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Let C : Y 2
= an Xn

+ · · · + a0 be a hyperelliptic curve with the ai rational inte-
gers, n ≥ 5, and the polynomial on the right-hand side irreducible. Let J be its
Jacobian. We give a completely explicit upper bound for the integral points on
the model C , provided we know at least one rational point on C and a Mordell–
Weil basis for J (Q). We also explain a powerful refinement of the Mordell–Weil
sieve which, combined with the upper bound, is capable of determining all the
integral points. Our method is illustrated by determining the integral points on
the genus 2 hyperelliptic models Y 2

− Y = X5
− X and

(Y
2

)
=
(X

5

)
.

1. Introduction

Consider the hyperelliptic curve with affine model

C : Y 2
= an Xn

+ an−1 Xn−1
+ · · ·+ a0, (1-1)

with a0, . . . , an rational integers, an 6= 0, n ≥ 5, and the polynomial on the right-
hand side irreducible. Let H = max{|a0|, . . . , |an|}. In one of the earliest appli-
cations of his theory of lower bounds for linear forms in logarithms, Baker [1969]
showed that any integral point (X, Y ) on this affine model satisfies

max(|X |, |Y |)≤ exp exp exp
(
(n10n H)n

2)
.

Such bounds have been improved considerably by many authors, including Sprin-
džuk [1977], Brindza [1984], Schmidt [1992], Poulakis [1991], Bilu [1995], Bu-
geaud [1997] and Voutier [1995]. Despite the improvements, the bounds remain
astronomical and often involve inexplicit constants.

In this paper we explain a new method for explicitly computing the integral
points on affine models of hyperelliptic curves (1-1). The method falls into two
distinct steps:
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(i) We give a completely explicit upper bound for the size of integral solutions
of (1-1). This upper bound combines many refinements found in the papers
of Voutier, Bugeaud, and others, together with Matveev’s bounds [2000] for
linear forms in logarithms, and a method for bounding the regulators based
on a theorem of Landau [1918].

(ii) The bounds obtained in (i), whilst substantially better than bounds given by
earlier authors, are still astronomical. We explain a powerful variant of the
Mordell–Weil sieve which, combined with the bound obtained in (i), is capa-
ble of showing that the known solutions to (1-1) are the only ones.

Step (i) requires two assumptions:

(a) We assume that we know at least one rational point P0 on C .

(b) Let J be the Jacobian of C . We assume that a Mordell–Weil basis for J (Q)
is known.

For step (ii) we need assumptions (a), (b) and also:

(c) We assume that the canonical height ĥ : J (Q)→ R is explicitly computable
and that we have explicit bounds for the difference

µ1 ≤ h(D)− ĥ(D)≤ µ′1 (1-2)

where h is an appropriately normalized logarithmic height on J that allows
us to enumerate points P in J (Q) with h(P)≤ B for a given bound B.

Assumptions (a)–(c) deserve a comment or two. For many families of curves of
higher genus, practical descent strategies are available for estimating the rank of
the Mordell–Weil group; see for example [Cassels and Flynn 1996; Poonen and
Schaefer 1997; Schaefer 1995; Stoll 2001]. To provably determine the Mordell–
Weil group one however needs bounds for the difference between the logarithmic
and canonical heights. For Jacobians of curves of genus 2 such bounds have been
determined by Stoll [1999; 2002], building on previous work of Flynn and Smart
[1997]. At present, no such bounds have been determined for Jacobians of curves of
genus≥3, though work on this is in progress. The assumption about the knowledge
of a rational point is a common sense assumption that brings some simplifications
to our method, though the method can be modified to cope with the situation where
no rational point is known. However, if a search on a curve of genus ≥ 2 reveals
no rational points, it is probable that there are none, and the methods of Bruin and
Stoll [2008a; 2008b; ≥ 2008] are likely to succeed in proving this.

We illustrate the practicality of our approach by proving:

Theorem 1.1. The only integral solutions to the equation

Y 2
− Y = X5

− X (1-3)
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are

(X, Y )= (−1, 0), (−1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (2,−5),

(2, 6), (3,−15), (3, 16), (30,−4929), (30, 4930).

Theorem 1.2. The only integral solutions to the equation(
Y
2

)
=

(
X
5

)
(1-4)

are

(X, Y )= (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0),

(3, 1), (4, 0), (4, 1), (5,−1), (5, 2), (6,−3), (6, 4),

(7,−6), (7, 7), (15,−77), (15, 78), (19,−152), (19, 153).

Equations (1-3) and (1-4) are of historical interest and Section 2 gives a brief outline
of their history. For now we merely mention that these two equations are the first
two problems on a list of 22 unsolved Diophantine problems, compiled by Evertse
and Tijdeman [2007] following a recent workshop on Diophantine equations at
Leiden.

To appreciate why the innocent-looking (1-3) and (1-4) have resisted previous
attempts, let us briefly survey the available methods which apply to hyperelliptic
curves and then briefly explain why they fail in these cases. To determine the inte-
gral points on the affine model C given by (1-1) there are four available methods:

(I) The first is Chabauty’s elegant method which in fact determines all rational
points on C in many cases, provided the rank of the Mordell–Weil group of
its Jacobian is strictly less than the genus g; see for example [Flynn 1997;
Wetherell 1997]. Chabauty’s method fails if the rank of the Mordell–Weil
group exceeds the genus.

(II) The second method is to use coverings, often combined with a version of
Chabauty called Elliptic Curve Chabauty. See [Bruin 1999; 2003; Flynn
and Wetherell 1999; 2001]. This approach often requires computations of
Mordell–Weil groups over number fields (and does fail if the rank of the
Mordell–Weil groups is too large).

(III) The third method is to combine Baker’s approach through S-units with the
LLL algorithm to obtain all the solutions provided that certain relevant unit
groups and class groups can be computed; for a modern treatment, see [Bilu
and Hanrot 1998] or [Smart 1998, Section XIV.4]. This strategy often fails in
practice as the number fields involved have very high degree.
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(IV) The fourth approach is to apply Skolem’s method to the S-unit equations (see
[Smart 1998, Section III.2]). This needs the same expensive information as
method (III).

The Jacobians of the curves given by (1-3) and (1-4) respectively have ranks 3
and 6 and so Chabauty’s method fails. To employ Elliptic Curve Chabauty would
require the computation of Mordell–Weil groups of elliptic curves without rational
2-torsion over number fields of degree 5 (which does not seem practical at present).
To apply the S-unit approach (with either LLL or Skolem) requires the computa-
tions of the unit groups and class groups of several number fields of degree 40 —
a computation that seems completely impractical at present.

