(geometric) Néron–Severi group of X is torsion-free; see [Serre 1988, VI.20].

For arbitrary varieties X , we can define a set X (Ak)
Alb
•

consisting of the adelic
points on X surviving all torsors that are pull-backs of V -torsors (where V is the
k-torsor under A that receives a canonical map φ from X ), and then the result above
will hold in the form

X (Ak)
Alb
•
= φ−1(V (Ak)

f-ab
•
) .

We trivially have X (Ak)
f-ab
•
⊂ X (Ak)

Alb
•

.
In particular, we get that X (Ak)

Alb
•
= X (Ak)• if X has trivial Albanese variety.

For example, this is the case for all complete intersections of dimension at least 2
in some projective space. (By Exercise III.5.5 in [Hartshorne 1977], H 1(X̄ ,O)= 0
in this case, so the Picard variety and therefore also its dual Alb0(X) are trivial.)
If in addition NSX is torsion-free, then X (Ak)

f-ab
•
= X (Ak)• as well.

Corollary 6.6. Let C be a smooth projective geometrically connected curve over k.
Let A be its Albanese (or Jacobian) variety, and let V = Alb1

C = Pic1
C as above.

(1) If C(Ak)• =∅, then C(Ak)
f-ab
•
= C(k)=∅.
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(2) If C(Ak)• 6= ∅ and V (k) 6= ∅ (so that C has a k-rational divisor class of
degree 1), then there is a k-defined embedding φ : C ↪→ A, and we have

C(Ak)
f-ab
•
= φ−1(Ŝel(k, A)) .

If X(k, A)div = 0, we have

C(Ak)
f-ab
•
= φ−1(A(k)) .

(3) If C(Ak)• 6=∅ and V (k)=∅, then, using the canonical map φ : C→ V , we
have

C(Ak)
f-ab
•
= φ−1(V (Ak)

f-ab
•
) .

Let ξ ∈X(k, A) be the element corresponding to V . By assumption, ξ 6= 0.
Then if ξ /∈X(k, A)div (and so in particular whenX(k, A)div = 0), we have
C(k)= C(Ak)

f-ab
•
=∅.

Similar statements are true for more general X in place of C , with X (Ak)
Alb
•

in
place of C(Ak)

f-ab
•

.

Proof. This follows immediately from Theorem 6.4, taking into account the de-
scriptions of A(Ak)

f-ab
•

and V (Ak)
f-ab
•

in Corollary 6.2 and the text following it. �

Let X be a smooth projective geometrically connected k-variety, let A be its Al-
banese variety, and denote by V the k-torsor under A such that there is a canonical
map φ : X → V . (V corresponds to the cocycle class of σ 7→ [Pσ − P] ∈ A(k̄)
for any point P ∈ X (k̄).) If V (k) 6= ∅, then V is the trivial torsor, and there is
an n-covering of V , that is, a V -torsor under A[n]. So the nonexistence of an
n-covering of V is an obstruction against rational points on V and therefore on X .

If an n-covering of V exists, we can pull it back to a torsor (Y, A[n]) ∈Ab(X),
and we will say that a point P ∈ X (Ak)• survives the n-covering of X if it survives
(Y, A[n]). If there is no n-covering, then by definition no point in X (Ak)• survives
the n-covering of X . If we denote the set of adelic points surviving the n-covering
of X by X (Ak)

n-ab
•

, then we have

X (Ak)
Alb
•
=

⋂
n≥1

X (Ak)
n-ab
•

.

In particular, for a curve C , we get

C(Ak)
f-ab
•
=

⋂
n≥1

C(Ak)
n-ab
•

.
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7. Relation with the Brauer–Manin obstruction

In this section, we study the relationship between the finite covering obstructions
introduced in Section 5 and the Brauer–Manin obstruction. This latter obstruction
was introduced by Manin [1971] in 1970 in order to provide a unified framework
to explain violations of the Hasse Principle.

The idea is as follows. Let X be, as usual, a smooth projective geometrically
connected k-variety. We then have the (cohomological) Brauer group

Br(X)= H 2
ét(X,Gm) .

If K/k is any field extension and P ∈ X (K ) is a K -point of X , then the corre-
sponding morphism Spec K→ X induces a homomorphism φP :Br(X)→Br(K ).
If K = kv is a completion of k, then there is a canonical injective homomorphism

invv : Br(kv) ↪→Q/Z

(which is an isomorphism when v is a finite place). In this way, we can set up a
pairing

X (Ak)•×Br(X)−→Q/Z , ((Pv), b) 7−→ 〈(Pv), b〉Br =
∑
v

invv(φPv (b)) .

