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Let A be the Néron model of an abelian variety AK over the fraction field K of
a discrete valuation ring R. By work of Mazur and Messing, there is a functorial
way to prolong the universal extension of AK by a vector group to a smooth
and separated group scheme over R, called the canonical extension of A. Here
we study the canonical extension when AK = JK is the Jacobian of a smooth,
proper and geometrically connected curve XK over K . Assuming that XK admits
a proper flat regular model X over R that has generically smooth closed fiber, our
main result identifies the identity component of the canonical extension with a
certain functor Pic\,0X/R classifying line bundles on X that have partial degree zero
on all components of geometric fibers and are equipped with a regular connec-
tion. This result is a natural extension of a theorem of Raynaud, which identifies
the identity component of the Néron model J of JK with the functor Pic0

X/R . As
an application of our result, we prove a comparison isomorphism between two
canonical integral structures on the de Rham cohomology of XK .

1. Introduction

Fix a discrete valuation ring R with field of fractions K and residue field k. Let
AK be an abelian variety over K and consider the universal extension E( Â K ) of
the dual abelian variety Â K . This commutative algebraic K-group is an extension
of Â K by the vector group of invariant differentials on AK

0 // ωAK
// E( Â K ) // Â K // 0 (1-1)

and is universal among extensions of Â K by a vector group: for any vector group
V over K , the natural homomorphism Hom(ωAK , V )→ Ext( Â K , V ) arising by
pushout from (1-1) is an isomorphism. The theory of the universal extension was
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initiated by Rosenlicht [1958], who defined the notion and showed its existence
for abelian varieties, and was subsequently taken up in [Tate 1958; Murre 1962;
Grothendieck 1974; Messing 1972; 1973; Mazur and Messing 1974]. It is central to
the definition of the Mazur–Tate p-adic height pairing [Mazur and Tate 1983; Cole-
man 1991], to Deligne’s definition of the duality on the de Rham cohomology of
AK [Deligne 1974, Section 10.2.7.3] (see also [Coleman 1991; 1998]), and to cer-
tain proofs of the comparison isomorphism between the p-adic étale and de Rham
cohomologies of AK [Coleman 1984, Note added in proof; Wintenberger 1994].

As is well known, the Néron model Â of Â K over R provides a functorial exten-
sion of Â K to a smooth commutative group scheme over R, and it is natural to ask if
(1-1) can be functorially extended to a short exact sequence of smooth commutative
R-groups as well. Such an extension is provided by the “canonical extension” E( Â)
of Â , introduced by Mazur and Messing [1974, I, Section 5]. When Â K has good
reduction, E( Â) coincides with the universal extension of (the abelian scheme) Â
by a vector group, but in general, as an example of Breen and Raynaud shows (see
Remarks 2.5), Néron models need not have universal extensions, and E( Â) seems
to be the best substitute in such cases. Although they seem to be of fundamental
importance, canonical extensions of Néron models have been little studied, and as
far as we know, do not appear anywhere in the literature beyond their introduction
in [Mazur and Messing 1974] and [Gross 1990, Section 15].

In this paper, we study the canonical extension E( Â) when AK = JK is the
Jacobian of a smooth proper and geometrically connected curve XK over K . In
this situation, a famous theorem of Raynaud [Bosch et al. 1990, Section 9.7, The-
orem 1] relates the identity component Ĵ 0 of Ĵ to the relative Picard functor of
any proper flat and normal model X of XK that is “sufficiently nice”.

Theorem 1.1 (Raynaud). Let S = Spec R and fix a proper flat and normal model
X of XK over S. Denote by X1, . . . , Xn the (reduced) irreducible components of
the closed fiber Xk . Suppose that the greatest common divisor of the geometric
multiplicities of the X i in Xk is equal to 1, and assume either that k is perfect
or that X admits an étale quasisection. Then Pic0

X/S is a smooth and separated
S-group scheme and JK admits a Néron model J of finite type. Moreover, the
canonical morphism

Pic0
X/S

// Ĵ 0 (1-2)

arising via the Néron mapping property from the canonical principal polarization
of JK is an isomorphism if and only if X has rational singularities.1

Our main result enhances Raynaud’s theorem by providing a similar description
of the identity component E( Ĵ )0 of the canonical extension E( Ĵ ) of Ĵ .

1 Recall that X is said to have rational singularities if it admits a resolution of singularities
ρ : X ′→ X with R1ρ∗OX ′ = 0. Trivially, any regular X has rational singularities.
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Theorem 1.2. Let X be a proper flat and normal model of XK over S = Spec R.
Suppose that the closed fiber of X is geometrically reduced and that either X is
regular or that k is perfect. Then there is a canonical homomorphism of short
exact sequences of smooth group schemes over S

0 // ωJ //

��

E( Ĵ )0 //

��

Ĵ 0 //

��

0

0 // f∗ωX/S // Pic\,0X/S
// Pic0

X/S
// 0

(1-3)

which is an isomorphism of exact sequences if and only if X has rational singular-
ities.

Here, ωX/S is the relative dualizing sheaf of X over S; it is a coherent sheaf of
OX -modules that is flat over S and coincides with the sheaf of relative differentials
over the smooth locus of f in X . We write f∗ωX/S for the vector group attached to
this locally free OS-module, and Pic\,0X/S is the fppf sheaf associated to the functor
on S-schemes that assigns to each S-scheme ϕ : T → S the set of isomorphism
classes of pairs (L,∇), where L is a line bundle on XT whose restriction to all
components of each geometric fiber of XT has degree zero and∇:L→L⊗ϕ∗ωX/S

is a regular connection on L over T (Definition 3.5). We will show in Theorem
3.9 that under the hypotheses of Raynaud’s Theorem, Pic\,0X/S is indeed a smooth
and separated S-scheme, and that there is a short exact sequence of smooth groups
over S as in the lower row of (1-3).

We note that when f : X → S is smooth, our notion of regular connection
coincides with the familiar notion of connection, and we recover from Theorem
1.2 the “well known” description of the universal extension of a Jacobian of a
smooth and proper curve as the representing object of the functor classifying degree
zero line bundles on the curve that are equipped with connection.2 Let us also
point out that the hypotheses of Theorem 1.2 include not only all regular curves
over K with semistable reduction but many regular curves which are quite far3

from having semistable reduction, such as the modular curves X (N ) and X1(N )
over K := Qp(ζN ) for arbitrary N (see [Katz and Mazur 1985, Theorems 13.7.6
and 13.11.4], which describe proper flat and regular models of X (N ) and X1(N ),
respectively, over R = Zp[ζN ] that have geometrically reduced closed fibers).

It is well known that the exact sequence of Lie algebras arising from (1-1) is nat-
urally isomorphic to the 3-term Hodge filtration exact sequence of the first de Rham

2Certainly this result appears in the literature — see for example [Coleman 1990, Section 2] — but
we have been unable to find any proof of it. See, however [Mazur and Messing 1974, I, Section 4],
which proves a result in a similar spirit.

3They achieve semistable reduction only after a large and wildly ramified extension of K .
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cohomology of AK (Proposition 5.1). Thus, the Lie algebra of the smooth R-group
E( Â) provides a canonical R-lattice in the K -vector space H 1

dR(AK /K ) which is
functorial in K-morphisms of AK (due to the Néron mapping property of A and
the functorial dependence of E( Â) on A). When A is an abelian scheme and the
maximal ideal of R has divided powers, Mazur and Messing proved [1974, II, Sec-
tion 15] Grothendieck’s conjecture [1974, V Section 5] that this R-lattice is nat-
urally isomorphic to the Dieudonné module of the associated Barsotti–Tate group
Ak[p∞]. Thus, Lie(E(A)) provides a natural generalization of the Dieudonné mod-
ule when A is not an abelian scheme. In [Cais 2009], for a proper flat and normal
R-curve X , we studied a canonical integral structure H 1(X/R) on H 1

dR(XK /K )
(that is, an R-lattice that is functorial in K-morphisms of XK ) defined in terms of
relative dualizing sheaves. It is natural to ask how H 1(X/R) compares with the
lattice Lie(E( Ĵ )) under the canonical identification H 1

dR(XK /K ) ' H 1
dR(JK /K ).

We will prove in Corollary 5.6 that these two lattices coincide when X verifies the
hypotheses of Theorem 1.2.

We briefly explain the main ideas underlying the proof of Theorem 1.2. Our first
task is to reinterpret E( Ĵ )0 as the representing object of the functor ExtrigS(J,Gm)

on smooth S-schemes, à la Mazur and Messing [1974]. To do this, we must first
show that the functor ExtS(J,Gm) is represented by Ĵ 0 on smooth S-schemes, and
by [Bosch 1997, Proposition 5.1] this holds if and only if Grothendieck’s pairing on
component groups is perfect. It follows from results of Bosch and Lorenzini [2002,
Corollary 4.7] (see also Proposition 2.8) that the hypotheses of Theorem 1.2 imply
the perfectness of Grothendieck’s pairing. However, we note that Grothendieck’s
pairing is not generally perfect (see Remark 2.9).

In Section 3, we construct the exact sequence of smooth S-group schemes oc-
curring in the bottom row of (1-3). This is accomplished by Theorem 3.9, whose
proof employs Čech-theoretical techniques to interpret the hypercohomology of
the two-term complex d log : O×X → ωX/S in terms of line bundles with regular
connection, and makes essential use of the good cohomological properties of the
relative dualizing sheaf and of Grothendieck duality. A key insight here is that the
traditional notion of a connection on a line bundle on a scheme X over a base S
is not well behaved when X is not S-smooth and must be suitably modified as in
Definition 3.5. With these preliminaries in place, we turn to the proof of Theorem
1.2 in Section 4. We must first construct a morphism of short exact sequences of
smooth group schemes (1-3). Our strategy for doing this is as follows. Passing to an
unramified extension of K if need be, we suppose that XK has a rational point and
use it to define an Albanese morphism jK : XK→ JK . The Néron mapping property
of J allows us to extend jK to a morphism j : X sm

→ J on the smooth locus of
f in X . By (functorially) pulling back rigidified extensions of J by Gm along j ,
we get line bundles on X sm with connection. Via a careful analysis of the relative
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dualizing sheaf, we show in Lemma 4.1 that a line bundle with connection on X sm

is equivalent to a line bundle with regular connection on X ; this critically uses
our hypothesis that the closed fiber of X is geometrically reduced (equivalently,4

that X sm is fiber-wise dense in X ). From this, we deduce the desired map (1-3).
To complete the proof of Theorem 1.2, we then “bootstrap” Raynaud’s Theorem
1.1 using duality. Here, it is essential to know that the canonical evaluation du-
ality between the Lie algebra of J and the sheaf of invariant differentials on J is
compatible via j with the (Grothendieck) duality of f∗ωX/S and R1 f∗OX . Such
compatibility may be checked on generic fibers, where it is well known [Coleman
1998, Theorem 5.1].

We remark that when k is perfect, both the short exact sequences of group
schemes in the rows of (1-3) exist under the less restrictive hypotheses of Theorem
1.1; this follows immediately from Propositions 2.6 and 2.8 for the top row of
(1-3), and from Theorem 3.9 for the bottom row. It is natural to ask if Theorem
1.2 holds in this generality as well. We do not know the answer to this question,
as our construction of the map of short exact sequences of smooth groups in (1-3)
seems to require the closed fiber of X to be generically smooth. Indeed, our con-
struction of (1-3) relies on extending an Albanese morphism XK → JK to some
open subscheme U of X with the property that line bundles with connection on U
uniquely extend to line bundles with regular connection on X . On the one hand,
this extension property seems to require U to be fiber-wise dense in X (see Lemma
4.1 and Remark 4.2), while on the other hand one only expects to be able to extend
the morphism XK → JK to U = X sm. Thus, we are forced to require that U = X sm

be fiber-wise dense in X , that is, that Xk be generically smooth (equivalently geo-
metrically reduced). We note, however, that it is just our construction of the map
(1-3) that requires X to have generically smooth closed fiber; the proof that this
map is an isomorphism of exact sequences of group schemes relies only on the
weaker hypotheses of Raynaud’s Theorem 1.1.

