Vol. 2, No. 4, 2008

Download this article
Download this article For screen
For printing
Recent Issues

Volume 13
Issue 8, 1765–1981
Issue 7, 1509–1763
Issue 6, 1243–1507
Issue 5, 995–1242
Issue 4, 749–993
Issue 3, 531–747
Issue 2, 251–530
Issue 1, 1–249

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the Journal
Editorial Board
Subscriptions
Editors' Interests
Submission Guidelines
Submission Form
Editorial Login
Ethics Statement
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
Author Index
To Appear
 
Other MSP Journals
On the algebra of some group schemes

Daniel Ferrand

Vol. 2 (2008), No. 4, 435–466
Abstract

The algebra of a finite group over a field k of characteristic zero is known to be a projective separable k-algebra; but these separable algebras are of a very special type, characterized by Brauer and Witt.

In contrast with that, we prove that any projective separable k-algebra is a quotient of the group algebra of a suitable group scheme, finite étale over k. In particular, any finite separable field extension K L, even a noncyclotomic one, may be generated by a finite étale K-group scheme.

Keywords
group algebra, finite étale group scheme, Weil restriction, separable algebra
Mathematical Subject Classification 2000
Primary: 20C05
Secondary: 14L15, 16S34, 16S35, 16W30
Milestones
Received: 12 December 2007
Revised: 31 March 2008
Accepted: 6 May 2008
Published: 15 June 2008
Authors
Daniel Ferrand
IRMAR
Université de Rennes 1
Campus de Beaulieu
35042 Rennes
France