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The zeta function of monomial
deformations of Fermat hypersurfaces

Remke Kloosterman

This paper intends to give a mathematical explanation for results on the zeta
function of some families of varieties recently obtained in the context of mirror
symmetry. In the process we obtain concrete and explicit examples for some re-
sults recently used in algorithms to count points on smooth hypersurfaces in Pn .

In particular, we extend the monomial-motive correspondence of Kadir and
Yui and we give explicit solutions to the p-adic Picard–Fuchs equation associ-
ated with monomial deformations of Fermat hypersurfaces.

As a byproduct we obtain Poincaré duality for the rigid cohomology of certain
singular affine varieties.

1. Introduction

One of the families under consideration in this paper is the famous one-parameter
family (Dwork family) of quintic threefolds Xλ ⊂ P4

Fq
given by

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 + λx0x1x2x3x4 = 0, (1)

where λ ∈ Fq is a parameter. Candelas et al. [2003] observed that the zeta function
of this variety can be written as

R1(t, λ)R2(t, λ)20 R3(t, λ)30

(1− t)(1− qt)(1− q2t)(1− q3t)
,

where the Ri are of degree 4. Candelas et al. gave expressions in λ for the zeroes
of the Ri : to explain this, note that we can lift this family to a family over the ring
Zq of Witt vector over Fq . This enables us to consider this family as a family in P4

over the field of fractions Qq of Zq . Assume that λ ∈ Fq is chosen such that Xλ is
smooth. Denote by λ the Teichmüller lift of λ. Specifically, Candelas et al. show
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that the zeroes of the zeta function of Xλ can be expressed in certain solutions of
the p-adic Picard–Fuchs equation (associated with the family Xλ) evaluated at λ.

This fact was proved in a more general context, but less explicitly, by N. Katz
[1968]. His description of the zeta function in terms of the Picard–Fuchs equation
is exploited by Lauder [2004] in order to give an algorithm to count points on
smooth hypersurfaces in Pn .

Some other families are investigated by Kadir [2004]. She obtained similar
results. From this, one might conjecture that various factors of the zeta function are
enumerated by so-called (admissible) monomial types modulo certain equivalence
relations. We come back to this in Section 1.3.

Kadir and Yui [2006] noticed that monomial types are occurring in the study
of several objects related to (1), for example in the Picard–Fuchs equation or in
the enumeration of the factors of the zeta function. In the case λ = 0, they also
appear in the enumeration of the Jacobi sums needed to compute the number of
points of the variety at λ= 0. They proved a certain correspondence between these
monomial types for Fermat varieties. Our aim is to present a different view on the
above mentioned phenomena.

We should mention that N. Katz [2007] and Rojas-Leon and Wan [2007] stud-
ied the zeta function of families similar to (1) by using (`-adic) hypergeometric
sheaves. We recommend [Katz 2007] for a discussion on previous results on the
Dwork family.

The main object of study in this paper are families Xλ/Fq defined by the van-
ishing of polynomials of the form

Fλ :=
n∑

i=0
xdi

i + λ
∏
i

xai
i (2)

in a weighted projective space P := P(w0, . . . , wn), with wi di = d for all i , the
ai are nonnegative and

∑
wi ai = d; moreover, we assume that gcd(q, d) = 1.

Such families will be called one-parameter monomial deformations of a Fermat
hypersurface. For the rest of the introduction fix such a weighted projective space,
and such a one-parameter deformation of a Fermat hypersurface. Let a denote the
vector (w0a0, w1a1, . . . , wnan) ∈ (Z/dZ)n+1. We call a the deformation vector.

The main technical result of this paper implies that the p-adic Picard–Fuchs
equation associated with such a family is a generalized hypergeometric differential
equation. We refer to Sections 1.2 and 5 for more on this.

Let Uλ := P \ Xλ. Since

Z(Xλ, t)Z(Uλ, t)= Z(P, t),

the value of Z(Xλ, t) is uniquely determined by Z(Uλ, t). Hence from now on we
will only discuss how to calculate Z(Uλ, t).
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1.1. Choice of the cohomology theory. The Lefschetz fixed point formula allows
us to prove statements on the zeta function by considering the action of geometric
Frobenius on certain cohomology groups. Very often one uses étale cohomology.
This is particularly useful when one wants to compare results in characteristic p>0
with results in characteristic 0, or if one wants to consider Galois-representations
on certain `-adic vector spaces.

However, for our purposes it seems more natural to use p-adic cohomology
theories instead. One can represent cohomology classes of a variety over a finite
field Fq by differential forms with coefficients in Qq . This allows us to perform
several (basic) analytic tricks when computing with cohomology classes.

To be more precise, let λ be a lift of λ to Qq , let Fλ be a lift of Fλ and Uλ.
Since Uλ is affine, we can define Monsky–Washnitzer groups cohomology (see
Section 3) H i (Uλ,Qq). The elements in H i (Uλ,Qq) are differential forms with
Qq -coefficients. There is a lift Frobq of the Frobenius acting on these groups.

To illustrate how explicitly one can compute with Monsky–Washnitzer coho-
mology, we proceed to produce a basis for H i (Uλ). Let

� :=

(∏
j

x j

)∑
(−1)iwi

dx0

x0
∧

dx1

x1
∧ · · · ∧

d̂xi

xi
∧ · · · ∧

dxn

xn
.

Proposition 1.1. Let Xλ be quasismooth. Then the cohomology groups H i (Uλ,Qq)

are zero except for i = 0, n. The group H 0(Uλ,Qq) is one-dimensional and Frobe-
nius acts trivially on it. The following set is a basis for H n(Uλ,Qq):{∏n

i=0 xki
i

(Fλ)t
� : 0≤ ki < di − 1 ∀i,

∑
i

wi (ki + 1)= td
}
.

This basis will be called the standard basis. We are not aware of a proper refer-
ence for this standard fact in our context. We prove this proposition in Section 3.
Proposition 1.1 is a combination of Theorem 3.8 and Proposition 3.16.

The proof is based on the fact that for quasismooth Xλ, de Rham cohomology
of Uλ with Qp coefficients is isomorphic to the Monsky–Washnitzer cohomology
of Uλ [Baldassarri and Chiarellotto 1994]. By a theorem of Steenbrink [1977] we
have the isomorphism

H n
dR(Uλ)∼=

⊕
t>0

H 0(�n(t Xλ))/dH 0(�n−1((t − 1)Xλ)).

The vector space on the right-hand side is very well understood.
However, if Xλ is not quasismooth then the dimension of the right-hand side

depends on the choice of the lift λ. If we choose λ in such a way that Xλ is not
quasismooth then the right-hand side is infinite-dimensional. In that case one needs
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to add more relations to get an isomorphism with H n(Uλ). Which relations one
needs to add is not very well understood.

A vector

k := (w0(k0+ 1), . . . , wn(kn + 1)) ∈
∏

i

(wi Z/dZ)

is called an admissible monomial type if for all i , we have ki 6≡ −1 mod di and∑
wi (ki + 1) ≡ 0 mod d . Fix an admissible monomial type k. Take elements

ki ∈ Z satisfying 0≤ ki ≤ di −2 and ki ≡ ki mod di . Then with k we associate the
standard basis vector

ωk :=

∏
xki

i

(Fλ)t
�.

Remark 1.2. The results mentioned in Section 3 imply that

Z(Uλ, t)=

(
det

(
I − qn(Frob∗q)

−1t | H n(Uλ,Qq)
))(−1)n+1

(1− qnt)
.

From here on we formulate our results in terms of the characteristic polynomial of
qn(Frob∗q)

−1 on H n(Uλ,Qq), rather than in terms of Z(Uλ, t).

