Vol. 2, No. 8, 2008

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 12, 2133–2308
Issue 11, 1945–2131
Issue 10, 1767–1943
Issue 9, 1589–1766
Issue 8, 1403–1587
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
The number of 2$\times$2 integer matrices having a prescribed integer eigenvalue

Greg Martin and Erick Wong

Vol. 2 (2008), No. 8, 979–1000
Abstract

What is the probability that an integer matrix chosen at random has a particular integer as an eigenvalue, or an integer eigenvalue at all? For a random real matrix, what is the probability of there being a real eigenvalue in a particular interval? This paper solves these questions for 2 × 2 matrices, after specifying the probability distribution suitably.

Keywords
random matrix, eigenvalue, integer eigenvalue, integer matrix, distribution of eigenvalues
Mathematical Subject Classification 2000
Primary: 15A36, 15A52
Secondary: 11C20, 15A18, 60C05
Milestones
Received: 28 May 2008
Revised: 13 August 2008
Accepted: 16 October 2008
Published: 23 November 2008
Authors
Greg Martin
Department of Mathematics
University of British Columbia
Room 121, 1984 Mathematics Road
Vancouver, BC V6T 1Z2
Canada
http://www.math.ubc.ca/~gerg
Erick Wong
Department of Mathematics
University of British Columbia
Room 121, 1984 Mathematics Road
Vancouver, BC V6T 1Z2
Canada
http://www.math.ubc.ca/~erick