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Dustin A. Cartwright, Daniel Erman, Mauricio Velasco and Bianca Viray

The Hilbert scheme H d
n of n points in Ad contains an irreducible component Rd

n
which generically represents n distinct points in Ad . We show that when n is at
most 8, the Hilbert scheme H d

n is reducible if and only if n = 8 and d ≥ 4. In
the simplest case of reducibility, the component R4

8 ⊂ H 4
8 is defined by a single

explicit equation, which serves as a criterion for deciding whether a given ideal
is a limit of distinct points.

To understand the components of the Hilbert scheme, we study the closed
subschemes of H d

n which parametrize those ideals which are homogeneous and
have a fixed Hilbert function. These subschemes are a special case of multi-
graded Hilbert schemes, and we describe their components when the colength is
at most 8. In particular, we show that the scheme corresponding to the Hilbert
function (1, 3, 2, 1) is the minimal reducible example.

1. Introduction

The Hilbert scheme H d
n of n points in affine d-space parametrizes 0-dimensional,

degree n subschemes of Ad . Equivalently, the k-valued points of H d
n parametrize

ideals I ⊂ S= k[x1, . . . , xd ] such that S/I is an n-dimensional vector space over k.
The smoothable component Rd

n ⊂ H d
n is the closure of the set of ideals of distinct

points. The motivating problem of this paper is characterizing the ideals which
lie in the smoothable component, that is, the 0-dimensional subschemes which are
limits of distinct points. We determine the components of the schemes H d

n for
n ≤ 8, and find explicit equations defining R4

8 ⊂ H 4
8 .

We assume that k is a field of characteristic not 2 or 3.

Theorem 1.1. Suppose n is at most 8 and d is any positive integer. Then the Hilbert
scheme H d

n is reducible if and only if n = 8 and d ≥ 4, in which case it consists
of exactly two irreducible components: the smoothable component, of dimension
8d , and a component denoted Gd

8 , of dimension 8d − 7, which consists of local
algebras isomorphic to homogeneous algebras with Hilbert function (1, 4, 3).
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It is known that for d at least 3 and n sufficiently large the Hilbert scheme of
points is always reducible [Iarrobino 1972]. The fact that the Hilbert scheme H 4

8
has at least two components appears in [Iarrobino and Emsalem 1978]. In contrast,
for the Hilbert scheme of points in the plane (d = 2), the smoothable component
is the only component [Fogarty 1968].

To show that the Hilbert scheme of n points is irreducible, it suffices to show that
each isomorphism type of local algebras of rank at most n is smoothable, and for n
at most 6 there are finitely many isomorphism types of local algebras. In contrast,
there are infinitely many nonisomorphic local algebras of degree 7. Relying on a
classification of the finitely many isomorphism types in degree 6, Mazzola [1980]
proves the irreducibility of H d

n for n = 7.
In our approach, a coarser geometric decomposition replaces most of the need

for classification. We divide the local algebras in H d
n into sets H d

h by their Hilbert
function h, and we determine which components of these sets are smoothable.
The main advantage to this approach is that there are fewer Hilbert functions than
isomorphism classes, and this enables us to extend the smoothability results of
[Mazzola 1980] up to degree 8.

In order to determine the components of H d
h , we first determine the components

of the standard graded Hilbert scheme Hd
h, which parametrizes homogeneous ideals

with Hilbert function h. By considering the map πh :H d
h→Hd

h which sends a local
algebra to its associated graded ring, we relate the components of Hd

h to those of
H d

h . The study of standard graded Hilbert schemes leads to the following analogue
of Theorem 1.1:

Theorem 1.2. Let Hd
h be the standard graded Hilbert scheme for Hilbert function

h, where
∑

hi ≤ 8. Then Hd
h is reducible if and only if

h = (1, 3, 2, 1) or h = (1, 4, 2, 1),

in which case it has exactly two irreducible components. In particular, H3
(1,3,2,1) is

the minimal example of a reducible standard graded Hilbert scheme.

As in the ungraded case, all standard graded Hilbert schemes in the plane are
smooth and irreducible [Evain 2004].

In the case when d = 4 and n = 8, we describe the intersection of the two
components of H 4

8 explicitly. Let S = k[x, y, z, w] and S1 be the vector space
of linear forms in S. Let S∗2 denote the space of symmetric bilinear forms on S1.
Then, the component G4

8 is isomorphic to A4
×Gr(3, S∗2 ), where Gr(3, S∗2 ) denotes

the Grassmannian of 3-dimensional subspaces of S∗2 .

Theorem 1.3. The intersection R4
8 ∩ G4

8 is a prime divisor on G4
8. We have the

following equivalent descriptions of R4
8 ∩G4

8 ⊂ G4
8:
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Set-theoretic: For a point I ∈ G4
8
∼= A4

×Gr(3, S∗2 ) ∼= A4
×Gr(7, S2) let V be

the corresponding 7-dimensional subspace of S2. Then I ∈ G4
8 belongs to the

intersection if and only if the skew-symmetric bilinear form

〈 , 〉I : (S1⊗ S2/V )⊗2
→

3∧
(S2/V )∼= k

given by

〈l1⊗ q1, l2⊗ q2〉I = (l1l2)∧ q1 ∧ q2

is degenerate.

Local equations: Around any I ∈ G4
8, choose an open neighborhood UI ⊂ G4

8
such that the universal Grassmannian bundle over the UI is generated by
three sections. Since these sections are bilinear forms we may represent them
as symmetric 4× 4 matrices A1, A2, and A3 with entries in 0(UI ,OG4

8
). The

local equation for R4
8 ∩UI is then the Pfaffian of the 12× 12 matrix: 0 A1 −A2

−A1 0 A3

A2 −A3 0

 .
Note that specializing this equation to I gives the Pfaffian of 〈 , 〉I .

The local equation from the previous theorem gives an effective criterion for de-
ciding whether an algebra of colength 8 belongs to the smoothable component.
Moreover, it can be lifted to equations which cut out R4

8 ⊂ H 4
8 . Recall that H 4

8 can
be covered by open affines corresponding to monomial ideals in k[x, y, z, w] of
colength 8.

Theorem 1.4. On these monomial coordinate charts, R4
8 ⊂ H 4

8 is cut out set-
theoretically by

(1) the zero ideal on charts corresponding to monomial ideals with Hilbert func-
tions other than (1, 4, 3), and

(2) the pullback of the equations in Theorem 1.3 along the projection to homoge-
neous ideals in charts corresponding to monomial ideals with Hilbert function
(1, 4, 3).

Remark 1.5. It is not known whether H 4
8 is reduced. If it is, then the equations in

Theorem 1.4 cut out the smoothable component scheme-theoretically.

Remark 1.6. Every point of the Hilbert scheme of n points in Pd has an open
neighborhood isomorphic to H d

n . Therefore, analogues of Theorems 1.1, 1.3,
and 1.4 hold for the Hilbert scheme of n points in Pd . However, the most natural
setting for our methods is the affine case and the language of multigraded Hilbert
schemes.
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The material in this paper is organized as follows: Section 2 contains back-
ground and definitions. Section 3 describes the geometry of standard graded Hilbert
schemes of degree at most 8. Section 4 contains proofs of the smoothability of
families of algebras and its main steps are collected in Table 4.1. Section 5 is
devoted to the study of the components of H 4

8 and their intersection. Section 6
ties together these results to give proofs of all theorems mentioned above. Finally,
Section 7 proposes some open questions.

2. Background

In this section, let k be a field and S = k[x1, . . . , xd ].

Multigraded Hilbert schemes. A grading of S by an abelian group A is a semi-
group homomorphism deg : Nd

→ A which assigns to each monomial in S a
degree in A. Let h : A → N be an arbitrary function, which we will think of
as a vector h, with values ha indexed by a in A. We say that a homogeneous
ideal I in S has Hilbert function h if Sa/Ia has k-dimension ha for all a ∈ A.
Multigraded Hilbert schemes, introduced in [Haiman and Sturmfels 2004], param-
etrize homogeneous ideals with a fixed Hilbert function. More precisely these are
quasiprojective schemes over k which represent the following functors [Haiman
and Sturmfels 2004, Theorem 1.1]:

Definition 2.1. For a fixed integer d, grading deg, and Hilbert function h, the
multigraded Hilbert functor Hh : k -Alg→ Set assigns to each k-algebra T , the
set of homogeneous ideals J in S⊗T such that the graded component (S⊗T/J )a is
a locally free T -module of rank ha for all a in A. The multigraded Hilbert scheme
is the scheme which represents the multigraded Hilbert functor.

In particular, we will be interested in the following two special kinds of multi-
graded Hilbert scheme:

• Let deg : Nd
→ 0 be the constant function to the trivial group and define

h0 = n. In this case the multigraded Hilbert scheme is the Hilbert scheme of
n points in Ad and will be denoted H d

n .

• Let deg : Nd
→ Z be the summation function, which induces the standard

grading deg(xi ) = 1. We call the corresponding multigraded Hilbert scheme
the standard graded Hilbert scheme for Hilbert function h and denote it with
Hd

h.

If n=
∑

j∈N h j there is a closed immersion Hd
h→H d

n by [Haiman and Sturmfels
2004, Proposition 1.5].

Coordinates for the Hilbert scheme of points. In this section we briefly discuss
some coordinate systems on H d

n . The reader should refer to [Miller and Sturmfels
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2005, Chapter 18] for an extended treatment. For a monomial ideal M of colength
n with standard monomials λ, let Uλ ⊂ H d

n be the set of ideals I such that the
monomials in λ are a basis for S/I . Note that the Uλ form an open cover of H d

n .
An ideal I ∈ Uλ has generators of the form m −

∑
m′∈λ cm

m′m
′. The cm

m′ are local
coordinates for Uλ which define a closed immersion into affine space.

Suppose V (I ) consists of n distinct points q(1), . . . , q(n) with coordinates q( j)
i

for 1≤ i ≤ d . Fix an order λ= (m1, . . . ,mn) on the set of monomials λ and define
1λ = det

(
[mi (q( j))]i, j

)
. For example, if λ = (1, x1, . . . , xn−1

1 ), then 1λ is the
determinant of the Vandermonde matrix on the q( j)

1 . If I ∈Uλ, we can express the
cm

m′ in terms of the q( j)
i , using Cramer’s rule, as

cm
m′ =

1λ−m′+m

1λ
,

where λ−m′ +m is the ordered set of monomials obtained from λ by replacing
m′ with m. Note that the right-hand side of this equality is only defined for ideals
of distinct points. The quotient or product of two 1λ’s is Sn-invariant. Thus the
formula does not depend on the order of λ. Gluing over the various Uλ, these
quotients determine a birational map

(Ad)n�Sn 99K Rd
n

that is regular when the points q( j) are all distinct. The rational functions 1η1/1η2

are elements of the quotient field of either (Ad)n�Sn or Rd
n . The expressions 1λ

and their relationship to the local equations cm
m′ were introduced in [Haiman 1998,

Proposition 2.6].

