Vol. 2, No. 5, 2008

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19, 1 issue

Volume 18, 12 issues

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
Le défaut d'approximation forte pour les groupes algébriques commutatifs

David Harari

Vol. 2 (2008), No. 5, 595–611
Abstract

On établit une suite exacte décrivant l’adhérence des points rationnels d’un 1-motif dans ses points adéliques. On en déduit ensuite que le défaut d’approximation forte pour un groupe algébrique commutatif G est essentiellement mesuré par son groupe de Brauer algébrique via l’obstruction de Brauer-Manin entière.

We give an exact sequence describing the closure of the set of rational points of a 1-motive in its adelic points. From this we deduce that for a commutative algebraic group, the defect of strong approximation is essentially controlled by its algebraic Brauer group, by means of the integral Brauer-Manin obstruction.

Keywords
approximation forte, groupe de Brauer, $1$-motif, strong approximation, Brauer group, $1$-motive
Mathematical Subject Classification 2000
Primary: 14L15
Secondary: 12G05, 11G09
Milestones
Received: 22 April 2008
Revised: 26 May 2008
Accepted: 26 June 2008
Published: 4 July 2008
Authors
David Harari
Université Paris-Sud
Laboratoire de Mathématiques d’Orsay
F-91405 Orsay Cedex
France