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We present three results on the period-index problem for genus-one curves over
global fields. Our first result implies that for every pair of positive integers (P, I )
such that I is divisible by P and divides P2, there exists a number field K and a
genus-one curve C/K with period P and index I . Second, let E/K be any elliptic
curve over a global field K , and let P > 1 be any integer indivisible by the char-
acteristic of K . We construct infinitely many genus-one curves C/K with period
P , index P2, and Jacobian E . Our third result, on the structure of Shafarevich–
Tate groups under field extension, follows as a corollary. Our main tools are
Lichtenbaum–Tate duality and the functorial properties of O’Neil’s period-index
obstruction map under change of period.

1. Introduction

1.1. Notation and conventions. Throughout the paper K shall denote a global
field — that is, a finite field extension of either Q or Fp(T )— and E shall denote
an elliptic curve defined over K .

Let P be a positive integer which is not divisible by the characteristic of K .
Define P∗ to be P if P is odd and 2P if P is even.

Let K denote a fixed separable closure of K , and let gK = Aut(K/K ) be the
absolute Galois group of K .

We abbreviate the Galois cohomology group H 1(gK , E(K )) to H 1(K , E) and
call it the Weil–Châtelet group of E over K . Recall that this is a torsion abelian
group.

Let Pic(C) be the Albanese/Picard variety of C , and Picd(C) the connected
component classifying degree d invertible sheaves on C , so that Pic0(C) is the
Jacobian. The letter η shall denote an element of H 1(K , E). Such classes η are in
canonical bijection with the set of equivalence classes of pairs (C, ι), where C/K

is a genus one curve, ι :Pic0(C)→ E is an isomorphism from the Jacobian of C to
E , and the equivalence is isomorphism over K . In other words, ι endows C with
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the structure of a principal homogeneous space (or torsor) under E . It follows that
C/K itself determines, and is determined by, an orbit of Aut(E) on H 1(K , E).

The period of η∈H 1(K , E) is its order in the group. In terms of the correspond-
ing torsor C , the period is the least positive degree of a K -rational divisor class
on C . The index of η is the gcd over all degrees [L : K ] of field extensions L/K
such that the restriction of η to H 1(L , E) is trivial. In terms of C , the index is the
least positive degree of a K -rational divisor. By Riemann–Roch, it is also the least
degree of an extension L/K such that C has an L-rational point. Since the period
and index are invariant under isomorphism over K , we will refer to the period and
index of the cohomology class η and that of the curve C interchangeably.

We denote by 6K the set of all places of K (including Archimedean places
in the number field case). For a place v of K , we denote the image of a class
η ∈ H 1(K , E) under the local restriction map H 1(K , E)→ H 1(Kv, E) by ηv. In
geometric terms, ηv is just the base extension of the curve (or rather, the principal
homogeneous space) C from K to Kv. By the support of a class we mean the finite
set of v ∈6K such that ηv 6= 0. The classes η with empty support form a subgroup
X(K , E), the Shafarevich–Tate group of E/K .

1.2. Statement of the main results. Recall that K is a global field, P is a positive
integer not divisible by the characteristic of K , and P∗ is P if P is odd, and 2P if
P is even.

Theorem 1. Let E/K be an elliptic curve. Suppose #E(K )[P∗] = (P∗)2. Then,
for any positive integer D | P , there are infinitely many classes η ∈ H 1(K , E) of
period P and index P · D. These classes can be chosen so as to be locally trivial
except possibly at two places of K .

Theorem 2. Let E/K be an elliptic curve and SK ⊂6K a finite set of places of K .
There exists an infinite sequence {ηi }

∞

i=0 of elements of H 1(K , E) such that

• η0 = 0;

• for all v ∈ SK and all i ∈ N, resv ηi = 0; and

• for all i, j ∈ N with i 6= j , ηi − η j has period P and index P2.

Theorem 3. Let E/K be an elliptic curve. For any positive integer r , there exists
a degree P field extension L/K such that X(L , E) contains at least r elements of
order P.

1.3. Discussion of the results. Let C be a genus-one curve over an arbitrary field
K . It is well known (see [Lang and Tate 1958, Proposition 5], for example), that
the period P and the index I of C satisfy the divisibilities

P | I | P2. (1)
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Conversely, Lang and Tate showed [1958, p. 678] that for any pair (P, I ) of positive
integers satisfying (1), there exists a genus-one curve C defined over the iterated
Laurent series field C((t1))((t2)) with period P and index I .

This raises the question of the possible values of P and I for genus-one curves
over a local or global field. Lichtenbaum [1968] showed that P = I for every
genus-one curve over a nondiscrete, locally compact field. 1

Suppose K is a field which admits at least one degree-P cyclic extension and
such that there exists an elliptic curve E/K with full P-torsion: #E[P](K ) = P2.
Then Lang and Tate showed that there exists a class η ∈ H 1(K , E) with period and
index both equal to P .

Let us assume henceforth that K is a global field. In this case, the argument of
Lang and Tate readily yields the fact that η may be taken to have support at most
one place of K .

Conversely, Cassels [1962, Theorem 1.3] showed that I = P for classes with
empty support. Moreover I = P for classes whose support has cardinality one,
as was first shown by Olson [1970, Theorem 15] and “rediscovered” by the first
author [Clark 2006b, Proposition 6].

The first examples of genus-one curves over a global field with I > P are due
to Cassels [1963], who found examples over K = Q with P = 2, I = 4. Cassels’
examples are closely related to the theory of explicit 2-descent. More recently, the
first author constructed, for any prime number p, classes η with P = p, I = p2

in the Weil–Châtelet group of any elliptic curve E/K over a number field with full
p-torsion [Clark 2005, Theorem 3]. The method crucially employs a period-index
obstruction map due to O’Neil [2002].

Our Theorem 1 may therefore be viewed as a generalization of [Clark 2005,
Theorem 3]. In particular, we now know that any pair (P, I ) satisfying (1) arises
as the period and index of a genus-one curve defined over some number field (de-
pending on P). Moreover, the fact that we can construct such classes which are
supported at two places is, in view of the aforementioned results of Cassels and
Olson, optimal, and answers a question raised by Çiperiani.

Having established Theorem 1, we naturally wish to understand the possible
values of period and index for genus-one curves defined over a fixed global field
K , or — better yet — inside the Weil–Châtelet group H 1(K , E) of a fixed elliptic
curve E/K .

Our Theorem 2 shows that for any elliptic curve E over a global field K and
any P > 1 indivisible by the characteristic of K , there exist infinitely many genus-
one curves with period P , index P2 and Jacobian E . Of course the statement

1More precisely, Lichtenbaum proved this under the assumption that P is not divisible by the
characteristic of K — the same assumption which is in force for us — but Milne [1972] later extended
Tate’s local duality theory to this case and accordingly removed this hypothesis.
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of Theorem 2 is significantly more complicated than this, and its significance is
probably hard to appreciate. However, we need this precise statement, especially
the “difference properties” of the sequence {ηi }, in the proof of Theorem 3.

