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Finite descent obstructions and
rational points on curves

Michael Stoll

Let k be a number field and X a smooth projective k-variety. In this paper, we
study the information obtainable from descent via torsors under finite k-group
schemes on the location of the k-rational points on X within the adelic points.
Our main result is that if a curve C/k maps nontrivially into an abelian variety
A/k such that A(k) is finite and X(k, A) has no nontrivial divisible element,
then the information coming from finite abelian descent cuts out precisely the
rational points of C . We conjecture that this is the case for all curves of genus at
least 2. We relate finite descent obstructions to the Brauer–Manin obstruction;
in particular, we prove that on curves, the Brauer set equals the set cut out by
finite abelian descent. Our conjecture therefore implies that the Brauer–Manin
obstruction against rational points is the only one on curves.

An errata was posted on 20 March 2017 in an online supplement.

1. Introduction

In this paper we explore what can be deduced about the set of rational points on a
curve (or a more general variety) from the knowledge of its finite étale coverings.

Given a smooth projective variety X over a number field k and a finite étale,
geometrically Galois covering π : Y → X , standard descent theory tells us that
there are only finitely many twists π j : Y j → X of π such that Y j has points
everywhere locally, and then X (k) =

∐
j π j (Y j (k)). Since X (k) embeds into the

adelic points X (Ak), we obtain restrictions on where the rational points on X can
be located inside X (Ak), that is, we must have

X (k)⊂
⋃

j

π j (D j (Ak))=: X (Ak)
π .

Putting the information from all such finite étale coverings together, we arrive at

X (Ak)
f-cov
=

⋂
π

X (Ak)
π .

MSC2000: primary 11G30; secondary 14G05, 11G10, 14H30.
Keywords: rational point, descent obstruction, covering, twist, torsor under finite group scheme,

Brauer–Manin obstruction.
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Since the information we get cannot tell us more than on which connected compo-
nent a point lies at the infinite places, we make a slight modification by replacing
the v-adic component of X (Ak) with its set of connected components, for infinite
places v. In this way, we obtain X (Ak)• and X (Ak)

f-cov
•

.
We can be more restrictive in the kind of coverings we allow. We denote the

set cut out by restrictions coming from finite abelian coverings only by X (Ak)
f-ab
•

and the set cut out by solvable coverings by X (Ak)
f-sol
•

. Then we have the chain of
inclusions

X (k)⊂ X (k)⊂ X (Ak)
f-cov
•
⊂ X (Ak)

f-sol
•
⊂ X (Ak)

f-ab
•
⊂ X (Ak)• ,

where X (k) is the topological closure of X (k) in X (Ak)•; see Section 5 below.
It turns out that the set cut out by the information coming from finite étale abelian

coverings on a curve C coincides with the “Brauer set”, which is defined using the
Brauer group of C ,

C(Ak)
f-ab
•
= C(Ak)

Br
•
.

This follows easily from the descent theory of Colliot-Thélène and Sansuc; see
Section 7. It should be noted, however, that this result seems to be new. It says that
on curves, all the information coming from torsors under groups of multiplicative
type is already obtained from torsors under finite abelian group schemes.

In this way, it becomes possible to study the Brauer–Manin obstruction on curves
via finite étale abelian coverings. For example, we provide an alternative proof of
the main result in Scharaschkin’s thesis [1999] characterizing C(Ak)

Br
•

in terms
of the topological closure of the Mordell–Weil group in the adelic points of the
Jacobian; see Corollary 7.4.

Let us call X “good” if it satisfies X (k) = X (Ak)
f-cov
•

and “very good” if it
satisfies X (k)= X (Ak)

f-ab
•

.
Then another consequence is that the Brauer–Manin obstruction is the only ob-

struction against rational points on a curve that is very good. More precisely, the
Brauer–Manin obstruction is the only one against a weak form of weak approxima-
tion, namely weak approximation with information at the infinite primes reduced
to connected components.

An abelian variety A/k is very good if and only if the divisible subgroup of
X(k, A) is trivial. For example, if A/Q is a modular abelian variety of analytic
rank zero, then A(Q) andX(Q, A) are both finite, and A is very good. A prin-
cipal homogeneous space X for A such that X (k) = ∅ is very good if and only
if it represents a nondivisible element ofX(k, A). See Corollary 6.2 and the text
follows it.

The main result of this paper says that if C/k is a curve that has a nonconstant
morphism C→ X , where X is (very) good and X (k) is finite, then C is (very) good



Finite descent obstructions and rational points on curves 351

(and C(k) is finite); see Proposition 8.5. This implies that every curve C/Q whose
Jacobian has a nontrivial factor A, namely a modular abelian variety of analytic
rank zero, is very good; see Theorem 8.6. As an application, we prove that all
modular curves X0(N ), X1(N ) and X (N ) (over Q) are very good; see Corollary
8.8. For curves without rational points, we have the following corollary.

Corollary. If C/Q has a nonconstant morphism into a modular abelian variety
of analytic rank zero, and if C(Q) = ∅, then the absence of rational points is
explained by the Brauer–Manin obstruction.

This generalizes a result due to Siksek [2004] by removing all assumptions
related to the Galois action on the fibers of the morphism over rational points.

The paper is organized as follows. After a preliminary section (Section 2) setting
up the notation, we prove in Section 3 some results on abelian varieties, which will
be needed later on, but are also interesting in themselves. Then, in Section 4, we
review torsors and twists and set up some categories of torsors for later use. Section
5 introduces the sets cut out by finite descent information, as sketched above, and
Section 6 relates this to rational points. Next we study the relationship between our
sets X (Ak)

f-cov/f-sol/f-ab
• and the Brauer set X (Ak)

Br
•

together with its variants. This
is done in Section 7. We then discuss certain inheritance properties of the notion
of being “excellent” (which is stronger than “good”) in Section 8. This is then the
basis for the conjecture formulated and discussed in Section 9.

2. Preliminaries

In the following, k will always denote a number field.
Let X be a smooth projective variety over k. We modify the definition of the set

of adelic points of X in the following way.1

X (Ak)• =
∏
v-∞

X (kv)×
∏
v|∞

π0(X (kv)) .

In other words, the factors at infinite places v are reduced to the set of connected
components of X (kv). We then have a canonical surjection X (Ak) −→−→ X (Ak)•.
Note that for a zero-dimensional variety (or reduced finite scheme) Z , we have
Z(Ak)= Z(Ak)•. We will occasionally be a bit sloppy in our notation, pretending
that canonical maps like X (Ak)• → X (AK )• (for a finite extension K ⊃ k) or
Y (Ak)• → X (Ak)• (for a subvariety Y ⊂ X ) are inclusions, even though they in
general are not at the infinite places. For example, the intersection X (K )∩X (Ak)•

means the intersection of the images of both sets in X (AK )•.

1This notation was introduced by Bjorn Poonen.
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If X = A is an abelian variety over k, then∏
v-∞

{0}×
∏
v|∞

A(kv)0 = A(Ak)div

is exactly the divisible subgroup of A(Ak). This implies that

A(Ak)•/n A(Ak)• = A(Ak)/n A(Ak)

and then that

A(Ak)• = lim
←−

A(Ak)•/n A(Ak)• = lim
←−

A(Ak)/n A(Ak)= Â(Ak)

is (isomorphic to) its own componentwise profinite completion and also the com-
ponentwise profinite completion of the usual group of adelic points.

We will denote by Â(k)= A(k)⊗ZẐ the profinite completion lim
←−

A(k)/n A(k) of
the Mordell–Weil group A(k). By a result of Serre [1971, Thm. 3], the natural map
Â(k)→ Â(Ak)= A(Ak)• is an injection and therefore induces an isomorphism with
the topological closure A(k) of A(k) in A(Ak)•. We will reprove this in Proposition
3.7 below, and even show something stronger than that; see Theorem 3.10. (Our
proof is based on a later result of Serre.) Note that we have an exact sequence

0−→ A(k)tors −→ Â(k)−→ Ẑr
−→ 0 ,

where r is the Mordell–Weil rank of A(k); in particular,

Â(k)tors = A(k)tors .

Let Sel(n)(k, A) denote the n-Selmer group of A over k, as usual sitting in an
exact sequence

0−→ A(k)/n A(k)−→ Sel(n)(k, A)−→X(k, A)[n] −→ 0 .

If n | N , we have a canonical map of exact sequences

0 // A(k)/N A(k) //

��

Sel(N )(k, A) //

��

X(k, A)[N ] //

·N/n
��

0

0 // A(k)/n A(k) // Sel(n)(k, A) //X(k, A)[n] // 0

and we can form the projective limit

Ŝel(k, A)= lim
←−

Sel(n)(k, A) ,

which sits again in an exact sequence

0−→ Â(k)−→ Ŝel(k, A)−→ TX(k, A)−→ 0 ,
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where TX(k, A) is the Tate module ofX(k, A) (and the exactness on the right
follows from the fact that the maps A(k)/N A(k)→ A(k)/n A(k) are surjective).
If X(k, A) is finite, or more generally, if the divisible subgroup X(k, A)div is
trivial, then the Tate module vanishes, and Ŝel(k, A)= Â(k). Note also that since
TX(k, A) is torsion-free, we have

Ŝel(k, A)tors = Â(k)tors = A(k)tors .

By the definition of the Selmer group, we get maps

Sel(n)(k, A)−→ A(Ak)/n A(Ak)= A(Ak)•/n A(Ak)•

that are compatible with the projective limit, so we obtain a canonical map

Ŝel(k, A)−→ A(Ak)•

through which the map Â(k)→ A(Ak)• factors. We will denote the elements of
Ŝel(k, A) by P̂ , Q̂ and the like, and we will write Pv, Qv and the like for their
images in A(kv) or π0(A(kv)), so the map Ŝel(k, A) → A(Ak)• is specified as
P̂ 7−→ (Pv)v. (It will turn out that this map is injective; see Proposition 3.7.)

If X is a k-variety, then we use notation like PicX , NSX , and so forth, to denote
the Picard group, Néron–Severi group, and so forth, of X over k̄, as a k-Galois
module.

Finally, we will denote the absolute Galois group of k by Gk .

3. Some results on abelian varieties

In the following, A is an abelian variety over k of dimension g. For N ≥ 1, we set
kN = k(A[N ]) for the N -division field, and k∞ =

⋃
N kN for the division field.

The following lemma, based on a result due to Serre on the image of the Galois
group in Aut(Ators), forms the basis for the results of this section.

Lemma 3.1. There is some m ≥ 1 such that m kills all the cohomology groups
H 1(kN/k, A[N ]).

Proof. By a result of Serre [2000, p. 60], the image of Gk in Aut(Ators)=GL2g(Ẑ)

meets the scalars Ẑ× in a subgroup containing S = (Ẑ×)d for some d ≥ 1. We can
assume that d is even.

Now we note that in

H 1(kN/k, A[N ])
inf
↪→ H 1(k∞/k, A[N ])−→ H 1(k∞/k, Ators) ,

the kernel of the second map is killed by #A(k)tors. Hence it suffices to show that
H 1(k∞/k, Ators) is killed by some m.
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Let G =Gal(k∞/k)⊂GL2g(Ẑ), then S⊂G is a normal subgroup. We have the
inflation-restriction sequence

H 1(G/S, AS
tors)−→ H 1(G, Ators)−→ H 1(S, Ators) .

Therefore it suffices to show that there is some integer D≥ 1 killing both AS
tors and

H 1(S, Ators)= H 1((Ẑ×)d ,Q/Z)2g.
For a prime p, we define

νp =min{vp(ad
− 1) : a ∈ Z×p } .

It is easy to see that when p is odd, we have νp = 0 if p − 1 does not divide d,
and νp = 1+ vp(d) otherwise. Also, ν2 = 1 if d is odd (which we excluded), and
ν2 = 2+ v2(d) otherwise. In particular,

D =
∏

p

pνp

is a well-defined positive integer.
We first show that AS

tors is killed by D. We have

AS
tors =

(⊕
p
(Qp/Zp)

(Z×p )
d )2g

,

and for an individual summand, we see that

(Qp/Zp)
(Z×p )

d
= {x ∈Qp/Zp : (ad

− 1)x = 0 ∀a ∈ Z×p }

= {x ∈Qp/Zp : pνp x = 0}

is killed by pνp, whence the claim.
Now we have to look at H 1(S, Ators). It suffices to consider H 1((Ẑ×)d ,Q/Z).

We start with
H 1((Z×p )

d ,Qp/Zp)= 0 .

To see this, note that (Z×p )
d is procyclic (for odd p, Z×p is already procyclic; for

p= 2, Z×2 is {±1} times a procyclic group, and the first factor goes away under ex-
ponentiation by d, since d was assumed to be even). Let α∈ (Z×p )

d be a topological
generator. By evaluating the cocycles at α, we obtain an injection

H 1((Z×p )
d ,Qp/Zp) ↪→

Qp/Zp

(α− 1)(Qp/Zp)
=

Qp/Zp

pνp(Qp/Zp)
= 0 .

We then can conclude that H 1((Ẑ×)d ,Qp/Zp) is killed by pνp . To see this, write

(Ẑ×)d = (Z×p )
d
× T ,
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where T =
∏

q 6=p(Z
×
q )

d . Then, by inflation-restriction again, there is an exact
sequence

0= H 1((Z×p )
d ,Qp/Zp)−→ H 1((Ẑ×)d ,Qp/Zp)−→ H 1(T,Qp/Zp)

(Z×p )
d
,

and we have (note that T acts trivially on Qp/Zp)

H 1(T,Qp/Zp)
(Z×p )

d
= Hom(T, (Qp/Zp)

(Z×p )
d
) .

This group is killed by pνp, since (Qp/Zp)
(Z×p )

d
is. It follows that

H 1((Ẑ×)d ,Q/Z)=
⊕

p

H 1((Ẑ×)d ,Qp/Zp)

is killed by D =
∏

p pνp .
We therefore find that H 1(G, Ators) is killed by D2, and that H 1(kN/k, A[N ])

is killed by D2 #A(k)tors, for all N . �

Remark 3.2. A similar statement is proved for elliptic curves in [Viada 2003,
Prop. 7].

Lemma 3.3. For all positive integers N , the map

Sel(N )(k, A)−→ Sel(N )(kN , A)

has the kernel killed by m, where m is the number from Lemma 3.1.

Proof. We have the following commutative and exact diagram.

0

��

0

��

0 // ker

��

// H 1(kN/k, A[N ])

inf
��

0 // Sel(N )(k, A)

��

// H 1(k, A[N ])

res
��

0 // Sel(N )(kN , A) // H 1(kN , A[N ]).

So the kernel in question injects into H 1(kN/k, A[N ]), and by Lemma 3.1, this
group is killed by m. �

Lemma 3.4. Let Q ∈ Sel(N )(k, A), and let n be the order of m Q, where m is
the number from Lemma 3.1. Then the density of places v of k such that v splits
completely in kN/k and such that the image of Q in A(kv)/N A(kv) is trivial is at
most 1/(n[kN : k]).
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Proof. By Lemma 3.3, the kernel of Sel(N )(k, A)→ Sel(N )(kN , A) is killed by m.
Hence the order of the image of Q in Sel(N )(kN , A) is a multiple of n, the order
of m Q. Now consider the following diagram for a place v that splits in kN and a
place w of kN above it,

Sel(N )(k, A)

��

// Sel(N )(kN , A)

��

� � // H 1(kN , A[N ])

��

Hom(GkN , A[N ])

��

A(kv)/N A(kv)
∼=

// A(kN ,w)/N A(kN ,w)
� � // H 1(kN ,w, A[N ]) Hom(GkN ,w , A[N ]) .

Let α be the image of Q in Hom(GkN , A[N ]). Then the image of Q is trivial in
A(kv)/N A(kv) if and only if α restricts to the zero homomorphism on GkN ,w . This
is equivalent to saying that w splits completely in L/kN , where L is the fixed field
of the kernel of α. Since the order of α is a multiple of n, we have [L : kN ] ≥ n,
and the claim now follows from the Chebotarev Density Theorem. �

Recall the definition of Ŝel(k, A) and the natural maps

A(k) ↪→ Â(k) ↪→ Ŝel(k, A)−→ A(Ak)• ,

where we denote the rightmost map by

P̂ 7−→ (Pv)v .

Also recall that Ŝel(k, A)tors = A(k)tors under the identification given by the inclu-
sions above.

Lemma 3.5. Let Q̂1, . . . , Q̂s ∈ Ŝel(k, A) be elements of infinite order, and let
n ≥ 1. Then there is some N such that the images of Q̂1, . . . , Q̂s in Sel(N )(k, A)
all have order at least n.

Proof. For a fixed 1≤ j≤ s, consider (n−1)!Q̂ j 6=0. There is some N j such that the
image of (n−1)!Q̂ j in Sel(N j )(k, A) is nonzero. This implies that the image of Q̂ j

has order at least n. Because of the canonical maps Sel(l N j )(k, A)→Sel(N j )(k, A),
this will also be true for all multiples of N j . Therefore, any N that is a common
multiple of all the N j will do. �

Proposition 3.6. Let Z ⊂ A be a finite subscheme of an abelian variety A over k
such that Z(k) = Z(k̄). Let P̂ ∈ Ŝel(k, A) be such that Pv ∈ Z(kv) = Z(k) for a
set of places v of k of density 1. Then P̂ is in the image of Z(k) in Ŝel(k, A).

Proof. In the following, we identify A(k) with its image in Ŝel(k, A). We first
show that P̂ ∈ Z(k)+ A(k)tors. Assume the contrary. Then none of the differences
P̂−Q for Q ∈ Z(k) has finite order. Let n > #Z(k). Then by Lemma 3.5, we can
find a number N such that the image of m(P̂−Q) under Ŝel(k, A)→ Sel(N )(k, A)
has order at least n, for all Q ∈ Z(k).
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By Lemma 3.4, the density of places of k such that v splits in kN and at least
one of P̂ − Q, for Q ∈ Z(k), maps trivially into A(kv)/N A(kv) is at most

#Z(k)
n[kN : k]

<
1

[kN : k]
.

Therefore, there is a set of places v of k of positive density such that v splits
completely in kN/k and such that none of P̂−Q maps trivially into A(kv)/N A(kv).
This implies Pv 6= Q for all Q ∈ Z(k), contrary to the assumption on P̂ and the
fact that Z(kv)= Z(k).

It therefore follows that P̂ ∈ Z(k)+ A(k)tors ⊂ A(k). Take a finite place v of k
such that Pv ∈ Z(k) (the set of such places has density 1 by assumption). Then
A(k) injects into A(kv). But the image Pv of P̂ under Ŝel(k, A)→ A(kv) is in Z ;
therefore we must have P̂ ∈ Z(k). �

The following is a simple, but useful consequence.

Proposition 3.7. If S is a set of places of k of density 1, then

Ŝel(k, A)−→
∏
v∈S

A(kv)/A(kv)0

is injective. (Note that A(kv)0 = 0 for v finite.) In particular,

Â(k)−→
∏
v∈S

A(kv)/A(kv)0

is injective, and the canonical map Â(k)→ A(Ak)• induces an isomorphism be-
tween Â(k) and A(k), the topological closure of A(k) in A(Ak)•.

This is essentially Serre’s result in [Serre 1971, Thm. 3].

Proof. Let P̂ be in the kernel. Then we can apply Proposition 3.6 with Z = {0},
and we find that P̂ = 0.

In the last statement, it is clear that the image of the map is A(k), whence the
result. �

From now on, we will identify Ŝel(k, A) with its image in A(Ak)•. We then
have a chain of inclusions

A(k)⊂ A(k)⊂ Ŝel(k, A)⊂ A(Ak)•, and Ŝel(k, A)/A(k)∼= TX(k, A)

vanishes if and only if the divisible subgroup ofX(k, A) is trivial.
We can prove a result stronger than the above. For a finite place v of k, we

denote by Fv the residue class field at v. If v is a place of good reduction for A,
then it makes sense to speak of A(Fv), the group of Fv-points of A. There is a
canonical map

Ŝel(k, A)−→ A(kv)−→ A(Fv) .
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Lemma 3.8. Let 0 6= Q̂ ∈ Ŝel(k, A). Then there is a set of (finite) places v of k
(of good reduction for A) of positive density such that the image of Q̂ in A(Fv) is
nontrivial.

Proof. First assume that Q̂ /∈ A(k)tors. Then m Q̂ 6= 0, so there is some N such that
m Q̂ has nontrivial image in Sel(N )(k, A) (where m is, as usual, the number from
Lemma 3.1). By Lemma 3.4, we find that there is a set of places v of k of positive
density such that Qv /∈ N A(kv). Excluding the finitely many places dividing N∞
or of bad reduction for A does not change this density. For v in this reduced set,
we have A(kv)/N A(kv)∼= A(Fv)/N A(Fv), and so the image of Q̂ in A(Fv) is not
in N A(Fv), let alone zero.

Now consider the case that Q̂ ∈ A(k)tors \ {0}. We know that for all but finitely
many finite places v of good reduction, A(k)tors injects into A(Fv), so in this case,
the statement is even true for a set of places of density 1. �

Remark 3.9. Note that the corresponding statement for points Q ∈ A(k) is trivial;
indeed, there are only finitely many finite places v of good reduction such that Q
maps trivially into A(Fv). To see this, consider some projective model of A; then
Q and 0 are two distinct points in projective space. They will reduce to the same
point mod v if and only if v divides certain nonzero numbers (2× 2 determinants
formed with the coordinates of the two points). The lemma above says that things
can not go wrong too badly when we replace A(k) by its completion Â(k) or
even Ŝel(k, A).

Theorem 3.10. Let S be a set of finite places of k of good reduction for A and of
density 1. Then the canonical homomorphisms

Ŝel(k, A)−→
∏
v∈S

A(Fv) and Â(k)−→
∏
v∈S

A(Fv)

are injective.

Proof. Let Q̂ be in the kernel. If Q̂ 6=0, then by Lemma 3.8, there is a set of places v
of positive density such that the image of Q̂ in A(Fv) is nonzero, contradicting the
assumptions. So Q̂ = 0, and the map is injective. �

For applications, it is useful to remove in Proposition 3.6 the requirement that
all points of Z have to be defined over k.

Theorem 3.11. Let Z ⊂ A be a finite subscheme of an abelian variety A over k.
Let P̂ ∈ Ŝel(k, A) be such that Pv ∈ Z(kv) for a set of places v of k of density 1.
Then P̂ is in the image of Z(k) in Ŝel(k, A).

Proof. Let K/k be a finite extension such that Z(K ) = Z(k̄). By Proposition
3.6, we have that the image of P̂ in A(AK )• is in Z(K ). Since P̂ is k-rational,
this implies that the image of P̂ in A(AK )• is in Z(k). Now the canonical map
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A(Ak)• → A(AK )• is injective except possibly at some of the infinite places, so
Pv ∈ Z(k) for all but finitely many places. Now, replacing Z by Z(k) and applying
Proposition 3.6 again (this time over k), we find that P̂ ∈ Z(k), as claimed. �

We have seen that for zero-dimensional subvarieties Z ⊂ A, we have

Z(Ak)• ∩ A(k)= Z(k),

or even more generally,

Z(Ak)• ∩ Ŝel(k, A)= Z(k)

(writing intersections for simplicity). One can ask if this is valid more generally
for subvarieties X ⊂ A, that do not contain the translate of an abelian subvariety
of positive dimension.

Question 3.12. Is there such a thing as an “Adelic Mordell–Lang Conjecture”?
A possible statement is as follows. Let A/k be an abelian variety and X ⊂ A

a subvariety not containing the translate of a nontrivial subabelian variety of A.
Then there is a finite subscheme Z ⊂ X such that

X (Ak)• ∩ Ŝel(k, A)⊂ Z(Ak)• .

If this holds, Theorem 3.11 above implies that

X (k)⊂ X (Ak)• ∩ Ŝel(k, A)⊂ Z(Ak)• ∩ Ŝel(k, A)= Z(k)⊂ X (k)

and therefore X (k)= X (Ak)• ∩ Ŝel(k, A). In the notation introduced in Section 5
below and by the discussion in Section 6, this implies

X (k)⊂ X (Ak)
f-ab
•
⊂ X (Ak)• ∩ A(Ak)

f-ab
•
= X (Ak)• ∩ Ŝel(k, A)= X (k) ,

and so X is excellent with respect to the abelian coverings (and hence “very good”).

Remark 3.13. Note that the Adelic Mordell–Lang Conjecture formulated above is
true when k is a global function field, A is ordinary, and X is not defined over k p

(where p is the characteristic of k); see [Voloch 1991]. (The result is also implicit
in [Hrushovski 1996].)

4. Torsors and twists

We now introduce torsors (under finite étale group schemes) and twists, and de-
scribe various constructions that can be done with these objects.

Let X be a smooth projective (reduced, but not necessarily geometrically con-
nected) variety over k.

We will consider the following category Cov(X). Its objects are X -torsors Y
under G (see for example [Skorobogatov 2001] for definitions), where G is a finite
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étale group scheme over k. More concretely, the data consist of a k-morphism
µ : Y ×G→ Y describing a right action of G on Y , together with a finite étale k-
morphism π : Y→ X such that the following diagram is cartesian, id est, identifies
Y ×G with the fiber product Y ×X Y ,

Y ×G

pr1

��

µ
// Y

π

��

Y
π

// X.

We will usually just write (Y,G) for such an object, with the maps µ and π being
understood. Morphisms (Y ′,G ′)→ (Y,G) in Cov(X) are given by a pair of maps,
as k-morphisms of (group) schemes, φ : Y ′ → Y and γ : G ′ → G such that the
obvious diagram

Y ′×G ′

φ×γ

��

µ′
// Y ′

φ

��

π ′
// X

Y ×G
µ

// Y
π

// X

commutes. Note that γ is uniquely determined by φ: if y′ ∈ Y ′, g′ ∈ G ′, there is a
unique g ∈ G such that φ(y′) · g = φ(y′ · g′), so we must have γ (g′)= g.

We will denote by Sol(X) and Ab(X) the full subcategories of Cov(X) whose
objects are the torsors (Y,G) such that G is solvable or abelian, respectively.

If X ′→ X is a k-morphism of (smooth projective) varieties, then we can pull
back X -torsors under G to obtain X ′-torsors under G. This defines covariant func-
tors Cov(X)→ Cov(X ′), Sol(X)→ Sol(X ′) and Ab(X)→Ab(X ′).

The following constructions are described for Cov(X), but they are similarly
valid for Sol(X) and Ab(X).

If (Y1,G1), (Y2,G2) ∈ Cov(X) are two X -torsors, then we can construct their
fiber product (Y,G)∈Cov(X), where Y = Y1×X Y2 and G =G1×G2. More gen-
erally, if (Y1,G1)→ (Y,G) and (Y2,G2)→ (Y,G) are two morphisms in Cov(X),
there is a fiber product (Z , H)∈Cov(X), where Z = Y1×Y Y2 and H =G1×G G2.

If (Y,G)∈Cov(X) is an X -torsor, where now everything is over K with a finite
extension K/k, then we can apply restriction of scalars to obtain

(RK/kY, RK/k G) ∈ Cov(RK/k X).

If (Y,G) ∈ Cov(X) is an X -torsor and ξ is a cohomology class in H 1(k,G),
then we can construct the twist (Yξ ,Gξ ) of (Y,G) by ξ . Here Gξ is the inner
form of G corresponding to ξ (compare, for example, [Skorobogatov 2001, pp. 12,
20]). We will denote the structure maps by µξ and πξ . Usually, H 1(k,G) is just
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a pointed set with distinguished element corresponding to the given torsor; if the
torsor is abelian, H 1(k,G) is a group, and Gξ = G for all ξ ∈ H 1(k,G).

If (φ, γ ) : (Y ′,G ′)→ (Y,G) is a morphism and ξ ∈ H 1(k,G ′), then we get an
induced morphism

(Y ′ξ ,G ′ξ )→ (Yγ∗ξ ,Gγ∗ξ )

where γ∗ is the induced map H 1(k,G ′)→ H 1(k,G). Similarly, twists are com-
patible with pull-backs, fiber products and restriction of scalars.

Twists are transitive in the following sense. If (Y,G) ∈ Cov(X) is an X -
torsor and ξ ∈ H 1(k,G), η ∈ H 1(k,Gξ ), then there is a ζ ∈ H 1(k,G) such that
((Yξ )η, (Gξ )η) ∼= (Yζ ,Gζ ). Conversely, if ξ and ζ are given, then there is an
η ∈ H 1(k,Gξ ) such that the relation above holds.

The following observation does not hold in general for Sol(X) and Ab(X). If
Y

π
→ X is any finite étale morphism, then there is some (Ỹ ,G)∈Cov(X) such that

π̃ : Ỹ → X factors through π . Also, if we have (Y,G) ∈ Cov(X) and (Z , H) ∈
Cov(Y ), then there is some (Z̃ , 0) ∈ Cov(X) such that Z̃ maps to Z over X and
such that the induced map Z̃→ Y gives rise to a Y -torsor (Z̃ , H̃) ∈ Cov(Y ). This
last statement is also valid with Sol(X) and Sol(Y ) in place of Cov(X) and Cov(Y )
(since extensions of solvable groups are solvable).

5. Finite descent conditions

In this section, we use torsors and their twists, as described in the previous section,
in order to obtain obstructions against rational points. The use of torsors under
finite abelian group schemes is classical; it is what is behind the usual descent
procedures on elliptic curves or abelian varieties (and so one can claim that they
go all the way back to Fermat). The nonabelian case was first studied by Harari
and Skorobogatov [2002]; see also [Harari 2000].

The following theorem (going back to Chevalley and Weil [1932]) summarizes
the standard facts about descent via torsors. Compare also [Harari and Skoroboga-
tov 2002, Lemma 4.1] and [Skorobogatov 2001, pp. 105, 106].

Theorem 5.1. Let (Y,G) ∈ Cov(X) be a torsor, where X is a smooth projective
k-variety. Then

(1) X (k)=
∐

ξ∈H1(k,G)
πξ (Yξ (k));

(2) the (Y,G)-Selmer set

Sel(Y,G)(k, X)= {ξ ∈ H 1(k,G) : Yξ (Ak)• 6=∅}

is finite: there are only finitely many twists (Yξ ,Gξ ) such that Yξ has points
everywhere locally.
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At least in principle, the Selmer set in the second statement can be determined
explicitly, and the union in the first statement can be restricted to this finite set.

The idea behind the following considerations is to see how much information
one can get out of the various torsors regarding the image of X (k) in X (Ak)•.
Compare Definition 4.2 in [Harari and Skorobogatov 2002] and Definition 5.3.1 in
Skorobogatov’s book Skorobogatov [2001].

Definition 5.2. Let (Y,G) ∈ Cov(X) be an X -torsor. We say that a point P ∈
X (Ak)• survives (Y,G), if it lifts to a point in Yξ (Ak)• for some twist (Yξ ,Gξ )

of (Y,G).

There is a cohomological description of this property. An X -torsor under G
is given by an element of H 1

ét(X,G). Pull-back through the map Spec k → X
corresponding to a point in X (k) gives a map

X (k)−→ H 1(k,G) .

Note that it is not necessary to refer to nonabelian étale cohomology here: the map
X (k)→ H 1(k,G) induced by a torsor (Y,G) simply arises by associating to a
point P ∈ X (k) its fiber π−1(P) ⊂ Y , which is a k-torsor under G and therefore
corresponds to an element of H 1(k,G).

We get a similar map on adelic points,

X (Ak)• −→
∏
v

H 1(kv,G) .

There is the canonical restriction map

H 1(k,G)−→
∏
v

H 1(kv,G) ,

and the various maps piece together to give a commutative diagram

X (k) //

��

H 1(k,G)

��

X (Ak)• //
∏
v H 1(kv,G).

A point P ∈ X (Ak)• survives (Y,G) if and only if its image in
∏
v H 1(kv,G) is in

the image of the global set H 1(k,G). The (Y,G)-Selmer set is then the preimage
in H 1(k,G) of the image of X (Ak)•; this is completely analogous to the definition
of a Selmer group in case X is an abelian variety A, and G = A[n] is the n-torsion
subgroup of A.

Here are some basic properties.
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Lemma 5.3. (1) If (φ, γ ) : (Y ′,G ′)→ (Y,G) is a morphism in Cov(X), and if
P ∈ X (Ak)• survives (Y ′,G ′), then P also survives (Y,G).

(2) If (Y ′,G) ∈ Cov(X ′) is the pull-back of (Y,G) ∈ Cov(X) under a morphism
ψ : X ′ → X , then P ∈ X ′(Ak)• survives (Y ′,G) if and only if ψ(P) sur-
vives (Y,G).

(3) If (Y1,G1), (Y2,G2) ∈ Cov(X) have fiber product (Y,G), then P ∈ X (Ak)•

survives (Y,G) if and only if P survives both (Y1,G1) and (Y2,G2).

(4) Let X be over K , where K/k is a finite extension, and let (Y,G)∈Cov(X) be
an X-torsor. Then P ∈ (RK/k X)(Ak)• survives (RK/kY, RK/k G) if and only
if its image in X (AK )• survives (Y,G).

(5) If (Y,G) ∈ Cov(X) and ξ ∈ H 1(k,G), then P ∈ X (Ak)• survives (Y,G) if
and only if P survives (Yξ ,Gξ ).

Proof. (1) By assumption, there are ξ ∈ H 1(k,G ′) and Q ∈ Y ′ξ (Ak)• such that
π ′ξ (Q)= P . We have the morphism φξ : Y ′ξ → Yγ∗ξ over X ; hence πγ∗ξ (φξ (Q))=
π ′ξ (Q)= P , whence P survives (Y,G).

(2) Assume that P survives (Y ′,G). There are ξ ∈ H 1(k,G) and Q ∈ Y ′ξ (Ak)•

such that π ′ξ (Q) = P . There is a morphism 9ξ : Y ′ξ → Yξ over ψ , and hence
we have that πξ (9ξ (Q)) = ψ(P), so ψ(P) survives (Y,G). Conversely, assume
that ψ(P) survives (Y,G). Then there are ξ ∈ H 1(k,G) and Q ∈ Yξ (Ak)• such
that πξ (Q) = ψ(P). The twist (Y ′ξ ,Gξ ) is the pull-back of (Yξ ,Gξ ) under ψ ; in
particular, Y ′ξ = Yξ ×X X ′, and so there is Q′ ∈ Y ′ξ (Ak)• mapping to Q in Yξ and
to P in X ′. Hence P survives (Y ′,G).

(3) We have obvious morphisms (Y,G)→ (Yi ,Gi ). So by part (1), if P survives
(Y,G), then it also survives (Y1,G1) and (Y2,G2). Now assume that P survives
both (Y1,G1) and (Y2,G2). Then there are ξ1 ∈ H 1(k,G1) and ξ2 ∈ H 1(k,G2) and
points Q1 ∈ Y1,ξ1(Ak)•, Q2 ∈ Y2,ξ2(Ak)• such that π1,ξ1(Q1)= P and π2,ξ2(Q2)=

P . Consider ξ = (ξ1, ξ2) ∈ H 1(k,G) = H 1(k,G1)× H 1(k,G2). We have that
Yξ = Y1,ξ1 ×X Y2,ξ2 ; hence there is Q ∈ Yξ (Ak)• mapping to Q1 and Q2 under
the canonical maps Yξ → Yi,ξi (i = 1, 2), and to P under πξ : Yξ → X . Hence P
survives (Y,G).

(4) We have H 1(k, RK/k G) = H 1(K ,G), and the corresponding twists are com-
patible. For any ξ in this set, we have RK/kYξ = (RK/kY )ξ , and the adelic points
(RK/kYξ )(Ak)• and Yξ (AK )• are identified. The claim follows.

(5) This comes from the fact that every twist of (Y,G) is also a twist of (Yξ ,Gξ )

and vice versa. �
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By the Descent Theorem 5.1, it is clear that (the image in X (Ak)• of) a rational
point P ∈ X (k) survives every torsor. Therefore it makes sense to study the set of
adelic points that survive every torsor (or a suitable subclass of torsors) in order to
obtain information on the location of the rational points within the adelic points.
Note that the set of points in X (Ak)• surviving a given torsor is closed — it is a
finite union of images of compact sets Yξ (Ak)• under continuous maps.

We are led to the following definitions.

Definition 5.4. Let X be a smooth projective variety over k.

(1) X (Ak)
f-cov
•
= {P ∈ X (Ak)• : P survives all (Y,G) ∈ Cov(X)} .

(2) X (Ak)
f-sol
•
= {P ∈ X (Ak)• : P survives all (Y,G) ∈ Sol(X)} .

(3) X (Ak)
f-ab
•
= {P ∈ X (Ak)• : P survives all (Y,G) ∈Ab(X)} .

(The “f” in the superscripts stands for “finite”, since we are dealing with torsors
under finite group schemes only.)

By the remark made before the definition above, we have

X (k)⊂ X (k)⊂ X (Ak)
f-cov
•
⊂ X (Ak)

f-sol
•
⊂ X (Ak)

f-ab
•
⊂ X (Ak)• .

Here, X (k) is the topological closure of X (k) in X (Ak)•.
Recall the “evaluation map” for P ∈ X (Ak)• and G a finite étale k-group scheme,

evP,G : H 1
ét(X,G)−→

∏
v

H 1(kv,G)

(the set on the left can be considered as the set of isomorphism classes of X -torsors
under G) and the restriction map

resG : H 1(k,G)−→
∏
v

H 1(kv,G) .

In these terms, we have

X (Ak)
f-cov
•
=

⋂
G

{P ∈ X (Ak)• : im(evP,G)⊂ im(resG)} ,

where G runs through all finite étale k-group schemes. We obtain X (Ak)
f-sol
•

and
X (Ak)

f-ab
•

in a similar way, by restricting G to solvable or abelian group schemes.
In the definition above, we can restrict to (Y,G) with Y connected (over k) if

X is connected: if we have (Y,G) with Y not connected, then let Y0 by a con-
nected component of Y , and let G0 ⊂ G be the stabilizer of this component. Then
(Y0,G0) is again a torsor of the same kind as (Y,G), and we have a morphism
(Y0,G0)→ (Y,G). Hence, by Lemma 5.3, (1), if P survives (Y0,G0), then it also
survives (Y,G).
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However, we cannot restrict to geometrically connected torsors when X is ge-
ometrically connected. The reason is that there can be obstructions coming from
the fact that a suitable geometrically connected torsor does not exist.

Lemma 5.5. Assume that X is geometrically connected. If there is a torsor
(Y,G) ∈ Cov(X) such that Y and all twists Yξ are k-connected, but not geomet-
rically connected, then X (Ak)

f-cov
•
= ∅. The analogous statement holds for the

solvable and abelian versions.

Proof. If Yξ is connected, but not geometrically connected, then Yξ (Ak)• = ∅
(this is because the finite scheme π0(Yξ ) is irreducible and therefore satisfies the
Hasse Principle, compare the proof of Proposition 5.12). Hence no point in X (Ak)•

survives (Y,G). �

Let us briefly discuss how this relates to the geometric fundamental group of X
over k̄, assuming X to be geometrically connected. In the following, we write
X̄ = X×k k̄ and so forth, for the base-change of X to a variety over k̄. Every torsor
(Y,G)∈Cov(X) (Sol(X) or Ab(X), respectively) gives rise to a covering Ȳ→ X̄
that is Galois with (solvable or abelian) Galois group G(k̄). The stabilizer 0 of a
connected component of Ȳ is then a finite quotient of the geometric fundamental
group π1(X̄). If we fix an embedding k→ C, then π1(X̄) is the profinite comple-
tion of the topological fundamental group π1(X (C)), so 0 is also a finite quotient
of π1(X (C)). If 0 is trivial, then π0(Y ) is a k-torsor under G, and (Y,G) is the
pull-back of (π0(Y ),G) under the structure morphism X → Spec k. We call such
a torsor trivial. Note that all points in X (Ak)• survive a trivial torsor (since their
image in (Spec k)(Ak)•= (Spec k)(k)= {pt} survives everything); therefore trivial
torsors do not give information.

Conversely, given a finite quotient 0 of π1(X̄) or of π1(X (C)), there is a corre-
sponding covering Ȳ → X̄ that will be defined over some finite extension K of k.
Let π : Y → X K be the covering over K ; it is a torsor under a K -group scheme G
such that G(k̄) = 0. We now construct a torsor (Z , RK/k G) ∈ Cov(X) that
over K factors through π . By restriction of scalars, we obtain (RK/kY, RK/k G) ∈
Cov(RK/k X K ). We pull back via the canonical morphism X→ RK/k X K to obtain
(Z , RK/k G) ∈ Cov(X). Over K , we have the following diagram

Z K //

(RK/k G)K

��

(RK/kY )K
can

//

(RK/k G)K

��

Y

G
��

X K
can

// (RK/k X K )K
can

// X K .

(Here the right hand horizontal maps come from the identity morphism W→W of
a K -variety W, under the identification of Mork(V, RK/k W ) with MorK (VK ,W ),
taking V = RK/k W ; for W = Y and W = X K , respectively.) The composition
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of the lower horizontal maps is the identity morphism; hence (Z K , (RK/k G)K ) ∈

Cov(X K ) maps to (Y,G). Note that the torsor we construct is in Sol(X) (respec-
tively, Ab(X)) when 0 is solvable (respectively, abelian).

Lemma 5.6. Let X be geometrically connected, (Y,G), (Y ′,G ′) ∈ Cov(X) such
that Y is geometrically connected and such that (Ȳ , Ḡ) maps to (Ȳ ′, Ḡ ′) as torsors
of X̄ . Then there is a twist (Y ′ξ ,G ′ξ ) of (Y ′,G ′) such that (Y,G) maps to (Y ′ξ ,G ′ξ ).

Proof. Let (φ, γ ) : (Ȳ , Ḡ)→ (Ȳ ′, Ḡ ′) be the given morphism. Note that by as-
sumption, the covering maps π : Y → X and π ′ : Y ′→ X are defined over k. For
σ ∈ Gk , this implies that (σφ, σγ ) is also a morphism (Ȳ , Ḡ)→ (Ȳ ′, Ḡ ′). We can
then consider the composite morphism

Ȳ
(φ,σφ)
−→ Ȳ ′×X̄ Ȳ ′

∼=
−→ Ȳ ′× Ḡ ′

pr2
−→ Ḡ ′ .