Our paper is arranged as follows. Section 2 gives a brief history of (1-3) and
(1-4). In Section 3 we show, after appropriate scaling, that an integral point (x, y)
satisfies x − α = κξ 2 where α is some fixed algebraic integer, ξ ∈ Q(α), and κ
is an algebraic integer belonging to a finite computable set. In Section 9 we give
bounds for the size of solutions x ∈ Z to an equation of the form x − α = κξ 2

where α and κ are fixed algebraic integers. Thus, in effect, we obtain bounds
for the size of solutions of the integral points on our affine model (1-1). Sections
4–8 are preparation for Section 9: in particular Section 4 is concerned with heights;
Section 5 explains how a theorem of Landau can be used to bound the regulators of
number fields; Section 6 collects and refines various results on appropriate choices
of systems of fundamental units; Section 7 is devoted to Matveev’s bounds for
linear forms in logarithms; in Section 8 we use Matveev’s bounds and the results
of previous sections to prove a bound on the size of solutions of unit equations;
in Section 9 we deduce the bounds for x alluded to above from the bounds for
solutions of unit equations. Despite our best efforts, the bounds obtained for x
are still so large that no naive search up to those bounds is conceivable. Over
Sections 10, 11 and 12 we explain how to sieve effectively up to these bounds
using the Mordell–Weil group of the Jacobian. In particular, Section 11 gives a
powerful refinement of the Mordell–Weil sieve (see [Bruin and Stoll 2008a; Bruin
and Stoll ≥ 2008]) which we expect to have applications elsewhere. Finally, in
Section 13 we apply the method of this paper to prove Theorems 1.1 and 1.2.

2. History of (1-3) and (1-4)

Equation (1-3) is a special case of the family of Diophantine equations

Y p
− Y = Xq

− X, 2≤ p < q. (2-1)

This family has previously been studied by Fielder and Alford [1998] and by
Mignotte and Pethő [1999]. The (genus 1) case p = 2, q = 3 was solved by
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Mordell [1963] who showed that the only solutions in this case are

(X, Y )= (0, 0), (0, 1), (±1, 0), (±1, 1), (2, 3), (2,−2), (6, 15), (6,−14).

Fielder and Alford presented the following list of solutions with X , Y > 1:

(p, q, X, Y )= (2, 3, 2, 3), (2, 3, 6, 15), (2, 5, 2, 6), (2, 5, 3, 16),

(2, 5, 30, 4930), (2, 7, 5, 280), (2, 13, 2, 91), (3, 7, 3, 13).

Mignotte and Pethő proved that for given p and q with 2≤ p< q, the Diophantine
equation (2-1) has only a finite number of integral solutions. Assuming the abc-
conjecture, they showed that (2-1) has only finitely many solutions with X , Y > 1.

If p = 2, q > 2 and y is a prime power, then Mignotte and Pethő found all
solutions of the equation and these are all in Fielder and Alford’s list.

Equation (1-4) is a special case of the Diophantine equation(
n
k

)
=

(
m
l

)
, (2-2)

in unknowns k, l, m, n. This is usually considered with the restrictions 2≤ k ≤ n
2 ,

and 2≤ l ≤ m
2 . The only known solutions (with these restrictions) are(

16
2

)
=

(
10
3

)
,

(
56
2

)
=

(
22
3

)
,

(
120

2

)
=

(
36
3

)
,

(
21
2

)
=

(
10
4

)
,(

153
2

)
=

(
19
5

)
,

(
78
2

)
=

(
15
5

)
=

(
14
6

)
,

(
221
2

)
=

(
17
8

)
,(

F2i+2 F2i+3

F2i F2i+3

)
=

(
F2i+2 F2i+3− 1
F2i F2i+3+ 1

)
for i = 1, 2, . . . ,

where Fn is the n-th Fibonacci number. It is known that there are no other nontrivial
solutions with

(n
k

)
≤ 1030 or n ≤ 1000; see [de Weger 1997]. The infinite family of

solutions was found by Lind [1968] and Singmaster [1975].
Equation (2-2) has been completely solved for pairs

(k, l)= (2, 3), (2, 4), (2, 6), (2, 8), (3, 4), (3, 6), (4, 6).

These are the cases when one can easily reduce the equation to the determina-
tion of solutions of a number of Thue equations or elliptic Diophantine equations.
Avanesov [1966/1967] found all solutions of (2-2) with (k, l) = (2, 3). De Weger
[1996] and independently Pintér [1995] solved the equation with (k, l) = (2, 4).
The case (k, l)= (3, 4) reduces to the equation

Y (Y + 1)= X (X + 1)(X + 2)
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which was solved by Mordell [1963]. The remaining pairs

(2, 6), (2, 8), (3, 6), (4, 6)

were treated by Stroeker and de Weger [1999], using linear forms in elliptic loga-
rithms.

There are also some general finiteness results related to (2-2). Kiss [1988]
proved that if k = 2 and l is a given odd prime, then the equation has only finitely
many positive integral solutions. Using Baker’s method, Brindza [1991] showed
that (2-2) with k = 2 and l ≥ 3 has only finitely many positive integral solutions.

3. Descent

Consider the integral points on the affine model of the hyperelliptic curve (1-1). If
the polynomial on the right-hand side is reducible then the obvious factorisation
argument reduces the problem of determining the integral points for (1-1) to deter-
mining those on simpler hyperelliptic curves, or on genus 1 curves. The integral
points on a genus 1 curve can be determined by highly successful algorithms (see
for example [Smart 1998; Stroeker and Tzanakis 2003]) based on LLL and David’s
bound for linear forms in elliptic logarithms.

We therefore suppose henceforth that the polynomial on the right-hand side of
(1-1) is irreducible; this is certainly the most difficult case. By appropriate scaling,
one transforms the problem of integral points on (1-1) to integral points on a model
of the form

ay2
= xn
+ bn−1xn−1

+ · · ·+ b0, (3-1)

where a and bi are integers, with a 6= 0. We shall work henceforth with this model
of the hyperelliptic curve. Denote the polynomial on the right-hand side by f and
let α be a root of f . Then a standard argument shows that

x −α = κξ 2

where κ, ξ ∈ K = Q(α) and κ is an algebraic integer that comes from a finite
computable set. In this section we suppose that the Mordell–Weil group J (Q) of
the curve C is known, and we show how to compute such a set of κ using our
knowledge of the Mordell–Weil group J (Q). The method for doing this depends
on whether the degree n is odd or even.

