Vol. 4, No. 3, 2010

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN: 1944-7833 (e-only)
ISSN: 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
A new approach to Kostant's problem

Johan Kåhrström and Volodymyr Mazorchuk

Vol. 4 (2010), No. 3, 231–254
Abstract

For every involution w of the symmetric group Sn we establish, in terms of a special canonical quotient of the dominant Verma module associated with w, an effective criterion to verify whether the universal enveloping algebra U(sln) surjects onto the space of all ad-finite linear transformations of the simple highest weight module L(w). An easy sufficient condition derived from this criterion admits a straightforward computational check (using a computer, for example). All this is applied to get some old and many new results, which answer the classical question of Kostant in special cases; in particular we give a complete answer for simple highest weight modules in the regular block of sln, n 5.

Keywords
universal enveloping algebra, Kostant's problem, Kazhdan–Lusztig combinatorics
Mathematical Subject Classification 2000
Primary: 17B10
Secondary: 17B35, 16E30
Milestones
Received: 18 June 2008
Revised: 17 October 2009
Accepted: 31 December 2009
Published: 5 February 2010
Authors
Johan Kåhrström
Department of Mathematics
Uppsala University
75106 Uppsala
Sweden
Volodymyr Mazorchuk
Department of Mathematics
Uppsala University
75106 Uppsala
Sweden
http://www.math.uu.se/~mazor/