By a fundamental result of Class Field Theory, k-rational points on X pair trivially
with all elements of Br(X). This implies that

X (k)⊂ X (Ak)
Br
•
= {P ∈ X (Ak)• : 〈P, b〉Br = 0 for all b ∈ Br(X)} .

The set X (Ak)
Br
•

is called the Brauer set of X . If it is empty, one says that there
is a Brauer–Manin obstruction against rational points on X . More generally, if
B ⊂ Br(X) is a subgroup (or subset), we can define X (Ak)

B
•

in a similar way as
the subset of points in X (Ak)• that pair trivially with all b ∈ B.

The main result of this section is that for a curve C , we have

C(Ak)
Br
•
= C(Ak)

f-ab
•
,

see Corollary 7.3 below. This implies that all the results we have deduced or
will deduce about finite abelian descent obstructions on curves also apply to the
Brauer–Manin obstruction.

We first recall that the (algebraic) Brauer–Manin obstruction is at least as strong
as the obstruction coming from finite abelian descent. For a more precise statement,
see [Harari and Skorobogatov 2002, Thm. 4.9]. We define

Br1(X)= ker(Br(X)−→ Br(X ×k k̄))⊂ Br(X)

and set X (Ak)
Br1
•
= X (Ak)

Br1(X)
• .
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Theorem 7.1. For any smooth projective geometrically connected variety X , we
have

X (Ak)
Br
•
⊂ X (Ak)

Br1
•
⊂ X (Ak)

f-ab
•
.

Proof. The main theorem of descent theory of Colliot-Thélène and Sansuc [1987],
as extended by Skorobogatov (see [Skorobogatov 1999] and [Skorobogatov 2001,
Thm. 6.1.1]), states that X (Ak)

Br1
•

is equal to the set obtained from descent ob-
structions with respect to torsors under k-groups G of multiplicative type, which
includes all finite abelian k-groups. This proves the second inclusion. The first one
follows from the definitions. �

It is known that (see [Skorobogatov 2001, Cor. 2.3.9]; use that H 3(k, k̄×)= 0)

Br1(X)
Br0(X)

∼= H 1(k,PicX ) ,

where Br0(X) denotes the image of Br(k) in Br(X). We also have the canonical
map H 1(k,Pic0

X )→ H 1(k,PicX ). Define Br1/2(X) to be the subgroup of Br1(X)
that maps into the image of H 1(k,Pic0

X ) in H 1(k,PicX ). (Manin [1971] calls it
Br′1(X).) In addition, for n ≥ 1, let Br1/2,n(X) be the subgroup of Br1(X) that
maps into the image of H 1(k,Pic0

X )[n]. Then

Br1/2(X)=
⋃
n≥1

Br1/2,n(X), and X (Ak)
Br1/2
• =

⋂
n≥1

X (Ak)
Br1/2,n
• .

Recall the definition of X (Ak)
Alb
•

from Remark 6.5 and the fact that

X (Ak)
f-ab
•
⊂ X (Ak)

Alb
•
=

⋂
n≥1

X (Ak)
n-ab
•

.

Theorem 7.2. Let X be a smooth projective geometrically connected variety, and
let n ≥ 1. Then

X (Ak)
n-ab
•
⊂ X (Ak)

Br1/2,n
• .

In particular,

X (Ak)
f-ab
•
⊂ X (Ak)

Alb
•
⊂ X (Ak)

Br1/2
• .

Proof. Given the first statement, the second statement is clear.
The first statement follows from Theorem 7.5 below. However, since our proof

of the inclusion given here is fairly simple, we include it.
So consider P ∈ X (Ak)

n-ab
•

and b ∈ Br1/2,n(X). We have to show that 〈b, P〉Br

vanishes, where 〈·, ·〉Br is the Brauer pairing between X (Ak)• and Br(X).
Let b′ be the image of b in

Br1(X)/Br0(X)∼= H 1(k,PicX ),
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and let b′′ ∈ H 1(k,Pic0
X )[n] be an element mapping to b′ (which exists because

b ∈ Br1/2,n(X)).
Let A be the Albanese variety of X , and let V be the k-torsor under A that

has a canonical map φ : X → V . Then we have Pic0
X
∼= Pic0

A
∼= Pic0

V . Since

P ∈ X (Ak)
n-ab
•

φ
→ V (Ak)

n-ab
•

, the latter is nonempty, and hence V admits a torsor
of the form (W, A[n]).

Since P maps into V (Ak)
n-ab
•

, there is some twist of (W, A[n]) such that φ(P)
lifts to it. Without loss of generality, (W, A[n]) is already this twist, so there is
Q′ ∈ W (Ak)• such that π ′(Q′) = φ(P), where π ′ : W → V is the covering map
associated to (W, A[n]).