3A. The odd degree case. Each coset of J (Q)/2J (Q) has a coset representative
of the form

∑m
i=1(Pi −∞) where the set {P1, . . . , Pm} is stable under the action

of Galois, and where all y(Pi ) are nonzero. Now write x(Pi )= γi/d2
i where γi is

an algebraic integer and di ∈ Z≥1; moreover if Pi , Pj are conjugate then we may
suppose that di = d j and so γi , γ j are conjugate. To such a coset representative of
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J (Q)/2J (Q) we associate

κ = a(m mod 2)
m∏

i=1

(γi −αd2
i ).

Lemma 3.1. Let K be a set of κ associated as above to a complete set of coset
representatives of J (Q)/2J (Q). Then K is a finite subset of OK and if (x, y) is an
integral point on the model (3-1) then x −α = κξ 2 for some κ ∈ K and ξ ∈ K .

Proof. This follows trivially from the standard homomorphism

θ : J (Q)/2J (Q)→ K ∗/K ∗2

that is given by

θ

( m∑
i=1

(Pi −∞)

)
= am

m∏
i=1

(x(Pi )−α) (mod K ∗2)

for coset representatives
∑
(Pi −∞) with y(Pi ) 6= 0; see [Stoll 2001, Section 4].

�

3B. The even degree case. As mentioned in the introduction, we shall assume the
existence of at least one rational point P0. If P0 is one of the two points at infinity,
let ε0 = 1. Otherwise, as f is irreducible, y(P0) 6= 0; write x(P0) = γ0/d2

0 with
γ0 ∈ Z and d0 ∈ Z≥1 and let ε0 = γ0−αd2

0 .
Each coset of J (Q)/2J (Q) has a coset representative of the form

∑m
i=1(Pi−P0)

where the set {P1, . . . , Pm} is stable under the action of Galois, and where all y(Pi )

are nonzero for i = 1, . . . ,m. Write x(Pi )= γi/d2
i where γi is an algebraic integer

and di ∈ Z≥1; moreover if Pi , Pj are conjugate then we may suppose that di = d j

and so γi , γ j are conjugate. To such a coset representative of J (Q)/2J (Q) we
associate

ε = ε
(m mod 2)
0

m∏
i=1

(γi −αd2
i ).

Lemma 3.2. Let E be a set of ε associated as above to a complete set of coset
representatives of J (Q)/2J (Q). Let 1 be the discriminant of the polynomial f .
For each ε ∈ E, let Bε be the set of square-free rational integers supported only by
primes dividing a1NormK/Q(ε). Let K= {εb : ε ∈ E, b ∈Bε}. Then K is a finite
subset of OK and if (x, y) is an integral point on the model (3-1) then x −α = κξ 2

for some κ ∈ K and ξ ∈ K .

Proof. In our even degree case, the homomorphism θ takes values in K ∗/Q∗K ∗2.
Thus if (x, y) is an integral point on the model (3-1), we have that (x−α)= εbξ 2
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for some ε ∈ E and b a square-free rational integer. A standard argument shows
that 2 | ord℘(x−α) for all prime ideals ℘ - a1. Hence, 2 | ord℘(b) for all ℘ - a1ε.
Let ℘ | p where p is a rational prime not dividing a1NormK/Q(ε). Then p is
unramified in K/Q and so ordp(b) = ord℘(b) ≡ 0 (mod 2). This shows that
b ∈Bε and proves the lemma. �

3C. Remarks. The following remarks are applicable to both odd and even degree
cases.

(i) We point out that we can still obtain a suitable (though larger) set of κ that
satisfies the conclusions of Lemmas 3.1 and 3.2, even if we do not know coset
representatives for J (Q)/2J (Q), provided we are able to compute the class
group and unit group of the number field K ; for this see for example [Bruin
1999, Section 2.2].

(ii) We can use local information at small and bad primes to restrict the set K

further, compare [Bruin and Stoll 2008a; 2008b], where this is applied to
rational points. In our case, we can restrict the local computations to x ∈ Zp

instead of Qp.

4. Heights

We fix once and for all the following notation.

K a number field,
OK the ring of integers of K ,
MK the set of all places of K ,
M0

K the set of non-Archimedean places of K ,
M∞K the set of Archimedean places of K ,
υ a place of K ,
Kυ the completion of K at υ,
dυ the local degree [Kυ :Qυ].

For υ ∈ MK , we let | · |υ be the usual normalized valuation corresponding to
υ; in particular if υ is non-Archimedean and p is the rational prime below υ then
|p|υ = p−1. Thus if L/K is a field extension, and ω a place of L above υ then
|α|ω = |α|υ , for all α ∈ K .

Define
‖α‖υ = |α|

dυ
υ .

Hence for α ∈ K ∗, the product formula states that∏
υ∈MK

‖α‖υ = 1.
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In particular, if υ is Archimedean, corresponding to a real or complex embedding
σ of K , then

|α|υ = |σ(α)| and ‖α‖υ =

{
|σ(α)| if σ is real,

|σ(α)|2 if σ is complex.

For α ∈ K , the (absolute) logarithmic height h(α) is given by

h(α)=
1

[K :Q]

∑
υ∈MK

dυ log max{1, |α|υ} =
1

[K :Q]

∑
υ∈MK

log max{1, ‖α‖υ}.

(4-1)
The absolute logarithmic height of α is independent of the field K containing α.

We shall need the following elementary properties of heights.

Lemma 4.1. For any nonzero algebraic number α, we have h(α−1) = h(α). For
algebraic numbers α1, . . . , αn , we have

h(α1α2 · · ·αn)≤ h(α1)+ · · ·+ h(αn),

h(α1+ · · ·+αn)≤ log n+ h(α1)+ · · ·+ h(αn).

Proof. The lemma is [Silverman 1986, Exercise 8.8]. We do not know of a ref-
erence for the proof and so we will indicate briefly the proof of the second (more
difficult) inequality. For υ ∈ MK , choose iυ in {1, . . . , n} to satisfy

max{|α1|υ, . . . , |αn|υ} = |αiυ |υ .

Note that
|α1+ · · ·+αn|υ ≤ ευ |αiυ |υ,

where ευ = n if υ is Archimedean or ευ = 1 otherwise. Thus

log max{1, |α1+ · · ·+αn|υ} ≤ log ευ + log max{1, |αiυ |υ}

≤ log ευ +
n∑

i=1

log max{1, |αi |υ}.

Observe that

1
[K :Q]

∑
υ∈MK

dυ log ευ =
log n
[K :Q]

∑
υ∈M∞K

dυ = log n.