Since Ȳ is connected and Ḡ ′ is discrete, this morphism must be constant. Let
ξσ ∈ G ′(k̄) be its image. It can then be checked that ξ = (ξσ )σ∈Gk is a G ′-valued
cocycle and that after twisting (Y ′,G ′) by ξ , the morphism φ becomes defined
over k; since γ is uniquely determined by φ, the same is true for γ . �

We still assume X to be geometrically connected. Let us call a family of tor-
sors (Yi ,Gi ) ∈ Cov(X) (Sol(X) or Ab(X), respectively) with Yi geometrically
connected a cofinal family of coverings of X (respectively, of solvable or abelian
coverings of X ) if for every (respectively, every solvable or abelian) connected
(Ȳ , Ḡ) ∈ Cov(X̄) (respectively, Sol(X̄) or Ab(X̄)), there is a torsor (Yi ,Gi ) such
that (Ȳi , Ḡi ) maps to (Ȳ , Ḡ). We then have the following.

Lemma 5.7. Let X be geometrically connected.

(1) If X (Ak)
f-cov
•
6= ∅, then there is a cofinal family of coverings of X. A similar

statement holds for X (Ak)
f-sol
•

and solvable coverings, and for X (Ak)
f-ab
•

and
abelian coverings.

(2) If (Yi ,Gi )i is a cofinal family of coverings of X , then P ∈ X (Ak)• is in
X (Ak)

f-cov
•

if and only if P survives every (Yi ,Gi ). Similarly for the solvable
and abelian variants.

Proof.

(1) Let P ∈ X (Ak)
f-cov
•

, and let Ȳ → X̄ be a finite étale Galois covering with
Galois group 0. Then by the discussion before Lemma 5.6, there is a torsor
(Z ,G) ∈ Cov(X), which we can assume to be k-connected, such that (Z̄ , Ḡ)
maps to (Ȳ , 0). Without loss of generality (after perhaps twisting (Z ,G)), we
can assume that (Z ,G) lifts P . This implies that Z is geometrically connected
(compare Lemma 5.5). So if we take all torsors (Z ,G) obtained in this way,
we obtain a cofinal family of coverings of X . The proof in the solvable and
abelian cases is analogous.
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(2) The “only if” part is clear. So assume that P survives all (Yi ,Gi ), and let
(Z , 0)∈Cov(X) be arbitrary. Let Z̄0 be a connected component of Z̄ , and let
0̄0 be the stabilizer of Z̄0. Then there is some (Yi ,Gi ) such that (Ȳi , Ḡi )→

(Z̄0, 0̄0)→ (Z̄ , 0̄); hence by Lemma 5.6, there is a twist (Zξ , 0ξ ) such that
(Yi ,Gi ) maps to it. Since P survives (Yi ,Gi ) by assumption, it also survives
(Zξ , 0ξ ) and therefore (Z , 0), by Lemma 5.3. The proof in the solvable and
abelian cases is again analogous.

�

Lemma 5.8. Let X be geometrically connected.

(1) If π1(X̄) is trivial (that is, X is simply connected), then X (Ak)
f-cov
•
= X (Ak)•.

(2) If the abelianization π1(X̄)ab is trivial, then X (Ak)
f-ab
•
= X (Ak)•.

(3) If π1(X̄) is abelian (respectively, solvable), then X (Ak)
f-cov
•
= X (Ak)

f-ab
•

(re-
spectively, X (Ak)

f-cov
•
= X (Ak)

f-sol
•

).

Proof.

(1) In this case, all torsors are trivial and are therefore survived by all points
in X (Ak)•.

(2) Here the same holds for all abelian torsors.

(3) We always have X (Ak)
f-cov
•
⊂ X (Ak)

f-ab
•

. So let P ∈ X (Ak)
f-ab
•

; then by Lemma
5.7, (1), there is a cofinal family (Yi ,Gi ) of abelian coverings of X , and since
π1(X̄) is abelian, this is also a cofinal family of coverings without restriction.
By part (2) of the same lemma, it suffices to check that P survives all (Yi ,Gi ),
which we know to be true, in order to conclude that P ∈ X (Ak)

f-cov
•

. Similarly
for the solvable variant.

�

We now list some fairly elementary properties of the sets X (Ak)
f-ab/f-sol/f-cov
• .

Proposition 5.9. If X ′
ψ
→ X is a morphism, then ψ(X ′(Ak)

f-cov
•

) ⊂ X (Ak)
f-cov
•

.
Similarly for the solvable and abelian variants.

Proof. Let P ∈ X ′(Ak)
f-cov
•

, and let (Y,G) ∈ Cov(X) be an X -torsor. By as-
sumption, P survives the pull-back (Y ′,G) of (Y,G) under ψ , so by Lemma 5.3,
part (2), ψ(P) survives (Y,G). Since (Y,G) is arbitrary, ψ(P) ∈ X (Ak)

f-cov
•

. The
same proof works for the solvable and abelian variants. �

Lemma 5.10. Let Z = Spec kqSpec k = {P1, P2}. Then

{P1, P2} = Z(k)= Z(Ak)
f-ab
•
.

Proof. Let Q ∈ Z(Ak)• and assume that Q /∈ Z(k). We have to show that Q /∈

Z(Ak)
f-ab
•

. By assumption, there are places v and w of k such that Qv = P1 and
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Qw = P2. We will consider torsors under G = Z/2Z. Pick some α ∈ k× such
that α /∈ (k×v )

2 and α /∈ (k×w )
2. Let Y = Spec k(

√
α) q (Spec k q Spec k); then

(Y,G) ∈ Ab(Z) in an obvious way. We want to show that no twist (Yξ ,G) for
ξ ∈ H 1(k,G)= k×/(k×)2 lifts Q. Such a twist is of one of the following forms:

(Yξ ,G)= Spec k(
√
α)q (Spec kqSpec k),

(Yξ ,G)= (Spec kqSpec k)qSpec k(
√
α),

(Yξ ,G)= Spec k(
√
β)qSpec k(

√
γ ),

where in the last case, β and γ are independent in k×/(k×)2. In the first two cases,
Q does not lift, since in the first case, the first component does not lift Qv, and
in the second case, the second component does not lift Qw (by our choice of α).
In the third case, there is a set of places of k of density 1/4 that are inert in both
k(
√
β) and k(

√
γ ), so Yξ (Ak)• = ∅. In particular, Q does not lift to any of these

twists. �

Proposition 5.11. If X = X1q X2q · · · q Xn is a disjoint union, then

X (Ak)
f-cov
•
=

n∐
j=1

X j (Ak)
f-cov
•

,

and similarly for the solvable and abelian variants.

Proof. It is sufficient to consider the case n = 2. We have maps X1 → X and
X2→ X , so by Proposition 5.9, X1(Ak)

f-cov
•
q X2(Ak)

f-cov
•
⊂ X (Ak)

f-cov
•

(same for
the solvable and abelian variants). For the reverse inclusion, consider the morphism
X→Spec kqSpec k= Z mapping X1 to the first point and X2 to the second point.
If Q ∈ X (Ak)

f-ab
•

, then its image is in Z(Ak)
f-ab
•
= Z(k) (by Proposition 5.9 again

and Lemma 5.10). This means that Q ∈ X1(Ak)• q X2(Ak)•. The claim then
follows easily. �

Proposition 5.12. If Z is a (reduced) finite scheme, then Z(Ak)
f-ab
•
= Z(k).

Proof. By Proposition 5.11, it suffices to prove this when Z =Spec K is connected.
But in this case, it is known that Z satisfies the Hasse Principle. On the other hand,
if Z(k) 6=∅, then Z = Spec k and Z(Ak)• has just one point, so Z(k)= Z(Ak)•.

(The statement that Spec K as a k-scheme satisfies the Hasse Principle comes
down to the following fact.

Fact. If a group G acts transitively on a finite set X such that every g ∈ G fixes at
least one element of X , then #X = 1.

To see this, let n= #X and assume (without loss of generality) that G ⊂ Sn . The
stabilizer Gx of x ∈ X is a subgroup of index n in G. By assumption, G=

⋃
x∈X Gx ,
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so G\{1}=
⋃

x∈X (Gx\{1}). Counting elements now gives #G−1≤n(#G/n−1)=
#G− n, which implies n = 1.) �

Remark 5.13. Note that the Hasse Principle does not hold in general for finite
schemes. A typical counterexample is given by the Q-scheme

Spec Q(
√

13)qSpec Q(
√

17)qSpec Q(
√

13 · 17) .

Proposition 5.14. We have

(X × Y )(Ak)
f-cov
•
= X (Ak)

f-cov
•
× Y (Ak)

f-cov
•

.

Similarly for the solvable and abelian variants.

Proof. Proposition 5.9 implies that

(X × Y )(Ak)
f-cov
•
⊂ X (Ak)

f-cov
•
× Y (Ak)

f-cov
•

(and similarly for the solvable and abelian variants).
For the other direction, we can assume that X and Y are k-connected, compare

Proposition 5.11. If X (say) is not geometrically connected, then X (Ak)•=∅, and
hence (X × Y )(Ak)• = ∅ as well, and the statement is trivially true. So we can
assume that X and Y are geometrically connected.

We now use the fact that π1(X̄ × Ȳ ) = π1(X̄) × π1(Ȳ ). Let P ∈ X (Ak)
f-cov
•

and Q ∈ Y (Ak)
f-cov
•

. By Lemma 5.7, (1), there are cofinal families of coverings
(Vi ,Gi ) of X and (W j , H j ) of Y , which we can assume to lift P , respectively,
Q. Then the products (Vi × W j ,Gi × H j ) form a cofinal family of coverings
of X×Y , and it is clear that they lift (P, Q). By Lemma 5.7, (2), this implies that
(P, Q) ∈ (X × Y )(Ak)

f-cov
•

.
The solvable and abelian variants are proved similarly, using the corresponding

product property of the maximal abelian and solvable quotients of the geometric
fundamental group. �

Proposition 5.15. If K/k is a finite extension and X is a K -variety, then

(RK/k X)(Ak)
f-cov
•
= X (AK )

f-cov
•

(under the canonical identification (RK/k X)(Ak)• = X (AK )•), and similarly for
the solvable and abelian variants.

Proof. Let P ∈ (RK/k X)(Ak)
f-cov
•

, and let (Y,G) ∈ Cov(X). By assumption,
P survives (RK/kY, RK/k G) ∈ Cov(RK/k X), so by Lemma 5.3, part (4), P also
survives (Y,G). Since (Y,G) was arbitrary, P ∈ X (AK )

f-cov
•

, so the left hand side
is contained in the right hand side.

For the proof of the reverse inclusion, we can reduce to the case that X is
K -connected, by Proposition 5.11. If X is K -connected, but not geometrically
connected, then (RK/k X)(Ak)• = X (AK )• =∅, and there is nothing to prove. So
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we can assume that X is geometrically connected. Take P ∈ X (AK )
f-cov
•

. Then
by Lemma 5.7, there is a cofinal family (Yi ,Gi ) of coverings of X . We show that
(RK/kYi , RK/k Gi ) is then a cofinal family of coverings of RK/k X . Indeed, it is
known that RK/k X ∼= X̄ [K :k] (with the factors coming from the various embeddings
of K into k̄), so π1(RK/k X) ∼= π1(X̄)[K :k]. This easily implies the claim. Now,
viewing P as an element of (RK/k X)(Ak)•, we see by Lemma 5.3 that P survives
every (RK/kYi , RK/k Gi ), and hence P ∈ (RK/k X)(Ak)

f-cov
•

.
The same proof works for the solvable and abelian variants. �

Proposition 5.16. If K/k is a finite extension, then

X (Ak)
f-cov
•
⊂ X (Ak)• ∩ X (AK )

f-cov
•

and similarly for the solvable and abelian variants. Note that the intersection is to
be interpreted as the pullback of X (AK )

f-cov
•

under the canonical map X (Ak)•→

X (AK )•, which may not be injective at the infinite places.

Proof. We have a morphism X→ RK/k X K , inducing the canonical map

X (Ak)• −→ (RK/k X K )(Ak)• = X (AK )• .

The claim now follows from combining Propositions 5.9 and 5.15. �

We also have an analogue of the Descent Theorem 5.1.

Proposition 5.17. Let (Y,G) ∈ Cov(X) be an X-torsor. Then

X (Ak)
f-cov
•
=

⋃
πξ (Yξ (Ak)

f-cov
•

) ,

where the union is extended over all twists (Yξ ,Gξ ) of (Y,G), or equivalently, over
the finite set of twists with points everywhere locally. A similar statement holds for
the solvable variant, when G is solvable.

Proof. Note first that by Proposition 5.9, the right hand side is a subset of the left
hand side.

For the reverse inclusion, take P ∈ X (Ak)
f-cov
•

. To ease notation, we will sup-
press the group schemes when denoting torsors in the following. Let Y1, . . . , Ys ∈

Cov(X) (or Sol(X)) be the finitely many twists of Y such that P lifts.
Define τ( j)⊂{1, . . . , s} to be the set of indices i such that for every X -torsor Z

mapping to Y j (or an X -torsor Z over Y j for short), there is a twist Zξ that lifts P
and induces a twist of Y j that is isomorphic to Yi . We make a number of claims
about this function.

(i) τ( j) is nonempty. To see this, note first that for any given Z , the corresponding
set (call it τ(Z)) is nonempty, since by assumption P must lift to some twist of Z ,
and this twist induces a twist of Y j to which P also lifts, and hence this twist
must be one of the Yi . Second, if Z maps to Z ′ (as X -torsors over Y j ), we have
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τ(Z) ⊂ τ(Z ′). Third, for every pair of X -torsors Z and Z ′ over Y j , their relative
fiber product Z×Y j Z ′ maps to both of them. Taking these together, we see that τ( j)
is a filtered intersection of nonempty subsets of a finite set and hence nonempty.

(ii) If i ∈ τ( j), then τ(i) ⊂ τ( j). Let h ∈ τ(i), and let Z be an X -torsor over Y j .
By definition of τ( j), there is a twist Zξ of Z lifting P and inducing the twist Yi

of Y j . Now by definition of τ(i), there is a twist (Zξ )η of Zξ lifting P and inducing
the twist Yh of Yi . By transitivity of twists, this means that we have a twist of Z
lifting P and inducing the twist Yh of Y j . Since Z was arbitrary, this shows that
h ∈ τ( j).

(iii) For some j , we have j ∈ τ( j). Indeed, selecting for each j some σ( j)∈ τ( j)
(this is possible by (i)), the map σ will have a cycle: σm( j) = j for some m ≥ 1
and j . Then by (ii), it follows that j ∈ τ( j).

For this specific value of j , we have therefore proved that every X -torsor Z
over Y j has a twist that lifts P and induces the trivial twist of Y j . This means in
particular that this twist is also a twist of Z as a Y j -torsor.

Now assume that P does not lift to Y j (Ak)
f-cov
•

(or Y j (Ak)
f-sol
•

). Since the preim-
ages of P in Y j (Ak)• form a compact set and since surviving a torsor is a closed
condition, we can find a Y j -torsor V that is not survived by any of the preimages
of P . We can then find an X -torsor Z mapping to V , staying in Sol when working
in that category. (Note that this step does not work for Ab, since extensions of
abelian groups need not be abelian again.) But by what we have just proved, Z
has a twist as a Y j -torsor that lifts a preimage of P , a contradiction. Hence our
assumption that P does not lift to Y j (Ak)

f-cov
•

(or Y j (Ak)
f-sol
•

) must be false. �

Remark 5.18. The analogous statement for X (Ak)
f-ab
•

and G abelian is not true
in general: it would follow that X (Ak)

f-ab
•
= X (Ak)

f-sol
•

, but Skorobogatov (see
[Skorobogatov 2001, § 8] or [Skorobogatov 1999]) has a celebrated example of a
surface X such that

∅= X (Ak)
f-sol
•

( X (Ak)
f-ab
•
.

In fact, there is an abelian covering π : Y → X such that
⋃
ξ πξ (Yξ (Ak)

f-ab
•
) = ∅,

which therefore gives a counterexample to the abelian version of the statement.
Skorobogatov shows that the “Brauer set” X (Ak)

Br
•

is nonempty. In a later paper,
Harari and Skorobogatov [2002, § 5.1] show that there exists an obstruction coming
from a nilpotent, nonabelian covering (arising from an abelian covering of Y ). The
latter means that X (Ak)

f-sol
•
= ∅, whereas the former implies that X (Ak)

f-ab
•
6= ∅,

since X (Ak)
Br
•
⊂ X (Ak)

f-ab
•

; see Section 7 below. The interest in this result comes
from the fact that it is the first example known of a variety where there is no
Brauer–Manin obstruction, yet there are no rational points.
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6. Finite descent conditions and rational points

The ultimate goal behind considering the sets cut out in the adelic points by the
various covering conditions is to obtain information on the rational points. There
is a three-by-three matrix of natural statements relating these sets; see the diagram
below. Here, X (k) is the topological closure of X (k) in X (Ak)•.

X (Ak)
f-cov
• = X (k) +3 X (Ak)

f-cov
• = X (k) +3 X (k)=∅⇐⇒ X (Ak)

f-cov
• =∅

X (Ak)
f-sol
• = X (k) +3

KS

X (Ak)
f-sol
• = X (k) +3

KS

X (k)=∅⇐⇒ X (Ak)
f-sol
• =∅

KS

X (Ak)
f-ab
• = X (k) +3

KS

X (Ak)
f-ab
• = X (k) +3

KS

X (k)=∅⇐⇒ X (Ak)
f-ab
• =∅

KS
(6–1)

We have the implications shown. If X (k) is finite, then we obviously have
X (k)= X (k), and the corresponding statements in the left and middle columns are
equivalent. In particular, this is the case when X is a curve of genus at least 2.

Let us discuss these statements. The ones in the middle column are perhaps the
most natural ones, whereas the ones in the left column are better suited for proofs
(as we will see below). The statements in the right column can be considered as
variants of the Hasse Principle; in some sense they state that the Hasse Principle
will eventually hold if one allows oneself to replace X by finite étale coverings.
Note that the weakest of the nine statements (the one in the upper right corner),
if valid for a class of varieties, would imply that there is an effective procedure to
decide whether there are k-rational points on a variety X within that class or not:
at least in principle, we can list all the X -torsors and for each torsor compute the
finite set of twists with points everywhere locally. If this set is empty, we know that
X (k) = ∅. In order to obtain the torsors, we can for example enumerate all finite
extensions of the function field of X (assuming that X is geometrically connected,
say) and check whether such an extension corresponds to an étale covering of X
that is a torsor under a finite group scheme. On the other hand, we can search for
k-rational points on X at the same time, and as soon as we find one such point, we
know that X (k) 6= ∅. The statement X (k) = ∅⇐⇒ X (Ak)

f-cov
•
= ∅ guarantees

that one of the two events must occur. (Note that X (Ak)
f-cov
•

can be written as a
filtered intersection of compact subsets of X (Ak)•, each coming from one specific
torsor, so if X (Ak)

f-cov
•
= ∅, then already one of these conditions will provide an

obstruction.)
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For X of dimension at least two, none of these statements can be expected to
hold in general. For example, a rational surface X has trivial geometric fundamen-
tal group, and so X (Ak)

f-cov
•
= X (Ak)•. On the other hand, there are examples

known of such surfaces that violate the Hasse principle, so we have ∅ = X (k) (
X (Ak)

f-cov
•
= X (Ak)•. The first example (a smooth cubic surface) was given by

Swinnerton-Dyer [1962]. There are also examples among smooth diagonal cubic
surfaces, see [Cassels and Guy 1966], and in [Colliot-Thélène et al. 1980], an
infinite family of rational surfaces violating the Hasse principle is given.

Let us give names to the properties in the left two columns in the diagram (6–1)
above.

Definition 6.1. Let X be a smooth projective k-variety. We call X

(1) good with respect to all coverings or simply good if X (k)= X (Ak)
f-cov
•

,

(2) good with respect to solvable coverings if X (k)= X (Ak)
f-sol
•

,

(3) good with respect to abelian coverings or very good if X (k)= X (Ak)
f-ab
•

,

(4) excellent with respect to all coverings if X (k)= X (Ak)
f-cov
•

,

(5) excellent with respect to solvable coverings if X (k)= X (Ak)
f-sol
•

,

(6) excellent with respect to abelian coverings if X (k)= X (Ak)
f-ab
•

.

Now let us look at curves in more detail. When C is a curve of genus 0, then it
satisfies the Hasse Principle, so

C(Ak)• =∅⇐⇒ C(k)=∅ ,

and then all the intermediate sets are equal and empty. On the other hand, when
C(k) 6=∅, then C ∼= P1, and C(k) is dense in C(Ak)•, so

C(k)= C(Ak)
f-cov
•
= C(Ak)

f-sol
•
= C(Ak)

f-ab
•
= C(Ak)• .

So curves of genus 0 are always very good.
Now consider the case of a genus 1 curve. If A is an elliptic curve, or more

generally, an abelian variety, then π1( Ā) is abelian, so by Lemma 5.8 we have

A(Ak)
f-cov
•
= A(Ak)

f-sol
•
= A(Ak)

f-ab
•
.

Furthermore, among the abelian coverings, we can restrict to the multiplication-
by-n maps A

n
→ A. (In the terminology used earlier, these coverings are a cofinal

family.) This shows that
A(Ak)

f-ab
•
= Ŝel(k, A) .

Since the cokernel of the canonical map

A(k)∼= Â(k)−→ Ŝel(k, A)
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is the Tate module ofX(k, A), we get the following.

Corollary 6.2. (1) A is very good if and only ifX(k, A)div = 0.

(2) A is excellent with respect to abelian coverings if and only if A(k) is finite and
X(k, A)div = 0.

See [Wang 1996] for a discussion of the situation when one works with A(Ak) in-
stead of A(Ak)•. Note that Wang’s discussion is in the context of the Brauer–Manin
obstruction, which is closely related to the “finite abelian” obstruction considered
here, as discussed in Section 7 below.

Corollary 6.3. If A/Q is a modular abelian variety of analytic rank zero, then A
is excellent with respect to abelian coverings. In particular, if E/Q is an elliptic
curve of analytic rank zero, then E is excellent with respect to abelian coverings.

Proof. In [Kolyvagin 1988; Kolyvagin and Logachëv 1989], it is proved that A(Q)
andX(Q, A) are both finite. Corollary 6.2 then implies that A(AQ)

f-ab
•
= A(Q).

For elliptic curves E/Q, Wiles [1995], Taylor and Wiles [1995], and Breuil,
Conrad, Diamond and Taylor [Breuil et al. 2001] have proved that E is modular,
and so the first assertion applies. �

Now let X be a principal homogeneous space for the abelian variety A. If
X (Ak)•=∅, then all statements in (6–1) are trivially true. So assume X (Ak)• 6=∅,
and let ξ ∈X(k, A) denote the element corresponding to X . By Lemma 5.8, we
have

X (Ak)
f-cov
•
= X (Ak)

f-sol
•
= X (Ak)

f-ab
•
,

and X (Ak)
f-ab
•
=∅ if and only if ξ /∈X(k, A)div. So for ξ 6= 0, X is very good if

and only if ξ /∈X(k, A)div (since X (k)=∅ in this case).
For curves C of genus 2 or higher, we always have that C(k) is finite, and so

the statements in the left and middle columns in (6–1) are equivalent. In this case,
we can characterize the set C(Ak)

f-ab
•

in a different way.

Theorem 6.4. Let C be a smooth projective geometrically connected curve over k.
Let A=Alb0

C be its Albanese variety, and let V =Alb1
C be the torsor under A that

parametrizes classes of zero-cycles of degree 1 on C. Then there is a canonical
map φ : C→ V , and we have

C(Ak)
f-ab
•
= φ−1(V (Ak)

f-ab
•
) .

Of course, since C is a curve, A is the same as the Jacobian variety JacC =Pic0
C ,

and V is its torsor Pic1
C , parametrizing divisor classes of degree 1 on C .

Proof. We know by Proposition 5.9 that φ(C(Ak)
f-ab
•
) ⊂ V (Ak)

f-ab
•

. It therefore
suffices to prove that φ−1(V (Ak)

f-ab
•
)⊂ C(Ak)

f-ab
•

.
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By [Serre 1988, § VI.2], all (connected) finite abelian unramified coverings
of C̄ = C ×k k̄ are obtained through pull-back from isogenies into V̄ ∼= Ā. From
this, we can deduce that the induced homomorphism φ∗ : H 1

ét(V̄ , Ḡ)→ H 1
ét(C̄, Ḡ)

is an isomorphism for all finite abelian k-group schemes G. Since the map φ
is defined over k, we obtain an isomorphism as k-Galois modules. The spectral
sequence associated to the composition of functors H 0(k, H 0

ét(V̄ ,−))= H 0
ét(V,−)

(and similarly for C) gives a diagram with exact rows,

0 // H 1(k,G) // H 1
ét(V,G) //

φ∗

��

H 0(k, H 1
ét(V̄ , Ḡ)) //

∼= φ∗

��

H 2(k,G)

0 // H 1(k,G) // H 1
ét(C,G) // H 0(k, H 1

ét(C̄, Ḡ)) // H 2(k,G).

By the 5-lemma, φ∗ : H 1
ét(V,G)→ H 1

ét(C,G) is an isomorphism.
Let P ∈ C(Ak)• such that φ(P) ∈ V (Ak)

f-ab
•

, and let (Y,G) ∈ Ab(C). Then
by the above, there is (W,G) ∈ Ab(V ) such that Y is the pull-back of W . By
assumption, φ(P) survives (W,G); without loss of generality, (W,G) already
lifts φ(P). (G is abelian, hence equal to all its inner forms.) Then (Y,G) lifts P ,
so P survives (Y,G). Since (Y,G) was arbitrary, P ∈ C(Ak)

f-ab
•

. �

Remark 6.5. The result in the preceding theorem will hold more generally for
smooth projective geometrically connected varieties X instead of curves C , pro-
vided all finite étale abelian coverings of X̄ can be obtained as pullbacks of isoge-
nies into the Albanese variety of X . For this, it is necessary and sufficient that the
(geometric) Néron–Severi group of X is torsion-free; see [Serre 1988, VI.20].

For arbitrary varieties X , we can define a set X (Ak)
Alb
•

consisting of the adelic
points on X surviving all torsors that are pull-backs of V -torsors (where V is the
k-torsor under A that receives a canonical map φ from X ), and then the result above
will hold in the form

X (Ak)
Alb
•
= φ−1(V (Ak)

f-ab
•
) .

We trivially have X (Ak)
f-ab
•
⊂ X (Ak)

Alb
•

.
In particular, we get that X (Ak)

Alb
•
= X (Ak)• if X has trivial Albanese variety.

For example, this is the case for all complete intersections of dimension at least 2
in some projective space. (By Exercise III.5.5 in [Hartshorne 1977], H 1(X̄ ,O)= 0
in this case, so the Picard variety and therefore also its dual Alb0(X) are trivial.)
If in addition NSX is torsion-free, then X (Ak)

f-ab
•
= X (Ak)• as well.

Corollary 6.6. Let C be a smooth projective geometrically connected curve over k.
Let A be its Albanese (or Jacobian) variety, and let V = Alb1

C = Pic1
C as above.

(1) If C(Ak)• =∅, then C(Ak)
f-ab
•
= C(k)=∅.
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(2) If C(Ak)• 6= ∅ and V (k) 6= ∅ (so that C has a k-rational divisor class of
degree 1), then there is a k-defined embedding φ : C ↪→ A, and we have

C(Ak)
f-ab
•
= φ−1(Ŝel(k, A)) .

If X(k, A)div = 0, we have

C(Ak)
f-ab
•
= φ−1(A(k)) .

(3) If C(Ak)• 6=∅ and V (k)=∅, then, using the canonical map φ : C→ V , we
have

C(Ak)
f-ab
•
= φ−1(V (Ak)

f-ab
•
) .

Let ξ ∈X(k, A) be the element corresponding to V . By assumption, ξ 6= 0.
Then if ξ /∈X(k, A)div (and so in particular whenX(k, A)div = 0), we have
C(k)= C(Ak)

f-ab
•
=∅.

Similar statements are true for more general X in place of C , with X (Ak)
Alb
•

in
place of C(Ak)

f-ab
•

.

Proof. This follows immediately from Theorem 6.4, taking into account the de-
scriptions of A(Ak)

f-ab
•

and V (Ak)
f-ab
•

in Corollary 6.2 and the text following it. �

Let X be a smooth projective geometrically connected k-variety, let A be its Al-
banese variety, and denote by V the k-torsor under A such that there is a canonical
map φ : X → V . (V corresponds to the cocycle class of σ 7→ [Pσ − P] ∈ A(k̄)
for any point P ∈ X (k̄).) If V (k) 6= ∅, then V is the trivial torsor, and there is
an n-covering of V , that is, a V -torsor under A[n]. So the nonexistence of an
n-covering of V is an obstruction against rational points on V and therefore on X .

If an n-covering of V exists, we can pull it back to a torsor (Y, A[n]) ∈Ab(X),
and we will say that a point P ∈ X (Ak)• survives the n-covering of X if it survives
(Y, A[n]). If there is no n-covering, then by definition no point in X (Ak)• survives
the n-covering of X . If we denote the set of adelic points surviving the n-covering
of X by X (Ak)

n-ab
•

, then we have

X (Ak)
Alb
•
=

⋂
n≥1

X (Ak)
n-ab
•

.

In particular, for a curve C , we get

C(Ak)
f-ab
•
=

⋂
n≥1

C(Ak)
n-ab
•

.
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7. Relation with the Brauer–Manin obstruction

In this section, we study the relationship between the finite covering obstructions
introduced in Section 5 and the Brauer–Manin obstruction. This latter obstruction
was introduced by Manin [1971] in 1970 in order to provide a unified framework
to explain violations of the Hasse Principle.

The idea is as follows. Let X be, as usual, a smooth projective geometrically
connected k-variety. We then have the (cohomological) Brauer group

Br(X)= H 2
ét(X,Gm) .

If K/k is any field extension and P ∈ X (K ) is a K -point of X , then the corre-
sponding morphism Spec K→ X induces a homomorphism φP :Br(X)→Br(K ).
If K = kv is a completion of k, then there is a canonical injective homomorphism

invv : Br(kv) ↪→Q/Z

(which is an isomorphism when v is a finite place). In this way, we can set up a
pairing

X (Ak)•×Br(X)−→Q/Z , ((Pv), b) 7−→ 〈(Pv), b〉Br =
∑
v

invv(φPv (b)) .

By a fundamental result of Class Field Theory, k-rational points on X pair trivially
with all elements of Br(X). This implies that

X (k)⊂ X (Ak)
Br
•
= {P ∈ X (Ak)• : 〈P, b〉Br = 0 for all b ∈ Br(X)} .

The set X (Ak)
Br
•

is called the Brauer set of X . If it is empty, one says that there
is a Brauer–Manin obstruction against rational points on X . More generally, if
B ⊂ Br(X) is a subgroup (or subset), we can define X (Ak)

B
•

in a similar way as
the subset of points in X (Ak)• that pair trivially with all b ∈ B.

The main result of this section is that for a curve C , we have

C(Ak)
Br
•
= C(Ak)

f-ab
•
,

see Corollary 7.3 below. This implies that all the results we have deduced or
will deduce about finite abelian descent obstructions on curves also apply to the
Brauer–Manin obstruction.

We first recall that the (algebraic) Brauer–Manin obstruction is at least as strong
as the obstruction coming from finite abelian descent. For a more precise statement,
see [Harari and Skorobogatov 2002, Thm. 4.9]. We define

Br1(X)= ker(Br(X)−→ Br(X ×k k̄))⊂ Br(X)

and set X (Ak)
Br1
•
= X (Ak)

Br1(X)
• .
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Theorem 7.1. For any smooth projective geometrically connected variety X , we
have

X (Ak)
Br
•
⊂ X (Ak)

Br1
•
⊂ X (Ak)

f-ab
•
.

Proof. The main theorem of descent theory of Colliot-Thélène and Sansuc [1987],
as extended by Skorobogatov (see [Skorobogatov 1999] and [Skorobogatov 2001,
Thm. 6.1.1]), states that X (Ak)

Br1
•

is equal to the set obtained from descent ob-
structions with respect to torsors under k-groups G of multiplicative type, which
includes all finite abelian k-groups. This proves the second inclusion. The first one
follows from the definitions. �

It is known that (see [Skorobogatov 2001, Cor. 2.3.9]; use that H 3(k, k̄×)= 0)

Br1(X)
Br0(X)

∼= H 1(k,PicX ) ,

where Br0(X) denotes the image of Br(k) in Br(X). We also have the canonical
map H 1(k,Pic0

X )→ H 1(k,PicX ). Define Br1/2(X) to be the subgroup of Br1(X)
that maps into the image of H 1(k,Pic0

X ) in H 1(k,PicX ). (Manin [1971] calls it
Br′1(X).) In addition, for n ≥ 1, let Br1/2,n(X) be the subgroup of Br1(X) that
maps into the image of H 1(k,Pic0

X )[n]. Then

Br1/2(X)=
⋃
n≥1

Br1/2,n(X), and X (Ak)
Br1/2
• =

⋂
n≥1

X (Ak)
Br1/2,n
• .

Recall the definition of X (Ak)
Alb
•

from Remark 6.5 and the fact that

X (Ak)
f-ab
•
⊂ X (Ak)

Alb
•
=

⋂
n≥1

X (Ak)
n-ab
•

.

Theorem 7.2. Let X be a smooth projective geometrically connected variety, and
let n ≥ 1. Then

X (Ak)
n-ab
•
⊂ X (Ak)

Br1/2,n
• .

In particular,

X (Ak)
f-ab
•
⊂ X (Ak)

Alb
•
⊂ X (Ak)

Br1/2
• .

Proof. Given the first statement, the second statement is clear.
The first statement follows from Theorem 7.5 below. However, since our proof

of the inclusion given here is fairly simple, we include it.
So consider P ∈ X (Ak)

n-ab
•

and b ∈ Br1/2,n(X). We have to show that 〈b, P〉Br

vanishes, where 〈·, ·〉Br is the Brauer pairing between X (Ak)• and Br(X).
Let b′ be the image of b in

Br1(X)/Br0(X)∼= H 1(k,PicX ),
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and let b′′ ∈ H 1(k,Pic0
X )[n] be an element mapping to b′ (which exists because

b ∈ Br1/2,n(X)).
Let A be the Albanese variety of X , and let V be the k-torsor under A that

has a canonical map φ : X → V . Then we have Pic0
X
∼= Pic0

A
∼= Pic0

V . Since

P ∈ X (Ak)
n-ab
•

φ
→ V (Ak)

n-ab
•

, the latter is nonempty, and hence V admits a torsor
of the form (W, A[n]).

Since P maps into V (Ak)
n-ab
•

, there is some twist of (W, A[n]) such that φ(P)
lifts to it. Without loss of generality, (W, A[n]) is already this twist, so there is
Q′ ∈ W (Ak)• such that π ′(Q′) = φ(P), where π ′ : W → V is the covering map
associated to (W, A[n]).

Let (Y, A[n]) ∈Ab(X) be the pull-back of (W, A[n]) to X . Then there is some
Q ∈ Y (Ak)• such that π(Q) = P . Now the left hand diagram below induces the
one on the right, where the rightmost vertical map is the multiplication by n.

Y //

π

��

W

π ′

��

PicY Pic0
Y

oo Pic0
W

oo Pic0
A

X
φ

// V PicX

π∗

OO

Pic0
X

oo

π∗

OO

Pic0
V

π ′
∗

OO

∼=
oo Pic0

A

·n

OO

Chasing b′′ around the diagram on the right, after applying H 1(k,−) to it, we see
that π∗(b′)= 0 in Br(Y )/Br0(Y ). Finally, we have

〈b, P〉Br = 〈b′, π(Q)〉Br = 〈π
∗(b′), Q〉Br = 0 .

�

So we have the chain of inclusions

X (Ak)
Br
•
⊂ X (Ak)

Br1
•
⊂ X (Ak)

f-ab
•
⊂ X (Ak)

Alb
•
⊂ X (Ak)

Br1/2
• .

It is then natural to ask to what extent one might have equality in this chain of
inclusions. We certainly get something when Br1/2(X) already equals Br1(X) or
even Br(X).

Corollary 7.3. If X is a smooth projective geometrically connected variety such
that the canonical map H 1(k,Pic0

X )→ H 1(k,PicX ) is surjective, then

X (Ak)
Br1
•
= X (Ak)

f-ab
•
= X (Ak)

Alb
•
.

In particular, if C is a curve, then C(Ak)
Br
•
= C(Ak)

f-ab
•

.

Proof. In this case, Br1/2(X) = Br1(X), and so the result follows from the two
preceding theorems.

When X = C is a curve, then we know that Br(C ×k k̄) is trivial (Tsen’s The-
orem); also H 1(k,Pic0

C) surjects onto H 1(k,PicC), since the Néron–Severi group
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of C is Z with trivial Galois action, and H 1(k,Z) = 0. Hence Br(C) = Br1/2(C),
and the assertion follows. �

The result of Corollary 7.3 means that we can replace C(Ak)
f-ab
•

by C(Ak)
Br
•

everywhere. For example, from Corollary 6.6, we obtain the following.

Corollary 7.4. Let C be a smooth projective geometrically connected curve over k,
and let A be its Albanese (or Jacobian) variety. Assume thatX(k, A)div = 0.

(1) If C has a k-rational divisor class of degree 1 inducing a k-defined embedding
C ↪→ A, then

C(Ak)
Br
•
= φ−1(A(k)) ,

where φ denotes the induced map C(Ak)•→ A(Ak)• .

(2) If C has no k-rational divisor class of degree 1, then C(Ak)
Br
•
=∅.

These results can be found in Scharaschkin’s thesis Scharaschkin [1999]. Our
approach provides an alternative proof, and the more precise version in Corollary
6.6 shows how to extend the result to the case when the Shafarevich–Tate group of
the Jacobian is not necessarily assumed to have trivial divisible subgroup.

We can strengthen Theorem 7.2.

Theorem 7.5. Let X be a smooth projective geometrically connected variety. Then

X (Ak)
n-ab
•
= X (Ak)

Br1/2,n
•

for all n ≥ 1. In particular,

X (Ak)
Alb
•
= X (Ak)

Br1/2
• .

Proof. This follows from the descent theory of Colliot-Thélène and Sansuc. Let
M = Pic0

X [n], and let λ : M → PicX be the inclusion. Then the n-coverings
of X are exactly the torsors of type λ in the language of the theory; compare for
example [Skorobogatov 2001]. (Note that the dual of M is A[n], where A is the
Albanese variety of X .) We have Brλ = Br1/2,n , and the result then follows from
Thm. 6.1.2,(a) in [Skorobogatov 2001]. �

Remark 7.6. Since X (Ak)
Br1
•
⊂ X (Ak)

f-ab
•
⊂ X (Ak)

Br1/2
• , it is natural to ask whether

there might be a subgroup B ⊂ Br1(X) such that X (Ak)
f-ab
•
= X (Ak)

B
•

. As Joost
van Hamel pointed out to me, a natural candidate for B is the subgroup mapping
to the image of H 1(k,PicτX ) in H 1(k,PicX ), where PicτX is the saturation of Pic0

X
in PicX , that is, the subgroup of elements mapping into the torsion subgroup of the
Néron–Severi group NSX . It is tempting to denote this B by Br2/3, but perhaps
Brτ is the better choice. Note that Brτ = Br1/2 when NSX is torsion free, in which
case we have X (Ak)

f-ab
•
= X (Ak)

Alb
•
= X (Ak)

Br1/2
• .
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Corollary 7.7. If C/k is a curve that has a rational divisor class of degree 1, then

C(Ak)
n-ab
•
= C(Ak)

Br[n]
•

.

In words, the information coming from n-torsion in the Brauer group is exactly the
information obtained by an n-descent on C.

Proof. Under the given assumptions, H 1(k,Pic0
C)= H 1(k,PicC)= Br(C)/Br(k),

and Br(k) is a direct summand of Br(C). Therefore, the images of Br1/2,n(C) and
of Br(C)[n] in Br(C)/Br0(C) agree, and the claim follows. �

Corollary 7.8. If X is a smooth projective geometrically connected variety such
that the Néron–Severi group of X (over k̄) is torsion-free, then there is a finite field
extension K/k such that

X (AK )
Br1
•
= X (AK )

f-ab
•
.

Proof. We have an exact sequence

H 1(k,Pic0
X )−→ H 1(k,PicX )−→ H 1(k,NSX ) .

Since NSX is a finitely generated abelian group, the Galois action on it factors
through a finite quotient Gal(K/k) of the absolute Galois group of k. Then

H 1(K ,NSX )= Hom(G K ,Zr )= 0,

and the claim follows from Theorem 7.2. �

Note that it is not true in general that X (Ak)
Br1
•
= X (Ak)

f-ab
•

(even when the
Néron–Severi group of X over k̄ is torsion-free). For example, a smooth cubic
surface X in P3 has X (Ak)

f-cov
•
= X (Ak)• (since it has trivial geometric fundamental

group), but may well have X (Ak)
Br1
•
=∅, even though there are points everywhere

locally. See [Colliot-Thélène et al. 1987a], where the algebraic Brauer–Manin
obstruction is computed for all smooth diagonal cubic surfaces

X : a1 x3
1 + a2 x3

2 + a3 x3
3 + a4 x3

4 = 0

with integral coefficients 0 < ai < 100, thereby verifying that it is the only ob-
struction against rational points on X (and thus providing convincing experimental
evidence that this may be true for smooth cubic surfaces in general). This compu-
tation produces a list of 245 such surfaces with points everywhere locally, but no
rational points, since X (AQ)

Br1
•
=∅.

It is perhaps worth mentioning that our condition that H 1(k,Pic0
X ) surjects onto

H 1(k,PicX ), which leads to the identification of the “algebraic Brauer–Manin ob-
struction” and the “finite abelian descent obstruction”, is in some sense orthogonal
to the situation studied (quite successfully) in [Colliot-Thélène and Sansuc 1987;
Colliot-Thélène et al. 1980; 1987b], where it is assumed that PicX is torsion-free
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(and therefore Pic0
X is trivial), and so there can be a Brauer–Manin obstruction only

when our condition fails. There is then no finite abelian descent obstruction, and
one has to look at torsors under tori instead.

In general, we have a diagram of inclusions:

X (k)⊂ X (k) ⊂
X (Ak)

Br
•
⊂ X (Ak)

Br1
•
⊂

⊂ X (Ak)
f-cov
•
⊂ X (Ak)

f-sol
•
⊂

X (Ak)
f-ab
•
⊂ X (Ak)

Br1/2
• ⊂ X (Ak)• .

We expect that every inclusion can be strict. We discuss them in turn.

(1) X = P1 has X (k)( X (k)= X (Ak)•.

