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We present an algorithm for computing the integral closure of a reduced ring that
is finitely generated over a finite field.

Leonard and Pellikaan [2003] devised an algorithm for computing the integral
closure of weighted rings that are finitely generated over finite fields. Previous
algorithms proceed by building successively larger rings between the original ring
and its integral closure [de Jong 1998; Seidenberg 1970; 1975; Stolzenberg 1968;
Vasconcelos 1991; 2000]; the Leonard–Pellikaan algorithm instead starts with the
first approximation being a finitely generated module that contains the integral
closure, and successive steps produce submodules containing the integral closure.
The weights in [Leonard and Pellikaan 2003] impose strong restrictions, and play
a crucial role in various steps of their algorithm; see Remark 1.7. We present a
modification of the Leonard–Pellikaan algorithm that works in much greater gen-
erality: it computes the integral closure of a reduced ring that is finitely generated
over a finite field.

We discuss an implementation of the algorithm in Macaulay 2, and provide
comparisons with de Jong’s algorithm [1998].

1. The algorithm

Our main result is the following theorem; see Remark 1.5 for an algorithmic con-
struction of an element D as below when R is a domain, and for techniques for
dealing with the more general case of reduced rings.

Theorem 1.1. Let R be a reduced ring that is finitely generated over a computable
field of characteristic p > 0. Set R to be the integral closure of R in its total ring
of fractions. Suppose D is a nonzerodivisor in the conductor ideal of R, that is, D
is a nonzerodivisor with DR ⊆ R.
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(1) Set V0 =
1
D R, and inductively define Ve+1 = { f ∈ Ve | f p

∈ Ve} for e > 0.
Then the modules Ve are algorithmically constructible.

(2) The descending chain V0 ⊇ V1 ⊇ V2 ⊇ V3 ⊇ · · · stabilizes. If Ve = Ve+1, then
Ve equals R.

The prime characteristic enables us to use the Frobenius or pth power map; this
is what makes the modules Ve algorithmically constructible.

Remark 1.2. For each integer e > 0, the module DVe is an ideal of R; we set
Ue = DVe and use this notation in the proof of Theorem 1.1 as well as in the
Macaulay 2 code in the following section. The inductive definition of Ve translates
to U0 = R and Ue+1 = {r ∈Ue | r p

∈ D p−1Ue} for e > 0.

Proof of Theorem 1.1. (1) By Remark 1.2, it suffices to establish that the ideals Ue

are algorithmically constructible. This follows inductively since

Ue+1 =Ue ∩ ker
(
R

F
−−−→ R

π
−−−→ R/D p−1Ue

)
for e > 0,

where F is the Frobenius endomorphism of R, and π the canonical surjection.

(2) By construction, one has Ve+1⊆Ve for each e. Moreover, it is a straightforward
verification that

Ve = { f ∈ V0 | f pi
∈ V0 for each i 6 e}.

Suppose f ∈ R. Then f pi
∈ R for each i > 0, so D f pi

∈ R. It follows that f ∈ Ve

for each e.
If Ve+1 = Ve for some positive integer e, then it follows from the inductive

definition that Ve+i = Ve for each i > 1.
Let v1, . . . , vs : R −→ Z∪ {∞} be the Rees valuations of the ideal DR, that is,

vi are valuations such that for each n ∈ N, the integral closure of the ideal Dn R
equals {r ∈ R | vi (r)> nvi (D) for each i}. Let e be an integer such that pe>vi (D)
for each i . Suppose r/D ∈ Ve. Then (r/D)pe

∈ V0, so r pe
∈ D pe

−1 R. It follows
that pevi (r)>

(
pe
− 1

)
vi (D) for each i , and hence that

vi (r) > vi (D)− vi (D)/pe > vi (D)− 1

for each i . Since vi (r) is an integer, it follows that vi (r) > vi (D) for each i , and
therefore r ∈ DR. But then r belongs to the integral closure of the ideal DR in R.
Since principal ideals are integrally closed in R, it follows that r ∈ DR, whence
r/D ∈ R. �

Remark 1.3. If R is an integral domain satisfying the Serre condition S2, then
each module Ve is S2 as well:

Proceed by induction on e. Without loss of generality, assume R is local. Let
x, y be part of a system of parameters for R. Suppose yv ∈ xVe+1 for an element
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v ∈ Ve+1. Then yv/x ∈ Ve+1, that is, yv/x ∈ Ve and y pv p/x p
∈ Ve, or equivalently,

yv ∈ xVe and y pv p
∈ x pVe. Since Ve is S2 by the inductive hypothesis, it follows

that v ∈ xVe and v p
∈ x pVe, hence v ∈ xVe+1.