Conventions and notation. Fix a base scheme S. If Y is any S-scheme and S′→ S
is any morphism, we will often write YS′ := Y ×S S′ for the base change. When
S′=Spec(F) is the spectrum of a field, we will sometimes abuse notation and write
YF in place of YS′ . We will work with the fppf topology on the categories of S-
schemes and of smooth S-schemes (see [SGA3-1 1970, Exposé IV, Section 6.3] or
[Bosch et al. 1990, Section 8.1]); if F is any representable functor on one of these
categories, we will also write F for the representing object. By an S-group scheme

4 Indeed, if Xk is geometrically reduced, it is clearly generically smooth. Conversely, as X is
normal by hypothesis, it must be S2 by Serre’s criterion for normality, whence Xk is S1. Since Xk is
also R0 and “R0+S1” is equivalent to being reduced, we conclude that Xk is reduced and generically
smooth, whence it must be geometrically reduced.
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G we will always mean a finitely presented flat and separated commutative group
scheme over S. As usual, we write Ga and Gm for the additive and multiplicative
group schemes over S. A vector group on S is any S-group that is Zariski-locally
isomorphic to a product of copies of Ga . Associated to any quasicoherent OS-
module M is a sheaf for the fppf topology on S-schemes ϕ : T → S given by
M(T ) := 0(T, ϕ∗M). When M is locally free of finite rank, this fppf sheaf is
represented by the vector group Spec

(
SymOS

(M∗)
)
, where M∗ is the OS-linear dual

of M; we will frequently abuse notation and write M for both the locally free OS-
module and the associated vector group on S. For any S-group G with identity
section e : S→ G, we put ωG := e∗�1

G/S . As usual, for any S-scheme T we put
T [ε] := T ×Z Spec(Z[ε]/ε2), considered as a T -scheme via the first projection,
and for any fppf sheaf G we write Lie(G) for the fppf sheaf of OS-modules defined
(as in [Liu et al. 2004, Section 1]) by Lie(G)(T ) := ker(G(T [ε])→G(T )). When
G is a smooth group, this agrees with the traditional notion of relative Lie algebra
(as a sheaf of OS-modules). We set Lie(G) := Lie(G)(S).

2. Canonical extensions of Néron models

In this section, following [Mazur and Messing 1974], we recall the construction
and basic properties of the canonical extension of a Néron model, and we explain
how to interpret its identity component via rigidified extensions.

Let S be any base scheme, and fix commutative S-group schemes F and G. A
rigidified extension of F by G over S is a pair (E, σ ) consisting of an extension E
(of fppf sheaves of abelian groups over S) of F by G

0 // G
ι // E // F // 0 (2-1)

and a section σ of S-pointed sheaves along the first infinitesimal neighborhood of
the identity of F

Inf1
S(F)

σ // E (2-2)

that projects to the canonical closed immersion Inf1
S(F) → F . Two rigidified

extensions (E, σ ) and (E ′, σ ′) of F by G are called equivalent if there is a ho-
momorphism (necessarily an isomorphism) ϕ : E → E ′ that carries σ to σ ′ and
makes the diagram (2-3) commute:

0 // G
ι // E //

ϕ

��

F // 0

0 // G
ι′

// E ′ // F // 0

(2-3)
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We denote by ExtrigS(F,G) the set of equivalence classes of rigidified exten-
sions of F by G over S. This set is equipped with a natural group structure via
Baer sum of rigidified extensions [Mazur and Messing 1974, I, Section 2.1]) which
makes the functor on S-schemes T  ExtrigT (FT ,GT ) a group functor that is
contravariant in the first variable via pullback (fibered product) and covariant in
the second variable via pushout (fibered coproduct). We will write ExtrigS(F,G)
for the fppf sheaf of abelian groups associated to this functor.

We will exclusively be concerned with the special case that G = Gm is the
multiplicative group over S. Note that (by fppf descent) any extension of F by Gm

is automatically representable as Gm is affine (compare the proof of [Oort 1966,
III, Proposition 17.4]). In this context, there is an alternate and more concrete
functorial description of the group ExtrigS(F,Gm) that we will need for later use.
Fix a choice of generator τ for the free rank-one Z-module of invariant differentials
ωGm of Gm over Z. Note that τ is canonically determined up to multiplication by
±1. For any scheme S, we will denote the pullback of τ to a generator of ωGm

simply by τ . Write Eτ (F)(S) for the set of equivalence classes of pairs (E, η)
consisting of an extension E of F by Gm over S and a global invariant differential
η ∈0(S, ωE) which pulls back via the given morphism ι :Gm→ E (realizing E as
an extension of F by Gm) to τ on Gm . Two pairs (E, η) and (E ′, η′) are declared
to be equivalent if there is a morphism ϕ : E→ E ′ inducing a diagram as in (2-3)
and having the property that ϕ∗η′ = η. We make Eτ (F)(S) into an abelian group
as follows. Let (E, η) and (E ′, η′) be two pairs as above, and denote by E ′′ the
Baer sum of E and E ′. Writing pr, pr′ for the projections from E ×F E ′ to E and
E ′, and denoting by q : E ×F E ′→ E ′′ the quotient map, we claim that there is a
unique invariant differential η′′ on E ′′ satisfying

q∗η′′ = pr∗ η+ pr′∗η′.

Indeed, by definition, E ′′ is the cokernel of the skew-diagonal (ι,−ι′) : Gm →

E ×F E ′ under which pr∗ η+ pr′∗η′ pulls back to zero. Thus, via the short exact
sequence

0 // ωE ′′ // ωE×F E ′ // ωGm
// 0

(which is left exact since E ×F E ′ → E ′′ is smooth due to [SGA3-1 1970, Ex-
posé VIB, Proposition 9.2 vii]), we obtain a unique invariant differential η′′ on E ′′

as claimed. One easily checks that under the map Gm → E ′′ induced by either
one of the inclusions (ι, 0), (0, ι′) :Gm⇒ E×F E ′ (whose composites with q both
coincide with the inclusion Gm → E ′′ realizing E ′′ as an extension of F by Gm)
the differential η′′ pulls back to τ . We define the sum of the classes represented
by (E, η) and (E ′, η′) to be the class represented by (E ′′, η′′). It is straightforward
to verify that this definition does not depend on the choice of representatives, and
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makes Eτ (F)(S) into an abelian group. This construction is obviously contravari-
antly functorial in S via pullback of extensions and of invariant differentials.

Lemma 2.1. For any choice of basis τ of ωGm , there is a functorial isomorphism
of abelian groups

ExtrigS(F,Gm)
' // Eτ (F)(S) .

Proof. Associated to the extension (2-1) with G =Gm is the short exact sequence
of Lie algebras

0 // Lie(Gm) // Lie(E) // Lie(F) // 0 (2-4)

(note that the map Lie(E) → Lie(F) is surjective by [Liu et al. 2004, Propo-
sition 1.1 (c)], as E → F is smooth). We claim that the data of a rigidifica-
tion on (2-1) is equivalent to a choice of a splitting of (2-4). Indeed, any map
σ : Inf1

S(F)→ E necessarily factors through Inf1
S(E), so using the natural isomor-

phism Inf1
S(H)'Spec(OS[ωH ]) for any smooth group scheme H over S we obtain

a bijection between rigidifications of (2-1) and sections ωE → ωF to the pullback
map ωF→ ωE . By the usual duality of the OS-modules Lie(H) and ωH [SGA3-1
1970, Exposé 2, Section 4.11], this is equivalent to a section s as claimed.

Using τ to identify the free rank one OS-module Lie(Gm) with OS and thinking
of a splitting of (2-4) as a map Lie(E)→ Lie(Gm) restricting to the identity on
Lie(Gm), we see that any such splitting is by duality equivalent to a global section
η ∈ 0(S, ωE) pulling back to τ in 0(S, ωGm ). One checks that the equivalence
(E, σ ) ↔ (E, η) induces an isomorphism of abelian groups ExtrigS(F,Gm)→

Eτ (F)(S) that is functorial in S, as claimed. �

The following key result shows that the functor Extrig allows one to realize the
universal extension of an abelian scheme.

Proposition 2.2 (Mazur–Messing). Let A be an abelian scheme over an arbitrary
base scheme S and denote by Â the dual abelian scheme. Then the fppf sheaf
ExtrigS(A,Gm) is a smooth and separated S-group scheme. It sits in a natural
short exact sequence of smooth S-group schemes

0 // ωA // ExtrigS(A,Gm) // Â // 0 . (2-5)

Moreover, (2-5) is the universal extension of Â by a vector group.

Proof. See [Mazur and Messing 1974], especially I, Section 2.6 and Proposition
2.6.7. �

We now specialize to the case that S = Spec R is the spectrum of a discrete
valuation ring R with field of fractions K . Fix an abelian variety AK over K
and denote by A the Néron model of AK over S and by A0 the relative identity
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component of A. Let Â be the Néron model of the dual abelian variety Â K . We
have the following analogue of Proposition 2.2:

Proposition 2.3 [Mazur and Messing 1974, I, Corollary 5.2]. As a functor on
smooth S-schemes, the fppf abelian sheaf ExtrigS(A

0,Gm) is represented by a
smooth and separated S-group scheme. Moreover, there is a natural short exact
sequence of smooth groups over S

0 // ωA // ExtrigS(A
0,Gm) // Â // 0 . (2-6)

Definition 2.4 (Mazur–Messing). The canonical extension of Â is the smooth and
separated S-group scheme

E( Â) := ExtrigS(A
0,Gm).

Remarks 2.5. When A is an abelian scheme, the canonical extension E( Â) co-
incides with the universal extension of Â by a vector group by Proposition 2.2.
When A is not an abelian scheme, an example of Breen and Raynaud [Mazur and
Messing 1974, I, 5.6] shows that A need not have a universal extension.

Note, however, that since the functor ExtrigS(A
0,Gm) commutes with fppf base

change, the smooth group scheme ExtrigS(A
0,Gm) representing it on the category

of smooth group schemes over S is of formation compatible with base change
to a smooth S-scheme. In particular, the K -fiber of the canonical extension ex-
act sequence (2-6) is the universal extension of Â K by a vector group, thanks to
Proposition 2.2.

In this paper, we work with ExtrigS(A,Gm) instead of ExtrigS(A
0,Gm), as the

former has better functorial properties due to the Néron mapping property of A
(which is not enjoyed by A0). Following the method of [Mazur and Messing
1974, I, Corollary 5.2], we wish to show that ExtrigS(A,Gm) is representable,
at least as a functor on smooth test objects. This is somewhat more subtle than
the corresponding problem for ExtrigS(A

0,Gm); in particular, denoting by8A and
8 Â the component groups of A and Â , we will need to know that Grothendieck’s
pairing for AK (see [SGA7-1 1972, Exposés 7–9] or [Bosch 1997, Section 4])

8A×8 Â
// Q/Z (2-7)

is right nondegenerate.

Proposition 2.6. Suppose that Grothendieck’s pairing on component groups is
right nondegenerate. Then the fppf abelian sheaf ExtrigS(A,Gm) on the category
of smooth S-schemes is represented by a smooth and separated S-group scheme.
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Moreover, there is a natural short exact sequence of smooth group schemes over S

0 // ωA // ExtrigS(A,Gm) // Â0 // 0 . (2-8)

Proof. We follow the proof of [Mazur and Messing 1974, I, Corollary 5.2]. Let T
be any smooth S-scheme and consider the natural map of abelian groups

ExtrigT (A,Gm) // ExtT (A,Gm) . (2-9)

By Lemma 2.1, we see that when T is affine any extension E of AT by Gm admits
a rigidification so (2-9) is surjective. By definition, the kernel of (2-9) consists
of rigidifications on the trivial extension of AT by Gm , up to isomorphism. To
give a rigidification Inf1

T (AT )→ AT ×T Gm of the trivial extension is obviously
equivalent to giving a map of T -pointed T -schemes Inf1

T (AT )→ Gm , which in
turn is equivalent to giving a global section of ωAT (see [Mazur and Messing 1974,
I, 1.2] or the proof of Lemma 2.1). If two sections η1 and η2 ofωAT give isomorphic
rigidified extensions of the trivial extension, then there is an automorphism of the
trivial extension, necessarily induced by a group map ϕ : AT → Gm , with the
property that η1 and η2 differ by

dϕ ∈ 0(T, ωAT ) (with d : HomT (AT ,Gm)→ Hom(Inf1
T (AT ),Gm),

the natural map induced by the canonical closed immersion Inf1
T (AT ) → AT ).