Let (Y, A[n]) ∈Ab(X) be the pull-back of (W, A[n]) to X . Then there is some
Q ∈ Y (Ak)• such that π(Q) = P . Now the left hand diagram below induces the
one on the right, where the rightmost vertical map is the multiplication by n.

Y //

π

��

W

π ′

��

PicY Pic0
Y

oo Pic0
W

oo Pic0
A

X
φ

// V PicX

π∗

OO

Pic0
X

oo

π∗

OO

Pic0
V

π ′
∗

OO

∼=
oo Pic0

A

·n

OO

Chasing b′′ around the diagram on the right, after applying H 1(k,−) to it, we see
that π∗(b′)= 0 in Br(Y )/Br0(Y ). Finally, we have

〈b, P〉Br = 〈b′, π(Q)〉Br = 〈π
∗(b′), Q〉Br = 0 .

�

So we have the chain of inclusions

X (Ak)
Br
•
⊂ X (Ak)

Br1
•
⊂ X (Ak)

f-ab
•
⊂ X (Ak)

Alb
•
⊂ X (Ak)

Br1/2
• .

It is then natural to ask to what extent one might have equality in this chain of
inclusions. We certainly get something when Br1/2(X) already equals Br1(X) or
even Br(X).

Corollary 7.3. If X is a smooth projective geometrically connected variety such
that the canonical map H 1(k,Pic0

X )→ H 1(k,PicX ) is surjective, then

X (Ak)
Br1
•
= X (Ak)

f-ab
•
= X (Ak)

Alb
•
.

In particular, if C is a curve, then C(Ak)
Br
•
= C(Ak)

f-ab
•

.

Proof. In this case, Br1/2(X) = Br1(X), and so the result follows from the two
preceding theorems.

When X = C is a curve, then we know that Br(C ×k k̄) is trivial (Tsen’s The-
orem); also H 1(k,Pic0

C) surjects onto H 1(k,PicC), since the Néron–Severi group
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of C is Z with trivial Galois action, and H 1(k,Z) = 0. Hence Br(C) = Br1/2(C),
and the assertion follows. �

The result of Corollary 7.3 means that we can replace C(Ak)
f-ab
•

by C(Ak)
Br
•

everywhere. For example, from Corollary 6.6, we obtain the following.

Corollary 7.4. Let C be a smooth projective geometrically connected curve over k,
and let A be its Albanese (or Jacobian) variety. Assume thatX(k, A)div = 0.

(1) If C has a k-rational divisor class of degree 1 inducing a k-defined embedding
C ↪→ A, then

C(Ak)
Br
•
= φ−1(A(k)) ,

where φ denotes the induced map C(Ak)•→ A(Ak)• .

(2) If C has no k-rational divisor class of degree 1, then C(Ak)
Br
•
=∅.

These results can be found in Scharaschkin’s thesis Scharaschkin [1999]. Our
approach provides an alternative proof, and the more precise version in Corollary
6.6 shows how to extend the result to the case when the Shafarevich–Tate group of
the Jacobian is not necessarily assumed to have trivial divisible subgroup.

We can strengthen Theorem 7.2.

Theorem 7.5. Let X be a smooth projective geometrically connected variety. Then

X (Ak)
n-ab
•
= X (Ak)

Br1/2,n
•

for all n ≥ 1. In particular,

X (Ak)
Alb
•
= X (Ak)

Br1/2
• .

Proof. This follows from the descent theory of Colliot-Thélène and Sansuc. Let
M = Pic0

X [n], and let λ : M → PicX be the inclusion. Then the n-coverings
of X are exactly the torsors of type λ in the language of the theory; compare for
example [Skorobogatov 2001]. (Note that the dual of M is A[n], where A is the
Albanese variety of X .) We have Brλ = Br1/2,n , and the result then follows from
Thm. 6.1.2,(a) in [Skorobogatov 2001]. �

Remark 7.6. Since X (Ak)
Br1
•
⊂ X (Ak)

f-ab
•
⊂ X (Ak)

Br1/2
• , it is natural to ask whether

there might be a subgroup B ⊂ Br1(X) such that X (Ak)
f-ab
•
= X (Ak)

B
•

. As Joost
van Hamel pointed out to me, a natural candidate for B is the subgroup mapping
to the image of H 1(k,PicτX ) in H 1(k,PicX ), where PicτX is the saturation of Pic0

X
in PicX , that is, the subgroup of elements mapping into the torsion subgroup of the
Néron–Severi group NSX . It is tempting to denote this B by Br2/3, but perhaps
Brτ is the better choice. Note that Brτ = Br1/2 when NSX is torsion free, in which
case we have X (Ak)

f-ab
•
= X (Ak)

Alb
•
= X (Ak)

Br1/2
• .
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Corollary 7.7. If C/k is a curve that has a rational divisor class of degree 1, then

C(Ak)
n-ab
•
= C(Ak)

Br[n]
•

.