1.2. Deformation behavior. We produce a solution to the p-adic Picard–Fuchs
equation that turns out to give us a description of the dependence of λ of the action
of Frobenius on H n(Uλ), where λ is in the p-adic unit disc.

Following [Katz 1968], we consider the commutative diagram

H n(Uλq )
Frob∗q //

A(λq )

��

H n(Uλ)

A(λ)
��

H n(U0)
Frob∗q // H n(U0)

where λ is on a small p-adic disc around the origin, and A is a solution to the
Picard–Fuchs equation associated with the family Xλ. Using p-adic analytic con-
tinuation we can extend A(λ)−1 Frob∗q,0 A(λq) to the closed unit disc, although
A(λ) itself cannot be extended to the p-adic unit disc.

Let λ0 ∈ Qq be the Teichmüller lift of some element λ0 ∈ Fq . Then λq
0 = λ0,

hence the above diagram implies that the action of Frobq on H n(Uλ0) can be recov-
ered from the p-adic analytic continuation of A(λ)−1 Frob∗q,0 A(λq). Therefore,
to determine the zeta function of Xλ0

we need to know the Frobenius action in
the Fermat-case (see 1.3) and compute the correct solution of the Picard–Fuchs
equation.
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We describe the action of A(λ) on the standard basis. We call two monomial
types k and m strongly equivalent if and only if there is a j0 such that k−m= j0a,
where a is the deformation vector (see above).

Theorem 1.3. Let k be an admissible monomial type. Write A(λ)ωk=
∑

cm(λ)ωm,
where the sum is taken over all admissible monomial types. Then cm(λ) is nonzero
only if k and m are strongly equivalent. If this is the case then cm(λ) is of the form
c0λ

j0 F(αi ;β j ; λ
dcd

1 ), with F a p-adic generalized hypergeometric function with
parameters αi , β j and j0 ∈ {0, 1, . . . , d − 1} is chosen such that k−m = j0a.

Explicit formulas for the αi , β j , c0 and c1 are given in Lemma 5.1 and Proposi-
tion 5.3. See Section 5 for a proof of Theorem 1.3.

In our proof we exploit the fact that there is a straightforward way of computing
in groups like H n(Uλ), relying on the fact that this group is a quotient of a module
of differentials over a power series ring. This allows us to perform some easy
analytic operations that would be impossible in a module of differentials over a
polynomial ring.

1.3. Factorization of the zeta function. We call the case λ = 0 the Fermat case.
One can show that Frob∗q on H n(U0,Qq) sends the standard basis vector ωk to
a constant ck,q times the standard basis vector ωqk. Hence, if q ≡ 1 mod d then
the standard basis is a basis of eigenvectors for Frob∗q . In this case Theorem 1.3
tells us that for every admissible monomial type k the operator Frobq,λ fixes the
subspace spanned by the ωm, where m is strongly equivalent to k.

The general case is slightly different, for this we introduce another equivalence
relation: we call two monomial types k and m weakly equivalent if j0 ∈ Z/dZ and
invertible s, t ∈ (Z/dZ)∗ exists such that sk+ tm = j0a.

Theorem 1.4. Let k be an admissible monomial type. Write

Frobq,λ ωk =
∑

cm(λ)ωm,

where the sum is taken over all admissible monomial types. Then cm(λ) is nonzero
only if k and m are weakly equivalent.

This is a weak form of Theorem 6.4. Theorem 1.4 implies that the zeta function of
Uλ can be factored (as a rational function with Q(λ)-coefficients) in such a way that
each factor corresponds to a weak-equivalence class. If one only considers the zeta
function over fields containing all d-th roots of unity, then there is a factorization
of the zeta function of Uλ such that each factor corresponds to a strong-equivalence
class.

Explicitly determining the constants ck,q is actually very hard. In some cases it
is known that the eigenvalues of Frob∗q correspond to the Fourier coefficients of a
modular form. For example if n = 2, w= (1, 1, 1) and d = 3, then X0 is the j = 0



426 Remke Kloosterman

elliptic curve x3
0 + x3

1 + x3
2 . Also the case n = 3, w = (1, 1, 1, 1), d = 4 and the

case n = 5, w= (1, 1, 1, 1), d = 3 are known to correspond to modular forms; see
[Hulek and Kloosterman 2007; Shioda and Inose 1977].

A more general result on ck,q is due to Weil: Assume that Fq ⊃ Fp(ζd). Let χ
be the d-th power residue symbol. Let k be an admissible monomial type. Let ki

be the i-th entry of k, i.e., wi (ki + 1). Then

Jk,q := (−1)n+1
∑

(v1,...,vn)∈Fn
q :
∑

i vi=−1

χ(v1)
k1χ(v2)

k2 . . . χ(vn)
kn .

The following theorem coincides with Corollary 6.9.

Theorem 1.5. Assume q is chosen such that Fq ⊃ Fp(ζd). Let k be an admissible
monomial type. Let S be the set of monomial types that are weakly equivalent to k.
Then the sets {qn−1/cm,q : m ∈ S} and {Jm,q : m ∈ S} coincide.

1.4. Monomial-motive correspondence. We call b∈ (Z/dZ)n+1 an admissible au-
tomorphism type if b= (w0b0, w1b1, . . . , wnbn) ∈ (Z/dZ)n+1 is such that∑

wi bi ai ≡ 0 mod d.

Define σb to be the automorphism

[x0 : x1 : · · · : xn] 7→ [ζ
w0b0
d x0 : ζ

w1b1
d x1 : · · · : ζ

wnbn
d xn].

We call two monomial types k and m distinguishable by automorphisms if there
exists an admissible automorphism type b ∈ (Z/dZ)n+1 such that

σb

(∏
xki

i

)
=

∏
xki

i and σb

(∏
xmi

i

)
6=

∏
xmi

i .

Theorem 1.6. Two monomial types k and m are weakly equivalent if and only if k
and m are not distinguishable by automorphisms.

This result enables us to give a different proof for the monomial-motive corre-
spondence of Kadir and Yui [2006], and to generalize it as follows: fix an admis-
sible monomial type k. Let Gk be the group of automorphisms of the form σb that
fix ωk. Then the subspace of H n(U ) fixed by Gk is the spanned by the ωm such
that m is weakly equivalent to k. This can be also extended to the level of motives,
i.e., we find a submotive h(Uλ/Gk) of the (Chow-)motive h(Uλ). Moreover, we
obtain that

h(Uλ)=
⊕
[k]

h(Uλ/Gk),

where we sum over all the weak-equivalence classes.
Kadir and Yui decompose h(Uλ/Gk) further. To explain this, we need to change

our context, and consider our family Xλ over the field Q of rational numbers. Then
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the Galois group Gal(Q(ζd)/Q) acts nontrivially on Gk, and this enables us to
find correspondences in C H n(Uλ/Gk ×Uλ/Gk) that decompose h(Uλ/Gk) into
smaller motives. It is easy to see that each such motive corresponds to a strong-
equivalence class of monomial types. This correspondence between admissible
monomial types and submotives of hn(Uλ) is called by Kadir and Yui monomial-
motive correspondence. They also relate monomial types with the Picard–Fuchs
equation. For this issue we refer to Section 1.2.

Kadir and Yui [2006] could only prove their monomial-motive correspondence
if Xλ is a Calabi–Yau hypersurface of dimension 3 and λ = 0. The above discus-
sion extends this correspondence to any quasismooth member of a one-parameter
monomial deformation of a Fermat hypersurface in a weighted projective space,
for any degree d such that wi |d for all i and provided that the characteristic does
not divide d .

Kadir and Yui prove the monomial-motive correspondence using Jacobi sums.
We take a more direct approach using subgroups of the automorphism group.