Duality. First let us suppose that k has characteristic 0, and let S∗ be the ring
k[y1, . . . , yd ], with the structure of an S-module via formal partial differentiation
xi · f = ∂ f/∂yi . If we look at homogeneous polynomials of a fixed degree j in each
of the two rings, we have a pairing S j×S∗j→ S∗0 =k. Any vector subspace of S j has
an orthogonal subspace in S∗j of complementary dimension. In particular, if I is a
homogeneous ideal in S, we have subspaces I⊥j ⊂ S∗j and we set I⊥=⊕I⊥j , which
is often called the Macaulay inverse system of I . The subspace I⊥ is closed under
differentiation, that is, ∂

∂yi
I⊥j ⊂ I⊥j−1 for all i and j . Conversely, any graded vector

subspace I⊥ ⊂ S∗ which is closed under differentiation determines an orthogonal
ideal I ⊂ S with Hilbert function h j = dimk I⊥j . Also, note that any linear change
of variables in S induces a linear change of variables in S∗.

If k has positive characteristic p, then the same theory works for sufficiently
small degree. Formal partial differentiation gives a perfect pairing S j × S∗j → k
if and only if j is less than p. Thus, we can associate orthogonal subspaces I⊥j
to a homogeneous ideal I so long as Ip contains all of Sp. In this case, we define
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I⊥j = 0 for all degrees j at least p, and I =⊕I j as before. Conversely, for a graded
vector subspace I⊥ ⊂ S∗ which is closed under differentiation and with I⊥j = 0
for j at least p, the orthogonal space is a homogeneous ideal I ⊂ S with Hilbert
function h j = dimk I⊥j .

3. Components of the standard graded Hilbert schemes

In this section, k will denote an algebraically closed field of characteristic not 2
or 3.

We will study the components of the standard graded Hilbert schemes Hd
h with

Hilbert function h where
∑

hi ≤ 8. These results will be important for the proofs
of smoothability in the following section. From [Evain 2004, Theorem 1], we have
that for d = 2, the standard graded Hilbert schemes are irreducible. Thus, we will
only work with d at least 3. For the purposes of classifying irreducible components
of Hd

h, it is convenient to work with homogeneous ideals which contain no linear
forms, and thus we assume that h1 = d . The following lemma allows us to restrict
our attention to this case:

Proposition 3.1. The standard graded Hilbert scheme Hd
h with d ≥ h1 is a Hh1

h -
bundle over Gr(d−h1, S1). In particular, if Hh1

h is irreducible of dimension D then
Hd

h is irreducible of dimension D+ (d − h1)d.

Proof. The degree 1 summand of the universal ideal sheaf of OHd
h
[x1, . . . , xd ] is

locally free of rank d− h1 and thus defines a morphism φ :Hd
h→Gr(d− h1, S1).

Over an open affine U ∼= A(d−h1)h1 in Gr(d − h1, S1), we have an isomorphism
φ−1(U )∼=U × H h1

h by taking a change of variables in OU [x1, . . . , xd ]. �

Lemma 3.2. Let be m a positive integer such that m! is not divisible by the charac-
teristic of k. Let f (y1, . . . , yd) be a homogeneous polynomial in S∗m whose partial
derivatives form an r-dimensional vector subspace of S∗m−1. Then f can be written
as a polynomial in terms of some r-dimensional subspace of S∗1 .

Proof. There exists a linear map from S1→ S∗m−1 which sends xi 7→
∂ f
∂yi

. After a
change of variables, we can assume that xr+1, . . . , xd annihilate f . Thus, any term
of f contains only the variables y1, . . . , yr . �

Throughout this section, N will denote dimk S2 =
(d+1

2

)
, the dimension of the

vector space of quadrics.

Proposition 3.3. Let 0 ≤ e ≤ N. The standard graded Hilbert scheme for Hilbert
function (1, d, e) is isomorphic to the Grassmannian Gr(N − e, S2), and it is thus
irreducible of dimension (N − e)N.

Proof. We build the isomorphism via the functors of points of these schemes. For a
k-algebra T let φ(T ) :Hh(T )→Gr(N −e, S2)(T ) be the morphism of sets which
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maps a homogeneous ideal I ⊂T⊗k S to I2. Letψ(T ) :Gr(N−e, S2)(T )→Hh(T )
be the map which sends a k-submodule L of T ⊗ S2 to L⊕

⊕
j≥3(T ⊗k S j ), which

is an ideal of T ⊗ S. The natural transformations φ and ψ are inverses of one
another and the isomorphism follows from Yoneda’s Lemma. �

Proposition 3.4. Let h = (1, d, 1, . . . , 1) and let m ≥ 3 be the largest index such
that hm is nonzero. Then the standard graded Hilbert scheme for h is irreducible
of dimension d − 1.

Proof. We claim that the scheme Hd
h is parametrized by Gr(1, S∗1 ) by sending a

vector space generated by ` ∈ S∗1 to the ideal generated by the quadrics orthogonal
to `2 and all degree m + 1 polynomials. This ideal has the right Hilbert function
and the parametrization is clearly surjective. �

Theorem 3.5. If d is at least 3, the standard graded Hilbert scheme for Hilbert
function (1, d, 2, 1) is reducible and consists of the following two components:

(1) The homogeneous ideals orthogonal to `3, `2, and q where ` is a linear form
and q is a quadric linearly independent of `2. We denote this component by
Qd , and dim(Qd)= (d2

+ 3d − 6)/2.

(2) The closure of the homogeneous ideals orthogonal to a cubic c and its partial
derivatives, where the degree 1 derivatives of c have rank 2. We denote this
component by Pd , and dim(Pd)= 2d − 1.

Proof. We compute the dimension of the first component. It is parametrized by the
1-dimensional subspace of S∗1 generated by ` and a 2-dimensional subspace of S∗2
which contains `2. These have dimensions d−1 and N −1−1 respectively, for a
total of (d2

+ 3d − 6)/2.
Note also that an open subset of the second component, Pd , is parametrized

by a 2-dimensional subspace V of S∗1 and a cubic c ∈ Sym3(V ) which is not a
perfect cube. The parametrization is by taking the ideal whose components of
degrees 3 and 2 are orthogonal to c and to its derivatives respectively. The space
of derivatives is 2-dimensional by our construction of c. The dimension of Pd is
3+ 2(d − 2)= 2d − 1.

We claim that any homogeneous ideal with Hilbert function (1, d, 2, 1) lies in
one of these two components. Any such ideal is orthogonal to a cubic c, and the
derivatives of c are at most 2-dimensional. If the derivatives are 1-dimensional,
then c must be a perfect cube, so the ideal is in Qd . Otherwise, the ideal is in Pd .

Finally, we will show that Pd has a point that does not lie on Qd . Let I be the
ideal orthogonal to y1 y2

2 , and its partial derivatives, 2y1 y2, y2
2 . Then I is generated

by x3
2 and all degree 2 monomials other than x2

2 and x1x2. We will study the
homomorphisms φ : I→ S/I of degree 0, as these correspond to the tangent space
of Hd

h at I . For any quadric generator q, we can write φ(q)= aq x2
2+bq x1x2. Note
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that x1φ(q) = aq x1x2
2 and x2φ(q) = bq x1x2

2 . For any i, j > 2, φ must satisfy the
conditions

x1φ(xi x j )= x jφ(xi x1)= 0, x2φ(xi x j )= x jφ(xi x2)= 0,

x1φ(x1xi )= xiφ(x2
1)= 0, x2φ(x1xi )= x1φ(x2xi ).

In matrix form, we see that φ must be in the form


x2

1 x1xi x2xi xi x j x3
2

x2
2 ∗ ci ∗ 0 0

x1x2 ∗ 0 ci 0 0
x1x2

2 0 0 0 0 ∗

,
where i and j range over all integers greater than 2. Thus there are at most
2(d − 2) + 3 = 2d − 1 tangent directions, but since Pd has dimension 2d − 1,
there are exactly 2d − 1 tangent directions. On the other hand, Qd has dimension
(d2
+ 3d − 6)/2, which is greater than 2d − 1 for d at most 3, so I cannot belong

to Qd and thus Pd is a component. �

Proposition 3.6. The standard graded Hilbert scheme for Hilbert function h =
(1, d, 2, 2) is irreducible of dimension 2d − 2.

Proof. The Hilbert scheme is parametrized by a 2-dimensional subspace L of S∗1
and a subspace of S2 of dimension N −2, and containing the (N −3)-dimensional
subspace orthogonal to the square of L . The parametrization is by sending the
subspace of S2 to the ideal generated by that subspace, together with all degree 4
polynomials. The dimension of this parametrization is 2(d − 2)+ 2= 2d − 2. �

Proposition 3.7. The standard graded Hilbert scheme for Hilbert function h =
(1, 3, 3, 1) is irreducible of dimension 9.

Proof. This Hilbert scheme embeds as a closed subscheme of the smooth 18-
dimensional variety Gr(3, S2)×Gr(9, S3) by mapping an ideal to its degree 2 and
3 graded components. Furthermore, H3

h is defined by 9 = 3 · 3 equations, corre-
sponding to the restrictions that the products of each of the 3 variables and each
of the 3 quadrics in I2 are in I3. In particular, the dimension of each irreducible
component is at least 9.

Now we will look at the projection of H3
h onto the Grassmannian Gr(9, S3),

which is isomorphic to Gr(1, S∗3 ). The orthogonal cubic in S∗3 can be classified
according to the vector space dimension of its derivatives. For a generic cubic,
its three derivatives will be linearly independent and therefore the cubic will com-
pletely determine the orthogonal space. Thus, the projection from H3

h is a bijection
over this open set, so the preimage is 9-dimensional. In the case where the deriva-
tives of the cubic are 2-dimensional, we have that, after a change of coordinates, the
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cubic is written in terms of two variables. Thus, the parameter space of the cubic
consists of a 2-dimensional choice of a subspace of S1 and then a 3-dimensional
choice of a cubic written in terms of this subspace. The fiber over any fixed cubic is
isomorphic to the Grassmannian of 3-dimensional subspaces of the 4-dimensional
subspace of S2 orthogonal to the derivatives of the cubic. The dimension of the
locus in H3

h is therefore 2+ 3+ 3 = 8. By a similar logic, the locus where the
cubic has a 1-dimensional space of derivatives is 2+ 2 · 3 = 8. Therefore, H3

h is
the disjoint union of three irreducible sets, of dimensions 9, 8, and 8. We conclude
that H3

h is an irreducible complete intersection of dimension 9. �

Proposition 3.8. Let 1 ≤ e ≤ N. The standard graded Hilbert scheme for Hilbert
function (1, d, e, 1, 1) is irreducible of dimension d − 1+ (N − e)(e− 1).