Since A is flat with proper generic fiber and T is S-smooth, we have

HomT (AT ,Gm)= 0,

so by passing to the associated fppf abelian sheaves, we thus obtain the short exact
sequence of fppf sheaves

0 // ωA // ExtrigS(A,Gm) // ExtS(A,Gm) // 0 .

By [Bosch 1997, Proposition 5.1] (or [Milne 1986a, III, Proposition C.14]), the
canonical duality of abelian varieties extends to a natural map Â0

→ ExtS(A,Gm)

which is an isomorphism of fppf abelian sheaves on the category of smooth S-
schemes if and only if Grothendieck’s pairing on component groups (2-7) is right
nondegenerate. Thus, our hypotheses ensure that ExtS(A,Gm) is represented on the
category of smooth S-schemes by the smooth and separated S-group scheme Â0.
Since ωA is a vector group, it is clearly smooth and affine over S. Thus, the proof
of [Oort 1966, III, Proposition 17.4], which is easily adapted from the situation
considered there (fpqc topology on all S-schemes) to our situation (fppf topology
on smooth S-schemes) since ωA and Â0 are smooth, shows via fppf descent that
ExtrigS(A,Gm) is represented (on smooth S-schemes) by a smooth and separated
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S-group scheme, and that there is a short exact sequence of smooth S-schemes
(2-8). �

Remark 2.7. We note that Mazur and Messing [1974, I, Corollary 5.2] prove that
the canonical map

Â // ExtS(A0,Gm)

is an isomorphism of fppf abelian sheaves on smooth test objects for any Néron
model A over any connected Dedekind scheme S by showing that ExtS(A0,Gm)

satisfies the Néron mapping property. In our situation, this method fails to gen-
eralize as Â0 does not satisfy any good mapping property on smooth S-schemes
which do not have connected closed fiber.

In our applications, we will wish to apply Proposition 2.6 when AK is the Jaco-
bian of a smooth and proper curve over K . In this situation, it follows easily from
the autoduality of JK and the functoriality of the morphism Ĵ 0

→ExtS(J,Gm) that
Grothendieck’s pairing is right nondegenerate if and only if it is left nondegenerate
if and only if it is perfect. In order to apply Proposition 2.6, we will need the
following criterion for the perfectness of Grothendieck’s pairing.

Proposition 2.8. Let XK be a smooth and proper curve over K with Jacobian
JK over K . Fix a proper flat and normal model X of XK over R, and denote by
X1, . . . , Xn the (reduced) irreducible components of the closed fiber Xk . Suppose
that the greatest common divisor of the geometric multiplicities of the X i in Xk

is 1, and assume one of the following hypotheses holds:

(1) The residue field k of R is perfect.

(2) X is regular, each X i is geometrically reduced and X admits an étale quasi-
section.

Then Grothendieck’s pairing (2-7) for JK is perfect.

Proof. As our hypotheses are preserved by and our conclusion may be checked
after étale base change, we may replace R with a strict henselization of R and may
thus assume that R is strictly henselian. In case (2), our hypotheses ensure that
XK has a K-rational point and admits a proper flat and regular model X over R all
of whose (reduced) irreducible components are geometrically reduced. These are
exactly the hypotheses of [Bosch and Lorenzini 2002, Corollary 4.7], which then
ensures that Grothendieck’s pairing for JK is perfect.

In case (1), we first claim that our hypothesis on the gcd of the geometric multi-
plicities of the X i in Xk imply the existence of a tamely ramified Galois extension
K ′ of K (necessarily with trivial residue field extension) such that X K ′ has a K ′-
rational point. Indeed, by resolution of singularities for excellent surfaces [Deligne
and Mumford 1969, Section 2; Lipman 1978] and descent arguments from the
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completion of R (see [Conrad et al. 2003, Theorem 2.2.2]) there exists a proper
birational morphism of proper and flat S-models X̃ → X of XK with X̃ regular.
Due to [Liu 2002, Corollary 9.2.30], we may assume that the closed fiber X̃k is a
normal crossings divisor on X̃ . Observe that the proper and birational morphism
X̃ → X is an isomorphism over any point ξ ∈ X of codimension 1; this may be
checked after the base change Spec(OX,ξ )→ X , where it follows from the valuative
criterion for properness applied to the discrete valuation ring OX,ξ (recall that X is
normal). In particular, X̃ → X is an isomorphism over the generic points of Xk

and we deduce that our hypothesis on the gcd of the geometric multiplicities of the
irreducible components of Xk is inherited by X̃ . Thus, there exists an irreducible
component 00 of X̃k whose multiplicity e in X̃k is not divisible by char(k). The
proof of [Liu 2002, Theorem 10.4.6] (see also [Liu 2002, Corollary 10.4.7]) then
shows that there is a Galois extension K ′ of K with ramification index e having
the following property: letting R′ denote the integral closure of R in K ′, (which is
again a discrete valuation ring, as R is henselian) and writing X ′ for the normaliza-
tion of X̃ ×S Spec(R′), the closed fiber X ′k has an irreducible component 0′0 over
00 whose geometric multiplicity in X ′k is 1; that is, 0′0 is generically smooth. As
R′ is strictly henselian, we conclude that there exists an R′-point of X ′ and hence
a K ′-point of X ′K ′ = X K ′ , as claimed.

Now since k is perfect, X K ′ admits a proper flat and regular model over R′

with the property that every (reduced) irreducible component of the closed fiber
is geometrically reduced (any proper flat and regular model will do). We may
therefore apply [Bosch and Lorenzini 2002, Corollary 4.7] to X K ′ to deduce that
Grothendieck’s pairing for JK ′ is perfect. As K ′/K is tamely ramified, it now
follows from [Bertapelle and Bosch 2000] that Grothendieck’s pairing for JK is
perfect, as desired. �

Remark 2.9. Assuming k to be perfect, it follows from work of Pépin [2008]
(using the results of Bosch and Lorenzini [2002]) that Grothendieck’s pairing for
JK is perfect whenever the index of XK is not divisible by the characteristic of k.

Already in the case of Jacobians, Grothendieck’s pairing may fail to be per-
fect. Indeed, working over R with imperfect residue fields, Bosch and Lorenzini
give an explicit example of a Jacobian JK for which Grothendieck’s pairing is not
perfect [Bosch and Lorenzini 2002, Example 6.2]. The first examples of abelian
varieties for which Grothendieck’s pairing is not perfect were given by [Bertapelle
and Bosch 2000].

For an arbitrary abelian variety AK over K , Grothendieck’s pairing on compo-
nent groups (2-7) is in addition known to be perfect under any of the following
hypotheses:

(1) R is of mixed characteristic (0, p) and k is perfect.
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(2) k is finite.

(3) k is perfect and AK has potentially multiplicative reduction.

(4) There exists a tamely ramified Galois extension K ′ of K having trivial residue
field extension such that Grothendieck’s pairing for the base change AK ′ is
perfect.

For the proofs of these facts, see [Bégueri 1980] in the case of (1), [McCallum
1986] in case (2), [Bosch 1997] in case (3), and [Bertapelle and Bosch 2000]
in the case of (4). See also [Milne 1986a, 3, Theorem 2.5] when R has mixed
characteristic and finite residue field.

We end this section by relating the group ExtrigS(A,Gm) to the identity com-
ponent of the canonical extension E( Â) := ExtrigS(A

0,Gm) of Â .

Lemma 2.10. Let AK be an abelian variety over K and A its Néron model over
R. Suppose that Grothendieck’s pairing (2-7) for AK is right nondegenerate, so
ExtrigS(A,Gm) is a smooth S-group. The canonical map of short exact sequences
of S-groups

0 // ωA //

��

ExtrigS(A,Gm) //

��

Â0 //

��

0

0 // ωA // ExtrigS(A
0,Gm) // Â // 0

(2-10)

furnished from the functoriality of ExtrigS(·,Gm) by the inclusion A0 ↪→ A identi-
fies ExtrigS(A,Gm) with the identity component of ExtrigS(A

0,Gm).

Proof. We first observe that ExtrigS(A,Gm) has connected fibers. More generally,
we claim that any extension of (not necessarily commutative) finite type connected
group schemes over a field must be connected. Indeed, suppose that

1 // G // E // F // 1

is such an extension. Since connectedness of any scheme with a rational point is
preserved by ground field extension, the fibers of E → F are connected as they
become isomorphic to G after passing to an extension field and G is connected.
Thus, any separation {U, V } of E is a union of fibers of E→ F . Since the quotient
map E→ F is faithfully flat and of finite type, it is open, so {U, V } is the pullback
of a separation of F ; by the connectedness of F we conclude that {U, V } is trivial
and E is connected.

To conclude, since ExtrigS(A,Gm) has connected fibers it suffices to show
that any homomorphism from a commutative S-group H with connected fibers to
ExtrigS(A

0,Gm) necessarily factors through ExtrigS(A,Gm). By the functoriality
of ExtrigS(·,Gm), the top row of (2-10) is identified with the pullback of the bottom
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row along the inclusion Â0
→ Â; that is, we have a canonical isomorphism of

smooth groups

ExtrigS(A,Gm)= ExtrigS(A
0,Gm)× Â Â0.

Thus, since the composition of H → ExtrigS(A
0,Gm) with the projection to Â

necessarily factors through the inclusion of Â0 into Â as H has connected fibers,
we conclude that H → ExtrigS(A

0,Gm) indeed factors through the fiber product
ExtrigS(A,Gm), as desired. �

3. An enhancement of the relative Picard functor

We continue to suppose that S = Spec R with R a discrete valuation ring having
field of fractions K . By a relative curve X over S we mean a flat finite type
and separated S-scheme f : X → S of pure relative dimension 1 that is normal
with smooth and geometrically connected generic fiber. In this section, we will
introduce the functor Pic\,0X/S and prove that it is representable whenever Pic0

X/S is
representable.

We begin by recalling some general facts about relative dualizing sheaves and
Grothendieck duality that will be needed in what follows. Let X and Y be locally
noetherian schemes and f : X→ Y a Cohen–Macaulay morphism of pure relative
dimension n. By [Conrad 2000, Theorem 3.5.1], the complex f !OY has a unique
nonzero cohomology sheaf, which is in degree−n, and the relative dualizing sheaf
of X over Y is

ωX/Y := H−n( f !OY ).

It is flat over Y by [Conrad 2000, Theorem 3.5.1], and locally free if and only if the
Cohen–Macaulay fibers of f are Gorenstein [Hartshorne 1966, V, Proposition 9.3,
Theorem 9.1]. Furthermore, the formation of ωX/Y is compatible with étale lo-
calization on X (see the discussion preceding [Conrad 2000, Corollary 4.4.5])
and with any base change Y ′→ Y where Y ′ is locally noetherian [Conrad 2000,
Theorem 3.6.1]. When f is in addition proper, there is a natural OY -linear trace
map

γ f : Rn f∗ωX/Y → OY , (3-1)

which is compatible with any base change Y ′ → Y with Y ′ locally noetherian
[Conrad 2000, Corollary 3.6.6]. By Grothendieck–Serre duality [Conrad 2000,
Theorem 4.3.1] the canonical map

R f∗RHom•X (F
•, ωX/Y [n]) // RHom•Y (R f∗F•,OY ) , (3-2)

induced by (3-1) is a quasi-isomorphism for any complex F• in the derived cat-
egory of sheaves of OX -modules whose cohomology is coherent and vanishes in
sufficiently negative and positive degrees.
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For arbitrary base schemes Y and Cohen–Macaulay morphisms f : X → Y
of pure relative dimension, one defines ωX/Y (and γ f when f is proper) via di-
rect limits and base change from the locally noetherian case (see [Conrad 2000,
page 174]); this makes sense due to the aforementioned base-change compatibility
in the locally noetherian context and yields a coherent sheaf of OX -modules ωX/Y

and a trace map γ f when f is proper that are compatible with arbitrary base change
on Y .