The desired inequality follows from the definition of logarithmic height (4-1). �

4A. Height lower bound. We need the following result of Voutier [1996] concern-
ing Lehmer’s problem.
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Lemma 4.2. Let K be a number field of degree d. Let

∂K =


log 2

d if d = 1, 2,
1
4

(
log log d

log d

)3
if d ≥ 3.

Then, for every nonzero algebraic number α in K , which is not a root of unity,

deg(α) h(α)≥ ∂K .

Throughout, by the logarithm of a complex number, we mean the principal de-
termination of the logarithm. In other words, if x ∈C∗ we express x = reiθ where
r > 0 and −π < θ ≤ π ; we then let log x = log r + iθ .

Lemma 4.3. Let K be a number field and let

∂ ′K =

(
1+

π2

∂2
K

)1/2

.

For any nonzero α ∈ K and any place υ ∈ MK ,

log |α|υ ≤ deg(α) h(α), log ‖α‖υ ≤ [K :Q] h(α).

Moreover, if α is not a root of unity and σ is a real or complex embedding of K
then

| log σ(α)| ≤ ∂ ′K deg(α) h(α).

Proof. The first two inequalities are an immediate consequence of the definition of
absolute logarithmic height. For the last, write σ(α) = ea+ib, with a = log |σ(α)|
and |b| ≤ π , and let d = deg(α). Then we have

| log σ(α)| = (a2
+ b2)1/2 ≤ (log2

|σ(α)| +π2)1/2 ≤
(
(d h(α))2+π2)1/2

.

By Lemma 4.2 we have d h(α)≥ ∂K , so

| log σ(α)| ≤ d h(α)
(

1+
π2

∂2
K

)1/2

,

as required. �

5. Bounds for regulators

Later on we need to give upper bounds for the regulators of complicated number
fields of high degree. The following lemma, based on bounds of Landau [1918],
is an easy way to obtain reasonable bounds.

Lemma 5.1. Let K be a number field with degree d = u + 2v where u and v are
respectively the numbers of real and complex embeddings. Denote the absolute
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discriminant by DK and the regulator by RK , and the number of roots of unity in
K by w. Suppose, moreover, that L is a real number such that DK ≤ L. Let

a = 2−vπ−d/2
√

L.

Define the function fK (L , s) by

fK (L , s)= 2−uwas(0( s
2
))u
(0(s))vsd+1(s− 1)1−d ,

and let BK (L)=min{ fK (L , 2− t/1000) : t = 0, 1, . . . , 999}. Then RK < BK (L).

Proof. Landau [1918, proof of Hilfssatz 1] established the inequality

RK < fK (DK , s)

for all s > 1. It is thus clear that RK < BK (L). �

Remark 5.2. For a complicated number field of high degree it is difficult to calcu-
late the discriminant DK exactly, though it is easy to give an upper bound L for its
size. It is also difficult to minimise the function fK (L , s) analytically, but we have
found that the above gives an accurate enough result, which is easy to calculate on
a computer.

6. Fundamental units

For the number fields we are concerned with, we shall need to work with a certain
system of fundamental units.

Lemma 6.1 [Bugeaud and Győry 1996, Lemma 1]. Let K be a number field of
degree d and let r = rK be its unit rank and RK its regulator. Define the constants

c1 = c1(K )=
(r !)2

2r−1dr , c2 = c2(K )= c1

( d
∂K

)r−1
, c3 = c3(K )= c1

dr

∂K
.

Then K admits a system {ε1, . . . , εr } of fundamental units such that:

(i)
∏r

i=1 h(εi )≤ c1 RK .

(ii) h(εi )≤ c2 RK , 1≤ i ≤ r .

(iii) Write M for the r ×r-matrix (log ‖εi‖υ), where υ runs over r of the Archime-
dean places of K and 1 ≤ i ≤ r . Then the absolute values of the entries of
M−1 are bounded above by c3.

Lemma 6.2. Let K be a number field of degree d, and let {ε1, . . . , εr } be a system
of fundamental units as in Lemma 6.1. Define the constant c4 = c4(K ) = rdc3.
Suppose ε = ζεb1

1 . . . εbr
r , where ζ is a root of unity in K . Then

max{|b1|, . . . , |br |} ≤ c4 h(ε).
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Proof. Note that for any Archimedean place v of K ,

log ‖ε‖v =
∑

bi log ‖εi‖v.

The lemma now follows from part (iii) of Lemma 6.1, plus the fact that log ‖ε‖v ≤
d h(ε) for all v given by Lemma 4.3. �

The following result is a special case of [Bugeaud and Győry 1996, Lemma 2].

Lemma 6.3. Let K be a number field of unit rank r and regulator K . Let α be a
nonzero algebraic integer belonging to K . Then there exists a unit ε of K such that

h(αε)≤ c5 RK +
log |NormK/Q(α)|

[K :Q]

where

c5 = c5(K )=
r r+1

2∂r−1
K

.

Lemma 6.4. Let K be a number field, β, ε ∈ K ∗ with ε being a unit. Let σ be the
real or complex embedding that makes |σ(βε)| minimal. Then

h(βε)≤ h(β)− log |σ(βε)|.

Proof. As usual, write d = [K :Q] and dυ = [Kυ :Qυ]. Then

h(βε)= h
( 1
βε

)
=

1
d

∑
υ∈M∞K

dυ max{0, log(|βε|−1
υ )}+

1
d

∑
υ∈M0

K

dυ max{0, log(|βε|−1
υ )}

≤ log(|σ(βε)|−1)+
1
d

∑
υ∈M0

K

dυ max{0, log(|β|−1
υ )}

≤ − log |σ(βε)| + 1
d

∑
υ∈MK

dυ max{0, log(|β|−1
υ )}

≤ − log |σ(βε)| + h(β). �

7. Matveev’s lower bound for linear forms in logarithms

Let L be a number field and let σ be a real or complex embedding. For α ∈ L∗ we
define the modified logarithmic height of α with respect to σ to be

hL ,σ (α) :=max{[L :Q] h(α), | log σ(α)|, 0.16}.

The modified height is clearly dependent on the number field; we shall need the
following Lemma which gives a relation between the modified and absolute height.
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Lemma 7.1. Let K ⊆ L be number fields and write

∂L/K =max
{
[L :Q], [K :Q]∂ ′K ,

0.16[K :Q]
∂K

}
.

Then for any α ∈ K which is neither zero nor a root of unity, and any real or
complex embedding σ of L ,

hL ,σ (α)≤ ∂L/K h(α).