In words, the information coming from n-torsion in the Brauer group is exactly the
information obtained by an n-descent on C.

Proof. Under the given assumptions, H 1(k,Pic0
C)= H 1(k,PicC)= Br(C)/Br(k),

and Br(k) is a direct summand of Br(C). Therefore, the images of Br1/2,n(C) and
of Br(C)[n] in Br(C)/Br0(C) agree, and the claim follows. �

Corollary 7.8. If X is a smooth projective geometrically connected variety such
that the Néron–Severi group of X (over k̄) is torsion-free, then there is a finite field
extension K/k such that

X (AK )
Br1
•
= X (AK )

f-ab
•
.

Proof. We have an exact sequence

H 1(k,Pic0
X )−→ H 1(k,PicX )−→ H 1(k,NSX ) .

Since NSX is a finitely generated abelian group, the Galois action on it factors
through a finite quotient Gal(K/k) of the absolute Galois group of k. Then

H 1(K ,NSX )= Hom(G K ,Zr )= 0,

and the claim follows from Theorem 7.2. �

Note that it is not true in general that X (Ak)
Br1
•
= X (Ak)

f-ab
•

(even when the
Néron–Severi group of X over k̄ is torsion-free). For example, a smooth cubic
surface X in P3 has X (Ak)

f-cov
•
= X (Ak)• (since it has trivial geometric fundamental

group), but may well have X (Ak)
Br1
•
=∅, even though there are points everywhere

locally. See [Colliot-Thélène et al. 1987a], where the algebraic Brauer–Manin
obstruction is computed for all smooth diagonal cubic surfaces

X : a1 x3
1 + a2 x3

2 + a3 x3
3 + a4 x3

4 = 0

with integral coefficients 0 < ai < 100, thereby verifying that it is the only ob-
struction against rational points on X (and thus providing convincing experimental
evidence that this may be true for smooth cubic surfaces in general). This compu-
tation produces a list of 245 such surfaces with points everywhere locally, but no
rational points, since X (AQ)

Br1
•
=∅.

It is perhaps worth mentioning that our condition that H 1(k,Pic0
X ) surjects onto

H 1(k,PicX ), which leads to the identification of the “algebraic Brauer–Manin ob-
struction” and the “finite abelian descent obstruction”, is in some sense orthogonal
to the situation studied (quite successfully) in [Colliot-Thélène and Sansuc 1987;
Colliot-Thélène et al. 1980; 1987b], where it is assumed that PicX is torsion-free
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(and therefore Pic0
X is trivial), and so there can be a Brauer–Manin obstruction only

when our condition fails. There is then no finite abelian descent obstruction, and
one has to look at torsors under tori instead.

In general, we have a diagram of inclusions:

X (k)⊂ X (k) ⊂
X (Ak)

Br
•
⊂ X (Ak)

Br1
•
⊂

⊂ X (Ak)
f-cov
•
⊂ X (Ak)

f-sol
•
⊂

X (Ak)
f-ab
•
⊂ X (Ak)

Br1/2
• ⊂ X (Ak)• .

We expect that every inclusion can be strict. We discuss them in turn.

(1) X = P1 has X (k)( X (k)= X (Ak)•.

(2) Skorobogatov’s famous example (see [Skorobogatov 1999; Harari and Sko-
robogatov 2002]) has X (Ak)

Br
•
6=∅, but X (Ak)

f-sol
•
=∅, showing that X (k)(

X (Ak)
Br
•

and X (Ak)
f-sol
•

( X (Ak)
f-ab
•

are both possible.

(3) As mentioned above, Colliot-Thélène et al. [1987a] have examples such that
X (Ak)

Br1
•
=∅, but X (Ak)

f-cov
•
= X (Ak)•. This shows that X (k)( X (Ak)

f-cov
•

and X (Ak)
Br1
•

( X (Ak)
f-ab
•

are both possible.

(4) [Harari 1996] has examples, where there is a “transcendental”, but no “al-
gebraic” Brauer–Manin obstruction, which means that X (Ak)

Br
•
= ∅, but

X (Ak)
Br1
•
6=∅. Hence we can have X (Ak)

Br
•

( X (Ak)
Br1
•

.