Let us apply these considerations to the case of a relative curve f : X→ S. Since
X is normal and of pure relative dimension one, it is Cohen–Macaulay by Serre’s
criterion for normality. Theorem 23.3 in [Matsumura 1989]. Thus, the complex
f !OS is a coherent sheaf ωX/S concentrated in degree −1. By our discussion, ωX/S

is S-flat, and of formation compatible with étale localization on X and arbitrary
base change on S. When f is S-smooth, the theory of the dualizing sheaf provides
a canonical identification of the relative dualizing sheaf with the sheaf of relative
differential 1-forms on X over S. It is natural to ask how these two sheaves are
related in general.

Proposition 3.1. There is a canonical OX -linear morphism

cX/S :�
1
X/S

// ωX/S, (3-3)

whose restriction to any S-smooth open subset of X is the canonical isomorphism.

Proof. See [Cais 2009, Proposition 5.1]. �

In fact, we can realize ωX/S as a subsheaf of differentials on X which are regular
on the generic fiber. Precisely, if i :U ↪→ X is any open subscheme of X containing
the generic fiber then the canonical map ωX/S → i∗i∗ωX/S is injective as it is an
isomorphism over XK andωX/S is S-flat. Since the formation ofωX/S is compatible
with étale localization on X , we thus obtain a natural injective map

ωX/S
� � // i∗ωU/S . (3-4)

In particular, taking U = XK we have ωU/S '�
1
XK /K by the general theory of the

dualizing sheaf (or by Proposition 3.1), so ωX/S is a subsheaf of i∗�1
XK /K . When

U is large enough, the map (3-4) is also surjective.

Lemma 3.2. Suppose that the complement of U in X consists of finitely many
closed points of codimension 2 (necessarily in the closed fiber). Then the canonical
injective map (3-4) is an isomorphism.

Proof. We follow the proof given right after (5.2.7) in [Conrad 2000]. By stan-
dard arguments, it suffices to show that the local cohomology groups H 1

x (X, ωX/S)
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vanish for all x ∈ X −U . Due to [SGA2 1968, Exposé III, Example 3.4], such
vanishing is equivalent to

depthOX,x
(ωX/S,x)≥ 2.

If x ∈ X −U is a regular point, this inequality is trivially verified, since ωX,x is
a free OX,x -module of rank 1 for such x (regular local rings are Gorenstein) and
OX,x is two-dimensional and normal (whence it has depth 2 by Serre’s criterion for
normality).

In general, by [SGA2 1968, Exposé III, Corollary 2.5] it is enough to show that
for each nonregular point x of the closed fiber Xk of X we have

depthOXk ,x
(ωXk/k,x)≥ 1. (3-5)

If this is not the case, then the maximal ideal mx of OXk ,x consists entirely of zero-
divisors for the finite OXk ,x -module ωXk/k,x , so it must be an associated prime of
ωXk/k,x . We would then have mx = Ann(s) for some nonzero s ∈ ωXk/k,x whence
HomXk (k(x), ωXk/k) 6= 0. However,

HomXk (k(x), ωXk/k)= H 1(Xk, k(x))∨ (3-6)

by Grothendieck duality for the k-scheme Xk (see Corollary 5.1.3 and the bottom
half of page 224 in [Conrad 2000]), and we know that the right side of (3-6) is zero
(since k(x) is a skyscraper sheaf supported at the point x), which is a contradiction.
Thus, mx contains an ωXk/k,x -regular element, so (3-5) holds, as desired. �

When f : X → S is in addition proper, so we have a trace map (3-1), we may
apply the machinery of Grothendieck duality. For our purposes, we need only the
following.

Proposition 3.3. If f : X → S is a proper relative curve then the canonical map
of flat OS-modules

f∗ωX/S // (R1 f∗OX )
∨ (3-7)

induced by cup product and the trace map (3-1) is an isomorphism. Furthermore,
there is a natural short exact sequence of OS-modules

0 // Ext1
S(R

1 f∗OX ,OS) // R1 f∗ωX/S // ( f∗OX )
∨ // 0 . (3-8)

In particular, if f is cohomologically flat (in dimension 0) then R1 f∗ωX/S is a
locally free OS-module.

Proof. Since HomX (OX , ·) is naturally isomorphic to the identity functor, (3-2) with
F• = OX (thought of as a complex in degree zero) yields a quasi-isomorphism

R f∗ωX/S[1] ' RHom•S(R f∗OX ,OS). (3-9)
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Applying H−1 to (3-9) and using the spectral sequence

Em,n
2 = Extm

S (H
−n(R f∗OX ),OS) H⇒ H m+n(RHom•S(R f∗OX ,OS)) (3-10)

(whose only nonzero terms occur when m = 0, 1 and n = 0,−1) to calculate the
right side, we obtain a natural isomorphism f∗ωX/S ' (R1 f∗OX )

∨. To know that
this map coincides with the map (3-7) induced by cup product and the trace map γ f ,
one proceeds as in the proof of [Conrad 2000, Theorem 5.1.2]. Similarly, applying
H 0 to (3-9) and using (3-10), we arrive at the short exact sequence (3-8). For the
final statement of the proposition, recall that by definition f is cohomologically
flat in dimension 0 if f∗OX commutes with arbitrary base change, which holds
if and only if R1 f∗OX is locally free. Thus, when f is cohomologically flat, the
sheaf Ext1

S(R
1 f∗OX ,OS) vanishes and it follows easily from (3-8) that R1 f∗ωX/S is

locally free over S. �

We record here a corollary showing that the relative dualizing sheaf is in general
much better behaved than the sheaf of relative differential 1-forms:

Corollary 3.4. Let f : X → S be a proper relative curve, and assume that f is
cohomologically flat in dimension 0. Then for all i ≥ 0, the OS-module Ri f∗ωX/S

is locally free and commutes with arbitrary base change on S.

Proof. By standard arguments on base change, it is enough to show that Ri f∗ωX/S

is locally free for i ≥ 0. This holds for i ≥ 2 by the theorem on formal functions
(as then Ri f∗ωX/S = 0), and for i = 0 since ωX/S is S-flat. For i = 1, it follows
immediately from Proposition 3.3. �

For a relative curve f : X → S, we now wish to apply the preceding con-
siderations to define a natural enhancement Pic\X/S of the relative Picard functor
classifying invertible sheaves with the additional data of a “regular connection”.

Let T be any S-scheme. Since both the sheaf of relative differential 1-forms and
the relative dualizing sheaf are compatible with base change, via pullback along
T → S we obtain from (3-3) a natural morphism �1

XT /T → ωXT /T , and hence an
OT -linear derivation

dT : OT // ωXT /T .

Fix a line bundle L on XT . Recall that a connection on L over T is an OT -linear
homomorphism ∇ : L→L⊗OT �

1
XT /T satisfying the usual Leibnitz rule. When X

is not S-smooth, this notion is not generally well behaved, and it is often desirable
to allow connections to have certain types of poles along the singularities of X .
For our purposes, the right notion of a connection is:

Definition 3.5. A regular connection on L over T is an OT -linear homomorphism

∇ : L // L⊗OXT
ωXT /T
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satisfying the Leibnitz rule: ∇(hη)= η⊗ dT (h)+ h∇η for any sections h of OXT

and η of L. A morphism of line bundles with regular connection over T is an OXT -
linear morphism of the underlying line bundles that is compatible with the given
connections.

Remark 3.6. Observe that any connection ∇ :L→L⊗�1
XT /T on L over T gives

rise to a regular connection on L over T via composition with the map induced by
�1

XT /T → ωXT /T .

If L and L′ are two line bundles on XT equipped with regular connections ∇
and ∇ ′ over T, the tensor product L⊗OXT

L′ is naturally equipped with the tensor
product regular connection ∇ ⊗∇ ′ induced by decreeing

(∇ ⊗∇ ′)(η⊗ η′) := η⊗∇ ′(η′)+ η′⊗∇(η),

for any sections η of L and η′ of L′. Observe that with respect to this operation, the
pair (OXT , dT ) serves as an identity element. Thus, the set of isomorphism classes
of line bundles on XT with a regular connection over T has a natural abelian group
structure which is obviously compatible with our definition of a morphism of line
bundles with connection. Furthermore, if T ′→ T is any morphism of S-schemes,
then since the formation of ωX/S is compatible with base change, any line bundle
on XT with regular connection over T pulls back to a line bundle on XT ′ with
regular connection over T ′.

Definition 3.7. Denote by P\X/S the contravariant functor from the category of S-
schemes to the category of abelian groups given on an S-scheme T by

P\X/S(T ) :=
{Isomorphism classes of pairs (L,∇) consisting of a line bundle

L on XT equipped with a regular connection ∇ over T

}
,

and write Pic\X/S for the fppf sheaf associated to P\X/S .

As is customary, we will denote by PX/S the contravariant functor on the cat-
egory of S-schemes which associates to an S-scheme T the set of isomorphism
classes of line bundles on XT , and by PicX/S the fppf sheaf on the category of
S-schemes associated to PX/S . For any S-scheme T , there is an obvious homomor-
phism of abelian groups P\X/S(T )→ PX/S(T ) given by “forgetting the connection”,
and hence a map of fppf abelian sheaves

Pic\X/S
// PicX/S . (3-11)

We wish to define a certain subfunctor of Pic\X/S which will play the role of “iden-
tity component” and which will enjoy good representability properties. We adopt
the following definition:
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Definition 3.8. Let Pic\,0X/S be the fppf abelian sheaf on the category of S-schemes
given by

Pic\,0X/S := Pic\X/S ×PicX/S Pic0
X/S .

Here, Pic0
X/S denotes the identity component of the group functor PicX/S (whose

fibers are representable; see [Liu et al. 2004, page 459] and compare [Bosch et al.
1990, page 233]). Alternately, Pic0

X/S the open subfunctor of PicX/S classifying line
bundles of partial degree zero on each irreducible component of every geometric
fiber [Bosch et al. 1990, Section 9.2, Corollary 13].

Theorem 3.9. Let f : X→ S be a proper relative curve and suppose that the great-
est common divisor of the geometric multiplicities of the irreducible components
of the closed fiber Xk of X is 1. Then Pic\,0X/S is a smooth S-scheme and there is a
short exact sequence of smooth group schemes over S

0 // f∗ωX/S // Pic\,0X/S
// Pic0

X/S
// 0 . (3-12)

To prove Theorem 3.9, we will first construct (3-12) as an exact sequence of
fppf abelian sheaves. By work of Raynaud [1970, Theorem 8.2.1] (or [Bosch
et al. 1990, Section 9.4, Theorem 2]), the hypotheses on X imply that Pic0

X/S is
a separated S-group scheme which is smooth by [Bosch et al. 1990, Section 8.4,
Proposition 2]. On the other hand, our hypotheses ensure that X is cohomologically
flat in dimension zero, whence f∗ωX/S is a vector group (in particular, it is smooth
and separated) by Corollary 3.4. A straightforward descent argument will complete
the proof.