Proof. This Hilbert scheme is parametrized by a 1-dimensional subspace L of S∗1 ,
together with an e-dimensional subspace V of S∗2 which contains Sym2(L). The
parametrization is by mapping (L , V ) to the ideal whose summands of degrees
2, 3, and 4 are orthogonal to V , L3, and L4, respectively. Note that this has the
desired dimension (d − 1)+

(
(N − 1)− (e− 1)

)
(e− 1). �

Theorem 3.9. With the exception of Hilbert functions (1, 3, 2, 1) and (1, 4, 2, 1),
the standard graded Hilbert schemes with

∑
hi ≤ 8 are irreducible.

Proof. The cases when d = 2 follow from [Evain 2004, Theorem 1]. The cases
when d is at least 3 are summarized in Table 4.1. �

4. Smoothable 0-schemes of degree at most 8

In this section k will denote an algebraically closed field of characteristic not 2
or 3.

Recall that a point I in H d
n is smoothable if I belongs to the smoothable com-

ponent Rd
n . In this section, we first reduce the question of smoothability to ideals

I in H d
n where S/I is a local k-algebra and I has embedding dimension d. Then

we define the schemes H d
h which parametrize local algebras, and we use these to

show that each 0-dimensional algebra of degree at most 8 is either smoothable or
is isomorphic to a homogeneous local algebra with Hilbert function (1, 4, 3).

We use two different methods to show that a subscheme H d
h belongs to the

smoothable component.

(1) For each irreducible component of H d
h , consider a generic ideal I from that

component. Apply suitable isomorphisms to put I into a nice form. Then
show I is smoothable. Since the set of ideals isomorphic to I are dense in the
component and smoothable, the entire component of H d

h containing I must
belong to Rd

n .
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(2) Within each irreducible component of H d
h , find an ideal I such that I is a

smooth point in H d
n and I belongs to Rd

n . Then the whole component of H d
h

containing I must belong to Rd
n .

In each method we need to show that a particular ideal I is smoothable. We
do this by showing I = in J with respect to some nonnegative weight vector for a
smoothable ideal J . The corresponding Gröbner deformation induces a morphism
A1
→ Rd

n which maps 0 to I .
For d= 2, the Hilbert scheme H 2

n is smooth and irreducible [Fogarty 1968, The-
orem 2.4]. Thus, we will limit our analysis to algebras with embedding dimension
at least 3.

For a finite rank k-algebra A0, we say that A0 is smoothable if there exists a flat
family k[[t]] → A such that the special fiber of A is isomorphic to A0 and such
that the generic fiber of A is smooth. This terminology is justified by the following
result:

Lemma 4.1. Let I ⊆ S an ideal of colength n. Then I is smoothable if and only if
S/I is smoothable (as a k-algebra).

Proof. Let I ⊆ S be a smoothable ideal, and let U ⊆ Rd
n be the open set parametriz-

ing smooth 0-schemes. Since I ∈ Rd
n , there exists a smooth curve C and a map

f : C→ Rd
n such that f (P)= I for some point P ∈ C and such that f (C) meets

U . By considering the completion of C at the point P , we obtain an induced map
f̂ : Spec(k[[t]])→ Rd

n which sends the closed point to I and the generic point into
U . The flat family over Spec(k[[t]]) which corresponds to the map f̂ induces an
abstract smoothing of S/I .

Conversely, let’s assume that A0 := S/I admits an abstract smoothing k[[t]]→ A.
Let φ : k[[t]][x1, . . . , xd ] → A be defined by sending each xi to any lift of xi from
S/I = A0. Since A is a finitely generated k[[t]]-module, the cokernel of φ is finitely
generated, and so we can apply Nakayama’s Lemma to show that φ is surjective.
The map φ thus induces a morphism of schemes f :Spec(k[[t]])→ H d

n which sends
the closed point to I and the generic point into U . It follows that I ∈U = Rd

n . �

If I is supported at multiple points, then S/I is the product of local Artin alge-
bras and a smoothing of each factor over k[[t]] yields a smoothing of S/I . Because
of this observation and Lemma 4.1, we will now only consider ideals I in H d

n
which define local algebras with embedding dimension d .

The schemes H d
h . If (A,m) is a local algebra, its Hilbert function is defined by

hi = dimk mi/mi+1, which is equivalently the Hilbert function of the associated
graded ring of A. When A is both local and graded, the two notions of Hilbert
function coincide. We now define the schemes H d

h and explore their irreducible
components for each Hilbert function h with

∑
hi ≤ 8.
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For each h such that
∑

hi=n, the subscheme H d
h ⊂H d

n consists set-theoretically
of the ideals I defining a local algebra S/I with maximal ideal (x1, . . . , xd) whose
Hilbert function equals h. More precisely, let A= OHd

n
[x1, . . . , xd ]/I be the uni-

versal sheaf of algebras on H d
n and let M be the ideal (x1, . . . , xd)A. The fiber

at an ideal I of the quotient sheaf A/Mi is isomorphic to S/(I + (x1, . . . , xd)
i ).

For any fixed h, there is a locally closed subset of H d
n consisting of those points

such that the fiber of A/Mi has dimension h0 + · · · + hi−1 for all i ≥ 0. Let H d
h

be the reduced subscheme on this subset, and then the restriction of each A/Mi to
H d

h is locally free. Define B to be the sheaf of graded algebras on H d
h whose i-th

component is

ker
(
(A/Mi+1)|Hd

h
→ (A/Mi )|Hd

h

)
,

which is locally free of rank hi because it is the kernel of a surjection of locally free
sheaves. Note that the fiber of B at I is the associated graded ring of S/I . There
is a canonical surjection of graded algebras OHd

h
[x1, . . . , xd ]→B which defines a

morphism πh : H d
h →Hd

h to the standard graded Hilbert scheme. The ideal I gets
mapped to its initial ideal with respect to the weight vector (−1, . . . ,−1).

With the exception h= (1, 3, 2, 1, 1), we will show that the irreducible compo-
nents of H d

h and Hd
h are in bijection via the map πh.

Proposition 4.2. Each subscheme H d
(1,d,e) is irreducible.

Proof. Since H d
(1,d,e)

∼=Hd
(1,d,e), this follows from Proposition 3.3. �

Proposition 4.3. Fix h= (1, d, e, f ). Let m = (d+1)d/2−e= dimk S2/I2. Then
every fiber of πh is irreducible of dimension m f . In particular, the irreducible
components of H d

h are exactly the preimages of the irreducible components of Hd
h.

Proof. Fix a point in Hd
h, which corresponds to a homogeneous ideal I . Let

q1, . . . , qm be quadratic generators of I , and let c1, . . . , c f be cubics which form
a vector space basis for S3/I3. Define a map φ : Am f

→ H d
n via the ideal〈

qi −
∑ f

j=1 ti j c j | 1≤ i ≤ m
〉
+ I≥3,

where the ti j are the coordinate functions of Am f . Because a product of any variable
x` with any of these generators is in I , this ideal has the right Hilbert function and
maps to the fiber of πh over I . Furthermore, φ is bijective on field-valued points,
so the fiber is irreducible of dimension m f .

For the last statement, we have that for any irreducible component of Hd
h, the

restriction of πh has irreducible equidimensional fibers over an irreducible base,
so the preimage is irreducible. These closed sets cover H d

h and because each lies
over a distinct component of Hd

h, they are distinct irreducible components. �
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Combining Theorem 3.5 with the above proposition, we see H d
(1,d,2,1) has ex-

actly two components: Pd :=π
−1(Pd) and Qd :=π

−1(Qd). In addition, by Propo-
sitions 3.6, 3.7, and 4.3, H d

(1,d,2,2) and H 3
(1,3,3,1) are irreducible.

Proposition 4.4. Let h = (1, d, 1, . . . , 1) and let m ≥ 3 be the largest index such
that hm is nonzero. Then H d

h is irreducible of dimension (d + 2m − 2)(d − 1)/2.
At a generic point, after a change of coordinates, we can take the ideal to be

〈xm+1
d , x2

i − xm
d , x j xk | 1≤ i < d, 1≤ j < k ≤ d〉.

Proof. Fix an ideal I ∈Hd
h, and after a change of coordinates, we can assume

I = 〈xm+1
d , xi x j | 1≤ i ≤ d − 1, 1≤ j ≤ d〉.

Let J be an ideal in the fiber above I . By assumption J contains an element of the
form

xi xd − bi3x3
d − · · ·− bim xm

d ,

for 1≤ i < d . Let J ′ be the image of J after the change of coordinates

xi 7→ xi + bi3x2
d + · · · bim xm−1

d , (4-1)

and note that J ′ contains xi xd for 1 ≤ i < d and also lies over I . Thus, for each
1≤ i ≤ j < d , J ′ contains an element of the form f = xi x j −ai j xk

d−· · · for some
k. However, J ′ must also contain x j (xi xd)− xd f = ai j xk+1

d + · · · , so in order to
have I as the initial ideal, k must equal m. Therefore, J ′ is of the form

J ′ = 〈xm+1
d , xi x j − ai j xm

d , xk xd | 1≤ i ≤ j ≤ d, 1≤ k < d〉.

Conversely, for any choice of ai j and bi j , applying the change of variables in
(4-1) to the ideal J ′ gives a unique ideal J with I as an initial ideal. Thus, the fiber
is irreducible of dimension (m−2)(d−1)+ (d−1)d/2= (d−1)(d+2m−4)/2,
which, together with Proposition 3.4 proves the first statement.

For the second statement, note that the coefficients ai j define a symmetric bi-
linear form. By taking the form to be generic and choosing a change of variables,
we get the desired presentation of the quotient algebra. �

The above propositions cover all Hilbert functions of length at most 8 except for
h= (1, 3, 2, 1, 1). In this case the fibers of π(1,3,2,1,1) are not equidimensional. The
dimension of the fiber depends on whether or not the homogeneous ideal requires
a cubic generator.

Lemma 4.5. No ideal in H3
(1,3,2,1,1) requires a quartic generator.