Remark 1.4. In the notation of Theorem 1.1, suppose e is an integer such that
Ve = Ve+1. We claim that the integral closure of a principal ideal a R is

{r ∈ R | Dr pi
∈ a pi

R for each i 6 e+ 1}.

To see this, suppose r is an element of the ideal displayed above. Then Dr p
= ga p

for some g ∈ R. Since

D(r/a)pi
∈ R for each i 6 e+ 1,

it follows that
D(g/D)pi

∈ R for each i 6 e.

But then g/D ∈ Ve, which implies that g/D ∈ Vi for each i . Hence D(r/a)pi
∈ R

for each i , equivalently r ∈ a R.

Remark 1.5. Let R be a reduced ring that is finitely generated over a perfect
field K of prime characteristic p. We describe how to algorithmically obtain a
nonzerodivisor D in the conductor ideal of R.

Case 1. Suppose R is an integral domain. Consider a presentation of R over K ,
say R = K [x1, . . . , xn]/( f1, . . . , fm). Set h = height( f1, . . . , fm). Then the de-
terminant of each h × h submatrix of the Jacobian matrix (∂ fi/∂x j ) multiplies R
into R; this may be concluded from the Lipman–Sathaye Theorem [1981] (also
found as Theorem 12.3.10 in [Huneke and Swanson 2006]), as discussed in the
following paragraph. At least one such determinant has nonzero image in R, and
can be chosen as the element D in Theorem 1.1. Other approaches to obtaining
an element D are via the proof of [Huneke and Swanson 2006, Theorem 3.1.3], or
equivalently, via the results from [Stichtenoth 1993].

Let J be the ideal of R generated by the images of the h × h submatrices of
(∂ fi/∂x j ). We claim that J is contained in the conductor of R. By passing to
the algebraic closure, assume K is algebraically closed. After a linear change
of coordinates, assume that the xi are in general position, specifically, that for
any n − h element subset 3 of {x1, . . . , xn}, the extension K [3] ⊆ R is a finite
integral extension, equivalently that K [3] is a Noether normalization of R. By
the Lipman–Sathaye Theorem, the relative Jacobian JR/K [3] is contained in the
conductor ideal. The claim now follows since, as 3 varies, the relative Jacobian
ideals JR/K [3] generate the ideal J .

Even when R is not necessarily an integral domain, the ideal J , as defined
above, is not contained in any minimal prime of R; this follows from the Jacobian
criterion, see, for example, [Huneke and Swanson 2006, Theorem 4.4.9].
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Case 2. In the case where R is a reduced equidimensional ring, one may proceed
as above and choose D to be the determinant of an h× h submatrix of (∂ fi/∂x j ),
and then test to see whether D is a nonzerodivisor. If it turns out that D is a
nonzero zerodivisor, set I1 = (0 :R D) and I2 = (0 :R I1). Then each of R/I1 and
R/I2 is a reduced equidimensional ring, with fewer minimal primes than R, and
R = R/I1× R/I2. Hence R may be computed by computing the integral closure
of each R/Ii .

Case 3. If R is a reduced ring that is not necessarily equidimensional, one may
compute the minimal primes P1, . . . , Pn of R using an algorithm for primary
decomposition—admittedly an expensive step—and then compute R using Case
1 and the fact that R = R/P1× · · ·× R/Pn .

Remark 1.6. Theorem 1.1 may be extended as follows. Suppose a reduced ring R
has an endomorphism ϕ with the property that for each valuation v : R−→Z∪{∞},
there exists an integer k > 2 such that

v(ϕ(r))= kv(r) for each r ∈ R. (1.6.1)

Let D be a nonzerodivisor in the conductor of R. Set V0 =
1
D R and

Ve+1 = { f ∈ Ve | ϕ( f ) ∈ Ve} for e > 0.