In order to place Theorem 3 into context, let us again recall some prior results,
this time on the problem of constructing “large Shafarevich–Tate groups.” More
precisely, we fix a global field K , an integer P > 1 and a positive integer r , and the
goal is prove the existence of an elliptic curve E/K whose Shafarevich–Tate group
X(K , E) contains at least r elements of order P .

The first results here are due to Cassels [1964], who solved the aforementioned
problem for K = Q and P = 3. (This was also the first proof of the weaker fact
that X(Q, E) is unbounded as E ranges over all elliptic curves E/Q.) Cassels’
examples all have j = 0 and exploit the extra structure on such curves afforded
by the existence of an order 3 automorphism. The problem has also been solved
for P = 2 by Bölling [1975], and for P = 5 by Fisher [2001]. Donnelly [2003]
established the result for P = 7. Further, the case P = 13 is proved separately by
Donnelly (unpublished) and Matsuno [2007]. Among prime values of P , this is a
transitional case: the modular curve X0(P) has genus 0 precisely for these values
of P . There are as yet no such results for larger P .

There has also been work showing that, for a prime p, either the p-Selmer group
Selp(K , E) or X(K , E)[p] can be made arbitrarily large when one varies over all
elliptic curves E defined over number fields K whose degree [K : Q] is bounded
by a certain function of p. Notably, Kloosterman and Schaefer [2003] showed
that dimFp Selp(K , E) is unbounded as K ranges over all field extensions K/Q
of degree f1(p) = O(p). Kloosterman [2005] showed that dimFp X(K , E)[p] is
unbounded as K ranges over extensions of degree f2(p)= O(p4).

In [Clark 2005, Theorem 1], it was shown that if #E(K )[p] = p2 for a prime p,
then X(L , E)[p] is unbounded as L ranges over all degree p field extensions.
The argument can be applied to any elliptic curve defined over a global field (of
characteristic not divisible by p) at the cost of first trivializing the Galois action on
the p-torsion. It follows that for every E/K , X(L , E)[p] is unbounded as L ranges
over extensions of degree at most f3(p) = p(p2

− 1)(p2
− p) ≤ p5. Moreover,

upon restricting to elliptic curves with potential complex multiplication, one gets
the bound f4(p)≤ 2p3.

In contrast, our Theorem 3 extends the bound [L : K ] = P of [Clark 2005,
Theorem 1] to all elliptic curves and all integers P > 1. An interesting question
(which we are not able to answer) is whether Theorem 3 is in fact the optimal result
of its kind.

1.4. Organization of the paper. We assume some familiarity with the literature on
the period-index problem, especially [O’Neil 2002; Clark 2005]; nevertheless, we
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begin with a brief review of the period-index obstruction map, and then go on to
discuss some new ideas and techniques. The first key point is a clarification of the
relationship between O’Neil’s obstruction map 1 and the quantity I/P . Whereas
before it had been implicit in [O’Neil 2002] (and explicit in [Clark 2005]) that one
can use1 to determine whether or not I = P , here we present a simple characteriza-
tion of I/P in terms of the obstruction to a rational divisor class being represented
by a rational divisor. We also return to the point of the explicit computation of
O’Neil’s obstruction map in the case of full-level N structure for even N . These
matters are detailed in Section 2.

In Section 3 we give the proofs of Theorems 1, 2, and 3.

2. On the period-index obstruction map

In this section K is an arbitrary field, E/K is an elliptic curve, and P is a positive
integer not divisible by the characteristic of K . These hypotheses ensure that the
finite flat K -group scheme E[P] is étale, and so may be viewed as a gK -module.

2.1. Three aspects of the period-index obstruction map. The key technical tool
in the proofs of our results is the period-index obstruction map

1P : H 1(K , E[P])→ Br(K ).

It can be defined in three different ways, which we now recall. All three charac-
terizations either explicitly appear in or are readily deducible from [O’Neil 2002].
Note that 1P is not a homomorphism; as we shall see, it is a quadratic map.

Definition 1. For any ample line bundle L on an abelian variety A/K , the functor
GL which associates to a K -scheme S the group of all isomorphisms

(x, ψ) : L/S
∼
→ τ ∗x (L/S)

between L/S and one of its translates is represented by a K -group scheme, Mum-
ford’s theta group. The subgroup of automorphisms of L gives rise to an embed-
ding Gm ↪→ GL . The quotient is canonically isomorphic to κ(L), the kernel of the
canonical homomorphism

ϕL : A→ A∨, x 7→ τ ∗x (L)⊗ L−1.

We now follow O’Neil’s construction [2002, §2]. Let A be an elliptic curve E and
L the line bundle associated to the divisor P[O] on E ; note that κ(L)= E[P]. Let
ϕL : E→PP−1 be the associated morphism into projective space (well-defined up
to a linear automorphism of PP−1).
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Proposition 4. For P ≥ 2 we have the following commutative diagram of group
schemes:

0 // Gm //

��

GL //

��

E[P] //

��

0

0 // Gm // GLP // PGLP // 0

(2)

Proof. This is [O’Neil 2002, Proposition 2.1]. For our purposes, we will only need
to know the vertical map on the right. We view E[P] as an automorphism group
of ϕL : E→ PP−1 — that is, an element of E[P] acts on the global sections of L ,
and thus induces an automorphism of PP−1. This gives an element of PGLP as
required. �

The machinery of nonabelian Galois cohomology [Serre 1962] supplies a con-
necting map from H 1(K , E[P]) → H 2(K ,Gm). Identifying H 2(K ,Gm) with
Br(K ), we obtain our first definition of 1P .

Definition 2. Let V/K be any nonsingular, complete, geometrically integral variety,
and let Pic(V ) be the Picard group of V . There is an exact sequence [Bosch et al.
1990, §9.1]

0→ Pic(V )→ Pic(V )(K ) δV
→ Br(K )

γ
→ Br(V ). (3)

In particular, given a K -rational divisor class D on V , the obstruction to V being
represented by a K -rational divisor is an element of Br(K ). A Galois descent
argument shows that H 1(K , E[P]) classifies pairs (C, D)— where C ∈ H 1(K , E)
and D ∈PicP(C)(K ) is a K -rational divisor class — modulo the relation (C, D)∼
(C ′, D′) if there exists a K -isomorphism of torsors f : C → C ′ with f ∗D′ = D.
One may then define

1P((C, D))= δC(D).

For details, including a proof of the equivalence of this definition with the previous
one, see [O’Neil 2002, Proposition 2.3] and [Clark 2005, Proposition 4].