Proof. If I were such an ideal, then leaving out the quartic generator would yield
an ideal with Hilbert function (1, 3, 2, 1, 2). No such ideal exists, because no such
monomial ideal exists. �
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Lemma 4.6. There exists a 4-dimensional irreducible closed subset Z of H =

H3
(1,3,2,1,1) where the corresponding homogeneous ideal requires a single cubic

generator. On U=H\Z, the ideal does not require any cubic generators.

Proof. Let S j denote the j-th graded component of OH[x, y, z] and I j ⊂S j the j-
th graded component of the universal family of ideals on H. Consider the cokernel
Q of the multiplication map on the coherent sheaves I2⊗OH S1→ I3 on H. The
dimension of Q is upper semicontinuous. Furthermore, since it is not possible to
have an algebra with Hilbert function (1, 3, 2, 3), the dimension is at most 1. The
set Z is exactly the support of Q.

We claim that Z is parametrized by the data of a complete flag V1 ⊂ V2 ⊂ S∗1 ,
and a 2-dimensional subspace Q of V 2

2 which contains V 2
1 . The dimension of this

parametrization is 2+ 1+ 1 = 4. An ideal is formed by taking the ideal which
is orthogonal to Q in degree 2 and to the powers V 3

1 and V 4
1 in degrees 3 and 4

respectively. After a change of variables, we can assume that the flag is orthogonal
to 〈x〉 ⊂ 〈x, y〉 ⊂ S2. Then the degree 2 generators of I are x2, xy, xz and another
quadric. It is easy to see that these only generate a codimension 2 subspace of
S3. Conversely, for any ideal with this property, the orthogonal cubic has a 1-
dimensional space of derivatives. Furthermore, there exists a homogeneous ideal
with Hilbert function (1, 3, 2, 2, 1) contained in the original ideal. The cubics
orthogonal to these have a 2-dimensional space of derivatives, so we can write
them in terms of a 2-dimensional space of the dual variables. These two vector
spaces determine the flag, and the parametrization is bijective on closed points. In
particular, Z is irreducible of dimension 4. �

Lemma 4.7. The preimage Z := π−1(Z) is irreducible of dimension 11.

Proof. By Lemma 4.6, it suffices to prove that the fibers of π over Z are irreducible
and 7-dimensional. Let I be a point in Z. As in the proof of Lemma 4.6, we can
assume that the ideal corresponding to a point of Z is generated by x2, xy, xz, q, c,
where q and c are a homogeneous quadric and cubic respectively. A point J in the
fiber must be generated by m5 and

g1 := x2
+ a1z3

+ b1z4, g2 := xy+ a2z3
+ b2z4,

g3 := xz+ a3z3
+ b3z4, g4 := q + a4z3

+ b4z4, g5 := c+ b5z4.

The ai , bi are not necessarily free. We must impose additional conditions to
ensure the initial ideal for the weight vector (−1,−1,−1) is no larger than I . In
particular, we must have

zg1− xg3 = a1z4
+ b1z5

− a3xz3
− b3xz4

∈ J,

zg2− yg3 = a2z4
+ b2z5

− a3 yz3
− b3 yz4

∈ J.
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This implies a1 = a2 = 0, because the final three terms of each expression are
already in J . By Buchberger’s criterion, it is also sufficient for these conditions to
be satisfied. Therefore the fibers are 7-dimensional. �

Lemma 4.8. The preimage U := π−1(U) is irreducible of dimension 12.

Proof. By Proposition 3.8, it suffices to show that the fibers of π over U are
irreducible of dimension 6. Let I be an ideal in U. Let V be the 1-dimensional
subspace of S∗1 such that I3 is orthogonal to Sym3(V ) and let q1, . . . , q4 be the
degree 2 generators of I . Choose a basis x, y, z of S1 such that x, y is a basis for
V⊥. Then any J in φ−1(I ) is of the form

〈qi + ai z3
+ bi z4

| 1≤ i ≤ 4〉+m5.

We claim that forcing in(−1,−1,−1)(J )= I imposes two linear conditions on the
ai s. Using the table of isomorphism classes of (1, 3, 2) algebras in [Poonen 2008],
one can check that for any 4-dimensional subspace 〈q1, q2, q3, q4〉 of Sym2(V ), the
intersection of 〈zqi | 1≤ i ≤ 4〉3 and 〈xq j , yq j | 1≤ j ≤ 4〉3 is 2-dimensional. After
choosing a different basis for Q, we may assume zq1, zq2 ∈ 〈xq j , yq j | 1≤ j ≤ 4〉.
By using a similar argument to the one in Lemma 4.7, we see a1 = a2 = 0. Since
the only other linear syzygies among the q ′i s have no z coefficients and xz3, yz3

and m5 are in the ideal, these are the only conditions imposed. Therefore, the fiber
is 6-dimensional. �

Therefore, it suffices to show the following irreducible sets are contained in the
smoothable component.

H d
(1,d,1,...,1), H d

(1,d,2), Pd , Qd , H d
(1,d,2,2), H 3

(1,3,4), H 3
(1,3,3), H 3

(1,3,3,1),U, Z .

Smoothable algebras. In this section we prove that the irreducible sets

H d
(1,d,1,...,1), H d

(1,d,2), Pd , Qd , H d
(1,d,2,2), H 3

(1,3,4),

are in the smoothable component by showing that a generic algebra in each is
smoothable. We then show that the remaining irreducible sets,

H 3
(1,3,3), H 3

(1,3,3,1),U, Z ,

are in the smoothable component by finding a point in each which is smoothable
and a smooth point on the Hilbert scheme.

Proposition 4.9. All algebras in H d
(1,d,1,...,1) are smoothable.

Proof. We prove this by induction on d. Note the d = 1 case is trivial. Let m be
the greatest integer such that hm is nonzero. Then, by Proposition 4.4 we can take
a generic ideal to be

I = 〈x2
1 − xm

d , . . . , x2
d−1− xm

d , xm+1
d 〉+ 〈xi x j | i 6= j〉.
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We define J to be

J = 〈x2
1 + x1− xm

d , . . . , x2
d−1− xm

d , xm+1
d 〉+ 〈xi x j | i 6= j〉.

Note that J admits a decomposition as J = J1∩J2 where J1=〈x1+1, x2, x3, . . . xd〉

and
J2 = 〈x1− xm

d , x2
2 − xm

d , . . . , x2
d−1− xm

d , xm+1
d 〉+ 〈xi x j | i 6= j〉.

As the Hilbert function of J2 equals (1, d − 1, 1, . . . , 1), the inductive hypothesis
implies that J2 is smoothable. Thus J itself is also smoothable. Next note that
I ⊂ in(m,...,m,2)(J ). Since both I and J have the same colength, we obtain the
equality I = in(m,...,m,2)(J ). The corresponding Gröbner degeneration induces a
map A1

→ Rd
n which sends 0 to I . Thus I is smoothable. �

Proposition 4.10. All algebras in H d
(1,d,2) are smoothable.

Proof. The proof is by induction on d . The case d = 2 follows from Theorem 2.4
of [Fogarty 1968].

Assume d is at least 3. Note that I⊥2 defines a pencils of quadrics in d-variables.
It then follows from [Harris 1992, Lemma 22.42] that, up to isomorphism, a generic
ideal in H d

(1,d,2) is of the form

I = 〈xi x j | i 6= j〉+ 〈x2
i − ai x2

d−1− bi x2
d | 1≤ i ≤ d − 2〉,

with ai and bi elements of k.
Define

J1 = 〈xi x j | i 6= j〉+ 〈x1+ a1x2
n−1+ b1x2

d , x2
i − ai x2

d−1− bi x2
d | 2≤ i ≤ d − 2〉,

J2 = 〈x1− 1, x2, . . . , xd〉.

Since J1 has Hilbert function (1, d − 1, 2), it is thus smoothable by the induction
hypothesis. One can check that I = in(1,...,1) (J1 ∩ J2). Therefore I is smoothable.

�

Proposition 4.11. All algebras in Pd are smoothable.

Proof. Let I be a generic ideal in Pd . After a change of variables we may assume

I = 〈xi x j , x2
` + x3

1 , x3
1 − x3

2 | 1≤ i < j ≤ d, 2< `≤ d〉.

One can check

I = in(2,2,3,...,3)
(
〈x1+ 1, x j | j > 1〉 ∩

〈xi x j , x2
` + x2

1 , x2
1 − x3

2 | 1≤ i < j ≤ d, 2< `≤ d〉
)
.

The second ideal in the intersection has Hilbert function (1, d, 1, 1), hence is
smoothable by Proposition 4.9. It follows that I is smoothable. �
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Proposition 4.12. All algebras in Qd are smoothable.

Proof. Let I be a generic ideal in Qd . After a change of variables, we may assume

I = 〈x1x`, xi x j + b(i, j)x3
1 , x2

k − x2
k+1+ bk x3

1 | ` 6= 1, 1< i < j ≤ d, 1< k < d〉.

Define

J1 = 〈x1x`, xi x j + b(i, j)x2
1 , x2

k − x2
k+1+ bk x2

1 | ` 6= 1, 1< i < j ≤ d, 1< k < d〉,

J2 = 〈x1+ 1, x2, . . . , xd〉.

Then J1 has Hilbert function (1, d, 2) so is smoothable by Proposition 4.10. One
can check that I = in(2,3,...,3) (J1 ∩ J2), and thus I is smoothable. �

Proposition 4.13. All algebras in H d
(1,d,2,2) are smoothable.

Proof. Let I be a generic ideal with Hilbert function (1, d, 2, 2). After a change
of variable, we may assume (π(I ))⊥2 = 〈y

2
1 , y2

2〉. Thus I must be of the form

〈x2
` − a``x3

1 − b``x3
2 , xi x j − ai j x3

1 − bi j x3
2 | i < j, 2< `〉+m4.

Note I determines a symmetric bilinear map

φ : (m :m3)/m2
× (m :m3)/m2

→ m3 ∼= k2,

(xi , x j ) 7→ ai j x3
1 + bi j x3

2 .

By composing φ with projections onto the two coordinates, we get a pair of sym-
metric bilinear forms. For a generic φ, these are linearly independent and their span
is invariant under a change of basis on m3. By [Harris 1992, Lemma 22.42], there
exists a basis for (m :m3)/m2 and m3 such that these bilinear forms are represented
by diagonal matrices. Thus I has the following form

〈x2
` − a`x3

1 − b`x3
2 , xi x j − ai j x3

1 − bi j x3
2 | i < j, 2< `〉+m4,

where ai j = bi j = 0 if i and j are both greater than 2 and a`, b` are nonzero for all
` > 2. After suitable changes of variable, we may assume bi j = ai j = 0 for all i, j .
This gives the ideal

I = 〈x2
` − a`x3

1 − b`x3
2 , xi x j , x4

1 , x4
2 | i < j, 2< `〉.