We will begin by constructing the exact sequence (3-12). Fix an S-scheme T and
consider the natural map (3-11). The kernel of this map consists of all isomorphism
classes represented by pairs of the form (OXT ,∇), where ∇ is a regular connec-
tion on OXT over T . By the Leibnitz rule, ∇ is determined up to isomorphism
by the value ∇(1) ∈ 0(XT , ωXT /T ). Since two pairs (OXT ,∇) and (OXT ,∇

′) are
isomorphic precisely when there is a unit u ∈ 0(XT ,O×XT

) satisfying

∇(1)=∇ ′(1)+ u−1
· dT u

we see that the kernel of (3-11) is naturally identified with H 0(XT , ωXT /T )modulo
the image of the map

dT log : H 0(XT ,O×XT
) // H 0(XT , ωXT /T ) (3-13)

that sends a global section u of OXT to u−1
· dT u. Since pushforward by the base

change fT ∗ of f is left exact, we know that fT ∗O
×

XT
is a subsheaf of fT ∗OXT . By
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[Raynaud 1970, Théorème 7.2.1], the hypotheses on X ensure that f is cohomo-
logically flat, so fT ∗OXT ' OT . Since dT annihilates 0(T,OT ), we conclude that
the map (3-13) is zero.

We thus arrive at a short exact sequence of abelian groups

0 // H 0(XT , ωXT /T ) // P\X/S(T ) // PX/S(T ) (3-14)

that is easily seen to be functorial in T . In order to construct the exact sequence
of fppf abelian sheaves (3-12), we need to extend (3-14). To do this, we use Čech
theory to interpret (3-14) as part of a long exact sequence of cohomology groups.

Consider the two-term complex (in degrees 0 and 1) dT log : O×XT
→ ωXT /T

given by sending a section u of O×XT
to u−1

· dT u; we will denote this complex by
ω×,•XT /T . The evident short exact sequence of complexes

0 // ωXT /T [−1] // ω×,•XT /T
// O×XT

// 0

yields (since dT log : H 0(XT ,O×XT
) → H 0(XT , ωXT /T ) is the zero map) a long

exact sequence in hypercohomology that is clearly functorial in T :

0 // H 0(XT , ωXT /T ) // H1(XT , ω
×,•
XT /T )

// H 1(XT ,O×XT
)

dT log// H 1(XT , ωXT /T ). (3-15)

Lemma 3.10. For affine T , the exact sequence (3-14) is identified with the first
three terms of (3-15) in a manner that is functorial in T .

Proof. By [EGA III 1961, Section 12.4, pp. 406–407], there is a natural identifica-
tion of derived-functor (hyper)cohomology with Čech (hyper)cohomology which
is δ-functorial in degrees 0 and 1. We thus have a natural identification of (3-15)
with the corresponding exact sequence of Čech (hyper)cohomology groups, so it
suffices to interpret (3-14) Čech-theoretically in a manner that is natural in T .

For (L,∇) representing a class in P\X/S(T ), let {Ui } be a Zariski open cover of
XT that trivializes L, and denote by fi j ∈0(Ui ∩U j ,O×XT

) the transition functions.
Because of the Leibnitz rule, ∇

∣∣
Ui

is determined by a unique “connection form”
ωi ∈ 0(Ui , ωXT /T ), and the relation

ωi −ω j = f −1
i j · dT fi j

holds on Ui ∩U j . We thus obtain a Čech 1-hypercocycle for the complex ω×,•XT /T :

({ fi j }, {ωi }) ∈ C1({Ui }, ω
×,•
XT /T ) := C1({Ui ∩U j },O×XT

)⊕C0({Ui }, ωXT /T ).
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It is straightforward to check that any two such trivializations over open covers {Ui }

and {V j } yield hyper 1-cocycles which differ by a hyper coboundary when viewed
as hyper 1-cocycles for the common refining open cover {Ui∩V j }, and likewise that
two different representatives of the same isomorphism class in P\X/S(T ) yield hyper
1-cocycles that differ by a hyper-coboundary (after passing to a common refining
cover of the associated cocycles). We therefore obtain a well defined Čech hyper-
cohomology class. This procedure is easily reversed, and so we have a bijection

P\X/S(T )' Ȟ1(XT , ω
×,•
XT /T ).

To check that this is in fact a homomorphism of abelian groups that is functorial
in T is straightforward (albeit tedious).

We identify PX/S(T ) with Ȟ 1(XT ,O×XT
) in the usual way, by sending a class

represented by L to the 1-cocycle { fi j } given by the transition functions associated
to a trivializing open cover {Ui } and choice of trivializations of L

∣∣
Ui

. Similarly,
we use the natural isomorphism of H 0(XT , ωXT /T ) with Ȟ 0(XT , ωXT /T ), and we
thus obtain a functorial diagram of homomorphisms of abelian groups

0 // H 0(XT , ωXT /T ) //

'

��

P\X/S(T ) //

'

��

PX/S(T )

'

��

0 // Ȟ 0(XT , ωXT /T ) // Ȟ1(XT , ω
×,•
XT /T )

// Ȟ 1(XT ,O×XT
)

That this diagram commutes is easily verified by appealing to the explicit descrip-
tions of the maps involved. �

By Raynaud’s critère de platitude cohomologique [Raynaud 1970, Théorème
7.2.1], our hypotheses X ensure that f is cohomologically flat in dimension zero.
Thus, due to Corollary 3.4 and the fact that the formation of ωX/S commutes with
any base change on S, for each i ≥ 0 the fppf sheaf associated to functor on S-
schemes

T  H i (XT , ωXT /T )

is represented by the vector group Ri f∗ωX/S . By Lemma 3.10, we therefore have
an exact sequence of fppf sheaves of abelian groups on the category of S-schemes
whose first and last (nonzero) terms are smooth affine S-groups:

0 // f∗ωX/S // Pic\X/S
// PicX/S // R1 f∗ωX/S. (3-16)

With (3-16) at hand, we can now prove Theorem 3.9.

Proof of Theorem 3.9. Consider the identity component Pic0
X/S and the composi-

tion of its inclusion into PicX/S with the map of fppf sheaves PicX/S→ R1 f∗ωX/S .
We claim that this composite is the zero map. Indeed, by [Raynaud 1970, Exemples



132 Bryden Cais

6.1.6 and Théorème 8.2.1] (or [Bosch et al. 1990, Section 9.4, Theorem 2]) and
[Bosch et al. 1990, Section 8.4, Proposition 2], our hypotheses on X ensure that
Pic0

X/S is a smooth and separated S-scheme, so the composite map

Pic0
X/S

// R1 f∗ωX/S (3-17)

is a map of S-group schemes. Since the generic fiber of Pic0
X/S is an abelian variety

and R1 f∗ωX/S is affine over S, the closed kernel of (3-17) contains the generic fiber,
and hence (3-17) is the zero map. Thus, the inclusion Pic0

X/S → PicX/S factors
through the image of (3-11). By pullback, we obtain a short exact sequence (3-12)
of fppf abelian sheaves on the category of S-schemes. As we have observed, the
leftmost term in (3-12) is a vector group (in particular it is a smooth and affine
S-group), and the rightmost term is a smooth and separated S-group scheme. It
follows from this by fppf descent, as in the proof of Proposition 2.6, that Pic\,0X/S is
a smooth and separated S-group scheme, and that we have a short exact sequence
(3-12) of smooth and separated group schemes over S. �

4. Proof of the main theorem

In this section, we prove Theorem 1.2, following the outline sketched in the intro-
duction (in particular, we will keep our notation from that section). Throughout
this section, we fix a proper relative curve f : X → S over S = Spec R which we
suppose satisfies the hypotheses of Theorem 1.2. Note that these hypotheses ensure
that Grothendieck’s pairing on component groups for JK is perfect, by Proposition
2.8. In particular, there is a natural short exact sequence of smooth S-groups:

0 // ωJ // ExtrigS(J,Gm) // Ĵ 0 // 0 .

We begin our proof of Theorem 1.2 by constructing a canonical map of short
exact sequences of smooth S-group schemes

0 // ωJ

��

// ExtrigS(J,Gm) //

��

Ĵ 0 //

��

0

0 // f∗ωX/S // Pic\,0X/S
// Pic0

X/S
// 0

(4-1)

which we do in three steps.

Step 1. We initially suppose there exists a rational point x ∈ XK (K ) and will later
explain how to reduce the general case to this one. Associated to x is the usual
Albanese mapping jx,K : XK → JK given by the functorial recipe

y 7→ O(y)⊗O(x)−1.
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Letting i : X sm ↪→ X denote the S-smooth locus of f : X→ S in X , we denote by
jx : X sm

→ J the morphism obtained from jx,K by the Néron mapping property
of J . By abuse of notation, we will also write jx for any base change of jx . For
each smooth and affine S-scheme T , we will show that “pullback along jx” yields
a commutative diagram of exact sequences of abelian groups

0 // 0(T, ωJT )
//

��

ExtrigT (JT ,Gm) //

��

ExtT (JT ,Gm) //

��

0

0 // 0(XT , ωXT /T ) // P\X/S(T ) // PX/S(T )

(4-2)

that is functorial in T . To do this, we will need to apply the following lemma with
U = X sm; that this choice of U satisfies the hypotheses of the lemma crucially uses
our hypothesis that the closed fiber of X is generically smooth.

Lemma 4.1. Let U be any open subscheme of X whose complement in X consists
of points of codimension at least 2. For each smooth S-scheme T , pushforward
along iT : UT → XT yields a natural isomorphism of short exact sequences of
abelian groups

0 // 0(UT , �
1
UT /T )

//

'

��

P\U/S(T ) //

'

��

PU/S(T )

'

��
0 // 0(XT , ωXT /T ) // P\X/S(T ) // PX/S(T )

.

Proof. To minimize notation, we will simply write i for iT . Since the dualizing
sheaf is compatible with étale localization, it suffices to show that for any pair
(L,∇) consisting of a line bundle L on XT with regular connection ∇ over T , the
canonical commutative diagram

L

∇

��

// i∗i∗L

i∗i∗(∇)
��

L⊗ωXT /T // i∗i∗L⊗ i∗i∗ωXT /T

(4-3)

has horizontal arrows that are isomorphisms. By hypothesis, X is normal and
the complement of U in X consists of points of codimension at least two. Since
T → S is smooth, the base change XT is also normal and the complement of UT

in XT has codimension at least 2 (see part (ii) of the corollary to Theorem 23.9
and Theorem 15.1 in [Matsumura 1989]). As L is locally free, it follows that the
top horizontal map of (4-3) is an isomorphism. By Lemma 3.2 the canonical map
ωX/S → i∗i∗ωX/S is an isomorphism; since this map and the sheaves in question
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are compatible with base change, we conclude that the bottom horizontal arrow in
(4-3) is also an isomorphism. �

Remark 4.2. Note that Lemma 4.1 is generally false if the complement of U in X
has codimension strictly less than 2.

We deduce from Lemma 4.1 applied to U := X sm that it suffices to construct (4-2)
with X replaced by U in the bottom row. Note that since UT is T -smooth, the
notions of regular connection and connection coincide (see Proposition 3.1). Thus,
we wish to associate to any element of Extrig(JT ,Gm) an invertible sheaf on UT

with connection over T in a manner that is Zariski-local on (and functorial in) T ,
and so globalizes from the case of affine T . To do this, we proceed as follows.

Fix a choice τ of generator for ωGm and (functorially) identify ExtrigT (JT ,Gm)

with Eτ (JT )(T ) via Lemma 2.1. Let (E, η) be a representative of a class in
Eτ (JT )(T ). Viewing E as a Gm-torsor over JT , we choose a Zariski open cover
{Vi } of JT and local sections si : Vi → E to the projection E→ JT that trivialize
E over Vi . Set ωi := s∗i η ∈ 0(Vi , �

1
JT /T ) and let L be the invertible sheaf on

JT corresponding to the Gm-torsor E . There are two canonical ways to associate
transition functions to L and the sections si depending on whether we consider the
section si−s j : Vi∩V j→Gm or its inverse s j−si . However, since any two choices
of τ differ by multiplication by ±1, there is a unique choice fi j : Vi ∩ V j → Gm

with the property that f ∗i jτ = f −1
i j d fi j (interpreting fi j as a section of Gm over

Vi ∩ V j ), and we consistently make this choice of transition function.
Define

∇i : L
∣∣
Vi

// L
∣∣
Vi
⊗OVi

�1
Vi/T

by ∇i (tsi ) := tsi ⊗ωi + si ⊗dt for any section t of OVi . Using the definition of ωi

and the fact that η pulls back to τ on Gm , it is straightforward to check that

ωi −ω j = f ∗i jτ = f −1
i j d fi j

(by our choice of fi j ) in 0(Vi ∩V j , �
1
JT /T ) and hence that the ∇i uniquely glue to

give a connection∇ on L over T . By passing to a common refining open cover, one
checks that any other choice of trivialization (V ′i ′, s ′i ′) yields the same connection on
L, so the pair (L,∇) is independent of our choices of cover {Vi } and sections {si }.