Definition 3. On the other hand, H 1(K , E[P]) classifies K -morphisms ϕ :C→ V
which are twisted forms of ϕL : E→PP−1; these forms arise as twists of the map
associated to the complete linear system P[O]. In particular, C ∈ H 1(K , E) and V
is a twisted form of PP−1; that is, a Severi–Brauer variety [O’Neil 2002; Cremona
et al. 2008, §1.2]. We may then define 1P(ϕ : C → V ) = [V ], the class of V in
Br(K ). It follows that 1P(H 1(K , E[P])) consists of elements of Br(K ) whose
index divides P; a fortiori we have the important relation

1P(H 1(K , E[P]))⊂ Br(K )[P].
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2.2. Lichtenbaum–Tate Duality. As above, we let E be an elliptic curve defined
over an arbitrary field K , and now let n denote a positive integer indivisible by the
characteristic of K .2 We have the Kummer sequence

0→ E(K )/nE(K )
ι
→ H 1(K , E[n])→ H 1(K , E)[n] → 0. (4)

Using ι and 1, we may define a map Li : H 1(K , E[n])× E(K )→ Br(K ) by

Li(ξ, x)=1(ξ + ι(x))−1(ξ)−1(ι(x)).

Since1(ι(E(K )/nE(K )))=0, Li depends only on the image of ξ in H 1(K , E)[n]
and on the image of x in E(K )/nE(K ); that is, it descends to give a map

Li : H 1(K , E)[n]× E(K )/nE(K )→ Br(K )[n]. (5)

We also have the Tate pairing

T : H 1(K , E)[n]× E(K )/nE(K )→ Br(K )[n]. (6)

There are many definitions of the Tate pairing; see for example [Tate 1958; Licht-
enbaum 1969]. Perhaps the most straightforward is as follows. Given (ξ, x), lift ξ
to any η in H 1(K , E[n]). Consider the cup product

η∪ ι(x) ∈ H 2(K , E[n]⊗ E[n]),

and follow by the Weil pairing to obtain a class in H 2(K , µn); the latter is canoni-
cally isomorphic to Br(K )[n]. The resulting Brauer class is T (ξ, x). Note that the
pairing is independent of our choice of n, in the sense that we may replace n by
any multiple without changing the value of the pairing.

Theorem 5 [O’Neil 2002, §5]. The map Li coincides with the Tate pairing T .

Since T is bilinear, the theorem implies that so is Li, and together with the fact
that 1(dξ) = d21(ξ) [O’Neil 2002, Lemma 4.2] this means that 1 itself is a
quadratic map. This also follows from the first definition of 1 as a connecting
map in nonabelian cohomology, together with [Zarhin 1974]. Note that if K is
complete, discretely valued, and has finite residue field, then Br(K )[n] = ( 1

n Z)/Z,
and Li puts the finite abelian groups H 1(K , E)[n] and E(K )/nE(K ) in Pontrjagin
duality (“Tate local duality”).

2Thus n satisfies exactly the same requirements as our “fixed”’ positive integer P . The merit of
considering both “fixed P” and “variable n” will become clear in the next section.
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2.3. Theta functoriality. Let η be a class in H 1(K , E)[n]. The exactness of the
Kummer sequence (4) means that η has at least one lift to an element

ξ ∈ H 1(K , E[n]).

Following O’Neil and Clark, we attempt to use the obstruction maps 1 to study
the discrepancy between the period and the index of η.

Now a key point: in [Clark 2005] we only considered the case where n is equal
to the period P of η. But certainly we can also choose lifts ξn ∈ H 1(K , E[n])
whenever n is any multiple of the period of η. It turns out to be quite useful to do
so, and in particular to compare various obstruction maps 1n of differing levels.
Geometrically speaking this amounts to considering along with the theta group
GL of our fixed line bundle L = L(P[O]) the theta groups of all tensor powers
Lm of L and various natural homomorphisms between them. The study of such
homomorphisms is an integral part of Mumford’s theory.

So let m be yet another positive integer indivisible by the characteristic of K .
The natural inclusion E[P] ↪→ E[m P] of gK -modules induces a map

jm : H 1(K , E[P])→ H 1(K , E[m P]).

Under the interpretation 2 of H 1(K , E[P]) as equivalence classes of pairs (C, D),
where C ∈ H 1(K , E) and D ∈ PicP(C), jm is the map (C, D) 7→ (C,m D).

Similarly, multiplication by m induces a map

[m] : H 1(K , E[m P])→ H 1(K , E[P]).

Proposition 6. If ξ ∈ H 1(K , E[P]) and η ∈ H 1(K , E[m P]), then:

(a) 1m P jm(ξ)= m1P(ξ), and

(b) m1m Pη =1P([m]η).

Proof. Mumford [1966, pp. 309–310] shows that both jm and [m] extend to mor-
phisms of the theta group sequences:

0 // Gm

[m]
��

// GL

εm

��

// E[P] //

jm
��

0

0 // Gm // GLm // E[m P] // 0

and

0 // Gm

[m]
��

// GLm

ηm

��

// E[m P] //

[m]
��

0

0 // Gm // GL // E[P] // 0
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In each case the restriction to Gm is simply the mth power map. We remark that
the map εm : GL → GLm is relatively straightforward to define: an isomorphism
ψ : L

∼
→ τ ∗x L induces, by passage to the mth power, a canonical isomorphism

ψ⊗m
: Lm ∼
→ τ ∗x (L

m), so εm : (x, ψ) 7→ (x, ψm). These commutative ladders induce
commutative ladders in nonabelian Galois cohomology, and the commutativity of
these last two diagrams gives the desired result. �

2.4. Applications to the quantity I/P. We begin with the following result, which
was known to O’Neil:

Proposition 7 [Clark 2005, Theorem 5]. Let E/K be an elliptic curve over a
field K , and P a positive integer indivisible by the characteristic of K . Let η ∈
H 1(K , E) be of period P. The following are equivalent:

(a) η has index P.

(b) There exists some lift ξ ∈ H 1(K , E[P]) of η such that 1P(ξ)= 0.

Proof. If C is the genus-1 curve represented by η, then in light of the second
definition of 1P , both conditions express the fact that C admits a rational divisor
of degree P . �

We are therefore interested in the remaining case in which 1P(ξ) 6= 0 for every
lift ξ of η to H 1(K , E[P]).

Let C/K be a curve of any genus, of period P and index I . Referring back to
(3), we may define the relative Brauer group κ(C/K ) = Im(δC) = Ker(γ ). For
any n ∈ Z, define moreover κn(C/K )= δC(Picn(C)(K )).

Proposition 8. The quotient κ(C/K )/κ0(C/K ) is cyclic of order I/P.

This is a reasonably well-known result [Ciperiani and Krashen 2007, Theorem
2.1.1; Clark 2006a, Proposition 24], the standard proof of which employs a snake
lemma argument. But the following proof offers some additional insight.