Now consider the following ideals:

J1 := 〈x2
` − a`x2

1 − b`x3
2 , xi x j , x3

1 , x4
2 | i < j, 2< `〉,

J2 := 〈x1+ 1, x2, . . . , xd〉.

Note J1 is a (1, d, 2, 1) ideal and in fact lies in the component Qd , and therefore
is smoothable by Proposition 4.12. One can check that I = in(2,2,3,...,3) (J1 ∩ J2),
and therefore I is smoothable. �
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Proposition 4.14. All algebras in H 3
(1,3,4) are smoothable.

Proof. Such algebras are given by a 2-dimensional subspace of the space of
quadratic forms, with isomorphisms given by the action of GL3. Arguing as in
Proposition 4.10, we conclude that, up to isomorphism, a generic 2-dimensional
space of quadrics is spanned by x2

+ z2 and y2
+ z2. Adding the necessary cubic

generators, we conclude that I = 〈y2
+ z2, x2

+ z2, z3, yz2, xz2, xyz〉 is a generic
point of H 3

(1,3,4).
Consider

J = 〈y2
+ z2, x + x2

+ z2, z3, yz2, xz2, xyz〉.

Note that J is the intersection of an ideal of colength 3 and an ideal of colength 5:

J = 〈x + 1, y2, yz, z2
〉 ∩ 〈x + z2, y2

+ z2, z3, yz2
〉.

Since both ideals in the above intersection are smoothable, J itself is smoothable.
One can check that I = in(1,1,1)(J ). Therefore I is smoothable. �

To prove that the remaining families are smoothable, we show that they contain
a smooth point which is also smoothable. For this, we use the following result,
which is well known (see for example [Miller and Sturmfels 2005, Lemma 18.10]
in characteristic 0), but we give the proof in arbitrary characteristic for the reader’s
convenience:

Proposition 4.15. All monomial ideals are smoothable.

Proof. Suppose we have a monomial ideal of colength n, written in multiindex
notation I = 〈xα(1), . . . , xα(m)〉. Since k is algebraically closed, we can pick an
arbitrarily long sequence a1, a2, . . . consisting of distinct elements in k. Define

fi =

d∏
j=1

(
(x j − a1)(x j − a2) · · · (x j − a

α
(i)
j
)
)
.

Note that in( fi ) = xα(i) with respect to any global term order. Let J be the ideal
generated by the fi for 1 ≤ i ≤ m and then in(J ) ⊃ I and so J has colength at
most n. However, for any standard monomial xβ in I , we have a distinct point
(aβ1, . . . , aβd ) in Ad , and each fi vanishes at this point. Therefore, J must be the
radical ideal vanishing at exactly these points and have initial ideal I . Thus, I is
smoothable. �

Furthermore, the tangent space of an ideal I in the Hilbert scheme is isomorphic
to HomS(I, S/I ). We use this fact to compute the dimension of the tangent space
of a point I .

Proposition 4.16. All algebras in H 3
(1,3,3) are smoothable.
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Proof. This irreducible set includes the smoothable monomial ideal I generated by
x2, y2, z2, xyz. A direct computation shows I has a 21-dimensional tangent space,
so I is a smooth point in H 3

7 . Thus, any algebra in H 3
(1,3,3) is smoothable. �

Proposition 4.17. All algebras in H 3
(1,3,3,1) are smoothable.

Proof. The ideal I = 〈x2, y2, z2
〉 in this locus is smoothable by Proposition 4.15,

and one can check that the Hilbert scheme is smooth at this point as well. Therefore
H 3
(1,3,3,1) is contained in the smoothable component of the Hilbert scheme. �

Proposition 4.18. All algebras in Z are smoothable.

Proof. Consider I = 〈x2, xy, xz, yz, z3
− y4
〉 ∈ Z and note that

I = in(1,0,0)
(
〈x + 1, y, z〉 ∩ 〈x, yz, z3

− y4
〉
)
.

The second ideal is smoothable [Fogarty 1968, Theorem 2.4], so I is smoothable.
One can also check I is smooth in the Hilbert scheme by computing the dimension
of HomS(I, S/I ). Therefore Z is contained in the smoothable component of the
Hilbert scheme. �

Proposition 4.19. All algebras in U ⊂ H 3
(1,3,2,1,1) are smoothable.

Proof. Consider the ideal I = 〈x2, xy− z4, y2
− xz, yz〉 ∈U . One can check that

I = in(7,5,3)
(
〈x, y, z− 1〉 ∩ 〈x2, xy− z3, y2

− xz, yz〉
)
.

The second ideal in the intersection is in Q3 and therefore smoothable by Propo-
sition 4.12. Therefore I is smoothable by the same argument in the proof of
Proposition 4.14. One can also check I has a 24-dimensional tangent space in the
Hilbert scheme and is thus smooth. Therefore U is contained in the smoothable
component. �

Theorem 4.20. With the exception of local algebras with Hilbert function (1, 4, 3),
every algebra with n ≤ 8 is smoothable.

Proof. The possible Hilbert functions are exactly the Hilbert functions of monomial
ideals, and for d at least 3, one can check that there are no possibilities other those
listed in Table 4.1. For d at most 2, smoothability follows from Theorem 2.4 of
[Fogarty 1968] �

In particular, this implies that there are no components other than the ones listed
in Theorem 1.1.
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degree Hilbert Hd
h c.d. reference H d

h c.d. smoothability
function h reference

4 1, 3 0 Prop. 3.3 0 Prop. 4.15

5 1, 3, 1 5 Prop. 3.3 5 Prop. 4.9
1, 4 0 Prop. 3.3 0 Prop. 4.15

6 1, 3, 1, 1 2 Prop. 3.4 7 Prop. 4.10
1, 4, 1 9 Prop. 3.3 9 Prop. 4.9
1, 5 0 Prop. 3.3 0 Prop. 4.15

7 1, 3, 1, 1, 1 2 Prop. 3.4 9 Prop. 4.9
1, 3, 2, 1 5, 6 Thm. 3.5 9, 10 Prop. 4.12, 4.11
1, 3, 3 9 Prop. 3.3 9 Prop. 4.16
1, 4, 1, 1 3 Prop. 3.4 12 Prop. 4.9
1, 4, 2 16 Prop. 3.3 16 Prop. 4.10
1, 5, 1 14 Prop. 3.3 14 Prop. 4.9
1, 6 0 Prop. 3.3 0 Prop. 4.15

8 1, 3, 1, 1, 1, 1 2 Prop. 3.4 11 Prop. 4.9
1, 3, 2, 1, 1 6 Prop. 3.8 11(?), 12 Prop. 4.19, 4.18
1, 3, 2, 2 4 Prop. 3.6 12 Prop. 4.13
1, 3, 3, 1 9 Prop. 3.7 12 Prop. 4.17
1, 3, 4 8 Prop. 3.3 8 Prop. 4.14
1, 4, 1, 1, 1 3 Prop. 3.4 15 Prop. 4.9
1, 4, 2, 1 7, 11 Thm. 3.5 15, 19 Prop. 4.12, 4.11
1, 4, 3 21 Prop. 3.3 21 *
1, 5, 2 26 Prop. 3.3 26 Prop. 4.10
1, 5, 1, 1 4 Prop. 3.4 18 Prop. 4.9
1, 6, 1 20 Prop. 3.3 20 Prop. 4.9
1, 7 0 Prop. 3.3 0 Prop. 4.15

Table 4.1. Summary of the decomposition of Hilbert schemes by
Hilbert function of the local algebra with h1 ≥ 3. Here c.d. stands
for “component dimensions”. The component dimensions of H d

h
are computed using Propositions 4.3 and 4.4. In the case of h =
(1, 3, 2, 1, 1), Lemmas 4.7 and 4.8 show that H d

h is the union of
two irreducible sets, but we don’t know whether the smaller set is
contained in the closure of the larger one.

5. Characterization of smoothable points of H4
8

In this section k will denote a field of characteristic not 2 or 3, except for Section
5D where k = C.

We show that besides the smoothable component, the Hilbert scheme H 4
8 con-

tains a second component parametrizing the local algebras with h = (1, 4, 3). We
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prove that the intersection of the two components can be described as in Theorem
1.3, and as a result we determine exactly which algebras with Hilbert function
(1, 4, 3) are smoothable. We will use G0 to denote the standard graded Hilbert
scheme H4

(1,4,3)
∼=Gr(7, S2), which we will think of as a closed subscheme of H 4

8 .
In Section 5B we introduce and investigate the Pfaffian which appears in Theo-

rem 1.3, and we prove the crucial fact that it is the unique GL4-invariant of minimal
degree. In Section 5C, we give a first approximation of the intersection locus. We
then use the uniqueness results from Section 5B to prove Theorem 1.3. We begin
by proving reducibility,

Proposition 5.1. For d at least 4, the Hilbert scheme H d
8 is reducible.

Proof. It is sufficient to find a single ideal whose tangent space dimension is less
than 8d = dim Rd

8 . Consider the ideal

J = 〈x2
1 , x1x2, x2

2 , x2
3 , x3x4, x2

4 , x1x4+ x2x3〉+ 〈xi | 4< i ≤ d〉.

The tangent space of J in H d
8 can be computed as dimk HomS(J, S/J ). A direct

computation shows that an arbitrary element of HomS(J, S/J ) can be represented
as a matrix



x2
1 x1x2 x2

2 x2
3 x3x4 x2

4 x1x4+x2x3 xi

1 0 0 0 0 0 0 0 ∗

x1 2a2 a1 0 0 0 0 a4 ∗

x2 0 a2 2a1 0 0 0 a3 ∗

x3 0 0 0 2a3 a4 0 a1 ∗

x4 0 0 0 0 a3 2a4 a2 ∗

x1x3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

x1x4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

x2x4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


,

where i again ranges over 4 < i ≤ d, the ai are any elements in k, and each ∗
represents an independent choice of an element of k. Thus, dimk Hom(J, S/J )=
4+ 21+ 8(d − 4) = 8d − 7. The computation holds in all characteristics. Since
8d − 7 < 8d = dim(Rd

8 ), we conclude that J is not smoothable and that H d
8 is

reducible. �

Remark 5.2. This proposition holds with the same proof even when char k = 2, 3.