This paper is organized as follows: in Section 2 we fix some notation and list
some standard definitions. In Section 3 we discuss Monsky–Washnitzer cohomol-
ogy groups and recall some of the properties of these groups. In Section 4 we
recall Katz’ result on the deformation of the zeta function of a hypersurface in Pn .
In Section 5 we make Katz’ result explicit. In Section 6 we discuss the Frobenius
action on the cohomology of a Fermat hypersurface and prove some results on the
structure of the zeta function of a monomial deformation of a Fermat hypersurface.

2. Notation

Fix once and for all :

• a prime p (the characteristic) and a positive integer r ,

• an integer n (the dimension of the ambient space),

• a vector (w0, w1, . . . , wn) ∈ Zn+1 such that none of the wi is divisible by p.

• an integer d divisible by all the wi and p does not divide d .

Set q = pr and di := d/wi . Let Qq denote the unique unramified extension of de-
gree r of Qp. Let w :=

∑
wi denote the total weight. Let PFq :=Pn

Fq
(w0, . . . , wn)

be the associated weighted projective space over the finite field Fq .

Definition 2.1. A monomial type m = (m0, . . . ,mn) is an element of
∏

i wi Z/dZ

such that
∑

mi = 0 in Z/dZ. Choose representatives mi ∈ Z of mi such that
0≤ mi < d . The relative degree of m is

∑
mi/d.

Fix once and for all a monomial type a of relative degree 1, with at least 2
nonzero entries. We call a the deformation vector. Let ai be integers such that
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0≤ ai < di and a ≡ (w0a0, . . . , wnan). Set

Fλ :=
∑

xdi
i + λ

∏
xa j

j .

Let F := F0. If λ ∈ Fq , denote by Xλ the zero set of Fλ in P. If λ ∈Qq , denote by
Xλ the zero set of Fλ. Let Uλ be the complement P\Xλ. Let Uλ be the complement
P \ Xλ.

Let � :=
∏

i

xi

∑
j

(−1) jw j
dx0
x0
∧ · · · ∧

d̂x j

x j
∧

dxn
xn

.

Definition 2.2. A monomial type k is called admissible if there exist integers ki ,
for i = 0, . . . , n, such that 0≤ ki ≤ di − 2 and k = (w0(k0+ 1), . . . , wn(kn + 1)).
Let t be the relative degree of k. With k we associate the differential form

ωk :=

∏
xki

i

F t
λ

�.

Denote by (a)m the Pochhammer symbol a(a+ 1) . . . (a+m− 1).

Definition 2.3. Let π : Pn
→ P be the natural quotient map sending xi to xwi

i . Let
G := ×µwi

/1 be the Galois group associated with this quotient. We call π the
standard quotient map and G the group associated with π .

3. Monsky–Washnitzer cohomology

We will not define rigid cohomology in complete detail, but give a simplified pre-
sentation for the case of quasismooth hypersurfaces. For a good introduction to
the theory of rigid cohomology we refer to [Berthelot 1983; 1997b].

Since Uλ is affine, we can write Uλ = Spec Rλ, with

Rλ =Qq [λ, Y0, . . . , Ym]/(G1,λ, . . . ,Gk,λ).

Definition 3.1. Fix λ0 in the closed p-adic unit disc and set

R†
λ0
=
{H ∈Qq [[Y0, . . . , Ym]] : the radius of convergence of H is at least r > 1}

(G1,λ0, . . . ,Gk,λ0)
.

Then R†
λ0

is called the overconvergent completion (or weak completion) of Rλ0 .
If π is the standard quotient map, G is its associated group (Definition 2.3), and

S := S†
λ0

is the overconvergent completion of the coordinate ring of Pn
\π−1(Xλ0),

there is on the module of differential forms �i
S a natural G-action. Set �i

R =

(�i
S)

G . The i -th Monsky–Washnitzer cohomology group H i (Uλ0,Qq) is the i-th
cohomology group of the complex �•R .

Notation 3.2. Let X ⊂ P be a quasiprojective variety. Denote by H i
rig(X) the i -th

rigid cohomology group of X and by H i
rig,c(X) the i -th rigid cohomology group

with compact support of X , as defined in [Berthelot 1983].
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There exists a second, equivalent, definition of H i (Uλ0,Qq). This goes as fol-
lows: since Uλ0,sing is affine, there is a ring S such that Uλ0,sing= Spec S. Let S† be
an overconvergent completion of S. Let ι : Spec R†

λ0
\ Spec S†

→ Spec R†
λ0

be the
inclusion. Let �i

Spec R†
λ0

be the sheaf ι∗�Spec R†
λ0
\Spec S† . Then define the Monsky–

Washnitzer cohomology groups H i (Uλ0,Qq) as the cohomology groups of the
complex obtained by taking global sections. The proof that these two definitions
are equivalent is very similar to [Dolgachev 1982, 2.2.4].

Definition 3.3. Let R be a ring over Zq . Let π be the maximal ideal of Zq . A lift
of Frobenius is a ring homomorphism Frob∗q : R→ R whose reduction modulo π ,

Frob∗q modπ : R⊗Zq Fq → R⊗Zq Fq ,

is well-defined and equals x 7→ xq .

Fix a lift of Frobenius Frob∗q to R†
λ0

, such that Frob∗q(λ) = λ
q . By abuse of

notation we denote by Frob∗q also the induced morphism on H i (Uλ0,Qq).

Proposition 3.4. There is a natural isomorphism

H i
rig(Uλ0

,Qq)∼= H i (Uλ0,Qq)

which is compatible with the action of Frobenius.

Proof. Similar to the proof of [Berthelot 1997b, Proposition 1.10]. �

Definition 3.5. Let K be a field. Let G ∈ K [x0, . . . , xn] be a weighted homoge-
neous polynomial (with weights (w0, . . . , wn)). Let Y be the hypersurface G = 0
in P. Then Y is said to be quasismooth if the affine cone Spec K [X0, . . . , Xn]/G
is smooth or has exactly one singular point, namely (0, 0, . . . , 0).

Remark 3.6. If P = Pn then a hypersurface X ⊂ P is quasismooth if and only if
it is smooth.

An easy calculation shows:

Lemma 3.7. Let I = {i ∈ {0, 1, . . . , n} : ai 6≡ 0 mod p}. Let g = gcdi∈I (aiwi ) and
d ′ := d/g. If there is a nonzero ai such that ai ≡ 0 mod p then Xλ is quasismooth
for all λ. Otherwise, Xλ is quasismooth if and only if

λ
d ′
6=

(−1)d
′

d
d ′∏

i∈I (aiwi )aiwi/g .

Proof. Consider the partial derivative of F with respect to x j . If a j = 0 then this
derivative equals xd j−1

j and vanishes if and only if x j = 0.
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Suppose there is a j such that a j 6= 0 and x j = 0. Then for all for all k 6= j we
have

0=
∂Fλ
∂xk
= dk xdk−1

k + akλ

∏
xai

i

xk
= dk xdk−1

k .

This implies that all the xk would vanish. Hence if Xλ is singular at (x0 : · · · : xn)

then x j = 0 if a j = 0 and x j 6= 0 if a j 6= 0. If there is a j such that p divides a
nonzero a j then Xλ is quasismooth.

Suppose now that p does not divide any of the positive ai .
Suppose a j 6= 0. Consider now the derivative with respect to x j :

∂Fλ
∂x j
= d j x

d j−1
j + a jλ

∏
xai

i

x j
.

This derivative vanishes if and only if

λ
∏

xai
i =−

d j

a j
xd j

j .

In particular,

−
d j

a j
xd j

j =−
dk

ak
xdk

k for j, k ∈ I .

Fix d j -th roots α j of d j/a j . Let ζ be a primitive d ′-th root of unity. A solution
of the above set of equations is of the form

x j =
γw j

α j
ζ k jw j for some γ, k j .

