Algebra & Number Theory

Volume 4 2010 No. 1

Positive motivic measures are counting measures

Jordan S. Ellenberg and Michael Larsen

Positive motivic measures are counting measures

Jordan S. Ellenberg and Michael Larsen

A *motivic measure* is a ring homomorphism from the Grothendieck group of a field K (with multiplication coming from the fiber product over Spec K) to some field. We show that if a real-valued motivic measure μ satisfies $\mu([V]) \ge 0$ for all K-varieties V, then μ is a counting measure; that is, there exists a finite field L containing K such that $\mu([V]) = |V(L)|$ for all K-varieties V.

Let K be a field. By a K-variety, we mean a geometrically reduced, separated scheme of finite type over K. Let $K_0(\operatorname{Var}_K)$ denote the Grothendieck group of K, that is, the free abelian group generated by isomorphism classes [V] of K-varieties, with the scissors relations $[V] = [W] - [V \setminus W]$ whenever W is a closed K-subvariety of V. There is a unique product on $K_0(\operatorname{Var}_K)$ characterized by the relation

$$[V] \cdot [W] = [V \times W],$$

where \times denotes the fiber product over Spec K. This product gives $K_0(\operatorname{Var}_K)$ a commutative ring structure with identity [Spec K]. For every extension L of K, extension of scalars gives a natural ring homomorphism $K_0(\operatorname{Var}_K) \to K_0(\operatorname{Var}_L)$. The map $K \mapsto K_0(\operatorname{Var}_K)$ can be regarded as a functor from fields to commutative rings. Throughout the paper, we follow the usual convention of writing \mathbb{L} for $[\mathbb{A}^1_K]$.

Following the terminology of [Larsen and Lunts 2003], we call a ring homomorphism from $K_0(\operatorname{Var}_K)$ to a field F a motivic measure. Note that the original meaning of this term [Hales 2005; Looijenga 2002] is different (though related). If K is a finite field, the map $[V] \mapsto |V(K)|$ extends to a homomorphism $\mu_K \colon K_0(\operatorname{Var}_K) \to \mathbb{Z}$, and therefore to an F-valued measure for any field F. More generally, if L is an extension of K which is also a finite field, the composition of μ_L with the natural map $K_0(\operatorname{Var}_K) \to K_0(\operatorname{Var}_L)$ gives for each F a motivic measure. We will call all such measures *counting measures*.

In this paper, we consider *positive* motivic measures, by which we mean \mathbb{R} -valued measures μ such that $\mu([V]) \geq 0$ for all K-varieties V. We now state our main result.

MSC2000: primary 14F43; secondary 14G15. *Keywords:* motives, motivic measures, finite fields.

Theorem 1. Every positive motivic measure is a counting measure. In other words, if K is any field and $\mu: K_0(\operatorname{Var}_K) \to \mathbb{R}$ is positive, there exists a finite field L containing K such that $\mu([V]) = |V(L)|$ for all K-varieties V.

Of course, for other choices of F there may still be motivic measures such that $\mu([V])$ lies in some interesting semiring of F for all K-varieties V. For example, if F is $\mathbb{C}(u,v)$ and $K=\mathbb{C}$, the measure sending V to its Hodge–Deligne polynomial takes values in the semiring of polynomials in u,v whose term of highest total degree is a positive multiple of a power of uv.

We begin with a direct proof of the following obvious corollary of Theorem 1.

Proposition 2. If K is infinite, there are no positive motivic measures on $K_0(Var_K)$.

Proof. Let μ be such a measure. For any finite subset S of K, which we regard as a zero-dimensional subvariety of \mathbb{A}^1 ,

$$0 \le \mu(\mathbb{A}^1 \setminus S) = \mu(\mathbb{L}) - |S|.$$

Thus, $\mu(\mathbb{L}) \geq |S|$ for all subsets S of K, which proves the proposition.

For the remainder of the paper we may and do assume that K is finite, of cardinality q. We write \mathbb{F}_{q^n} for the degree n extension of K.

Proposition 3. Let Ω^n denote the variety obtained from \mathbb{A}^n by removing all proper affine-linear subspaces defined over \mathbb{F}_q . Then

$$[\Omega^n] = (\mathbb{L} - q)(\mathbb{L} - q^2) \cdots (\mathbb{L} - q^n).$$

Proof. For any \mathbb{F}_q -rational affine-linear subspace A of \mathbb{A}^n , let A° denote the open subvariety of A which is the complement of all proper \mathbb{F}_q -rational affine-linear subspaces of A. Then $[A^\circ] = [\Omega^{\dim A}]$, and one can write recursively

$$[\Omega^n] = \mathbb{L}^n - \sum_{i=1}^{n-1} a_{n,i} [\Omega^i],$$

where $a_{n,i}$ is the number of \mathbb{F}_q -rational i-dimensional affine linear subspaces of \mathbb{A}^n . Thus, $[\Omega^n]$ can be expressed as $P_n(\mathbb{L})$, where $P_n \in \mathbb{Z}[x]$ is monic and of degree n. It suffices to prove that q^d is a root of $P_n(x)$ for all integers $d \in \{1, 2, ..., n\}$.