Proof. By the definition of P we have Picn(C)(K ) = ∅ unless n is a multiple of
P , so

κ(C/K )= δC(Pic(C)(K ))= δC

( ⋃
n∈Z

PicnP(C)(K )
)

=

⋃
n∈Z

δC(PicnP(C)(K ))=
⋃
n∈Z

κnP(C/K ).

Choose a rational divisor class D of degree P; this in turn determines a rational
divisor class of each degree nP , namely DnP = nD. Put α = δC(D), so that
δC(DnP)= nα. Adding DnP induces a bijection of sets Pic0(C)(K )→ PicnP(C),
and exhibits

κnP(C/K )= nα+ κ0(C/K )
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as a coset of the subgroup κ0(C/K ) of Br(K ). This shows that κ(C/K ) is the
subgroup generated by α and κ0(C/K ). Moreover, C admits a rational divisor of
degree nP if and only if 0∈ κnP(C/K ) if and only if nα ∈ κ0(C/K ). The quantity
I/P is the least such value of n, that is, the order of

〈α+ κ0(C/K )〉/κ0(C/K )= κ(C/K )/κ0(C/K ). �

Proposition 9. Let η ∈ H 1(K , E) be a class with period P and index I , and let ξ
be any lift of η to H 1(K , E[P]). Then

I/P ≤ min
x∈E(K )/P E(K )

order(1P(ξ + ι(x))). (7)

Proof. As x runs through E(K )/P E(K ), the elements ξ+x run through all lifts of
η to H 1(K , E[P]). For any such lift ξ , let D=order(1P(ξ)). Then1P D( jD(ξ))=

D1P(ξ)= 0, so that there is a rational divisor of degree P D on the corresponding
torsor, and I ≤ P D. �

Concerning the inequality (7), Proposition 7 says that the left-hand side equals 1
if and only if the right-hand side does. When P = p is prime, we have a simple
dichotomy: either I/P = 1 or I/P = p, so equality holds in (7) when the period
is prime, a fact which was exploited in [Clark 2005]. By a primary decomposition
argument, we also have equality when P is square-free. It is not hard to see that
equality holding in (7) is equivalent to the splitting of the short exact sequence

0→ κ0(C/K )→ κ(C/K )→ Q→ 0, (8)

where the last term Q is cyclic of order I/P . It is natural to wonder whether this
sequence always splits. This innocuous-looking question lies at the heart of the
relationship between the period, the index and the period-index obstruction map,
and it turns out to be surprisingly difficult. We believe that the answer is in general
negative. However it is possible to show that equality holds for certain specially
constructed classes. In the proofs of the main theorems we use Lichtenbaum–Tate
duality to ensure equality, following [Sharif 2006].

2.5. The case of full-level P structure. In this section we assume that E[P](K )⊂
E(K ). By the theory of the Weil pairing, the Pth roots of unity µP are contained
in K . Fix a basis (S, T ) for E[P] once and for all. Note that this induces, via
the Weil pairing, a basis for µP — that is, a specific primitive Pth root of unity
ζ = eP(S, T ). After making this choice, we get an isomorphism

8 : H 1(K , µP)× H 1(K , µP)
∼
→ H 1(K , E[P]). (9)

The composition of the cup product with the map µP ⊗µP → µP given by

ζ a
⊗ ζ b
7→ ζ ab
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gives a pairing

〈 , 〉P : H 1(K , µP)× H 1(K , µP)→ H 2(K , µP)= Br(K )[P],

the level P norm-residue symbol (or Hilbert symbol) [Serre 1962, p. 207].
Via the canonical Kummer isomorphism H 1(K , µP) = K×/K×P , we may

equally well view 8 and 〈 , 〉P as maps defined on (K×/K×P)2.

Theorem 10. If E[P∗] ⊂ E(K ), then 1P ◦8= 〈 , 〉P .

As a prelude to the proof, we consider the special theta group. Recall the theta
group scheme GL , where L is the class of P[O]. We found a homomorphism from
GL to GLP . Form the fiber product

SL = GL ×GL SLP ,

where SLP ⊂ GLP is the special linear group. Then we have an exact sequence

0→ µP → SL → E[P] → 0,

where the maps are the restrictions of the maps in (2). If we identify H 2(K , µP)

with (Br K )[P], then the coboundary H 1(K , E[P])→ H 2(K , µP) is the obstruc-
tion map. Let c : H 0(K , E[P])→ H 1(K , µP) be the lower dimension coboundary.
Define

d : H 1(K , E[P])→ (Br K )[P]

to be given by dξ(σ, τ ) = c(ξ(τ ))(σ ). (Note that since E[P] is a trivial Galois
module, each cohomology class in H 1(K , E[P]) consists of a single cocycle.)

Lemma 11. 1= 〈 , 〉 ◦8−1
+ d.

Proof. As mentioned above, we have earlier shown [Clark 2005, Theorem 6] that

1−〈 , 〉 ◦8−1

is a homomorphism of groups. Therefore it suffices to prove the claim for any
subset of H 1(K , E[P]) which generates the group. We will consider the subset
given by the images of H 1(K ,Z/PZ) induced by the two maps (1 7→ S) and
(1 7→ T ). By symmetry, it suffices to consider the case (1 7→ S) only. Let a ∈
Hom(gK ,Z/PZ), and let ξ be the image of a under the map (1 7→ S). Clearly
〈8−1(ξ)〉 = 0. Map S down to PGLP(K ), then lift to an element MS in SLP(K ).
We set MaS = Ma

S . Note that since det MS = 1 and S has order P , we must have
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M P
S = I . Then

(1ξ)(σ, τ )= Ma(σ )
S (σMa(τ )

S )M−a(στ)
S

= Ma(σ )
S a(τ ) · c(S)(σ )Ma(τ )

S M−a(στ)
S

= a(τ ) · c(S)(σ )

= c(ξ(τ ))(σ )

= dξ(σ, τ ).

The second equality follows from the fact that c(S)(σ )= (σMS)M−1
S . �

Lemma 12. 2d = 0.

Proof. It suffices to show that 2c = 0. Let ι be the group inverse map on E[P].
According to [Mumford 1966, p. 308], ι extends to a map on the theta group GL

which acts as the identity on Gm . We restrict ι to SL . By the functoriality of c, if
x ∈ H 0(K , E[P]) = E[P], then c ◦ ι(x) = c(x). But c ◦ ι(x) = c(−x) = −c(x),
which proves the claim. �

Proof of Theorem 10. If P is odd, then H 1(K , µP) has trivial 2-torsion. Therefore
Lemma 12 implies that d = 0. By Lemma 11, the conclusion follows.