Substituting gives

λ
∏
i∈I

ζ kiwi ai

αai
=−1,

which is equivalent with

λ
d ′
= (−1)d

′
∏

αa j d ′ =
(−1)d

′

d
d ′∏

i∈I (aiwi )aiwi/g . �

Let X ⊂P be a hypersurface. Let U =P\ X . Recall that we have a Gysin-type
exact sequence (see [Berthelot 1983, Section 3])

· · ·→ H i−1
rig,c(X ,Qq)→ H i

rig,c(U ,Qq)→ H i
rig,c(P,Qq)→ H i

rig,c(X ,Qq)→· · · (3)

Theorem 3.8. Let λ0 ∈ Zq be such that Xλ0
is quasismooth. Then the groups

H i (Uλ0,Qq) are zero except for i = 0, n.



The zeta function of monomial deformations of Fermat hypersurfaces 431

Proof. Set X = Xλ0 and U =Uλ0 . Consider first the case P=Pn . From Remark 3.6
it follows that U and X are smooth. Since�i

R=0 for i >n we have H i (U,Qq)=0
for i > n. Proposition 3.4 implies that H i

rig(U,Qq) is trivial for i > n. Using
Poincaré duality [Berthelot 1997a] it follows that

H i
rig,c(U,Qq)= 0 for i < n.

From (3) it follows that

H i
rig,c(X,Qq)∼= H i

rig,c(P,Qq) for i < n− 1.

Using Poincaré duality, it follows that

H i
rig(X,Qq)∼= H i

rig(P,Qq) for n− 1< i < 2n.

Using that X is compact, it follows that

H i
rig,c(X,Qq)= H i

rig(X,Qq)∼= H i
rig(P,Qq)= H i

rig,c(P,Qq) for n− 1< i < 2n.

Using the sequence (3) again, we obtain that H i
rig,c(U,Qq) = 0 for i 6∈ {n, 2n}.

Applying Poincaré duality yields H i
rig(U,Qq)= H i (U,Qq)= 0 for i 6∈ {0, dim U }.

The general case can be deduced from this as follows: consider the standard
quotient map π :Pn

→P sending xi to xwi
i . Let Y be π−1(X). Let G be the group

associated with π . From Lemma 3.7 it follows that X is quasismooth if and only if
Y is smooth. Let V be the complement of Y in Pn . Then from the above it follows
that H i (V ) = 0 except for i = 0, n. In particular, d� j−1,†

V = �
j,†
V . One easily

shows that (d� j−1,†
V )G = d((� j−1,†

V )G). This implies that

H j (U )=
(�

j,†,cl
V )G

(d� j−1,†
V )G

= 0 if j 6= 0, n. �

Remark 3.9. One might try to prove the vanishing of H i (U ) for the complement
of an arbitrary quasismooth hypersurface along the lines of the above proof. This
fails if the following happens: Let H1, . . . , H j be the coordinate hyperplanes cor-
responding to coordinates with weight wi > 1. Suppose there is a subset of {Hi }

such that X∩Hi1∩Hi2∩ · · · ∩Hik is not quasismooth. Then π−1(X) is singular, so
the strategy of the above proof does not apply. Conversely, if π−1(X) is singular
then such a set of coordinate hyperplanes exists.

Theorem 3.10 (Poincaré duality for H i (Uλ,Qq )). Let λ0 ∈ Fq be such that Xλ0
is

quasismooth. There is a nondegenerate pairing

H i
rig,c(Uλ0

,Qq)× H 2n−i
rig (Uλ0

,Qq)→ H 2n
rig,c(Uλ0

,Qq)

respecting the Frobenius action.
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Proof. Set X = Xλ0 and U = Uλ0 . Consider first the case P = Pn . Then from
Lemma 3.7 it follows that U and X are smooth. The main theorem of [Berthelot
1997a] asserts the existence of such pairings.

The general case can be obtained as follows: consider the standard quotient map
π :Pn

→P sending xi to xwi
i . Let Y be π−1(X). Let G be the group associated with

π . From Lemma 3.7 it follows that X is quasismooth if and only if Y is smooth.
Let V be the complement of Y in Pn . Since Poincaré duality is G-equivariant, one
obtains a pairing

H i
rig(V,Qq)

G
× H 2n−i

rig,c (V,Qq)
G
→ H 2n

rig,c(V,Qq).

Using the isomorphism (�k
V )

G ∼=�k
U , we obtain isomorphisms

H i
rig(V,Qq)

G ∼= H i
rig(U,Qq) and H 2n−i

rig,c (V,Qq)
G ∼= H 2n−i

rig,c (U,Qq).

This yields the proof. �

Theorem 3.11 (Lefschetz trace formula). Let λ0 ∈ Fq be such that Xλ0
is quasi-

smooth. Then ∑
i

(−1)i trace((qn(Frob∗)−1)|H i (Uλ0))= #Uλ0
(Fq).

Proof. Combine the Lefschetz trace formula for rigid cohomology with compact
support [Étesse and Le Stum 1993, théorème I] with Poincaré duality (Theorem
3.10) and Proposition 3.4. �

Proposition 3.12. The group H 0(Uλ,Qq) is one-dimensional, and Frobenius acts
trivially on H 0(Uλ,Qq).

Proof. Straightforward. �

Let H n
dR(Uλ,Qq) denote the algebraic de Rham cohomology of Uλ.

Theorem 3.13 (Baldassarri and Chiarellotto). Suppose λ is chosen such that Xλ is
quasismooth. Then the natural map

H n
dR(Uλ,Qq)→ H n(Uλ,Qq)

is an isomorphism.

Proof. Consider first the case P = Pn . Then this is precisely the main theorem of
[Baldassarri and Chiarellotto 1994].

The general case can be obtained as follows: consider the standard quotient map
π : Pn

→ P sending xi to xwi
i . Let Yλ be π−1(Xλ). Let G be the group associated

with π . From Lemma 3.7 it follows that Xλ is quasismooth if and only if Yλ is
smooth. Let Vλ be the complement of Yλ in Pn . Then we have an isomorphism

H n
dR(Vλ,Qq)→ H n(Vλ,Qq).
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There is a natural G-action on both groups and it is easy to see that this isomor-
phism is G-equivariant. Moreover, using [Dolgachev 1982, Lemma 2.2.2] we ob-
tain that π induces isomorphisms H n

dR(Vλ)
G ∼= H n

dR(Uλ) and H n(Vλ)G ∼= H n(Uλ);
hence the natural map

H n
dR(Uλ,Qq)→ H n(Uλ,Qq)

is an isomorphism. �

Let G be the defining equation of a quasismooth hypersurface Y ⊂ P. Let
V :=P\Y . Similar to the case of ordinary projective space, the algebraic de Rham
cohomology of V can be computed using the complex C p

k = �
p((k + p)Y ). I.e.,

the hypercohomology group Hn(P,C•k ) equals H 0(P,Cn
k )/dH 0(P,Cn−1

k ) and

H n
dR(V )=

⊕
k

H 0(P,Cn
k )/dH 0(P,Cn−1

k ).

(A proof of this equality can be obtained as follows. After fixing an embedding
Qq ↪→ C and tensoring both sides with C, we obtain that it suffices to prove this
result over C. This is precisely the main result of [Steenbrink 1977].)

More explicitly, the vector space H n(V,Qq) can be identified with the quotient
of the infinite-dimensional vector space spanned by

H
G t�

with deg(H)= t deg(G)−
∑
wi , by the relations

(t − 1)H Gx −G Hx

G t �,

where the subscript x means the partial derivative with respect to a coordinate x
on P.

If G = F (the polynomial whose zero-set is the Fermat hypersurface) then this
formula reads as

(t − 1)di H xdi−1
i

F t �=
Hxi

F t−1�

in H n(U ). This motivates the following definition:

Definition 3.14. Let ω ∈�n(U0) be a form of the type

H
F t�
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with H a monomial. Let xi be a coordinate of P such that xdi−1
i divides H . Then

the reduction of ω with respect to xi is the form

∂

∂xi

(
H

xdi−1
i

)
(t − 1)di F t−1�.

