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ALGEBRA AND NUMBER THEORY 4:4(2010)

Stable reduction of X0(p3)
Ken McMurdy and Robert Coleman

with an appendix by Everett W. Howe

This paper is dedicated to Siegfried Bosch, whose foundational work in rigid analysis was
invaluable in our development of the theory of semistable coverings.

We determine the stable models of the modular curves X0(p3) for primes p≥13.
An essential ingredient is the close relationship between the deformation theories
of elliptic curves and formal groups, which was established in the Woods Hole
notes of 1964. This enables us to apply results of Hopkins and Gross in our
analysis of the supersingular locus.

1. Introduction

Let n be an integer and p a prime. It is known that if n ≥ 3 and p ≥ 5, or if n ≥ 1
and p≥ 11, the modular curve X0(pn) does not have a model with good reduction
over the ring of integers of any complete subfield of Cp. By a model for a scheme
C over a complete local field K , we mean a scheme S over the ring of integers OK

of K such that C ∼= S⊗OK K . When a curve C over K does not have a model with
good reduction over OK , it may have the “next best thing”, that is, a stable model.
The stable model is unique up to isomorphism if it exists, which it does over the
ring of integers in some finite extension of K , as long as the genus of the curve is
at least 2. Moreover, if C is a stable model for C over OK , and K ⊆ L ⊆ Cp, then
C⊗OK OL is a stable model for C ⊗K L over OL . The special fiber of any stable
model for C is called the stable reduction.

Here is a brief summary of prior results regarding the stable models of modular
curves at prime power levels. Deligne and Rapoport [1973, §VI.6] found models
for X0(p) and X1(p) over Zp and Zp[µp] that become stable over the quadratic
unramified extension. Edixhoven [1990, Theorem 2.1.2] found stable models for
X0(p2) over the ring of integers, R, in the Galois extension of Qunr

p of degree
(p2
− 1)/2. Bouw and Wewers [2004, Theorem 4.1 and Corollary 3.4] found

stable models of X0(p) and X (p) over Zp and R by completely different means.
Krir [1996, Théorème 1] proved that the Jacobian of X0(pn) has a semistable

MSC2000: primary 14G22; secondary 11G07, 14G35.
Keywords: stable reduction, modular curves, rigid analysis.

357

http://pjm.math.berkeley.edu/ant
http://dx.doi.org/10.2140/ant.2010.4-4


358 Ken McMurdy and Robert Coleman

model over the ring of integers of an explicit Galois extension Ln of Qunr
p of degree

p2(n−2)(p2
− 1) for n ≥ 2, which implies that X0(pn) has a stable model over the

ring of integers of Ln by [Deligne and Mumford 1969, Theorem 2.4]. Also, stable
models for X0(125) and X0(81) were computed explicitly in [McMurdy 2004, §2;
2008, §3], and [2008, §5] gave a conjectural stable reduction of X0(p4). The main
result of this paper is the construction of a stable model for X0(p3), when p ≥ 13,
over the ring of integers of some finite extension of Qp that is made explicit in
[CM 2006].

We introduce the notion of a semistable covering of a smooth complete curve
over a complete nonarchimedean field in Section 2C. We prove that any curve over
a complete stable subfield of Cp has a semistable covering if and only if it has
a semistable model, and moreover we can determine the corresponding reduction
from the covering (see Theorem 2.36). Finding a semistable covering is often
easier in practice than finding a semistable model directly, and this is what we do
for X0(p3) in Sections 6–9.

Overview. Our approach is rigid analytic, in that we construct a stable model of
X0(p3) by actually constructing a stable covering by wide opens (an equivalent
rigid analytic notion which was introduced in [Coleman and McCallum 1988, §1]).
A covering Co of the ordinary locus can be obtained by extending the ordinary
affinoids X±a b defined in [Coleman 2005, §1] to wide open neighborhoods W±a b.
The supersingular locus essentially breaks up into the union of finitely many de-
formation spaces of height 2 formal groups with level structure [Lubin et al. 1964].
We use results from [Hopkins and Gross 1994] and [de Shalit 1994] to produce a
covering Cs of this region. Finally, we show that the genus of the covering Co

∪Cs

is at least the genus of X0(p3), and therefore that the overall covering is stable.
This argument is laid out as follows.

First, in Section 2, we recall or prove the general rigid analytic results that are
necessary for a stable covering argument. These results are proved not only over
complete subfields of Cp, but over more general complete nonarchimedean-valued
fields. For example, Proposition 2.34 is the aforementioned result that the genus
of any stable covering must equal the genus of the curve. We also revise and
extend results of Bosch, and of Bosch and Lütkebohmert, on the rigid geometry
of algebraic curves. A rigid analytic version of the Riemann existence theorem is
proved in Appendix A.