Imitating the proof of Theorem 1.1, one sees that the descending chain

V0 ⊇ V1 ⊇ V2 ⊇ V3 ⊇ · · ·

stabilizes at R. If colon ideals and kernels of endomorphisms are computable in
R, then each Ve is algorithmically constructible.

As an example, consider a polynomial ring A= F[x1, . . . , xk] over a field F. Let
R be a subring of A that is generated, as an F-algebra, by finitely many monomials.
Fix an integer k>2. The F-algebra endomorphism of A with xi 7→ xk

i restricts to an
endomorphism ϕ of R satisfying property (1.6.1). Thus, one obtains an algorithm
for computing the integral closure of affine semigroup rings; see Bruns and Koch
[2001] for another algorithm.

Remark 1.7. The Leonard–Pellikaan algorithm [2003] is based on earlier work
of Leonard [2001]. These papers make use of the Frobenius endomorphism along
with a weighted total-degree monomial ordering; this is a monomial ordering under
which there are only finitely many elements preceding any given element, and this
is an essential ingredient in proving the convergence of their algorithm. The affine
domains considered in [Leonard and Pellikaan 2003] are constructed as towers in
the following sense: R0 is a finite field; if R j−1 is given with a weight function
wt j−1, then R j is the integral closure of R j−1[x j ]/(ϕ j (x j )) in F j−1[x j ]/(ϕ j (x j )),
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as computed by their algorithm; here F j−1 is the field of fractions of R j−1, and

ϕ j (x j )= xm j
j + u j

j−1∏
i=1

xαi, j
i + g j (x j , . . . , x1)

is an element of R j−1[x j ] that is irreducible and monic in x j , such that u j is a
nonzero element of R0, and the weight function satisfies

wt j (g j (x j , . . . , x1)) < wt j (x
m j
j )= wt j

( j−1∏
i=1

xαi, j
i

)
,

where wt j is a modification (not a simple extension) of wt j−1 that requires further
technical assumptions on the m j and αi, j . A complexity analysis of some aspects
of the Leonard–Pellikaan algorithm is carried out in [Hu and Maharaj 2008].

2. Implementation and examples

Here is our code in Macaulay 2 [Grayson and Stillman], which uses this algorithm
to compute the integral closure.

Input: An integral domain R that is finitely generated over a finite field, and,
optionally, a nonzero element D of the conductor ideal of R.

Output: A set of generators for R as a module over R.

Macaulay 2 function:

icFracP = method(Options=>{conductorElement => null})
icFracP Ring := List => o -> (R) -> (

P := ideal presentation R;
c := codim P;
S := ring P;
if o.conductorElement === null then (

J := promote(jacobian P,R);
n := 1;
det1 := ideal(0_R);
while det1 == ideal(0_R) do (

det1 = minors(c,J);
n = n+1

);
D := det1_0;

) else D = o.conductorElement;
p := char(R);
K := ideal(1_R);
U := ideal(0_R);
F := apply(generators R, i-> i^p);
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while (U != K) do (
U = K;
L := U*ideal(D^(p-1));
f := map(R/L,R,F);
K = intersect(kernel f, U);

);
U = mingens U;
if numColumns U == 0 then {1_R}
else apply(numColumns U, i-> U_(0,i)/D)
)

Since the Leonard–Pellikaan algorithm uses the Frobenius endomorphism, it is
less efficient when the characteristic of the ring is a large prime. In the examples
that follow, the computations are performed on a MacBook Pro computer with a
2 GHz Intel Core Duo processor; the time units are seconds. The comparisons are
with de Jong’s algorithm [1998] as implemented in the program ICfractions in
Macaulay 2, version 1.1.

Example 2.1. Let F2[x, y, t] be a polynomial ring over the field F2, and set R =
F2[x, y, x2t, y2t]. Then R has a presentation F2[x, y, u, v]/(x2v − y2u), which
shows, in particular, that x2 is an element of the conductor ideal. Setting D = x2,
the algorithm above computes that the integral closure of R is generated, as an R-
module, by the elements 1 and xyt . Tracing the algorithm, one sees that V0 is not
equal to V1, that V1 is not equal to V2, and that V2 = V3. Indeed, these R-modules
are

V0 =
1
x2 R, V1 =

1
x

R+ yt R, Ve = R+ yt R for e > 2.