(2) Skorobogatov’s famous example (see [Skorobogatov 1999; Harari and Sko-
robogatov 2002]) has X (Ak)

Br
•
6=∅, but X (Ak)

f-sol
•
=∅, showing that X (k)(

X (Ak)
Br
•

and X (Ak)
f-sol
•

( X (Ak)
f-ab
•

are both possible.

(3) As mentioned above, Colliot-Thélène et al. [1987a] have examples such that
X (Ak)

Br1
•
=∅, but X (Ak)

f-cov
•
= X (Ak)•. This shows that X (k)( X (Ak)

f-cov
•

and X (Ak)
Br1
•

( X (Ak)
f-ab
•

are both possible.

(4) [Harari 1996] has examples, where there is a “transcendental”, but no “al-
gebraic” Brauer–Manin obstruction, which means that X (Ak)

Br
•
= ∅, but

X (Ak)
Br1
•
6=∅. Hence we can have X (Ak)

Br
•

( X (Ak)
Br1
•

.

(5) If we take a finite nonabelian simple group for π1(X̄) in Cor. 6.1 in [Harari
2000], then the proof of this result shows that X (Ak)

f-cov
•

( X (Ak)•. On the
other hand, X (Ak)

f-sol
•
= X (Ak)•, since there are only trivial torsors in Sol(X);

compare Lemma 5.8.

(6) A construction using Enriques surfaces like that in [Harari and Skorobogatov
2005] should produce an example such that X (Ak)

Br1/2
• = X (Ak)

Alb
•
= X (Ak)•,

since the Albanese variety is trivial, but X (Ak)
f-ab
•

( X (Ak)•, since there is a
nontrivial abelian covering.

(7) Finally, in Section 8 below, we will see many examples of curves X that have
X (k)= X (Ak)

Br1/2
• ( X (Ak)•.

A new obstruction? For curves, we expect the interesting part of the diagram of
inclusions above to collapse: X (k) = X (Ak)

Br1/2
• ; see the discussion in Section 9

below. For higher-dimensional varieties, this is far from true; see the discussion
above. So one could consider a new obstruction obtained from a combination of
the Brauer–Manin and the finite descent obstructions, as follows. Define

X (Ak)
f-cov,Br
•

=

⋂
(Y,G)∈Cov(X)

⋃
ξ∈H1(k,G)

πξ (Yξ (Ak)
Br
•
) .
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(This is similar in spirit to the “refinement of the Manin obstruction” introduced
in [Skorobogatov 1999].)

It would be interesting to find out how strong this obstruction is and whether it is
strictly weaker than the obstruction obtained from all torsors under (not necessarily
finite or abelian) k-group schemes. Note that the latter is at least as strong as the
Brauer–Manin obstruction by [Harari and Skorobogatov 2002, Thm. 4.10] (see
also Prop. 5.3.4 in [Skorobogatov 2001]), at least if one assumes that all elements
of Br(X) are represented by Azumaya algebras over X .

8. Finite descent conditions on curves

Let us now prove some general properties of the notions, introduced in Section 6
above, of being excellent with respect to all, solvable, or abelian coverings in the
case of curves. In the following, C , D, and so forth, will be (smooth projective
geometrically connected) curves over k. We will use ι to denote an embedding
of C into its Jacobian (if it exists). Also, if C(Ak)

Br
•
=∅ (and therefore C(k)=∅,

too), we say that the absence of rational points is explained by the Brauer–Manin
obstruction. Note that by Corollary 7.3, C(Ak)

Br
•
= C(Ak)

f-ab
•

, which implies that
the absence of rational points is explained by the Brauer–Manin obstruction when
C is excellent with respect to abelian coverings and C(k) = ∅. We will use this
observation below without explicit mention.

Corollary 8.1. Let C/k be a curve of genus at least 1, with Jacobian J . Assume
that X(k, J )div = 0 and that J (k) is finite. Then C is excellent with respect to
abelian coverings. If C(k)=∅, then the absence of rational points is explained by
the Brauer–Manin obstruction.

Proof. By Corollary 6.6, under the assumption onX(k, J ), either C(Ak)
f-ab
•
=∅,

and there is nothing to prove, or else

C(Ak)
f-ab
•
= ι−1(J (k))= ι−1(J (k))= C(k) .

�

The following result shows that the statement we would like to have, namely
that C(Ak)

f-ab
•
= C(k), holds for finite subschemes of a curve.

Theorem 8.2. Let C/k be a curve of genus at least 1, and let Z ⊂ C be a finite
subscheme. Then the image of Z(Ak)• in C(Ak)• meets C(Ak)

f-ab
•

in Z(k). More
generally, if P ∈ C(Ak)

f-ab
•

is such that Pv ∈ Z(kv) for a set of places v of k of
density 1, then P ∈ Z(k).

Proof. Let K/k be a finite extension such that C has a rational divisor class of
degree 1 over K . By Corollary 6.6, we have that

C(AK )
f-ab
•
= ι−1(Ŝel(K , J )) ,
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where ι :C(AK )•→ J (AK )• is the map induced by an embedding C ↪→ J over K .
Now we apply Theorem 3.11 to the image of Z in J . We find that ι(P)∈ Ŝel(K , J )
and so ι(P) ∈ ι(Z(K )). Since ι is injective (even at the infinite places!), we find
that the image of P in C(AK )• is in (the image of) Z(k). Now if Z(k) is empty, this
gives a contradiction and proves the claim in this case. Otherwise, C(k)⊃ Z(k) is
nonempty, and we can take K = k above, which gives the statement directly. �

The following results show that the “excellence properties” behave nicely.

Proposition 8.3. Let K/k be a finite extension, and let C/k be a curve of genus at
least 1. If CK is excellent with respect to all, solvable, or abelian coverings, then
so is C.

Proof. By Proposition 5.16, we have

C(k)⊂ C(Ak)
f-cov
•
⊂ C(Ak)• ∩C(AK )

f-cov
•
= C(Ak)• ∩C(K )= C(k) .

Similarly for C(Ak)
f-sol
•

and C(Ak)
f-ab
•

. Strictly speaking, this means that C(k)
and C(Ak)

f-cov
•

have the same image in C(AK )•. Now, since C(K ) has to be finite
in order to equal C(AK )

f-cov
•

, C(k) is also finite, and we can apply Theorem 8.2 to
Z = C(k)⊂ C and the set of finite places of k. �

Proposition 8.4. Let (D,G) ∈ Cov(C) (or Sol(C)). If all twists Dξ of (D,G) are
excellent with respect to all (respectively, solvable) coverings, then C is excellent
with respect to all (respectively, solvable) coverings.

Proof. By Theorem 5.1, C(k)=
∐
ξ πξ (Dξ (k)). Now, by Proposition 5.17,

C(k)⊂ C(Ak)
f-cov
•
=

⋃
ξ

πξ (Dξ (Ak)
f-cov
•

)=
⋃
ξ

πξ (Dξ (k))= C(k) .

If G is solvable, the same proof shows the statement for C(Ak)
f-sol
•

. �

Proposition 8.5. Let C
φ
→ X be a nonconstant morphism over k from the curve C

into a variety X. If X is excellent with respect to all, solvable, or abelian coverings,
then so is C. In particular, if X (Ak)

f-ab
•
= X (k) and C(k)=∅, then the absence of

rational points on C is explained by the Brauer–Manin obstruction.

Proof. First assume that C is of genus zero. Then either C(Ak)• =∅, and there is
nothing to prove, or else C(k) is dense in C(Ak)•, implying that X (k) ( X (k) ⊂
X (Ak)

f-cov
•

and thus contradicting the assumption.
Now assume that C is of genus at least 1. Let P ∈ C(Ak)

f-cov/f-sol/f-ab
• . Then by

Proposition 5.9, φ(P) ∈ X (Ak)
f-cov/f-sol/f-ab
• = X (k). Let Z ⊂ C be the preimage

(subscheme) of φ(P) ∈ X (k) in C . This is finite, since φ is nonconstant. Then
we have that P is in the image of Z(Ak)• in C(Ak)•. Now apply Theorem 8.2 to
conclude that P ∈ C(Ak)

f-ab
•
∩ Z(Ak)• = Z(k)⊂ C(k). �
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As an application, we have the following.

Theorem 8.6. Let C → A be a nonconstant morphism over k of a curve C into
an abelian variety A. Assume thatX(k, A)div = 0 and that A(k) is finite. (For
example, this is the case when k=Q and A is modular of analytic rank zero.) Then
C is excellent with respect to abelian coverings. In particular, if C(k) = ∅, then
the absence of rational points on C is explained by the Brauer–Manin obstruction.

Proof. By Corollary 6.2, we have A(Ak)
f-ab
•
= A(k). Now by Proposition 8.5, the

claim follows. �

This generalizes a result proved by Siksek [2004] under additional assumptions
on the Galois action on the fibers of φ above k-rational points of A, in the case that
C(k) is empty. A similar observation was made independently by Colliot-Thélène
[2004]. Note that both previous results are in the context of the Brauer–Manin
obstruction.

Examples 8.7. We can use Theorem 8.6 to produce many examples of curves C
over Q that are excellent with respect to abelian coverings. Concretely, let us look
at the curves Ca : y2

= x6
+a, where a is a nonzero integer. Ca maps to the two el-

liptic curves Ea : y2
= x3
+a and Ea2 (the latter by sending (x, y) to (a/x2, ay/x3)).

So whenever one of these elliptic curves has (analytic) rank zero, we know that Ca

is excellent with respect to abelian coverings. For example, this is the case for all
a such that |a| ≤ 20, with the exception of a = −15,−13,−11, 3, 10, 11, 15, 17.
Note that Ca(Q) is always nonempty (there are two rational points at infinity).

We can even show a whole class of interesting curves to be excellent with respect
to abelian coverings.

Corollary 8.8. If C/Q is one of the modular curves X0(N ), X1(N ), X (N ) and
such that the genus of C is positive, then C is excellent with respect to abelian
coverings.

Proof. By a result of Mazur [1977], every Jacobian J0(p) of X0(p), where p= 11
or p ≥ 17 is prime, has a nontrivial factor of analytic rank zero. Also, if M | N ,
then there are nonconstant morphisms X1(N )→ X0(N )→ X0(M). Hence the
assertion is true for all X0(N ) and X1(N ) such that N is divisible by one of the
primes in Mazur’s result. For the other minimal N such that X0(N ) (respectively,
X1(N )) is of positive genus, William Stein’s tables [≥ 2007] prove that there is a
factor of J0(N ) (respectively, J1(N )) of analytic rank zero. So we get the result for
all X0(N ) and X1(N ) of positive genus. Finally, X (N )maps to X0(N 2), and so we
obtain the result also for X (N ) (except in the genus zero cases N = 1, 2, 3, 4, 5).

�

For another example, involving high-genus Shimura curves, see [Skorobogatov
2005].
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Remark 8.9. There is some relation with the “Section Conjecture” from Grothen-
dieck’s anabelian geometry [Grothendieck 1997]. Let C/k be a smooth projective
geometrically connected curve of genus ≥ 2. One can prove that if C has the
“section property”, then C is excellent with respect to all coverings, which in turn
implies that C has the “birational section property”. See [Koenigsmann 2005]
for definitions. For example, all the curves X0(N ), X1(N ) and X (N ) have the
birational section property if they are of higher genus.

9. Discussion

In the preceding section, we have seen that we can construct many examples of
higher-genus curves that are excellent with respect to abelian coverings. This leads
us to the following conjecture.

Conjecture 9.1 (Main Conjecture). If C is a smooth projective geometrically con-
nected curve over a number field k, then C is very good.

By what we have seen, for curves of genus 1, this is equivalent to saying that
the divisible subgroup ofX(k, E) is trivial, for every elliptic curve E over k. For
curves C of higher genus, the statement means that C is excellent with respect to
abelian coverings. We recall that our conjecture would follow in this case from the
“Adelic Mordell–Lang Conjecture” formulated in Question 3.12.

Remark 9.2. When k is a global function field of characteristic p, then the Main
Conjecture holds when J = JacC has no isotrivial factor and J (ksep)[p∞] is finite.
See recent work by Poonen and Voloch [2006].

If the Main Conjecture holds for C and C(k) is empty, then (as previously dis-
cussed) we can find a torsor that has no twists with points everywhere locally and
thus prove that C(k) is empty. The validity of the conjecture (even just in case
C(k) is empty) therefore implies that we can algorithmically decide whether a
given smooth projective geometrically connected curve over a number field k has
rational points or not.

In Section 7 above, we have shown that for a curve C , we have

C(Ak)
f-ab
•
= C(Ak)

Br
•
,

where on the right hand side, we have the Brauer subset of C(Ak)•, that is, the
subset cut out by conditions coming from the Brauer group of C . We say that, if
C(Ak)

Br
•
=∅, there is a Brauer–Manin obstruction against rational points on C . A

corollary of our Main Conjecture is that the Brauer–Manin obstruction is the only
obstruction against rational points on curves over number fields (which means that
C(k) = ∅ implies C(Ak)

Br
•
= ∅). To our knowledge, before this work (and Poo-

nen’s heuristic, see his conjecture below, which was influenced by the discussions
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we had at the IHP in Paris in Fall 2004) nobody gave a conjecturally positive answer
to the question, first formulated on page 133 in [Skorobogatov 2001], whether the
Brauer–Manin obstruction might be the only obstruction against rational points on
curves. No likely counterexample is known, but there is an ever-growing list of
examples, for which the failure of the Hasse Principle could be explained by the
Brauer–Manin obstruction; see the discussion below (which does not pretend to be
exhaustive) or also Skorobogatov’s recent paper Skorobogatov [2005] on Shimura
curves.

Let v be a place of k. Under a local condition at v on a rational point P ∈C , we
understand the requirement that the image of P in C(kv) is contained in a specified
closed and open (“clopen”) subset of C(kv). If v is an infinite place, this just means
that we require P to be on some specified connected component(s) of C(kv); for
finite places, we can take something like a “residue class”. With this notion, the
Main Conjecture above is equivalent to the following statement.

Let C/k be a curve as above. Specify local conditions at finitely many places
of k and assume that there is no point in C(k) satisfying these conditions. Then
there is some n ≥ 1 such that no point in

∏
v Xv ⊂ C(Ak)• survives the n-covering

of C, where Xv is the set specified by the local condition at those places where a
condition is specified, and Xv = C(kv) (or π0(C(kv))) otherwise.

This says that the “finite abelian” obstruction (equivalently, the Brauer–Manin
obstruction) is the only obstruction against weak approximation in C(Ak)•.

We see that the conjecture implies that we can decide if a given finite collection
of local conditions can be satisfied by a rational point. Now the question is how
practical it might be to actually do this in concrete cases. For certain classes of
curves and specific values of n, it may be possible to explicitly and efficiently
find the relevant twists. For example, this can be done for hyperelliptic curves
and n = 2; compare [Bruin and Stoll 2007a]. However, for general curves and/or
general n, this approach is likely to be infeasible.

On the other hand, assume that we can find J (k) explicitly, where J , as usual, is
the Jacobian of C . This is the case (at least in principle) whenX(k, J )div=0. Then
we can approximate C(Ak)

f-ab
•

more and more precisely by looking at the images
of C(Ak)• and of J (k) in

∏
v∈S J (kv)/N J (kv) for increasing N and finite sets S of

places of k. If C(k) is empty and the Main Conjecture holds, then for some choice
of S and N , the two images will not intersect, giving an explicit proof that C(k)=
∅. An approach like this was proposed (and carried out for some twists of the
Fermat quartic) by Scharaschkin [1999]. See [Flynn 2004] for an implementation
of this method and [Bruin and Stoll 2007b] for improvements. In [Poonen et al.
2007], this procedure is used to rule out rational points satisfying certain local
conditions on a genus 3 curve whose Jacobian has Mordell–Weil rank 3.
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In order to test the conjecture, Nils Bruin and the author conducted an experi-
ment; see [Bruin and Stoll 2006]. We considered all genus 2 curves over Q of the
form

y2
= f6 x6

+ f5 x5
+ · · ·+ f1 x + f0 (9–1)

with coefficients f0, . . . , f6 ∈ {−3,−2, . . . , 3}. For each isomorphism class of
curves thus obtained, we attempted to decide if there are rational points or not.
On about 140,000 of these roughly 200,000 curves (up to isomorphism), we found
a (fairly) small rational point. Of the remaining about 60,000, about half failed
to have local points at some place. On the remaining about 30,000 curves, we
performed a 2-descent and found that for all but 1,492 curves C , C(AQ)

2-ab
•
= ∅,

proving that C(Q)=∅ as well. For the 1,492 curves that were left over, we found
generators of the Mordell–Weil group (assuming the Birch and Swinnerton-Dyer
Conjecture for a small number of them) and then did a computation along the lines
sketched above. This turned out to be successful for all curves, proving that none
of them has a rational point. The conclusion is that the Main Conjecture holds for
curves C as in (9–1) if C(Q) = ∅, assumingX(Q, J )div = 0 for the Jacobian J
if C is one of the 1,492 curves mentioned, and assuming in addition the Birch and
Swinnerton-Dyer Conjecture if C is one of 42 specific curves.

At least in case C(k) is empty, there are heuristic arguments due to Poonen
[2006] that suggest that an even stronger form of our conjecture might be true.

Conjecture 9.3 (Poonen). Let C be a smooth projective geometrically connected
curve of genus ≥ 2 over a number field k, and assume that C(k) = ∅. Assume
further that C has a rational divisor class of degree 1, and let ι : C → J be the
induced embedding of C into its Jacobian J . Then there is a finite set S of finite
places of good reduction for C such that the image of J (k) in

∏
v∈S J (Fv) does not

meet
∏
v∈S ι(C(Fv)).

Note that under the assumptionX(k, J )div= 0, we must have a rational divisor
(class) of degree 1 on C whenever C(Ak)

f-ab
•
6= ∅, compare Corollary 6.6, so the

condition above is not an essential restriction.
Let us for a moment assume that Poonen’s Conjecture holds and that all abelian

varieties A/k satisfyX(k, A)div = 0. Then for all curves C/k of higher genus,
C(k) = ∅ implies C(Ak)

f-ab
•
= ∅. If we apply this observation to coverings of C ,

then we find that C must be excellent with respect to solvable coverings. The
argument goes like this. Let P ∈C(Ak)

f-sol
•

, and assume P /∈C(k). There are only
finitely many rational points on C , and hence there is an n such that P lifts to a
different n-covering D of C than all the rational points. (Take n such that P − Q
is not divisible by n in J (Ak)•, for all Q ∈ C(k), where J is the Jacobian of C .)
In particular, D(k) must be empty. But then, by Poonen’s Conjecture, we have
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D(Ak)
f-ab
•
=∅, so P cannot lift to D either. This contradiction shows that P must

be a rational point.
In particular, this would imply that all higher-genus curves have the “birational

section property”; compare Remark 8.9.
A more extensive and detailed discussion of these conjectures, their relations to

other conjectures, and evidence for them will be published elsewhere.
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Del Pezzo surfaces and
representation theory

Vera V. Serganova and Alexei N. Skorobogatov

To Yuri Ivanovich Manin on his seventieth birthday

The connection between del Pezzo surfaces and root systems goes back to Cox-
eter and Du Val, and was given modern treatment by Manin in his seminal book
Cubic forms. Batyrev conjectured that a universal torsor on a del Pezzo surface
can be embedded into a certain projective homogeneous space of the semisimple
group with the same root system, equivariantly with respect to the maximal torus
action. Computational proofs of this conjecture based on the structure of the Cox
ring have been given recently by Popov and Derenthal. We give a new proof
of Batyrev’s conjecture using an inductive process, interpreting the blowing-up
of a point on a del Pezzo surface in terms of representations of Lie algebras
corresponding to Hermitian symmetric pairs.

Introduction

Del Pezzo surfaces, classically defined as smooth surfaces of degree d in the pro-
jective space Pd , d ≥ 3, are among the most studied and best understood algebraic
varieties. Over an algebraically closed ground field such a surface is the quadric
P1
×P1 or the projective plane P2 with r = 9−d points in general positions blown

up. In this definition, d can be any integer between 1 and 9. Despite the apparent
simplicity the enumerative geometry of these surfaces displays amazing symme-
tries and puzzling coincidences. The 27 lines on a smooth cubic surface were
discovered by Cayley and Salmon, and the symmetries of their configurations were
explored by Schoutte, Coxeter and Du Val. Manin [1986] gave a modern exposition
of this subject, with many geometric and arithmetic applications. He showed that
the Picard group of a del Pezzo surface X of degree d=9−r , where d≤6, contains
a root system Rr of rank r in such a way that the automorphism group of the inci-
dence graph of the exceptional curves on X is the Weyl group W(Rr ). These root
systems are embedded into one another: R8=E8, and as r decreases one chops one
by one the nodes off the long end of the Dynkin diagram of E8, until the diagram
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becomes disconnected. Let αr be the simple root of Rr corresponding to the node
which must be removed from the Dynkin diagram of Rr in order to obtain that of
Rr−1; let ωr be the fundamental weight dual to αr . For r = 4, 5, 6, 7 the number of
exceptional curves on X is |W(Rr )/W(Rr−1)| = 10, 16, 27, 56, respectively, and
this is also the dimension of the irreducible minuscule representation V (ωr ) of
the Lie algebra gr of type Rr with the highest weight ωr . It is tempting to try to
recover the Lie algebra directly from a del Pezzo surface, but one has to bear in
mind that the del Pezzo surfaces of degree d ≤ 5 depend on 10− 2d moduli, so
the Lie algebra should somehow take into account all del Pezzo surfaces of given
degree; see [Manivel 2006], and also [Friedman and Morgan 2002; Leung 2000].

Universal torsors were introduced by Colliot-Thélène and Sansuc in the 1970’s
in a seemingly unrelated line of research; see [Colliot-Thélène and Sansuc 1987]
or [Skorobogatov 2001]. If X is a smooth projective variety over a field k, then an
X -torsor under a torus T is a pair (Y, f ), where Y is a variety over k with a free
action of T , and f is an affine morphism Y → X whose fibres are the orbits of T .
An X -torsor is universal if all invertible regular functions on Y are constant, and
the Picard group of Y is trivial (see Section 1 for details). Then T is isomorphic
to the Néron–Severi torus of X , that is, the algebraic torus dual to the Picard lat-
tice of X over an algebraic closure of k. In the work of Colliot-Thélène, Sansuc,
Swinnerton-Dyer, Salberger and the second named author (see the references in
[Skorobogatov 2001]) the birational geometry of universal torsors on del Pezzo
surfaces of degrees 3 and 4 played a crucial role in gaining some understanding
of the rational points on these surfaces over number fields, for example, the Hasse
principle, weak approximation, the Brauer–Manin obstruction, and R-equivalence.
The work of Batyrev, Tschinkel, Peyre, Salberger, Hassett, de la Bretèche, Heath-
Brown, Browning and others on the Manin–Batyrev conjecture on the number of
rational points of bounded height, highlighted the importance of explicitly describ-
ing universal torsors as algebraic varieties, and not merely their birational structure.
However, in the most interesting cases such as those of (smooth) del Pezzo surfaces
of degrees 3 and 4, the explicit equations of universal torsors turned out to be quite
complicated to write down.

Around 1990, Victor Batyrev told one of us (Skorobogatov) about his conjecture
relating universal torsors on del Pezzo surfaces to certain projective homogeneous
spaces. Let Gr be a simply connected semisimple group of type Rr . We fix a max-
imal torus Hr ⊂ Gr , and a basis of simple roots in the character group of Hr . Let
Pr ⊂ Gr be the maximal parabolic subgroup defined by the root αr (the stabilizer
of the line spanned by the highest weight vector of V (ωr )). Batyrev conjectured
that a universal torsor T on a del Pezzo surface X of degree d = 9− r over an
algebraically closed field can be embedded into the affine cone (Gr/Pr )a ⊂ V (ωr )

over Gr/Pr , equivariantly with respect to the action of the Néron–Severi torus Tr
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of X , identified with an extension of Hr by the scalar matrices Gm . Moreover, the
exceptional curves on X should be the images of the weight hyperplane sections
of T, that is, the intersections of T with the Hr -invariant hyperplanes in V (ωr ).
Inspired by these ideas, one of us showed in [Skorobogatov 1993] that the set of
stable points of the affine cone over the Grassmannian G(3, 5) with respect to the
action of the diagonal torus of SL(5), is a universal torsor over the del Pezzo surface
of degree 5 which is the geometric invariant theory (GIT) quotient by this action.
Batyrev’s line of attack on the general case of his conjecture uses the Cox ring of
X , which can be interpreted as the ring of regular functions on a universal torsor
over X . Indeed, Batyrev and Popov [2004] (see also [Derenthal 2006]) found the
generators and the relations of the Cox ring, which enabled Popov in his thesis
[2001] in the case d = 4 and Derenthal [2007] in the cases d = 3 and d = 2
to prove Batyrev’s conjecture by identifying the generators with the weights of
V (ωr ), and comparing the relations with the well-known equations of Gr/Pr . The
proofs of [Popov 2001] and [Derenthal 2007] are based on a substantial amount of
calculation which grows rapidly with r , and do not seem to give much insight into
why things work this way.

Here we prove Batyrev’s conjecture for del Pezzo surfaces of degrees 2 to 4 using
a totally different approach, the representation theory of Lie algebras. We start with
the known case of a del Pezzo surface of degree 5. (Alternatively, one could start
with the simpler though somewhat irregular case of degree 6; see [Batyrev and
Popov 2004].) Let pr be the Lie algebra of Pr ⊂Gr . We build an inductive process
based on the fact that the pair (Rr , αr ) for r = 4, 5, 6, 7 is a Hermitian symmetric
pair, that is, the complementary nilpotent algebra of pr in gr is commutative. We
show that V (ωr ), as a gr−1-module, has a direct factor isomorphic to V (ωr−1), and
that the restriction of the projection V (ωr )→ V (ωr−1) to a certain open subset
U ⊂ (Gr/Pr )a is the composition of a Gm-torsor and a morphism inverse to the
blowing-up of V (ωr−1) \ {0} at (Gr−1/Pr−1)a \ {0} (see Corollary 4.2). Now we
can explain the main idea of our proof. Suppose that a universal torsor T over
a del Pezzo surface X of degree 9− (r − 1) is Tr−1-equivariantly embedded into
the affine cone (Gr−1/Pr−1)a ⊂ V (ωr−1). Let M be a point on X outside of the
exceptional curves, and BlM(X) the blowing-up of X at M . The space V (ωr−1) is
a direct sum of 1-dimensional weight spaces of Hr−1, so the torus consisting of the
diagonal matrices with respect to a weight basis of V (ωr−1) does not depend on
the choice of this basis. We show how to choose an element tM of this torus so that
the translation t−1

M (Gr−1/Pr−1)a intersects T exactly in the fibre of f :T→ X over
M . Then the closure of the inverse image of tM(T \ f −1(M)) in U is a universal
torsor over BlM(X). This yields a Tr -equivariant embedding of this universal torsor
into (Gr/Pr )a . We then show that the image of this embedding is contained in the
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open subset of stable points with a free action of the Néron–Severi torus, so BlM(X)
embeds into the corresponding quotient.

Here is the structure of the paper. In Section 1 we recall equivalent definitions
and some basic properties of universal torsors. In Section 2 we prove that the left
action of a maximal torus of G on G/P , where P is a maximal parabolic subgroup
of a semisimple algebraic group G, turns the set of stable points with free action
of the maximal torus into a universal torsor on an open subset of the GIT quotient
of G/P by this action (with an explicit list of exceptions, see Theorem 2.7 for
the precise statement). In Section 3 we recall the necessary background from the
representation theory of Lie algebras. The implications for the structure of the
projection of (Gr/Pr )a to V (ωr−1) are studied in Section 4. In Section 5 we list
some well-known properties of del Pezzo surfaces. Our main result, Theorem 6.1,
is stated and proved in Section 6.

1. Universal torsors

Let k be a field of characteristic 0 with an algebraic closure k. Let X be a geo-
metrically integral variety over k. We write X for X ×k k. We denote by k[X ]
the k-algebra of regular functions on X , and by k[X ]∗ the group of its invertible
elements.

Let T be an algebraic k-torus, that is, an algebraic group such that T ' Gn
m

for some n. Let T̂ ' Zn be the group of characters of T . The Galois group
0 = Gal (k/k) naturally acts on T̂ .

For generalities on torsors the reader is referred to [Skorobogatov 2001]. An
X -torsor under T is a pair (T, f ), where T is a k-variety with an action of T ,
and f : T→ X is a morphism such that locally in étale topology T→ X is T -
equivariantly isomorphic to X ×k T . The following lemma is well known.

Lemma 1.1. Suppose that a k-torus T acts on a k-variety Y with trivial stabilizers,
and g : Y → X is an affine morphism of k-varieties, whose fibres are orbits of T .
Then g : Y → X is a torsor under T .

Proof. The property of g to be a torsor can be checked locally on X . Let U be an
open affine subset of X . Since g is affine, g−1(U ) is also affine [Hartshorne 1977,
II, 5, Exercise 5.17]. Since the stabilizers of all k-points of g−1(U ) are trivial, by
a corollary of Luna’s étale slice theorem [Mumford et al. 1994, p. 153] the natural
map g−1(U )→U is a torsor under T . The lemma follows. �

Colliot-Thélène and Sansuc associated to a torsor f : T→ X under a torus T
the exact sequence of 0-modules [Colliot-Thélène and Sansuc 1987, 2.1.1]

1→ k[X ]∗/k∗→ k[T]∗/k∗→ T̂ → Pic X→ Pic T→ 0. (1)
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Here the second and fifth arrows are induced by f . The fourth arrow is called
the type of T→ X . To define it, consider the natural pairing compatible with the
action of the Galois group 0,

∪ : H1(X , T )× T̂ → H1(X ,Gm)= Pic X ,

where the cohomology groups are in étale or Zariski topology. The type sends
χ ∈ T̂ to [T] ∪ χ , where [T] ∈ H1(X , T ) is the class of the torsor T→ X . A
torsor T→ X is called universal if its type is an isomorphism. If X is projective,
Equation (1) gives the following characterization of the universal torsors: an X -
torsor under a torus is universal if and only if Pic T= 0 and k[T]∗ = k∗, that is, T

has no nonconstant invertible regular functions.
We now give an equivalent definition of type which does not involve coho-

mology. Let K = k(X) be the function field of X , and TK the generic fibre of
T→ X . By Hilbert’s Theorem 90, the K -torsor TK is trivial, that is, is isomorphic
to TK = T ×k K . By Rosenlicht’s lemma we have an isomorphism of 0-modules

K [TK ]
∗/K ∗ = K [TK ]

∗/K ∗ = T̂ .

This isomorphism associates to a character χ ∈ T̂ a rational function φ ∈ k(T)∗

such that φ(t x) = χ(t)φ(x); the function φ is well defined up to an element of
K ∗ = k(X)∗. The divisor of φ on T does not meet the generic fibre TK , and
hence comes from a divisor on X defined up to a principal divisor. We obtain a
well-defined class τ(χ) in Pic X .

Lemma 1.2. The map τ : T̂ → Pic X coincides with the type of f : T→ X up to
sign.

Proof. According to [Skorobogatov 2001, Lemma 2.3.1 (ii)], the type associates
to χ the subsheaf Oχ of χ -semiinvariants of the sheaf f∗(OT). The function φ is a
rational section of Oχ ; hence, the class of its divisor represents Oχ ∈ Pic X . �

For the sake of completeness we note that if f :T→ X is a universal torsor, then
the group of divisors on X is naturally identified with K [TK ]

∗/k∗; this identifies
the semigroup of effective divisors on X with (K [TK ]

∗
∩ k[T])/k∗.

We have
k[T] =

⊕
χ∈T̂

k[T]χ ,

where k[T]χ is the set of regular functions φ on T, satisfying φ(t x)=χ(t)φ(x) for
any t in T . We also define k(T)χ as the set of rational functions on T, satisfying
the same condition. Since k(T)χ is the group of rational sections of the sheaf Oχ ,
we have k[T]χ = H0(X ,Oχ ). Hence if the sheaf Oχ defines a morphism

X→ P(H0(X ,Oχ )
∗),



398 Vera V. Serganova and Alexei N. Skorobogatov

we obtain a commutative diagram

T - k[T]∗χ \ {0} = H0(X ,Oχ )
∗
\ {0}

X
?

- P(H0(X ,Oχ )
∗).

?
(2)

Here the asterisk denotes the dual vector space.

2. G/P and the torus quotient

Let G be a split simple simply connected algebraic group over k, with a split max-
imal torus H ⊂ G; in this case the root system R of G relative to H is irreducible.
Write Ĥ for the character group of H . We use the standard notation Q(R) for the
lattice generated by the simple roots, then P(R)= Ĥ is the dual lattice generated
by the fundamental weights. We denote the Weyl group by W=W(R).

Let G→GL(V ) be an irreducible representation of G with a fundamental high-
est weight ω ∈ Ĥ . Let v ∈ V be a highest weight vector. The stabilizer of the line
kv is a maximal parabolic subgroup P ⊂G. The homogeneous space G/P is thus
a smooth projective subvariety of P(V ), which is indeed the only closed orbit of G
in P(V ). We write P̂ (respectively, Ĝ) for the character group of P (respectively,
of G). Let ε : P̂ → Pic G/P be the map associating to the character χ ∈ P̂ the
G/P-torsor under Gm defined as the quotient of G×Gm by P , where p ∈ P sends
(g, t) to (gp−1, χ(p)t). This map fits into the exact sequence

0→ Ĝ→ P̂→ Pic G/P→ Pic G→ 0.

Since G is semisimple and simply connected we have Ĝ = Pic G = 0 so ε is
an isomorphism; see, for example, [Popov 1974]. Since P̂ is the subgroup of Ĥ
generated by ω, we see that Pic G/P is generated by the hyperplane section class.
This fact implies the following elementary statement from projective geometry.

Lemma 2.1. Let L1 and L2 be distinct hyperplanes in the projective space P(V ).
Then (G/P)∩ L1 ∩ L2 has codimension 2 in G/P.

Proof. Since Pic G/P is generated by the class of a hyperplane section, for any
hyperplane L ⊂ P(V ) the closed subset (G/P)∩ L is irreducible of codimension
1, and the intersection has multiplicity 1. If the codimension of (G/P)∩ L1 ∩ L2

in G/P is 1, we have (G/P)∩L1∩L2= (G/P)∩L for any L in the linear family
spanned by L1 and L2. Choosing L passing through a point of G/P not contained
in L1, we deduce a contradiction. �

By the irreducibility of V the center Z(G) acts diagonally on V , and hence it
acts trivially on P(V ). For a k-point x ∈ P(V ) we denote the stabilizer of x in
H by StH (x). We now show that for x in a dense open subset of G/P we have
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StH (x)= Z(G), and determine the points such that StH (x) is strictly bigger than
Z(G).

Proposition 2.2. Let x be a k-point of G/P , and let Kx be the connected compo-
nent of the centralizer of StH (x) in G. Then we have the following properties.

(i) Kx is a reductive subgroup of G, H ⊂ Kx ;

(ii) x ∈ Kxwv = Kx/(wPw−1
∩ Kx) for some w ∈W;

(iii) Z(Kx)= StH (x);

(iv) StH (x) is finite if and only if Kx is semisimple, in which case the ranks of Kx

and G are equal.

Proof. If StH (x) = Z(G), then Kx = G, and all the statements are clearly true.
Assume that StH (x) is bigger than Z(G), then Kx is a closed subgroup of G,
Kx 6= G.

Let kx be the Lie algebra of Kx ; explicitly kx ⊂ g is the fixed set of Ad(StH (x)).
Since kx contains the Cartan subalgebra h, it has a root decomposition

kx =
⊕
α∈S

gα,

where S ⊂ R. Let expα ∈ Ĥ be the multiplicative character defined by the root
α ∈ R. The space gα consists of y ∈ g such that Ad(h)y = expα(h)y for all h ∈ H .
Thus gα⊂ kx if and only if StH (x)⊂ H is in the kernel of expα. Therefore S=−S,
so kx is reductive, and hence so is Kx .

The fixed points of H in G/P come from the points wv, where w ∈W. One of
these, say x0 = wv, is contained in the closure of the orbit H x . The stabilizer of
x0 in G is the parabolic subgroup wPw−1. To prove (ii) we need to show that x
belongs to the Kx -orbit of x0. Let N ⊂G be the unipotent subgroup complementary
to wPw−1, such that the corresponding Lie algebras satisfy g = n

⊕
wpw−1.

Then N ∩wPw−1
= {1}, and the N -orbit of the line kx0 is the open Schubert cell

N x0 ⊂ G/wPw−1
' G/P . The intersection of this open Schubert cell with H x

is a nonempty open subset of H x ; thus there is a k-point x1 ∈ H x ∩ N x0. We
can write x1 = u.x0 for some u ∈ N . The complement to the union of connected
components of the centralizer of StH (x) other than Kx , is an open neighborhood
of 1 in G. We choose x1 in such a way that u belongs to this open set. Since
H ⊂ Kx , the points x and x1 are in the same Kx -orbit, so it is enough to show
that x1 ∈ Kx x0. Any t ∈ StH (x) fixes both x1 and x0; thus x1 = u.x0 = t−1ut.x0.
Therefore, u−1t−1ut fixes x0; hence u−1t−1ut ∈ wPw−1. On the other hand, H
normalizes N ; thus t−1ut ∈ N , implying u−1t−1ut ∈ N . Since the intersection
of wPw−1 and N is {1}, we see that u and t commute. By the choice of x1 we
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see that u is in the connected component of 1 of the centralizer of StH (x), that is,
u ∈ Kx . This completes the proof of (ii).

The center of Kx is contained in every maximal torus, in particular, in H . Any
element of Z(Kx) fixes x , since x ∈ Kx/(wPw−1

∩ Kx), so Z(Kx)⊂ StH (x). On
the other hand, every element of StH (x) commutes with Kx by the definition of
Kx . But StH (x)⊂ H ⊂ Kx ; hence StH (x)⊂ Z(Kx). This proves (iii).

The rank of the semisimple part of Kx equals the rank of G if and only if Z(Kx)

is finite. If Z(Kx) is finite, then Kx is semisimple by definition. Thus (iv) follows
from (iii). �

Fix a weight basis in V , that is, a basis in which H is diagonal. The weight
of a coordinate is the character of H by which H acts on it. Denote by 3 the set
of weights of H in V , and by wt(x) the set of weights of x ∈ G/P , that is, the
weights of the nonvanishing coordinates of x .

Corollary 2.3. Assume that R is simply laced. Then the codimension of the set of
k-points x ∈ G/P such that StH (x) is finite, and StH (x) 6= Z(G), is at least 2.

Proof. By Proposition 2.2 and W-invariance it is sufficient to show that the codi-
mension of Kv in Gv is at least 2 for any proper connected semisimple subgroup
K ⊂ G containing H . The set of such subgroups is clearly finite.

For any x ∈ G/P the property wt(x)=3 implies StH (x)= Z(G). Let V ′ ⊂ V
be the irreducible representation of K generated by v. Denote by 3′ the set of
weights of V ′, and write V = V ′⊕U , where U is another K -invariant subspace.
First, we claim that 3′ 6= 3 because otherwise one can find x ∈ P(Kv) such that
wt(x)=3, and StH (x)= Z(G)= Z(K )would imply K =G. In particular, U 6=0.
If dim U > 1, then the codimension of Kv ⊂ Gv ∩ V ′ is at least 2 by Lemma 2.1.

If dim U = 1, then U is a trivial representation of K and 0 is not a weight of
V ′. But then U is invariant under the action of the Weyl group W. Therefore
wKw−1 acts trivially on U for any w ∈W. If a ∈ R is a root of K , then w(a) is a
root of wKw−1. But in the simply laced case W acts transitively on R; hence, the
subgroups wKw−1, w ∈W, generate the whole group G. Thus, U is G-invariant,
but that contradicts the irreducibility of V . �

Recall that a k-point x ∈ V is called stable for the action of H if the orbit H x
is closed, and the stabilizer of x in H is finite [Mumford et al. 1994, p. 194]. We
always consider the stability with respect to the action of H , and drop the reference
to H when it causes no confusion.

For a subset M ⊂ Ĥ we write Conv(M) for the convex hull of M in the vector
space Ĥ⊗R. It is well known that Conv(3)=Conv(Wω) [Gel’fand and Serganova
1987; Flaschka and Haine 1991]; see [Dabrowski 1996, Proposition 2.2 (i)] for a
short proof. The Hilbert–Mumford numerical criterion of stability says that x is
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stable if and only if 0 belongs to the interior of Conv(wt(x)) [Dolgachev 2003,
Theorem 9.2].

In the following statement and thereafter the numeration of the nodes of Dynkin
diagrams, simple roots and fundamental weights follows the conventions of [Bour-
baki 1981].

Proposition 2.4. Assume that the pair (R, ω) is not in the following list:

(Rr , ω1), (Ar , ωr ), (A3, ω2), (B2, ω2), (C2, ω2), (D4, ω3), (D4, ω4), (3)

where Rr is Ar , Br , Cr , or Dr . Let x be a point of V ⊗k k such that no two elements
of Wω \wt(x) are adjacent vertices of Conv(Wω). Then x is stable. In particular,
the set of unstable points of G/P has codimension at least 2.

Proof. Since
∑

w∈Wwω = 0, the point 0 is contained in the interior of

Conv(Wω)= Conv(3)

in Ĥ ⊗R. Thus if all the coordinates of x with weights in Wω are nonzero, then
x is stable.

Now assume that exactly one such coordinate of x is zero; because of the action
of W it is no loss of generality to assume that it corresponds to ω. The dimension of
the corresponding eigenspace is 1, so to check that x is stable it is enough to show
that 0 lies in the interior of Conv(Wω \ {ω}). The vertices of Conv(Wω) adjacent
to ω are ω−wα, where α is the root dual to ω, for all w in the stabilizer of ω in
W [Flaschka and Haine 1991, Lemma 3 and Cor. 2]. All these are contained in the
hyperplane L = 0, where

L(y)= (y, ω)− (ω2)+ (ω, α)= (y, ω)− (ω2)+ 1
2(α

2).

We have L(ω)> 0. Thus 0 belongs to the interior of Conv(Wω\{ω}) if and only if
ω and 0 are separated by this hyperplane, that is, if and only if L(0)<0. Therefore,
we need to check the condition

(ω2) > 1
2(α

2).

Note that the numbers 2(ω2)/(α2), for all possible fundamental weights, are the
diagonal elements of the inverse Cartan matrix of R. A routine verification using
the tables of [Bourbaki 1981] or [Onishchik and Vinberg 1990] shows that this
inequality is satisfied for the pairs (R, ω) not in the list (3).