Proof. By Lemma 4.3 we have

[K :Q]∂ ′K h(α)≥ ∂ ′K deg(α) h(α)≥ | log σ(α)|.

Moreover, by Lemma 4.2,

0.16[K :Q] h(α)
∂K

≥
0.16 deg(α) h(α)

∂K
≥ 0.16.

The lemma follows. �

We shall apply lower bounds on linear forms, more precisely a version of Mat-
veev’s estimates [2000]. We recall that log denotes the principal determination of
the logarithm.

Lemma 7.2. Let L be a number field of degree d, with α1, . . . , αn ∈ L∗. Define a
constant

C(L , n) := 3 · 30n+4
· (n+ 1)5.5 d2 (1+ log d).

Consider the “linear form”

3 := αb1
1 · · ·α

bn
n − 1,

where b1, . . . , bn are rational integers and let B :=max{|b1|, . . . , |bn|}. If 3 6= 0,
and σ is any real or complex embedding of L then

log |σ(3)|>−C(L , n)(1+ log(nB))
n∏

j=1

hL ,σ (α j ).

Proof. This straightforward corollary of Matveev’s estimates is [Bugeaud et al.
2006, Theorem 9.4]. �

8. Bounds for unit equations

Now we are ready to prove an explicit version of [Bugeaud 1997, Lemma 4]. The
proposition below allows us to replace in the final estimate the regulator of the
larger field by the product of the regulators of two of its subfields. This often
results in a significant improvement of the upper bound for the height. This idea
is due to Voutier [1995].
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Proposition 8.1. Let L be a number field of degree d, which contains K1 and K2

as subfields. Let RKi (respectively ri ) be the regulator (respectively the unit rank)
of Ki . Suppose further that ν1, ν2 and ν3 are nonzero elements of L with height
≤ H (with H ≥ 1) and consider the unit equation

ν1ε1+ ν2ε2+ ν3ε3 = 0 (8-1)

where ε1 is a unit of K1, ε2 a unit of K2 and ε3 a unit of L. Then, for i = 1 and 2,

h
( νiεi

ν3ε3

)
≤ A2+ A1 log(H +max{h(ν1ε1), h(ν2ε2)}),

where

A1 = 2H ·C(L , r1+ r2+ 1) · c1(K1)c1(K2)∂L/L · (∂L/K1)
r1 · (∂L/K2)

r2 · RK1 RK2,

A2 = 2H + A1+ A1 log
(
(r1+ r2+ 1) ·max{c4(K1), c4(K2), 1}

)
.

Proof. Let {µ1, . . . , µr1} and {ρ1, . . . , ρr2} be respectively systems of fundamental
units for K1 and K2 as in Lemma 6.1; in particular we know that

r1∏
j=1

h(µ j )≤ c1(K1)RK1,

r2∏
j=1

h(ρ j )≤ c1(K2)RK2 . (8-2)

We can write

ε1 = ζ1µ
b1
1 · · ·µ

br1
r1 , ε2 = ζ2ρ

f1
1 · · · ρ

fr2
r2 ,

where ζ1 and ζ2 are roots of unity and b1, . . . , br1 , and f1, . . . , fr2 are rational
integers. Set

B1 =max{|b1|, . . . , |br1 |}, B2 =max{| f1|, . . . , | fr2 |}, B =max{B1, B2, 1}.

Set α0 =−
ζ2ν2
ζ1ν1

and b0 = 1. By (8-1),

ν3ε3

ν1ε1
= αb0

0 µ
−b1
1 · · ·µ

−br1
r1 ρ

f1
1 · · · ρ

fr2
r2 − 1.

Now choose the real or complex embedding σ of L such that |σ( ν3ε3
ν1ε1

)| is minimal.
We apply Matveev’s estimate (Lemma 7.2) to this “linear form”, obtaining

log
∣∣∣σ(ν3ε3

ν1ε1

)∣∣∣>−C(L , n)(1+ log(nB)) hL ,σ (α0)

r1∏
j=1

hL ,σ (µ j )

r2∏
j=1

hL ,σ (ρ j ),

where n = r1+ r2+ 1. Using Lemma 7.1 and (8-2) we obtain
r1∏

j=1

hL ,σ (µ j )≤ (∂L/K1)
r1

r1∏
j=1

h(µ j )≤ c1(K1)(∂L/K1)
r1 RK1,
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and a similar estimate for
∏r2

j=1 hL ,σ (ρ j ). Moreover, again by Lemma 7.1 and
Lemma 4.1, hL ,σ (α0)≤ 2H∂L/L . Thus

log
∣∣∣σ(ν3ε3

ν1ε1

)∣∣∣>−A1(1+ log(nB)).

Now applying Lemma 6.4, we obtain that

h
(ν3ε3

ν1ε1

)
≤ h

(ν3

ν1

)
+ A1(1+ log(nB))≤ 2H + A1(1+ log(nB)).

The proof is complete on observing, from Lemma 6.2, that

B ≤max{c4(K1), c4(K2), 1} ·max{h(ε1), h(ε2), 1},

and from Lemma 4.1,

h(νiεi )≤ h(εi )+ h(νi )≤ h(ε)+ H. �

9. Upper bounds for the size of integral points on hyperelliptic curves

We shall need the following standard sort of lemma.

Lemma 9.1. Let a, b, c, y be positive numbers and suppose that

y ≤ a+ b log(c+ y).

Then

y ≤ 2b log b+ 2a+ c.

Proof. Let z = c+ y, so that

z ≤ (a+ c)+ b log z.

Now we apply the case h= 1 of [Pethö and de Weger 1986, Lemma 2.2]; this gives

z ≤ 2(b log b+ a+ c). �

Theorem 9.2. Let α be an algebraic integer of degree at least 3, and let κ be an
integer belonging to K . Let α1, α2, α3 be distinct conjugates of α and κ1, κ2, κ3 be
the corresponding conjugates of κ . Let

K1 =Q(α1, α2,
√
κ1κ2), K2 =Q(α1, α3,

√
κ1κ3), K3 =Q(α2, α3,

√
κ2κ3),

and

L =Q(α1, α2, α3,
√
κ1κ2,

√
κ1κ3).
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Let R be an upper bound for the regulators of K1, K2 and K3. Let r be the maxi-
mum of the unit ranks of K1, K2, K3. Let

c∗j = max
1≤i≤3

c j (Ki ),

N = max
1≤i, j≤3

∣∣NormQ(αi ,α j )/Q(κi (αi −α j ))
∣∣2,

H∗ = c∗5 R+
log N

min1≤i≤3[Ki :Q]
+ h(κ),

A∗1 = 2H∗ ·C(L , 2r + 1) · (c∗1)
2∂L/L ·

(
max

1≤i≤3
∂L/Ki

)2r
· R2,

A∗2 = 2H∗+ A∗1+ A∗1 log((2r + 1) ·max{c∗4, 1}).

