Positive motivic measures are counting measures

Jordan S. Ellenberg and Michael Larsen
Positive motivic measures are counting measures

Jordan S. Ellenberg and Michael Larsen

A motivic measure is a ring homomorphism from the Grothendieck group of a field K (with multiplication coming from the fiber product over Spec K) to some field. We show that if a real-valued motivic measure μ satisfies $\mu([V]) \geq 0$ for all K-varieties V, then μ is a counting measure; that is, there exists a finite field L containing K such that $\mu([V]) = |V(L)|$ for all K-varieties V.

Let K be a field. By a K-variety, we mean a geometrically reduced, separated scheme of finite type over K. Let $K_0(\text{Var}_K)$ denote the Grothendieck group of K, that is, the free abelian group generated by isomorphism classes $[V]$ of K-varieties, with the scissors relations $[V] = [W] - [V \setminus W]$ whenever W is a closed K-subvariety of V. There is a unique product on $K_0(\text{Var}_K)$ characterized by the relation

$$[V] \cdot [W] = [V \times W],$$

where \times denotes the fiber product over Spec K. This product gives $K_0(\text{Var}_K)$ a commutative ring structure with identity $[\text{Spec } K]$. For every extension L of K, extension of scalars gives a natural ring homomorphism $K_0(\text{Var}_K) \to K_0(\text{Var}_L)$. The map $K \mapsto K_0(\text{Var}_K)$ can be regarded as a functor from fields to commutative rings. Throughout the paper, we follow the usual convention of writing \mathbb{L} for $[\mathbb{A}_K^1]$.

Following the terminology of [Larsen and Lunts 2003], we call a ring homomorphism from $K_0(\text{Var}_K)$ to a field F a motivic measure. Note that the original meaning of this term [Hales 2005; Looijenga 2002] is different (though related). If K is a finite field, the map $[V] \mapsto |V(K)|$ extends to a homomorphism $\mu_K : K_0(\text{Var}_K) \to \mathbb{Z}$, and therefore to an F-valued measure for any field F. More generally, if L is an extension of K which is also a finite field, the composition of μ_L with the natural map $K_0(\text{Var}_K) \to K_0(\text{Var}_L)$ gives for each F a motivic measure. We will call all such measures counting measures.

In this paper, we consider positive motivic measures, by which we mean \mathbb{R}-valued measures μ such that $\mu([V]) \geq 0$ for all K-varieties V. We now state our main result.

MSC2000: primary 14F43; secondary 14G15.
Keywords: motives, motivic measures, finite fields.
Theorem 1. Every positive motivic measure is a counting measure. In other words, if K is any field and $\mu : K_0(\text{Var}_K) \to \mathbb{R}$ is positive, there exists a finite field L containing K such that $\mu([V]) = |V(L)|$ for all K-varieties V.

Of course, for other choices of F there may still be motivic measures such that $\mu([V])$ lies in some interesting semiring of F for all K-varieties V. For example, if F is $\mathbb{C}(u, v)$ and $K = \mathbb{C}$, the measure sending V to its Hodge–Deligne polynomial takes values in the semiring of polynomials in u, v whose term of highest total degree is a positive multiple of a power of uv.

We begin with a direct proof of the following obvious corollary of Theorem 1.

Proposition 2. If K is infinite, there are no positive motivic measures on $K_0(\text{Var}_K)$.

Proof. Let μ be such a measure. For any finite subset S of K, which we regard as a zero-dimensional subvariety of \mathbb{A}^1,

$$0 \leq \mu(\mathbb{A}^1 \setminus S) = \mu(\mathbb{L}) - |S|.$$

Thus, $\mu(\mathbb{L}) \geq |S|$ for all subsets S of K, which proves the proposition. \qed

For the remainder of the paper we may and do assume that K is finite, of cardinality q. We write \mathbb{F}_q^n for the degree n extension of K.