Finally, let Wω \wt(x) = {λ1, . . . , λn}. By assumption λ1, . . . , λn correspond
to pairwise nonadjacent vertices of Conv(Wω). Thus

Conv(Wω \ {λ1, . . . , λn})=

n⋂
i=1

Conv(Wω \ {λi }).
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Since 0 is in the interior of each convex hull on the right hand side, it is also in the
interior of Conv(wt(x)).

The last statement is an application of Lemma 2.1. �

Definition 2.5. Let T ⊂GL(V ) be the torus generated by the image of H in GL(V )
and the scalar matrices Gm ⊂ GL(V ). We write (G/P)a for the affine cone over
G/P in V , and (G/P)s f

a for the open subset of stable points with trivial stabilizers
in T .

By the irreducibility of V , the stabilizer of x ∈ V ⊗k k, v 6= 0, in T is trivial if
and only if StH (pr(x))= Z(G), where pr(x) is the image of x in P(V ).

Lemma 2.6. There exist a smooth quasiprojective variety Y and an affine mor-
phism f : (G/P)s f

a → Y which is a torsor with structure group T with respect to
its natural left action on G/P.

Proof. By geometric invariant theory there exist a quasiprojective variety Y and
an affine morphism f : (G/P)s f

a → Y such that every fibre of f is an orbit of T
[Mumford et al. 1994, Theorem 1.10 (iii)]. Since the stabilizers of all k-points of
(G/P)s f

a are trivial, Lemma 1.1 implies that f : (G/P)s f
a → Y is a torsor under

T . The smoothness of Y follows from the smoothness of (G/P)a , since a torsor
is locally trivial in étale topology. �

Theorem 2.7. Assume that the root system R is simply laced, and the pair (R, ω)
is not in the list (3). Then the only invertible regular functions on (G/P)s f

a are
constants, so f : (G/P)s f

a → Y is a universal torsor.

Proof. By Lemma 2.6 we need to show that Pic T = 0 and k[T]∗ = k∗ where we
write T= (G/P)s f

a (see Section 1). The Picard group of (G/P)a is trivial since that
of G/P is generated by the class of a hyperplane section. Thus it suffices to show
that the complement to (G/P)s f

a in (G/P)a has codimension at least 2. The set of
unstable points has codimension at least 2, by Proposition 2.4. The closed subset
of its complement consisting of the stable points with nontrivial (finite) stabilizers
in T also has codimension at least 2, as follows from Corollary 2.3. �

3. Hermitian symmetric pairs

Let g be a semisimple Lie algebra over the field k with Chevalley basis {Hβ, Xγ },
where γ is a root of R, and Hβ = [Xβ, X−β], where β is a simple root of R.

A simple root α of g defines a Z-grading on g in the following way. We set
deg(Xα) = 1, deg(X−α) = − 1, deg(X±β) = 0 for all other simple roots β 6= α,
and deg(Hβ)= 0 for all simple roots β. Then

g=

l(α)⊕
i=−l(α)

gi , (4)
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where l(α) is the label of α, that is, the coefficient of α in the decomposition of
the maximal root as a linear combination of the simple roots. The Lie algebra
p=

⊕
i≥0 gi is the parabolic subalgebra defined by α, and n=

⊕
i<0 gi is the com-

plementary nilpotent algebra. The center of the Lie algebra g0 is one-dimensional,
so g0 = Z(g0)⊕g′, where g′ is the semisimple Lie algebra whose Dynkin diagram
is that of g with the node corresponding to α removed.

It is clear from (4) that l(α) = 1 if and only if [n, n] = 0. The following ter-
minology has its origin in the theory of symmetric spaces; see [Helgason 2001,
Chapter VIII].

Definition 3.1. The pair (R, α) is a Hermitian symmetric pair if l(α) = 1, or,
equivalently, if n is a commutative Lie algebra.

If R is simply laced, then (R, α) is a Hermitian symmetric pair if and only if
R = An , or if it is one of the following pairs: (Dn, αi ), where i = 1, n − 1 or n,
(E6, α1), (E6, α6), and (E7, α7).

We now assume that n is commutative. Our next goal is to explore the impli-
cations of this assumption for the restriction of the g-module V to the semisimple
subalgebra g′. We write U(l) for the universal enveloping algebra of the Lie al-
gebra l, and S(W ) for the symmetric algebra of the vector space W . Since n is
commutative we have U(n)= S(n).

The line kv is a 1-dimensional p-submodule of V ; hence the g-module V is
the quotient of the induced module U(g)⊗U(p) kv by the submodule generated by
X2
−αv. (This follows from the construction of V as the quotient of the Verma mod-

ule by the submodule generated by X−βv for the simple roots β 6= α, and X2
−αv.)

By the Poincaré–Birkhoff–Witt theorem we have U(g) = U(p)⊗k U(n). The line
kv is a trivial g′-module. Therefore, the g′-module U(g)⊗U(p) kv is isomorphic
to U(n) = S(n), so the finite dimensional vector space V inherits the Z≤0-graded
commutative k-algebra structure from S(n), V =

⊕
n≤0 V n . We turn this grading

into a Z≥0-grading by setting Vn = V−n . Since g′ has grading 0, the direct sum
V =

⊕
n≥0 Vn is the direct sum of g′-modules, and we can write

V = k⊕ n⊕
(
S≥2(n)/S(n)U(g′)X2

−α

)
,

where k = V0, n= V1. Note that 1 ∈ V0 is a highest weight vector; it generates V
as a S(n)-module.

Lemma 3.2. Let (R, α) be a Hermitian symmetric pair. Then the adjoint represen-
tation of g′ on V1 = n = g−1 is the irreducible representation such that X−α is a
highest weight vector. If R is simply laced, then the highest weight ω′ of V1 is the
sum of the fundamental weights corresponding to the nodes of the Dynkin diagram
of R adjacent to the node α.
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Proof. We have [Xβ, X−α] = 0 for all simple roots β 6= α, so X−α is annihilated
by the positive roots of g′. Every root of n is the sum of −α and a root of g′, so
n is generated by X−α as a g′-module. The computation of the weight of X−α is
immediate from the defining relations among the elements of the Chevalley basis.

�

We have the exponential map

exp : n→ S(n), exp(u)= 1+ u+ 1
2

u2
+

1
3!

u3
+ · · · .

Let G be the simply connected semisimple algebraic k-group with Lie algebra g,
P ⊂ G the parabolic subgroup with Lie algebra p, and N the unipotent k-group
with Lie algebra n. By the Chevalley construction of the Lie group from its Lie
algebra, N acts on V by the rule 1+x 7→ exp(x). Recall that the open Schubert cell
of G/P ⊂P(V ) is the N -orbit of the highest weight vector, and hence is identified
with exp(n). (In particular, dim G/P = dim V1.) Thus exp(x) is a polynomial
G ′-equivariant map, where G ′ is the simply connected semisimple k-group with
Lie algebra g′

exp : V1→ (G/P)a ⊂ V =
⊕
n≥0

Vn.

Let p : V1 = n→ V2 be the degree 2 graded component of exp(x).

Lemma 3.3. Let G ′ be the simply connected semisimple k-group with the Lie
algebra g′, and P ′ ⊂ G ′ the parabolic subgroup which is the stabilizer of the
line spanned by the highest weight vector X−α ∈ n. The restriction of exp(x)
to (G ′/P ′)a coincides with (1, id, 0, 0, . . .). We have (G ′/P ′)a = p−1(0), and the
ideal of (G ′/P ′)a is generated by the coordinates of p(x).

Proof. It is clear that every graded component of exp(x) of degree at least 2 sends
the orbit (G ′/P ′)a of the highest weight vector X−α to 0. Indeed, Xm

−α is in the
kernel of the natural map Sm(n)→ Vm , for m ≥ 2 . To prove the second statement
let us observe that the symmetric square S2(n) decomposes as the direct sum of V2

and the g′-submodule generated by X2
−α, which is the irreducible representation

V (2ω′) with highest weight 2ω′. It is well known from [Lancaster and Towber
1979, proof of Theorem 1.1] or [Batyrev and Popov 2004, Proposition 4.2] that
the orbit of the highest weight vector is the intersection of the second Veronese
embedding with V (2ω′). This completes the proof. �

Consider the following series of root systems,

A4 ⊂ D5 ⊂ E6 ⊂ E7. (5)

Let (R, α) be one of the Hermitian symmetric pairs

(A4, α3), (D5, α5), (E6, α6), (E7, α7), (6)
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where the roots are numbered as in [Bourbaki 1981]. By Lemma 3.2 the pair
(G ′, P ′) is defined by (R′, α′) which is the previous pair to (R, α) in (6). In other
words, P ′ corresponds to the only node of the smaller diagram adjacent to α. (If
G is of type A4, then G ′ is of type A1 ×A2, G ′/P ′ ' P1

×P2, but we shall not
have to consider this case.)

We note that the fundamental weight ω dual to α is minuscule, that is, the
weights of V are Wω, and Wv is a basis of V ; see [Bourbaki 1981, VIII.7.3].
We also note that the G-module V defined by ω is faithful (this follows from the
fact that ω generates P(R)/Q(R), which can be checked from the tables). Thus
the faithful representation of G in V defines a faithful representation of G ′, and
this implies that G ′ ⊂ G (in fact, G ′ is the Levi subgroup of P).

Let us identify the graded components of V in various cases. Let dr = dim V .
We have

d4 = 10, d5 = 16, d6 = 27, d7 = 56.

The details given below show that for r = 4, 5, 6 the graded components of exp(x)
of degree at least 3 are zero.

Let R = A4. Then G = SL(5), and G/P is the Grassmannian G(2, 5). Denote
by En the standard n-dimensional representation of SL(n). We have V =32(E5),
dim V = 10= 1+6+3. The group G ′= SL(2)×SL(3) is embedded into SL(5) in
the obvious way, and the graded factors of V are V1= E2⊗E3, V2=3

2(E3)∼= E∗3 .
The map p : V1→ V2 sends x to the 32(E3)-component of

x ∧ x ∈32(E5)=3
2(E2)⊕ (E2⊗ E3)⊕3

2(E3).

Let R = D5. Then V is a spinor representation of G = Spin(10) of dimension
16 = 1 + 10 + 5, and G/P is the isotropic Grassmannian (one of two families
of maximal isotropic subspaces of the nondegenerate quadric of rank 10), and
dim G/P = 10. The graded components are V1 =3

2(E5) and V2 =3
4(E5)∼= E∗5 .

The map p : V1→ V2 sends x to x ∧ x .
Let R= E6. Then dim V = 27= 1+ 16+ 10, V1 is the spinor representation of

Spin(10) as above, and V2 is the standard 10-dimensional representation of SO(10).
We have dim G/P = 16.

Let R = E7. Then dim V = 56 = 1+ 27+ 27+ 1, V1 is the 27-dimensional
representation of the group of type E6 considered above, V2= (V1)

∗, and V3= k is
the trivial 1-dimensional representation. (The graded components of degree at least
4 are zero.) We have dim G/P = 27. We define q :V1=n→V3= k as the degree 3
graded component of exp(x). This is a E6-invariant cubic form in 27 variables. The
27 weight coordinates of p(x) are partial derivatives of q(x). This identifies the
space G/P of type E6 with the singular locus of the cubic hypersurface q(x)= 0.
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Define a symmetric bilinear form p(x, y) on V1 with values in V2 by the formula
p(x + y) = p(x)+ 2p(x, y)+ p(y). Then exp(x + y) = exp(x)exp(y) implies
that

2p(x, y)= x · y (7)

is the product of x ∈ V1 and y ∈ V1 in the commutative k-algebra V .
We have a decomposition of S2(V1) as the direct sum of V2 and the represen-

tation with highest weight 2ω′ (see the proof of Lemma 3.3). In the notation of
[Bourbaki 1981] the representation V2 is irreducible with highest weight ω1; in
particular, it is minuscule. Thus the eigenspaces for the action of the maximal
torus H ′= H ∩G ′ are 1-dimensional, so on V2, in the same way as on V1, we have
weight coordinates well defined up to a multiplicative constant. The coordinates
pλ(x, y) of p(x, y) are symmetric bilinear forms of degree 2 with values in k. We
can write

pλ(x, y)=
∑
λ=µ+ν

pµνxµyν, (8)

where µ and ν are weights of V1, pµν ∈ k, and xµ is a nonzero linear form on
the weight µ subspace (V1)µ ⊂ V1 (and similarly for yν). One checks that for
r = 4, 5, 6, 7 the ranks of the quadratic forms pλ(x) are 4, 6, 8, 10, respectively.
If r = 7 we associate to the cubic form

q(x)=
∑

µ+ν+ξ=0

qµνξ xµxνxξ

the symmetric trilinear form

q(x, y, z)=
∑

µ+ν+ξ=0

qµνξ xµyνzξ .

In this case the weights of V2 are the negatives of the weights of V1. Moreover,
p−µ(x)= ∂q(x)/∂xµ, so

3q(x, y, z)=
∑
µ

p−µ(x, y)zµ,

p−µ(x, y)=
∑
−µ=ν+ξ

3qµνξ xν yξ .
(9)

For future reference we note that if pλ(x, y) = 0 for all λ, then q(x, y, y) = 0. It
follows from exp(x + y)= exp(x)exp(y) that

3q(x, x, y)= p(x) · y (10)

is the product of p(x) ∈ V2 and y ∈ V1 in the commutative k-algebra V .
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4. G/P and blowing-up

Let π : (G/P)a→ V1 be the restriction to (G/P)a of the natural projection

V = k⊕ V1⊕ V2⊕ V3→ V1.

We have exp(x)= (1, x, p(x), q(x)); hence π◦ exp= id. Here and in what follows
we write our formulae for the case r = 7, with the convention that if r < 7 the last
coordinate must be discarded.

We now describe the fibres of π .

Lemma 4.1. Let gt = (t, 1, t−1, t−2), t ∈ k∗. For x ∈ V1⊗k k we have the following
statements.

(a) If x /∈ (G ′/P ′)a , then π−1(x)= {gt · exp(x) | t ∈ k∗}.

(b) If x ∈ (G ′/P ′)a \ {0}, then

π−1(x)=
{
(t, x, 0, 0) | t ∈ k∗

}
∪
{
(0, x, 2pλ(x, u), 3q(x, u, u)) | u ∈ V1⊗k k

}
.

Proof. Recall that the torus T is generated by the maximal torus H ⊂ G and the
scalar matrices (t, t, t, t), t ∈ k∗. Let h ∈ h be an element of the Lie algebra of
H such that β(h) = 0 for all simple roots β of G, β 6= α, and α(h) = 1. The
1-parameter subgroup Gm ⊂ H whose tangent vector at the identity is h, acts on V
as (tm, tm−1, tm−2, tm−3), where m = ω(h), and ω is the fundamental weight dual
to α. Hence gt ∈ T for any t ∈ k∗.

Every k-point y= (y0, y1, y2, y3) of the closed set (G/P)a satisfies the equations

y0 y2 = p(y1), y2
0 y3 = q(y1), (11)

since these are satisfied on the affine cone over exp(V1) which is dense in (G/P)a .
Therefore, if π sends a k-point y of (G/P)a to x = y1, and y0 6= 0, we can write
y = gt · (1, x, p(x), q(x)) = gt · exp(x) for t = y0 ∈ k∗. All such points are in
(G/P)a since the action of T preserves (G/P)a , and exp(V1)⊂ (G/P)a . If y0= 0
we see from (11) and Lemma 3.3 that x ∈ (G ′/P ′)a . This proves (a).

To prove (b), assume x ∈ (G ′/P ′)a , x 6= 0. If y0 6= 0, then y = (t, x, 0, 0), by
(11).

We need some preparations for the case y0 = 0. Recall that V0 is identified
with k by the choice of a highest weight vector v ∈ V0, and V1 is identified with
n. Consider g1 = n−, the opposite nilpotent algebra of n. Any nonzero element
X ∈ g1 sends Vi to Vi−1 because of the grading. Hence we can write

exp(Xt)(y0, y1, y2, y3)=
(
y0+s(y1, X)t+z1t2

+z2t3, y1+u1t+u2t2, y2+wt, y3
)
,

where z1, z2 ∈ k, u1, u2 ∈ V1, w ∈ V2, and s(y1, X) ∈ k is defined by

s(y1, X)v = X y1v = [X, y1]v.
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For any nonzero y1 ∈ n ⊗k k = V1 ⊗k k one can find X ∈ g1 ⊗k k such that
s(y1, X)= 1. Otherwise g1 y1v= 0, and so y1v is a highest vector of the g-module
V ⊗k k, which is not a multiple of v. This contradicts the irreducibility of V ⊗k k.
Fix such an element X ∈ g1⊗k k.

Now let y0 = 0. Then

gt−1 exp(Xt)(0, y1, y2, y3)= (1+ z1t + z2t2, y1+ u1t + u2t2, y2t +wt2, y3t2)

is a k[t]-point of (G/P)a , and hence its coordinates satisfy (11) identically in
t . Equating to 0 the coefficient at t in the first equation in (11) we obtain y2 =

2p(y1, u), where u= u1. Equating to 0 the coefficient at t2 in the second equation,
and using that q(y1, y1, v) = 0 for all v ∈ V1 according to (9), we obtain y3 =

3q(y1, u, u).
To complete the proof of (b) we need to show that for any k-point x ∈ (G ′/P ′)a

and any u∈V1⊗k k the point
(
0, x, 2pλ(x, u), 3q(x, u, u)

)
is contained in (G/P)a .

We note that (
0, x, 2pλ(x, u), 3q(x, u, u)

)
= exp(u) · (0, x, 0, 0),

as immediately follows from (7) and (10). Since exp(u) is in the unipotent group
N ⊂ G it is enough to show that (0, x, 0, 0) is in (G/P)a . Clearly (1, x, 0, 0) =
exp(x) is in (G/P)a . Choosing X ∈ g1⊗k k as above such that s(x, X)= −1 we
obtain exp(X)(1, x, 0, 0)= (0, x, 0, 0). �

Corollary 4.2. Let U ⊂ (G/P)a be the complement to the intersection of (G/P)a
with (V0⊕V1)∪ (V2⊕V3). The restriction of π to U is a morphism U→ V1 \ {0},
which is the composition of a torsor under the torus Gm = {gt | t ∈ k∗}, and the
morphism inverse to the blowing-up of V1 \ {0} at (G ′/P ′)a \ {0}.

Proof. The set U is covered by the open subsets U0 : y0 6= 0, and Uλ : yλ 6= 0, where
yλ are the weight coordinates in V2. Indeed, if y0= yλ= 0 for all λ, then we are in
case (b) of Lemma 4.1, but pλ(x, u)= 0 for all λ implies q(x, u, u)= 0, and such
points are not in U . Each of these open subsets is Gm-equivariantly isomorphic to
the direct product of Gm and the closed subvariety of (G/P)a given by yi = 1 with
trivial Gm-action. Gluing them together we obtain the quotient Ũ .

The equations (11) show that π−1(0)∩U =∅; thus π projects U to V1\{0}. The
action of Gm preserves the fibres, hence π factors through a morphism Ũ→V1\{0}.
It is an isomorphism outside (G ′/P ′)a , whereas the inverse image of (G ′/P ′)a\{0}
is the projectivisation of the normal bundle to (G ′/P ′)a \{0} in V1\{0}, by Lemma
4.1 (b). It is not hard to prove (and is well known to experts) that this implies that
Ũ is the blowing-up of V1 \ {0} at (G ′/P ′)a \ {0}. �
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5. Del Pezzo surfaces

For the geometry of exceptional curves on del Pezzo surfaces the reader is referred
to [Manin 1986, Chapter IV]; see also [Friedman and Morgan 2002, Section 5]. Let
M1, . . . ,Mr , 4≤ r ≤ 7, be k-points in general position in the projective plane P2,
which says that no three points are on a line and no six on a conic. The blowing-up
X of P2 in M1, . . . ,Mr is called a split del Pezzo surface of degree d = 9−r . The
surface X contains exactly dr exceptional curves, that is, smooth rational curves
with self-intersection −1. For r ≤ 6 the exceptional curves on X arise in one of
these ways: the inverse images of the Mi ; the proper transforms of the lines through
Mi and M j , i 6= j ; the proper transforms of the conics through five of the Mi . For
r = 7 one also has the proper transforms of singular cubics passing through all 7
points with a double point at some Mi . The intersection index defines an integral
bilinear form ( . ) on Pic X . The opposite of the canonical class −K X is an ample
divisor, (K 2

X )= d. The Picard group Pic X = Pic X is generated by the classes of
exceptional curves (the complement to the union of these curves is an open subset
of A2). The triple (Pic X, K X , ( . )) coincides, up to isomorphism, with the triple
(Nr , Kr , ( . )) defined as [Manin 1986, Theorem 23.9]

Nr =

r⊕
i=0

Z`i , Kr =−3`0+

r∑
i=1

`i , (`
2
0)=1, (`2

i )=−1, i≥1, (`i .` j )=0, i 6= j.

Moreover, the exceptional curves are identified with the elements ` ∈ Nr such that
(`2)= (`.Kr )= −1, which are called the exceptional classes [Manin 1986, Theo-
rem 23.8]. By definition, a geometrically integral conic on X is a smooth rational
curve with self-intersection 0. By the Riemann–Roch theorem each conic belongs
to a 1-dimensional pencil of curves which are fibres of a morphism X→P1, called
a conic bundle. We refer to the fibres of such a morphism as conics. In particular,
through every point of X passes exactly one conic of a given pencil. The classes
of conic bundles can be characterized by the properties (c2)= 0, (c.Kr )= − 2.

Let K⊥r be the orthogonal complement to Kr in Nr . The elements α ∈ K⊥r such
that (α2) = − 2 form a root system R in the vector space K⊥r ⊗R ' Rr with the
negative definite scalar product ( . ). In fact, R is a root system of rank r in the
series (5). Moreover, the lattice K⊥r is generated by roots so K⊥r ' Q(R). For
example, we can choose

β1 = − `1+ `2, . . . , βr−1 = − `r−1+ `r , βr = − `0+ (`1+ `2+ `3)

as a basis of simple roots of R. The relation to our standard numeration, which
follows [Bourbaki 1981], is αr = βr−1, α1 = β1.

The Weyl group W = W(R) generated by the reflections in the roots, is the
automorphism group of the triple (Nr , Kr , ( . )). It operates transitively on the set
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of exceptional curves, and also on the set of conic bundle classes; see, for example,
[Friedman and Morgan 2002, Lemma 5.3]. Let

P(R)= {n ∈ K⊥r ⊗R : (n.m) ∈ Z for any m ∈ Q(R)}

be the lattice dual to Q(R); we have Q(R)⊂ P(R). The image of the map

Nr → Nr ⊗R= RKr ⊕ (K⊥r ⊗R)

is contained in the orthogonal direct sum 1
d ZKr ⊕ P(R) as a subgroup of index d.

Lemma 5.1. Let α = βr−1 ∈ R be the simple root such that (R, α) is one of the
pairs in (6), and let ω ∈ P(R) be the dual fundamental weight, (α.ω)= − 1.

(i) The exceptional classes in Nr are − 1
d Kr +wω, for all w ∈W.

(ii) Two distinct exceptional curves intersect in X if and only if the corresponding
weights are not adjacent vertices of the convex hull Conv(Wω).

(iii) Let ω1 be the fundamental weight dual to the root β1. The conic bundle classes
in Nr are − 2

d Kr +wω1, for all w ∈W.

Note that since W acts transitively on the set of bases, the choice of a basis of
simple roots is not important for the conclusion of this lemma.

Proof. (i) and (iii) The image of the exceptional class `r in P(R) is the fundamental
weight ω=ωr−1, and the image of the conic bundle class `0−`1 is the fundamental
weight ω1. The statement now follows from the transitivity of action of W on these
classes. See [Friedman and Morgan 2002, Lemma 5.2].

(ii) By the transitivity of W on the exceptional classes it is enough to check this
for the classes − 1

d Kr +ω and − 1
d Kr + x , where x = wω for some w ∈W. The

intersection index (
−

1
d

Kr + x .− 1
d

Kr +ω
)
=

1
d
+ (x .ω) (12)

equals −L(x) in the notation of the proof of Proposition 2.4 (with the opposite
sign of the scalar product). In the simply laced case this proof shows that L(x)= 1
when x = ω, L(x) = 0 if x is a vertex of the convex hull Conv(Wω) adjacent to
ω, and L(x) < 0 for all other x ∈Wω. �

We observe that for any conic bundle class x there exists a conic bundle class
y such that (x .y)= 1. Indeed, by the transitivity of W on conic bundle classes we
can assume that x = `0− `1. For y = `0− `2 we have (x .y)= 1.

6. Main theorem

We recall our notation.

• (R, α) is the pair in (6) such that R has rank r ;
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• G is the simply connected semisimple group with a split maximal torus H
and a maximal parabolic subgroup P ⊃ H , such that (G, P) is defined by the
pair (R, α);

• V is the fundamental representation of G such that P is the stabilizer of the
line spanned by a highest weight vector (this representation is faithful);

• T ⊂GL(V ) is the torus generated by the image of H in GL(V ), and the scalar
matrices;

• Y is the geometric quotient of (G/P)s f
a ⊂ (G/P)a with respect to the natural

left action of T ;

• the morphism f : (G/P)s f
a → Y is a universal torsor (see Theorem 2.7).

Let 3⊂ Ĥ be the set of weights of H in V , and let Vλ ⊂ V be the subspace of
weight λ, so that V =

⊕
λ∈3 Vλ. In our case dim Vλ = 1 (since V is minuscule;

see Section 3). Let πλ : V → Vλ be the natural projections, and let Lλ= π−1
λ (0) be

the weight coordinate hyperplanes. For a subset A⊂ V we write A× for the set of
points of A outside ∪λ∈3Lλ. For a subset B ⊂ Y we write B× for f ( f −1(B)×).

We now state our main theorem, whose proof occupies the rest of the paper.

Theorem 6.1. For r = 4, 5, 6 or 7 let M1, . . . ,Mr be k-points in general position
in P2 (no three on a line, no six on a conic). Let X be the blowing-up of P2 in
M1, . . . ,Mr . There exists an embedding X ↪→ Y such that X \ X× is the union
of exceptional curves on X. For such an embedding f −1(X)→ X is a universal
torsor.

We write Sn
χ (V ) for the H -eigenspace of Sn(V ) of weight χ ∈ Ĥ , and Sn

χ (V )
∗

for the dual space of functions. Let I (T) ⊂ k[V ] = S(V ∗) be the ideal of T. We
shall prove the following statement from which the main theorem will follow.

There exists an embedding of a universal torsor T over X into (G/P)s f
a ⊂ V such

that the restriction of f to T is the structure morphism T→ X , and f (T×) is the
complement to the union of exceptional curves on X. Moreover, for r < 7 the ideal
I (T×) ⊂ k[V×] is generated by the graded components of degree 2 and weight
wω1, for all w ∈W.

The last statement will be used in the case r = 7, and can be ignored by the
reader interested in the cases r = 5 and r = 6 only. Recall that ω1 is the highest
weight of a nontrivial irreducible g-module of least dimension.

Proof. The proof is by induction on r starting from r = 4. In this case Y is a del
Pezzo surface of degree 5, G/P is the Grassmannian variety G(3, 5) ' G(2, 5),
and G(3, 5)s f

= G(3, 5)s is a universal torsor over Y ; see [Skorobogatov 1993] or
[Skorobogatov 2001, Lemma 3.1.6]. It is well known that the ideal of G(3, 5)a⊂V
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is generated by the (quadratic) Plücker relations, and it is easy to see that their
weights are of the form wω1, so our statement is true in this case.

Suppose we know the statement for r−1≥ 4. This means that we are given the
following data.

• (R′, α′) is the “previous” pair to (R, α) in (6);

• W′ =W(R′) is the Weyl group;

• G ′ and P ′ are defined by (R′, α′), so that (G ′/P ′)a ⊂ V1 (see Section 3);

• H ′ = H ∩G ′, so that R′ is the root system of G ′ with respect to H ′;

• T ′ ⊂ GL(V1) is the torus generated by the image of H ′ in GL(V1) and the
scalars (T ′ is also the image of H in GL(V1));

• xµ is a nonzero linear form on the weight µ subspace of V1;

• Y ′ is the quotient of (G ′/P ′)s f
a by T ′;

• f ′ : (G ′/P ′)s f
a → Y ′ is a universal torsor;

• X ′ is the blowing-up of P2 in M1, . . . ,Mr−1 (it is a del Pezzo surface of
degree d ′ = 8− r );

• there exists an embedding X ′ ↪→ Y ′ satisfying the conditions of the theorem,
in particular,

• T′ = f ′−1(X ′)→ X ′ is a universal torsor.

The general position assumption implies that Mr does not belong to the excep-
tional curves of X ′. Thus, by Hilbert’s Theorem 90, we can find a k-point x0 ∈T′×

such that f ′(x0)= Mr .
Let τ : T̂ ′ → Pic X ′ be the map defined in Section 1; up to the sign, τ co-

incides with the type of the torsor f ′ : T′ → X ′ (Lemma 1.2). Since the torsor
f ′ : T′ → X ′ is universal, τ is an isomorphism of T̂ ′ = K [T′K ]

∗/K ∗ and Pic X ′

as abelian groups. To account for the duality between vectors and linear forms
on V1 we identify these groups by the isomorphism −τ . Recall that the Weyl
group W′ acts on T̂ ′ via the normalizer of H ′ in G ′, permuting the weights of V1.
By induction assumption −τ sends these weights bijectively onto the exceptional
classes in Pic X ′. If we transport the action of W′ from T̂ ′ to Pic X ′ using −τ ,
then the action of W′ so obtained preserves the intersection index of exceptional
curves; see (12). Thus −τ is a homomorphism of W′-modules, where W′ acts on
Pic X ′ as the automorphism group of the triple (Nr−1, Kr−1, ( . )). In particular,
−τ identifies the W′-(co)invariants on both sides (isomorphic to Z). This implies
that if χ is a weight of T ′ in Sn(V1), then the restriction of χ to the scalar matrices
Gm ⊂ T ′ coincides with the intersection index of −τ(χ) and −K X ′ , that is,

(τ (χ).K X ′)= n (13)
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(the sign is uniquely determined by the fact that effective divisors intersect posi-
tively with −K X ′). The isomorphism −τ also identifies the quotients by the W′-
invariants, that is, P(R′) and Ĥ ′. We fix these identifications from now on.

For φ(x) ∈ Sn
χ (V1)

∗, χ ∈ T̂ ′, let Cφ ⊂ X ′ be the image of the intersection of T′

with the T ′-invariant hypersurface φ(x) = 0. If Cφ 6= X ′, then the class [Cφ] in
Pic X ′ is −τ(χ), and (13) can be written as

([Cφ].(−K X ′))= n. (14)

We have (see the end of Section 1 for the first equality)

H0(X ′,O−χ )= k[T′]−χ = Sn
χ (V1)

∗/I (T′)∩ Sn
χ (V1)

∗. (15)

Apart from the weights of V1 which correspond to the exceptional curves, the
following two cases will be particularly relevant. For n = 2 let λ be a weight of
T ′ in V2. The restriction of λ to H ′ is wω1 ∈ Ĥ ′ = P(R′), where w ∈ W′ (see
the end of Section 3). If φ ∈ S2

λ(V1)
∗ is such that Cφ 6= X ′, then by (14) we see

that [Cφ] = − 2
d ′ K X ′ + wω1, so Cφ is a conic on X ′ by Lemma 5.1 (iii). The

Riemann–Roch theorem implies that dim H0(X ′,O−λ) = 2, where O−λ = O(Cφ)
is the invertible sheaf associated to Cφ . Thus I (T′) ∩ S2

λ(V1)
∗ has codimension

2 in S2
λ(V1)

∗. Note that by Lemma 3.3 we have pλ(x) ∈ I (T′) ∩ S2
λ(V1)

∗. For
r = 7 and n = 3 the space V3 is a trivial 1-dimensional representation of G ′, hence
of weight 0 ∈ Ĥ ′. Thus for φ ∈ S3

0(V1)
∗ we have [Cφ] = − K X ′ , by (14). If

Cφ 6= X ′, then Cφ is a plane section of the cubic surface X ′⊂P3. The vector space
H0
(
X ′,O(Cφ)

)
= H0

(
X ′,O(−K X ′)

)
has dimension 4; thus I0 = I (T′) ∩ S3

0(V1)
∗

has codimension 4 in S3
0(V1)

∗. It is clear that q(x) ∈ I0; see, for example, (10).
The following proposition is a crucial technical step in the proof of our main

theorem.

Proposition 6.2. There exists a nonempty open subset �(x0) ⊂ (G ′/P ′)×a such
that for any y0 ∈ �(x0) we have pλ(x−1

0 y0x) /∈ I (T′)∩ S2
λ(V1)

∗ for all weights λ
of V2, and q(x−1

0 y0x) /∈ I0 if r = 7.

Proof. We begin with pointing out the following useful fact. Let Verλ be the
composition of the second Veronese embedding V1→ S2(V1) with the projection
of S2(V1) to its direct summand S2

λ(V1). By Lemma 3.3, pλ(x) = 0 is the only
quadratic equation of G ′/P ′ of weight λ; thus Verλ((G ′/P ′)a) spans a codimension
1 subspace of S2

λ(V1), namely, the zero set of the linear form pλ(x) ∈ S2
λ(V1)

∗.
Next, we claim that the quadratic forms pλ(x−1

0 y0x), y0 ∈ (G ′/P ′)×a , span a
codimension 1 subspace of S2

λ(V1)
∗. Using (8) we write

pλ(x−1
0 y0x)=

∑
λ=µ+ν

pµν
y0µy0ν

x0µx0ν
xµxν .
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Suppose that for some coefficients cµν we have a linear relation∑
λ=µ+ν

cµν pµν
y0µy0ν

x0µx0ν
= 0.

This can be read as a relation with coefficients cµν pµνx−1
0µ x−1

0ν satisfied by all the
vectors (y0µy0ν), where y0 ∈ (G ′/P ′)×a and µ+ ν = λ. The set of these vectors is
precisely Verλ((G ′/P ′)×a ). The linear span of Verλ((G ′/P ′)×a ) is the same as the
linear span of Verλ((G ′/P ′)a). By the argument in the beginning of the proof, up to
a multiplicative constant there is only one linear relation satisfied by the elements
of Verλ((G ′/P ′)a), namely the one with coefficients pµν . Therefore, cµν = x0µx0ν

is uniquely determined up to a multiplicative constant. This proves our claim. Note
that the linear span under discussion is thus the space of forms vanishing at x0.

It follows that the set of k-points y ∈ (G ′/P ′)×a such that pλ(x−1
0 yx) belongs to

the codimension 2 subspace I (T′)∩S2
λ(V1)

∗, is a proper closed subset of (G ′/P ′)×a .
For r < 7 we define �(x0) as the complement to the union of these closed subsets
for all weights λ of V2.

For the rest of the proof we let r = 7. Let

Ver3
0 : V1→ S3

0(V1)

be the composition of the natural map V1→ S3(V1) with the projection S3(V1)→

S3
0(V1). The map Ver3

0 sends x = (xµ) to the vector (xµxνxξ ), for all µ, ν, ξ such
that µ+ ν + ξ = 0. If we write the invariant cubic form (defined up to a scalar
multiple) as

q(x)=
∑

µ+ν+ξ=0

qµνξ xµxνxξ ,

then it is well known that all the coefficients qµνξ are nonzero; see, for example,
[Faulkner 2001]. Recall that the singular locus of the cubic hypersurface q(x)= 0
is (G ′/P ′)a .

Let L x0 ⊂ S3
0(V1)

∗ be the subspace of forms such that all their (first order) partial
derivatives vanish at x0. We claim that L x0 coincides with the linear span of the
forms q(x−1

0 y0u), where y0 ranges over (G ′/P ′)a .
Let us prove this claim. The partial derivatives of q(x) vanish on (G ′/P ′)a;

hence q(x−1
0 y0u) ∈ L x0 for any y0 ∈ (G ′/P ′)a . Thus the linear span of the forms

q(x−1
0 y0u), where y0 ∈ (G ′/P ′)a , is contained in L x0 . We now prove that these

spaces have the same dimension.
Let f (x)=

∑
µ+ν+ξ=0 fµνξ xµxνxξ be a form in L x0 . The partial derivative with

respect to xξ is

3
∑

µ+ν=−ξ

fµνξ xµxν .
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It vanishes at x0 ∈ V×1 if and only if

xξ
∑

µ+ν=−ξ

fµνξ xµxν =
∑

µ+ν=−ξ

q−1
µνξ fµνξ · qµνξ xµxνxξ

does. Hence (q−1
µνξ L x0)

⊥ is spanned by the 27 vectors (qµνξ x0µx0νx0ξ ), where ξ is
fixed, and µ, ν are arbitrary. Since the coordinates of x0 are not zero, this space
has the same dimension as the space M ⊂ S3

0(V1) spanned by the 27 vectors (qµνξ ),
where ξ is fixed, and µ, ν are arbitrary weights satisfying µ+ν+ ξ = 0. The fact
that the ideal of (G ′/P ′)a is generated by the partial derivatives of q(x), implies
that M⊥ is the linear span of Ver3

0((G
′/P ′)a). We conclude that dim L x0 equals

the dimension of this linear span. Since all the coefficients qµνξ are nonzero, the
forms q(x−1

0 y0u), where y0 ∈ (G ′/P ′)a , span the space of the same dimension.
This proves our claim.

We complete the proof of the proposition in the case r = 7. A cubic form
f ∈ S3

0(V1)
∗ is in L x0 if and only if f (x) = 0 is singular at x0 ∈ V×1 . This is the

case if and only if the corresponding hyperplane H f ⊂ S3
0(V1) contains the tangent

space 8 to Ver3
0(V1) at the point m = Ver3

0(x0). We have a commutative diagram
(compare (15) and (2))

X ′ � T′ ⊂ - V1

P
(
H0(X ′,O(−K X ′))

∗
)?
� H0(X ′,O(−K X ′)

)∗
\ {0}

?
⊂- S3

0(V1)

?

where the left-hand vertical map is the anticanonical embedding of X ′, and the
other two are Ver3

0. The image of T′ in the 4-dimensional vector space

H0(X ′,O(−K X ′)
)∗
=
(
k[T′] ∩ S3

0(V1)
∗
)∗
= (S3

0(V1)
∗/I0)

∗
' A4

⊂ S3
0(V1)

is the affine cone X ′a (without 0) over the cubic surface X ′ ⊂ P3.
By the induction assumption I (T′×) is generated by its graded components Iλ of

degree 2 and weight λ, for all weights λ of V2. The weights of V1 are the negatives
of the weights of V2, so x−λ Iλ has degree 3 and weight 0. Since the coordinates
x−λ are invertible on T′×, the ideal I (T′×) is generated by its graded component
of degree 3 and weight 0. Hence locally in the neighborhood T′× of x0 the ideal
I (T′) is generated by I0, that is, by the equations of A4 in S3

0(V1).
This implies that the tangent space TX ′a,m ⊂ A4 is 8∩A4. Thus for any f in a

dense open subset of L x0 we have H f ∩A4
= TX ′a,m . Since X ′ ⊂ P3 is a smooth

cubic surface, X ′a \ TX ′a,m is dense and open in X ′a . Therefore, for the general
f ∈ L x0 we have X ′a ∩ H f 6= X ′a , so f /∈ I0. Now the above claim implies the
statement of the proposition. �
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Corollary 6.3. For any k-point y0 ∈ �(x0) and any weight λ of V2 the closed
subset of T′ given by pλ(x−1

0 y0x)= 0 is the preimage f ′−1(Cλ) of a geometrically
integral k-conic Cλ ⊂ X ′ passing through Mr . For r = 7 the closed subset of
T′ given by q(x−1

0 y0x) = 0, for any y0 ∈ �(x0), is the preimage f ′−1(Q) of a
geometrically integral cubic k-curve Q with a double point at Mr (the intersection
of the cubic surface X ′ with its tangent plane at Mr ).

Proof. To check that Mr ∈ Cλ, set x = x0; then pλ(x−1
0 y0x) = pλ(y0) = 0 by

Lemma 3.3 since y0 ∈ (G ′/P ′)a . If the conic Cλ is not geometrically integral,
then its components must have intersection index 1 with −K X ′ , so there are two of
them. It is well known that a curve on X ′ has such a property if and only if it is an
exceptional curve. However, Mr does not belong to the exceptional curves of X ′.
Thus Cλ is geometrically integral.

If r = 7, by substituting x = x0 one shows as before that Q contains M7 (the
cubic form q vanishes on G ′/P ′). Since the pλ(x) are partial derivatives of q(x),
and M7 ∈ Cλ, we see that Q has a double point at M7. If Q is not geometrically
integral, then it is the union of a geometrically integral conic and an exceptional
curve, or the union of three exceptional curves. In each of these cases the singular
point M7 ⊂ Q will have to lie on an exceptional curve, and this is a contradiction.

�

Corollary 6.4. For any y0 ∈ �(x0) the scheme-theoretic intersection of x−1
0 y0T′

and (G ′/P ′)a is the orbit T ′y0.

Proof. By Lemma 3.3 the ideal of (G ′/P ′)a is generated by pλ(x), for all weights
λ of V2. As was remarked at the end of Section 5, there exist weights λ and ν
such that the intersection index of Cλ and Cν on X ′ is 1, that is, Mr is the scheme-
theoretic intersection Cλ ∩ Cν . Thus the orbit T ′y0 is the closed subscheme of
x−1

0 y0T′ given by pλ(x)= pν(x)= 0, and our statement follows. �

Let σ : X = BlMr (X
′)→ X ′ be the morphism inverse to the blowing-up of Mr .

Then σ induces an isomorphism of X \σ−1(Mr ) with X ′\Mr , and σ−1(Mr )∼=P1.
The proper transform of a curve D ⊂ X ′ is defined as the closure of σ−1(D \Mr )

in X . The comparison of intersection indices on X ′ and X shows that the proper
transforms of the conics Cλ and the singular cubic Q (for r = 7) are exceptional
curves on X . By comparing the numbers we see that these curves together with
σ−1(Mr ) and the inverse images of the exceptional curves on X ′ give the full set
of exceptional curves on X .