If x ∈ Z\{0} satisfies x −α = κξ 2 for some ξ ∈ K then

log |x | ≤ 8A∗1 log(4A∗1)+ 8A∗2+ H∗+ 20 log 2+ 13 h(κ)+ 19 h(α).

Proof. Conjugating the relation x − α = κξ 2 appropriately and taking differences
we obtain

α1−α2 = κ2ξ
2
2 − κ1ξ

2
1 , α3−α1 = κ1ξ

2
1 − κ3ξ

2
3 , α2−α3 = κ3ξ

2
3 − κ2ξ

2
2 .

Let
τ1 = κ1ξ1, τ2 =

√
κ1κ2ξ2, τ3 =

√
κ1κ3ξ3.

Observe that

κ1(α1−α2)= τ
2
2 − τ

2
1 , κ1(α3−α1)= τ

2
1 − τ

2
3 , κ1(α2−α3)= τ

2
3 − τ

2
2 ,

and

τ2± τ1 ∈ K1, τ1± τ3 ∈ K2, τ3± τ2 ∈

√
κ1

κ2
K3.

We claim that each τi±τ j can be written in the form νε where ε is a unit in one of
the Ki and ν ∈ L is an integer satisfying h(ν) ≤ H∗. Let us show this for τ2− τ3;
the other cases are either similar or easier. Note that τ2− τ3 =

√
κ1
κ2
ν ′′ where ν ′′ is

an integer belonging to K3. Moreover, ν ′′ divides√
κ2

κ1
(τ3− τ2) ·

√
κ2

κ1
(τ3+ τ2)= κ2(α2−α3).

Hence |NormK3/Q(ν
′′)| ≤ N . By Lemma 6.3, we can write ν ′′ = ν ′ε where ε ∈ K3

and

h(ν ′)≤ c5(K3)R+
log N
[K3 :Q]

.

Now let ν =
√
κ1
κ2
ν ′. Thus τ2− τ3 = νε where h(ν) ≤ h(ν ′)+ h(κ) ≤ H∗ proving

our claim.
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We apply Proposition 8.1 to the unit equation

(τ1− τ2)+ (τ3− τ1)+ (τ2− τ3)= 0,

which is indeed of the form ν1ε1+ ν2ε2+ ν3ε3 = 0 where the νi and εi satisfy the
conditions of that proposition with H replaced by H∗. We obtain

h
(τ1− τ2

τ1− τ3

)
≤ A∗2+ A∗1 log(H∗+max{h(τ2− τ3), h(τ1− τ2)}).

Observe that

h(τi ± τ j )≤ log 2+ h(τi )+ h(τ j )≤ log 2+ 2 h(κ)+ 2 h(ξ)

≤ log 2+ 3 h(κ)+ h(x −α)≤ 2 log 2+ 3 h(κ)+ h(α)+ log |x |,

where we have made repeated use of Lemma 4.1. Thus

h
(τ1− τ2

τ1− τ3

)
≤ A∗2+ A∗1 log(A∗3+ log |x |),

where A∗3 = H∗+ 2 log 2+ 3 h(κ)+ h(α).
We also apply Proposition 8.1 to the unit equation

(τ1+ τ2)+ (τ3− τ1)− (τ2+ τ3)= 0,

to obtain precisely the same bound for h( τ1+τ2
τ1−τ3

). Using the identity(τ1− τ2

τ1− τ3

)
·

(τ1+ τ2

τ1− τ3

)
=
κ1(α2−α1)

(τ1− τ3)2
,

we obtain that

h(τ1− τ3)≤
log 2+ h(κ)

2
+ h(α)+ A∗2+ A∗1 log(A∗3+ log |x |).

Now

log |x | ≤ log 2+ h(α)+ h(x −α1)

≤ log 2+ h(α)+ h(κ)+ 2 h(τ1) (using x −α1 =
τ 2

1
κ1
)

≤ 5 log 2+ h(α)+ h(κ)+ 2 h(τ1+ τ3)+ 2 h(τ1− τ3)

≤ 5 log 2+ h(α)+ h(κ)+ 2 h
(κ1(α3−α1)

τ1− τ3

)
+ 2 h(τ1− τ3)

≤ 7 log 2+ 5 h(α)+ 3 h(κ)+ 4 h(τ1− τ3)

≤ 9 log 2+ 9 h(α)+ 5 h(κ)+ 4A∗2+ 4A∗1 log(A∗3+ log |x |).

The theorem follows from Lemma 9.1. �
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10. The Mordell–Weil sieve I

The Mordell–Weil sieve is a technique that can be used to show the nonexistence of
rational points on a curve (for example [Bruin and Stoll 2008a; ≥2008]), or to help
determine the set of rational points in conjunction with the method of Chabauty
(for example [Bruin and Elkies 2002]); for connections to the Brauer–Manin ob-
struction see, for example, [Flynn 2004; Poonen 2006; Stoll 2007]. In this section
and the next we explain how the Mordell–Weil sieve can be used to show that any
rational point on a curve of genus ≥ 2 is either a known rational point or a very
large rational point.

In this section we let C/Q be a smooth projective curve (not necessarily hyperel-
liptic) of genus g≥ 2 and we let J be its Jacobian. As indicated in the introduction,
we assume the knowledge of some rational points on C ; henceforth let D be a fixed
rational point on C (or even a fixed rational divisor of degree 1) and let  be the
corresponding Abel–Jacobi map:

 : C→ J, P 7→ [P − D].

Let W be the image in J of the known rational points on C . The Mordell–Weil
sieve is a strategy for obtaining a very large and “smooth” positive integer B such
that

 (C(Q))⊆W + B J (Q).

Recall that a positive integer B is called A-smooth if all its prime factors are ≤ A.
By saying that B is smooth, we loosely mean that it is A-smooth with A much
smaller than B.

Let S be a finite set of primes, which for now we assume to be primes of good
reduction for the curve C . The basic idea is to consider the following commutative
diagram:

C(Q)
 //

��

J (Q)/B J (Q)

α

��∏
p∈S

C(Fp)
 //

∏
p∈S

J (Fp)/B J (Fp).