By pullback along jx : UT → JT , we thus obtain a line bundle on UT with
a connection. If (E ′, η′) is another choice of representative for the same class in
Eτ (JT )(T ) then by definition there is an isomorphism of extensions ϕ :E→E ′ with
the property that ϕ∗η′= η. One easily checks that ϕ induces an isomorphism of the
invertible sheaves on JT with connection corresponding to (E, η) and to (E ′, η′),
and hence that we have a well defined map of sets Eτ (JT )(T )→ P\U/S(T ) which
is readily seen to be functorial in T . That this map is in fact a homomorphism of
abelian groups follows easily from the definition using the description of the group
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law on Eτ (JT )(T ) as in Section 2. By Lemma 2.1, we thus obtain a homomorphism
of abelian groups

ExtrigT (JT ,Gm) // P\U/S(T ) (4-4)

that is functorial in T . It is straightforward to check that this map is moreover
independent of our initial choice of τ (but may a priori depend on our choice of
rational point x) and so provides the desired functorial map.

We similarly define ExtT (JT ,Gm)→ PU/S(T ) by associating to an extension E
of JT by Gm the pull back along jx :UT → JT of the line bundle L on JT obtained
by viewing E as a Gm-torsor over JT . This is readily seen to be a homomorphism
of abelian groups (using Baer sum on ExtT (JT ,Gm)) and is obviously functorial
in T .

Finally, we define 0(T, ωJT ) → 0(UT , �
1
UT /T ) as follows. By [Bosch et al.

1990, Section 4.1, Proposition 1], any global section ω0 of ωJT = e∗T�
1
JT /T can be

uniquely propagated to an invariant differential form ω on JT over T satisfying
e∗Tω=ω0. Pulling ω back along jx :UT → JT , we obtain a section of �1

UT /T over
UT . This association is clearly a homomorphism and functorial in T .

We thus obtain (via Lemma 4.1) a diagram (4-2) with all maps homomorphisms
of abelian groups, functorially in smooth affine S-schemes T . That this diagram
commutes follows immediately from the explicit definition of all the maps involved
(morally, each vertical map is simply “pullback by jx ”).

Step 2. Passing from (4-2) to the corresponding diagram of associated fppf sheaves
and recalling the construction of the exact sequence of fppf sheaves (3-16) in Sec-
tion 3, we obtain a commutative diagram of fppf sheaves of abelian groups

0 // ωJ //

��

ExtrigS(J,Gm) //

��

ExtS(J,Gm) //

��

0

0 // f∗ωX/S // Pic\X/S
// PicX/S

From Proposition 2.8, we thus deduce the following commutative diagram of fppf
abelian sheaves on smooth S-schemes with each term in the top row a smooth
S-group:

0 // ωJ //

��

ExtrigS(J,Gm) //

��

Ĵ 0 //

��

0

0 // f∗ωX/S // Pic\X/S
// PicX/S

Since the map Ĵ 0
→ PicX/S is homomorphism of group functors (on smooth S-

schemes) and Ĵ 0 has connected fibers, for topological reasons this map necessarily
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factors through the open subfunctor Pic0
X/S (thinking of Pic0

X/S as the union of all
identity components of the fibers of PicX/S [EGA IV3 1966, Corollaire 15.6.5,
p. 238] and arguing fiber-by-fiber). By the definition of Pic\,0X/S (Definition 3.8) as
a fiber product, we thus have a commutative diagram of fppf abelian sheaves on
smooth S-schemes

0 // ωJ //

��

ExtrigS(J,Gm) //

��

Ĵ 0 //

��

0

0 // f∗ωX/S // Pic\,0X/S
// Pic0

X/S
// 0

(4-5)

Step 3. By Proposition 2.6 and Theorem 3.9, both rows of (4-5) are short exact
sequences of smooth S-group schemes, and we claim that the commutative diagram
(4-5) of fppf sheaves on smooth S-schemes can be enhanced to a corresponding
commutative diagram of maps between smooth group schemes over S. Indeed,
this follows from Yoneda’s lemma, which ensures that the natural “restriction to
the smooth site” map

HomS(F,G)→ HomSsm(F,G)

is bijective for any fppf abelian sheaves F, G on S-schemes with F represented by
a smooth S-group scheme.

We have therefore constructed (4-1) using our initial choice of rational point
x ∈ XK (K ). If x ′ is any other choice of rational point, we claim that the resulting
maps (4-1) obtained from x and x ′ coincide. Since jx,K , jx ′,K : XK → JK differ
by a translation on JK , it is enough to show that for any translation τ : JK → JK ,
the induced map

0 // ωJ //

ϕ1

��

ExtrigS(J,Gm) //

ϕ2

��

Ĵ 0 //

ϕ3

��

0

0 // ωJ // ExtrigS(J,Gm) // Ĵ 0 // 0

(4-6)

(using the Néron mapping property) is the identity map. Since each term in the
bottom row is separated and each term in the top row is flat, whether or not
(4-6) coincides with the identity map may be checked on generic fibers. Now
τ ∗ : ωJK → ωJK is the identity map as ωJK is identified with the sheaf of (trans-
lation) invariant differentials [Bosch et al. 1990, Section 4.2 Proposition 1]. That
τ ∗ : ĴK → ĴK is the identity is well known, and follows from the fact that the
line-bundles classified by ĴK := Pic0

JK /K are translation invariant (or equivalently
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that the classes in ExtK (JK ,Gm) are primitive).5 Thus ϕ1=ϕ3= id so on K-fibers,
ϕ3− id uniquely factors through a map ĴK → ωJK which takes the identity to the
identity. As any map from an abelian variety to a vector group is constant, we
conclude that ϕ3 − id is identically zero on K-fibers, and hence that ϕ3 = id as
well. Thus, the map (4-1) which we have constructed is independent of the choice
of rational point x ∈ XK (K ).

In the general case when XK (K ) may be empty, we proceed as follows. Denote
by Y any one of the three schemes occurring in the top row of (4-1) and by Z the
corresponding scheme in the bottom row. We first claim that we have a canonical
map YK→ Z K . Indeed, XK has a K ′-rational point for some finite Galois extension
K ′ of K , and we may use this point to define a K ′-map YK ′ → Z K ′ as we have
explained. Since this map is independent of the choice of K ′-rational point by what
we have said above, via Galois descent we have a canonical K -map ϕK :YK→ Z K

as claimed.
We now appeal to the following general lemma.

Lemma 4.3. Fix an integral scheme T with generic point η and let Y → T and
Z → T be any flat T -schemes, with Z separated over T . Suppose given a map
ϕη : Yη→ Zη. Then there is at most one extension of ϕη to a T -map ϕ : Y → Z ,
and ϕ exists if and only if the schematic closure in Y ×T Z of the graph of ϕη maps
isomorphically onto Y by the first projection. In particular, ϕ exists if and only if
there is an fpqc morphism T ′→ T and a map ϕ′ : YT ′→ ZT ′ with ϕ′η′ = ϕη′ where
η′ = T ′×T η.

Proof. The proof of Lemma 4.3 proceeds via standard arguments with schematic
closures of graphs; due to lack of a reference, we sketch how this goes. The unique-
ness of an extension is clear, as T is integral, Z is separated over T , and Y is T -flat.
For existence, we proceed as follows. Let 0 ⊆ Y ×T Z be the schematic closure
in Y ×T Z of the graph 0ϕη ⊆ Yη ×η Zη of ϕη, and note that 0η = 0ϕη as Z is
T -separated. Now if the first projection 0→ Y is an isomorphism then it is clear
that ϕη extends to a T -morphism. Conversely, given ϕ : Y → Z extending ϕη
and denoting by 0ϕ the graph of ϕ, we claim that necessarily 0 = 0ϕ . Indeed,

5More precisely, for any abelian variety A over K we have a homomorphism of group functors

φ : PicA/K →Hom(A,Pic0
A/K )

given functorially on K-schemes T by sending a line bundle L on AT to the map x 7→ τ∗x L ⊗

L−1 with τx translation by a T -point x of AT . Since A and Pic0
A/K are projective, Grothendieck’s

theory of Hom-schemes ensures that Hom(A,Pic0
A/K ) is a finite-type K-scheme which we claim is

étale. Working over K , our claim follows from the fact that there are no nonzero liftings to K [ε]
of the zero map A→ Pic0

A/K (due to [Mumford et al. 1994, Theorem 6.1]), so the tangent space of
Hom(A,Pic0

A/K ) at the origin is zero. Again passing to K , we conclude that the group map φ maps
connected components of PicA/K to individual points, so in particular restricts to the zero map on
the connected component of the identity Pic0

X/K .
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the canonical closed immersion 0→ Y ×T Z factors through a closed immersion
0 → 0ϕ as 0ϕ is closed in Y ×T Z (due to T -separatedness of Z ) and contains
0ϕη . Since the closed immersion 0 → 0ϕ is an isomorphism over η (using that
0η ' 0ϕη ) it must be an isomorphism, since 0ϕη is dense in 0ϕ as 0ϕ is T -flat and
T is integral. We conclude that 0 = 0ϕ maps isomorphically onto Y via the first
projection. Finally, whether or not the first projection 0→ Y is an isomorphism is
insensitive to fpqc base change; since the formation of 0 commutes with such base
change (as η→ T is quasicompact and separated), we deduce the last statement
of the lemma. �

Applying the lemma with T = S=Spec(R), Y , Z as above, and T ′=Spec(Rsh)

for Rsh a strict henselization of R, we see that it remains to construct a T ′-morphism
YT ′ → ZT ′ recovering the base change of ϕK to K sh

:= Frac(Rsh) on generic
fibers. Now X has generically smooth closed fiber, so XK has a K sh-point. As
our hypotheses on X are unaltered by base change along local-étale extensions of
discrete valuation rings (such as R→ Rsh) and the formation of the top and bottom
rows of (4-1) commute with such base change we may use this K sh-point as in the
construction of (4-1) to define the desired T ′-map YT ′ → ZT ′ . We conclude that
ϕK uniquely extends to an S-map, and thus we obtain (4-1) over S, as desired.

Now that we have constructed the canonical map of short exact sequences of
smooth S-groups (4-1), we can show that it is an isomorphism. We reiterate here
that only the construction of this map uses the hypothesis that the closed fiber of X
is generically smooth; as we will see below, the proof that (4-1) is an isomorphism
requires only the weaker hypotheses of Raynaud’s Theorem 1.1.

Proof of Theorem 1.2. By passing to a finite étale extension if necessary, we may
assume that XK (K ) is nonempty, and we select x ∈ XK (K ) and use it to define
(4-1). Note that since X is normal with generically smooth closed fiber, X satisfies
the hypotheses of Theorem 1.1.