End of proof of Theorem 6.1 Consider the open set U ⊂ (G/P)a and the mor-
phism π : U → V1 \ {0}; see Corollary 4.2. Choose any y0 ∈ �(x0), and define
T⊂U as the “proper transform” of x−1

0 y0T′ with respect to π . Explicitly, T⊂U
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is defined as the Zariski closure of

π−1(x−1
0 y0T′ \ (G ′/P ′)a

)
= π−1(x−1

0 y0T′ \ T ′y0),

where the equality is due to Corollary 6.4. The torus T ′ acts on T′, and π is T ′-
equivariant; hence T ′ acts on T. But Gm = {gt } (see Lemma 4.1) also acts on T.
The torus T is generated by T ′ and Gm = {gt }, so T acts on T.

Corollaries 4.2 and 6.4 imply that the restriction of π to T is the composition of
a torsor under Gm ={gt } and the morphism Bly0T ′(x−1

0 y0T′)→ x−1
0 y0T′ inverse to

the blowing-up of the orbit T ′y0 in x−1
0 y0T′. The blowing-up of T ′y0 in x−1

0 y0T′

is naturally isomorphic to the pullback T′×X ′ X of the torsor T′→ X ′ to X . This
can be summarized in the commutative diagram

T - T′×X ′ X - X

T′
?

- X ′
σ
?

(16)

where the horizontal arrows are torsors under tori, and the vertical arrows are con-
tractions. The composed morphism f : T→ X is a composition of two torsors
under tori, and hence is an affine morphism whose fibres are orbits of T . Therefore
T is an X -torsor under T , by Lemma 1.1. We obtain a T -equivariant embedding
T ↪→ (G/P)a .

For r < 7 we note that I (T×) ⊂ k[V×] is generated by I (x−1
0 y0T′×) and the

equations of (G/P)a; moreover, for each weight wω1, w ∈W, there is exactly one
quadratic equation, by Lemma 3.3. The restriction of ω1∈ Ĥ = P(R) to H ′ is again
the weight ω1 ∈ Ĥ ′ = P(R′). By the induction assumption I (T′×) is generated
by its graded components of degree 2 of such weights; hence the same is true for
I (T×).

It remains to prove that T⊂ (G/P)s f
a , and that the torsor f :T→ X is universal.

The action of T on T is free; we show that every point of T is stable. We claim that
f sends the weight hyperplane sections of T to the exceptional curves on X . By
the results of Section 4 this follows from the induction assumption for the weights
of V1, and from Corollary 6.3 for the weights of V2 ⊕ V3. Corollary 6.4 implies
that the highest weight hyperplane xω= 0 corresponds to σ−1(Mr ). By Lemma 5.1
(ii) the set of exceptional curves of X is identified with the set Wω in such a way
that two distinct exceptional curves intersect in X if and only if the corresponding
weights are not adjacent vertices of the convex hull Conv(Wω). Now Proposition
2.4 implies that T⊂ (G/P)s f

a . We thus obtain an embedding X ↪→ Y .
The pull-back of the torsor (G/P)s f

a → Y to X gives rise to the following com-
mutative diagram, where the horizontal arrows represent the types of corresponding
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torsors

T̂
∼ - Pic Y

T̂

wwww
- Pic X.

?

The upper horizontal arrow is an isomorphism since the torsor (G/P)s f
a → Y is

universal, by Theorem 2.7. Since the exceptional curves on X are cut by divisors
on Y , the restriction map Pic Y → Pic X is surjective. However, the ranks of Pic Y
and Pic X are equal, so this map is an isomorphism. Now it follows from the
diagram that the type of the torsor f : T→ X is an isomorphism, so this torsor is
universal as well. The theorem is proved. �
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The zeta function of monomial
deformations of Fermat hypersurfaces

Remke Kloosterman

This paper intends to give a mathematical explanation for results on the zeta
function of some families of varieties recently obtained in the context of mirror
symmetry. In the process we obtain concrete and explicit examples for some re-
sults recently used in algorithms to count points on smooth hypersurfaces in Pn .

In particular, we extend the monomial-motive correspondence of Kadir and
Yui and we give explicit solutions to the p-adic Picard–Fuchs equation associ-
ated with monomial deformations of Fermat hypersurfaces.

As a byproduct we obtain Poincaré duality for the rigid cohomology of certain
singular affine varieties.

1. Introduction

One of the families under consideration in this paper is the famous one-parameter
family (Dwork family) of quintic threefolds Xλ ⊂ P4

Fq
given by

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 + λx0x1x2x3x4 = 0, (1)

where λ ∈ Fq is a parameter. Candelas et al. [2003] observed that the zeta function
of this variety can be written as

R1(t, λ)R2(t, λ)20 R3(t, λ)30

(1− t)(1− qt)(1− q2t)(1− q3t)
,

where the Ri are of degree 4. Candelas et al. gave expressions in λ for the zeroes
of the Ri : to explain this, note that we can lift this family to a family over the ring
Zq of Witt vector over Fq . This enables us to consider this family as a family in P4

over the field of fractions Qq of Zq . Assume that λ ∈ Fq is chosen such that Xλ is
smooth. Denote by λ the Teichmüller lift of λ. Specifically, Candelas et al. show

MSC2000: primary 14G10; secondary 14G15, 11G25.
Keywords: zeta function, p-adic Picard–Fuchs equation, Monsky–Washnitzer cohomology.
This work was partially supported by the DFG Schwerpunktprogramm “Globale Methoden in der
komplexen Geometrie” under grant HU 337/5-3.
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that the zeroes of the zeta function of Xλ can be expressed in certain solutions of
the p-adic Picard–Fuchs equation (associated with the family Xλ) evaluated at λ.

This fact was proved in a more general context, but less explicitly, by N. Katz
[1968]. His description of the zeta function in terms of the Picard–Fuchs equation
is exploited by Lauder [2004] in order to give an algorithm to count points on
smooth hypersurfaces in Pn .

Some other families are investigated by Kadir [2004]. She obtained similar
results. From this, one might conjecture that various factors of the zeta function are
enumerated by so-called (admissible) monomial types modulo certain equivalence
relations. We come back to this in Section 1.3.

Kadir and Yui [2006] noticed that monomial types are occurring in the study
of several objects related to (1), for example in the Picard–Fuchs equation or in
the enumeration of the factors of the zeta function. In the case λ = 0, they also
appear in the enumeration of the Jacobi sums needed to compute the number of
points of the variety at λ= 0. They proved a certain correspondence between these
monomial types for Fermat varieties. Our aim is to present a different view on the
above mentioned phenomena.

We should mention that N. Katz [2007] and Rojas-Leon and Wan [2007] stud-
ied the zeta function of families similar to (1) by using (`-adic) hypergeometric
sheaves. We recommend [Katz 2007] for a discussion on previous results on the
Dwork family.

The main object of study in this paper are families Xλ/Fq defined by the van-
ishing of polynomials of the form

Fλ :=
n∑

i=0
xdi

i + λ
∏
i

xai
i (2)

in a weighted projective space P := P(w0, . . . , wn), with wi di = d for all i , the
ai are nonnegative and

∑
wi ai = d; moreover, we assume that gcd(q, d) = 1.

Such families will be called one-parameter monomial deformations of a Fermat
hypersurface. For the rest of the introduction fix such a weighted projective space,
and such a one-parameter deformation of a Fermat hypersurface. Let a denote the
vector (w0a0, w1a1, . . . , wnan) ∈ (Z/dZ)n+1. We call a the deformation vector.

The main technical result of this paper implies that the p-adic Picard–Fuchs
equation associated with such a family is a generalized hypergeometric differential
equation. We refer to Sections 1.2 and 5 for more on this.

Let Uλ := P \ Xλ. Since

Z(Xλ, t)Z(Uλ, t)= Z(P, t),

the value of Z(Xλ, t) is uniquely determined by Z(Uλ, t). Hence from now on we
will only discuss how to calculate Z(Uλ, t).
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1.1. Choice of the cohomology theory. The Lefschetz fixed point formula allows
us to prove statements on the zeta function by considering the action of geometric
Frobenius on certain cohomology groups. Very often one uses étale cohomology.
This is particularly useful when one wants to compare results in characteristic p>0
with results in characteristic 0, or if one wants to consider Galois-representations
on certain `-adic vector spaces.

However, for our purposes it seems more natural to use p-adic cohomology
theories instead. One can represent cohomology classes of a variety over a finite
field Fq by differential forms with coefficients in Qq . This allows us to perform
several (basic) analytic tricks when computing with cohomology classes.

To be more precise, let λ be a lift of λ to Qq , let Fλ be a lift of Fλ and Uλ.
Since Uλ is affine, we can define Monsky–Washnitzer groups cohomology (see
Section 3) H i (Uλ,Qq). The elements in H i (Uλ,Qq) are differential forms with
Qq -coefficients. There is a lift Frobq of the Frobenius acting on these groups.

To illustrate how explicitly one can compute with Monsky–Washnitzer coho-
mology, we proceed to produce a basis for H i (Uλ). Let

� :=

(∏
j

x j

)∑
(−1)iwi

dx0

x0
∧

dx1

x1
∧ · · · ∧

d̂xi

xi
∧ · · · ∧

dxn

xn
.

Proposition 1.1. Let Xλ be quasismooth. Then the cohomology groups H i (Uλ,Qq)

are zero except for i = 0, n. The group H 0(Uλ,Qq) is one-dimensional and Frobe-
nius acts trivially on it. The following set is a basis for H n(Uλ,Qq):{∏n

i=0 xki
i

(Fλ)t
� : 0≤ ki < di − 1 ∀i,

∑
i

wi (ki + 1)= td
}
.

This basis will be called the standard basis. We are not aware of a proper refer-
ence for this standard fact in our context. We prove this proposition in Section 3.
Proposition 1.1 is a combination of Theorem 3.8 and Proposition 3.16.

The proof is based on the fact that for quasismooth Xλ, de Rham cohomology
of Uλ with Qp coefficients is isomorphic to the Monsky–Washnitzer cohomology
of Uλ [Baldassarri and Chiarellotto 1994]. By a theorem of Steenbrink [1977] we
have the isomorphism

H n
dR(Uλ)∼=

⊕
t>0

H 0(�n(t Xλ))/dH 0(�n−1((t − 1)Xλ)).

The vector space on the right-hand side is very well understood.
However, if Xλ is not quasismooth then the dimension of the right-hand side

depends on the choice of the lift λ. If we choose λ in such a way that Xλ is not
quasismooth then the right-hand side is infinite-dimensional. In that case one needs
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to add more relations to get an isomorphism with H n(Uλ). Which relations one
needs to add is not very well understood.

A vector

k := (w0(k0+ 1), . . . , wn(kn + 1)) ∈
∏

i

(wi Z/dZ)

is called an admissible monomial type if for all i , we have ki 6≡ −1 mod di and∑
wi (ki + 1) ≡ 0 mod d . Fix an admissible monomial type k. Take elements

ki ∈ Z satisfying 0≤ ki ≤ di −2 and ki ≡ ki mod di . Then with k we associate the
standard basis vector

ωk :=

∏
xki

i

(Fλ)t
�.

Remark 1.2. The results mentioned in Section 3 imply that

Z(Uλ, t)=

(
det

(
I − qn(Frob∗q)

−1t | H n(Uλ,Qq)
))(−1)n+1

(1− qnt)
.

From here on we formulate our results in terms of the characteristic polynomial of
qn(Frob∗q)

−1 on H n(Uλ,Qq), rather than in terms of Z(Uλ, t).

1.2. Deformation behavior. We produce a solution to the p-adic Picard–Fuchs
equation that turns out to give us a description of the dependence of λ of the action
of Frobenius on H n(Uλ), where λ is in the p-adic unit disc.

Following [Katz 1968], we consider the commutative diagram

H n(Uλq )
Frob∗q //

A(λq )

��

H n(Uλ)

A(λ)
��

H n(U0)
Frob∗q // H n(U0)

where λ is on a small p-adic disc around the origin, and A is a solution to the
Picard–Fuchs equation associated with the family Xλ. Using p-adic analytic con-
tinuation we can extend A(λ)−1 Frob∗q,0 A(λq) to the closed unit disc, although
A(λ) itself cannot be extended to the p-adic unit disc.

Let λ0 ∈ Qq be the Teichmüller lift of some element λ0 ∈ Fq . Then λq
0 = λ0,

hence the above diagram implies that the action of Frobq on H n(Uλ0) can be recov-
ered from the p-adic analytic continuation of A(λ)−1 Frob∗q,0 A(λq). Therefore,
to determine the zeta function of Xλ0

we need to know the Frobenius action in
the Fermat-case (see 1.3) and compute the correct solution of the Picard–Fuchs
equation.
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We describe the action of A(λ) on the standard basis. We call two monomial
types k and m strongly equivalent if and only if there is a j0 such that k−m= j0a,
where a is the deformation vector (see above).

Theorem 1.3. Let k be an admissible monomial type. Write A(λ)ωk=
∑

cm(λ)ωm,
where the sum is taken over all admissible monomial types. Then cm(λ) is nonzero
only if k and m are strongly equivalent. If this is the case then cm(λ) is of the form
c0λ

j0 F(αi ;β j ; λ
dcd

1 ), with F a p-adic generalized hypergeometric function with
parameters αi , β j and j0 ∈ {0, 1, . . . , d − 1} is chosen such that k−m = j0a.

Explicit formulas for the αi , β j , c0 and c1 are given in Lemma 5.1 and Proposi-
tion 5.3. See Section 5 for a proof of Theorem 1.3.

In our proof we exploit the fact that there is a straightforward way of computing
in groups like H n(Uλ), relying on the fact that this group is a quotient of a module
of differentials over a power series ring. This allows us to perform some easy
analytic operations that would be impossible in a module of differentials over a
polynomial ring.

1.3. Factorization of the zeta function. We call the case λ = 0 the Fermat case.
One can show that Frob∗q on H n(U0,Qq) sends the standard basis vector ωk to
a constant ck,q times the standard basis vector ωqk. Hence, if q ≡ 1 mod d then
the standard basis is a basis of eigenvectors for Frob∗q . In this case Theorem 1.3
tells us that for every admissible monomial type k the operator Frobq,λ fixes the
subspace spanned by the ωm, where m is strongly equivalent to k.

The general case is slightly different, for this we introduce another equivalence
relation: we call two monomial types k and m weakly equivalent if j0 ∈ Z/dZ and
invertible s, t ∈ (Z/dZ)∗ exists such that sk+ tm = j0a.

Theorem 1.4. Let k be an admissible monomial type. Write

Frobq,λ ωk =
∑

cm(λ)ωm,

where the sum is taken over all admissible monomial types. Then cm(λ) is nonzero
only if k and m are weakly equivalent.

This is a weak form of Theorem 6.4. Theorem 1.4 implies that the zeta function of
Uλ can be factored (as a rational function with Q(λ)-coefficients) in such a way that
each factor corresponds to a weak-equivalence class. If one only considers the zeta
function over fields containing all d-th roots of unity, then there is a factorization
of the zeta function of Uλ such that each factor corresponds to a strong-equivalence
class.

Explicitly determining the constants ck,q is actually very hard. In some cases it
is known that the eigenvalues of Frob∗q correspond to the Fourier coefficients of a
modular form. For example if n = 2, w= (1, 1, 1) and d = 3, then X0 is the j = 0
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elliptic curve x3
0 + x3

1 + x3
2 . Also the case n = 3, w = (1, 1, 1, 1), d = 4 and the

case n = 5, w= (1, 1, 1, 1), d = 3 are known to correspond to modular forms; see
[Hulek and Kloosterman 2007; Shioda and Inose 1977].

A more general result on ck,q is due to Weil: Assume that Fq ⊃ Fp(ζd). Let χ
be the d-th power residue symbol. Let k be an admissible monomial type. Let ki

be the i-th entry of k, i.e., wi (ki + 1). Then

Jk,q := (−1)n+1
∑

(v1,...,vn)∈Fn
q :
∑

i vi=−1

χ(v1)
k1χ(v2)

k2 . . . χ(vn)
kn .

The following theorem coincides with Corollary 6.9.

Theorem 1.5. Assume q is chosen such that Fq ⊃ Fp(ζd). Let k be an admissible
monomial type. Let S be the set of monomial types that are weakly equivalent to k.
Then the sets {qn−1/cm,q : m ∈ S} and {Jm,q : m ∈ S} coincide.

1.4. Monomial-motive correspondence. We call b∈ (Z/dZ)n+1 an admissible au-
tomorphism type if b= (w0b0, w1b1, . . . , wnbn) ∈ (Z/dZ)n+1 is such that∑

wi bi ai ≡ 0 mod d.

Define σb to be the automorphism

[x0 : x1 : · · · : xn] 7→ [ζ
w0b0
d x0 : ζ

w1b1
d x1 : · · · : ζ

wnbn
d xn].

We call two monomial types k and m distinguishable by automorphisms if there
exists an admissible automorphism type b ∈ (Z/dZ)n+1 such that

σb

(∏
xki

i

)
=

∏
xki

i and σb

(∏
xmi

i

)
6=

∏
xmi

i .

Theorem 1.6. Two monomial types k and m are weakly equivalent if and only if k
and m are not distinguishable by automorphisms.

This result enables us to give a different proof for the monomial-motive corre-
spondence of Kadir and Yui [2006], and to generalize it as follows: fix an admis-
sible monomial type k. Let Gk be the group of automorphisms of the form σb that
fix ωk. Then the subspace of H n(U ) fixed by Gk is the spanned by the ωm such
that m is weakly equivalent to k. This can be also extended to the level of motives,
i.e., we find a submotive h(Uλ/Gk) of the (Chow-)motive h(Uλ). Moreover, we
obtain that

h(Uλ)=
⊕
[k]

h(Uλ/Gk),

where we sum over all the weak-equivalence classes.
Kadir and Yui decompose h(Uλ/Gk) further. To explain this, we need to change

our context, and consider our family Xλ over the field Q of rational numbers. Then
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the Galois group Gal(Q(ζd)/Q) acts nontrivially on Gk, and this enables us to
find correspondences in C H n(Uλ/Gk ×Uλ/Gk) that decompose h(Uλ/Gk) into
smaller motives. It is easy to see that each such motive corresponds to a strong-
equivalence class of monomial types. This correspondence between admissible
monomial types and submotives of hn(Uλ) is called by Kadir and Yui monomial-
motive correspondence. They also relate monomial types with the Picard–Fuchs
equation. For this issue we refer to Section 1.2.

Kadir and Yui [2006] could only prove their monomial-motive correspondence
if Xλ is a Calabi–Yau hypersurface of dimension 3 and λ = 0. The above discus-
sion extends this correspondence to any quasismooth member of a one-parameter
monomial deformation of a Fermat hypersurface in a weighted projective space,
for any degree d such that wi |d for all i and provided that the characteristic does
not divide d .

Kadir and Yui prove the monomial-motive correspondence using Jacobi sums.
We take a more direct approach using subgroups of the automorphism group.

This paper is organized as follows: in Section 2 we fix some notation and list
some standard definitions. In Section 3 we discuss Monsky–Washnitzer cohomol-
ogy groups and recall some of the properties of these groups. In Section 4 we
recall Katz’ result on the deformation of the zeta function of a hypersurface in Pn .
In Section 5 we make Katz’ result explicit. In Section 6 we discuss the Frobenius
action on the cohomology of a Fermat hypersurface and prove some results on the
structure of the zeta function of a monomial deformation of a Fermat hypersurface.

2. Notation

Fix once and for all :

• a prime p (the characteristic) and a positive integer r ,

• an integer n (the dimension of the ambient space),

• a vector (w0, w1, . . . , wn) ∈ Zn+1 such that none of the wi is divisible by p.

• an integer d divisible by all the wi and p does not divide d .

Set q = pr and di := d/wi . Let Qq denote the unique unramified extension of de-
gree r of Qp. Let w :=

∑
wi denote the total weight. Let PFq :=Pn

Fq
(w0, . . . , wn)

be the associated weighted projective space over the finite field Fq .

Definition 2.1. A monomial type m = (m0, . . . ,mn) is an element of
∏

i wi Z/dZ

such that
∑

mi = 0 in Z/dZ. Choose representatives mi ∈ Z of mi such that
0≤ mi < d . The relative degree of m is

∑
mi/d.

Fix once and for all a monomial type a of relative degree 1, with at least 2
nonzero entries. We call a the deformation vector. Let ai be integers such that
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0≤ ai < di and a ≡ (w0a0, . . . , wnan). Set

Fλ :=
∑

xdi
i + λ

∏
xa j

j .

Let F := F0. If λ ∈ Fq , denote by Xλ the zero set of Fλ in P. If λ ∈Qq , denote by
Xλ the zero set of Fλ. Let Uλ be the complement P\Xλ. Let Uλ be the complement
P \ Xλ.

Let � :=
∏

i

xi

∑
j

(−1) jw j
dx0
x0
∧ · · · ∧

d̂x j

x j
∧

dxn
xn

.

Definition 2.2. A monomial type k is called admissible if there exist integers ki ,
for i = 0, . . . , n, such that 0≤ ki ≤ di − 2 and k = (w0(k0+ 1), . . . , wn(kn + 1)).
Let t be the relative degree of k. With k we associate the differential form

ωk :=

∏
xki

i

F t
λ

�.

Denote by (a)m the Pochhammer symbol a(a+ 1) . . . (a+m− 1).

Definition 2.3. Let π : Pn
→ P be the natural quotient map sending xi to xwi

i . Let
G := ×µwi

/1 be the Galois group associated with this quotient. We call π the
standard quotient map and G the group associated with π .

3. Monsky–Washnitzer cohomology

We will not define rigid cohomology in complete detail, but give a simplified pre-
sentation for the case of quasismooth hypersurfaces. For a good introduction to
the theory of rigid cohomology we refer to [Berthelot 1983; 1997b].

Since Uλ is affine, we can write Uλ = Spec Rλ, with

Rλ =Qq [λ, Y0, . . . , Ym]/(G1,λ, . . . ,Gk,λ).

Definition 3.1. Fix λ0 in the closed p-adic unit disc and set

R†
λ0
=
{H ∈Qq [[Y0, . . . , Ym]] : the radius of convergence of H is at least r > 1}

(G1,λ0, . . . ,Gk,λ0)
.

Then R†
λ0

is called the overconvergent completion (or weak completion) of Rλ0 .
If π is the standard quotient map, G is its associated group (Definition 2.3), and

S := S†
λ0

is the overconvergent completion of the coordinate ring of Pn
\π−1(Xλ0),

there is on the module of differential forms �i
S a natural G-action. Set �i

R =

(�i
S)

G . The i -th Monsky–Washnitzer cohomology group H i (Uλ0,Qq) is the i-th
cohomology group of the complex �•R .

Notation 3.2. Let X ⊂ P be a quasiprojective variety. Denote by H i
rig(X) the i -th

rigid cohomology group of X and by H i
rig,c(X) the i -th rigid cohomology group

with compact support of X , as defined in [Berthelot 1983].
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There exists a second, equivalent, definition of H i (Uλ0,Qq). This goes as fol-
lows: since Uλ0,sing is affine, there is a ring S such that Uλ0,sing= Spec S. Let S† be
an overconvergent completion of S. Let ι : Spec R†

λ0
\ Spec S†

→ Spec R†
λ0

be the
inclusion. Let �i

Spec R†
λ0

be the sheaf ι∗�Spec R†
λ0
\Spec S† . Then define the Monsky–

Washnitzer cohomology groups H i (Uλ0,Qq) as the cohomology groups of the
complex obtained by taking global sections. The proof that these two definitions
are equivalent is very similar to [Dolgachev 1982, 2.2.4].

Definition 3.3. Let R be a ring over Zq . Let π be the maximal ideal of Zq . A lift
of Frobenius is a ring homomorphism Frob∗q : R→ R whose reduction modulo π ,

Frob∗q modπ : R⊗Zq Fq → R⊗Zq Fq ,

is well-defined and equals x 7→ xq .

Fix a lift of Frobenius Frob∗q to R†
λ0

, such that Frob∗q(λ) = λ
q . By abuse of

notation we denote by Frob∗q also the induced morphism on H i (Uλ0,Qq).

Proposition 3.4. There is a natural isomorphism

H i
rig(Uλ0

,Qq)∼= H i (Uλ0,Qq)

which is compatible with the action of Frobenius.

Proof. Similar to the proof of [Berthelot 1997b, Proposition 1.10]. �

Definition 3.5. Let K be a field. Let G ∈ K [x0, . . . , xn] be a weighted homoge-
neous polynomial (with weights (w0, . . . , wn)). Let Y be the hypersurface G = 0
in P. Then Y is said to be quasismooth if the affine cone Spec K [X0, . . . , Xn]/G
is smooth or has exactly one singular point, namely (0, 0, . . . , 0).

Remark 3.6. If P = Pn then a hypersurface X ⊂ P is quasismooth if and only if
it is smooth.

An easy calculation shows:

Lemma 3.7. Let I = {i ∈ {0, 1, . . . , n} : ai 6≡ 0 mod p}. Let g = gcdi∈I (aiwi ) and
d ′ := d/g. If there is a nonzero ai such that ai ≡ 0 mod p then Xλ is quasismooth
for all λ. Otherwise, Xλ is quasismooth if and only if

λ
d ′
6=

(−1)d
′

d
d ′∏

i∈I (aiwi )aiwi/g .

Proof. Consider the partial derivative of F with respect to x j . If a j = 0 then this
derivative equals xd j−1

j and vanishes if and only if x j = 0.
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Suppose there is a j such that a j 6= 0 and x j = 0. Then for all for all k 6= j we
have

0=
∂Fλ
∂xk
= dk xdk−1

k + akλ

∏
xai

i

xk
= dk xdk−1

k .

This implies that all the xk would vanish. Hence if Xλ is singular at (x0 : · · · : xn)

then x j = 0 if a j = 0 and x j 6= 0 if a j 6= 0. If there is a j such that p divides a
nonzero a j then Xλ is quasismooth.

Suppose now that p does not divide any of the positive ai .
Suppose a j 6= 0. Consider now the derivative with respect to x j :

∂Fλ
∂x j
= d j x

d j−1
j + a jλ

∏
xai

i

x j
.

This derivative vanishes if and only if

λ
∏

xai
i =−

d j

a j
xd j

j .

In particular,

−
d j

a j
xd j

j =−
dk

ak
xdk

k for j, k ∈ I .

Fix d j -th roots α j of d j/a j . Let ζ be a primitive d ′-th root of unity. A solution
of the above set of equations is of the form

x j =
γw j

α j
ζ k jw j for some γ, k j .

Substituting gives

λ
∏
i∈I

ζ kiwi ai

αai
=−1,

which is equivalent with

λ
d ′
= (−1)d

′
∏

αa j d ′ =
(−1)d

′

d
d ′∏

i∈I (aiwi )aiwi/g . �

Let X ⊂P be a hypersurface. Let U =P\ X . Recall that we have a Gysin-type
exact sequence (see [Berthelot 1983, Section 3])

· · ·→ H i−1
rig,c(X ,Qq)→ H i

rig,c(U ,Qq)→ H i
rig,c(P,Qq)→ H i

rig,c(X ,Qq)→· · · (3)

Theorem 3.8. Let λ0 ∈ Zq be such that Xλ0
is quasismooth. Then the groups

H i (Uλ0,Qq) are zero except for i = 0, n.
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Proof. Set X = Xλ0 and U =Uλ0 . Consider first the case P=Pn . From Remark 3.6
it follows that U and X are smooth. Since�i

R=0 for i >n we have H i (U,Qq)=0
for i > n. Proposition 3.4 implies that H i

rig(U,Qq) is trivial for i > n. Using
Poincaré duality [Berthelot 1997a] it follows that

H i
rig,c(U,Qq)= 0 for i < n.

From (3) it follows that

H i
rig,c(X,Qq)∼= H i

rig,c(P,Qq) for i < n− 1.

Using Poincaré duality, it follows that

H i
rig(X,Qq)∼= H i

rig(P,Qq) for n− 1< i < 2n.

Using that X is compact, it follows that

H i
rig,c(X,Qq)= H i

rig(X,Qq)∼= H i
rig(P,Qq)= H i

rig,c(P,Qq) for n− 1< i < 2n.

Using the sequence (3) again, we obtain that H i
rig,c(U,Qq) = 0 for i 6∈ {n, 2n}.

Applying Poincaré duality yields H i
rig(U,Qq)= H i (U,Qq)= 0 for i 6∈ {0, dim U }.

The general case can be deduced from this as follows: consider the standard
quotient map π :Pn

→P sending xi to xwi
i . Let Y be π−1(X). Let G be the group

associated with π . From Lemma 3.7 it follows that X is quasismooth if and only if
Y is smooth. Let V be the complement of Y in Pn . Then from the above it follows
that H i (V ) = 0 except for i = 0, n. In particular, d� j−1,†

V = �
j,†
V . One easily

shows that (d� j−1,†
V )G = d((� j−1,†

V )G). This implies that

H j (U )=
(�

j,†,cl
V )G

(d� j−1,†
V )G

= 0 if j 6= 0, n. �

Remark 3.9. One might try to prove the vanishing of H i (U ) for the complement
of an arbitrary quasismooth hypersurface along the lines of the above proof. This
fails if the following happens: Let H1, . . . , H j be the coordinate hyperplanes cor-
responding to coordinates with weight wi > 1. Suppose there is a subset of {Hi }

such that X∩Hi1∩Hi2∩ · · · ∩Hik is not quasismooth. Then π−1(X) is singular, so
the strategy of the above proof does not apply. Conversely, if π−1(X) is singular
then such a set of coordinate hyperplanes exists.

Theorem 3.10 (Poincaré duality for H i (Uλ,Qq )). Let λ0 ∈ Fq be such that Xλ0
is

quasismooth. There is a nondegenerate pairing

H i
rig,c(Uλ0

,Qq)× H 2n−i
rig (Uλ0

,Qq)→ H 2n
rig,c(Uλ0

,Qq)

respecting the Frobenius action.
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Proof. Set X = Xλ0 and U = Uλ0 . Consider first the case P = Pn . Then from
Lemma 3.7 it follows that U and X are smooth. The main theorem of [Berthelot
1997a] asserts the existence of such pairings.

The general case can be obtained as follows: consider the standard quotient map
π :Pn

→P sending xi to xwi
i . Let Y be π−1(X). Let G be the group associated with

π . From Lemma 3.7 it follows that X is quasismooth if and only if Y is smooth.
Let V be the complement of Y in Pn . Since Poincaré duality is G-equivariant, one
obtains a pairing

H i
rig(V,Qq)

G
× H 2n−i

rig,c (V,Qq)
G
→ H 2n

rig,c(V,Qq).

Using the isomorphism (�k
V )

G ∼=�k
U , we obtain isomorphisms

H i
rig(V,Qq)

G ∼= H i
rig(U,Qq) and H 2n−i

rig,c (V,Qq)
G ∼= H 2n−i

rig,c (U,Qq).

This yields the proof. �

Theorem 3.11 (Lefschetz trace formula). Let λ0 ∈ Fq be such that Xλ0
is quasi-

smooth. Then ∑
i

(−1)i trace((qn(Frob∗)−1)|H i (Uλ0))= #Uλ0
(Fq).

Proof. Combine the Lefschetz trace formula for rigid cohomology with compact
support [Étesse and Le Stum 1993, théorème I] with Poincaré duality (Theorem
3.10) and Proposition 3.4. �

Proposition 3.12. The group H 0(Uλ,Qq) is one-dimensional, and Frobenius acts
trivially on H 0(Uλ,Qq).

Proof. Straightforward. �

Let H n
dR(Uλ,Qq) denote the algebraic de Rham cohomology of Uλ.

Theorem 3.13 (Baldassarri and Chiarellotto). Suppose λ is chosen such that Xλ is
quasismooth. Then the natural map

H n
dR(Uλ,Qq)→ H n(Uλ,Qq)

is an isomorphism.

Proof. Consider first the case P = Pn . Then this is precisely the main theorem of
[Baldassarri and Chiarellotto 1994].

The general case can be obtained as follows: consider the standard quotient map
π : Pn

→ P sending xi to xwi
i . Let Yλ be π−1(Xλ). Let G be the group associated

with π . From Lemma 3.7 it follows that Xλ is quasismooth if and only if Yλ is
smooth. Let Vλ be the complement of Yλ in Pn . Then we have an isomorphism

H n
dR(Vλ,Qq)→ H n(Vλ,Qq).
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There is a natural G-action on both groups and it is easy to see that this isomor-
phism is G-equivariant. Moreover, using [Dolgachev 1982, Lemma 2.2.2] we ob-
tain that π induces isomorphisms H n

dR(Vλ)
G ∼= H n

dR(Uλ) and H n(Vλ)G ∼= H n(Uλ);
hence the natural map

H n
dR(Uλ,Qq)→ H n(Uλ,Qq)

is an isomorphism. �

Let G be the defining equation of a quasismooth hypersurface Y ⊂ P. Let
V :=P\Y . Similar to the case of ordinary projective space, the algebraic de Rham
cohomology of V can be computed using the complex C p

k = �
p((k + p)Y ). I.e.,

the hypercohomology group Hn(P,C•k ) equals H 0(P,Cn
k )/dH 0(P,Cn−1

k ) and

H n
dR(V )=

⊕
k

H 0(P,Cn
k )/dH 0(P,Cn−1

k ).

(A proof of this equality can be obtained as follows. After fixing an embedding
Qq ↪→ C and tensoring both sides with C, we obtain that it suffices to prove this
result over C. This is precisely the main result of [Steenbrink 1977].)

More explicitly, the vector space H n(V,Qq) can be identified with the quotient
of the infinite-dimensional vector space spanned by

H
G t�

with deg(H)= t deg(G)−
∑
wi , by the relations

(t − 1)H Gx −G Hx

G t �,

where the subscript x means the partial derivative with respect to a coordinate x
on P.

If G = F (the polynomial whose zero-set is the Fermat hypersurface) then this
formula reads as

(t − 1)di H xdi−1
i

F t �=
Hxi

F t−1�

in H n(U ). This motivates the following definition:

Definition 3.14. Let ω ∈�n(U0) be a form of the type

H
F t�
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with H a monomial. Let xi be a coordinate of P such that xdi−1
i divides H . Then

the reduction of ω with respect to xi is the form

∂

∂xi

(
H

xdi−1
i

)
(t − 1)di F t−1�.

The complete reduction redω := H ′/F s� of ω is the form obtained by suc-
cessively reducing with respect to the coordinates xi of P, such that for all i the
exponent of xi in H ′ is at most di − 2.

Note that ω and the reduction with respect to xi of ω represent the same class in
H n(U0,Qq), and that the complete reduction of ω cannot be further reduced.

Definition 3.15. Let P• be the pole order filtration on H n(Uλ), that is ω ∈ P t if
ω = G

F t
λ
� for some G ∈Qq [x0, . . . xn].

Let k be an admissible monomial type. Recall that we can associate a differential
form ωk with it. By definition ωk lies in P t , where t is the relative degree of k.

Proposition 3.16. Let λ be such that Xλ is quasismooth. Then the set

{ωk : k an admissible monomial type}

is a basis for H n(Uλ,Qq).

Proof. The above discussion implies the statement for λ= 0.
We start by proving that for every integer t the set

{wk : k an admissible monomial type of relative degree t}

is linearly independent in P t/P t−1.
The relations in P t/P t−1 are generated by (cf. the discussion before Definition

3.14)
xdi−1

i
∏

xk j
j

F t
λ

�=
−λai

di

∏
xk j+a j

j

xi F t
λ

�.

Suppose i is chosen such that ai 6= 0. Let

σi (G) :=
−di x

di
i

λai
∏

j xa j
j

G.

If G is a monomial of degree td −
∑
wi such that all the exponents of the x j are

at least a j − δi, j , then
G
F t
λ

�≡
σi (G)

F t
λ

� mod P t−1.
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Note that σi is defined if the exponent of x j is at least a j−δi, j di , but σi corresponds
to a relation in P t only if the exponent x j is at least a j − δi, j . Similarly, if the
exponent of xi in G is at least di − 1, then

G
F t
λ

�≡
σ−1

i (G)
F t
λ

� mod P t−1.

Take a nontrivial expression
∑

bkωk that is zero modulo P t−1. Since the σi

generate the relations, and the σi map monomials to monomials, there exists two
distinct admissible monomial types k,m of relative degree t and a sequence of σi

and σ−1
j such that

τ(ωk) := σ
εs
is
. . . σ ε1

i1
(ωk)= c0ωm,

with

• c0 ∈Qq ,

• ε j ∈ {±1},

• ai j 6= 0 for all j ,

• for all j such that ε j = 1 and for all k, the exponent of xk in σ ε j−1
i j−1

. . . σ ε1
i1
(ωk)

is at least ak − δi j ,k , and

• for all j such that ε j =−1, the exponent of xi j in σ ε j−1
i j−1

. . . σ ε1
i1
(ωk) is at least

di j − 1.

We will prove below that given such a τ , we can always shorten the length of this
expression by 2, and that this expression cannot consist of one σi . Hence the only
possibility for τ is to be the identity and ki = mi for all i , a contradiction.

We claim that ε1 = 1 and εs =−1. If ε1 were −1, then in order to apply σi1 we
would need that the exponent xi1 in ωk is at least di1 − 1, contradicting that ωk is
associated with an admissible monomial type. Similarly, if εs = 1 we obtain that
the exponent of xis in ωm is at least dis−1, contradicting that ωm is associated with
an admissible monomial type.

Let j be the smallest integer such that ε j =−1. This implies that the exponent
of xi j in σi j−1 . . . σi1(

∏
xki

i ) is at least di j − 1, hence at least for one of the j ′ < j
we have i j = i j ′ . Let j ′ be the largest integer smaller than j such that i j = i j ′ .

Note that the σi commute as operators on Qq(x0, . . . , xn). Hence, if we consider
the σi as operators on Qq(x0, . . . xn) then we have the identities

σ−1
i j
σi j−1 . . . σi j ′

σi j ′−1
. . . σi1

(∏
xki

i

)
= σ−1

i j
σi j ′
σi j−1 . . . σi j ′+1

σi j ′−1
. . . σi1

(∏
xki

i

)
= σi j−1 . . . σi j ′+1

σi j ′−1
. . . σi1

(∏
xki

i

)
.
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We need to show that the latter expression corresponds to a series of relations in
P t/P t−1, i.e., we need to show that for each j ′′ such that j ′ < j ′′ < j , if

σi j ′′
. . . σi j ′+1

σi j ′−1
. . . σi1

(∏
xki

i

)
= c

∏
xer

r

with c ∈Qq then er ≥ ar − δr,i j ′′+1
for all r .

Suppose that r 6= i j . Since

σi j ′′
. . . σi1

(∏
xki

i

)
= c′

∏
xe′r

r

with c′ ∈Qq and e′r ≥ ar−δr,i j ′′+1
and σi j lowers the exponent of xr by ar we obtain

e′r = er − ar , whence er ≥ ar − δr,i j ′′+1
.

Suppose that r = i j . Since

σi j−1 . . . σi1

(∏
xki

i

)
= c′′

∏
xe′′r

r

with c′′ ∈Qq and e′′r ≥ dr − 1, it follows that

σi j−1 . . . σi j ′+1
σi j ′−1

. . . σi1

(∏
xki

i

)
= c′′′

∏
xe′′′r

r

with c′′′ ∈Qq and e′′′r ≥ 0. Since the σik for j ′′ < k < j ′ lower the exponent of xr

by ar we obtain er = e′′′r + ( j − j ′′)ar ≥ ar .
We need to show that

{ωk : k an admissible monomial type}

spans H n(Uλ,Qq). If λ = 0 then this follows from the discussion before this
proposition. If λ 6= 0 and all the weights equal 1 then [Katz 1968, Theorem
1.10] shows that dim H n−1(Xλ,Qq) is independent of λ. Using (3) we obtain
that dim H n(Uλ,Qq) is independent of λ. The general case follows from this case
by applying the standard quotient map and [Dolgachev 1982, Lemma 2.2.2]. �

4. Deformation theory

Assume for the moment that P=Pn . Following N. Katz, consider the commutative
diagram

H n(Uλq )
Frob∗q,λ //

A(λq )

��

H n(Uλ)

A(λ)
��

H n(U0)
Frob∗q,0 // H n(U0),

where Frobq,λ is the Frobenius acting on the complete family. Since it maps the
fiber over 0 to the fiber over 0 this map can be restricted to U0. Katz studied
the differential equation associated to A(λ). He remarked in a note that A(λ) is
actually the solution of the Picard–Fuchs equation.
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We first give a way of computing a map B(λ) such that

Frob∗q,0 B(λq)= B(λ)Frobq,λ

on a small neighborhood of 0. This matrix B(λ) is enough to deduce Frob∗q,λ from
Frob∗q,0.

Fix a basis
Gi

F t
λ

�

for H n(Uλ) and write

Gi

F t
λ

�=

∞∑
j=0

(
j + t − 1

j

)
Gi (F − Fλ) j

F j+t �. (4)

Since F − Fλ is the product of λ with a polynomial with integral coefficients, the
above power series in the xi converges on a small disc. By choosing λ sufficiently
small, we obtain an overconvergent power series in the xi , hence Gi

F t
λ

defines an
element of H n(U0). Let B(λ) : H n(Uλ)→ H n(U0) be the analytic continuation of
the operator mapping

Gi

F t
λ

�

to the complete reduction of (4) in H n(U0).
In this way we obtain a local expansion of the matrix B(λ) around λ= 0. In the

following section we will make this more explicit.

Proposition 4.1 (Katz). We have B(λ)Frob∗q,λ = Frob∗q,0 B(λq) and B(λ)= A(λ).

Proof. The case P = Pn is a combination of [Katz 1968, Lemma 2.10, Lemma
2.13, Theorem 2.14]. The general case is a formal consequence of the special case
by Lemma 3.7, Proposition 4.1 and the definition of H n(Uλ,Qq) in terms of the
standard quotient map π : Pn

→ P. �

Remark 4.2. Proposition 4.1 is particularly interesting in the case when we special-
ize to λ = λ0 where λ0 is the Teichmüller lift of some element λ0. Then λq

0 = λ0,
hence Frob∗q,λ0

is a lift of Frobenius on H n(Uλ0,Qq). Using Theorem 3.11 and
Theorem 3.8 we obtain that

Z(Uλ0
, t)= lim

λ→λ0

(
det
(
I − tqn

| A(λq)−1(Frob∗q,0)
−1 A(λ)

))(−1)n+1

1− qnt
.

5. Actual computation of the deformation matrix

In order to compute the matrix A(λ) we need to reduce the right hand side of (4)
in H n(U0). We start with a very useful lemma.
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Lemma 5.1. Fix nonnegative integers bi such that
∑

biwi + w = td for some

integer t . The complete reduction of ω :=
∏

x
bi
i

F t � equals∏
i ((ci + 1)wi/d)qi

(s)t−s

∏
xci

i

F s �,

where 0≤ ci < di and qi , s are integers such that bi = qi di+ci , and sd=
∑

ciwi+

w, i.e., t − s =
∑

qi , provided that ci 6= di − 1 for all i . If for one of the i we have
ci = di − 1 then ω reduces to zero in H(U0,Qq).