In Section 3, we recall and fix notation for some results specifically pertaining
to X0(pn) and its rigid subspaces. This is done from the moduli-theoretic point
of view, which is that points of X0(pn) correspond to pairs (E,C), where E is a
generalized elliptic curve and C is a cyclic subgroup of order pn . There is a detailed
discussion in Section 3A of the theory of the canonical subgroup of an elliptic curve
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and its connection with the geometry of X0(p) [Buzzard 2003, §3]. Section 3B is
where we define wide open neighborhoods, W±a b⊇X±a b, of the irreducible affinoids
that make up the ordinary locus of X0(pn).

All of the necessary results regarding deformations of formal groups are given
in Section 4. First we precisely state the relationship between deformations of
elliptic curves and formal groups, which we call Woods Hole theory [Lubin et al.
1964, §6]. This is then used in Section 4A (along with the result of Howe in
Appendix B) to prove that all of the connected components of the supersingular
locus of X0(pn) are (nearly) isomorphic. Because of this fact, we are able to focus
on those regions WA(pn) that correspond to a supersingular elliptic curve A/Fp

for which j (A) 6= 0, 1728. Specifically, this enables us to directly apply results
of de Shalit [1994, §3] for the forgetful map from X0(p) to the j-line. The other
important consequence of Woods Hole theory is that it gives us a natural action of

Aut( Â)∼= (End(A)⊗Zp)
∗

on WA(pn). In Section 4B we recall results from [Hopkins and Gross 1994] that
describe this action in great detail, and we derive the specific consequences that
we need for our analysis of X0(p3).

Once the groundwork has been laid, the remaining sections are devoted to con-
structing stable coverings of X0(p2) and X0(p3). In Section 5 we construct a stable
covering for X0(p2) over an explicit Galois extension of Qp of degree 12(p2

−1),
essentially showing that the wide open subspaces defined in Section 3 are sufficient.
To be more precise, the stable covering consists of

{W20,W+11,W−11,W02} ∪ {WA(p2) : A is supersingular}.

This reproves Edixhoven’s [1990] result from the point of view of this paper. It also
gives a moduli-theoretic interpretation to the wide opens and underlying affinoids
in the stable covering.

As in the stable covering of X0(p2), the ordinary region of X0(p3) is covered by
six wide opens: W30, W±21, W±12, and W03. Unlike WA(p2), however, WA(p3)must
itself be covered by smaller wide opens, since its reduction contains multiple irre-
ducible components. First of all, the reduction of WA(p3) contains two isomorphic
lifts of some supersingular component of X0(p2), with each meeting exactly three
of the ordinary components. These two “old” components are connected through a
central genus-0 component that we call the bridging component. To complete the
picture, the bridging component then meets (in distinct points) a certain number of
isomorphic copies of the curve y2

= x p
−x . A partial picture of the stable reduction

of X0(p3), including one complete supersingular region (corresponding to a fixed
supersingular curve A) and the six ordinary components, is given in Figure 1. The
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ordinary
components

ordinary
components

g = 0

g = c g = c

g = a, #= b

Figure 1. Partial picture of the stable reduction of X0(p3).

number and genera of the components, as marked on the graph, are as follows:

(a, b, c)=


(
(p− 1)/2, 2(p+ 1)/3, (p− 5)/6

)
if j (A)= 0,(

(p− 1)/2, p+ 1, (p− 3)/4
)

if j (A)= 1728,(
(p− 1)/2, 2(p+ 1), (p− 1)/2

)
otherwise.

Complete graphs with intersection multiplicities are given in Section 9A. As a
consequence of these results, it follows that the new part of J0(p3) has potential
good reduction isogenous to the product of (p2

− 1)/6 copies of the Jacobian of
y2
= x p

− x .
It should be noted that the field of definition of our stable covering ultimately

depends on the field of definition of certain elliptic curves that have “fake CM”.
In [CM 2006] we proved results about these fake CM curves that then made it
possible for us to define the stable model over the ring of integers of an explicit
finite extension of Qp and compute the associated Weil group action, assuming the
results of this paper. In [CM 2006] we also dealt with the p ≤ 11 cases explicitly
and computed the stable reduction of X0(N p3) for (N , p) = 1. We expect that
our methods will extend to X0(N pn), and will have applications to modular forms
as in [CM 2006, Remark 6.10]. We understand that Wewers also has a different
approach with applications to local Langlands.