(5) If we take a finite nonabelian simple group for π1(X̄) in Cor. 6.1 in [Harari
2000], then the proof of this result shows that X (Ak)

f-cov
•

( X (Ak)•. On the
other hand, X (Ak)

f-sol
•
= X (Ak)•, since there are only trivial torsors in Sol(X);

compare Lemma 5.8.

(6) A construction using Enriques surfaces like that in [Harari and Skorobogatov
2005] should produce an example such that X (Ak)

Br1/2
• = X (Ak)

Alb
•
= X (Ak)•,

since the Albanese variety is trivial, but X (Ak)
f-ab
•

( X (Ak)•, since there is a
nontrivial abelian covering.

(7) Finally, in Section 8 below, we will see many examples of curves X that have
X (k)= X (Ak)

Br1/2
• ( X (Ak)•.

A new obstruction? For curves, we expect the interesting part of the diagram of
inclusions above to collapse: X (k) = X (Ak)

Br1/2
• ; see the discussion in Section 9

below. For higher-dimensional varieties, this is far from true; see the discussion
above. So one could consider a new obstruction obtained from a combination of
the Brauer–Manin and the finite descent obstructions, as follows. Define

X (Ak)
f-cov,Br
•

=

⋂
(Y,G)∈Cov(X)

⋃
ξ∈H1(k,G)

πξ (Yξ (Ak)
Br
•
) .
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(This is similar in spirit to the “refinement of the Manin obstruction” introduced
in [Skorobogatov 1999].)

It would be interesting to find out how strong this obstruction is and whether it is
strictly weaker than the obstruction obtained from all torsors under (not necessarily
finite or abelian) k-group schemes. Note that the latter is at least as strong as the
Brauer–Manin obstruction by [Harari and Skorobogatov 2002, Thm. 4.10] (see
also Prop. 5.3.4 in [Skorobogatov 2001]), at least if one assumes that all elements
of Br(X) are represented by Azumaya algebras over X .

8. Finite descent conditions on curves

Let us now prove some general properties of the notions, introduced in Section 6
above, of being excellent with respect to all, solvable, or abelian coverings in the
case of curves. In the following, C , D, and so forth, will be (smooth projective
geometrically connected) curves over k. We will use ι to denote an embedding
of C into its Jacobian (if it exists). Also, if C(Ak)

Br
•
=∅ (and therefore C(k)=∅,

too), we say that the absence of rational points is explained by the Brauer–Manin
obstruction. Note that by Corollary 7.3, C(Ak)

Br
•
= C(Ak)

f-ab
•

, which implies that
the absence of rational points is explained by the Brauer–Manin obstruction when
C is excellent with respect to abelian coverings and C(k) = ∅. We will use this
observation below without explicit mention.

Corollary 8.1. Let C/k be a curve of genus at least 1, with Jacobian J . Assume
that X(k, J )div = 0 and that J (k) is finite. Then C is excellent with respect to
abelian coverings. If C(k)=∅, then the absence of rational points is explained by
the Brauer–Manin obstruction.

Proof. By Corollary 6.6, under the assumption onX(k, J ), either C(Ak)
f-ab
•
=∅,

and there is nothing to prove, or else

C(Ak)
f-ab
•
= ι−1(J (k))= ι−1(J (k))= C(k) .

�

The following result shows that the statement we would like to have, namely
that C(Ak)

f-ab
•
= C(k), holds for finite subschemes of a curve.

Theorem 8.2. Let C/k be a curve of genus at least 1, and let Z ⊂ C be a finite
subscheme. Then the image of Z(Ak)• in C(Ak)• meets C(Ak)

f-ab
•

in Z(k). More
generally, if P ∈ C(Ak)

f-ab
•

is such that Pv ∈ Z(kv) for a set of places v of k of
density 1, then P ∈ Z(k).

Proof. Let K/k be a finite extension such that C has a rational divisor class of
degree 1 over K . By Corollary 6.6, we have that

C(AK )
f-ab
•
= ι−1(Ŝel(K , J )) ,
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where ι :C(AK )•→ J (AK )• is the map induced by an embedding C ↪→ J over K .
Now we apply Theorem 3.11 to the image of Z in J . We find that ι(P)∈ Ŝel(K , J )
and so ι(P) ∈ ι(Z(K )). Since ι is injective (even at the infinite places!), we find
that the image of P in C(AK )• is in (the image of) Z(k). Now if Z(k) is empty, this
gives a contradiction and proves the claim in this case. Otherwise, C(k)⊃ Z(k) is
nonempty, and we can take K = k above, which gives the statement directly. �

The following results show that the “excellence properties” behave nicely.