The complete reduction redω := H ′/F s� of ω is the form obtained by suc-
cessively reducing with respect to the coordinates xi of P, such that for all i the
exponent of xi in H ′ is at most di − 2.

Note that ω and the reduction with respect to xi of ω represent the same class in
H n(U0,Qq), and that the complete reduction of ω cannot be further reduced.

Definition 3.15. Let P• be the pole order filtration on H n(Uλ), that is ω ∈ P t if
ω = G

F t
λ
� for some G ∈Qq [x0, . . . xn].

Let k be an admissible monomial type. Recall that we can associate a differential
form ωk with it. By definition ωk lies in P t , where t is the relative degree of k.

Proposition 3.16. Let λ be such that Xλ is quasismooth. Then the set

{ωk : k an admissible monomial type}

is a basis for H n(Uλ,Qq).

Proof. The above discussion implies the statement for λ= 0.
We start by proving that for every integer t the set

{wk : k an admissible monomial type of relative degree t}

is linearly independent in P t/P t−1.
The relations in P t/P t−1 are generated by (cf. the discussion before Definition

3.14)
xdi−1

i
∏

xk j
j

F t
λ

�=
−λai

di

∏
xk j+a j

j

xi F t
λ

�.

Suppose i is chosen such that ai 6= 0. Let

σi (G) :=
−di x

di
i

λai
∏

j xa j
j

G.

If G is a monomial of degree td −
∑
wi such that all the exponents of the x j are

at least a j − δi, j , then
G
F t
λ

�≡
σi (G)

F t
λ

� mod P t−1.
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Note that σi is defined if the exponent of x j is at least a j−δi, j di , but σi corresponds
to a relation in P t only if the exponent x j is at least a j − δi, j . Similarly, if the
exponent of xi in G is at least di − 1, then

G
F t
λ

�≡
σ−1

i (G)
F t
λ

� mod P t−1.

Take a nontrivial expression
∑

bkωk that is zero modulo P t−1. Since the σi

generate the relations, and the σi map monomials to monomials, there exists two
distinct admissible monomial types k,m of relative degree t and a sequence of σi

and σ−1
j such that

τ(ωk) := σ
εs
is
. . . σ ε1

i1
(ωk)= c0ωm,

with

• c0 ∈Qq ,

• ε j ∈ {±1},

• ai j 6= 0 for all j ,

• for all j such that ε j = 1 and for all k, the exponent of xk in σ ε j−1
i j−1

. . . σ ε1
i1
(ωk)

is at least ak − δi j ,k , and

• for all j such that ε j =−1, the exponent of xi j in σ ε j−1
i j−1

. . . σ ε1
i1
(ωk) is at least

di j − 1.

We will prove below that given such a τ , we can always shorten the length of this
expression by 2, and that this expression cannot consist of one σi . Hence the only
possibility for τ is to be the identity and ki = mi for all i , a contradiction.

We claim that ε1 = 1 and εs =−1. If ε1 were −1, then in order to apply σi1 we
would need that the exponent xi1 in ωk is at least di1 − 1, contradicting that ωk is
associated with an admissible monomial type. Similarly, if εs = 1 we obtain that
the exponent of xis in ωm is at least dis−1, contradicting that ωm is associated with
an admissible monomial type.

Let j be the smallest integer such that ε j =−1. This implies that the exponent
of xi j in σi j−1 . . . σi1(

∏
xki

i ) is at least di j − 1, hence at least for one of the j ′ < j
we have i j = i j ′ . Let j ′ be the largest integer smaller than j such that i j = i j ′ .

Note that the σi commute as operators on Qq(x0, . . . , xn). Hence, if we consider
the σi as operators on Qq(x0, . . . xn) then we have the identities

σ−1
i j
σi j−1 . . . σi j ′

σi j ′−1
. . . σi1

(∏
xki

i

)
= σ−1

i j
σi j ′
σi j−1 . . . σi j ′+1

σi j ′−1
. . . σi1

(∏
xki

i

)
= σi j−1 . . . σi j ′+1

σi j ′−1
. . . σi1

(∏
xki

i

)
.
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We need to show that the latter expression corresponds to a series of relations in
P t/P t−1, i.e., we need to show that for each j ′′ such that j ′ < j ′′ < j , if

σi j ′′
. . . σi j ′+1

σi j ′−1
. . . σi1

(∏
xki

i

)
= c

∏
xer

r

with c ∈Qq then er ≥ ar − δr,i j ′′+1
for all r .

Suppose that r 6= i j . Since

σi j ′′
. . . σi1

(∏
xki

i

)
= c′

∏
xe′r

r

with c′ ∈Qq and e′r ≥ ar−δr,i j ′′+1
and σi j lowers the exponent of xr by ar we obtain

e′r = er − ar , whence er ≥ ar − δr,i j ′′+1
.

Suppose that r = i j . Since

σi j−1 . . . σi1

(∏
xki

i

)
= c′′

∏
xe′′r

r

with c′′ ∈Qq and e′′r ≥ dr − 1, it follows that

σi j−1 . . . σi j ′+1
σi j ′−1

. . . σi1

(∏
xki

i

)
= c′′′

∏
xe′′′r

r

with c′′′ ∈Qq and e′′′r ≥ 0. Since the σik for j ′′ < k < j ′ lower the exponent of xr

by ar we obtain er = e′′′r + ( j − j ′′)ar ≥ ar .
We need to show that

{ωk : k an admissible monomial type}

spans H n(Uλ,Qq). If λ = 0 then this follows from the discussion before this
proposition. If λ 6= 0 and all the weights equal 1 then [Katz 1968, Theorem
1.10] shows that dim H n−1(Xλ,Qq) is independent of λ. Using (3) we obtain
that dim H n(Uλ,Qq) is independent of λ. The general case follows from this case
by applying the standard quotient map and [Dolgachev 1982, Lemma 2.2.2]. �

4. Deformation theory

Assume for the moment that P=Pn . Following N. Katz, consider the commutative
diagram

H n(Uλq )
Frob∗q,λ //

A(λq )

��

H n(Uλ)

A(λ)
��

H n(U0)
Frob∗q,0 // H n(U0),

where Frobq,λ is the Frobenius acting on the complete family. Since it maps the
fiber over 0 to the fiber over 0 this map can be restricted to U0. Katz studied
the differential equation associated to A(λ). He remarked in a note that A(λ) is
actually the solution of the Picard–Fuchs equation.



The zeta function of monomial deformations of Fermat hypersurfaces 437

We first give a way of computing a map B(λ) such that

Frob∗q,0 B(λq)= B(λ)Frobq,λ

on a small neighborhood of 0. This matrix B(λ) is enough to deduce Frob∗q,λ from
Frob∗q,0.

Fix a basis
Gi

F t
λ

�

for H n(Uλ) and write

Gi

F t
λ

�=

∞∑
j=0

(
j + t − 1

j

)
Gi (F − Fλ) j

F j+t �. (4)

Since F − Fλ is the product of λ with a polynomial with integral coefficients, the
above power series in the xi converges on a small disc. By choosing λ sufficiently
small, we obtain an overconvergent power series in the xi , hence Gi

F t
λ

defines an
element of H n(U0). Let B(λ) : H n(Uλ)→ H n(U0) be the analytic continuation of
the operator mapping

Gi

F t
λ

�

to the complete reduction of (4) in H n(U0).
In this way we obtain a local expansion of the matrix B(λ) around λ= 0. In the

following section we will make this more explicit.