Now suppose P is even. According to [Mumford 1966, p. 310], there is a map
η2 : GL2 → GL which, upon restriction to the subgroup schemes SL and SL2 ,
induces the commutative diagram

H 0(K , E[2P])
c //

[2]
��

H 1(K , µ2P)

[2]
��

H 0(K , E[P])
c // H 1(K , µP)

By the proof of Lemma 12, [2] ◦ c is the zero map. Therefore c ◦ [2] is zero. The
hypothesis E[2P] ⊂ E(K ) implies that the left-hand map above is surjective, and
therefore the lower map c is zero. By Lemma 11, the result follows. �

3. Proofs of Theorems 1, 2 and 3

We first remind the reader of a standard trick: in all work on the period-index
problem it suffices to treat the case where the period P is a prime power P = pa .
Indeed, if a class η ∈ H 1(K , E) (or any other Galois cohomology group, for that
matter) has period P = pa1

1 . . . par
r , then putting ηi = (P/pai

i )η, one easily checks
that η=

∑r
i=1 ηi and that I (η)=

∏r
i=1 I (ηi ) (that is, the index of η is the product

of the indices of the classes ηi ). The advantage of reducing to the case P = pa is
that then the index I = pb for a ≤ b ≤ 2a and then for any D = pc, if the index I
is less than D P , then indeed I is a proper divisor of D P .
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3.1. Conditions on prime ideals and their generators. Several times in the proofs
we will be choosing pairs of prime ideals v, v′ of OK so as to satisfy certain condi-
tions. Let us first say that a prime ideal v of K is “bad” (for E and P = pa) if v is
Archimedean, v divides p, or E has bad reduction at v, and is “good” otherwise.
All but finitely many primes are good.

The conditions we will impose on v and v′ can all be achieved by using the
Chebotarev density theorem. The conditions are:

(SC1) The primes v = (π) and v′ = (π ′) are principal, with totally positive gen-
erators π and π ′.

(SC2) All elements of E(K ) are P-divisible in E(Kv).

(SC3) The generators π and π ′ lie in K×P
w for all bad primes w.

(SC4) The order of the image of π ′ in K×v /K×P
v is P .

Lemma 13. Suppose that E[P] ⊂ E(K ). Then there exist infinitely many pairs of
primes v = (π) and v′ = (π ′) satisfying conditions (SC1)–(SC4).

Proof. In order to satisfy condition (SC4), we will need to choose v first, as v′

depends on this choice. However, the procedure for choosing the two is similar, so
the argument below is presented for both at once.

Condition (SC1) is equivalent to v and v′ splitting completely in the Hilbert
class field of K , while condition (SC2) is equivalent to v splitting completely in
K ([P]−1 E(K )), the field obtained by adjoining to K all points Q ∈ E(K ) such that
[P]Q ∈ E(K ). (Recall that under the hypothesis E[P] ⊂ E(K ), K ([P]−1 E(K ))
is a finite abelian extension of K unramified outside the bad primes [Silverman
1986, p. 194].)

Let m be the modulus given by the product of all bad primes p and P2. Then
one can find π and π ′ as in (SC3) provided v and v′ split completely in the ray
class field for K modulo m. For if v splits completely, it has trivial Frobenius and,
by class field theory, has a generator π which is congruent to 1 (mod m). The
condition follows from Hensel’s Lemma.

Therefore, to satisfy conditions (SC1)–(SC3), we need v and v′ to split com-
pletely in the abelian extension F which is the compositum of the Hilbert class
field of K , K ([P]−1 E(K )), and the ray class field Km.

Now we consider (SC4). Suppose that we have chosen v already. Let α be a unit
in Kv which has order P in K×v /K×P

v . Let F ′ be the ray class field with modulus
v. By class field theory, the Galois group of F ′/K is isomorphic to the ideal class
group with modulus v, Cv. In particular, if v′ and (α) lie in the same class in Cv,
then v′ has a generator π ′ which is congruent to α (mod v), and hence satisfies
(SC4).
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Thus, we have reduced conditions (SC1)–(SC4) to two splitting-type conditions
in the abelian extensions F and F ′. It suffices to show that these splitting condi-
tions are compatible, since then the Chebotarev density theorem shows there are
infinitely many primes satisfying the conditions.

The extension F/K is unramified at v, while F ′/K is unramified outside v.
Therefore F ∩ F ′ is contained in the Hilbert class field of K . This is enough to
choose v. Any v′ which lies in the same class as (α) in Cv must be principal, and
hence splits in F ∩ F ′. We conclude that the splitting conditions are compatible,
which proves the lemma. �

3.2. Proof of Theorem 1. We assume in this section that E has full level P∗-
structure, and maintain the setup of §2.5. In particular, we have a fixed isomor-
phism

8 : (K×/K×P)2 ∼= H 1(K , E[P]).

Let v = (π) and v′ = (π ′) satisfy conditions (SC1)–(SC4). Put

ξ :=8(π P/D, π ′) ∈ H 1(K , E[P]),

so by Theorem 10 we have

1P(ξ)= 〈π
P/D, π ′〉P ∈ Br(K ).

Observe that 1P(ξ) is locally trivial away from π and π ′. Indeed, by condition
(SC3), the norm-residue symbol is trivial at the Archimedean places and at the
places of residue characteristic dividing P . At all other places the norm residue
symbol is “tame” and hence vanishes locally at w when evaluated on a pair of
w-adic units.

Let C be the genus-one curve corresponding to the image η of ξ in H 1(K , E)[P].
Certainly the period of η divides P . Suppose that the period of η is less than P; then
(since paη = 0) it has period P ′ for some proper divisor P ′ of P: P ′ξ = ιP(x).
Then ιP(x) is unramified at π ′ [Silverman 1986, Proposition VIII.2.1], whereas
P ′ξ = (π P P ′/D, (π ′)P ′) is ramified at π ′, a contradiction. So C has period P .
Moreover, by Proposition 6,

1P D jD(ξ)= D1P(ξ)= D〈π P/D, π ′〉P = 〈π
P , π ′〉P = 0,

so there exists a rational divisor of degree P D on C and I (C) | P D.
Coming now to the heart of the matter, we suppose that the index I of C strictly

divides P D. Then, by Proposition 7 there exists some lift ν of η to H 1(K , E[I ])
(under (4) with n = I ) such that 1I (ν) = 0. On the other hand, the local-at-π
norm-residue symbol 〈π P/D, π ′〉P,π has exact order D, since, by condition (SC4),
the corresponding central simple algebra trivializes over the Brauer group of an
extension L/Kv if and only if π ′ is a norm from the extension L(π1/D)/L if and
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only if D | e(L/K ). Therefore the global norm-residue symbol 〈π P/D, π ′〉P =

1P(ξ) has order at least D; since I/P < D we must have

0 6= (I/P) ·1P(ξ)=1I ( jI/P(ξ)).