For any d in this range $\Omega^n(\mathbb{F}_{q^d})$ is empty. Indeed, if $x \in \mathbb{A}^n(\mathbb{F}_{q^d})$, then the n coordinates of x together with 1 cannot be linearly independent over \mathbb{F}_q , which implies that x lies in a proper \mathbb{F}_q -rational affine-linear subspace of \mathbb{A}^n . Thus,

$$0 = \mu_{\mathbb{F}_{n,d}}(\Omega^n) = P_n(q^d).$$

Corollary 4. If μ is a positive measure on $K_0(\operatorname{Var}_{\mathbb{F}_q})$, there exists a positive integer n such that $\mu(\mathbb{L}) = q^n$.

Proof. If $q^{n-1} < \mu(\mathbb{L}) < q^n$ for some integer n, then $\mu(\Omega^n) < 0$, contrary to positivity.

Our goal is then to prove that $\mu(\mathbb{L}) = q^n$ implies $\mu = \mu_{\mathbb{F}_{q^n}}$. We prove first that these measures coincide for varieties of the form $\operatorname{Spec} \mathbb{F}_{q^d}$ and deduce that they coincide for all affine varieties. As $K_0(\operatorname{Var}_{\mathbb{F}_q})$ is generated by the classes of affine varieties, this implies Theorem 1.

Lemma 5. Let μ be a real-valued motivic measure of $K_0(\operatorname{Var}_{\mathbb{F}_q})$ and m a positive integer. Then

$$\mu(\operatorname{Spec} \mathbb{F}_{q^m}) \in \{0, m\}.$$

If Spec \mathbb{F}_{q^m} has measure m, then Spec \mathbb{F}_{q^d} has measure d whenever d divides m.

Proof. As

$$\mathbb{F}_{q^m} \otimes_{\mathbb{F}_q} \mathbb{F}_{q^m} = \mathbb{F}_{q^m}^m,$$

the class x of Spec \mathbb{F}_{q^m} satisfies $x^2 = mx$. If d divides m,

$$\mathbb{F}_{q^d} \otimes_{\mathbb{F}_q} \mathbb{F}_{q^m} = \mathbb{F}_{q^m}^d,$$

so $\mu(\operatorname{Spec} \mathbb{F}_{q^m}) = m$ implies $\mu(\operatorname{Spec} \mathbb{F}_{q^d}) = d$.

Of course,

$$\mu_{\mathbb{F}_{q^n}}(\operatorname{Spec}\mathbb{F}_{q^m}) = \begin{cases} m & \text{if } m \mid n, \\ 0 & \text{otherwise.} \end{cases}$$

We will prove the same thing for the values of $\mu(\operatorname{Spec} \mathbb{F}_{q^m})$. We begin with:

Proposition 6. If $\mu(\mathbb{L}) = q^n$ and $\mu(\operatorname{Spec}(\mathbb{F}_{q^k})) = k$ for some $k \ge n$, then

$$\mu(\operatorname{Spec} \mathbb{F}_{q^m}) = \begin{cases} m & \text{if } m \mid n, \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

For any integer k, we denote by X_k the complement in \mathbb{A}^1 of the set of all points with residue field contained in \mathbb{F}_{a^k} .

Proof. By Lemma 5, $\mu(\operatorname{Spec} \mathbb{F}_{q^d}) = d$ when d divides k. Choose an m not dividing k, and let $Y_{k,m}$ denote the complement in X_k of the set of points with residue field \mathbb{F}_{q^m} . Then

$$\mu([Y_{k,m}]) = \mu(\mathbb{L}) - \sum_{d \mid k} c_d d - c_m \mu(\operatorname{Spec} \mathbb{F}_{q^m}),$$

where c_i is the number of points in \mathbb{A}^1 with residue field \mathbb{F}_{q^i} . From the positivity of $\mu([Y_{k,m}])$ and the fact that

$$0 = \mu_{\mathbb{F}_{q^k}}([Y_{k,m}]) = q^k - \sum_{d|k} c_d d,$$

we see that $\mu(\mathbb{L}) - q^k = q^n - q^k$ must be nonnegative, which is to say k = n, and that $\mu(\operatorname{Spec} \mathbb{F}_{q^m}) = 0$.