Proposition 4.1 (Katz). We have B(λ)Frob∗q,λ = Frob∗q,0 B(λq) and B(λ)= A(λ).

Proof. The case P = Pn is a combination of [Katz 1968, Lemma 2.10, Lemma
2.13, Theorem 2.14]. The general case is a formal consequence of the special case
by Lemma 3.7, Proposition 4.1 and the definition of H n(Uλ,Qq) in terms of the
standard quotient map π : Pn

→ P. �

Remark 4.2. Proposition 4.1 is particularly interesting in the case when we special-
ize to λ = λ0 where λ0 is the Teichmüller lift of some element λ0. Then λq

0 = λ0,
hence Frob∗q,λ0

is a lift of Frobenius on H n(Uλ0,Qq). Using Theorem 3.11 and
Theorem 3.8 we obtain that

Z(Uλ0
, t)= lim

λ→λ0

(
det
(
I − tqn

| A(λq)−1(Frob∗q,0)
−1 A(λ)

))(−1)n+1

1− qnt
.

5. Actual computation of the deformation matrix

In order to compute the matrix A(λ) we need to reduce the right hand side of (4)
in H n(U0). We start with a very useful lemma.
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Lemma 5.1. Fix nonnegative integers bi such that
∑

biwi + w = td for some

integer t . The complete reduction of ω :=
∏

x
bi
i

F t � equals∏
i ((ci + 1)wi/d)qi

(s)t−s

∏
xci

i

F s �,

where 0≤ ci < di and qi , s are integers such that bi = qi di+ci , and sd=
∑

ciwi+

w, i.e., t − s =
∑

qi , provided that ci 6= di − 1 for all i . If for one of the i we have
ci = di − 1 then ω reduces to zero in H(U0,Qq).

Proof.
The reduction with respect to x0 of

xb0
0
∏n

i=1 xbi
i

F t �

(cf. Definition 3.14) equals

xb0−d0
0 ((b0+ 1)− d0)

∏
xbi

i

(t − 1)d0 F t−1 �=
xb0−d0

0 ((b0+ 1)w0− d)
∏

xbi
i

(t − 1)d F t−1 �

(provided b0 ≥ d0). After reducing qi times with respect to xi for i = 0, . . . , n, we
obtain that ω reduces to

(s− 1)!
∏

i

(∏qi−1
j=0 ((ci + 1)wi + jd)

)∏
xci

i

(t − 1)!d t−s F s �.

This in turn equals

τ :=
(s− 1)!d

∑
qi
∏
((ci + 1)wi/d)qi

∏
xci

i

(t − 1)!d t−s F s �.

If none of the ci equals di−1 then this is a complete reduction. Using
∑

qi = t−s
the first formula follows.

If ci = di − 1 then we can write τ as (Fxi G/F s)�, where G does not contain
the variable xi . The reduction of this form is a constant times

Gxi

F s−1�.

Since Gxi = 0, this reduction is zero. �

Fix an admissible monomial type k= (w0(k0+1), . . . , wn(kn+1))∈ (Z/dZ)n+1

of relative degree t . We want to calculate the reduction of∏
xki

i

(F + λ
∏

xai
i )

t
�
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in H n(U0). In order to find a power series expression, we assume that λ is suffi-
ciently small, then by (4) this form equals∏

xki
i

F t

1(
1− (−λ)

∏
x

ai
i

F

)t�=
∑

j

(
t + j − 1

j

) ∏
xki+ai j

i

F t+ j (−λ) j�. (5)

Note that at most d distinct monomials occur in the reduction of the form.

Definition 5.2. Let r, s be nonnegative integers, let αi ∈ Qq , for i ∈ {1, 2, . . . , r},
let β j ∈Qq \Z<0 for j ∈ {1, 2, . . . , s}. We define the (generalized) hypergeometric
function

r Fs

(
α1 α2 . . . αr

β1 β2 . . . βs
; z
)

to be
∞∑

k=0

b j z j ,

with b0 = 1, and
b j+1

b j
=

( j +α1) . . . ( j +αr )

( j +β1) . . . ( j +βs)( j + 1)
,

for all positive integers j .

Let d ′i be the order of ai mod di in Z/di Z. Let d ′ be the least common multiple
of all the d ′i . Set bi =ai d ′/di . In the following proposition and its proof we identify
elements in a ∈ Z/mZ with their representative ã ∈ Z such that 0≤ ã ≤ m− 1.

Proposition 5.3. Let k be an admissible monomial type. Let t be the relative degree
of k. Write A(λ)ωk =

∑
cm(λ)ωm, where the sum is taken over all admissible

monomial types. Then cm(λ) is nonzero only if there is a j0 ∈Z with 0≤ j0≤ d ′−1
and such that m− k = j0a. If this is the case then

cm(λ)

red
∏

xai j0+ki
i

F t+ j0
�

equals(
t+ j0−1

j0

)
(−λ) j0

d ′Fd ′−1

( αi,s

j0+1
d ′

j0+2
d ′

. . . 1̂ . . . j0+d ′

d ′
;

∏
i :ai 6=0

(ai
di

)bi
(−λ)d

′

)
,

with

αi,s =
(s− 1)di + 1+ ai j0+ ki

ai d ′
, s = 1, . . . , bi ; i = 0, . . . n.



440 Remke Kloosterman

This proposition almost gives a complete reduction of the form Frobq,λ(ωk), in the
sense that ck(λ) is described as the product of a hypergeometric function and the
reduction of a rational function in the xi multiplied by �. The latter form can be
easily reduced using Lemma 5.1.

Proof. It suffices to compute explicitly a complete reduction of ω :=
∏

xki
i

F t
λ

� in
H n(U0). We can write ω as∑

j

(
t + j − 1

j

) ∏
xki+ai j

i

F t+ j (−λ) j�.

Set ct, j :=

(
t + j − 1

j

)
. Since each reduction step decreases the exponent of xi

by di , we split this sum as follows: write

ω =

d ′−1∑
j0=0

∑
j

ct, j0+d ′ j

∏
xki+ai ( j0+d ′ j)

i

F t+ j0+d ′ j (−λ) j0+d ′ j�.

For 0≤ j0 ≤ d ′− 1 set

ω j0 :=
∑

j

ct, j0+d ′ j

∏
xki+ai ( j0+d ′ j)

i

F t+ j0+d ′ j (−λ) j0+d ′ j�.

From Lemma 5.1 it follows that if ki+ai ( j0+d ′ j)≡−1 mod di for some i , then
ω j0 reduces to zero. Otherwise, we claim that the reduction of ω j is a generalized
hypergeometric function. In order to prove this and to calculate the parameters, we
need to show that

ct, j0+d ′ j+d ′ red
∏

xki+ai ( j0+d ′ j)+ai d ′
i

F t+ j0+d ′ j+d ′ �

ct, j0+d ′ j red
∏

xki+ai ( j0+d ′ j)
i

F t+ j0+d ′ j �

(6)

is a rational function in j . If we reduce with respect to xi then the exponent of xi

is lowered by di . So if we reduce the numerator bi = ai d ′/di times with respect to
xi , then the exponent of xi in the numerator and denominator coincide. Now

red
∏

xki+ai ( j0+d ′ j)+ai d ′
i

F t+ j0+d ′ j+d ′ �

equals ∏
i
∏bi

s=1(ki + ai ( j0+ d ′ j)+ (s− 1)di + 1)

(t + j0+ d ′ j)∑ bi

∏
i dbi

i

red
∏

xki+ai ( j0+d ′ j)
i

F t+ j0+d ′ j �
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and
ct, j0+d ′ j+d ′

ct, j0+d ′ j
=
(t + j0+ d ′ j)d ′
( j0+ d ′ j + 1)d ′

.