2. Rigid analytic foundation

We fix some notation for the p-adic analysis and more general nonarchimedean
analysis. Throughout this section, unless otherwise stated, we let K be a complete
nonarchimedean valued field with absolute value | · |. We denote the ring of integers
of K by RK , its maximal ideal by mK , and the residue field by FK . Let p be the
characteristic of FK (which we allow to be 0). Let C be the completion of an
algebraic closure of K , and denote its ring of integers, maximal ideal, and residue
field by R, mR, and F. Note that F is then an algebraic closure of FK . Whenever
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FK is perfect and has positive characteristic, we let W (F) ⊆ R denote the ring of
Witt vectors for any field F ⊆ F. The value group of K will be denoted |K ∗|, and
we let

R :=RK = {x ∈ R : xn
∈ |K ∗| for some n ∈ N}

(equivalently, R := |C∗|). Then if S ⊆ R, we let RS =R∩ S.
Occasionally, for technical reasons, we will need to assume that K is a stable

field [Bosch et al. 1984, Definition 3.6.1/1]. By [1984, Proposition 3.6.2/6], this
is the case if and only if e(L/K ) f (L/K )= [L : K ] for all finite extensions L/K ,
where e(L/K )= |L∗|/|K ∗| and f (L/K )=[FL : FK ] are the ramification index and
residue degree of L over K . There are also two special cases that we will consider
for certain results. First, for a fixed prime p, let Cp be the completion of a fixed
algebraic closure of Qp, let Rp ⊆ Cp be its ring of integers, and let mRp be the
maximal ideal of Rp. Let v denote the unique valuation on Cp with v(p)= 1, and
| · | the absolute value given by |0| = 0 and |x | = p−v(x) for x 6= 0. In this case
R = |C∗p| = pQ. Also Cp is stable, as is the completion of any tamely ramified
extension of a finite extension of Qp. The second specific nonarchimedean valued
field that will be considered is Fp((T )), for which the corresponding field C will be
denoted �p. Both Fp((T )) and �p are stable, and in this case we have R= |T |Q.

Hypothesis T. The field C is isomorphic to either Cp or �p.

In fact, for our purposes, this hypothesis can be relaxed to “C is an immediate
extension1 of Cp or �p”.

Remark 2.1. Suppose K satisfies Hypothesis T. Then if A is an Abelian variety
over K and P ∈ A(C), then 0 is in the closure of {n P : n ∈ N}; see the proof of
Lemma 2.19.

Now, for r ∈R, we let Bd
K [r ] and Bd

K (r) denote the closed and open d-dimen-
sional polydisks over K of radius r around 0, that is, the rigid spaces over K whose
C-valued points are {(x1, . . . , xd)∈Cd

: |xi | ≤ r} and {(x1, . . . , xd)∈Cd
: |xi |< r},

respectively. In particular, let BK [r ] := B1
K [r ] and BK (r) := B1

K (r) denote the
closed disk and open disk of radius r around 0. If r, s ∈R and r ≤ s, let AK [r, s] and
AK (r, s) be the rigid spaces over K whose C-valued points are {x ∈C : r ≤ |x | ≤ s}
and {x ∈ C : r < |x | < s}, which we call closed annuli and open annuli. The
semiopen annuli, AK [r, s) and AK (r, s], are similarly defined. The width of such
an annulus is defined to be logp(s/r) or ln(s/r) if p = 0. Note that all closed
or open disks over K , and all closed or open annuli over K of the same width,
are potentially isomorphic. Here and throughout the paper, we use the adverb
“potentially” in various contexts to mean “after finite base extension.” A closed

1In the classical theory, an extension of valued fields is said to be immediate if the corresponding
value groups and residue fields are isomorphic. This notion was introduced by Krull.
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annulus of width 0 will be called a circle, and we will also denote the circle,
AK [s, s], by CK [s].

If X is a rigid space over K and f ∈ A(X) := OX (X), let | f |sup denote the sup
of | f (x)| over all x ∈ X (C). Then set

Ao(X)= { f ∈ A(X) : | f |sup ≤ 1},

A+(X)= cl { f ∈ A(X) : | f |sup < 1}, and

A(X)= Ao(X)/A+(X),

where cl is the closure in Ao(X). We define the reduction X of X to be the affine
scheme Spec A(X). Suppose now that X =Sp (A) is an affinoid. Then | f |sup is just
the usual spectral seminorm of f , which we also denote by ‖ f ‖X when X is re-
duced and | · |sup is a norm. There is a canonical reduction map Red : X (C)→ X(F),
which we denote by x 7→ x̄ . If X is reduced and Ỹ is any subscheme of X , then
Y := Red−1 Ỹ is the rigid space admissibly covered by affinoid subdomains Z of
X such that Z maps into Ỹ . As a special case, when Ỹ ⊆ X is an open affine, Y is
the unique subaffinoid of X such that Y (C)= {x ∈ X (C) : x̄ ∈ Ỹ (F)}, and we call
Y a Zariski subaffinoid of X . When X is a reduced affine curve, we let X c denote
the unique complete curve that contains X as an affine open and is nonsingular at
all other points (which we call the points at infinity).