As is to be expected, the algorithm is less efficient as the characteristic of the
ground field increases:

characteristic p 2 3 5 7 11 13 17 37 97

icFracP 0.04 0.03 0.04 0.04 0.04 0.05 0.05 0.13 0.59
icFractions 0.08 0.09 0.09 0.09 0.14 0.15 0.15 0.15 0.15

Integral closure of Fp[x, y, u, v]/(x2v− y2u).

We remark that R is an affine semigroup ring, so its integral closure may also
be computed using the program normaliz of Bruns and Koch [2001].

Example 2.2. Consider the hypersurface

R = Fp[u, v, x, y, z]/(u2x4
+ uvy4

+ v2z4).

It is readily verified that R is a domain, and that t = ux4/v is integral over R. The
ring R[t] has a presentation Fp[u, v, x, y, z, t]/I , where I is the ideal generated
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by the 2× 2 minors of the matrix(
u t −z4

v x4 t+y4

)
.

Since the entries of the matrix form a regular sequence in Fp[u, v, x, y, z, t], the
ring R[t] is Cohen–Macaulay. Moreover, if p 6= 2, then the singular locus of R[t]
is V (t, y, xz, vz, ux) which has codimension 2, so R[t] is normal.

If p=2 then the ring R[t] is not normal; indeed, in this case, the integral closure
of R is generated, as an R-module, by the elements

1,
√

uv,
ux + z

√
uv

y
,

vz+ x
√

uv
y

,
uxz+ z2√uv

uy
.

For small values of p, these computations may be verified on Macaulay 2 using
either algorithm; some computations times are recorded next. (Here and in the next
table ∗ means that the computation did not terminate within six hours.)

characteristic p 2 3 5 7 11

icFracP 0.07 0.22 9.67 143 12543
icFractions 1.16 ∗ ∗ ∗ ∗

Integral closure of Fp[u, v, x, y, z]/(u2x4
+ uvy4

+ v2z4).

Example 2.3. Consider the hypersurface

R = Fp[u, v, x, y, z]/(u2x p
+ 2uvy p

+ v2z p),

where p is an odd prime. We shall see that R has p+1 generators as an R-module,
but first some comparisons:

characteristic p 3 5 7 11 13 17 19 23

icFracP 0.07 0.09 0.27 1.81 4.89 26 56 225
icFractions 1.49 75.00 4009 ∗ ∗ ∗ ∗ ∗

Integral closure of Fp[u, v, x, y, z]/(u2x p
+ 2uvy p

+ v2z p).

We claim that R is generated, as an R-module, by the elements

1,
√

y2− xz, and ui/pv(p−i)/p for 16 i 6 p− 1. (2.3.1)

It is immediate that these elements are integral over R; to see that they belong to
the fraction field of R, note that√

y2− xz =±
uy p
+ vz p

u(y2− xz)(p−1)/2
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and that, by the quadratic formula, one also has(u
v

)1/p
=
−y±

√
y2− xz

x
. (2.3.2)

Moreover, using (2.3.2), it follows that

v1/p
√

y2− xz =±(xu1/p
+ yv1/p),

and hence the R-module generated by the elements (2.3.1) is indeed an R-algebra.
It remains to verify that the ring

A = R
[√

y2− xz, ui/pv(p−i)/p
| 16 i 6 p− 1

]
is normal. For this, it suffices to verify that

B = R
[√

y2− xz, u1/p, v1/p
]

is normal, since A is a direct summand of B as an A-module: use the grading
on B where deg x = deg y = deg z = 0 and deg u1/p

= 1 = deg v1/p, in which
case A is the pth Veronese subring

⊕
i∈N Bi p. The ring B has a presentation

Fp[x, y, z, d, s, t]/I , where I is generated by the 2× 2 minors of the matrix(
y+d z s

x y−d −t

)
,

and s 7→u1/p, t 7→ v1/p, d 7→
√

y2− xz. But then — after a change of variables —
B is a determinantal ring, and hence normal.
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