Putting this together we conclude that (6) equals∏
i
∏bi

s=1(ki + ai ( j0+ d ′ j)+ (s− 1)di + 1)

( j0+ d ′ j + 1)d ′
∏

i dbi
i

.

This equals

∏
i :ai 6=0(ai d ′)bi

(d ′)d ′
∏

i :ai 6=0 dbi
i

∏
i
∏bi

s=1

(
j + (s−1)di+1+ai j0+ki

ai d ′
)

∏d ′
s=1

(
j + j0+s

d ′
) .

Since
∑

bi = d ′ the first factor simplifies to∏
i :ai 6=0

(ai
di

)bi
.

From the second factor we can read off the hypergeometric parameters.
Since the first summand of ω j0 equals

(−λ) j0ct, j0

∏
xai j0+ki

i

F t+ j0
�,

by collecting everything together, we obtain that

redω j

ct, j0(−λ)
j0

equals

d ′Fd ′−1

( αi,s

j0+1
d ′

j0+2
d ′

. . . 1̂ . . . j0+d ′

d ′
; (−λ)d

′
∏

i :ai 6=0

(ai
di

)bi

)
red

∏
xai j0+ki

i

F t+ j0
�,

as desired. �

Example 5.4. Consider the family X3
+ Y 3

+ Z3
+ λXY Z . Then we obtain the

following matrix A(λ) (with respect to the basis {ω(1,1,1), ω(2,2,2)})
2F1

( 1
3

1
3

2
3
;
−λ3

27

)
λ2

54 2F1

( 4
3

4
3

5
3
;
−λ3

27

)
−λ 2F1

( 2
3

2
3

4
3
;
−λ3

27

)
2F1

( 2
3

2
3

1
3
;
−λ3

27

)
 .
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Example 5.5. Another famous example is Cλ : X4
+ Y 4

+ Z4
+ λX2Y 2.

Note that d ′ = 2, d ′1 = d ′2 = 2, d ′3 = 0, b1 = b2 = 1, b3 = 0.
One easily obtains

A(λ)ω(2,1,1) = 1F0

( 1
4
−
;
λ2

16

)
ω(2,1,1), A(λ)ω(1,2,1) = 1F0

( 1
4
−
;
λ2

16

)
ω(1,2,1),

A(λ)ω(2,3,3) = 1F0

( 3
4
−
;
λ2

16

)
ω(2,3,3), A(λ)ω(3,2,3) = 1F0

( 3
4
−
;
λ2

16

)
ω(3,2,3).

A(λ) acts as follows on the basis {ω(1,1,2), ω(3,3,2)}
2F1

( 1
4

1
4

1
2
;
λ2

16

)
λ2

16 2F1

( 5
4

5
4

3
2
;
λ2

16

)
−λ 2F1

( 3
4

3
4

3
2
;
λ2

16

)
2F1

( 3
4

3
4

1
2
;
λ2

16

)
 .

It is classically known that the Jacobian of Cλ is isogenous to the product of two
elliptic curves with j-invariant 1728 and one elliptic curve Eλ whose j-invariant
depends properly on λ. This factor can also be obtained from the above informa-
tion:

When we restrict A(λ) to the subspace spanned by ω(1,1,2),(3,2,2), we find the
same operator as the operator A′(λ) associated with the family Eλ : X4

+Y 4
+Z2
+

λX2Y 2 considered in P(1, 1, 2). One easily shows that this is a family of elliptic
curves, with j-invariant depending on λ. The curve E0 has an automorphism of
order 4 with fixed points, hence j (E0)= 1728.

In the next section we prove that if q ≡ 1 mod 4 then all the ωk are eigenvectors
for Frob∗q,0, let ck,q be the corresponding eigenvalue. Then, for k = (2, 1, 1),

Frob∗q,λ ωk = A(λ)−1 Frob∗q,0 A(λq)ωk =

1F0

( 1
4
−
;
λ2q

16

)
1F0

( 1
4
−
;
λ2

16

) ck,qωk.

One easily shows that the factor in front of ck,q is a fourth root of unity, which
implies that we have twisted the Frobenius action on ωk by a quartic character.
Something similar happens when k ∈ {(1, 2, 1), (2, 3, 3), (3, 2, 3)}. This implies
that on a 4-dimensional subspace Vλ of H 1(Xλ,Qq) the Frobenius action is a
quartic twist of the Frobenius action on V0 ⊂ H 1(X0,Qq). The curve X0 has
the automorphism [X, Y, Z ] 7→ [Z , X, Y ]. From this we obtain that the action of
Frobenius on V0 is isomorphic to two copies of the Frobenius action on E0.

Example 5.6. Consider now the quintic threefold X5
0 + X5

1 + X5
2 + X5

3 + X5
4 +

λX0 X1 X2 X3 X4. This family is studied for example by Candelas, de la Ossa, and
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Rodriguez-Villegas [Candelas et al. 2003]. We discuss another aspect of this family
in Example 6.11.

One can distinguish between the following five types of subspaces:
We start with V1= span{ω(1,1,1,1,1), ω(2,2,2,2,2), ω(3,3,3,3,3), ω(4,4,4,4,4)}. The cor-

responding matrix is

8
(

1
2 3 4

)
λ4

23 ·3·55
8
(

6
7 8 9

)
−λ3

22 ·3·55
8
(

6
4 7 8

)
λ2

22 ·3·55
8
(

6
3 4 7

)
−λ8

(
2

3 4 6

)
8
(

2
1 3 4

) 2λ4

3·55
8
(

7
6 8 9

)
−8λ3

33 ·55
8
(

7
4 6 8

)
λ28

(
3

4 6 7

)
−2λ8

(
3

2 4 6

)
8
(

3
1 2 4

) 27λ4

23 ·55
8
(

8
6 7 9

)
−λ38

(
4

6 7 8

)
3λ28

(
4

3 6 7

)
−3λ8

(
4

2 3 6

)
8
(

4
1 2 3

)


,

where we used the shorthand

8

(
a

b c d

)
:= 4F3

(
a
5

a
5

a
5

a
5

b
5

c
5

d
5

;
−λ5

55

)
.

The other four spaces are less interesting: on V2 = span{ω(1,1,1,3,4), ω(4,4,4,1,2)},
A(λ) acts as

2F1

( 1
5

1
5

2
5
;
−λ5

3125

)
λ2

500 2F1

( 6
5

6
5

7
5
;
−λ5

3125

)
−4λ3

2F1

( 4
5

4
5

8
5
;
−λ5

3125

)
2F1

( 4
5

4
5

3
5
;
−λ5

3125

)
 .

On V3 = span{ω(2,2,2,1,3), ω(3,3,3,2,4)}, A(λ) acts as
2F1

( 2
5

2
5

4
5
;
−λ5

3125

)
λ4

6250 2F1

( 7
5

7
5

9
5
;
−λ5

3125

)
−2λ 2F1

( 3
5

3
5

6
5
;
−λ5

3125

)
2F1

( 3
5

3
5

1
5
;
−λ5

3125

)
 .

On V4 = span{ω(1,1,2,2,4), ω(3,3,4,4,1)}, A(λ) acts as
2F1

( 1
5

2
5

3
5
;
−λ5

3125

)
−λ3

1875 2F1

( 6
5

7
5

8
5
;
−λ5

3125

)
λ2

5 2F1

( 3
5

4
5

7
5
;
−λ5

3125

)
2F1

( 3
5

4
5

2
5
;
−λ5

3125

)
 .
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On V5 = span{ω(3,3,1,1,2), ω(4,4,2,2,3)}, A(λ) acts as
2F1

( 1
5

3
5

4
5
;
−λ5

3125

)
3λ4

25000 2F1

( 6
5

8
5

9
5
;
−λ5

3125

)
−2λ 2F1

( 2
5

4
5

6
5
;
−λ5

3125

)
2F1

( 2
5

4
5

1
5
;
−λ5

3125

)
 .