Proposition 8.3. Let K/k be a finite extension, and let C/k be a curve of genus at
least 1. If CK is excellent with respect to all, solvable, or abelian coverings, then
so is C.

Proof. By Proposition 5.16, we have

C(k)⊂ C(Ak)
f-cov
•
⊂ C(Ak)• ∩C(AK )

f-cov
•
= C(Ak)• ∩C(K )= C(k) .

Similarly for C(Ak)
f-sol
•

and C(Ak)
f-ab
•

. Strictly speaking, this means that C(k)
and C(Ak)

f-cov
•

have the same image in C(AK )•. Now, since C(K ) has to be finite
in order to equal C(AK )

f-cov
•

, C(k) is also finite, and we can apply Theorem 8.2 to
Z = C(k)⊂ C and the set of finite places of k. �

Proposition 8.4. Let (D,G) ∈ Cov(C) (or Sol(C)). If all twists Dξ of (D,G) are
excellent with respect to all (respectively, solvable) coverings, then C is excellent
with respect to all (respectively, solvable) coverings.

Proof. By Theorem 5.1, C(k)=
∐
ξ πξ (Dξ (k)). Now, by Proposition 5.17,

C(k)⊂ C(Ak)
f-cov
•
=

⋃
ξ

πξ (Dξ (Ak)
f-cov
•

)=
⋃
ξ

πξ (Dξ (k))= C(k) .

If G is solvable, the same proof shows the statement for C(Ak)
f-sol
•

. �

Proposition 8.5. Let C
φ
→ X be a nonconstant morphism over k from the curve C

into a variety X. If X is excellent with respect to all, solvable, or abelian coverings,
then so is C. In particular, if X (Ak)

f-ab
•
= X (k) and C(k)=∅, then the absence of

rational points on C is explained by the Brauer–Manin obstruction.

Proof. First assume that C is of genus zero. Then either C(Ak)• =∅, and there is
nothing to prove, or else C(k) is dense in C(Ak)•, implying that X (k) ( X (k) ⊂
X (Ak)

f-cov
•

and thus contradicting the assumption.
Now assume that C is of genus at least 1. Let P ∈ C(Ak)

f-cov/f-sol/f-ab
• . Then by

Proposition 5.9, φ(P) ∈ X (Ak)
f-cov/f-sol/f-ab
• = X (k). Let Z ⊂ C be the preimage

(subscheme) of φ(P) ∈ X (k) in C . This is finite, since φ is nonconstant. Then
we have that P is in the image of Z(Ak)• in C(Ak)•. Now apply Theorem 8.2 to
conclude that P ∈ C(Ak)

f-ab
•
∩ Z(Ak)• = Z(k)⊂ C(k). �
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As an application, we have the following.

Theorem 8.6. Let C → A be a nonconstant morphism over k of a curve C into
an abelian variety A. Assume thatX(k, A)div = 0 and that A(k) is finite. (For
example, this is the case when k=Q and A is modular of analytic rank zero.) Then
C is excellent with respect to abelian coverings. In particular, if C(k) = ∅, then
the absence of rational points on C is explained by the Brauer–Manin obstruction.

Proof. By Corollary 6.2, we have A(Ak)
f-ab
•
= A(k). Now by Proposition 8.5, the

claim follows. �

This generalizes a result proved by Siksek [2004] under additional assumptions
on the Galois action on the fibers of φ above k-rational points of A, in the case that
C(k) is empty. A similar observation was made independently by Colliot-Thélène
[2004]. Note that both previous results are in the context of the Brauer–Manin
obstruction.

Examples 8.7. We can use Theorem 8.6 to produce many examples of curves C
over Q that are excellent with respect to abelian coverings. Concretely, let us look
at the curves Ca : y2

= x6
+a, where a is a nonzero integer. Ca maps to the two el-

liptic curves Ea : y2
= x3
+a and Ea2 (the latter by sending (x, y) to (a/x2, ay/x3)).

So whenever one of these elliptic curves has (analytic) rank zero, we know that Ca

is excellent with respect to abelian coverings. For example, this is the case for all
a such that |a| ≤ 20, with the exception of a = −15,−13,−11, 3, 10, 11, 15, 17.
Note that Ca(Q) is always nonempty (there are two rational points at infinity).

We can even show a whole class of interesting curves to be excellent with respect
to abelian coverings.

Corollary 8.8. If C/Q is one of the modular curves X0(N ), X1(N ), X (N ) and
such that the genus of C is positive, then C is excellent with respect to abelian
coverings.

