Vol. 4, No. 3, 2010

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 12, 2133–2308
Issue 11, 1945–2131
Issue 10, 1767–1943
Issue 9, 1589–1766
Issue 8, 1403–1587
Issue 7, 1221–1401
Issue 6, 1039–1219
Issue 5, 847–1038
Issue 4, 631–846
Issue 3, 409–629
Issue 2, 209–408
Issue 1, 1–208

Volume 17, 12 issues

Volume 16, 10 issues

Volume 15, 10 issues

Volume 14, 10 issues

Volume 13, 10 issues

Volume 12, 10 issues

Volume 11, 10 issues

Volume 10, 10 issues

Volume 9, 10 issues

Volume 8, 10 issues

Volume 7, 10 issues

Volume 6, 8 issues

Volume 5, 8 issues

Volume 4, 8 issues

Volume 3, 8 issues

Volume 2, 8 issues

Volume 1, 4 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1944-7833 (online)
ISSN 1937-0652 (print)
 
Author index
To appear
 
Other MSP journals
K3 surfaces with Picard rank 20

Matthias Schütt

Vol. 4 (2010), No. 3, 335–356
Abstract

We determine all complex K3 surfaces with Picard rank 20 over . Here the Néron–Severi group has rank 20 and is generated by divisors which are defined over . Our proof uses modularity, the Artin–Tate conjecture and class group theory. With different techniques, the result has been established by Elkies to show that Mordell–Weil rank 18 over is impossible for an elliptic K3 surface. We apply our methods to general singular K3 surfaces, that is, those with Néron–Severi group of rank 20, but not necessarily generated by divisors over .

Keywords
singular K3 surface, Artin–Tate conjecture, complex multiplication, modular form, class group
Mathematical Subject Classification 2000
Primary: 14J28
Secondary: 11F11, 11G15, 11G25, 11R29
Milestones
Received: 21 July 2009
Revised: 14 November 2009
Accepted: 31 December 2009
Published: 5 February 2010
Authors
Matthias Schütt
Institut für Algebraische Geometrie
Leibniz Universität Hannover
Welfengarten 1
30167 Hannover
Germany
http://www.iag.uni-hannover.de/~schuett/