5A. The irreducible components of H4
8 . Consider H 4

8 with its universal ideal
sheaf I and let A = OH4

8
[x1, . . . , x4]/I. On each open affine U = Spec B such

that A|U is free, define fi ∈ B to be 1
8 tr(X i ) where X i is the operator on the free

B-module A(U ) defined by multiplication by xi . We think of the fi as being the
“center of mass” functions for the subscheme of A4

B defined by I|U . Note that the
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definitions of fi commute with localization and thus they lift to define elements
fi ∈ 0(H 4

8 ,OH4
8
), which determine a morphism f : H 4

8 → A4.
Considered as an additive group, A4 acts on H 4

8 by translation. We define the
“recentering” map r to be the composition

r : H 4
8

− f×id
−−→ A4

× H 4
8 −→ H 4

8 .

By forgetting about the grading of ideals, we have a closed immersion ι of
G0 ∼= H4

(1,4,3) into H 4
8 [Haiman and Sturmfels 2004, Proposition 1.5]. We define

G to be the preimage of this closed subscheme via the “recentering” map, that is,
the fiber product

G −−−→ H 4
8y yr

G0
ι

−−−→ H 4
8

We define intersections W := G ∩ R4
8 and W0 := G0 ∩ R4

8 . We will focus on W0,
and the following lemma shows that this is sufficient for describing W .

Lemma 5.3. We have isomorphisms G ∼= G0×A4 and W ∼=W0×A4.

Proof. We have a map G → G0, and a map f : H 4
8 → A4. We claim that the

induced map φ : G→ A4
×G0 is an isomorphism.

Define ψ : A4
× G0 → H 4

8 to be the closed immersion ι followed by transla-
tion. We work with an open affine U ∼= Spec A ⊂ G0 such that the restriction ι|U
corresponds to an ideal I ⊂ A[x1, . . . , x4] whose cokernel is a graded A-module
with free components of ranks (1, 4, 3). The map ψ |A4×U corresponds to the ideal
I ′ ⊂ A[t1, . . . , t4][x ′1, . . . , x ′4] where I ′ is the image of I under the homomor-
phism of A-algebras that sends xi to x ′i + ti . Then A[t1, . . . , t4][x ′1, . . . , x ′4]/I ′ ∼=
(A[x1, . . . , x4]/I )[t1, . . . , t4] is a graded A[t1, . . . , t4]-algebra with x ′i − ti = xi

homogeneous of degree 1. The key point is that as operators on a free A[t1, . . . , t4]-
module, the xi have trace zero, so the trace of the x ′i is 8ti . Thus, r ◦ψ :A4

×G0→

H 4
8 corresponds to an ideal I ′′ ⊂ A[t1, . . . , t4][x ′′1 , . . . , x ′′4 ] which is the image of

I ′ under the homomorphism that takes x ′i to x ′′i − ti . This is of course the extension
of I ⊂ A[x1, . . . , x4] to A[t1, . . . , t4][x ′′1 , . . . , x ′′4 ] with x ′′i = xi , and so I ′′ has the
required properties such that r ◦ψ factors through the closed immersion ι. Thus, ψ
maps to G. Furthermore, we see that r ◦ψ is the projection onto the first coordinate
of A4

×G0 and f ◦ψ is projection onto the second coordinate. Thus, φ ◦ψ is the
identity.

Second, we check that the composition ψ ◦φ is the identity on G. This is clear
because ψ ◦φ amounts to translation by − f followed by translation by f .

The isomorphism for W follows by the same argument. �
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Lemma 5.4. W and W0 are prime divisors in G and G0 respectively.

Proof. The point I = 〈x2
1 , x1x2, x2

2 , x2
3 , x3x4, x2

4 , x1x4〉 belongs to R4
8 and to G and

has a 33-dimensional tangent space in any characteristic. As a result, an open set U
around I in the Hilbert scheme is a closed subscheme of a smooth 33-dimensional
variety Y . By the subadditivity of codimension of intersections, as in [Harris 1992,
Theorem 17.24], it follows that every component of W through I has codimension
1 in G.

To show integrality, fix a monomial ideal Mλ ∈ G0, and let Uλ ⊂ H 4
8 be the

corresponding open set, as in our discussion of coordinates for the Hilbert scheme
of points (page 766). For any I ∈ Uλ the initial ideal in(1,1,1,1)(I ) ∈ G0 ∩Uλ and
is generated by the (1, 1, 1, 1)-leading forms of the given generating set of I and
all cubics. Thus we may define a projection morphism π : Uλ→ G0 ∩Uλ which
corresponds to taking the (1, 1, 1, 1)-initial ideal. Since R4

8 is integral, so is the
image π(R4

8 ∩Uλ)=W0 ∩Uλ. Thus W0 and W0×A4 ∼=W are integral. �

5B. A GL4-invariant of a system of three quadrics. In this section we study the
Pfaffian which appears in the statement of Theorem 1.3. Recall that any I ∈ G0

defines a 3-dimensional subspace I⊥2 ⊂ S∗2 .
Let Q1, Q2, Q3 be a basis of quadrics for I⊥2 , let A1, A2, A3 be the symmetric

4× 4 matrices which represent the Qi via Eyt Ai Ey = Qi where Ey is the vector of
formal variables (y1, y2, y3, y4).

Definition 5.5. The Salmon–Turnbull Pfaffian is the Pfaffian (that is, the square
root of the determinant) of the skew-symmetric 12× 12 matrix

MI =

 0 A1 −A2

−A1 0 A3

A2 −A3 0

 .
Lemma 5.6. The Salmon–Turnbull Pfaffian of MI coincides up to scaling with the
Pfaffian of the skew-symmetric bilinear form 〈 , 〉I : (S1⊗S2/I2)

⊗2
→
∧3 S2/I2∼= k

defined by
〈l1⊗ q1, l2⊗ q2〉I = (l1l2)∧ q1 ∧ q2.

In particular, the vanishing of the Salmon–Turnbull Pfaffian is independent of the
choice of basis of I⊥2 and invariant under the GL4 action induced by linear change
of coordinates on S.

Proof. Let m1,m2,m3 be any basis of S2/I2 and let x1, x2, x3, x4 be a basis for
S1. Let Ai be the matrix representation with respect to this basis of the symmetric
bilinear form obtained by composing multiplication S1 ⊗ S1 → S2/I2 with pro-
jection onto mi . Note that if m1,m2,m3 form a basis dual to 1

2 Q1,
1
2 Q2,

1
2 Q3

then this definition of Ai agrees with the definition of Ai above. Thus, x j x j ′ =
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i (Ai ) j j ′mi where (Ai ) j j ′ is the ( j, j ′) entry of Ai . Then we will use the basis

x1⊗m3, x2⊗m3, . . . , x4⊗m1 for S1⊗S2/I2. We compute the matrix representation
of 〈 , 〉I in this basis:

〈x j ⊗mi , x j ′ ⊗mi ′〉I = (x j x j ′)∧mi ∧mi ′

=

( ∑
1≤`≤3

(A`) j j ′m`

)
∧mi ∧m′i

If i = i ′, this quantity will be zero. Otherwise, let i ′′ be the index which is not i or
i ′ and then we get

= (Ai ′′) j j ′mi ′′ ∧mi ∧mi ′ =±(Ai ′′) j j ′m1 ∧m2 ∧m3,

where ± is the sign of the permutation which sends 1, 2, 3 to i ′′, i, i ′ respectively.
Thus, with m1 ∧m2 ∧m3 as the basis for

∧3 S2/I2, 〈 , 〉I is represented as 0 A1 −A2

−A1 0 A3

A2 −A3 0

 . �

Since the vanishing of the Salmon–Turnbull Pfaffian depends only on the vector
subspace I⊥2 ⊂ S∗2 , it defines a function P on G0 which is homogeneous of degree
2 in the Plücker coordinates. We next show that the Salmon–Turnbull Pfaffian is
irreducible and that, over the complex numbers, it is uniquely determined by its
degree and GL4-invariance.

Lemma 5.7. There are no polynomials of degree 1 in the Plücker coordinates of
G0 whose vanishing locus is invariant under the action of the algebraic group GL4.
Therefore, the Salmon–Turnbull Pfaffian is irreducible.

Proof. We may prove this lemma by passing to the algebraic closure, and we thus
assume that k is algebraically closed. Let W =

∧3 S∗2 and consider the Plücker
embedding of Gr(3, S∗2 ) in P(W )=Proj(R)where R is the polynomial ring k[pi j`]

where {i, j, `} runs over all unordered triplets of monomials in S∗2 . The Plücker
coordinate ring A is the quotient of R by a homogeneous ideal J . In each degree
e, we obtain a split exact sequence of GL4-representations:

0→ Je→ Syme(W )→ Ae→ 0.

Since J1 = 0 we have Sym1(W ) = A1, and it suffices to show that this has no
1-dimensional subrepresentations. Given a monomial i ∈ S∗2 let αi ∈ N4 be its
multiindex. For θ = (θ1, . . . , θ4), let L be the diagonal matrix with Lmm = θm . The
action of L on the Plücker coordinate pi j` is to scale it by θαi+α j+α` .
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Suppose that there exists an invariant polynomial F =
∑

ci j` pi j` in Sym1(W ).
Then L · F = λF for some λ ∈ k×. But since L · F =

∑
ci j`θ

αi+α j+α` pi j` it
follows that whenever ci j` and ci ′ j ′`′ are both nonzero, then αi + α j + α` = αi ′ +

α j ′ + α`′ . However there are no multiindices of total degree 6 which are also
symmetric in θ1, θ2, θ3, θ4. Thus each ci j` = 0 and there are no nontrivial GL4-
invariant polynomials of degree 1. In particular no product of linear polynomials
is GL4-invariant, and thus the Salmon–Turnbull Pfaffian is irreducible. �

Lemma 5.8. If k = C, then there is a polynomial of degree 2 in the Plücker coor-
dinates, unique up to scaling, whose vanishing locus is GL4-invariant. This is the
Salmon–Turnbull Pfaffian.

Proof. We take the same notation as in the proof of Lemma 5.7 and recall that we
have a split exact sequence of GL4(C)-representations:

0→ J2→ Sym2(W )→ A2→ 0.

We determine the irreducible subrepresentations of Sym2(W ) by computing the
following Schur function decomposition of its character χ :

χ = s(8,2,2)+ s(7,4,1)+ 2s(7,3,1,1)+ s(7,2,1,1)+ s(6,6)+ 3s(6,4,2)+ s(6,4,1,1)
+ 2s(6,4,1,1)+ 2s(6,3,2,1)+ s(6,2,2,2)+ 2s(5,5,1,1)+ s(5,4,3)+ s(5,4,2,1)+ s(5,3,3,1)

+ s(4,4,4)+ s(4,4,3,1)+ 2s(4,4,2,2)+ s(3,3,3,3).