Proposition 7. *If* $\mu(\mathbb{L}) = q^n$, then $\mu(\operatorname{Spec} \mathbb{F}_{q^n}) = n$.

Proof. The assertion is clear for n=1, so we assume n>1. Let c_i denote the number of points in \mathbb{A}^1 with residue field \mathbb{F}_{q^i} . Thus $ic_i \leq q^i-1$ for all i>1. If $\mu(\operatorname{Spec}\mathbb{F}_{q^n})=0$, then $\mu(\operatorname{Spec}(\mathbb{F}_{q^i}))=0$ for all $i\geq n$, so for all k>0 we have

$$\mu([X_k]) \ge q^n - q - \sum_{i=2}^{n-1} (q^i - 1) \ge 2.$$

Now we consider all curves in \mathbb{A}^2 of the form y = P(x) where $P(x) \in \mathbb{F}_q[x]$ has degree $\leq 2n$. The total number of such curves is greater than q^{2n} , and for any intersection point (α, β) of any two distinct curves of this family, α satisfies a polynomial equation of degree $\leq 2n$ over \mathbb{F}_q . Therefore, the open curves

$$C_P := \{(x, P(x)) \mid x \notin \mathbb{F}_{q^{(2n)!}}\},\$$

indexed by polynomials P of degree $\leq 2n$, each isomorphic to $X_{(2n)!}$, are mutually disjoint. If C denotes the closure of the union of the C_P in \mathbb{A}^2 , it follows that

$$\mu([C]) > q^{2n}\mu([X_{(2n)!}]) > q^{2n},$$

so $\mu([\mathbb{A}^2 \setminus C]) < 0$, which is absurd.

Together, the two preceding propositions imply (1).

We can now prove Theorem 1. We assume $\mu(\mathbb{L}) = q^n$. It suffices to check that $\mu([V]) = |V(\mathbb{F}_{q^n})|$ for all affine \mathbb{F}_q -varieties V.

Each closed point of V with residue field \mathbb{F}_{q^d} corresponds to a d-element Galois orbit in $V(\mathbb{F}_{q^d})$. If d divides n, it gives a d-element subset of $V(\mathbb{F}_{q^n})$ and the subsets arising from different closed points are mutually disjoint. Since $V(\mathbb{F}_{q^n})$ is the union of all these subsets, and $\mu(\operatorname{Spec}\mathbb{F}_{q^d})=d$, we have

$$\mu([V]) \ge |V(\mathbb{F}_{q^n})| \tag{2}$$

for each \mathbb{F}_q -variety V. However, embedding V as a closed subvariety of \mathbb{A}^m for some m, the complement $W = \mathbb{A}^m \setminus V$ is again a variety, so

$$\mu([W]) \ge |W(\mathbb{F}_{q^n})|. \tag{3}$$

Since

$$\begin{split} q^{mn} &= \mu([\mathbb{A}^m]) = \mu([V]) + \mu([W]) \\ &\geq |V(\mathbb{F}_{q^n})| + |W(\mathbb{F}_{q^n})| \\ &= |\mathbb{A}^m(\mathbb{F}_{q^n})| = q^{mn}, \end{split}$$

we must have equality in (2) and (3).

References

[Hales 2005] T. C. Hales, "What is motivic measure?", *Bull. Amer. Math. Soc.* (*N.S.*) **42**:2 (2005), 119–135. MR 2006h:14031 Zbl 1081.14033

[Larsen and Lunts 2003] M. Larsen and V. A. Lunts, "Motivic measures and stable birational geometry", *Mosc. Math. J.* **3**:1 (2003), 85–95, 259. MR 2005a:14026 Zbl 1056.14015

[Looijenga 2002] E. Looijenga, "Motivic measures", pp. 267–297 in *Séminaire Bourbaki*, 1999/2000, Astérisque **276**, Soc. Math. de France, Paris, 2002. MR 2003k:14010 Zbl 0996.14011

Communicated by Bjorn Poonen

Received 2009-07-10 Accepted 2009-08-10

ellenber@math.wisc.edu Department of Mathematics, University of Wisconsin,

480 Lincoln Drive, Madison, WI 53706, United States

http://math.wisc.edu/~ellenber

mjlarsen@indiana.edu Department of Mathematics, Indiana University,

Bloomington, IN 47405, United States http://mlarsen.math.indiana.edu/~larsen/