The image of C(Q) in J (Q)/B J (Q) must then be contained in the subset of
J (Q)/B J (Q) of elements that map under α into the image of the lower horizontal
map. If we find that this subset equals the image of W in J (Q)/B J (Q), then we
have shown that

 (C(Q))⊆W + B J (Q)

as desired. Note that, at least in principle, the required computation is finite: each
set C(Fp) is finite and can be enumerated, hence  (C(Fp)) can be determined, and
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we assume that we know explicit generators of J (Q), which allows us to construct
the finite set J (Q)/B J (Q). In practice, and in particular for the application we
have in mind here, we will need a very large value of B, so this naive approach
is much too inefficient. In [Bruin and Stoll 2008a; ≥ 2008], the authors describe
how one can perform this computation in a more efficient way.

One obvious improvement is to replace the lower horizontal map in the diagram
above by a product of maps

C(Qp)

→ G p/BG p

with suitable finite quotients G p of J (Qp). We have used this to incorporate infor-
mation modulo higher powers of p for small primes p. This kind of information
is often called “deep” information, as opposed to the “flat” information obtained
from reduction modulo good primes.

We can always force B to be divisible by any given (not too big) number. In our
application we will want B to kill the rational torsion subgroup of J .

11. The Mordell–Weil sieve II

We continue with the notation of Section 10. Let W be the image in J (Q) of
all the known rational points on C . We assume that the strategy of Section 10 is
successful in yielding a large “smooth” integer B such that any point P ∈ C(Q)
satisfies  (P)−w ∈ B J (Q) for some w ∈ W , and moreover, that B kills all the
torsion of J (Q).

Let D1, . . . , Dr be a basis of the free part of J (Q) and let

φ : Zr
→ J (Q), φ(a1, . . . , ar )=

∑
ai Di ,

so that the image of φ is simply the free part of J (Q). Our assumption now is that

 (C(Q))⊂W +φ(BZr ).

Set L0 = BZr . We explain a method of obtaining a (very long) decreasing
sequence of lattices in Zr :

BZr
= L0 ) L1 ) L2 ) · · ·) Lk (11-1)

such that
 (C(Q))⊂W +φ(L j )

for j = 1, . . . , k.
If q is a prime of good reduction for J we denote by

φq : Z
r
→ J (Fq), φq(a1, . . . , ar )=

∑
ai D̃i ,

and so φq(l)= φ̃(l).
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Lemma 11.1. Let W be a finite subset of J (Q), and let L be a subgroup of Zr .
Suppose that  (C(Q))⊂W +φ(L). Let q be a prime of good reduction for C and
J . Let L ′ be the kernel of the restriction φq |L . Let l1, . . . , lm be representatives of
the nonzero cosets of L/L ′ and suppose that w̃+ φq(li ) /∈ C(Fq) for all w ∈ W
and i = 1, . . . ,m. Then  (C(Q))⊂W +φ(L ′).

Proof. Suppose P ∈ C(Q). Since  (C(Q)) ⊂ W + φ(L), we may write  (P) =
w+ φ(l) for some l ∈ L . Now let l0 = 0, so that l0, . . . , lm represent all cosets of
L/L ′. Then l = li + l′ for some l′ ∈ L ′ and i = 0, . . . ,m. However, φq(l′) = 0, or
in other words, φ̃(l′)= 0. Hence

 (P̃)= ̃ (P)= w̃+φq(l)= w̃+φq(li )+φq(l′)= w̃+φq(li ).

By hypothesis, w̃+φq(li ) /∈ C(Fq) for i = 1, . . . ,m, so i = 0 and so li = 0. Hence
 (P)= w+ l′ ∈W + L ′ as required. �

We obtain a very long strictly decreasing sequence of lattices as in (11-1) by
repeated application of Lemma 11.1. However, the conditions of Lemma 11.1 are
unlikely to be satisfied for a prime q chosen at random. Here we give criteria that
we have employed in practice to choose the primes q:

(I) gcd(B, #J (Fq)) > (#J (Fq))
0.6.

(II) L ′ 6= L .

(III) #W · (#L/L ′− 1) < 2q .

(IV) w̃+φq(li ) /∈ C(Fq) for all w ∈W and i = 1, . . . ,m.

The criteria (I)–(IV) are listed in the order in which we check them in practice.
Criterion (IV) is just the criterion of the lemma. Criterion (II) ensures that L ′ is
strictly smaller than L , otherwise we gain no new information. Although we would
like L ′ to be strictly smaller than L , we do not want the index L/L ′ to be too large
and this is reflected in Criteria (I) and (III). Note that the number of checks required
by Criterion (IV) (or the lemma) is #W · (#L/L ′− 1). If this number is large then
Criterion (IV) is likely to fail. Let us look at this in probabilistic terms. Assume
that the genus of C is 2. Then the probability that a random element of J (Fq) lies
in the image of C(Fq) is about 1

q . If N = #W · (#L/L ′ − 1) then the probability
that Criterion (IV) is satisfied is about (1−q−1)N . Since (1−q−1)q ∼ e−1, we do
not want N to be too large in comparison to q , and this explains the choice of 2q
in Criterion (III).

We still have not justified Criterion (I). The computation involved in obtaining
L ′ is a little expensive. Since we need to do this with many primes, we would like a
way of picking only primes where this computation is not wasted, and in particular
#L/L ′ is not too large. Now at every stage of our computations, L will be some
element of our decreasing sequence (11-1) and so contained in BZr . Criterion (I)
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ensures that a “large chunk” of L will be in the kernel of φq : Z
r
→ J (Fq) and so

that #L/L ′ is not too large. The exponent 0.6 in Criterion (I) is chosen on the basis
of computational experience.

12. Lower bounds for the size of rational points

In this section, we suppose that the strategy of Sections 10 and 11 succeeded in
showing that  (C(Q))⊂W +φ(L) for some lattice L of huge index in Zr , where
W is the image in J of the set of known rational points in C . In this section we
provide a lower bound for the size of rational points not belonging to the set of
known rational points.

Lemma 12.1. Let W be a finite subset of J (Q), and let L be a sublattice of Zr .
Suppose that  (C(Q))⊂W +φ(L). Let µ1 be a lower bound for h− ĥ as in (1-2).
Let

µ2 =max
{√

ĥ(w) : w ∈W
}
.

Let M be the height-pairing matrix for the Mordell–Weil basis D1, . . . , Dr and let
λ1, . . . , λr be its eigenvalues. Let

µ3 =min{
√
λ j : j = 1, . . . , r}.

Let m(L) be the Euclidean norm of the shortest nonzero vector of L , and suppose
that µ3m(L)≥ µ2. Then, for any P ∈ C(Q), either  (P) ∈W or

h( (P))≥ (µ3m(L)−µ2)
2
+µ1.