We conclude that Sym2(W ) contains a unique 1-dimensional subrepresentation
with character s(3,3,3,3). It follows from this and Lemma 5.6 that, over C, the
Salmon–Turnbull Pfaffian is the only GL4-invariant of degree 2 in the Plücker
coordinates. �

Remark 5.9. Salmon gives a geometric description of the Salmon–Turnbull Pfaf-
fian [Salmon 1874, pp. 242–244], where he shows that the Pfaffian vanishes when-
ever there exists a cubic form C and three linear differential operators d1, d2, d3

such that di C = Qi . Turnbull also describes this invariant in his study of ternary
quadrics [Turnbull 1922].

5C. A first approximation to the intersection locus. Any point I in W0 is a sin-
gular point in the Hilbert scheme. In Lemma 5.11, we construct an equation that
cuts out the singular locus over an open set of G0. The local equation defines a
nonreduced divisor whose support contains W0. The following subsets of G0 will
be used in this section:

G ′0 := {I ∈ G0 | the ideal I is generated in degree 2},

Z1 := G0 \G ′0,

Z2 := {I ∈ G0 | Hom(I, S/I )−2 6= 0}.
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Note that G ′0 is open in G0 and that every ideal in G ′0 is generated by seven quadrics.
The set Z2 will be used in Lemma 5.16. If I is any ideal in G0, the tangent space
HomS(I, S/I ) is graded. The following lemma shows that if we want to determine
whether I is a singular point in the Hilbert scheme, then it suffices to compute only
the degree −1 component of the tangent space.

Lemma 5.10. For any I ∈G ′0 we have dimk HomS(I, S/I )−1≥4, and I is singular
in H 4

8 if and only if dimk HomS(I, S/I )−1 ≥ 5.

Proof. Since S/I is concentrated in degrees 0, 1 and 2, and I ∈ G ′0 is minimally
generated only in degree 2, we have that HomS(I, S/I ) is concentrated in degrees
0,−1,−2. Furthermore, since I ∈ G ′0 we have that dimk HomS(I, S/I )0 = 21,
because any k-linear map I2→ (S/I )2 will be S-linear. Next, note that the mor-
phisms ti : I2→ (S/I )1 mapping q j to the class of ∂q j/∂xi are S-linear morphisms,
and thus we have HomS(I, S/I )−1 is at least 4-dimensional.

Since the dimension of G ′0 is 25, I must be singular if dimk HomS(I, S/I )−1>4.
Conversely, assume for contradiction that there exists an I such that I is singular
and dimension of HomS(I, S/I )−1 is exactly 4. Since I is singular, we have that
HomS(I, S/I )−2 is nontrivial. Let φ ∈ HomS(I, S/I )−2 be a nonzero map. By
changing the generators of I we may assume that φ(qi ) = 0 for i = 1, . . . , 6
and φ(q7) = 1. Now the vector space 〈x1φ, x2φ, x3φ, x4φ〉 is a 4-dimensional
subspace of Hom(I, S/I )−1. Since we have assumed that dimk Hom(I, S/I )−1=4
it must be the case that the space 〈x1φ, x2φ, x3φ, x4φ〉 equals the space 〈t1, . . . , t4〉.
However, this would imply that all partial derivatives of q1 are zero, which is
impossible. �

Now we will investigate those ideals which have extra tangent vectors in degree
−1. If φ : I2→ (S/I )1 is a k-linear map then φ will be S-linear if and only if φ
satisfies the syzygies of I modulo I . In other words, φ should belong to the kernel
of

Homk(I2, (S/I )1)→ Homk(Syz(I ), (S/I )),

φ 7→
(
σ 7→ σ(φ)

)
.

Since I contains m3 and is generated by quadrics, it suffices to consider linear
syzygies σ and we have an exact sequence

0→ HomS(I, S/I )−1 −→ Homk(I2, (S/I )1)
ψ
−→ Homk(Syz(I )1, (S/I )2),

where Syz(I )1 is the vector space of linear syzygies. We see that the ti from the
previous lemma span a 4-dimensional subspace T of the kernel of ψ . We obtain

Homk(I, S/I )−1/T
ψ
−→ Homk(Syz(I )1, (S/I )2),
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and I ∈ G ′0 will be a singular point if and only if ker(ψ) 6= 0. Since I is generated
by quadrics, it follows that Syz(I )1 has dimension 4 ·7−20= 8. Therefore ψ is a
map between 24-dimensional spaces. Thus det(ψ) vanishes if and only if I ∈ G ′0
is a singular point in H 4

8 .
The global version of this determinant will give a divisor whose support contains

W0. On G ′0 we have the OG ′0-algebra S := OG ′0[x1, x2, x3, x4], which is graded in
the standard way, S=⊕i Si . We have a graded universal ideal sheaf I=⊕Ii , and
a universal sheaf of graded algebras S/I=⊕i Si/Ii . For all i the sheaves Si , Ii

and Si/Ii are coherent locally free OG ′0-modules.
Let µ :I2⊗S1→I3 be the multiplication map. Surjectivity of this map follows

from the definition of G ′0. We define K1 to be the kernel of this map, so that we
have the exact sequence

0→ K1→ I2⊗S1
µ
→ I3→ 0. (5-1)

In other words, K1 is the sheaf of linear syzygies. Let U be an open subset of G ′0
such that I2|U is free. Denote generators of I2(U ) by q1, . . . , q7 and thus we have

K1(U )=
{( 7∑

i=1

qi ⊗ li

) ∣∣∣∣ li ∈ S1(U ),
∑

qi li = 0 ∈ I3

}
.

To simplify notation in the following lemma we write Hom to denote HomOG′0
.

Lemma 5.11. (1) On G ′0 there is a morphism of locally free sheaves of ranks 28
and 24 respectively:

h :Hom(I2,S1)→Hom(K1,S2/I2),

such that for any I ∈ G ′0, we have ker(h⊗ k(I ))= Hom(I, S/I )−1.

(2) There is a locally free subsheaf of rank four T⊂ ker(h) inducing a morphism:

h :Hom(I2,S1)/T→Hom(K1,S2/I2),

such that ker(h⊗ k(I )) 6= 0 if and only if dimk Hom(I, S/I )−1 ≥ 5.

Proof. (1) We have a map of locally free OG ′0-modules: K1 → I2 ⊗ S1. This
induces the map K1⊗ Š1→ I2. Applying Hom(−,S1) to both sides we get

Hom(I2,S1)→Hom(K1⊗ Š1,S1)∼=Hom(K1,S1⊗S1).

For the isomorphism above, we are using identities about Hom, tensor product of
sheaves, and sheaf duality from [Hartshorne 1977, p. 123]. The sequence S1 ⊗

S1 → S2 → S2/I2 gives a map from Hom(K1,S1 ⊗ S1)→ Hom(K1,S2/I2).
By composition we obtain the desired map:

h :Hom(I2,S1)→Hom(K1,S2/I2).
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Let us take a moment and consider h in concrete terms, since this will be used
for proving part (2) of the lemma. Let U ⊂ G ′0 be an open subset such that all
relevant locally free sheaves are in fact free. Let q1, . . . , q7 be the generators of
I2(U ) and let σ j :=

∑7
i=1 qi⊗li j for 1≤ j ≤8 be the generators of K1(U ). Finally,

let φ ∈ Hom(I2,S1) be a map (qi 7→ mi ). Then h(φ) is the map

σ j 7→
∑

mi li ,

where mi li is the reduction of mi li modulo I2.

(2) Over any U where I2 is free, let q1, . . . , q7 the global generators. Then we
define t1 : qi 7→

∂
∂x1

qi , and we define t2, t3, t4 similarly. This defines a locally free
subsheaf T(U ) := 〈t1, . . . , t4〉 ⊂Hom(I2,S1) of rank 4. By the proof of Lemma
5.10, the injection T→ Hom(I2,S1) remains exact under pullback to a point. It
follows that the quotient Hom(I2,S1)/T is locally free of rank 24 [Hartshorne
1977, Ex II.5.8].

It remains to show that T ⊂ ker(h) and that ker(h ⊗ k(I )) is nontrivial if and
only if dimk Hom(I, S/I )1 ≥ 5. This is immediate from the discussion preceding
this theorem. �

By the previous lemma, h is a map between locally free sheaves of rank 24, and
thus det(h) defines a divisor on G ′0. To ensure that this is the restriction of a unique
divisor on G0, we need to verify that Z1 and Z2 are not too large. For this, we
construct the rational curve τ : P1

→ G0 defined for t 6= ∞ by

It = (x2
1 , x2

2 , x2
3 , x2

4 , x1x2, x2x3+ t x3x4, x1x4+ t x3x4). (5-2)

Lemma 5.12. Z1 ∪ Z2 is a closed set of codimension at least 2 in G0.

Proof. Z1 is closed because it is the support of the cokernel of the multiplication
map I2⊗S1→ S3. The intersection Z2 ∩G ′0 is the degeneracy locus of

Hom(I2,S0)→Hom(K1,S1)⊕Hom(K2,S2/I2),

which is the analogue of Lemma 5.11 (1) for computing Hom(I2, S0). Thus Z1∪Z2

is closed in G0.
Because Pic(G0)=Z and G0 is projective, checking that the 1-cycle τ does not

intersect Z1∪ Z2 will show that Z1∪ Z2 has codimension at least 2. By passing to
the algebraic closure, we can assume that k is algebraically closed. The group k×

acts on A4 by α · (x1, x2, x3, x4)= (x1, x2, αx3, αx4), and taking α = t maps I1 to
It , for any t other than 0 or∞. Thus, it suffices to check that the following three
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ideals do not intersect Z1 ∪ Z2:

I0 = (x2
1 , x2

2 , x2
3 , x2

4 , x1x2, x2x3, x1x4),

I1 = (x2
1 , x2

2 , x2
3 , x2

4 , x1x2, x2x3+ x3x4, x1x4+ x3x4),

I∞ = (x2
1 , x2

2 , x2
3 , x2

4 , x1x2, x2x3− x1x4, x3x4).

It is obvious that these are generated in degree 2. A change of variables transforms
I∞ to the ideal J from Proposition 5.1, which is smooth, so Hom(It , S/It)−2 = 0
for t = 1,∞. One can also check that Hom(I0, S/I0)−2 = 0, which holds in all
characteristics because I0 is a monomial ideal. Therefore, Z1∪Z2 has codimension
at least 2. �

Lemma 5.13. Let D be the divisor on G0 defined locally by det(h). Then W0

belongs to the support of D.

Proof. The Hilbert scheme is singular on W0, so W0 ∩G ′0 ⊂ V (det(h)). Since W0

is a divisor, Lemma 5.12 tells us that W0 intersects G ′0, so the irreducibility of W0

means that it is contained in D. �

5D. An equation for W0. In this section, except for the last paragraph, we restrict
to the case k = C in order to use the representation theory of GL4(C).