Proof. By a result of Mazur [1977], every Jacobian J0(p) of X0(p), where p= 11
or p ≥ 17 is prime, has a nontrivial factor of analytic rank zero. Also, if M | N ,
then there are nonconstant morphisms X1(N )→ X0(N )→ X0(M). Hence the
assertion is true for all X0(N ) and X1(N ) such that N is divisible by one of the
primes in Mazur’s result. For the other minimal N such that X0(N ) (respectively,
X1(N )) is of positive genus, William Stein’s tables [≥ 2007] prove that there is a
factor of J0(N ) (respectively, J1(N )) of analytic rank zero. So we get the result for
all X0(N ) and X1(N ) of positive genus. Finally, X (N )maps to X0(N 2), and so we
obtain the result also for X (N ) (except in the genus zero cases N = 1, 2, 3, 4, 5).

�

For another example, involving high-genus Shimura curves, see [Skorobogatov
2005].
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Remark 8.9. There is some relation with the “Section Conjecture” from Grothen-
dieck’s anabelian geometry [Grothendieck 1997]. Let C/k be a smooth projective
geometrically connected curve of genus ≥ 2. One can prove that if C has the
“section property”, then C is excellent with respect to all coverings, which in turn
implies that C has the “birational section property”. See [Koenigsmann 2005]
for definitions. For example, all the curves X0(N ), X1(N ) and X (N ) have the
birational section property if they are of higher genus.

9. Discussion

In the preceding section, we have seen that we can construct many examples of
higher-genus curves that are excellent with respect to abelian coverings. This leads
us to the following conjecture.

Conjecture 9.1 (Main Conjecture). If C is a smooth projective geometrically con-
nected curve over a number field k, then C is very good.

By what we have seen, for curves of genus 1, this is equivalent to saying that
the divisible subgroup ofX(k, E) is trivial, for every elliptic curve E over k. For
curves C of higher genus, the statement means that C is excellent with respect to
abelian coverings. We recall that our conjecture would follow in this case from the
“Adelic Mordell–Lang Conjecture” formulated in Question 3.12.

Remark 9.2. When k is a global function field of characteristic p, then the Main
Conjecture holds when J = JacC has no isotrivial factor and J (ksep)[p∞] is finite.
See recent work by Poonen and Voloch [2006].

If the Main Conjecture holds for C and C(k) is empty, then (as previously dis-
cussed) we can find a torsor that has no twists with points everywhere locally and
thus prove that C(k) is empty. The validity of the conjecture (even just in case
C(k) is empty) therefore implies that we can algorithmically decide whether a
given smooth projective geometrically connected curve over a number field k has
rational points or not.

In Section 7 above, we have shown that for a curve C , we have

C(Ak)
f-ab
•
= C(Ak)

Br
•
,

where on the right hand side, we have the Brauer subset of C(Ak)•, that is, the
subset cut out by conditions coming from the Brauer group of C . We say that, if
C(Ak)

Br
•
=∅, there is a Brauer–Manin obstruction against rational points on C . A

corollary of our Main Conjecture is that the Brauer–Manin obstruction is the only
obstruction against rational points on curves over number fields (which means that
C(k) = ∅ implies C(Ak)

Br
•
= ∅). To our knowledge, before this work (and Poo-

nen’s heuristic, see his conjecture below, which was influenced by the discussions
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we had at the IHP in Paris in Fall 2004) nobody gave a conjecturally positive answer
to the question, first formulated on page 133 in [Skorobogatov 2001], whether the
Brauer–Manin obstruction might be the only obstruction against rational points on
curves. No likely counterexample is known, but there is an ever-growing list of
examples, for which the failure of the Hasse Principle could be explained by the
Brauer–Manin obstruction; see the discussion below (which does not pretend to be
exhaustive) or also Skorobogatov’s recent paper Skorobogatov [2005] on Shimura
curves.

Let v be a place of k. Under a local condition at v on a rational point P ∈C , we
understand the requirement that the image of P in C(kv) is contained in a specified
closed and open (“clopen”) subset of C(kv). If v is an infinite place, this just means
that we require P to be on some specified connected component(s) of C(kv); for
finite places, we can take something like a “residue class”. With this notion, the
Main Conjecture above is equivalent to the following statement.

Let C/k be a curve as above. Specify local conditions at finitely many places
of k and assume that there is no point in C(k) satisfying these conditions. Then
there is some n ≥ 1 such that no point in

∏
v Xv ⊂ C(Ak)• survives the n-covering

of C, where Xv is the set specified by the local condition at those places where a
condition is specified, and Xv = C(kv) (or π0(C(kv))) otherwise.

This says that the “finite abelian” obstruction (equivalently, the Brauer–Manin
obstruction) is the only obstruction against weak approximation in C(Ak)•.