Proof.
The reduction with respect to x0 of

xb0
0
∏n

i=1 xbi
i

F t �

(cf. Definition 3.14) equals

xb0−d0
0 ((b0+ 1)− d0)

∏
xbi

i

(t − 1)d0 F t−1 �=
xb0−d0

0 ((b0+ 1)w0− d)
∏

xbi
i

(t − 1)d F t−1 �

(provided b0 ≥ d0). After reducing qi times with respect to xi for i = 0, . . . , n, we
obtain that ω reduces to

(s− 1)!
∏

i

(∏qi−1
j=0 ((ci + 1)wi + jd)

)∏
xci

i

(t − 1)!d t−s F s �.

This in turn equals

τ :=
(s− 1)!d

∑
qi
∏
((ci + 1)wi/d)qi

∏
xci

i

(t − 1)!d t−s F s �.

If none of the ci equals di−1 then this is a complete reduction. Using
∑

qi = t−s
the first formula follows.

If ci = di − 1 then we can write τ as (Fxi G/F s)�, where G does not contain
the variable xi . The reduction of this form is a constant times

Gxi

F s−1�.

Since Gxi = 0, this reduction is zero. �

Fix an admissible monomial type k= (w0(k0+1), . . . , wn(kn+1))∈ (Z/dZ)n+1

of relative degree t . We want to calculate the reduction of∏
xki

i

(F + λ
∏

xai
i )

t
�
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in H n(U0). In order to find a power series expression, we assume that λ is suffi-
ciently small, then by (4) this form equals∏

xki
i

F t

1(
1− (−λ)

∏
x

ai
i

F

)t�=
∑

j

(
t + j − 1

j

) ∏
xki+ai j

i

F t+ j (−λ) j�. (5)

Note that at most d distinct monomials occur in the reduction of the form.

Definition 5.2. Let r, s be nonnegative integers, let αi ∈ Qq , for i ∈ {1, 2, . . . , r},
let β j ∈Qq \Z<0 for j ∈ {1, 2, . . . , s}. We define the (generalized) hypergeometric
function

r Fs

(
α1 α2 . . . αr

β1 β2 . . . βs
; z
)

to be
∞∑

k=0

b j z j ,

with b0 = 1, and
b j+1

b j
=

( j +α1) . . . ( j +αr )

( j +β1) . . . ( j +βs)( j + 1)
,

for all positive integers j .

Let d ′i be the order of ai mod di in Z/di Z. Let d ′ be the least common multiple
of all the d ′i . Set bi =ai d ′/di . In the following proposition and its proof we identify
elements in a ∈ Z/mZ with their representative ã ∈ Z such that 0≤ ã ≤ m− 1.

Proposition 5.3. Let k be an admissible monomial type. Let t be the relative degree
of k. Write A(λ)ωk =

∑
cm(λ)ωm, where the sum is taken over all admissible

monomial types. Then cm(λ) is nonzero only if there is a j0 ∈Z with 0≤ j0≤ d ′−1
and such that m− k = j0a. If this is the case then

cm(λ)

red
∏

xai j0+ki
i

F t+ j0
�

equals(
t+ j0−1

j0

)
(−λ) j0

d ′Fd ′−1

( αi,s

j0+1
d ′

j0+2
d ′

. . . 1̂ . . . j0+d ′

d ′
;

∏
i :ai 6=0

(ai
di

)bi
(−λ)d

′

)
,

with

αi,s =
(s− 1)di + 1+ ai j0+ ki

ai d ′
, s = 1, . . . , bi ; i = 0, . . . n.
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This proposition almost gives a complete reduction of the form Frobq,λ(ωk), in the
sense that ck(λ) is described as the product of a hypergeometric function and the
reduction of a rational function in the xi multiplied by �. The latter form can be
easily reduced using Lemma 5.1.

Proof. It suffices to compute explicitly a complete reduction of ω :=
∏

xki
i

F t
λ

� in
H n(U0). We can write ω as∑

j

(
t + j − 1

j

) ∏
xki+ai j

i

F t+ j (−λ) j�.

Set ct, j :=

(
t + j − 1

j

)
. Since each reduction step decreases the exponent of xi

by di , we split this sum as follows: write

ω =

d ′−1∑
j0=0

∑
j

ct, j0+d ′ j

∏
xki+ai ( j0+d ′ j)

i

F t+ j0+d ′ j (−λ) j0+d ′ j�.

For 0≤ j0 ≤ d ′− 1 set

ω j0 :=
∑

j

ct, j0+d ′ j

∏
xki+ai ( j0+d ′ j)

i

F t+ j0+d ′ j (−λ) j0+d ′ j�.

From Lemma 5.1 it follows that if ki+ai ( j0+d ′ j)≡−1 mod di for some i , then
ω j0 reduces to zero. Otherwise, we claim that the reduction of ω j is a generalized
hypergeometric function. In order to prove this and to calculate the parameters, we
need to show that

ct, j0+d ′ j+d ′ red
∏

xki+ai ( j0+d ′ j)+ai d ′
i

F t+ j0+d ′ j+d ′ �

ct, j0+d ′ j red
∏

xki+ai ( j0+d ′ j)
i

F t+ j0+d ′ j �

(6)

is a rational function in j . If we reduce with respect to xi then the exponent of xi

is lowered by di . So if we reduce the numerator bi = ai d ′/di times with respect to
xi , then the exponent of xi in the numerator and denominator coincide. Now

red
∏

xki+ai ( j0+d ′ j)+ai d ′
i

F t+ j0+d ′ j+d ′ �

equals ∏
i
∏bi

s=1(ki + ai ( j0+ d ′ j)+ (s− 1)di + 1)

(t + j0+ d ′ j)∑ bi

∏
i dbi

i

red
∏

xki+ai ( j0+d ′ j)
i

F t+ j0+d ′ j �
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and
ct, j0+d ′ j+d ′

ct, j0+d ′ j
=
(t + j0+ d ′ j)d ′
( j0+ d ′ j + 1)d ′

.

Putting this together we conclude that (6) equals∏
i
∏bi

s=1(ki + ai ( j0+ d ′ j)+ (s− 1)di + 1)

( j0+ d ′ j + 1)d ′
∏

i dbi
i

.

This equals

∏
i :ai 6=0(ai d ′)bi

(d ′)d ′
∏

i :ai 6=0 dbi
i

∏
i
∏bi

s=1

(
j + (s−1)di+1+ai j0+ki

ai d ′
)

∏d ′
s=1

(
j + j0+s

d ′
) .

Since
∑

bi = d ′ the first factor simplifies to∏
i :ai 6=0

(ai
di

)bi
.

From the second factor we can read off the hypergeometric parameters.
Since the first summand of ω j0 equals

(−λ) j0ct, j0

∏
xai j0+ki

i

F t+ j0
�,

by collecting everything together, we obtain that

redω j

ct, j0(−λ)
j0

equals

d ′Fd ′−1

( αi,s

j0+1
d ′

j0+2
d ′

. . . 1̂ . . . j0+d ′

d ′
; (−λ)d

′
∏

i :ai 6=0

(ai
di

)bi

)
red

∏
xai j0+ki

i

F t+ j0
�,

as desired. �

Example 5.4. Consider the family X3
+ Y 3

+ Z3
+ λXY Z . Then we obtain the

following matrix A(λ) (with respect to the basis {ω(1,1,1), ω(2,2,2)})
2F1

( 1
3

1
3

2
3
;
−λ3

27

)
λ2

54 2F1

( 4
3

4
3

5
3
;
−λ3

27

)
−λ 2F1

( 2
3

2
3

4
3
;
−λ3

27

)
2F1

( 2
3

2
3

1
3
;
−λ3

27

)
 .
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Example 5.5. Another famous example is Cλ : X4
+ Y 4

+ Z4
+ λX2Y 2.

Note that d ′ = 2, d ′1 = d ′2 = 2, d ′3 = 0, b1 = b2 = 1, b3 = 0.
One easily obtains

A(λ)ω(2,1,1) = 1F0

( 1
4
−
;
λ2

16

)
ω(2,1,1), A(λ)ω(1,2,1) = 1F0

( 1
4
−
;
λ2

16

)
ω(1,2,1),

A(λ)ω(2,3,3) = 1F0

( 3
4
−
;
λ2

16

)
ω(2,3,3), A(λ)ω(3,2,3) = 1F0

( 3
4
−
;
λ2

16

)
ω(3,2,3).

A(λ) acts as follows on the basis {ω(1,1,2), ω(3,3,2)}
2F1

( 1
4

1
4

1
2
;
λ2

16

)
λ2

16 2F1

( 5
4

5
4

3
2
;
λ2

16

)
−λ 2F1

( 3
4

3
4

3
2
;
λ2

16

)
2F1

( 3
4

3
4

1
2
;
λ2

16

)
 .

It is classically known that the Jacobian of Cλ is isogenous to the product of two
elliptic curves with j-invariant 1728 and one elliptic curve Eλ whose j-invariant
depends properly on λ. This factor can also be obtained from the above informa-
tion:

When we restrict A(λ) to the subspace spanned by ω(1,1,2),(3,2,2), we find the
same operator as the operator A′(λ) associated with the family Eλ : X4

+Y 4
+Z2
+

λX2Y 2 considered in P(1, 1, 2). One easily shows that this is a family of elliptic
curves, with j-invariant depending on λ. The curve E0 has an automorphism of
order 4 with fixed points, hence j (E0)= 1728.

In the next section we prove that if q ≡ 1 mod 4 then all the ωk are eigenvectors
for Frob∗q,0, let ck,q be the corresponding eigenvalue. Then, for k = (2, 1, 1),

Frob∗q,λ ωk = A(λ)−1 Frob∗q,0 A(λq)ωk =

1F0

( 1
4
−
;
λ2q

16

)
1F0

( 1
4
−
;
λ2

16

) ck,qωk.

One easily shows that the factor in front of ck,q is a fourth root of unity, which
implies that we have twisted the Frobenius action on ωk by a quartic character.
Something similar happens when k ∈ {(1, 2, 1), (2, 3, 3), (3, 2, 3)}. This implies
that on a 4-dimensional subspace Vλ of H 1(Xλ,Qq) the Frobenius action is a
quartic twist of the Frobenius action on V0 ⊂ H 1(X0,Qq). The curve X0 has
the automorphism [X, Y, Z ] 7→ [Z , X, Y ]. From this we obtain that the action of
Frobenius on V0 is isomorphic to two copies of the Frobenius action on E0.

Example 5.6. Consider now the quintic threefold X5
0 + X5

1 + X5
2 + X5

3 + X5
4 +

λX0 X1 X2 X3 X4. This family is studied for example by Candelas, de la Ossa, and
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Rodriguez-Villegas [Candelas et al. 2003]. We discuss another aspect of this family
in Example 6.11.

One can distinguish between the following five types of subspaces:
We start with V1= span{ω(1,1,1,1,1), ω(2,2,2,2,2), ω(3,3,3,3,3), ω(4,4,4,4,4)}. The cor-

responding matrix is

8
(

1
2 3 4

)
λ4

23 ·3·55
8
(

6
7 8 9

)
−λ3

22 ·3·55
8
(

6
4 7 8

)
λ2

22 ·3·55
8
(

6
3 4 7

)
−λ8

(
2

3 4 6

)
8
(

2
1 3 4

) 2λ4

3·55
8
(

7
6 8 9

)
−8λ3

33 ·55
8
(

7
4 6 8

)
λ28

(
3

4 6 7

)
−2λ8

(
3

2 4 6

)
8
(

3
1 2 4

) 27λ4

23 ·55
8
(

8
6 7 9

)
−λ38

(
4

6 7 8

)
3λ28

(
4

3 6 7

)
−3λ8

(
4

2 3 6

)
8
(

4
1 2 3

)


,

where we used the shorthand

8

(
a

b c d

)
:= 4F3

(
a
5

a
5

a
5

a
5

b
5

c
5

d
5

;
−λ5

55

)
.

The other four spaces are less interesting: on V2 = span{ω(1,1,1,3,4), ω(4,4,4,1,2)},
A(λ) acts as

2F1

( 1
5

1
5

2
5
;
−λ5

3125

)
λ2

500 2F1

( 6
5

6
5

7
5
;
−λ5

3125

)
−4λ3

2F1

( 4
5

4
5

8
5
;
−λ5

3125

)
2F1

( 4
5

4
5

3
5
;
−λ5

3125

)
 .

On V3 = span{ω(2,2,2,1,3), ω(3,3,3,2,4)}, A(λ) acts as
2F1

( 2
5

2
5

4
5
;
−λ5

3125

)
λ4

6250 2F1

( 7
5

7
5

9
5
;
−λ5

3125

)
−2λ 2F1

( 3
5

3
5

6
5
;
−λ5

3125

)
2F1

( 3
5

3
5

1
5
;
−λ5

3125

)
 .

On V4 = span{ω(1,1,2,2,4), ω(3,3,4,4,1)}, A(λ) acts as
2F1

( 1
5

2
5

3
5
;
−λ5

3125

)
−λ3

1875 2F1

( 6
5

7
5

8
5
;
−λ5

3125

)
λ2

5 2F1

( 3
5

4
5

7
5
;
−λ5

3125

)
2F1

( 3
5

4
5

2
5
;
−λ5

3125

)
 .
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On V5 = span{ω(3,3,1,1,2), ω(4,4,2,2,3)}, A(λ) acts as
2F1

( 1
5

3
5

4
5
;
−λ5

3125

)
3λ4

25000 2F1

( 6
5

8
5

9
5
;
−λ5

3125

)
−2λ 2F1

( 2
5

4
5

6
5
;
−λ5

3125

)
2F1

( 2
5

4
5

1
5
;
−λ5

3125

)
 .

Example 5.7. The final example is the family X4
+ Y 4

+ Z4
+W 4

+ λXY Z W .
This is a family of K 3-surfaces. This family is also studied in [Dwork 1969, pp.
73–77].

Considered over a number field, every smooth member of this family has geo-
metric Picard number 19 or 20. This implies that when we consider this family
over a finite field, then every smooth member has geometric Picard number at least
20. From the Tate conjecture (which is proven in this case [Nygaard and Ogus
1985] if p ≥ 5) it follows that every smooth member has Picard number 20 or 22.
This implies that at least 19 of the eigenvalues of Frob∗q,λ on H 3(Uλ) are of the
form qζ , with ζ a root of unity. We will indicate how one can obtain this result
from the methods described in this section.

First we calculate the operator A(λ). We obtain that

A(λ)ω(1,2,2,3) = 1F0

( 1
2
−
;
λ4

256

)
ω(1,2,2,3).

The operator A(λ) leaves the space spanned by ω(1,1,3,3) and ω(3,3,1,1) invariant.
Its action is as follows:

2F1

( 1
4

3
4

1
2
;
λ4

256

)
λ2

32 2F1

( 3
4

5
4

3
2
;
λ4

256

)
λ2

32 2F1

( 3
4

5
4

3
2
;
λ4

256

)
2F1

( 1
4

3
4

1
2
;
λ4

192

)
 .

One easily computes that

2F1

( 1
4

3
4

1
2
;
λ4

256

)
±
λ2

32 2F1

( 3
4

5
4

3
2
;
λ4

256

)
= 1F0

( 1
2
−
;
±λ2

16

)
hence

A(λ)ω(1,1,3,3)±ω(3,3,1,1) = 1F0

( 1
2
−
;
±λ2

16

)
ω(1,1,3,3)±ω(3,3,1,1).

As explained in the previous example, this implies that if q≡ 1 mod 4 then Frob∗λ,q
restricted to the subspace generated by the ω(1,2,2,3), ω(1,1,3,3) and all the coordinate
permutations of these forms, is a (quartic) twist of Frob∗0,q . Using Jacobi sums one
can show that the Frob∗0,q restricted to this subspace has only eigenvalues of the
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form qζ , with ζ a root of unity. This yields 18 eigenvalues of Frobλ,q of this form.
Since the number of eigenvalues of Frob∗λ,q that are not of this form is even, and
the complementary subspace has dimension 3, there is a nineteenth eigenvalue of
the form qζ .

The final subspace under consideration is span{ω(1,1,1,1), ω(2,2,2,2), ω(3,3,3,3)}.
We obtain the following matrix with respect to this basis:

3F2

( 1
4

1
4

1
4

1
2

3
4
;
λ4

256

)
−λ3

1536 3F2

( 5
4

5
4

5
4

3
2

7
4
;
λ4

256

)
λ2

1024 3F2

( 5
4

5
4

5
4

3
4

3
2
;
λ4

256

)
−λ 3F2

( 1
2

1
2

1
2

3
4

5
4
;
λ4

256

)
3F2

( 1
2

1
2

1
2

1
4

3
4
;
λ4

256

)
−λ3

192 3F2

( 3
2

3
2

3
2

5
4

7
4
;
λ4

256

)
λ2

3F2

( 3
4

3
4

3
4

5
4

3
2
;
λ4

256

)
−2λ 3F2

( 3
4

3
4

3
4

1
2

5
4
;
λ4

256

)
3F2

( 3
4

3
4

3
4

1
4

1
2
;
λ4

256

)


6. Fermat hypersurfaces and equivalence relations

In the previous sections it is shown how to calculate the deformation matrix A(λ).
In this section we discuss the Frobenius action on the central fiber.

Lemma 6.1. Let k be an admissible monomial type. Let m = qk. We have
Frob0,q ωk = ck,qωm for some ck,q .

Proof. Take as a lift of Frobenius the morphism xi 7→ xq
i . Then

Frob∗q,0(ω)=
xqki+q−1

i

F(xq
i )

t
�=

∑
j=0

ct, j
xqki

i (Fq
− F(xq

i ))
j

Fq j+t .

One can easily show that any exponent of xi in this sum is congruent to qki +q−
1 mod di . Hence there is only one monomial type m occurring in the reduction,
namely qk. �

Remark 6.2. Suppose q ≡ 1 mod d . It is well-known that the eigenvalues of
Frobenius on H n(U ) are of the form qn−1/Jk,q , where Jk,q is a so-called Jacobi
sum. Note that the assumption on q implies that qk = k. So the set of Jacobi
sums coincides with the set of ck,q (cf. the Introduction). A stronger result will be
proved in the sequel.

Definition 6.3. Two monomial types are called strongly equivalent if and only
if their difference is a multiple of the deformation vector. Two monomial types
are called weakly equivalent if and only if there exists nonzero multiples of both
monomial types that differ by the deformation vector.

The characteristic polynomial of Frobenius on the cohomology can be factorized
in factors corresponding to the weak-equivalence classes of monomial types:
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Theorem 6.4. Let k be an admissible monomial type. Let S be the set of monomial
types that are weakly equivalent to k and let S′ be the set of monomial types that
are strongly equivalent to k. Then

Frobλ,q ωk =
∑
m∈S

c′m,qωm

for some c′m,q ∈Qq . In particular, the characteristic polynomial P(T ) of Frobenius
on H n(U ) can be factored as P(T )=

∏
[k] P[k](T ), where the product is taken over

all weak-equivalence classes, and P[k](T ) is an element of Qq [T ] of degree equal
to the number of distinct admissible monomial types in the weak-equivalence class
[k].

If , moreover, q ≡ 1 mod d then

Frobλ,q ωk =
∑
m∈S′

c′m,qωm

for some c′m,q ∈Qq . In particular, the characteristic polynomial P(T ) of Frobenius
on H n(U ) can be factored as P(T )=

∏
[k] P[k](T ), where the product is taken over

all strong-equivalence classes, and P[k](T ) is an element of Qq [T ] of degree equal
to the number of distinct admissible monomial types in the strong-equivalence class
[k].

Proof. Since Frobλ,q = A(λ)−1 Frobλ,0 A(λq), it suffices to prove that all these
three operators leave the subspace spanm∈S(ωm) (if q 6≡ 1 mod d) or the subspace
spanm∈S′(ωm) (if q ≡ 1 mod d) invariant. For A(λ)−1 and A(λq) this follows from
Proposition 5.3. For Frobλ,0 this follows from Lemma 6.1. �

Remark 6.5. In Corollary 6.10 we show that the factorization mentioned above
gives factors which are polynomials with Q-coefficients rather then with Qq -coef-
ficients.

It remains to show that weak equivalence is the same relation as “indistinguish-
able by automorphisms”.

Definition 6.6. We call b∈ (Z/dZ)n+1 an admissible automorphism type if b can be
written as (w0b0, w1b1, . . . , wnbn) ∈ (Z/dZ)n+1, such that

∑
wi bi ai ≡ 0 mod d .

Define σb to be the automorphism

[x0 : x1 : · · · : xn] 7→ [ζ
w0b0
d x0 : ζ

w1b1
d x1 : · · · : ζ

wnbn
d xn].

We call two monomial types k and m distinguishable by automorphisms if there
exists an admissible automorphism type b ∈ (Z/dZ)n+1 such that

σb

(∏
xki

i

)
=

∏
xki

i and σb

(∏
xmi

i

)
6=

∏
xmi

i .
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Theorem 6.7. Two monomial types k and m are weakly equivalent if and only if k
and m are not distinguishable by automorphisms.

Proof. One easily sees that σ(bi ) fixes ωk if and only if
∏

xki+1
i is fixed by σ(bi ).

This in turn is equivalent with∑
bi (ki + 1)wi ≡ 0 mod d,

and similarly for m.
(‘⇒’). Suppose k and m are weakly equivalent. Then we have a relation

sk+ tm = r a,

with s, t ∈ (Z/dZ)∗. It suffices to show that if b is an admissible automorphism
type then∑

bi (ki + 1)wi ≡ 0 mod d ⇐⇒
∑

bi (mi + 1)wi ≡ 0 mod d.

Since k and m are weakly equivalent we have

s
∑

biwi (ki + 1)+ t
∑

biwi (mi + 1)≡ r
∑

bi aiwi ≡ 0 mod d.

Hence
s
∑

biwi (mi + 1)≡−t
∑

biwi (ki + 1) mod d.

Since s and t are invertible, the above claim follows.
(‘⇐’). Suppose k and m are not distinguishable by automorphisms. Take b

such that σb(ωk)= ωk and σb(ωm) 6= ωm Hence∑
bi (ki + 1)wi ≡ 0 mod d,

and ∑
bi (mi + 1)wi 6≡ 0 mod d.

Suppose k and m are weakly equivalent, i.e., we have a relation

sk+ tm = r a

where s and t are invertible in Z/dZ. Then

s
∑

biwi (ki + 1)+ t
∑

bi qi (mi + 1)− r
∑

bi ai qi ≡ 0 mod d.

Since the first and third summand are zero, the same holds for the second summand.
Contradicting that it should be nonzero. So we cannot have a relation

sk+ tm = r a.

Hence k and m are not weakly equivalent. �
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Definition 6.8. Assume that q ≡ 1 mod d (i.e., Fq ⊃ Fp(ζd)). Let χ be the d-th
power residue symbol. Let k be an admissible monomial type. Let ki be the i-th
entry of k, i.e., wi (ki + 1). Then the Jacobi-sum associated with k is defined as

Jk,q := (−1)n+1
∑

(v1,...,vn)∈Fn
q :
∑

i vi=−1

χ(v1)
k1χ(v2)

k2 . . . χ(vn)
kn .

Corollary 6.9. Assume q ≡ 1 mod d. Let k be an admissible monomial type. Let S
be the set of monomial types that cannot be distinguished by automorphisms from
k. Then the sets S1 := {qn/cm,q : m ∈ S} and S2 := {Jm,q : m ∈ S} coincide.

Proof. Let G ⊂
∏

Z/di Z be the group of automorphisms that fixes ωk. Then
X0/G is a Fermat variety in a different weighted projective space P′. It is well-
known that the eigenvalues of Frobenius on the primitive part of H n−1

rig,c (X0/G) are
Jacobi-sums appearing in S2; see [Gouvêa and Yui 1995], for example.

The group H n(U/G) is canonically isomorphic with the subspace of H n(U )
generated by the forms ωm, where m ∈ S (this follows from [Dolgachev 1982,
Lemma 2.2.2]). This implies that all the qn/cm,q with m ∈ S are eigenvalues of
Frob on H n−1

rig,c (X0/G). Hence S1 = S2. �

Corollary 6.10. Let λ ∈ Fq . Let P(t) be the characteristic polynomial of Frobλ on
H n(Uλ,Qq). Then

P(t)=
∏
[k]

P[k](t),

where the product is taken over all weak-equivalence classes of admissible mono-
mial types. Let k be an admissible polynomial type. Then P[k](t) is an element
of Q[t] and its degree equals the number of admissible monomial types that are
weakly equivalent with k.

Proof. Fix for the moment a monomial type k. Let Gk ⊂
∏

Z/di Z be the group
of automorphisms that fixes ωk. Then X0/Gk is a Fermat variety in a different
weighted projective space P′ and H n(U0/Gk,Qq) is canonically isomorphic with
the subspace of H n(U0,Qq) generated by the form ωm, where m is weakly equiv-
alent with k. This enables us to write

H n(U )=
⊕
[k]

H n(U/G[k]).

For every weak-equivalence class of monomial types, set P[k](t) ∈ Q[t] to be
the characteristic polynomial of Frobenius acting on H n(U/G[k]). Then P(t) =∏

P[k](t), we have P[k](t) ∈Q[t] and

deg(P[k](t))= dim H n(U/G[k])= #{m : k and m are weakly equivalent},

which finishes the proof. �
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Example 6.11. Consider the case of the quintic threefold in P4, with deformation
vector a = (1, 1, 1, 1, 1). Up to interchanging coordinates we have the following
five strong equivalence classes:

(1) [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [3, 3, 3, 3, 3].

(2) [0, 0, 0, 2, 3], [3, 3, 3, 0, 1]. (20 Permutations possible)

(3) [1, 1, 1, 0, 2], [2, 2, 2, 1, 3]. (20 Permutations possible)

(4) [0, 0, 1, 1, 3], [2, 2, 3, 3, 0]. (30 Permutations possible)

(5) [2, 2, 0, 0, 1], [3, 3, 1, 1, 2]. (30 Permutations possible)

The classes (2) and (3) form one weak-equivalence class, the same holds for (4)
and (5). Over an arbitrary finite field we obtain three distinguishable factors of
the zeta function, all three of degree 4. One factor is occurring with multiplicity
30, one factor is occurring with multiplicity 20, and one factor is occurring with
multiplicity one. This is in agreement with [Candelas et al. 2003].

7. Acknowledgements

The author thanks Klaus Hulek, Shabnam Kadir, Orsola Tommasi, Jaap Top and
an anonymous referee for their remarks and suggestions for improvements on a
previous version of this paper.

References

[Baldassarri and Chiarellotto 1994] F. Baldassarri and B. Chiarellotto, “Algebraic versus rigid co-
homology with logarithmic coefficients”, pp. 11–50 in Barsotti Symposium in Algebraic Geometry
(Abano Terme, 1991), Perspect. Math. 15, Academic Press, San Diego, CA, 1994. MR 96f:14024
Zbl 0833.14010

[Berthelot 1983] P. Berthelot, “Géométrie rigide et cohomologie des variétés algébriques de car-
actéristique p”, exposé J2 in Study group on ultrametric analysis (Marseille, 1982), Inst. Henri
Poincaré, Paris, 1983. MR 85j:14036 Zbl 0515.14015

[Berthelot 1997a] P. Berthelot, “Dualité de Poincaré et formule de Künneth en cohomologie rigide”,
C. R. Acad. Sci. Paris Sér. I Math. 325:5 (1997), 493–498. MR 2000c:14023 Zbl 0908.14006

[Berthelot 1997b] P. Berthelot, “Finitude et pureté cohomologique en cohomologie rigide”, Invent.
Math. 128:2 (1997), 329–377. MR 98j:14023 Zbl 0908.14005

[Candelas et al. 2003] P. Candelas, X. de la Ossa, and F. Rodriguez-Villegas, “Calabi-Yau manifolds
over finite fields, II”, pp. 121–157 in Calabi-Yau varieties and mirror symmetry (Toronto, 2001),
edited by N. Yui and J. D. Lewis, Fields Inst. Commun. 38, Amer. Math. Soc., Providence, RI,
2003. MR 2004m:11095 Zbl 1100.14032

[Dolgachev 1982] I. Dolgachev, “Weighted projective varieties”, pp. 34–71 in Group actions and
vector fields (Vancouver, 1981), edited by J. B. Carrell, Lecture Notes in Math. 956, Springer,
Berlin, 1982. MR 85g:14060 Zbl 0516.14014

[Dwork 1969] B. Dwork, “p-adic cycles”, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 27–115.
MR 45 #3415 Zbl 0284.14008

http://www.ams.org/mathscinet-getitem?mr=96f:14024
http://www.emis.de/cgi-bin/MATH-item?0833.14010
http://www.ams.org/mathscinet-getitem?mr=85j:14036
http://www.emis.de/cgi-bin/MATH-item?0515.14015
http://dx.doi.org/10.1016/S0764-4442(97)88895-7
http://www.ams.org/mathscinet-getitem?mr=2000c:14023
http://www.emis.de/cgi-bin/MATH-item?0908.14006
http://dx.doi.org/10.1007/s002220050143
http://www.ams.org/mathscinet-getitem?mr=98j:14023
http://www.emis.de/cgi-bin/MATH-item?0908.14005
http://www.ams.org/mathscinet-getitem?mr=2004m:11095
http://www.emis.de/cgi-bin/MATH-item?1100.14032
http://www.ams.org/mathscinet-getitem?mr=85g:14060
http://www.emis.de/cgi-bin/MATH-item?0516.14014
http://www.numdam.org/item?id=PMIHES_1969__37__27_0
http://www.ams.org/mathscinet-getitem?mr=45:3415
http://www.emis.de/cgi-bin/MATH-item?0284.14008


450 Remke Kloosterman

[Étesse and Le Stum 1993] J.-Y. Étesse and B. Le Stum, “Fonctions L associées aux F-isocristaux
surconvergents, I: Interprétation cohomologique”, Math. Ann. 296 (1993), 557–576. MR 94i:14030
Zbl 0789.14015

[Gouvêa and Yui 1995] F. Q. Gouvêa and N. Yui, Arithmetic of diagonal hypersurfaces over finite
fields, London Math. Soc. Lecture Note Series 209, Cambridge University Press, Cambridge, 1995.
MR 97k:11095 Zbl 0833.14015

[Hulek and Kloosterman 2007] K. Hulek and R. Kloosterman, “The L-series of a cubic fourfold”,
Manuscripta Math. 124:3 (2007), 391–407.

[Kadir 2004] S. N. Kadir, The arithmetic of Calabi–Yau manifolds and mirror symmetry, Ph.D.
thesis, Oxford University, 2004.

[Kadir and Yui 2006] S. N. Kadir and N. Yui, “Fermat motives and mirror-symmetry for Calabi–Yau
hypersurfaces”, preprint, 2006. math/0606707

[Katz 1968] N. M. Katz, “On the differential equations satisfied by period matrices”, Inst. Hautes
Études Sci. Publ. Math. 35 (1968), 223–258. MR 39 #4168 Zbl 0159.22502

[Katz 2007] N. M. Katz, “Another look at the Dwork family”, preprint, 2007, Available at http://
www.math.princeton.edu/~nmk/dworkfam64.pdf.

[Lauder 2004] A. G. B. Lauder, “Counting solutions to equations in many variables over finite
fields”, Found. Comput. Math. 4:3 (2004), 221–267. MR 2005f:14048 Zbl 1076.11040

[Nygaard and Ogus 1985] N. Nygaard and A. Ogus, “Tate’s conjecture for K 3 surfaces of finite
height”, Ann. of Math. (2) 122:3 (1985), 461–507. MR 87h:14014 Zbl 0591.14005

[Rojas-Leon and Wan 2007] A. Rojas-Leon and D. Wan, “Moment zeta functions for Toric Calabi–
Yau hypersurfaces”, preprint, 2007. math/0702679

[Shioda and Inose 1977] T. Shioda and H. Inose, “On singular K 3 surfaces”, pp. 119–136 in Com-
plex analysis and algebraic geometry: A collection dedicated to K. Kodaira, edited by W. L. Baily,
Jr. and T. Shioda, Iwanami Shoten, Tokyo, 1977. MR 56 #371 Zbl 0374.14006

[Steenbrink 1977] J. Steenbrink, “Intersection form for quasi-homogeneous singularities”, Compo-
sitio Math. 34:2 (1977), 211–223. MR 56 #11995 Zbl 0347.14001

Communicated by Hélène Esnault
Received 2007-03-05 Revised 2007-08-31 Accepted 2007-10-08

kloosterman@math.uni-hannover.de
Institut für Algebraische Geometrie, Leibniz Universität
Hannover, Welfengarten 1, D-30167 Hannover, Germany

http://dx.doi.org/10.1007/BF01445120
http://dx.doi.org/10.1007/BF01445120
http://www.ams.org/mathscinet-getitem?mr=94i:14030
http://www.emis.de/cgi-bin/MATH-item?0789.14015
http://www.ams.org/mathscinet-getitem?mr=97k:11095
http://www.emis.de/cgi-bin/MATH-item?0833.14015
http://arxiv.org/abs/math/0606707
http://www.ams.org/mathscinet-getitem?mr=39:4168
http://www.emis.de/cgi-bin/MATH-item?0159.22502
http://www.math.princeton.edu/~nmk/dworkfam64.pdf
http://dx.doi.org/10.1007/s10208-003-0093-y
http://dx.doi.org/10.1007/s10208-003-0093-y
http://www.ams.org/mathscinet-getitem?mr=2005f:14048
http://www.emis.de/cgi-bin/MATH-item?1076.11040
http://dx.doi.org/10.2307/1971327
http://dx.doi.org/10.2307/1971327
http://www.ams.org/mathscinet-getitem?mr=87h:14014
http://www.emis.de/cgi-bin/MATH-item?0591.14005
http://arxiv.org/abs/math/0702679
http://www.ams.org/mathscinet-getitem?mr=56:371
http://www.emis.de/cgi-bin/MATH-item?0374.14006
http://www.numdam.org/item?id=CM_1977__34_2_211_0
http://www.ams.org/mathscinet-getitem?mr=56:11995
http://www.emis.de/cgi-bin/MATH-item?0347.14001
mailto:kloosterman@math.uni-hannover.de


ALGEBRA AND NUMBER THEORY 1:4(2007)

Dual graded graphs for Kac–Moody
algebras

Thomas F. Lam and Mark Shimozono

Motivated by affine Schubert calculus, we construct a family of dual graded
graphs (0s, 0w) for an arbitrary Kac–Moody algebra g. The graded graphs have
the Weyl group W of geh as vertex set and are labeled versions of the strong
and weak orders of W respectively. Using a construction of Lusztig for quivers
with an admissible automorphism, we define folded insertion for a Kac–Moody
algebra and obtain Sagan–Worley shifted insertion from Robinson–Schensted
insertion as a special case. Drawing on work of Proctor and Stembridge, we
analyze the induced subgraphs of (0s, 0w) which are distributive posets.

1. Introduction

The Robinson–Schensted correspondence is perhaps the most important algorithm
in algebraic combinatorics. It exhibits a bijection between permutations and pairs
of standard Young tableaux of the same shape. Stanley [1988] investigated the
class of differential posets (also studied in [Fomin 1986]). Fomin [1994] studied
the more general notion of a dual graded graph to formalize local conditions which
guarantee the existence of a Robinson–Schensted style algorithm.

In this article, we construct a family of dual graded graphs (0s, 0w) associated
to each Kac–Moody algebra g. These graded graphs have as vertex set the Weyl
group W of g. The pair (0s, 0w) = (0s(3), 0w(K )) depends on a pair (3, K )
where 3 is a dominant integral weight and K is a “positive integral” element of
the center Z(g). In every case 0w is obtained by labeling the left weak order of W
and 0s is obtained by labeling the strong Bruhat order of W .

These labelings are motivated by the Schubert calculus for homogeneous spaces
associated to the Kac–Moody group G with Lie algebra g. For w ∈ W , let ξw ∈
H∗(G/B) denote the cohomology Schubert classes of the flag manifold of G. If
3=3i is the i-th fundamental weight, then an edge vlw in 0s(3) is labeled with
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the coefficient of ξw in the product ξ si ξ v, also called a Chevalley coefficient. When
g is of affine type and K = Kcan is the canonical central element, the analogous
statement holds (Proposition 2.17) for 0w(K ) with the homology Schubert classes
ξw ∈ H∗(Gr) of the affine Grassmannian corresponding to g replacing the coho-
mology classes. Thus the combinatorics of these graphs encode computations in
Schubert calculus, and the duality of the graded graphs (0s, 0w) is a combinatorial
skeleton of the duality between cohomology and homology of homogeneous spaces
of G.

In the case of the affine Grassmannian, the dual graded graph structure arises
from the pair of dual graded Hopf algebras given by H∗(Gr) and H∗(Gr): one may
define the down operator by the action of the homology class ξs0 on the Schubert
basis of H∗(Gr) and the up operator by multiplication by ξ si for any fixed simple
reflection si . It is a general phenomenon that pairs of dual graded combinatorial
Hopf algebras yield dual graded graphs; we shall pursue this in a separate publi-
cation [Lam and Shimozono ≥ 2007].

Chains in the graded graphs (0s, 0w), which we call strong and weak tableaux,
are natural generalizations of standard Young tableaux. To go one speculative step
further, we believe that the generating functions of an appropriate semistandard
notion of strong and weak tableaux would give polynomials which represent cer-
tain homology and cohomology Schubert classes, in particular for homogeneous
spaces corresponding to maximal parabolics, generalizing Schur functions, Schur
Q-functions and the like. While this statement is vague in general, it can be made
much more precise when g is of affine type, and has already been achieved in one
case.

In the case that g is of the affine type A(1)n−1 our construction recovers the dual
graded graphs that were implicitly studied in our joint work with Lapointe and
Morse [2006]. The weak and strong tableaux in [Lam et al. 2006] are semistan-
dard generalizations of the corresponding objects here; in the same work, an affine
insertion algorithm was explicitly constructed for semistandard weak and strong
tableaux, and from [Lam 2006; Lam et al. 2006] we know that the corresponding
generating functions do indeed represent Schubert classes of the affine Grassman-
nian of type A. In the limit n→∞ of the A(1)n−1 case, our construction reproduces
Young’s lattice, which is the self-dual graded graph that gives rise to the Robinson–
Schensted algorithm.

Having constructed the Kac–Moody dual graded graphs we study two further
aspects of these graphs in detail.

The first aspect is motivated by the relation between the Robinson–Schensted
insertion and Sagan–Worley shifted insertion. Using Lusztig’s construction [1993]
which associates to each symmetrizable generalized Cartan matrix A, a symmetric
generalized Cartan matrix B equipped with an admissible automorphism π , we
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show that any dual graded graph of the form (0A
s , 0

A
w) for g(A) can be realized in

terms of one of the form (0B
s , 0

B
w) for g(B). In particular, for any affine algebra,

any of the dual graded graphs (0s, 0w) can be realized using a dual graded graph
for a simply-laced affine algebra. In particular we obtain a Schensted bijection for
type C (1)

n , using the insertion algorithm of [Lam et al. 2006] for type A(1)2n−1. As n
goes to infinity, the type C (1)

n insertion converges to Sagan–Worley insertion [Sagan
1987; Worley 1984]. As a related result, we define a notion of mixed insertion
for dual graded graphs equipped with a pair of automorphisms. This generalizes
Haiman’s variants of Schensted insertion known as left-right, mixed, and doubly
dual insertion [Haiman 1989].

The second aspect we investigate are the induced subgraphs of the pair (0s, 0w)

which are distributive lattices when considered as posets. These are precisely the
conditions under which one may describe our strong and weak tableaux by “fill-
ing cells with numbers” as in a usual standard Young tableau. Here we draw on
[Proctor 1984; 1999; Stembridge 1996], which classify the parabolic quotients
of Weyl groups of simple Lie algebras whose left weak orders (or equivalently
Bruhat orders) are distributive lattices. We sharpen these results slightly to show
that in these cases, the distributivity is compatible with the edge labels of the graphs
(0s, 0w); see Section 6B. These distributive parabolic quotients have also appeared
recently in the geometric work [Thomas and Yong 2006]. They show that in these
cases one may use the jeu-de-taquin to calculate Schubert structure constants of
the cohomology of (co)minuscule flag varieties. We do not recover this result, but
we note that their notion of standard tableau, fits into our framework as strong
(or weak) tableaux for the distributive parabolic quotients, with the edge labels
forgotten.

2. Dual graded graphs for Kac–Moody algebras

2A. Dual graded graphs. We recall Fomin’s notion of dual graded graphs [Fomin
1994]. A graded graph is a directed graph

0 = (V, E, h,m)

with vertex set V and set of directed edges E⊂V 2, together with a grading function
h :V→Z≥0, such that every directed edge (v,w)∈ E satisfies h(w)= h(v)+1 and
has a multiplicity m(v,w)∈Z≥0. Forgetting the edge labels m, 0 may be regarded
as the Hasse diagram of a graded poset. We shall interpret m(v,w) as making 0
into a directed multigraph in which there are m(v,w) distinct edges from v to w.
0 is locally finite if, for every v ∈ V , there are finitely many w ∈ V such that

(v,w) ∈ E and finitely many u ∈ V such that (u, v) ∈ E ; we shall assume this
condition without further mention. For a graded graph 0= (V, E, h,m) define the
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Z-linear down and up operators D,U : ZV → ZV on the free abelian group ZV
of formal Z-linear combinations of vertices, by

U0(v)=
∑

(v,w)∈E

m(v,w)w and D0(w)=
∑

(v,w)∈E

m(v,w)v.

A pair of graded graphs (0, 0′) is dual if 0 and 0′ have the same vertex sets and
grading function but possibly different edge sets and edge multiplicities, such that

D0′U0 −U0D0′ = r Id (1)

as Z-linear operators on ZV , for some fixed r ∈ Z>0. We call r the differential
coefficient. When 0 = 0′ and all the edges have multiplicity one, we obtain the
r -differential posets of [Stanley 1988].

Remark 2.1. The duality property implies that V is infinite.

Example 2.2. Let 0 = Y be Young’s lattice, with (λ, µ) ∈ E if the diagram of the
partition µ is obtained from that of λ by adding a single cell (in which case we
say that the cell is λ-addable and µ-removable), all edge multiplicities are 1, and
h(λ)= |λ| is the number of cells in the diagram of λ. Then (Y,Y) is a pair of dual
graded graphs with differential coefficient 1.