Proposition 3. Let Ω^n denote the variety obtained from \mathbb{A}^n by removing all proper affine-linear subspaces defined over \mathbb{F}_q. Then

$$[\Omega^n] = (\mathbb{L} - q)(\mathbb{L} - q^2) \cdots (\mathbb{L} - q^n).$$

Proof. For any \mathbb{F}_q-rational affine-linear subspace A of \mathbb{A}^n, let A° denote the open subvariety of A which is the complement of all proper \mathbb{F}_q-rational affine-linear subspaces of A. Then $[A^\circ] = [\Omega^{\dim A}]$, and one can write recursively

$$[\Omega^n] = \mathbb{L}^n - \sum_{i=1}^{n-1} a_{n,i} [\Omega^i],$$

where $a_{n,i}$ is the number of \mathbb{F}_q-rational i-dimensional affine linear subspaces of \mathbb{A}^n. Thus, $[\Omega^i]$ can be expressed as $P_n(\mathbb{L})$, where $P_n \in \mathbb{Z}[x]$ is monic and of degree n. It suffices to prove that q^d is a root of $P_n(x)$ for all integers $d \in \{1, 2, \ldots, n\}$.

For any d in this range $\Omega^n(\mathbb{F}_{q^d})$ is empty. Indeed, if $x \in \mathbb{A}^n(\mathbb{F}_{q^d})$, then the n coordinates of x together with 1 cannot be linearly independent over \mathbb{F}_q, which implies that x lies in a proper \mathbb{F}_q-rational affine-linear subspace of \mathbb{A}^n. Thus,

$$0 = \mu_{\mathbb{F}_{q^d}}(\Omega^n) = P_n(q^d).$$

\qed

Corollary 4. If μ is a positive measure on $K_0(\text{Var}_{\mathbb{F}_q})$, there exists a positive integer n such that $\mu(\mathbb{L}) = q^n$.

Proof. If \(q^{n-1} < \mu(L) < q^n \) for some integer \(n \), then \(\mu(\Omega^n) < 0 \), contrary to positivity.

Our goal is then to prove that \(\mu(L) = q^n \) implies \(\mu = q^n \). We prove first that these measures coincide for varieties of the form \(\text{Spec} \mathbb{F}_q^d \) and deduce that they coincide for all affine varieties. As \(K_0(\text{Var}_F) \) is generated by the classes of affine varieties, this implies Theorem 1.

Lemma 5. Let \(\mu \) be a real-valued motivic measure of \(K_0(\text{Var}_F) \) and \(m \) a positive integer. Then

\[
\mu(\text{Spec} \mathbb{F}_q^m) \in \{0, m\}.
\]

If \(\text{Spec} \mathbb{F}_q^m \) has measure \(m \), then \(\text{Spec} \mathbb{F}_q^d \) has measure \(d \) whenever \(d \) divides \(m \).

Proof. As \(\mathbb{F}_q^m \otimes \mathbb{F}_q \mathbb{F}_q^m = \mathbb{F}_q^m \), the class \(x \) of \(\text{Spec} \mathbb{F}_q^m \) satisfies \(x^2 = mx \). If \(d \) divides \(m \),

\[
\mathbb{F}_q^d \otimes \mathbb{F}_q \mathbb{F}_q^m = \mathbb{F}_q^d,
\]

so \(\mu(\text{Spec} \mathbb{F}_q^m) = m \) implies \(\mu(\text{Spec} \mathbb{F}_q^d) = d \). Of course,

\[
\mu(\text{Spec} \mathbb{F}_q^m) = \begin{cases} m & \text{if } m \mid n, \\ 0 & \text{otherwise}. \end{cases}
\]

We will prove the same thing for the values of \(\mu(\text{Spec} \mathbb{F}_q^m) \). We begin with:

Proposition 6. If \(\mu(L) = q^n \) and \(\mu(\text{Spec}(\mathbb{F}_q^d)) = k \) for some \(k \geq n \), then

\[
\mu(\text{Spec} \mathbb{F}_q^m) = \begin{cases} m & \text{if } m \mid n, \\ 0 & \text{otherwise.} \end{cases}
\] \(\text{(1)} \)

For any integer \(k \), we denote by \(X_k \) the complement in \(\mathbb{A}^1 \) of the set of all points with residue field contained in \(\mathbb{F}_q^k \).