Consider the composite mapping

Pic0
X/S

// J 0 ' // Ĵ 0, (4-7)

where the first map is deduced via the Néron mapping property from the canonical
identification JK = Pic0

XK /K and the second map is similarly obtained from the
canonical principal polarization JK→ ĴK induced by the2-divisor [Milne 1986b,
Section 6]. We claim that the composite Ĵ 0

→ Ĵ 0 of (4-7) with the right vertical
map of (4-1) coincides with negation on Ĵ 0. Since Ĵ 0 is flat and separated, it
suffices to check this claim on generic fibers, so we wish to show that the map
Pic0( jx,K ) : ĴK → JK is the negative of the inverse of the canonical principal
polarization JK → ĴK . This is the content of [Milne 1986b, Lemma 6.9]. It
follows from Theorem 1.1 that the right vertical map of (4-1) is an isomorphism
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if and only if X has rational singularities; in particular, this settles the “only if”
direction of Theorem 1.2.

We henceforth suppose that X has rational singularities and we wish to show
that (4-1) is an isomorphism of exact sequences of smooth group schemes over S.
By Theorem 1.1 and our discussion, we know that the right vertical map of (4-1) is
an isomorphism, and we will “bootstrap” Raynaud’s theorem using duality; more
precisely, we will show that the left vertical map in (4-1) is dual to the map on
Lie algebras obtained from (1-2) and must therefore be an isomorphism as well.
Indeed, consider the dual of the map on Lie algebras obtained from (1-2):

Lie(J 0)∨
' // Lie(Pic0

X/S)
∨ .

For any commutative group functor G over S with representable fibers, the canon-
ical inclusion G0 ↪→ G induces an isomorphism on Lie algebras [Liu et al. 2004,
Proposition 1.1(d)], so we obtain a natural isomorphism of OS-modules Lie(J )∨'
Lie(PicX/S)

∨. The canonical identification R1 f∗OX ' Lie(PicX/S) ([Bosch et al.
1990, Section 8.4, Theorem 1] or [Liu et al. 2004, Proposition 1.3(b)]) then gives
a natural isomorphism

Lie(J )∨ ' // (R1 f∗OX )
∨ . (4-8)

Using the canonical duality ωJ 'Lie(J )∨ (see [SGA3-1 1970, II, Section 4.11] or
[Liu et al. 2004, Proposition 1.1(b)]) and Grothendieck duality (Proposition 3.3)
yields a natural isomorphism of OS-modules

ωJ
' // Lie(J )∨ '

(4-8)
// (R1 f∗OX )

∨ f∗ωX/S
'

(3-7)
oo (4-9)

and hence an isomorphism of the corresponding vector groups over S. We claim
that the left vertical map in (4-1) coincides with the negative of (4-9). Since the
source of both maps is flat and the target is separated over S, it suffices to check
such agreement on generic fibers.

To do this, we consider the following diagram, in which we simply write j for
jx,K and ϕ : JK → ĴK for the canonical principal polarization:

0(Spec K , ωJK )

can '

��

Pic0( j)∗
// 0(Spec K , ω ĴK

)

can '

��

ev
' // Lie( ĴK )

∨

θ∨JK '

��

Lie(−ϕ)∨
' // Lie(JK )

∨

θ∨XK '

��
H 0(JK , �

1
JK /K ) H 0( ĴK , �

1
ĴK /K

)
−ϕ∗

'oo
ψ0

JK

' // H 1(JK ,OJK ) H 1(XK ,OXK )
∨

H1( j)∨
oo

H 0(XK , �
1
XK
)

(3-7)

'

<<

..j∗

(4-10)
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Here, ψ0
JK

is the usual duality (defined using the Künneth formula and the first
Chern class of the Poincaré bundle [Berthelot et al. 1982, 5.1.3 and Lemme 5.1.4];
the map ev is the canonical evaluation pairing, and can is the canonical map ob-
tained by extending sections of ωJK to invariant differential forms on JK [Bosch
et al. 1990, Section 4.2, Propositions 1 and 2]. We claim that each of the three small
squares in (4-10) commute, and that the bottom “sector” anticommutes. For the first
square, this follows from the fact that the composite Pic0( j)◦ (−ϕ) : J→ J is the
identity map [Milne 1986b, Lemma 6.9], together with the fact that the canonical
map can is functorial. The same reasoning shows that the third square commutes,
using the functoriality of the identification θK [Liu et al. 2004, Proposition 1.3(c)].
The commutativity of the middle square follows immediately from 5.1.1 and the
proof of Théorème 5.1.6 in [Berthelot et al. 1982]. That the bottom sector region
anticommutes is the content of [Coleman 1998, Theorem 5.1]. Note, as a particular
consequence of these commutativity statements, that every map occurring in (4-10)
is an isomorphism.

Using the functoriality in JK of the canonical duality ωJK 'Lie(JK ) [Liu et al.
2004, Proposition 1.1(b)] and the agreement of −ϕ−1 with Pic0( j) : ĴK → J , as
above, we conclude that the composite isomorphism 0(Spec K , ωJK )→Lie(JK )

∨

along the top row of (4-10) is the canonical evaluation duality for JK . Thus, on
generic fibers, the map (4-9) is none other than the map induced by the top, right,
and bottom-right edges in (4-10). But by definition, the left vertical map of (4-1)
coincides with the composite of the left and bottom-left edges of (4-10) on generic
fibers, and is thus the negative of (4-9), as claimed.

Now that we know that the left and right vertical maps in (4-1) are isomorphisms
when X has rational singularities, it follows that the same is true of all three vertical
maps, as desired. �

Remark 4.4. That (4-9) coincides with the left vertical map in (4-1) over generic
fibers is essentially Theorem B.4.1 of [Conrad 2000]. We have chosen here to
present a different proof because [Conrad 2000, Theorem B.4.1] rests upon know-
ing a priori that the natural pullback map �1

JK /K → j∗�1
XK /K is an isomorphism,

while we prefer to deduce this fact as a corollary of our main result.

5. Comparison of integral structures

In this section, we use Theorem 1.2 to prove a comparison result for integral struc-
tures in de Rham cohomology. As usual, we fix a discrete valuation ring R with
field of fractions K .

Let AK be an abelian variety over K . It is well known that the Lie algebra of the
universal extension E( Â K ) of the dual abelian variety Â K is naturally isomorphic
to the first de Rham cohomology of AK over K , compatibly with Hodge filtrations.
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Proposition 5.1. There is a canonical isomorphism of short exact sequences of
finite dimensional K -vector spaces

0 // Lie(ωAK )
//

'

��

Lie(E( Â K )) //

'

��

Lie( Â K ) //

'

��

0

0 // H 0(AK , �
1
AK /K )

// H 1
dR(AK /K ) // H 1(A,OA) // 0

Proof. See [Mazur and Messing 1974, I, Section 4]. �

Note that since ωAK is a vector group, we have a canonical identification of
Lie(ωAK ) with the global sections of ωAK . We deduce from Proposition 5.1 and
Proposition 2.3 the following corollary, which equips the de Rham cohomology of
AK with a canonical integral structure.

Corollary 5.2. Let A and Â be the Néron models over R of AK and Â K , respec-
tively, and let E( Â) be the canonical extension of Â (Definition 2.4). The sequence
of Lie algebras

0 // Lie(ωA) // Lie(E( Â)) // Lie( Â) // 0 (5-1)

associated to the canonical extension (2-6) of Â over R is a short exact sequence of
finite free R-modules that is contravariantly functorial in K-morphisms of abelian
varieties AK→ BK over K and recovers the 3-term Hodge filtration of H 1

dR(AK/K )
after extending scalars to K . That is, (5-1) provides a canonical integral structure
on the 3-term Hodge filtration of H 1

dR(AK /K ).

Proof. Each term in (2-6) is a smooth S-scheme; in particular the map

ExtrigS(A
0,Gm)→ Â

is smooth [SGA3-1 1970, Exposé VIB, Proposition 9.2 vii]. Thus, by [Liu et al.
2004, Proposition 1.1(c)], applying the left exact functor Lie to (2-6) yields a short
exact sequence of finite R-modules which are free by smoothness. Since any ho-
momorphism of Néron models A → B induces a map on identity components
A0
→ B0, it follows from the Néron mapping property and the functoriality of the

canonical extension (2-6) that (5-1) is contravariantly functorial in K-morphisms of
abelian varieties AK→ BK over K . Since the formation of Lie algebras commutes
with the scalar extension R→ K , we deduce from Proposition 5.1 and the fact that
K-fiber of (2-6) is the universal extension of Â K by a vector group (see Remarks
2.5) that (5-1) recovers the Hodge filtration of H 1

dR(AK /K ) after extending scalars
to K . �

Remark 5.3. Supposing that Grothendieck’s pairing (2-7) is right nondegenerate,
so ExtrigS(A,Gm) is a smooth and separated S-scheme by Proposition 2.6, the
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natural map of short exact sequences (2-10) induces an isomorphism on associated
exact sequences of Lie algebras by Lemma 2.10 and [Liu et al. 2004, Proposi-
tion 1.1(d)].

For the remainder of this section, we suppose that AK = JK is the Jacobian of
a smooth proper and geometrically connected curve XK over K . Recall that the
3-term Hodge filtration

0 // H 0(XK , �
1
XK /K )

// H 1
dR(XK /K ) // H 1(XK ,OXK )

// 0 (5-2)

is autodual with respect to the cup product pairing on H 1
dR(XK /K ) and is con-

travariantly and covariantly functorial in finite morphisms of smooth and proper
curves g : XK→ X ′K via pullback g∗ and pushforward g∗ of differentials. Attached
to any such morphism, we have associated homomorphisms of abelian varieties

Pic0(g) : J ′K → JK and Alb(g) : JK → J ′K

by Picard and Albanese functoriality (where J ′K is the Jacobian of X ′K ). The fol-
lowing proposition is well known, but we have been unable to find a proof in the
literature so we include one here for the convenience of the reader.

Proposition 5.4. There is a canonical isomorphism of short exact sequences of
K-vector spaces

0 // H 0(JK , �
1
JK /K )

//

'

��

H 1
dR(JK /K ) //

'

��

H 1(JK ,OJK )
//

'

��

0

0 // H 0(XK , �
1
XK /K )

// H 1
dR(XK /K ) // H 1(XK ,OXK )

// 0

(5-3)

This isomorphism respects the autodualities of the top and bottom rows. Further-
more, for any finite morphism g : XK → X ′K , the map (5-3) intertwines Alb(g)∗

with g∗ and Pic0(g)∗ with g∗.

Proof. We first suppose that X (K ) is nonempty and select x0 ∈ X (K ). Let
j : XK → JK be the associated Albanese morphism. By pullback along j , we
obtain a morphism on de Rham cohomology that yields a commutative diagram
(5-3). Clearly this map commutes with extension of K (using the same x0) and we
claim that it is independent of our choice x0. Each term in the Hodge filtration of
H 1

dR(JK /K ) is clearly (the global sections of) a vector group over K ; denoting any
one of them by V it suffices to show that the natural map JK → AutK (V ) given
by translations is the zero map. Since the target is affine of finite type over K and
the source is an abelian variety, this map factors through a section of the target and
must therefore be identically zero, as claimed. It follows from Galois descent that
we have a canonical map (5-3) even when X (K ) is empty.
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Let us denote by H(JK ) (respectively H(XK )) the 3-term exact sequence of
K -vector spaces given by the top (respectively bottom) row of (5-3). By passing
to an extension of K if need be, we may suppose that XK (K ) is nonempty and that
(5-3) is given by pullback along an Albanese morphism j : XK → JK associated
to some x0 ∈ XK (K ). To show that (5-3) is an isomorphism, we will exploit the
natural autodualities on H(JK ) and H(XK ). For this to be successful, it is essential
to know that these dualities are compatible.