For the remainder of the proof we shall abbreviate jI/P(ξ) to j (ξ). The classes
j (ξ) and ν ∈ H 1(K , E[I ]) are both lifts of η, so there exists x ∈ E(K ) with

ιI (x)= ν− j (ξ).

Applying 1, we get

0=1I (ν)=1I ( j (ξ))+Li( j (ξ), x).

Now recall that (π) splits completely in K ([P]−1 E(K )) by condition (SC2). This
forces E(K ) to be divisible by P in E(Kv), and in particular x ∈ P E(Kv). It
follows that the (π)-component of Li( j (ξ), x) and hence also of 1I ( j (ξ)) are
trivial. Thus1I ( j (ξ))= (I/P)1P(ξ) is locally trivial at all places except possibly
at (π ′), and by the reciprocity law and Hasse principle in the Brauer group of a
local field this implies that it is globally trivial —1I ( j (ξ))= 0 — a contradiction.

Finally, we claim that the image η of ξ under H 1(K , E[P])→ H 1(K , E)[P] is
locally trivial away from v and v′. First letw be a bad prime. Then, by construction,
π, π ′ ∈ K×P

w so ξ |Kw = 0; a fortiori ηw = 0. Now suppose w 6= v, v′ is a good
prime. Let K unr

w be the maximal unramified extension of Kw. Recall that the
restriction map H 1(Kw, E)[P] → H 1(K unr

w , E)[P] is injective [Lang and Tate
1958, Corollary 1]; this follows, for instance from the triviality of WC-groups
over finite fields together with the fact that formation of the Néron model of a
genus-one curve commutes with unramified base change. Since Kw((π

′)1/P)/Kw

is unramified, ξ trivializes over K unr
w . But this implies that ζ |K unr

w
= 0 and hence

that η|Kw = 0. This completes the proof of Theorem 1.

3.3. Proof of Theorem 2: preliminaries. First, we wish to reduce to Theorem 1,
that is, to the case where E[P∗] has trivial Galois module structure. To this end we
introduce the splitting field K P = K (E[P∗]) of the P∗-torsion. We will construct
classes θn in H 1(K P , E[P]) in a similar manner as in the proof of Theorem 1,
then we will set ξn = coresK P/K θn , and let ηn be the image of ξn in H 1(K , E).
In order to prove that the ηn have the right properties, we will need to compute
resK P/K ξn = res ◦ cores θn explicitly.

In the following, let 〈 , 〉 denote the P-Hilbert symbol on (K P
×/K P

×P)2.

3.4. Proof of Theorem 2: choosing pairs of primes. In this section, we choose
pairs of primes in a similar manner as in Lemma 13. The main difference is that we
wish to choose an infinite sequence of pairs of primes vi , v

′

i in K P inductively. We
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will require conditions which are similar, and in some cases identical, to (SC1)–
(SC4). These conditions are as follows:

(SC1′) The primes vi = (πi ) and v′i = (π
′

i ) are principal, with totally positive
generators πi and π ′i .

(SC2′) Let ṽi and ṽ′i be primes of K lying below vi and v′i respectively (for fixed
i). Then all elements of E(K ) are P-divisible in E(K ṽi ) and in E(K ṽ′i

).

(SC3′) The generators πi and π ′i lie in (K P)
×P
w for all bad primes w, primes lying

above SK , and for w = v j , v′j where j < i .

(SC4′) The order of the image of π ′i in (K P)
×
vi
/(K P)

×P
vi

is P . Additionally, σπ ′i
lies in (K P)

×P
vi

for all nontrivial σ ∈ Gal(K P/K ).

(SC5′) The primes ṽi , ṽ
′

i are totally split in K P .

Lemma 14. There exist vi = (πi ), v
′

i = (π
′

i ) satisfying conditions (SC1′)–(SC5′).

Proof. We argue inductively: suppose that we have chosen v j , v′j for j < i . We let
m be the modulus given by the product of all bad primes in K , P2, and all σv j and
σv′j for j < i , σ ∈Gal(K P/K ); and let F be the compositum of K P([P]−1 E(K ))
and the m-ray class field of K P . Note that m is rational over K , so F is Galois
over K . As before, F is an abelian extension of K P . By the Chebotarev density
theorem, there exists a prime ṽi of K which splits completely in F . Let vi be any
prime of K P which lies over ṽi . Then, provided (SC5′) holds, the same reasoning
as in Lemma 13 shows that vi satisfies all the conditions. (We need (SC5′) only
for condition (SC2′), for otherwise we know only that E(K P) is P-divisible in
E((K P)vi ).)

Let β be a unit in (K P)vi which has order P in (K P)
×
vi
/(K P)

×P
vi

. By the Chinese
Remainder Theorem, there exists α ∈ K P such that

α ≡ β (mod vi ),

α ≡ 1 (mod σvi ) for all σ ∈ Gal(K P/K ), σ 6= 1. (10)

Let F ′ be the ray class field for K P with modulus m′ =
∏
σvi . Again, m′ is

rational over K , so that F ′ is Galois over K . Let Cm′ be the class group for K P with
modulus m′. The Artin reciprocity map gives an isomorphism Cm′→Gal(F ′/K P).
Let γF ′ be the image of (α) under this isomorphism. Since F ∩ F ′ is contained in
the Hilbert class field of K P and (α) is principal, there exists γ ∈ Gal(F F ′/K P)

such that γ |F ′ = γF ′ and γ |F is the identity. Since F F ′ is Galois over K , we view
Gal(F F ′/K P) as a subgroup of Gal(F F ′/K ). Let [γ ] be the conjugacy class of
γ in this larger Galois group. By Chebotarev, there exists a prime ṽ′i of K such
that any Frobenius associated to ṽ′i in the extension F F ′/K lies in [γ ]. Let v′i
be a prime of K P lying over ṽ′i . By replacing v′i by a conjugate if necessary, we
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may assume that the Frobenius of v′i in the extension F F ′/K P is precisely γ (the
extension here is abelian, so saying “the” Frobenius makes sense). By the same
arguments as in Lemma 13, v′i satisfies the first three conditions.

One sees that π ′i ≡α (mod (πi )), so that the order of π ′i in (K P)
×
vi
/(K P)

×P
vi

is P .
Also, π ′i ≡ 1 (mod (σπi )) for nontrivial σ , so that σπ ′i ≡ 1 mod (πi ). Therefore
v′i satisfies condition (SC4′).

Any Frobenius associated to ṽ′i in the extension K P/K is trivial, so that ṽ′i splits
in K P , thus satisfying (SC5′). �

3.5. Proof of Theorem 2: corestrictions. As in the proof of Theorem 1, a choice
of basis for E[P] yields an isomorphism

8 : (K P
×/K P

×P)2→ H 1(K P , E[P]).

Let θn be either8(πn, π
′
n) or8(πn, 1); that is, we will need to consider both cases.