Example 5.7. The final example is the family X4
+ Y 4

+ Z4
+W 4

+ λXY Z W .
This is a family of K 3-surfaces. This family is also studied in [Dwork 1969, pp.
73–77].

Considered over a number field, every smooth member of this family has geo-
metric Picard number 19 or 20. This implies that when we consider this family
over a finite field, then every smooth member has geometric Picard number at least
20. From the Tate conjecture (which is proven in this case [Nygaard and Ogus
1985] if p ≥ 5) it follows that every smooth member has Picard number 20 or 22.
This implies that at least 19 of the eigenvalues of Frob∗q,λ on H 3(Uλ) are of the
form qζ , with ζ a root of unity. We will indicate how one can obtain this result
from the methods described in this section.

First we calculate the operator A(λ). We obtain that

A(λ)ω(1,2,2,3) = 1F0

( 1
2
−
;
λ4

256

)
ω(1,2,2,3).

The operator A(λ) leaves the space spanned by ω(1,1,3,3) and ω(3,3,1,1) invariant.
Its action is as follows:

2F1

( 1
4

3
4

1
2
;
λ4

256

)
λ2

32 2F1

( 3
4

5
4

3
2
;
λ4

256

)
λ2

32 2F1

( 3
4

5
4

3
2
;
λ4

256

)
2F1

( 1
4

3
4

1
2
;
λ4

192

)
 .

One easily computes that

2F1

( 1
4

3
4

1
2
;
λ4

256

)
±
λ2

32 2F1

( 3
4

5
4

3
2
;
λ4

256

)
= 1F0

( 1
2
−
;
±λ2

16

)
hence

A(λ)ω(1,1,3,3)±ω(3,3,1,1) = 1F0

( 1
2
−
;
±λ2

16

)
ω(1,1,3,3)±ω(3,3,1,1).

As explained in the previous example, this implies that if q≡ 1 mod 4 then Frob∗λ,q
restricted to the subspace generated by the ω(1,2,2,3), ω(1,1,3,3) and all the coordinate
permutations of these forms, is a (quartic) twist of Frob∗0,q . Using Jacobi sums one
can show that the Frob∗0,q restricted to this subspace has only eigenvalues of the
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form qζ , with ζ a root of unity. This yields 18 eigenvalues of Frobλ,q of this form.
Since the number of eigenvalues of Frob∗λ,q that are not of this form is even, and
the complementary subspace has dimension 3, there is a nineteenth eigenvalue of
the form qζ .

The final subspace under consideration is span{ω(1,1,1,1), ω(2,2,2,2), ω(3,3,3,3)}.
We obtain the following matrix with respect to this basis:

3F2

( 1
4

1
4

1
4

1
2

3
4
;
λ4

256

)
−λ3

1536 3F2

( 5
4

5
4

5
4

3
2

7
4
;
λ4

256

)
λ2

1024 3F2

( 5
4

5
4

5
4

3
4

3
2
;
λ4

256

)
−λ 3F2

( 1
2

1
2

1
2

3
4

5
4
;
λ4

256

)
3F2

( 1
2

1
2

1
2

1
4

3
4
;
λ4

256

)
−λ3

192 3F2

( 3
2

3
2

3
2

5
4

7
4
;
λ4

256

)
λ2

3F2

( 3
4

3
4

3
4

5
4

3
2
;
λ4

256

)
−2λ 3F2

( 3
4

3
4

3
4

1
2

5
4
;
λ4

256

)
3F2

( 3
4

3
4

3
4

1
4

1
2
;
λ4

256

)


6. Fermat hypersurfaces and equivalence relations

In the previous sections it is shown how to calculate the deformation matrix A(λ).
In this section we discuss the Frobenius action on the central fiber.

Lemma 6.1. Let k be an admissible monomial type. Let m = qk. We have
Frob0,q ωk = ck,qωm for some ck,q .

Proof. Take as a lift of Frobenius the morphism xi 7→ xq
i . Then

Frob∗q,0(ω)=
xqki+q−1

i

F(xq
i )

t
�=

∑
j=0

ct, j
xqki

i (Fq
− F(xq

i ))
j

Fq j+t .

One can easily show that any exponent of xi in this sum is congruent to qki +q−
1 mod di . Hence there is only one monomial type m occurring in the reduction,
namely qk. �

Remark 6.2. Suppose q ≡ 1 mod d . It is well-known that the eigenvalues of
Frobenius on H n(U ) are of the form qn−1/Jk,q , where Jk,q is a so-called Jacobi
sum. Note that the assumption on q implies that qk = k. So the set of Jacobi
sums coincides with the set of ck,q (cf. the Introduction). A stronger result will be
proved in the sequel.

Definition 6.3. Two monomial types are called strongly equivalent if and only
if their difference is a multiple of the deformation vector. Two monomial types
are called weakly equivalent if and only if there exists nonzero multiples of both
monomial types that differ by the deformation vector.

The characteristic polynomial of Frobenius on the cohomology can be factorized
in factors corresponding to the weak-equivalence classes of monomial types:
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Definition 6.8. Assume that q ≡ 1 mod d (i.e., Fq ⊃ Fp(ζd)). Let χ be the d-th
power residue symbol. Let k be an admissible monomial type. Let ki be the i-th
entry of k, i.e., wi (ki + 1). Then the Jacobi-sum associated with k is defined as

Jk,q := (−1)n+1
∑

(v1,...,vn)∈Fn
q :
∑

i vi=−1

χ(v1)
k1χ(v2)

k2 . . . χ(vn)
kn .

Corollary 6.9. Assume q ≡ 1 mod d. Let k be an admissible monomial type. Let S
be the set of monomial types that cannot be distinguished by automorphisms from
k. Then the sets S1 := {qn/cm,q : m ∈ S} and S2 := {Jm,q : m ∈ S} coincide.

Proof. Let G ⊂
∏

Z/di Z be the group of automorphisms that fixes ωk. Then
X0/G is a Fermat variety in a different weighted projective space P′. It is well-
known that the eigenvalues of Frobenius on the primitive part of H n−1

rig,c (X0/G) are
Jacobi-sums appearing in S2; see [Gouvêa and Yui 1995], for example.

The group H n(U/G) is canonically isomorphic with the subspace of H n(U )
generated by the forms ωm, where m ∈ S (this follows from [Dolgachev 1982,
Lemma 2.2.2]). This implies that all the qn/cm,q with m ∈ S are eigenvalues of
Frob on H n−1

rig,c (X0/G). Hence S1 = S2. �

Corollary 6.10. Let λ ∈ Fq . Let P(t) be the characteristic polynomial of Frobλ on
H n(Uλ,Qq). Then

P(t)=
∏
[k]

P[k](t),

where the product is taken over all weak-equivalence classes of admissible mono-
mial types. Let k be an admissible polynomial type. Then P[k](t) is an element
of Q[t] and its degree equals the number of admissible monomial types that are
weakly equivalent with k.

Proof. Fix for the moment a monomial type k. Let Gk ⊂
∏

Z/di Z be the group
of automorphisms that fixes ωk. Then X0/Gk is a Fermat variety in a different
weighted projective space P′ and H n(U0/Gk,Qq) is canonically isomorphic with
the subspace of H n(U0,Qq) generated by the form ωm, where m is weakly equiv-
alent with k. This enables us to write

H n(U )=
⊕
[k]

H n(U/G[k]).

For every weak-equivalence class of monomial types, set P[k](t) ∈ Q[t] to be
the characteristic polynomial of Frobenius acting on H n(U/G[k]). Then P(t) =∏

P[k](t), we have P[k](t) ∈Q[t] and

deg(P[k](t))= dim H n(U/G[k])= #{m : k and m are weakly equivalent},

which finishes the proof. �
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