Note that m(L) is called the minimum of L and can be computed using an algorithm
of Fincke and Pohst [1985].

Proof. Suppose that  (P) /∈W . Then  (P)=w+φ(l) for some nonzero element
l ∈ L . In particular, if ‖ · ‖ denotes Euclidean norm then ‖l‖ ≥ m(L).

We can write M = N3N t where N is orthogonal and 3 is the diagonal matrix
with diagonal entries λi . Let x= lN and write x= (x1, . . . , xr ). Then

ĥ(φ(l))= lM lt = x3xt
≥ µ2

3‖x‖
2
= µ2

3‖l‖
2
≥ µ2

3m(L)2.

Now recall that D 7→
√

ĥ(D) defines a norm on J (Q)⊗R and so by the triangle
inequality √

ĥ( (P))≥
√

ĥ(φ(l))−
√

ĥ(w)≥ µ3m(L)−µ2.

The lemma now follows from (1-2). �

Remark 12.2. We can replace µ3m(L) with the minimum of L with respect to
the height pairing matrix. This is should lead to a very slight improvement. Since
in practice our lattice L has very large index, computing the minimum of L with
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Table 1

coset of unit rank bound R for bound for
J (Q)/2J (Q) κ of Ki regulator of Ki log x

0 1 12 1.8× 1026 1.0× 10263

D1 −2α 21 6.2× 1053 7.6× 10492

D2 4− 2α 25 1.3× 1054 2.3× 10560

D3 −4− 2α 21 3.7× 1055 1.6× 10498

D1+ D2 −2α+α2 21 1.0× 1052 3.2× 10487

D1+ D3 2α+α2 25 7.9× 1055 5.1× 10565

D2+ D3 −4+α2 21 3.7× 1055 1.6× 10498

D1+ D2+ D3 8α− 2α3 25 7.9× 1055 5.1× 10565

respect to the height pairing matrix may require the computation of the height
pairing matrix to very great accuracy, and such a computation is inconvenient. We
therefore prefer to work with the Euclidean norm on Zr .

13. Proofs of Theorems 1.1 and 1.2

The equation Y 2
− Y = X5

− X is transformed into

C : 2y2
= x5
− 16x + 8, (13-1)

via the change of variables y= 4Y−2 and x = 2X which preserves integrality. We
shall work with the model (13-1). Let C be the smooth projective genus 2 curve
with affine model given by (13-1), and let J be its Jacobian. Using MAGMA [Bosma
et al. 1997] we know that J (Q) is free of rank 3 with Mordell–Weil basis given by

D1 = (0, 2)−∞, D2 = (2, 2)−∞, D3 = (−2, 2)−∞.

The MAGMA programs used for this step are based on Stoll’s papers [1999; 2001;
2002].

Let f = x5
− 16x + 8. Let α be a root of f . We shall choose for coset rep-

resentatives of J (Q)/2J (Q) the linear combinations
∑3

i=1 ni Di with ni ∈ {0, 1}.
Then

x −α = κξ 2,

where κ ∈K and K is constructed as in Lemma 3.1. We tabulate the κ correspond-
ing to the

∑3
i=1 ni Di in Table 1.

Next we compute the bounds for log x given by Theorem 9.2 for each value of
κ . We implemented our bounds in MAGMA. Here the Galois group of f is S5 which
implies that the fields K1, K2, K3 corresponding to a particular κ are isomorphic.
The unit ranks of Ki , the bounds for their regulators as given by Lemma 5.1, and
the corresponding bounds for log x are tabulated also in Table 1.



Integral points on hyperelliptic curves 881

A quick search reveals 17 rational points on C :

∞, (−2,±2), (0,±2), (2,±2), (4,±22), (6,±62),

(1/2,±1/8), (−15/8,±697/256), (60,±9859).

Let W denote the image of this set in J (Q). Applying the implementation of the
Mordell–Weil sieve due to Bruin and Stoll which is explained in Section 10 we
obtain that  (C(Q))⊆W + B J (Q) where

B = 4449329780614748206472972686179940

652515754483274306796568214048000

= 28
· 34
· 53
· 73
· 112
· 132
· 172
· 19 · 23 · 29 · 312

·

∏
37≤p≤149

p 6=107

p.

For this computation, we used “deep” information modulo 29, 36, 54, 73, 113, 132,
172, 192, and “flat” information from all primes p < 50000 such that #J (Fp) is
500-smooth (but keeping only information coming from the maximal 150-smooth
quotient group of J (Fp)). Recall that an integer is called A-smooth if all its prime
divisors are ≤ A. This computation took about 7 hours on a 2 GHz Intel Core 2
CPU.

We now apply the new extension of the Mordell–Weil sieve which is explained
in Section 11. We start with L0 = BZ3 where B is as above. We successively
apply Lemma 11.1 using all primes q < 106 which are primes of good reduction
and satisfy criteria (I)–(IV) of Section 11. There are 78,498 primes less than 106.
Of these, we discard 2, 139, 449 as they are primes of bad reduction for C . This
leaves us with 78,495 primes. Of these, Criterion (I) fails for 77,073 of them,
Criterion (II) fails for 220 of the remaining, Criterion (III) fails for 43 primes that
survive Criteria (I) and (II), and Criterion (IV) fails for 237 primes that survive
Criteria (I)–(III). Altogether, only 922 primes q < 106 satisfy Criteria (I)–(IV) and
increase the index of L .

The index of the final L in Z3 is approximately 3.32× 103240. This part of the
computation lasted about 37 hours on a 2.8 GHZ Dual-Core AMD Opteron.

Let µ1, µ2, µ3 be as in the notation of Lemma 12.1. Using MAGMA we find
µ1 = 2.677, µ2 = 2.612 and µ3 = 0.378 (to 3 decimal places). The shortest vector
of the final lattice L is of Euclidean length approximately 1.156×101080 (it should
be no surprise that this is roughly the cube root of the index of L in Z3). By Lemma
12.1 if P ∈ C(Q) is not one of the 17 known rational points then

h( (P))≥ 1.9× 102159.
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If P is an integral point, then h( (P))= log 2+ 2 log x(P). Thus

log x(P)≥ 0.95× 102159.

This contradicts the bounds for log x in Table 1 and shows that the integral point P
must be one of the 17 known rational points. This completes the proof of Theorem
1.1. The proof of Theorem 1.2 is similar and we omit the details.

The reader can find the MAGMA programs for verifying the above computations
at: http://www.warwick.ac.uk/staff/S.Siksek/progs/intpoint/.
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