Let cores be the corestriction map

H 1(K P , E[P])→ H 1(K , E[P]),

and write ξn = cores θn . In order to prove Theorem 2, we would like to compute
1P(ξn−ξm) as well as the period of (ξn−ξm). To do this, we will instead compute
the obstruction and period of res(ξn − ξm), where res is the restriction map

H 1(K , E[P])→ H 1(K P , E[P]).

Both res and cores are Z-linear, so it will suffice to compute res ◦ cores(8(πn, 1))
and res ◦ cores(8(1, π ′n)).

Let Nm ∈ End(H 1(K P , E[P])) be given, on the level of cocycles, by

Nm(θ)(σ )=
∑

γ∈Gal(K P/K )

γ · θ(γ−1σγ ),

where γ is a fixed lift of γ to gK . Since E[P] is rational over K P , there is a unique
cocycle in each cohomology class, so that Nm is well-defined as an endomorphism
of H 1(K P , E[P]).

Lemma 15. If θ ∈ H 1(K P , E[P]), then res ◦ cores θ = Nm θ .

Proof. The lemma follows from the definition of cores on H 0(K P , E[P]) and
dimension shifting; see for example [Serre 1962, p. 119]. �

In the remainder of this section, we drop the subscript n.
Lemma 15 shows that res ◦ cores(8(π, 1))=Nm(8(π, 1)). Unfortunately, Nm

and 8 do not commute, as the Galois actions on E[P] and µP ×µP differ. The
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representation on E[P] gives, with respect to our fixed basis, a homomorphism

Gal(K P/K )→ GL2(Z/PZ)

σ 7→ Mσ =

( i(σ ) j (σ )
k(σ ) `(σ )

)
.

Then we have

Proposition 16. Let σ ∈ Gal(K P/K ) and (a, b) ∈ (K P
×/K P

×P)2. Then

8(a, b)σ =8
( Mσ

det Mσ
(σa, σb)

)
,

where Mσ (a, b) is given by the natural action of GL2(Z/PZ) on (K P
×/K P

×P)2;
that is, Mσ (a, b)= (ai(σ )b j (σ ), ak(σ )b`(σ )).

Proof. Our choice of basis for E[P] gives rise to a group isomorphism

ρ : E[P] → µP ×µP .

Define a Z[Gal(K P/K )]-module (µP ×µP)ρ which, as a Z-module, is µP ×µP ,
but which possesses a Galois structure making ρ into a Gal(K P/K )-equivariant
map. In particular, if (ζ1, ζ2) ∈ (µP ×µP)ρ and σ ∈ Gal(K P/K ), we have

ρ ◦ σ ◦ ρ−1(ζ1, ζ2)= σ(ζ1, ζ2)= Mσ (ζ1, ζ2).

On the other hand, for (ζ ′1, ζ
′

2) ∈ µP ×µP the Galois action is

σ(ζ ′1, ζ
′

2)= det Mσ · (ζ
′

1, ζ
′

2),

where the action on the right is the diagonal action of Z/PZ.
Let i : µP ×µP → (µP ×µP)ρ be the canonical group isomorphism; it does

not respect the Gal(K P/K )-action. If A is any gK P -module, write H 1(A) for
H 1(K P , A). Then i induces a map

i∗ : H 1(µP ×µP)→ H 1((µP ×µP)ρ).

Let M be either (µP × µP)ρ or µP × µP . Since in either case M is a trivial
gK P -module, the set of coboundaries B1(K P ,M) is zero, and so H 1(K P ,M) =
Z1(K P ,M), the set of 1-cocycles from gK P to M . We can therefore identify co-
homology classes with cocycles in both cases.

Consider the commutative diagram

(K P
×/K P

×P)2
ψ //

ψρ ((

H 1(µP ×µP)

i∗
��

H 1((µP ×µP)ρ)
λ

// H 1(E[P])

(11)
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The horizontal maps are Gal(K P/K )-isomorphisms. The map λ is induced by
(i ◦ ρ)−1, and ψ is the Kummer map. The diagonal map ψρ is ψ ◦ i∗. Thus,
8 = λ ◦ ψρ . Note that gK acts on all of the groups in (11) through its quotient
Gal(K P/K ). Let γ be an element of gK P and σ an element of gK . Then

[ψρ(a, b)]σ (γ )= [i∗ψ(a, b)]σ (γ )

= σ [i(ψ(a, b)(σ−1γ σ))]

= σ [i(σ−1σψ(a, b)(σ−1γ σ))]

= σ [i(σ−1ψ(σa, σb)(γ ))]

= Mσ [(i(det M−1
σ ·ψ(σa, σb)(γ ))]

=
Mσ

det Mσ
[i(ψ(σa, σb)(γ ))]

=
Mσ

det Mσ
ψρ(σa, σb)(γ ). (12)

Applying λ on both sides, we obtain the result. �

Corollary 17. We have

Nm8((a, b))=8
(∏ 1

det Mσ

(
σai(σ )σb j (σ ), σak(σ )σb`(σ )

) )
,

where the product extends over all σ ∈ Gal(K P/K ) and is taken component-wise.

Let (c, d)=8−1 Nm8(π, 1) and (c′, d ′)=8−1 Nm8(1, π ′).

Lemma 18. Let v be the place of K P corresponding to π . Either order(〈c, d〉v)=
P or order(〈cc′, dd ′〉v)= P.

Proof. If order(〈c, d〉)= P , then we are done. So suppose that order(〈c, d〉) < P .
In fact, since P is a prime power, the order strictly divides P .

Expanding out the Hilbert symbol, we get

〈cc′, dd ′〉 = 〈c, d〉+ 〈c, d ′〉+ 〈c′, d〉+ 〈c′, d ′〉.

We have 〈c′, d〉v = 〈c′, d ′〉v = 0 since all are v-adic units. By our assumption at
the start of the proof, 〈c, d〉v has order strictly dividing P . That leaves 〈c, d ′〉v. By
Corollary 17,

d ′ = π ′ ·
∏
σ 6=1

(σπ ′)eσ

for some integers eσ . Our choice of π ′ implies that π ′ ≡ α (mod (π)), where
α was chosen to have order P in K×P

v , while σπ ′ ≡ 1 (mod (π)) for nontrivial
σ (see (10)). Thus d ′ ≡ α (mod (π)). Therefore Kv(d ′1/P)/K is the unramified
extension of degree P . (Equivalently, we may appeal to condition (SC4′).)



170 Pete L. Clark and Shahed Sharif

We now use similar reasoning as in the proof of Theorem 1 to see that 〈π, d ′〉v
has order P . Since v(c) = 1, the order of 〈c, d ′〉v is exactly P . This shows
〈cc′, dd ′〉v has exact order P . �

If 〈c, d〉 has order P , let θ =8(π, 1), so that ξ = cores θ satisfies

res ξ = Nm8(π, 1)=8(c, d);

otherwise, let θ=8(π, π ′), so that res ξ=8(cc′, dd ′). Let (a, b) denote whichever
pair we’ve chosen, (c, d) or (cc′, dd ′).