Lemma 5.5. The canonical autodualities of the short exact sequences H(JK ) and
H(XK ) are compatible via j∗. That is, the following diagram commutes:

H(JK )

j∗

��

H(JK )
∨'oo

H(XK )
' // H(XK )

∨

( j∗)∨
OO

Proof. This is Theorem 5.1 of [Coleman 1998]. �

Continuing with the proof of Proposition 5.4, observe that the functoriality of
the canonical identification H 1(XK ,OXK ) ' Lie(Pic0

XK /K ) yields a commutative
diagram

H 1(JK ,OJK )
' //

j∗

��

Lie(Pic0
JK /K )

Lie(Pic0( j))
��

H 1(XK ,OXK )
' // Lie(Pic0

XK /K )

(see [Liu et al. 2004, Proposition 1.3(c)]). Due to [Milne 1986b, Lemma 6.9], the
map Pic0( j) : ĴK → JK is the negative of the inverse of the canonical principal
polarization JK → ĴK , so in particular it is an isomorphism. Thus, the map j∗ :
H 1(JK ,OJK )→H 1(XK ,OXK ) is an isomorphism. Taking K-linear duals and using
the autoduality of H(JK ) and H(XK ), it follows from Lemma 5.5 that the map
j∗ : H 0(JK , ωJK )→ H 0(XK , �

1
XK /K ) is also an isomorphism. We conclude that

all three vertical maps of (5-3) are isomorphisms, as desired.
It remains to check our claims concerning the functoriality of (5-3) in finite

morphisms of smooth proper and geometrically connected curves g : XK → X ′K .
Denote by J ′K the Jacobian of X ′K and by j ′ : X ′K→ J ′K the Albanese map attached
to g(x0). Albanese functoriality gives a commutative diagram

XK
g //

j
��

X ′K

j ′

��
JK Alb(g)

// J ′K

(5-4)
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from which we easily obtain the commutative diagram of short exact sequences

H(J ′K )
Alb(g)∗ //

j ′∗

��

H(JK )

j∗

��
H(X ′K ) g∗

// H(XK )

(5-5)

which shows that (5-3) intertwines the maps g∗ and Alb(g)∗. Dualizing (5-5) and
using Lemma 5.5 gives a commutative diagram

H(JK )

j∗

��

H(JK )
∨'oo (Alb(g)∗)∨// H(J ′K )

∨ ' // H(J ′K )

j ′∗

��
H(XK )

' // H(XK )
∨

( j∗)∨

OO

(g∗)∨
// H(X ′K )

∨

( j ′∗)∨

OO

H(X ′K )
'oo

(5-6)

By [Cais 2009, Theorem 5.11(3)], the maps g∗ and g∗ are adjoint with respect
to the cup-product pairing on H 1

dR(XK /K ), so the composite map on the bottom
row of (5-6) coincides with g∗. We claim that Alb(g)∗ and Pic0(g)∗ are adjoint
with respect to the pairing on H 1

dR(JK /K ), so the top row of (5-6) coincides with
Pic0(g)∗. By definition, the duality pairing on H 1

dR(JK /K ) is deduced from the
natural perfect pairing

H 1
dR(JK /K )× H 1

dR( ĴK /K ) // K (5-7)

(defined as in [Berthelot et al. 1982, Section 5]) by identifying the de Rham co-
homology of ĴK with that of JK via the principal polarization JK ' ĴK . Now if
u : J ′K → JK is any morphism with dual û : ĴK → Ĵ ′K , then the induced maps
u∗ and û∗ on de Rham cohomology are adjoint with respect to (5-7) by [Berthelot
et al. 1982, 5.1.3.3]. Applying this to u = Pic0(g), our claim that Alb(g)∗ and
Pic0(g)∗ are adjoint then follows from the assertion that the composite map

JK ϕ

' // ĴK

̂Pic0(g)// Ĵ ′K J ′K
'

ϕ′
oo

coincides with Alb(g), where ϕ and ϕ′ are the canonical principal polarizations.
But this follows by applying the functor Pic0 to the diagram (5-4) and using the
fact that Pic0( j) and Pic0( j ′) coincide with −ϕ−1 and −ϕ′−1, respectively, thanks
to [Milne 1986b, Lemma 6.9]. �

Fix a proper flat and normal model f : X → S of XK over S = Spec R, and
denote by ω•X/S the two-term OS-linear complex of OX -modules d : OX → ωX/S



Canonical extensions of Néron models of Jacobians 145

furnished by Proposition 3.1. We will say that X is an admissible model of XK if
X has rational singularities and f is cohomologically flat in dimension zero.

Define H 1(X/R) := H1(X, ω•X/S). When X is cohomologically flat, there is a
natural short exact sequence of finite free R-modules

0 // H 0(X, ωX/S) // H 1(X/R) // H 1(X,OX )
// 0 (5-8)

whose scalar extension to K is identified with the 3-term Hodge filtration exact se-
quence H(XK ). Moreover, (5-8) is self-dual with respect to the usual cup-product
autoduality of H(XK ); see Proposition 5.8 of [Cais 2009]. By Theorem 5.11 of the
same paper, when X is admissible, the integral structure provided by (5-8) is canon-
ical: this short exact sequence is independent of the choice of admissible model X
of XK and is both contravariantly and covariantly functorial via pullback and trace
in finite K-morphisms XK → X ′K of curves having admissible models over R.

Via Corollary 5.2 and the identification of Hodge filtrations (5-3), when X is
admissible we thus have two canonical integral structures on the de Rham coho-
mology of XK , and it is natural to ask how these R-lattices compare.

Corollary 5.6. With the notation and hypotheses of Theorem 1.2, when X has
rational singularities there is a canonical isomorphism of short exact sequences of
finite free R-modules

0 // Lie(ωJ ) //

'

��

Lie(E( Ĵ )) //

'

��

Lie( Ĵ ) //

'

��

0

0 // H 0(X, ωX/S) // H 1(X/R) // H 1(X,OX )
// 0

(5-9)

that recovers the identification (5-3) after extending scalars to K .

Remark 5.7. Let g : XK → X ′K be any finite map of smooth and geometrically
connected curves over K and suppose that XK and X ′K admit proper flat and normal
models over R which have rational singularities and generically smooth closed
fibers. (Such models are automatically admissible due to Raynaud’s critère de pla-
titude cohomologique [Raynaud 1970, Théorème 7.2.1]). By our discussion above,
g induces maps g∗ and g∗ on the canonical integral structure (5-8) via pullback and
trace, and induces maps Alb(g)∗ and Pic0(g)∗ on the canonical integral structure
(5-1) by Albanese and Picard functoriality via the Néron mapping property. The
R-isomorphism (5-9) necessarily intertwines Alb(g)∗ with g∗ and Pic0(g)∗ with
g∗ as such agreement of maps between free R-modules may be checked after the
flat scalar extension R→ K , where it follows from Proposition 5.4.

Question 5.8. As an interesting consequence of Corollary 5.6, the duality state-
ment of Proposition 5.4, and the fact that the integral structure (5-8) is autodual
with respect to cup-product pairing, we deduce that the autoduality of the Hodge
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filtration of H 1
dR(JK /K ) preserves the integral structure (5-1). It seems natural to

ask if this is true in greater generality, that is, if for any abelian variety AK over
K , the natural duality isomorphism

0 // H 1( Â K ,O ÂK
)∨ //

'

��

H 1
dR( Â K /K )∨ //

'

��

H 0( Â K , �
1
ÂK
) //

'

��

0

0 // H 0(AK , �
1
AK /K )

// H 1
dR(AK /K ) // H 1(A,OA) // 0

(see [Berthelot et al. 1982, Lemme 5.1.4 and Théorème 5.1.6]) identifies the cor-
responding canonical integral structures provided by (5-1). It is also natural to
wonder how such an identification might come about at the level of canonical
extensions and Néron models or more precisely if the definition of the duality for
the de Rham cohomology of an abelian scheme (or more generally a 1-motive)
in terms of its universal extension (see [Coleman 1991, page 636] for the case of
abelian schemes, [Bertapelle 2008] for 1-motives and [Deligne 1974, 10.2.7.2] for
abelian varieties over C) can be extended to the case of Néron models and their
canonical extensions.

Proof of Corollary 5.6. By Theorem 1.2, we have an isomorphism of short exact
sequences of smooth groups as in (1-3). Applying the functor Lie and using the
fact that for any group functor G over S with representable fibers, the inclusion
G0 ↪→ G of the identity component induces an isomorphism on Lie algebras [Liu
et al. 2004, Proposition 1.1 (d)], we deduce a canonical isomorphism of finite free
R-modules

0 // Lie(ωJ ) //

'

��

Lie(E( Ĵ )) //

'

��

Lie( Ĵ ) //

'

��

0

0 // Lie(ωX/S) // Lie(Pic\,0X/S)
// Lie(PicX/S) // 0

.

By Definition 3.8 we have the canonical identifications

Lie(Pic\,0X/S)= Lie(Pic\X/S ×PicX/S Pic0
X/S)

= Lie(Pic\X/S)×Lie(PicX/S) Lie(Pic0
X/S)= Lie(Pic\X/S),

so it suffices to identify the left exact sequence of Lie algebras attached to the exact
sequence of fppf abelian sheaves

0 // f∗ωX/S // Pic\X/S
// PicX/S, (5-10)

of (3-16) with the integral structure on H(XK ) provided by (5-8). As in Section 3,
let ω×,•XT /T be the two-term complex dT log : O×XT

→ ωXT /T defined by dT log(u)=
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u−1
· dT (u), and write R1 f∗ω×X/S and R1 f∗O×X , respectively, for the fppf sheaves

associated to the group functors on S-schemes

T  H1(XT , ω
×,•
XT /T ) and T  H 1(XT ,O×XT

).

By Lemma 3.10, the exact sequence (5-10) is naturally isomorphic to the exact
sequence of fppf abelian sheaves

0 // f∗ωX/S // R1 f∗ω
×,•
X/S

// R1 f∗O×X

obtained by sheafifying (3-15). Thus, the proof of Corollary 5.6 is completed by:

Lemma 5.9. There is a natural isomorphism of exact sequences of free R-modules

0 // H 0(X, ωX/S) //

'

��

H 1(X)

'

��

// H 1(X,OX ) //

'

��

0

0 // Lie( f∗ωX/S) // Lie(R1 f∗ω
×,•
X/S)

// Lie(R1 f∗O×X )

(5-11)

Proof. By construction, the exact sequence (5-8) results from the Hodge to de Rham
spectral sequence attached to the evident filtration of ω•X/S . Now the canonical
section Z→ Z[ε]/(ε2) to the quotient map ε 7→ 0 induces a canonically split exact
sequence of filtered two-term (vertical) complexes

0 // OX
h 7→1+εh //

d
��

O×X S[ε]

ε 7→0 //

d log
��

O×Xoo //

d log
��

1

0 // ωX/S ·ε
// ωX S[ε]/S[ε]

ε 7→0 // ωX/Soo // 0

so passing to cohomology yields the commutative diagram

0

��

0

��

0

��
0 // H 0(X, ωX/S) //

��

H 0(X S[ε], ωX S[ε]/S[ε]) //

��

H 0(X, ωX/S)

��

0 // H1(X, ω•X/S)
//

��

H1(X S[ε], ω
×,•
X S[ε]/S[ε])

//

��

H1(X, ω•X/S)

��
0 // H 1(X,OX ) // H 1(X S[ε],O×X S[ε]

) // H 1(X,O×X )

(5-12)

with exact rows and columns, where the zeroes in the left column result from the
splitting (that is, H1 is left exact on split short exact sequences). We conclude
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that we have an isomorphism of exact sequences of abelian groups as in (5-11). It
remains to show that this is in fact an R-linear isomorphism. Recall that for any
group functor G on S-schemes, the multiplication on Lie(G) by OS(S) is induced
by the functoriality of G from the map OS(S)→ EndS(S[ε]) sending s ∈ OS(S) to
the self-map us of S[ε] that is induced by ε 7→ s · ε. Thus, the fact that the map
(5-11) defined by (5-12) is a map of R-modules amounts to the assertion that for
any s ∈ OS(S) the diagram

0 // ω•X/S
//

·s
��

ω×,•X S[ε]/S[ε]
//

u∗s
��

ω×,•X/S
//

id
��

0

0 // ω•X/S
// ω×,•X S[ε]/S[ε]

// ω×,•X/S
// 0

(5-13)

of filtered complexes with exact rows commutes. This is easily checked. �
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