We will use the result of Lemma 5.13 to give an upper bound on the degree of
W0 in terms of Plücker coordinates. This leads to a proof of Theorem 1.3 over C.
The restriction to C will be removed in the next section.

Let H be an effective divisor which generates Pic(G0) = Z. First we compute
the degree of D in Plücker coordinates, using the rational curve τ .

Lemma 5.14. The curve τ has intersection multiplicities

τ · H = 1 and τ · D = 16.

Proof. For the first statement, let p1 and p2 be the Plücker coordinates correspond-
ing to the (x2

1 , x2
2 , x2

3 , x2
4 , x1x2, x2x3, x3x4)- and (x2

1 , x2
2 , x2

3 , x2
4 , x1x2, x2x3, x1x4)-

minors respectively. Then L = V (p1) does not meet It at infinity. For t 6= ∞, we
see that p2(It) 6= 0, so local equations for L valid at all common points of L and τ
are given by L = p1

p2
. Since this equation pulls back to t on P1

−∞ the statement
follows.

For the second statement, note from the proof of Lemma 5.12 that I∞ is a smooth
point and τ does not intersect Z1 or Z2. Therefore, it suffices to check the degree
on the open affine defined by t 6= ∞.

For every t 6= ∞, It has the following 8 linear syzygies, where q1, . . . , q7 are
the generators of It in the order in Equation (5-2).
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σ1 = x2q1− x1q5 σ2 = x4q1− x1q7+ t x3q7− t2x4q3

σ3 = x1q2− x2q5 σ4 = x3q2− x2q6+ t x4q6− t2x3q4

σ5 = x2q3− x3q6+ t x4q3 σ6 = x1q4− x4q7+ t x3q4

σ7 = x3q5− x1q6+ t x3q7− t2x4q3 σ8 = x4q5− x2q7+ t x4q6− t2x3q4

The intersection number τ ·D equals the degree of τ ∗(det(h)), which we compute
by writing out τ ∗(h) as a matrix. Let φ ∈ Hom(I, S/I )−1 be written as φ(qi ) =

ci,1x1+ ci,2x2+ ci,3x3+ ci,4x4 and recall that, if σ j =
∑

i qi ⊗ li j then h(φ)(σ j )=∑
φ(qi )li j where the bar indicates that we are considering the image as an element

of S2/I2. The monomials x1x3, x2x4 and x1x4 are a basis of S2/I2 for t 6= ∞, so
we can explicitly express the h(φ)(σ j ) as follows:

h(φ)(σ1) −c5,3x1x3+ c1,4x2x4+ (−tc1,3+ tc5,4)x3x4

h(φ)(σ2) (tc7,1− c7,3)x1x3+ (c1,2− t2c3,2)x2x4+

(−tc1,1+ c1,3+ t3c3,1− t2c3,3− t2c7,2+ 2tc7,4)x3x4

h(φ)(σ3) c2,3x1x3− c5,4x2x4+ (−tc2,4+ tc5,3)x3x4

h(φ)(σ4) (c2,1− t2c4,1)x1x3+ (tc6,2− c6,4)x2x4+

(−tc2,2+ c2,4+ t3c4,2− t2c4,4− t2c6,1+ 2tc6z)x3x4

h(φ)(σ5) −c6,1x1x3+ (tc3,2+ c3,4)x2x4+ (−t2c3,1+ tc6,2− c6,4)x3x4

h(φ)(σ6) (tc4,1+ c4,3)x1x3− c7,2x2x4+ (−t2c4,2+ tc7,1− c7,3)x3x4

h(φ)(σ7) (c5,1− c6,3+ tc7,1)x1x3− t2c3,2x2x4+

(t3c3,1− t2c3,3− tc5,2+ c5,4+ tc6,4− t2c7,2+ tc7,4)x3x4

h(φ)(σ8) −t2c4,1x1x3+ (c5,2+ tc6,2− c7,4)x2x4+

(t3c4,2− t2c4,4− tc5,1+ c5,3− t2c6,1+ tc6,3+ tc7,3)x3x4

Each row of the above lines yields three linear equations so τ ∗(h) is represented
by a 24 × 28 matrix M as expected. Computation in Macaulay2 [Grayson and
Stillman] shows that the ideal of 24× 24 minors of M is (t16) and the statement
follows. �

Corollary 5.15. The divisor D is linearly equivalent to 16H.

The following lemma allows us to determine the degree of W0.

Lemma 5.16. The divisor D vanishes with multiplicity at least 8 on W0.

Proof. By Lemma 5.13, we know that |W0|⊆ |D|. By Lemma 5.12, a general point
of W0 does not belong to Z1 ∪ Z2. Let I be any such point. Since I is a singular
point in R4

8 , I has tangent space dimension at least dim(R4
8)+ 1 = 33, and so the

null space of h⊗ k(I ) must have dimension at least 8.
Choose 8 vectors from the null space as basis vectors, and any other 16 to

complete a basis of the source of h ⊗ k(I ). This basis in the quotient ring lifts
to a basis in the local ring OG ′0,I . When we represent the localization of the map



792 Dustin A. Cartwright, Daniel Erman, Mauricio Velasco and Bianca Viray

(h)I as a matrix with respect to this basis we see that the first 8 columns belong
to the maximal ideal mI of OG ′0,I . Thus det(h) belongs to m8

I , and in turn D has
multiplicity at least 8 at I . �

Lemma 5.17. The ideal sheaf of D is (P8), where P is the Salmon–Turnbull Pfaf-
fian.

Proof. Since D is a divisor on G0 its defining ideal in the homogeneous coordinate
ring of the Plücker embedding of G0 is generated by a single element f of degree
16 in the Plücker coordinates. If g is the square-free part of f then Lemma 5.16
shows that g has degree at most 2. Since D is invariant under linear changes of
variables, it follows from Lemmas 5.7 and 5.8 that g = P and f = P8. �

By combining Lemmas 5.4, 5.13, and 5.17 we have now proven our descriptions
of W0 and W :

Theorem 5.18. The subscheme W0 is defined by P.

For the rest of the section, we return to the case that k is a field, not necessarily
algebraically closed, of characteristic not 2 or 3.

Recall that if Mλ is any monomial ideal in G0 then there are local coordinates
cm

m′ on Uλ∩ H 4
8 . Moreover there is a surjection π : R4

8 ∩Uλ→W0∩Uλ, and there
is a rational map φ : (A4)8�S8 99K R4

8 ∩Uλ given by cm
m′ =

1λ−m′+m
1λ

whose image
is dense in R4

8 ∩Uλ.

Lemma 5.19. With Uλ as above, the function P◦π vanishes identically on R4
8∩Uλ

over an arbitrary field k.

Proof. The composition P ◦ π ◦ φ is a rational function with integer coefficients.
Theorem 5.18 proves that P ◦π ◦φ = 0 in C[q( j)

i ][1
−1
λ ]. Therefore, P ◦π ◦φ = 0

in Z[q( j)
i ][1

−1
λ ]. �

Theorem 5.20. The following irreducible subsets of G0 coincide:

(1) W0;

(2) V (P), the vanishing of the pullback to G of the Salmon–Turnbull Pfaffian;

(3) the homogeneous ideals with Hilbert function (1, 4, 3) which are flat limits of
ideals of distinct points.

As a consequence, if we let π |G : G→ G0 be the restriction of the projection from
Lemma 5.4 then W = V (P ◦π |G).

Proof. For other fields, note that for the ideal J of Proposition 5.1 with d = 4, we
have that P ◦ π(J ) = P(J ) = 1 and thus P ◦ π does not vanish uniformly on G
in any characteristic. By the previous lemma, P ◦π vanishes uniformly on R4

8 for
any k. Thus W ⊆ V (P ◦ π |G). As both W and V (P ◦ π |G) are integral closed
subschemes of codimension 1 in G, they are equal. �
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6. Proofs of main results

In this section, k denotes a field of characteristic not 2 or 3. We have used our
characteristic assumption in order to apply the theory of duality in Sections 3 and 4
and to define the trace map of Lemma 5.3.

Proof of Theorem 1.1. The irreducibility of H d
n when d is at most 3 or n is at most 7

follows for an algebraically closed field from Theorem 4.20. For a nonalgebraically
closed field, the Hilbert scheme is irreducible because it is irreducible after passing
to the algebraic closure. Proposition 3.1 and the same argument as in Lemma
5.3 show that when d is at least 4, Gd

8 is irreducible and (8d − 7)-dimensional,
and Proposition 5.1 shows that it is a separate component. Theorem 4.20 shows
that there are no other components, again, by passing to the algebraic closure if
necessary. �

Proof of Theorem 1.2. This follows from Theorem 3.9. �

Proof of Theorem 1.3. The statement that R4
8 ∩ G4

8 is a prime divisor on G4
8 is

proved in Lemma 5.4. The equivalence of the set-theoretic description and the
local equation description follows from Lemma 5.6. Theorem 5.20 proves that the
Salmon–Turnbull Pfaffian is the correct local equation. �

Proof of Theorem 1.4. Let Mλ be some monomial ideal and consider the monomial
chart Uλ. If Mλ does not have Hilbert function (1, 4, 3) then Uλ ∩G4

8 =∅ so that
the zero ideals will cut out R4

8 . If Mλ has Hilbert function (1, 4, 3), then Lemma
5.19 and Theorem 5.20 show that the zero set of the pullback of the Pfaffian is
precisely R4

8 ∩Uλ. �

7. Open questions

The motivating goal behind this work is understanding the smoothable component
of the Hilbert scheme as explicitly as possible, and not just as the closure of a cer-
tain set. This can be phrased more abstractly by asking what functor the smoothable
component represents, or, more concretely, by describing those algebras which
occur in the smoothable component. In this paper we have done the latter for n at
most 8. The following are natural further questions to ask:

• For d greater than 4, which algebras with Hilbert function (1, d, 3) are smooth-
able? Generically, such algebras are not smoothable. Computer experiments
lead us to conjecture that, for smoothable algebras, the analogue of the skew
symmetric matrix in Theorem 1.3 has rank at most 2d + 2. However, a di-
mension count shows that this rank condition alone is not sufficient for such
an algebra to be smoothable. What are the other conditions?
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• What is the smallest n such that H 3
n is reducible? We have shown H 3

8 is
irreducible and Iarrobino [1985, Example 3] has shown that H 3

78 is reducible.

• Is H d
n ever nonreduced? What is the smallest example? Does it ever have

generically nonreduced components?
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