2B. The labeled Kac–Moody weak and strong orders. In this section a new fam-
ily of dual graded graphs is introduced.

Let I be a set of Dynkin nodes and A= (ai j )i, j∈I be a generalized Cartan matrix
(GCM), that is, one with integer entries which satisfies ai i = 2 for all i ∈ I , and for
all i 6= j , ai j ≤ 0 and ai j < 0 if and only if a j i < 0. Let g= g(A) denote the Kac–
Moody algebra over C associated to A [Kac 1990], h ⊂ g the Cartan subalgebra,
and h∗ the dual. Let {αi | i ∈ I } ⊂ h∗ be the simple roots, {α∨i | i ∈ I } ⊂ h the
simple coroots, and {3i | i ∈ I } ⊂ h∗ the fundamental weights, with ai j = 〈α

∨

i , α j 〉

where 〈· , ·〉 : h× h∗→ C is the natural pairing. We assume that the simple roots
are linearly independent and the dimension of h is chosen to be minimal. Let W
be the Weyl group of g: it has generators si for i ∈ I and relations s2

i = 1 for i ∈ I
and (si s j )

mi j = 1 for i, j ∈ I with i 6= j , where mi j is 2, 3, 4, 6 or ∞ according
as ai j a j i is 0, 1, 2, 3 or > 3. Let ` : W → Z≥0 be the length function on W . Let
1re = W · {αi | i ∈ I } be the set of real roots and 1+re = 1re ∩

⊕
i∈I Z≥0 αi the

positive real roots. The associated coroot α∨ of α ∈ 1+re is defined by α∨ = uα∨i ,
where u ∈W and i ∈ I are such that α=uαi . For α∈1re let sα=usi u−1 denote the
reflection associated to α. The strong order (or Bruhat order) ≤ on W is defined
by the cover relations wlwsα whenever `(wsα)= `(w)+1 for some α ∈1+re and
w ∈ W . The left weak order (W,�) is the subposet of (W,≤) generated by the
cover relations w ≺ siw whenever `(siw) = `(w)+ 1 for some i ∈ I and w ∈ W .
The left descent set of v is defined by Des(v)= {i ∈ I | siv ≺ v}.
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Given 3 in the set P+ of dominant integral weights, let 0s(3) be the graded
graph with vertex set W and edges (v,w) ∈W 2 such that vlw, with multiplicity
m3(v,w)= 〈α

∨ ,3〉, where α ∈1+re is such that w= vsα. Let i ∈ I and u ∈W be
such that α = uαi . Then

m3(v,w)= 〈uα∨i ,3〉 = 〈α
∨

i , u−13〉. (2)

Let Z+ = Z+(g(A))= Z(g(A))∩
⊕

i∈I Z≥0α
∨

i , where Z(g(A)) is the center of
g(A). If K ∈ Z+, writing K =

∑
i∈I kiα

∨

i , the vector (ki )i∈I defines a linear
dependence amongst the rows of A.

Given K ∈ Z+, let 0w(K ) be the graded graph with vertex set W and edges
(v,w) ∈W 2 such that v ≺ w = siv, with multiplicity

nK (v,w)= ki = 〈K ,3i 〉. (3)

Both 0s(3) and 0w(K ) are graded by the length function.

Theorem 2.3. Let (3, K ) ∈ P+ × Z+. Then (0s(3), 0w(K )) is a pair of dual
graded graphs with differential coefficient r = 〈K ,3〉.

Proof. Let U =U0s(3) and D= D0w(K ). The coefficient of u 6= v in (DU−U D)v
is given by ∑

(i,α)∈I×1+re
vlvsα

u=sivsα≺vsα

ki 〈α
∨ ,3〉−

∑
(i,α)∈I×1+re

siv≺v
sivlsivsα=u

ki 〈α
∨ ,3〉.

This quantity is zero because the indexing sets of both sums coincide, by two
versions of [Humphreys 1990, Lemma 5.11].

For every i ∈ I and v ∈ W , either v ≺ siv or siv ≺ v is a covering relation. It
follows that the coefficient of v in (DU −U D)v is∑
i∈I\Des(v)

ki 〈v
−1α∨i ,3〉−

∑
i∈Des(v)

ki 〈(siv)
−1α∨i ,3〉

=

∑
i∈I

ki 〈v
−1α∨i ,3〉 =

∑
i∈I

ki 〈α
∨

i , v3〉

= 〈K , v3〉 = 〈v−1K ,3〉 = 〈K ,3〉.

We have used the W -invariance of 〈 · , · 〉 and K . �

Remark 2.4. For i ∈ I and v ∈W , the multiplicity of the edge (v, vsα) in 0s(3i ),
is the Chevalley multiplicity, given by the coefficient of ξ vsα in the product ξ si ξ v,
where ξ v ∈ H∗(G/B) is the Schubert cohomology class for the flag manifold G/B
associated with the Kac–Moody algebra g [Kostant and Kumar 1986].

In Proposition 2.17 we will relate the multiplicities of the weak graph 0w(K )
with the homology multiplication of the affine Grassmannian, in the case that g(A)
is of untwisted affine type.
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2C. Tableaux and enumeration. Let 0 = (V, E, h,m) be a graded graph and
v,w ∈ V . A 0-tableau T of shape v/w is a directed path

T = (w = v0
m1
−→ v1

m2
−→ · · ·

mk
−→ vk = v)

from w to v in 0, where mi is an element taken from a set of m(vi−1, vi ) possible
markings of the edge (vi−1, vi ). In the multigraph interpretation, mi indicates
which of the m(vi−1, vi ) edges going from vi−1 to vi , is traversed by the path.

Let v= out(T ) and w= in(T ) the outer and inner shapes of T respectively, and
denote by T(0) the set of 0-tableaux, and T(0, v/w) the subset of those of shape
v/w.

Example 2.5. For Y as in Example 2.2, Y-tableaux are standard Young tableaux.

If 0 has a unique minimum element 0̂, we say T has shape v if in(T )= 0̂.

Theorem 2.6 [Fomin 1994]. Let (0, 0′) be a pair of dual graded graphs with
differential coefficient r . Then

rn n! =
∑
v∈V

h(v)=n

f v0 f v0′ (4)

where f v0 = |T(0, v)| and f v0′ = |T(0
′, v)|.

Example 2.7. Let 0 = 0′ =Y. Then by Examples 2.2 and 2.5, Equation (4) is the
well known identity n! =

∑
λ f 2

λ , where λ ranges over the partitions of n and fλ is
the number of standard Young tableaux of shape λ.

The graphs 0w(K ) and 0s(3) both have minimum element id ∈ W . We call
0w(K )-tableaux (standard) K -weak tableaux and 0s(3)-tableaux (standard) 3-
strong tableaux.

Corollary 2.8. Let g be a Kac–Moody algebra and (3, K ) ∈ P+× Z+. Then for
each n ∈ Z≥0 we have

rn n! =
∑
w∈W
`(w)=n

f wweak f wstrong (5)

where r = 〈K ,3〉, f wweak is the number of K -weak tableaux of shape w and f wstrong
is the number of 3-strong tableaux of shape w.

In Section 3 standard Young tableaux are realized as special cases of both K -
weak and 3-strong tableaux using affine algebras of type A(1).
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2D. From dual graded graphs to Schensted bijections. A differential bijection
for the pair of dual graded graphs (0, 0′) is one that exhibits the equality (1); we
give a precise definition below. By [Fomin 1995], a differential bijection induces
a Schensted bijection (see (8)) which describes the enumerative identity (4).

We recall Fomin’s theory in more detail. Given r ∈ Z≥0, let S(r) be a set
of cardinality r . Sometimes we may write S(r) for a particular set of cardinal-
ity r . Let (0, 0′) be a pair of dual graded graphs with 0 = (V, E, h,m) and
0′ = (V, E ′, h,m′) and differential coefficient r . Given x, y ∈ V , define UDxy =

{(z,m,m′)∈ V ×Z2
>0 | (z, y)∈ E, (z, x)∈ E ′,m ≤m(z, y),m′ ≤m′(z, x)} and let

DUxy = {(w,M,M ′) ∈ V × Z2
>0 | (x, w) ∈ E, (y, w) ∈ E ′,M ≤ m(x, w),M ′ ≤

m′(y, w)}. UDxy represents the set of marked paths going down one step in 0′

from x to some z ∈ V and then up one step in 0 from z to y. Similarly, DUxy

represents the set of marked paths going up one step in 0 from x to some w ∈ V ,
and then down one step in 0′ from w to y. To cancel the off-diagonal terms in (1),
for every (x, y) ∈ V 2 with x 6= y, there must be a bijection

8xy :UDxy→ DUxy, (6)

and to obtain agreement of diagonal terms in (1), for each x ∈ V there must be a
bijection

8x : S(r)tUDx → DUx (7)

where DUx = DUxx and UDx = UDxx . By definition, a differential bijection for
(0, 0′), is a collection 8= (8xy;8x) of such bijections 8xy and 8x .

Example 2.9. Let 0=Y with dual graded graph structure on (Y,Y) as in Example
2.2. For λ ∈ Y, since all edges have multiplicity 1, DUλ is in bijection with λ-
addable corner cells and UDλ is in bijection with λ-removable corner cells. The λ-
addable and λ-removable corner cells of λ are interleaved. Let 8λ send the unique
element of the set S(1), to the λ-addable corner cell in the first row of λ, and send
a λ-removable corner to the nearest λ-addable corner with higher row index. For
λ 6= µ the sets DUλµ and UDλµ have the same cardinality, which is either 0 or 1,
so there is no choice for the definition of 8λµ. This defines a differential bijection
8 for (Y,Y).

Let Pn(r) be the set of r -colored permutations of n elements. We realize σ ∈
Pn(r) as an n×n monomial matrix (one with exactly one nonzero element in each
row and in each column, whose nonzero entries must be taken from a set S(r) of
cardinality r such that 0 /∈ S(r)).

We assume that 0 and 0′ have a common minimum element 0̂ such that h(0̂)=0.
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A Schensted bijection I for (0, 0′) is a family of bijections (for all n ∈ Z≥0)

Pn(r)→
⊔
v∈V

h(v)=n

T(0, v)×T(0′, v)

σ 7→ (P, Q).

(8)

We fix a differential bijection 8 for (0, 0′) and define the induced Schensted bi-
jection I8.

Given σ ∈ Pn(r), we shall define a directed graph G with vertices Gi j ∈ V
for 0 ≤ i, j ≤ n, which is depicted matrix-style. It shall have the property that
(1) adjacent vertices Gi, j−1,Gi j in a row, are either equal, or they form an edge
(Gi, j−1,Gi j ) ∈ E with marking m ∈ S(m(Gi, j−1,Gi j )), and (2) adjacent vertices
Gi−1, j ,Gi j in a column, are either equal, or they form an edge (Gi−1, j ,Gi j ) ∈

E ′ with marking m′ ∈ S(m′(Gi−1, j ,Gi j )). Moreover, (3) Gi−1, j 6= Gi j (resp.
Gi, j−1 6= Gi j ) if and only if the unique p such that σpj 6= 0 (resp. q such that
σiq 6= 0) satisfies p ≤ i (resp. q ≤ j). In particular (ignoring the equalities), for
each i , the i-th row Gi• is a 0-tableau and for each j , the j-th column G• j is a
0′-tableau. For the sake of uniform language we shall always imagine that there
is a marked edge Gi, j−1→ Gi j and Gi−1, j→ Gi j , but when the vertices coincide
the marked edge degenerates.

G is defined inductively as follows. The north and west edges G0• and G•0 of
G are initialized to the empty tableau: Gi0=G0 j = 0̂ for all 0≤ i, j ≤ n. To define
the rest of G, it suffices to give a local rule, which, given the marked edges

Gi−1, j−1
m
→ Gi−1, j and Gi−1, j−1

m′
→ Gi, j−1,

and the value σi j , determines Gi j ∈ V with markings M ∈ S(m(Gi, j−1,Gi j )) and
M ′ ∈ S(m′(Gi−1, j ,Gi j )).

This is depicted below. Use z, y, x, w to denote Gi−1, j−1,Gi−1, j ,Gi, j−1,Gi j

for convenience and write c = σi j . In later examples we shall indicate σi j = 1 by
the symbol ⊗ and σi j = 0 by a blank.

Gi−1, j−1
m //

m′

��

Gi−1, j

M ′

���
�
�

σi j

Gi, j−1
M

//_____ Gi j

z m //

m′

��

y

M ′

���
�
�

c

x
M

//___ w

(9)

The local rule is defined using 8.

(1) If z = x = y:
(a) If c = 0, set w = z.
(b) If c 6= 0, let 8x(c)= (w,M,M ′).
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(2) If z 6= x = y then let 8x(z,m,m′)= (w,M,M ′).

(3) If z = y and z 6= x then let w = x and M ′ = m′.

(4) If z = x and z 6= y then let w = y and M = m.

(5) If z, x, y are all distinct, then let (w,M,M ′)=8xy(z,m,m′).

This uniquely determines G [Fomin 1995]. Its south edge Gn• is a 0-tableau P
and its east edge G•n is a 0′-tableau Q, both of a common shape v = Gnn ∈ V
with h(v)= n. This well-defines a map I8 as in (8).

For the inverse of I8, let v ∈V be such that h(v)= n, and let (P, Q)∈T(0, v)×

T(0′, v). To recover σ ∈ Pn(r), we initialize the south and east edges of G to P
and Q respectively. Then for each i, j and two by two subgraph as above, we apply
the inverse of the above local rule. Given labeled edges

x
M
→ w and y

M ′
→ w,

it determines z ∈ V and marked edges

z
m
→ y and z

m′
→ x

and a value c ∈ {0} t S(r), such that c 6= 0 if and only if z = x = y 6= w and
8−1

z (w,M,M ′)= c. The inverse local rule is defined as follows.

(1) If x = y:

(a) If w = x , let z = x .
(b) If w 6= x :

(i) If c :=8−1
x (w,M,M ′) ∈ S(r): let z = x .

(ii) Otherwise 8−1
x (w,M,M ′)= (z,m,m′).

(2) If w = x 6= y, let z = y and m′ = M ′.

(3) If w = y 6= x , let z = x and m = M .

(4) If x, y, w are all distinct, let (z,m,m′)=8−1
xy (w,M,M ′).

In all cases but (1)(b)(i) let c = 0. Using the inverse local rule the rest of G is
defined [Fomin 1995] and one obtains a well-defined element σ ∈ Pn(r).

Theorem 2.10 [Fomin 1995]. Let (0, 0′) be a dual graded graph with differential
coefficient r . Then for any differential bijection 8 for (0, 0′), the above construc-
tion defines a Schensted bijection I8 of the form (8).

We call I8 is the Schensted bijection induced by the differential bijection 8.

Example 2.11. The differential bijection 8 of Example 2.9 induces Schensted’s
row insertion bijection [1961].
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Remark 2.12. For the Kac–Moody dual graded graphs (0w(K ), 0s(3)) there is a
natural choice for the off-diagonal part of the differential bijection. If v 6= w with
v,w ∈W then 8vw is essentially obtained from [Humphreys 1990, Lemma 5.11],
just as in the proof of Theorem 2.3. For i ∈Des(v), the marked down-then-up path

v
m′
−→ siv

m
−→ sivsα = w

maps to the marked up-then-down path

v
m
−→ vsα

m′
−→ sivsα = w.

Here m and m′ denote edge markings, which in either case are selected from sets
of size m3(siv, sivsα)= 〈α∨ ,3〉 = m3(v, vsα) and nK (3i ) respectively.

Currently we are not aware of a general rule for8v which exhibits the coefficient
of v in (DU −U D)v as 〈K ,3〉. In Section 3 we shall give a special case where
the bijection 8v has been constructed explicitly.

2E. Automorphisms and mixed insertion. This section is a natural synthesis of
the ideas of [Fomin 1994] and [Haiman 1989] which does not seem to have been
written down before. We believe this construction is particularly interesting for
Kac–Moody dual graded graphs (see also Section 4).

Let (0, 0′) be a pair of dual graded graphs with 0 = (V, E,m, h) and 0 =
(V, E ′,m′, h). Say that a permutation τ : V → V is an automorphism of (0, 0′)
if (1) h ◦ τ = h, (2) (x, y) ∈ E if and only if (τ (x), τ (y)) ∈ E , and in this case,
m(x, y)=m(τ (x), τ (y)), and (3) (x, y) ∈ E ′ if and only if (τ (x), τ (y)) ∈ E ′, and
in this case, m′(x, y)= m′(τ (x), τ (y)).

Given a differential bijection 8 for (0, 0′), we define its twist 8τ by τ as fol-
lows. For every x, y ∈ V there are natural bijections τ :UDxy→UDτ(x)τ (y) given
by (z,m,m′) 7→ (τ (z),m,m′) and τ :DUxy→DUτ(x)τ (y) given by (w,M,M ′) 7→
(τ (w),M,M ′). Let τ : S(r) → S(r) be the identity permutation. Then define
8τxy = τ

−1
◦8τ(x)τ (y) ◦τ . It is easy to verify that 8τ is also a differential bijection

for (0, 0′).

Example 2.13. Let 0 = 0′ = Y and tr : Y→ Y the automorphism of (0, 0) that
transposes partition diagrams. Let 8 be the differential bijection in Example 2.9.
Then I8tr is Schensted’s column insertion bijection [Schensted 1961].

For the sequel we assume that τ has finite order κ . A 0-tableau whose edges
have an auxiliary marking parameter p ∈ S(κ) = {0, 1, . . . , κ − 1} is called a τ -
mixed 0-tableau. Let Tτ (0) be the set of τ -mixed 0-tableaux. Suppose τ ′ is an
automorphism of (0, 0′) of order κ ′. Let (0, 0′; τ, τ ′) denote the pair of dual
graded graphs given by 0 and 0′ except that 0-edges (resp. 0′-edges) are labeled
by (m, p) with p ∈ S(κ) (resp. (m′, p′) with p′ ∈ S(κ ′)) and m (resp. m′) is a usual
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edge label for 0 (resp. 0′). This multiplies the number of markings for each edge
of 0 (resp. 0′) by κ (resp. κ ′). The differential coefficient of (0, 0′; τ, τ ′) is rκκ ′

where r is the differential coefficient of (0, 0′).
Let8 be a differential bijection for (0, 0′). Then there is an obvious differential

bijection (also denoted 8) for (0, 0′; τ, τ ′), defined by a trivial scaling by κ in 0
and by κ ′ in 0′.

We define another bijection

Pn(κκ
′r)→

⊔
x∈V

h(x)=n

Tτ (0, x)×Tτ ′(0
′, x), (10)

called (τ, τ ′)-mixed insertion by modifying the process in which we construct the
matrix Gi j from the colored permutation σ . Instead of using the same differential
bijection8 to compute each Gi j , we use twists of8 by automorphisms that depend
on (i, j).

Let σ ∈ Pn(κκ
′r). Regard σ as a monomial matrix in which each nonzero entry

has three labels (c, p, p′) ∈ S(r)× S(κ)× S(κ ′), where S(κ) = {0, 1, . . . , κ − 1}
and S(κ ′)= {0, 1, . . . , κ ′−1}. Each horizontal (resp. vertical) edge is marked by a
pair (m, p) (resp. (m′, p′)) where m (resp. m′) is the usual marking and p ∈ S(κ)
(resp. p′ ∈ S(κ ′)). Let (z, y, x, w)= (Gi−1, j−1,Gi−1, j ,Gi, j−1,Gi j ) and suppose
that

z
(m,p)
−−−→ y and z

(m′,p′)
−−−−→ x

are given, where it is understood that if z = y (resp z = x) then (m, p) (resp.
(m′, p′)) need not be specified. Then Gi j is determined as before, except that
instead of using 8xy we use the twist

8τ
k(τ ′)k

′

xy ,

where k and k ′ are as follows. Let (c, p, p′) be the nonzero entry of σ in the i-th
row, say, σil . We set k ′ = p′. Separately, let (c, p, p′) be the nonzero entry of σ in
the j-th column, say, σq j . We set k = p. Note that in the case q > i (resp. l > j)
the bijection 8xy is not used in the local rule so the value of k (resp. k ′) does not
affect the algorithm.

In other words, if σi j = (c, p, p′) is a nonzero entry, then (τ ′)p′ acts everywhere
to the right in the i-th row and all vertical edges to the right (those of the form
Gi−1,l → Gil for l ≥ j) are given the auxiliary marking p′, and τ p acts every-
where below in the j-th column, and all horizontal edges below (those of the form
Gl, j−1→ Gl j for l ≥ i) are given the auxiliary marking p. The output is the pair
(P, Q) ∈ Tτ (0, v)×Tτ ′(0

′, v) where v = Gnn and P and Q are obtained from
the south and east edges of G respectively.

Proposition 2.14. (τ, τ ′)-mixed insertion gives a well-defined bijection (10).
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Example 2.15. In the context of Example 2.13, (τ, τ ′)-mixed insertion specializes
to the following kinds of insertion algorithms, the first from [Schensted 1961] and
the other three from [Haiman 1989].

(1) (τ, τ ′)= (id, id): Schensted row insertion

(2) (τ, τ ′)= (id, tr): left-right insertion

(3) (τ, τ ′)= (tr, id): mixed insertion

(4) (τ, τ ′)= (tr, tr): doubly mixed insertion

2F. Restriction to parabolics. Let J ⊂ I . We say that a weight 3 is supported on
J if 3 =

∑
j∈J a j3 j . The Kac–Moody dual graded graphs (0s(3), 0w(K )) are

compatible with restriction to parabolics. Let WJ ⊂ W be the parabolic subgroup
generated by {s j | j ∈ J } and let W J be the set of minimal length coset repre-
sentatives in W/WJ . Note that W J inherits weak and strong orders from W by
restriction.

Proposition 2.16. Fix J ⊂ I . If 3 is supported on I\J then the restriction of
(0s(3), 0w(K )) to W J is a pair of dual graded graphs with differential coefficient
〈K ,3〉.

Proof. Suppose v ≺w is a weak cover. If w ∈W J then v ∈W J since W J
⊂W is

a lower order ideal for �.
Suppose w l v and w ∈ W J and v /∈ W J . Since v has a reduced expression

ending in s j for some j ∈ J and w is obtained from this reduced expression by
omitting a simple generator, we conclude that v = ws j . But 3 is supported on
I\J , so 〈α∨j ,3〉 = 0.

Combining these two facts we see that the proof of Theorem 2.3 restricts to
W J . �

We shall use the following notation for maximal parabolic subgroups of W . For
i ∈ I we shall write W i for W J where J = I \{i}. We denote by (0s(3), 0w(K ))i =
(0i

s(3), 0
i
w(K )), the dual graded graph given by restricting (0s(3), 0w(K )) to W i .

2G. The affine case. If the GCM A is of finite type, then Z+ = {0} and all of the
edges of 0w(K ) are labeled 0.

In this section let A be of untwisted affine type. Let 0 ∈ I be the distinguished
Kac 0 node and J = I \ {0}. Then W is the affine Weyl group, WJ = Wfin is the
finite Weyl group, and we write W 0

= W J . By Proposition 2.16 the restriction
of the Kac–Moody dual graded graph to W 0, is a dual graded graph. In this case
the weak graph 0w(K ) has an interpretation involving the Schubert calculus of the
homology of the affine Grassmannian, and the duality is a combinatorial expression
of the pairing between the homology and cohomology of the affine Grassmannian.
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For affine algebras, Z+ = Z≥0K where K = Kcan =
∑

i∈I kiα
∨

i is the canonical
central element; the vector (ki )i∈I is the unique linear dependence of the rows of A
given by positive relatively prime integers [Kac 1990]. In this case, since the labels
of 0w(K ) are linear in K , without loss of generality we shall only work with Kcan

and define 0w := 0w(Kcan). The edge labels of 0w are related to the homology
multiplication in affine Grassmannians, as follows.

Let g = g(A) be an untwisted affine algebra. Let Gr = GrG denote the affine
Grassmannian of the simple Lie group G whose Lie algebra gfin is the canonical
simple Lie subalgebra of the affine algebra g. For w ∈ W 0 we let ξw ∈ H∗(Gr)
denote the corresponding homology Schubert class. Recall the constants n(w, v)
from (3).

Proposition 2.17. Let ξ0 = ξs0 be the Schubert class indexed by the unique simple
generator s0 /∈Wfin. Then for every w ∈W 0, we have in H∗(Gr) the identity

ξ0 ξw =
∑
v

n(w, v) ξv

where v ∈W 0 runs over the weak covers w ≺ v of w.

Proof. We rely on the results of [Lam 2006] which in turn are based on unpublished
work of Peterson. Let S=Sym((h∗Z)fin)=H Tfin(pt) denote the symmetric algebra in
the weights of the gfin and φ0 : S→Z denote the evaluation at 0. Let A0 denote the
affine nilCoxeter algebra corresponding to W . As a free Z-module A0 is spanned
by elements {Aw | w ∈W } with multiplication given by

Aw Av =

{
Awv if `(w)+ `(v)= `(wv)

0 otherwise.

The affine nilHecke algebra A is the Z-algebra generated by A0 and S with the
additional relation [Lam 2006, Lemma 3.1]

Aw λ= (w · λ)Aw +
∑

w rαlw
〈λ , α∨〉Aw rα , (11)

where α is always taken to be a positive root of W .
Now let

B= {a ∈ A0 | φ0(as)= φ0(s)a for any s ∈ S} ⊂ A0

denote the affine Fomin–Stanley subalgebra, where φ0 : A → A0 is given by
φ0(
∑

w aw Aw) =
∑

w φ0(aw)Aw. Let j0 : H∗(GrG) → B denote the ring iso-
morphism [Lam 2006, Theorem 5.5] from the homology of GrG to the affine
Fomin–Stanley algebra B. We first show that j0(ξ0) =

∑
i∈I ki Ai , where Ai are

the generators of the nilCoxeter algebra and Kcan =
∑

i kiα
∨

i .
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By [Lam 2006, Proposition 5.4], the element j0(ξ0) is characterized by having
unique Grassmannian term A0, and the property that it lies in B. Since k0 = 1, the
unique Grassmannian term property is immediate. Using (11), we calculate that

φ0(aα j )=
∑
i∈I

ki 〈α
∨

i , α j 〉 = 〈Kcan , α j 〉 = 0.

Since the α j span (h∗Z)fin over Q, we deduce that φ0(as) = φ0(s)a for any s ∈ S,
and thus j0(ξ0)=

∑
i∈I ki Ai . (This was first pointed out to us by Alex Postnikov.)

By [Lam 2006, Lemma 4.3, Theorem 5.5], we thus have

ξ0 ξw = j (ξ0) · ξw =
(∑

i∈I

ki Ai

)
· ξw =

∑
w≺si w

ki ξsi w.

where we have used the action of A0 on H∗(GrG) given by

Ai · ξw =

{
ξsi w if siw >w,

0 otherwise;

see [Lam 2006, (3.2)]. Recalling the definition n(w, siw) = ki of the weak graph
0w from (3) this completes the proof. �

3. Affine type A and LLMS insertion

For this section let g(A) be the affine algebra of type A(1)n−1. In this case the com-
binatorics of the pair of dual graded graphs (0s(3i ), 0w) was studied extensively
in [Lam et al. 2006] and was one of the main motivations of the current work.
The affine insertion algorithm of [Lam et al. 2006] (which we shall call LLMS
insertion) furnishes an explicit differential bijection for (0s(3i ), 0w). LLMS in-
sertion involves nontrivial extensions of the notion of tableaux to semistandard
weak and strong tableaux, and proves Pieri rules (formulae for certain Schubert
structure constants) in the homology H∗(Gr) and cohomology H∗(Gr) of the affine
Grassmannian of SL(n,C) [Lam et al. 2006].

For type A(1)n−1 the coefficients of the canonical central element K are all 1.
Therefore the weak graph 0w has all edge multiplicities equal to 1. Using the
rotational symmetry of the Dynkin diagram A(1)n−1, we may assume that 3 = 30

and for brevity we write 0s for 0s(30).
Let I ={0, 1, . . . , n−1} and let the Cartan matrix be defined by ai,i+1=ai+1,i =

−1 for all i , with indices taken modulo n, ai i =2 for all i ∈ I , and ai j =0 otherwise.
As in Section 2B the Weyl group is defined by mi,i+1=3 and mi j =2 for |i− j |≥2.

3A. Affine permutations. We use the following explicit realization of the affine
symmetric group W = S̃n . A bijection w : Z→ Z is an affine permutation with
period n ifw(i+n)=w(i) for each i ∈Z and

∑n
i=1(w(i)−i)= 0. The set of affine
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permutations with period n form a group isomorphic to S̃n , with multiplication
given by function composition. The reflections ti j in S̃n are indexed by a pair
of integers (i, j) satisfying i < j and i 6= j mod n. Suppose v l vti j = w is
a cover in S̃n . Then the edge (v,w) in 0s has multiplicity equal to #{k ∈ Z |

v(i)≤ k < v( j) and k = 0 mod n} [Lam et al. 2006].

3B. Action of S̃n on partitions. Given a partition λ, one may associate a bi-infinite
binary word p(λ) = p = · · · p−1 p0 p1 · · · called its edge sequence. The edge
sequence p(λ) traces the border of the (French) diagram of λ, going from northwest
to southeast, such that every letter 0 (resp. 1) represents a south (resp. east) step,
and some cell in the i-th diagonal is touched by the steps pi−1 and pi . Here the
cell (i, j) lies in row i (where row indices increase from south to north), column
j (where column indices increase from west to east), and diagonal j − i .

The affine symmetric group S̃n acts on partitions, since elements of S̃n are certain
permutations Z→ Z and partitions can be identified with their edge sequences,
which are certain functions Z→ {0, 1}. Then for i ∈ Z/nZ, siλ is obtained by
removing from λ every λ-removable cell of residue i , and adding to λ every λ-
addable cell of residue i . Here the residue of a box (i, j) is the diagonal index
j − i taken modulo n.

3C. Cores and affine Grassmannian permutations. Using the language of cores,
we shall describe the combinatorics of the dual graded graph (0s, 0w)

0 afforded
by Proposition 2.16.

An n-ribbon is a skew partition diagram λ/µ (the difference of the diagrams of
the partitions λ and µ) consisting of n rookwise connected cells, all with distinct
residues. We say that this ribbon is λ-removable and µ-addable. An n-core is a
partition that admits no removable n-ribbon. Since the removal of an n-ribbon is
the same thing as exchanging bits pi = 0 and pi+n = 1 in the edge sequence for
some i , it follows that λ is a core if and only if for every i , the sequence p(i)(λ) :=
· · · pi−2n pi−n pi pi+n pi+2n · · · consisting of the subsequence of bits indexed by i
mod n, has the form · · · 1111100000 · · · . We denote the set of n-cores by Cn .

Proposition 3.1 [Lam et al. 2006; Misra and Miwa 1990]. The map w 7→ w ·∅
is a bijection c : S̃0

n → Cn . Moreover, for v,w ∈ S̃0
n , we have v ≤ w if and only if

c(v)⊆ c(w), and if vlw then c(w)/c(v) is a disjoint union of translates of some
ribbon R, and the number of components of c(w)/c(v) is equal to the multiplicity
m(v,w) in 0s .

We say that µ ∈ Cn covers λ ∈ Cn if c−1(µ)m c−1(λ). Thus a standard strong
tableau in 0s is a sequence λ = λ0

⊂ λ1
⊂ · · · ⊂ λl

= µ such that λi covers λi−1

and one of the components of λi/λi−1 has been marked.
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It is easy to show that a core cannot have both an addable and a removable cell
of the same residue. Thus, in the special case that vlsiv=w for some i ∈ I , c(w)
is obtained from c(v) by adding all c(v)-addable cells of residue i , and the ribbon
R of Proposition 3.1 must be a single box. In this case we say that c(v)⊂ c(w) is
a weak cover.

3D. LLMS insertion. In [Lam et al. 2006], for the affine symmetric group S̃n ,
semistandard analogues of weak and strong tableaux were defined (for all of S̃n ,
not just S̃0

n ), and an RSK correspondence was given between a certain set of bi-
words or matrix words, and pairs of tableaux, one semistandard weak and the other
semistandard strong. Let us consider the following restriction of this bijection. We
first restrict to “standard” tableau pairs, that is, the case in which the tableaux are
weak and strong tableaux as defined in Section 2C. Next we take the parabolic
restriction from S̃n to S̃0

n . Let us denote the restricted bijection by ILLMS.
Let 8 be the differential bijection for (0s, 0w)

0 such that I8 = ILLMS. We
describe it explicitly.

For u, v ∈ S̃0
n with u 6= v, the off-diagonal part 8uv of 8 coincides with the

natural definition given in Remark 2.12. The diagonal part8v for v∈ S̃0
n is specified

as follows. Let λ= c(v) be the n-core corresponding to v. If λ⊂µ is a weak cover
then µ/λ consists of all the λ-addable cells of λ which have a fixed residue. As µ
varies over all the weak covers of λ we obtain all the λ-addable cells in this way.
Thus there is a natural identification of the set DUv with the set of λ-addable cells.
Similarly UDv may be identified with the set of λ-removable cells. This given, we
may use the differential bijection denoted 8λ in Example 2.9 for Young’s lattice.
This defines a differential bijection 8 for (0s, 0w)

0.

Example 3.2. Figure 1 shows the calculation of ILLMS of the permutation σ =
412635 (written here in one-line notation; it corresponds to the permutation matrix
with ones located positions (i, σ (i)) for 1≤ i ≤ 6) for S̃3. The symbols⊗ encode σ
as described above Equation (9). Each arrow indicates a marked strong cover; the
subscript 2 indicates that the marked component is the second from the southeast,
and no subscript means the marked component is the southeastmost. Stars in the
P tableau indicate the marked components.

Remark 3.3. As n goes to infinity, (0s, 0w)
0 converges to the dual graded graph

(Y,Y) of Example 2.2 and LLMS insertion converges to Schensted row insertion
[Lam et al. 2006] because the respective differential bijections coincide in the limit.

4. Folding

An automorphism of the GCM B = (bi j | i, j ∈ J ) is a permutation π of J such
that bπ(i)π( j) = bi j for all i, j ∈ J . The automorphism π is admissible if bi j = 0
for all i and j in the same π -orbit.
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. . . . . . .

⊗

. . . . //

⊗

. // //

⊗

. // // //

⊗

. // // // //

⊗

. // // // //
2

//

⊗

. // // // // // //

P =

6
5
4∗ 6∗

3 5
1∗ 2∗ 3∗ 5∗

Q =

6
5
3 6
2 5
1 3 4 5

Figure 1. Growth diagram for LLMS insertion of 412635 for S̃3.

A GCM A = (ai j | i, j ∈ I ) is symmetric if it is a symmetric matrix. It is
symmetrizable if there are positive integers oi for i ∈ I , such that D A is symmetric,
where D is the diagonal matrix with diagonal entries oi .

Lusztig [1993] showed that every symmetrizable GCM A can be constructed
from a symmetric GCM B that is equipped with an admissible automorphism π .
We call this construction folding.

For A and B related in this manner, we show that the structure of every dual
graded graph of the form (0A

s (3i ′), 0
A
s (K )) for g(A), is encoded by some dual

graded graph for g(B). Thus the combinatorics for g(A) is reduced to that of g(B).
In particular, for any affine algebra g(A) there is a simply-laced affine algebra g(B)
related by folding, so that all affine Schensted bijections can be realized using only
the simply-laced affine algebras.
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4A. Folding data. Let B = (bi j | i, j ∈ J ) be a GCM and π an admissible auto-
morphism of B. Let I be a set which indexes the π -orbits of J ; we write Oi ⊂ J
for the π -orbit indexed by i ∈ I . Let oi = |Oi |. It is easy to show that the matrix
A = (ai ′i | i ′, i ∈ I ) defined by

ai ′i =
oi ′

oi

∑
j∈Oi

b j ′ j for any j ′ ∈ Oi ′, (12)

is a well-defined GCM. We say that A is obtained from (B, π) by folding.

Proposition 4.1 [Lusztig 1993, Proposition 14.1.2]. Given any symmetrizable
GCM A, there is a symmetric GCM B with admissible automorphism π , such that
A is obtained from (B, π) by folding. In particular, if A is of affine type then B
can be taken to be of simply-laced affine type.

For the Kac–Moody algebras g(A) and g(B), we denote their weight lattices
by PA and PB , their coweight lattices by P∨A and P∨B and their coroot lattices by
Q∨A and Q∨B . For simplicity, we let 3i , αi , α

∨

i be the fundamental weights, simple
roots, and simple coroots for g(A) and write ωi , βi , β

∨

i for the corresponding data
for g(B).

Let P ′A = PA/(
⊕

i∈I Zα∨i )
0 be the weight lattice of A modulo the annihilator of

the coroots {α∨i }. Similarly define P ′B . Note that

αi =
∑
i ′∈I

ai ′i 3i ′ and β j =
∑
j ′∈J

b j ′ j ω j ′, (13)

where αi ,3i and β j , ω j also denote their respective images inside P ′A and P ′B . Set
κ = lcmi∈I (oi ), and define ψ : P ′A→ P ′B by

ψ(3i )=
κ

oi
ω̃i , (14)

where ω̃i =
∑

j∈Oi
ω j and β̃i =

∑
j∈Oi

β j for i ∈ I . We have

ψ(αi )=
∑

i ′
ai ′iψ(3i ′)=

∑
i ′

ai ′i
κ

oi ′

∑
j ′∈Oi ′

ω j ′

=
κ

oi

∑
i ′

∑
j∈Oi

∑
j ′∈Oi ′

b j ′ jω j ′ =
κ

oi
β̃i , (15)

by (13) and (12). Define ϕ : Q∨A→ Q∨B by

ϕ(α∨i )= β̃
∨

i =
∑
j∈Oi

β j . (16)
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4B. Weyl groups. For i ∈ I define

f (s A
i )=

∏
j∈Oi

s B
j ∈WB . (17)

Since π is admissible the reflections {s B
j | j ∈ Oi } commute with each other so that

the product in (17) is independent of the order of its factors.
Steinberg [1968] showed that there is an embedding of Weyl groups WA→WB .

By [Nanba 2005] it respects the Bruhat order.

Theorem 4.2.

(1) [Steinberg 1968] There is an injective group homomorphism f : WA → WB

defined by (17), whose image is the subgroup Wπ
B of π -fixed elements in WB ,

where π acts on WB by π(si )= sπ(i).

(2) [Nanba 2005, Proposition 3.3 and Theorem 1.2] v ≤ w in WA if and only if
f (v) ≤ f (w) in WB . Moreover, if w = si1 · · · siN is a reduced decomposition
in WA then f (w) = f (si1) f (si2) · · · f (siN ) is a length-additive factorization
in WB .

Corollary 4.3.

(1) π acts on 1+re(g(B)).

(2) Suppose v lw = vsα in WA for α ∈ 1+re(g(A)). Then there is a unique π -
orbit O ⊂1+re(g(B)) such that the reflections {sγ | γ ∈ O} commute, f (sα)=∏
γ∈O sγ , and there is an isomorphism of the boolean lattice of subsets O ′ of

O with the interval [ f (v), f (w)] in (WB,≤) given by O ′ 7→ f (v)
∏
γ∈O ′ sγ .

We call O the orbit associated with the cover vlw.

(3) Let w ∈ WA and γ ∈ 1+re(g(B)) be such that f (w)sγ l f (w) in WB , and let
O ⊂ 1+re(g(B)) be the π -orbit of γ . Then there is a covering relation vlw

of w in WA of which O is the associated orbit.

(4) Let v ∈ WA, γ ∈1+re(g(B)) be such that f (v)l f (v)sγ , and O ⊂1+re(g(B))
the π -orbit of γ . Then there is a covering relation vlw in WA of which O is
the associated cover.

Proof. For (1), let γ ∈1+re(g(B)), with γ = ũβ j for some ũ ∈WB and j ∈ J . Then
π(γ )= π(ũ)βπ( j) ∈1re(g(B)) and π clearly preserves the set of positive roots, so
that π acts on 1+re(g(B)).

For (2), there is a unique length-additive factorization w = u1si u2 in WA such
that v = u1u2. We have α = uαi and sα = usi u−1 where u = u−1

2 . Define O =
{ f (u)β j | j ∈Oi }; since f (u) is π -invariant, we have π( f (u)β j )=π( f (u))βπ( j)=

f (u)βπ( j) ∈ O(α), so that O is a π -orbit. For j ∈ Oi we have the relation
s f (u)β j = f (u)s j f (u)−1, so the reflections {sγ | γ ∈ O} commute, being conjugate
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to commuting reflections {s j | j ∈ Oi }. Since f is a homomorphism we have
f (sα)= f (u)

(∏
j∈Oi

s j
)

f (u)−1
=
∏

j∈Oi
f (u)s j f (u)−1

=
∏
γ∈O(α) sγ .

By Theorem 4.2 f (w) = f (u1)(
∏

j∈Oi
s j ) f (u2) and f (v) = f (u1) f (u2) are

length-additive factorizations. It follows that there is an isomorphism of the boolean
lattice of subsets S ⊂ Oi with [ f (v), f (w)] where S 7→ f (u1)

(∏
j∈S s j

)
f (u2).

The desired isomorphism is given by sending S→O ′ where O ′={ f (u)β j | j ∈ S}.
For (3), let w = si1 · · · sik be a reduced decomposition. Then the image f (w)=

f (si1) · · · f (sik ) is length-additive by Theorem 4.2. Therefore the cover f (w)sγ l
f (w) is obtained by removing some unique reflection in f (sir ) for some unique r .
Let u1= si1 · · · sir−1 , i= ir , and u−1

=u2= sir+1 · · · sik . Letting α=uαi ∈1
+
re(g(A))

we find that the π -orbit O of γ is the orbit associated with the cover vlw where
v = u1u2.

The proof of (4) is similar. �

The following result is proved similarly.

Corollary 4.4. Let v ≺ siv in WA for some i ∈ I . Then there is a poset isomor-
phism from the boolean lattice of subsets O ′ of Oi , to the interval [ f (v), f (siv)]

of (WB,�) given by O ′ 7→
(∏

j∈O ′ s j
)

f (v).

4C. Pairings. The action of WB on PB descends to P ′B , and similarly for WA.

Theorem 4.5.