We see that the conjecture implies that we can decide if a given finite collection
of local conditions can be satisfied by a rational point. Now the question is how
practical it might be to actually do this in concrete cases. For certain classes of
curves and specific values of n, it may be possible to explicitly and efficiently
find the relevant twists. For example, this can be done for hyperelliptic curves
and n = 2; compare [Bruin and Stoll 2007a]. However, for general curves and/or
general n, this approach is likely to be infeasible.

On the other hand, assume that we can find J (k) explicitly, where J , as usual, is
the Jacobian of C . This is the case (at least in principle) whenX(k, J )div=0. Then
we can approximate C(Ak)

f-ab
•

more and more precisely by looking at the images
of C(Ak)• and of J (k) in

∏
v∈S J (kv)/N J (kv) for increasing N and finite sets S of

places of k. If C(k) is empty and the Main Conjecture holds, then for some choice
of S and N , the two images will not intersect, giving an explicit proof that C(k)=
∅. An approach like this was proposed (and carried out for some twists of the
Fermat quartic) by Scharaschkin [1999]. See [Flynn 2004] for an implementation
of this method and [Bruin and Stoll 2007b] for improvements. In [Poonen et al.
2007], this procedure is used to rule out rational points satisfying certain local
conditions on a genus 3 curve whose Jacobian has Mordell–Weil rank 3.
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In order to test the conjecture, Nils Bruin and the author conducted an experi-
ment; see [Bruin and Stoll 2006]. We considered all genus 2 curves over Q of the
form

y2
= f6 x6

+ f5 x5
+ · · ·+ f1 x + f0 (9–1)

with coefficients f0, . . . , f6 ∈ {−3,−2, . . . , 3}. For each isomorphism class of
curves thus obtained, we attempted to decide if there are rational points or not.
On about 140,000 of these roughly 200,000 curves (up to isomorphism), we found
a (fairly) small rational point. Of the remaining about 60,000, about half failed
to have local points at some place. On the remaining about 30,000 curves, we
performed a 2-descent and found that for all but 1,492 curves C , C(AQ)

2-ab
•
= ∅,

proving that C(Q)=∅ as well. For the 1,492 curves that were left over, we found
generators of the Mordell–Weil group (assuming the Birch and Swinnerton-Dyer
Conjecture for a small number of them) and then did a computation along the lines
sketched above. This turned out to be successful for all curves, proving that none
of them has a rational point. The conclusion is that the Main Conjecture holds for
curves C as in (9–1) if C(Q) = ∅, assumingX(Q, J )div = 0 for the Jacobian J
if C is one of the 1,492 curves mentioned, and assuming in addition the Birch and
Swinnerton-Dyer Conjecture if C is one of 42 specific curves.

At least in case C(k) is empty, there are heuristic arguments due to Poonen
[2006] that suggest that an even stronger form of our conjecture might be true.

Conjecture 9.3 (Poonen). Let C be a smooth projective geometrically connected
curve of genus ≥ 2 over a number field k, and assume that C(k) = ∅. Assume
further that C has a rational divisor class of degree 1, and let ι : C → J be the
induced embedding of C into its Jacobian J . Then there is a finite set S of finite
places of good reduction for C such that the image of J (k) in

∏
v∈S J (Fv) does not

meet
∏
v∈S ι(C(Fv)).

Note that under the assumptionX(k, J )div= 0, we must have a rational divisor
(class) of degree 1 on C whenever C(Ak)

f-ab
•
6= ∅, compare Corollary 6.6, so the

condition above is not an essential restriction.
Let us for a moment assume that Poonen’s Conjecture holds and that all abelian

varieties A/k satisfyX(k, A)div = 0. Then for all curves C/k of higher genus,
C(k) = ∅ implies C(Ak)

f-ab
•
= ∅. If we apply this observation to coverings of C ,

then we find that C must be excellent with respect to solvable coverings. The
argument goes like this. Let P ∈C(Ak)

f-sol
•

, and assume P /∈C(k). There are only
finitely many rational points on C , and hence there is an n such that P lifts to a
different n-covering D of C than all the rational points. (Take n such that P − Q
is not divisible by n in J (Ak)•, for all Q ∈ C(k), where J is the Jacobian of C .)
In particular, D(k) must be empty. But then, by Poonen’s Conjecture, we have
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D(Ak)
f-ab
•
=∅, so P cannot lift to D either. This contradiction shows that P must

be a rational point.
In particular, this would imply that all higher-genus curves have the “birational

section property”; compare Remark 8.9.
A more extensive and detailed discussion of these conjectures, their relations to

other conjectures, and evidence for them will be published elsewhere.
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