Let us now reintroduce subscripts, so that

ξn = cores θn

=

{
cores8(πn, π

′
n) or

cores8(πn, 1)

(an, bn)=8
−1 res ξn.

Lemma 19. Let 0≤ m < n. Then 1P(res(ξm − ξn)) has order P at vm .

Proof. Write v for vm . Since E[P∗] ⊂ E(K P), the obstruction map can be com-
puted using the Hilbert symbol. Thus we wish to compute the order of〈

am

an
,

bm

bn

〉
v

.

By the bilinearity of the Hilbert symbol, it suffices to compute

〈am, bm〉v −〈am, bn〉v −〈an, bm〉v +〈an, bn〉v.

By Lemma 18, the first term has order P . Since an, bm and bn are all units at v,
the last two terms are zero. That leaves the term 〈am, bn〉v. By Corollary 17, bn is
a product of σπn and σπ ′n . By condition (SC3′), these all lie in K×P

v . Therefore
the second term is also zero. The Lemma follows. �

3.6. Proof of Theorem 2: conclusion. Let C be the curve represented by the class
ξ := ξi − ξ j for some i 6= j . Clearly, P(C) | P . If we can show that I (C) = P2,
then by (1) we must have P(C)= P .

Since E[P] ⊂ E(K P) (and E[2P] ⊂ E(K P) when P is even), the obstruction
map on H 1(K P , E[P]) is given by the Hilbert symbol. In view of Lemma 19,
1P(resK P/K ξ) has order P at vi . Therefore 1P(ξ) has order P at the prime w
satisfying vi | w.

Suppose that C has index P · D for some D | P . Then there exists some η ∈
H 1(K , E[P D]) representing C such that 1P D(η)= 0. Let jD be the natural map
H 1(K , E[P]) → H 1(K , E[P D]). The classes η and jD(ξ) represent the same
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curve C , so there exists some x ∈ E(K ) such that η = jD(ξ) + ιP D(x). Since
1P D(ιP D(x))= 0, by the remarks at the start of Section 2.1,

1P D(η)=1P D( jD(ξ))+Li(η, x).

Recall that Li(η, x) is the Tate pairing. Let us consider this equality locally, at w.
The left-hand side is zero by hypothesis. By condition (SC2′), x lies in P ·E(Kw).
Since P(C) | P , the Tate pairing at w is trivial. Hence 1P D( jD(ξ)) must be zero
at w. But by Proposition 6,

1P D( jD(ξ))= D1P(ξ).

We showed earlier that 1P(ξ) has order P at w. Therefore D= P , and so I (C)=
P2.

Let ηi be the image of ξi in H 1(K , E). It remains to show that resv ηi = 0 for
v ∈ SK . Recall that ηi = cores8(πi , 1) or cores8(πi , π

′

i ). For w | v a place of
K P , the proof of Theorem 1 showed that the curves corresponding to 8(πi , 1) and
8(πi , π

′

i ) were trivial at w. But the corestriction map induces a homomorphism

⊕w|vH 1((K P)w, E)→ H 1(Kv, E)

which proves that ηi is trivial at v. This completes the proof of Theorem 2.

3.7. Proof of Theorem 3. Recall the following two “classical” instances of period
equals index.

(i) [Lang and Tate 1958] F is the completion of a global field at a place v,
E = Jac(C) has good reduction, and v does not divide the period of C .

(ii) [Cassels 1963] F is global and C ∈X(F, E).

Note that Lichtenbaum showed that P = I for all genus-one curves defined over
the completion of a global field. However, the result of Lang and Tate, apart from
being more elementary, is also more precise: they show also that a finite extension
field F ′/F splits a genus-one curve C/K if and only if the period P of C divides
the relative ramification index e(F ′/F). This will be used in the proof.

Take S to be the union of the infinite places, the finite places which divide
P and the places of bad reduction for E . Let {ηi }

∞

i=0 be the sequence of classes
constructed in Theorem 2. We will show that for any positive integer r , there exists
a degree P field extension L/K such that the restrictions of η1, . . . , ηr to L are
pairwise distinct, locally trivial, and of period P .

Indeed, let Sr =
⋃r

i=1 supp(ηi ). We have Sr ∩ S = ∅, so that each vi ∈ Sr is a
finite place of good reduction for E and residue characteristic prime to P .

For each vi ∈ Sr , let L i/Kvi be a totally ramified extension of degree P . There
exists a degree P global extension L = L(r) of K such that for all vi ∈ Sr , L ⊗K
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Kvi
∼= L i .3 By the results (i) of Lang and Tate cited above, ηi |L is locally trivial.

Moreover, since ηi = ηi − η0 has index P2 and L/K is a degree P extension,
I (ηi |L)≥ P . But on the other hand, by (ii) above, I (ηi |L)= P(ηi |L) | P(ηi )= P ,
so for all i , 1≤ i ≤ r , ηi |L has period and index equal to P .

The only worry is that their restrictions are not distinct. But suppose that ηi |L =

η j |L . Then ηi−η j would lie in the kernel resL . This would imply that I (ηi−η j ) | P ,
which we have arranged not to be the case.

3.8. Remarks about ramification. The proof of Theorem 3 differs from that of
[Clark 2005, Theorem 1] in that we explicitly make use of extensions L/K that
are ramified at many primes. Given our strategy of proof, this is unavoidable:
using (i), the number of order P elements in resL(H 1(K , E))∩X(L , E) can be
bounded in terms of the number of ramified primes of L/K . It is interesting to ask
whether this same boundedness result holds for order P elements in X(L , E),
and conversely, whether the number of order P elements of X(L , E) necessarily
approaches infinity with the number of ramified primes.

Both of these questions have affirmative answers when P = 2, according to
work of Yu [2004]. Given a quadratic extension L/K , Yu computes the order of
the kernel and cokernel of the natural map X(K , E)⊕X(K , Eχ )→X(L , E);
here Eχ is the twist of E/K by the quadratic character χ of L/K . In particular, one
can deduce Theorem 3 for P = 2 from Yu’s work, with one caveat: his analysis
is conditional on the finiteness of X(K , E). That the existence of an infinite
subgroup of X(K , E) would hamper our ability to show that X(L , E)[2] is large
is somewhat curious, but seems to be the true state of affairs.

The consistency of Theorem 3 with the results of [Yu 2004] might thus be
regarded as some confirmatory evidence for the finiteness of Shafarevich–Tate
groups. How seriously such evidence ought to be taken is, of course, up to the
reader to decide.
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