(1) For all α∨ ∈ Q∨A and λ ∈ P ′A we have

〈ϕ(α∨) , ψ(λ)〉 = κ 〈α∨ , λ〉. (18)

(2) For all 3 ∈ P ′A and w ∈WA we have

ψ(w3)= f (w)ψ(3). (19)

(3) Let w ∈WA, 3 ∈ P ′A and i ∈ I . Then

〈ϕ(α∨) , f (w)ψ(3)〉 = κ〈α∨ , w3〉 (20)

and in particular we have

〈β̃∨i , f (w)ψ(3)〉 = κ〈α∨i , w3〉. (21)

(4) The map ϕ sends Q∨A ∩ Z(g(A)) into Z(g(B)).

Proof. By linearity it suffices to check (18) for α∨ = α∨i and λ = 3k for i, k ∈ I .
We have

〈ϕ(α∨i ) , ψ(3k)〉 =
κ

ok
〈β̃∨i , ω̃k〉 =

κ

ok
oiδik = κδik = κ〈α

∨

i ,3k〉.

This implies (18).
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It suffices to prove (19) for w = s A
i ′ and 3=3i . For i = i ′ we have

ψ(si3i )= ψ(3i −αi )=
κ

oi
(ω̃i − β̃i )

by (14) and (15). Since π is admissible,
(∏

j∈Oi
s B

j

)
ω̃i = ω̃i − β̃i , giving the

required result. The case that i 6= i ′ is even easier.
Equation (20) follows immediately from (19) and (18) with λ= w3. Equation

(21) is implied by (20) with α = αi and (16).
Let K ∈ Q∨A. For any i ∈ I and j ∈ Oi , by (18), (15), and the π -invariance of

ϕ(K ), we have

κ〈ϕ(K ) , β j 〉 =
κ

oi
〈ϕ(K ) , β̃i 〉 = κ〈K , αi 〉. (22)

It follows that ϕ sends Z(g(A)) into Z(g(B)). �

Remark 4.6. Let A be a GCM of affine type, obtained as in [Lusztig 1993] by
folding (B, π). Then the canonical central elements and null roots are related by
ϕ(K A) = K B and ψ(δA) = r∨δB where r∨ is the “twist” of the dual affine root
system X (r∨)

N to that of A in the nomenclature of [Kac 1990].

4D. Folding and insertion. Let A= (ai j | i, j ∈ I ) be a GCM with associated Kac–
Moody algebra g(A), i ′ ∈ I , and K ∈ Z+(g(A)). Suppose A is obtained by folding
the GCM B = (bi j | i, j ∈ J ) with admissible automorphism π . Choose j ′ ∈ Oi ′ .
We shall construct the dual graded graph (0A

s (3i ′), 0
A
w(K )) from the dual graded

graph (0B
s (ω j ′), 0

B
w(ϕ(K ))). The construction only requires the subset Wπ

B ⊂WB

of π -invariant vertices, and the edges incident to them, grouped according to their
π -orbits.

Remark 4.7. The choice of j ′ ∈ Oi ′ is immaterial; if one chooses another element
of Oi ′ then the resulting type B structures are transported to each other by a power
of the automorphism π .

Proposition 4.8. Let vlw in WA with α ∈ 1+re(g(A)) such that w = vsα and let
O ⊂ 1+re(g(B)) be the associated orbit of the cover v l w, defined in Corollary
4.3. Then the following sets have the same cardinality.

(1) Marked edges v
m
→ w in 0A

s (3i ′).

(2) The disjoint union over γ ∈ O of the sets { f (w)sγ
M
→ f (w)} of marked edges

going into f (w) in the interval [ f (v), f (w)] in 0B
s (ω j ′).

(3) The disjoint union over γ ∈ O of the sets { f (v)
M
→ f (v)sγ } of marked edges

coming out of f (v) in the interval [ f (v), f (w)] in 0B
s (ω j ′).
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Proof. By Corollary 4.3 the last two sets are in bijection. Let u ∈ WA and i ∈ I
be such that α = uαi . Then O = { f (u)β j | j ∈ Oi }. Using Theorem 4.5 and the
π -invariance of

∑
γ∈O γ

∨, we have∑
γ∈O

m B
ω j ′
( f (w)sγ , f (w))=

∑
γ∈O

〈γ ∨ , ω j ′〉 =
1

oi ′

∑
γ∈O

〈γ ∨ , ω̃i ′〉

=
1
κ

∑
γ∈O

〈γ ∨ , ψ(3i ′)〉 =
1
κ

∑
j∈Oi

〈 f (u)β∨j , ψ(3i ′)〉

=
1
κ
〈β̃∨i , f (u)−1ψ(3i ′)〉

= 〈α∨i , u−13i ′〉 = 〈α
∨ ,3i ′〉 = m A

3i ′
(wsα, w). �

(23)

By definition the graded graph 0B
s (ω j ′)

π has vertex set f (WA) = Wπ
B ⊂ WB ,

grading function h( f (v))= `(v) for v ∈WA, and for every cover vlw in WA, an
edge from f (v) to f (w) whose multiplicity is the common number in Proposition
4.8. It is completely specified by the π -invariant elements of 0B

s (ω j ′) and their
incident edges.

Corollary 4.9. The graded graphs 0A
s (3i ′) and 0B

s (ω j ′)
π are isomorphic.

Proof. By Theorem 4.2 the map f : WA → Wπ
B is a grade- and edge-preserving

bijection. The edge multiplicities agree by Proposition 4.8. �

We call0B
s (ω j ′)

τ the folded strong graph and its tableaux folded strong tableaux.

Proposition 4.10. Let v ∈ WA and i ∈ I \Des(v) so that v ≺ w = siv. Fix any
j ∈ Oi . Then the following sets have the same cardinality.

(1) The marked edges v
m′
→ w in 0A

w(K ).

(2) The marked edges f (v)
M ′
→ s j f (v) in 0B

w(ϕ(K )).

(3) The marked edges s j f (w)
M ′
→ f (w) in 0B

w(ϕ(K )).

Proof. By a proof similar to the one for (22) and recalling the definition (3) we
have

n A
K (v, siv)= 〈K ,3i 〉 = 〈ϕ(K ) , ω j 〉 = nB

ϕ(K )( f (v), s j f (v)). (24)

This proves the proposition. �

By definition the graded graph 0B
w(ϕ(K ))

π has vertex set f (WA)=Wπ
B , grading

function h( f (w)) = `(w), and for each v ∈ WA and i ∈ I \Des(v), an edge from
f (v) to f (siv) whose multiplicity is the common multiplicity in Proposition 4.10.

Corollary 4.11. The graded graphs 0A
w(K ) and 0B

w(ϕ(K ))
π are isomorphic.
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We call 0B
w(ϕ(K ))

π the folded weak graph. Its tableaux are called folded weak
tableaux.

Corollary 4.12. (0B
s (ω j ′)

π , 0B
w(ϕ(K ))

π ) and (0A
s (3i ′), 0

A
w(K )) are isomorphic

dual graded graphs.

Proof. This follows immediately from Corollaries 4.9 and 4.11. �

Using a differential bijection 8B for (0B
s (ω j ′), 0

B
w(ϕ(K ))), we construct a dif-

ferential bijection for the folded dual graded graph (0B
s (ω j ′)

π,0B
w(ϕ(K ))

π ), which,
by the identifications given in Propositions 4.8 and 4.10, yields a differential bi-
jection 8A for (0A

s (3i ′), 0
A
w(K )).

By Remark 2.12 the off-diagonal part 8A
vw for v 6= w in WA, has already been

specified.
For the diagonal terms, since Des( f (v)) =

⊔
i∈Des(v)Oi , by (23) in the special

case of a cover of the form siv = vsα m v with α = v−1αi ∈1
+
re and (24) we have∑

i∈I\Des(v)

m A
3i ′
(v, siv) n A

K (v, siv)

=

∑
j∈J\Des( f (v))

m B
ω j ′
( f (v), s j f (v)) nB

ϕ(K )( f (v), s j f (v)). (25)

For i ∈ Des(v) and j ∈ Oi , we have vsα = siv ≺ v where α = v−1αi ∈ −1
+
re, and

an analogous computation yields∑
i∈Des(v)

m A
3i ′
(siv, v)n A

K (siv, v)

=

∑
j∈Des( f (v))

m B
ω j ′
(s j f (v), f (v)) nB

ϕ(K )(s j f (v), f (v)). (26)

Using the bijections of Propositions 4.8 and 4.10, we obtain bijections DUA
v →

DUB
f (v) and UDA

v → UDB
f (v). Under these identifications we obtain a differential

bijection 8A for (0A
s (3i ′), 0

A
w(K )).

Proposition 4.13. Let the GCM A = (ai j | i, j ∈ I ) be obtained by folding from
the GCM B = (bi j | i, j ∈ J ) with admissible automorphism π . Then for any
i ′ ∈ I and j ′ ∈ Oi ′ , a differential bijection 8B for (0B

s (ω j ′), 0
B
w(ϕ(K )) restricts to

a differential bijection 8A for the pair of dual graded graphs (0A
s (3i ′), 0

A
w(K )).

We shall give an extensive example in Section 5.

Remark 4.14. It is possible to axiomatize conditions for an arbitrary pair of dual
graded graphs (0, 0′) and an automorphism π of (0, 0′) to give rise to a folded
insertion in the manner we have described for Kac–Moody graded graphs. The
key properties needed are abstract graph-theoretic formulations of Theorem 4.2
and Corollary 4.3. Since we have no interesting examples that do not come from
Kac–Moody dual graded graphs, we will not make this precise.
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5. Affine type C combinatorics

In this section we consider folded insertion for the affine root system C (1)
n . Folding

works for the entire Weyl group. However here we shall restrict our discussion to
the explicit description of folded insertion for the maximal parabolic quotient of
the affine Weyl group given by the dual graded graphs (0s(3i ′), 0w(K ))i

′

using
2n-cores, where i ′ ∈ I is any Dynkin node. In the limit n→∞ one obtains a new
Schensted bijection for every integer i , which for i = 0 coincides with “standard”
Sagan–Worley insertion into shifted tableaux.

Let I ={0, 1, . . . , n} be the Dynkin node set and (ai j ) the GCM, with ai i = 2 for
i ∈ I , ai,i+1= ai+1,i =−1 for 1≤ i ≤ n−2, a01= an,n−1=−1, a10= an−1,n =−2,
and other entries zero. Using the recipe in Section 2B, the Weyl group Wn has
generators si for i ∈ I satisfying s2

i = 1 for i ∈ I and (si s j )
mi j = 1 for i, j ∈ I with

i 6= j , where m01 = mn−1,n = 4, mi,i+1 = 3 for 1 ≤ i ≤ n − 2, and mi j = 0 for
|i − j | ≥ 2.

5A. Folding for C(1)
n . Let A = C (1)

n and B = A(1)2n−1 denote the two GCMs. We
use the notation of Section 4.

Let π be the admissible automorphism of B given by j 7→ 2n− j where indices
are taken modulo 2n. We index the π -orbits by O0 = {0}, On = {n}, and Oi =

{i, 2n− i} for i ∈ I \ {0, n}. It is easy to check that A is obtained from (B, π) by
folding.

Let K be the canonical central element for C (1)
n . Let i ′ ∈ I and j ′ ∈ Oi ′ . We

define folded insertion for the dual graded graph (0A
s (3i ′), 0

A
w(K ))

i ′ , realized by
LLMS insertion for (0B

s (ω j ′), 0
B
w(ϕ(K ))). We call this induced folded insertion

the “LLMS insertion for W i ′
n ” (even though it also depends on j ′).

5B. 2n-cores. As before, fix i ′ ∈ I and j ′ ∈ Oi ′ . The elements of the parabolic
quotient W i ′

n may be realized by 2n-cores as follows.
By Proposition 3.1 there is a bijection c : S̃0

2n → C2n . Using a rotational auto-
morphism of the Dynkin diagram of type A(1)2n−1, for any k ∈ J one may define the
k-action of S̃2n on C2n , denoted w ·k λ, which is the same as before except that the
diagonal of the cell (i, j) is j − i + k. Since the stabilizer of ∅ under the k-action
of S̃2n on C2n is (S̃2n)J\{k}, there is a bijection ck : S̃k

2n → S̃2n/(S̃2n)J\{k}→ C2n

defined by ck(w)= w ·k ∅.
Define the map sci ′ :Wn→C2n by w 7→ f (w) · j ′∅, where f :Wn→ S̃2n is the

Weyl group homomorphism of Section 4. Note that f (W i ′
n )⊂ S̃ J\Oi ′

2n .
Denote by C

j ′

2n the image of sci ′ .
The following result is the C (1)

n -analogue of (part of) Proposition 3.1.

Proposition 5.1. The map sci ′ restricts to a bijection W i ′
n → C

j ′

2n . For v,w ∈ W i ′
n

we have v ≤ w if and only if sci ′(v)⊂ sci ′(w).
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Proof. The stabilizer of W = Wn acting on ∅ is equal to WI−{i ′}, so the first
statement is immediate. Let v,w ∈ W i ′

n . The following are equivalent: (1) v ≤
w; (2) f (v) ≤ f (w); (3) f (v)(S̃2n)J\{ j} ≤ f (w)(S̃2n)J\{ j} for all j ∈ Oi ′ ; (4)
f (v)(S̃2n)J\{ j ′} ≤ f (w)(S̃2n)J\{ j ′}; (5) sci ′(v)⊂ sci ′(w). (1) and (2) are equivalent
by Theorem 4.2. (2) and (3) are equivalent by Proposition 5.2 below applied to the
data f (v), f (w), and J \Oi ′ in S̃2n . Since f (v) and f (w) are π -invariant, (3) and
(4) are equivalent, because j ′ ∈ Oi ′ and the condition for j is invariant as j runs
over a π -orbit. (4) and (5) are equivalent by Proposition 3.1. �

For a Coxeter group W and a parabolic subgroup WJ , the strong (Bruhat) order
denoted ≤ on the quotient W/WJ is the partial order naturally induced from the
strong order on W J . The following result is due to [Deodhar 1977].

Proposition 5.2. Let W be a Coxeter group with simple generators indexed by P
and let Q ⊂ P. Suppose x, y ∈ W Q . Then x ≤ y if and only if xWQ′ ≤ yWQ′ for
every maximal parabolic subgroup WQ′ ⊃WQ .

We describe C0
2n explicitly in Section 5D, together with an explicit description

of LLMS insertion for W 0
n . It would be interesting to obtain an explicit description

of C
j ′

2n for arbitrary j ′. The explicit description of the Chevalley coefficients in a
manner similar to Proposition 3.1, and of LLMS insertion for W i ′

n appears to be
rather subtle.

5C. Large rank limit of folded LLMS insertion. We now consider the limit of
LLMS insertion for W i ′

n as n goes to ∞, in such a way that the nodes near 0 in
A(1)2n−1 are stable; for this purpose we label these nodes . . . ,−2,−1, 0, 1, 2, . . . .

Let A±∞ be the Kac–Moody algebra1 whose Dynkin diagram has vertex set
J∞ = Z, with Cartan matrix (bi j ) such that bi i = 2 and bi,i+1 = bi+1,i = −1, and
bi j = 0 otherwise. Let S±∞ be its Weyl group: it has generators s j for j ∈ J∞,
with relations s2

j = 1, (s j s j+1)
3
= 1, and (si s j )

2
= 1 for |i − j | ≥ 2. Then S±∞

acts on partitions: s j ·λ is obtained from λ by adding the unique λ-addable cell in
diagonal j if it exists, and removing the unique λ-removable cell in diagonal j if
it exists (remembering the shift in diagonal index by j ′). Then S±∞∅ = Y is the
set of all partitions and there is a bijection c j ′ : S

j ′
±∞
∼= Y.

Let C∞ be the Kac–Moody algebra with Dynkin node set I∞ =Z≥0 and Cartan
matrix ai j with ai i = 2 for i ∈ I∞, ai,i+1 = ai+1,i =−1 for i ∈ I∞ \ {0}, a01 =−1
and a10=−2. Then its Weyl group W∞ has generators si for i ∈ I∞ with relations
s2

i = 1, (s0s1)
4
= 1, (si si+1)

3
= 1 for i ∈ I∞\{0}, and (si s j )

2
= 1 for |i− j | ≥ 2. As

before, there is an injective homomorphism f : W∞→ S±∞ given by f (s0) = s0

and f (si )= si s−i for i > 0.

1We allow infinite Dynkin diagrams in a formal manner.
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Then W∞ acts on partitions via f . Define Yi ′
=W∞ ·∅. The limit of Proposition

5.1 gives a bijection sci ′ : W i ′
∞
∼= Yi ′ . The strong and weak orders on C2n ∼= S̃ j ′

2n
both converge to Young’s lattice Y. The weak order on C

j ′

2n
∼=W i ′

n converges to the
weak order on Yi ′ ∼=W i ′

∞
, in which a cover λ ⊂ siλ adds cells in diagonals i and

−i if i > 0 or just the cell in diagonal 0 if i = 0.

Proposition 5.3. Suppose λ ⊂ µ is a strong cover in Yi ′ ∼= W i ′
∞

with sc−1
i ′ (λ) =

wlwsα= sc−1
i ′ (µ). If sα is conjugate to s0 then the Chevalley coefficient 〈α∨ ,3i ′〉

is equal to 1 and µ/λ has a single connected component which is necessarily a
ribbon. Otherwise suppose f (sα)= sβsβ ′ . Then the Chevalley coefficient 〈α∨ ,3i ′〉

is equal 1 or 2 depending on whether one or both of sc(wsβ) and sc(wsβ ′) strictly
contain λ. Furthermore, each strict containment has a single connected component
which is a ribbon.

Proof. That the skew partitions in question contain a single connected component
which equals a ribbon follows from the fact that they are obtained by the action
of a reflection on a partition, which always changes the shape by a ribbon. This
follows from the edge sequence discussion in Section 3.

Suppose sα is conjugate to s0 and f (sα) = sβ . Every strong cover in Y has
Chevalley coefficient equal to 1 or 0 (since a single box is added). Now write
f (w) = xy so that f (wsα) = xs0 y in S±∞. The Chevalley coefficient 〈α∨ ,3i ′〉

is equal to the Chevalley coefficient 〈β∨ , ω j ′〉 which is equal to the Chevalley
coefficient of the cover y ls0 y in S±∞ (with respect to ω j ′). Since µ 6= λ, we must
have y ·∅ ( (s0 y) ·∅. Thus the required Chevalley coefficient must be nonzero,
and hence equal to 1. We have used the calculation 〈y−1β∨0 , ω j ′〉 = 〈β

∨

0 , yω j ′〉 =

〈β∨0 , y′ω j ′〉, where y′ = c−1
j ′ (y ·∅) is the parabolic component” of y.

The proof for f (sα) = sβsβ ′ follows in a similar manner. The only delicate
issue is to show that if 〈β∨ , ω j ′〉 = 1 then λ ⊂ sc(wsβ) is a strict inclusion. But
〈β∨ , ω j ′〉 = 1 implies that (sβ ·∅) 6=∅ so that (wsβ ·∅) 6= (w ·∅). �

Figure 3 shows the case of a domino appearing in the strong tableau P , corre-
sponding to the strong cover s2s0s1 l s2s1s0s1 in W 1

∞
.

In the case the Chevalley coefficient described in Proposition 5.3 is equal to 2,
the difference µ/λ is a union of two ribbons, since sβ and sβ ′ commute. We have
not shown that these ribbons do not touch, so the difference µ/λ can potentially
be written as the union of the two ribbons in two ways, corresponding to the left
action of s f (w)βs f (w)β ′ and s f (w)β ′s f (w)β . To obtain a strong tableau in Yi ′ , we
must mark a ribbon for each strong cover which consists of two ribbons.

For the differential bijection, we note that for λ ∈ Yi ′ , once again, UDλ is in
natural bijection with the set of λ-addable corners and DUλ is in natural bijection
with the set of λ-removable corners; in this context the corners are grouped by diag-
onals of the form ±i for various i . Using the differential bijection in Example 2.9,
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P =
4′
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1 3

Q =
4
3 4
1 2

Figure 2. Folded insertion of σ = 2431 for i ′ = j ′ = 1.

we obtain a folded insertion for the limit Yi ′ of C
j ′

2n . It defines a bijection from
permutations Pn(1) to pairs (P, Q) where P and Q are n-step strong and weak
tableaux with respect to Yi ′ .

For example, we let i ′ = j ′ = 1 and compute the folded insertion of σ = 2431;
see the graph G in Figure 2. For the meaning of ⊗ see (9) and Example 3.2. The
arrows represent strong covers, and an arrow is labeled with − if the strong cover
adds two nonadjacent cells and the marked cell is in a more negative diagonal. The
unique arrow labeled with −, corresponds to the entry 4′ in P . Strictly speaking
we should mark one ribbon for each number used, but when there is no choice we
have omitted the marking.

Again, with i ′ = j ′ = 1 we compute the folded insertion of 4213; see the graph
G in Figure 3. Note that there is a unique strong cover that is not a weak cover,
corresponding to the domino in P containing 4s.

5D. Sagan–Worley insertion. We now consider the important case that i ′=0. We
must have j ′ = 0. The following result is straightforward.

Lemma 5.4. The set C0
2n is the subset of C2n of elements fixed by the transpose tr.

Using the fact that f (W 0
n ) ⊂ S̃0

2n , the next result is an easy consequence of
Propositions 4.13 and 3.1. A similar statement holds for i ′ = n.

Proposition 5.5. Suppose λ ⊂ µ is a strong cover in C0
2n
∼= W 0

n with sc−1
0 (µ) =

sc−1
0 (λ)sα. Then the Chevalley coefficient 〈α∨ ,30〉 is equal to the total number of
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Figure 3. Folded insertion of σ = 4213 for i ′ = j ′ = 1.

components of ν/λ for a strong cover λ⊂ ν in C2n ∼= S̃0
2n satisfying λ⊂ ν ⊂ µ. In

particular, if λ ⊂ µ is also a left weak cover in C0
2n
∼= W 0

n with µ = siλ for i ∈ I ,
then 〈α∨ ,30〉 is equal to the number of λ-addable corner cells of residue i or −i
modulo 2n.

Thus for i ′= 0, a folded strong tableau of shape λ∈C0
2n is a sequence of strong

covers in C0
2n
∼= W 0

n from ∅ to λ, such that every cover has a marked component.
A folded weak tableau of shape λ∈C0

2n is a sequence of weak covers in C0
2n
∼=W 0

n
going from ∅ to λ; no marking is necessary. With these explicit descriptions we
have the following:

Corollary 5.6. LLMS insertion induces a bijection from the set of permutations
Pn(1) to pairs (P, Q) of tableaux of the same shape λ∈C0

2n , where `(sc−1
0 (λ))=n,

P is a folded strong tableau and Q a folded weak tableau.

Again we now consider the n →∞ limit. In this case the limit of C0
2n is the

set Y0 of partitions fixed under the transpose. The strong and weak orders both
converge to the same order on Y0. Since added cells are in transpose-symmetric
positions, when marking a strong cover of the form λl siλ, one must mark either
the added cell in diagonal i or −i if i > 0.

Folded weak tableaux Q are in obvious bijection with standard shifted tableaux
Q∗, given by taking only the part on one side of the diagonal. A similarly obvious
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bijection exists from folded strong tableaux to standard shifted tableaux in which
off-diagonal entries may or may not have a mark; we choose the bijection so that
a mark in a shifted tableau P∗ indicates that the corresponding cell with negative
diagonal index is marked in the folded strong tableau P .

Thus we have the correct kinds of tableaux to compare with Sagan–Worley in-
sertion.

Example 5.7. Let n = 7 and σ = 2673541. See Example 3.2 for the way to
interpret σ and the symbols ⊗. We draw the graph Gi j for the folded insertion of
σ . We draw arrows to represent strong covers and place an asterisk on an edge
if the marked cell is on a negative diagonal. P and Q are the folded strong and
weak tableaux respectively. P∗ and Q∗ are the shifted tableaux corresponding to
P and Q.

By reformulating Sagan–Worley insertion using Fomin’s setup, we obtain the
following theorem. Note the exchange of P∗ and Q∗.

Theorem 5.8. Let σ map to (P, Q) under folded insertion. Then the pair (Q∗, P∗)
of shifted tableaux, is the image of σ−1 under Sagan–Worley insertion.

Remark 5.9. In [1989, Proposition 6.2], Haiman relates Sagan–Worley shifted
insertion with left-right insertion. It is natural to ask whether one can connect
Sections 2E and 4D in a similar manner. Unfortunately, a straightforward general-
ization of Haiman’s result does not appear to be possible. For example when π has
order 2, one would need to relate the left-right (or mixed) insertion of a colored
permutation on 2r letters with folded insertion of a permutation on r letters. Length
considerations show that this can be done only if each orbit of π on J has order 2,
which nearly never happens in our setup.

6. Distributive parabolic quotients

6A. Proctor’s classification. Let W be a finite irreducible Weyl group with simple
generators {si | i ∈ I } and set of reflections T . Recall the notations WJ and W J

from before Proposition 2.16. We have

W J
= {w ∈W | w <wsi for any i ∈ J }.

Proctor [1984] classified the cases when W J is a distributive lattice under the weak
order. In all such cases, Stembridge [1996] showed that the weak and strong orders
agree on W J and that WJ is a maximal parabolic subgroup of W , that is, J = I \{i}
for some i ∈ I . We call such W J

:=W i distributive parabolic quotients.

Theorem 6.1 [Proctor 1984]. The distributive parabolic quotients are:

(1) W ' An; J = I \ {i} for any i ∈ I .
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Figure 4. Growth diagram illustrating Theorem 5.8.

(2) W ' Bn; WJ ' Bn−1 or WJ ' An−1.

(3) W ' Dn; WJ ' Dn−1 or WJ ' An−1.

(4) W ' G2; J = I \ {i} for any i ∈ I .

In [Stembridge 1996], it is shown that these cases are also exactly the parabolic
quotients W J of Weyl groups such that every elementw∈W J is fully commutative,
that is, every two reduced decompositions of w can be obtained from each other
using just the relations of the form si s j = s j si for i, j ∈ I .
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6B. Distributive labeled posets. We need a slightly more precise form of the re-
sults of Proctor and Stembridge. If Q is a finite poset we let J (Q) denote the
poset of (lower) order ideals of Q. The poset J (Q) is a distributive lattice and
the fundamental theorem of finite distributive posets [Stanley 1999] says that the
correspondence Q 7→ J (Q) is a bijection between finite posets and finite distribu-
tive lattices. Suppose P is a finite poset and ω : {x l y} → A is a labeling of the
edges of the Hasse diagram of P with elements of some set A. We call (P, ω) an
edge-labeled poset. We say that (P, ω) is a distributively labeled lattice if

(1) P = J (Q) is a distributive lattice; and

(2) there is a vertex (element) labeling π : Q→ A such that

ω(I \ {q}l I )= π(q)

for any I ∈ J (Q) and q maximal in I .

If W is a Weyl group, we may label the edges of the Hasse diagram of the weak
order (W,≺) with simple reflections: the cover w ≺ siw is labeled with si . We
denote the resulting edge-labeled poset by Wweak. Similarly define Wstrong to be the
strong order where wlwt is labeled with t ∈ T . These labeled posets restrict to
give labeled posets W i

weak and W i
strong. Note that each cover relation in W i under

either order is itself a cover relation in W . Thus W i
weak and W i

strong are induced
subgraphs of Wweak and Wstrong.

Theorem 6.2. Suppose W i is a distributive parabolic quotient. Then the strong
and weak orders on W i coincide. In particular W i

weak and W i
strong are distributively

labeled lattices.

Stembridge [1996, Theorem 2.2] proved that W i
weak is a distributively labeled lat-

tice. For the sake of completeness we give a self-contained proof of Theorem 6.2.

6C. Cominuscule parabolic quotients. Let 8 be an irreducible finite root system
and W be its Weyl group. Let8=8+t8− denote the decomposition of the roots
into the disjoint subsets of positive and negative roots. Let θ =

∑
i∈I aiαi denote

the highest root of 8. We say that i ∈ I is cominuscule if ai = 1.
It can be checked case-by-case using Theorem 6.1 that the distributive parabolic

quotients W i correspond to cominuscule nodes i ∈ I except in the cases W =
G2, W i

= Bn/An−1 or W i
= Cn/Cn−1. In the latter two cases, one may use

the isomorphic quotients given by their duals Cn/An−1 and Bn/Bn−1, which are
cominuscule.

For now we suppose that a cominuscule node i ∈ I has been fixed. If α and β
are two roots, we say α ≥ β if α−β is a sum of positive roots. Recall that θ is the
unique maximal root under this order. Let 8(i) denote the poset of positive roots
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which lie above αi . Clearly θ ∈8(i). The inversion set of w ∈W is defined by

Inv(w)= {α ∈8+ | wα < 0}.

Lemma 6.3. Suppose α, β ∈8(i). Write sαβ = β+kα where k =−〈α∨ , β〉. Then
k ∈ {0,−1,−2} and the following facts hold:

(1) If α and β are incomparable then sαβ = β.

(2) If α > β then sαβ is equal to one of the following: (i) β; (ii) −γ where
γ ∈8+ \8(i); or (iii) −γ where γ > α.

Proof. To obtain the bounds on k we observe that for all roots γ ∈8, −θ ≤ γ ≤ θ ,
so that the coefficient of αi in γ , lies between the corresponding coefficients in −θ
and θ , which are −1 and 1 by the assumption that i is cominuscule.

Suppose that α and β are incomparable. Then β − α is neither positive nor
negative and hence not a root. Since the roots in 8 occur in strings, we must have
k = 0.

If α > β, the three cases correspond to k = 0, k =−1, and k =−2. �

For our results on distributive parabolic quotients, we require the following re-
sult, which is a slight strengthening of [Thomas and Yong 2006, Proposition 2.1,
Lemma 2.2]. We include a self-contained proof, part of which is the same as the
proof of [Thomas and Yong 2006, Proposition 2.1]. In particular we prove directly
that the edge labeled poset W i

strong defined in Section 6B is a distributively labeled
lattice.

Proposition 6.4. The map w 7−→ Inv(w) defines an isomorphism of posets Inv|W i :

(W i ,≤)→ J (8(i)). Moreover, if u lw for u, w ∈ W i , then writing w = usα for
α ∈8+, we have α ∈8(i) and Inv(w)= Inv(u)t {α}.

Proof. Let w ∈ W i . First we show that Inv(w)⊂8(i). Suppose that γ ∈ Inv(w) \
8(i). If γ = αk where k 6= i this means wsk <w which contradicts the assumption
that w ∈ W i . Otherwise γ = δ + ρ where δ, ρ ∈ 8+ \8(i). Since wγ < 0 we
have wδ < 0 or wρ < 0 so the same argument applies. Repeating we obtain a
contradiction.

Now we show that Inv(w) ∈ J (8(i)). Suppose α ∈ Inv(w) and β < α. Then
γ = α−β ∈8+\8(i) since the coefficient of αi in γ is zero. Since Inv(w)⊂8(i),
we have γ 6∈ Inv(w), that is, wα−wβ = wγ > 0. Since wα < 0 this shows that
wβ < 0 as desired. Thus Inv|W i is well-defined.

Next we show that Inv|W i sends covers to covers. Let u lw with u, w ∈ W i

and α ∈ 8+ such that w = usα. Then 0 > wα = −uα so α ∈ Inv(w) \ Inv(u).
For all β ∈ Inv(u), since Inv(u) ∈ J (8(i)), α > β or α > β. Either way we
have wβ = usαβ < 0, since by Lemma 6.3, sαβ is either equal to β or −γ for
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γ ∈8+ \ Inv(u). That is, Inv(u)⊂ Inv(w). Since |Inv(w)| = |Inv(u)|+1 it follows
that Inv(w)= Inv(u)t{α}, so that Inv(u)⊂ Inv(w) is a covering relation in J (8(i)).

Next we show that every covering relation in J (8(i)) is the image of a covering
relation in W i , and in particular, that Inv|W i is onto. An arbitrary covering relation
in J (8(i)) is given by S \ {α} ⊂ S where S ∈ J (8(i)) and α is maximal in S.

By induction there is a u ∈ W i such that Inv(u) = S \ {α}. Let w = usα. It
suffices to show that

Inv(w)= S and w ∈W i .

The second claim follows from the first since none of the αk for k 6= i lie in Inv(w).
For the first claim, since α ∈ 8(i) \ Inv(u), we may argue as before to show that
S = Inv(u)t {α} ⊂ Inv(w).

For the opposite inclusion, suppose β ∈ 8+ \ S. We must show that wβ > 0.
Write sαβ = β + kα for k ∈ Z. If k = 0 then we are done as before. If k > 0 then
sαβ > α, so that sαβ ∈8+ \ S since S is an order ideal. But then sαβ /∈ Inv(u) so
wβ > 0. So we may assume that k < 0.

Suppose first that β ∈ 8(i). We may assume that α and β are comparable by
Lemma 6.3. Since S is an order ideal we have β >α. If k=−1 then sαβ=β−α ∈
8+\8(i) since the coefficient of αi is 1 in both α and β. In particular sαβ 6∈ Inv(u)
so wβ > 0. Otherwise k =−2. Then sαβ = β − 2α < 0. We have 0< β − α < α
and −sαβ = 2α− β = α− (β − α) < α. Since S is an order ideal it follows that
−sαβ ∈ Inv(u) and wβ = usαβ > 0 as desired.

Otherwise β ∈ 8+ \8(i). Since i is cominuscule we have k ∈ {−1, 0, 1}. We
assume k =−1 as the other cases were already done. Then sαβ = β−α < 0 since
its coefficient of αi is −1. Moreover α− β ∈ 8(i). Since α > α− β and S is an
order ideal, it follows that α−β ∈ Inv(u). Therefore wβ = usαβ > 0 as desired.

We have shown that every cover in J (8(i)) is the image under Inv|W i of a cover
in (W i ,≤).

The bijectivity of Inv|W i follows by induction and the explicit description of the
image of a cover under Inv|W i . �

Proof of Theorem 6.2. For the case W =G2, both labeled posets W i
weak and W i

strong

are chains, so the result follows immediately. Thus we may assume that W i is a
cominuscule parabolic quotient.

For W i
strong the result follows from Proposition 6.4. We label the vertices of8(i)

by reflections, defining π :8(i)→ T by π(α)= sα. Each cover wlwsα in W i
strong

corresponds to adding α ∈8(i) to Inv(w). Thus the edge label of wlwsα agrees
with the vertex label π(α)= sα.

For the weak order W i
weak let us consider two coverswlwsα=sβw and vlvsα=

sβ ′v which have the same label sα in W i
strong. We claim that sβ = sβ ′ = sk for some

k ∈ I . The elements w and v differ by right multiplication by some sγ ’s where
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γ ∈8(i) is incomparable with α; this is accomplished by passing between w or v
to the element u ∈ W i such that Inv(u) = Inv(w)∩ Inv(v). By Lemma 6.3 these
sγ ’s commute with sα, and sowα= vα. This gives us a map f :8(i)→8+ defined
by f (α)= β = wα, which does not depend on w ∈W i as long as wlwsα.

To show that f (α) is simple for each α ∈8(i), consider a reduced word wsα =
sk1sk2 · · · skl . We know that w(r) = skr · · · skl ∈ W i and that Inv(w(r)) differs from
Inv(w(r+1)) by some root in 8(i) since w(r+1) l w(r). For some value r = r∗,
this root is α and by the well-definedness just proved f (α) = αkr∗ , since w(r

∗)
=

w(r
∗
+1)sα. This shows that the strong order and weak order on W i coincide, and

that W i
weak is isomorphic to the poset of order ideals of 8(i) where 8(i) is labeled

with π(α)= f (α). �

7. Distributive subgraphs of Kac–Moody graded graphs

In this section we apply Theorem 6.2 to the dual graded graphs constructed in
Section 2.

Let g = g(A) be the Kac–Moody algebra associated to the generalized Cartan
matrix A and let W be its Weyl group. Let Wfin⊂W be a finite parabolic subgroup
corresponding to some index set I ′ ⊂ I . Now suppose that Wfin has a distributive
parabolic quotient as in Theorem 6.1 corresponding to J = I ′ \ {i} ⊂ I ′. We let
W J
⊂Wfin denote the distributive parabolic quotient (we use W J instead of W i in

this section since W J is not a maximal parabolic quotient of W , but of Wfin).
Now let (3, K ) ∈ P+ × Z+ and (0s(3), 0w(K )) be the pair of dual graded

graphs constructed in Section 2. By restricting to the set of vertices W J
⊂ Wfin ⊂

W we obtain the induced pair of graded graphs (0s(3), 0w(K ))J . These graded
graphs are not dual (see Remark 2.1) but they still have rich combinatorics.

The distributive lattice (W J ,≤) has two edge labelings. Recall that in W J
strong,

the edge vlw= vsα is labeled either by the reflection sα, while in the strong Kac–
Moody subgraph 0 J

s (3), the edge vlw = vsα is labeled by the integer 〈α∨ ,3〉.
Similarly the distributive lattice (W J ,�) has two edge labelings; in W J

weak, the
edge v ≺ s jv is labeled by the simple reflection s j , while in the weak Kac–Moody
subgraph0 J

w(K ), the edge v≺ s jv is labeled by the integer 〈K ,3 j 〉. The following
result is an immediate consequence of Theorem 6.2.

Theorem 7.1. The induced graded subgraphs 0 J
s (3) and 0 J

w(K ) are distributively
labeled lattices.

Thus 0 J
s (3) (resp. 0 J

w(K )) can be thought of as the poset of order ideals in
some integer labeled poset P J (resp. Q J ). The 3-strong and K -weak tableaux
can be thought of as linear extensions of P J and Q J with additional markings.

In the rest of the paper, we give examples of the posets P J and Q J and relate
them to classically understood tableaux. In each case we let g be of untwisted affine
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Root system Dynkin Diagram

An
◦ ◦ ◦ ◦ ◦ ◦•

1 2 · · · i · · · n

Cn, n ≥ 3
◦ ◦ ◦ ◦ ◦ ◦<•
1 2 · · · · · · n

Dn, n ≥ 4 ◦ ◦ ◦ ◦ ◦HH
��◦

◦1 2 · · · · · · n−1

n◦
•

E6 ◦ ◦ ◦ ◦ ◦• ◦

◦

1 3 4 5

2

6

E7 ◦ ◦ ◦ ◦ ◦ •◦

◦

1 3 4 5

2

6 7

Figure 5. Some cominuscule parabolic quotients.

type, Ifin = I \ {0} and J = I \ {i} for a fixed node i ∈ Ifin to be specified. We use
the canonical central element Kcan =

∑
i∈I a∨i α

∨

i for K and 3i for the dominant
weight. In this case P J and Q J are both labelings of the poset 8(i) ⊂ 8+ for
the simple Lie algebra gfin whose Dynkin diagram is the subdiagram of that of g

given by removing the 0 node. These examples, with the exception of G2, can
be viewed as providing some additional data for the posets 8(i), whose unlabeled
versions were given explicitly in [Thomas and Yong 2006]. As in that reference,
we rotate the labeled Hasse diagrams clockwise by 45 degrees so that the minimal
element is in the southwest corner. In the following, we let V J

weak, V J
strong denote

the vertex-labeled posets such that W J
weak = J (V J

weak) and W J
strong = J (V J

strong).

7A. Type A(1)
n . Let i ∈ Ifin be arbitrary. The poset8(i) consists of elements αp,q =

αp + · · · + αq for 1 ≤ p ≤ i ≤ q ≤ n. The weak labeling of 8(i) is given by
αp,q 7→ sp+q−i . For example, for n= 7 and i = 3 and abbreviating αp,q by pq and
s j by j , the labelings of 8(i) by positive roots and simple reflections are given by

V J
strong =

13 14 15 16 17
23 24 25 26 27
33 34 35 36 37

V J
weak =

1 2 3 4 5
2 3 4 5 6
3 4 5 6 7

All labelings in P J and Q J are given by the constant 1. The resulting strong and
weak tableaux are usual standard tableaux.

7B. Type C(1)
n . Let i = n. Let αi = ei−ei+1 for 1≤ i ≤ n−1 and αn = 2en where

ei is the i-th standard basis element of the weight lattice Zn . Then 8(n) consists of
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the roots αi, j = ei + e j for 1≤ i ≤ j ≤ n. We have a∨i = 1 for all i . For n = 4 we
have

V J
strong =

14 13 12 11
24 23 22
34 33
44

V J
weak =

1 2 3 4
2 3 4
3 4
4

P J
=

2 2 2 1
2 2 1
2 1
1

Q J
=

1 1 1 1
1 1 1
1 1
1

The strong tableaux are shifted standard tableaux with two kinds of markings on
off-diagonal entries; these are the standard recording tableaux for shifted insertion
[Sagan 1987]. The weak tableaux are standard shifted tableaux.

7C. Type D(1)
n . Let i=n. Letting αi =ei−ei+1 for 1≤ i≤n−1 and αn=en−1+en ,

the roots of 8(n) are given by αp,q = ep + eq for 1≤ p < q ≤ n. We have a∨j = 1
for j ∈ {0, 1, n− 1, n} and a∨j = 2 otherwise. For n = 5 we give the labelings of
8(n) below. Note the 1 in the upper left corner of Q J .

V J
strong =

15 14 13 12
25 24 23
35 34
45

V J
weak =

1 2 3 4
2 3 5
3 4
5

P J
=

1 1 1 1
1 1 1
1 1
1

Q J
=

1 2 2 1
2 2 1
2 1
1

7D. Type E. The computations in this section were made using Stembridge’s Cox-
eter/Weyl package [Stembridge 2004]. In both of the following cases, P J has all
labels 1.

For E (1)6 and i = 1 with the Dynkin labeling in Figure 5, we have

V J
weak =

1 3 4 5 6
3 4 2

2 4 5
1 3 4 5 6

Q J
=

1 2 3 2 1
2 3 2

2 3 2
1 2 3 2 1

For E (1)7 and i = 7 with the Dynkin labeling in Figure 5, we have

V J
weak =

7
6
5

2 4
7 6 5 4 3
6 5 4 3 1
5 4 2

2 4 3
7 6 5 4 3 1

Q J
=

1
2
3

2 4
1 2 3 4 3
2 3 4 3 2
3 4 2

2 4 3
1 2 3 4 3 2

7E. Type G(1)
2 . This case does not correspond to a cominiscule root. Pick i = 1

and let α1, α2 be the two simple roots, so that the highest root is 3α1+ 2α2. Then
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a∨1 = 1 and a∨2 = 2. Abbreviating the reflection spα1+qα2 by pq , we have:

V J
strong = 1 31 21 32 11 P J

= 1 3 2 3 1

V J
weak = 1 2 1 2 1 Q J

= 1 2 1 2 1
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