Proof. By Lemma 5, \(\mu(\text{Spec} \mathbb{F}_q^d) = d \) when \(d \) divides \(k \). Choose an \(m \) not dividing \(k \), and let \(Y_{k,m} \) denote the complement in \(X_k \) of the set of points with residue field \(\mathbb{F}_q^m \). Then

\[
\mu([Y_{k,m}]) = \mu(L) - \sum_{d \mid k} c_d d - c_m \mu(\text{Spec} \mathbb{F}_q^m),
\]

where \(c_i \) is the number of points in \(\mathbb{A}^1 \) with residue field \(\mathbb{F}_q^i \). From the positivity of \(\mu([Y_{k,m}]) \) and the fact that

\[
0 = \mu(\mathbb{F}_q^k([Y_{k,m}])) = q^k - \sum_{d \mid k} c_d d,
\]

we see that \(\mu(L) - q^k = q^n - q^k \) must be nonnegative, which is to say \(k = n \), and that \(\mu(\text{Spec} \mathbb{F}_q^m) = 0 \). \(\square \)
Proposition 7. If \(\mu(L) = q^n \), then \(\mu(\text{Spec } \mathbb{F}_{q^n}) = n \).

Proof. The assertion is clear for \(n = 1 \), so we assume \(n > 1 \). Let \(c_i \) denote the number of points in \(\mathbb{A}^1 \) with residue field \(\mathbb{F}_{q^i} \). Thus \(i c_i \leq q^i - 1 \) for all \(i > 1 \). If \(\mu(\text{Spec } \mathbb{F}_{q^n}) = 0 \), then \(\mu(\text{Spec } \mathbb{F}_{q^i}) = 0 \) for all \(i \geq n \), so for all \(k > 0 \) we have

\[
\mu([X_k]) \geq q^n - q - \sum_{i=2}^{n-1} (q^i - 1) \geq 2.
\]

Now we consider all curves in \(\mathbb{A}^2 \) of the form \(y = P(x) \) where \(P(x) \in \mathbb{F}_q[x] \) has degree \(\leq 2n \). The total number of such curves is greater than \(q^{2n} \), and for any intersection point \((\alpha, \beta)\) of any two distinct curves of this family, \(\alpha \) satisfies a polynomial equation of degree \(\leq 2n \) over \(\mathbb{F}_q \). Therefore, the open curves \(C_P := \{ (x, P(x)) | x \notin \mathbb{F}_{q^{2n}} \} \), indexed by polynomials \(P \) of degree \(\leq 2n \), are mutually disjoint. If \(C \) denotes the closure of the union of the \(C_P \) in \(\mathbb{A}^2 \), it follows that

\[
\mu([C]) > q^{2n} \mu([X(2n)]) > q^{2n},
\]

so \(\mu([\mathbb{A}^2 \setminus C]) < 0 \), which is absurd. \(\square \)

Together, the two preceding propositions imply (1).

We can now prove Theorem 1. We assume \(\mu(L) = q^n \). It suffices to check that \(\mu([V]) = |V(\mathbb{F}_{q^n})| \) for all affine \(\mathbb{F}_q \)-varieties \(V \).

Each closed point of \(V \) with residue field \(\mathbb{F}_{q^d} \) corresponds to a \(d \)-element Galois orbit in \(V(\mathbb{F}_{q^d}) \). If \(d \) divides \(n \), it gives a \(d \)-element subset of \(V(\mathbb{F}_{q^n}) \) and the subsets arising from different closed points are mutually disjoint. Since \(V(\mathbb{F}_{q^n}) \) is the union of all these subsets, and \(\mu(\text{Spec } \mathbb{F}_{q^n}) = d \), we have

\[
\mu([V]) \geq |V(\mathbb{F}_{q^n})| \tag{2}
\]

for each \(\mathbb{F}_q \)-variety \(V \). However, embedding \(V \) as a closed subvariety of \(\mathbb{A}^m \) for some \(m \), the complement \(W = \mathbb{A}^m \setminus V \) is again a variety, so

\[
\mu([W]) \geq |W(\mathbb{F}_{q^n})| \tag{3}
\]

Since

\[
q^{mn} = \mu([\mathbb{A}^m]) = \mu([V]) + \mu([W]) \geq |V(\mathbb{F}_{q^n})| + |W(\mathbb{F}_{q^n})| = |\mathbb{A}^m(\mathbb{F}_{q^n})| = q^{mn},
\]

we must have equality in (2) and (3).
Positive motivic measures are counting measures

References

Communicated by Bjorn Poonen
Received 2009-07-10 Accepted 2009-08-10

ellenber@math.wisc.edu Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, WI 53706, United States
http://math.wisc.edu/~ellenber

mjlarsen@indiana.edu Department of Mathematics, Indiana University, Bloomington, IN 47405, United States
http://mlarsen.math.indiana.edu/~larsen/