If X is a rigid space over K , and L ⊇ K is a complete subfield of C, we write
P ∈ X (L) to mean that P is an L-valued point of X . An unspecified P ∈ X should
be read as P ∈ X (C). We use the notations X L and XFL for the extensions of X
and X by scalars.

2A. Annuli.

Proposition 2.2. Let f : A1→ A2 be a degree d unramified surjection of annuli
over K (open or closed). Then the width of A1 is 1/d times the width of A2.

Proof. Extend scalars to C, and choose isomorphismsψi :Ai→ AC(ri , 1) for some
ri ∈ R with ri < 1. Let T be the natural parameter on AC(r1, 1). Then viewing
f̃ :=ψ2 ◦ f ◦ψ−1

1 as an invertible function on AC(r1, 1), we may write f̃ as either
cT d(1+g(T )) or cT−d(1+g(T )), where g(T ) ∈ A+(AC(r1, 1)). In the first case,
for any t ∈ AC(r1, 1), we clearly have | f̃ (t)| = |c| · |t |d . So by surjectivity of f ,
this implies that |c| = 1 and rd

1 = r2. Thus, logp(1/r1) = (1/d) logp(1/r2). The
second case is very similar. �

Definition 2.3. For any r ∈ R∗
+
\R, we let

Kr =
{∑

n∈Z anT n
: an ∈ K , lim|n|→∞|an|rn

= 0
}
.
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Then Kr is a field, and f 7→ max {|an|rn
} is a valuation2 if f (T ) =

∑
n∈Z anT n .

If r1, . . . , rn ∈ R∗
+

have linearly independent images in the Q-vector space R∗
+
/R,

we let Kr1,...,rn := (Kr1,...,rn−1)rn and K∅ = K .

Then Kr1,...,rn
∼= Kr1⊗̂K . . . ⊗̂K Krn , and its value group is generated by R and

{r1, . . . , rn} [Berkovich 1990, pp. 21–22]. If m is a positive integer, the map
f (T ) 7→ f (T m) gives an injection from Krm into Kr for any r .

Lemma 2.4. The group Autcont(Kr1,...,rn/K ) contains a subgroup H , for which
h 7→ hd is a bijection whenever p - d, and whose fixed field is K .

Proof. It suffices to do the case n= 1. Let r = r1. Suppose α ∈ K such that |α|< r .
If f ∈ Kr and f (T )=

∑
n∈Z anT n , we set

f σα (T )=
∑
n>0

a−n

(
T−1

1−αT−1

)n
+

∑
n≥0

an(T −α)n.

Then σα ∈ Autcont(Kr/K ), and if an = 0 for large |n|, then f σα (T ) is the image
of the rational function f (T − α) in Kr . It follows, by continuity, that the map
α 7→ σα is an injective homomorphism from the subgroup Br := {α ∈ K : |α|< r}
of K+ into Autcont(Kr/K ). Since p - d , α 7→ dα is a bijection on Br .

Now, if f σα (T )=
∑

n∈Z bnT n , then

bn =
∑
m≥n

(
(−1)m−n

(m
n

)
+

(
−n−1
−m−1

))
amα

m−n,

where we set
(a

b

)
= 0 if a < 0 or b < 0. Suppose f σα = f for all α ∈ Br . Then in

the formula above, we must have bn = an for all α ∈ Br . This can only happen if
an = 0 for all n 6= 0. Therefore f ∈ K , and we may take H to be the image of Br

in Autcont(Kr/K ). �

Lemma 2.5. Let X be a reduced affinoid over K , and let f : X → AK [a, b] be
finite, flat, and of degree d , where p - d and a, b ∈ R with a < 1 < b. Let T be
the natural parameter on AK [a, b]. Suppose there exists a function G on X [1] :=
f −1CK [1] such that ‖Gd

− f ∗T ‖X [1] < 1. Then there exist a1, b1 ∈ R[a, b] with
a1 < 1< b1, and a function S on f −1 AK [a1, b1], such that Sd

= f ∗T .

Proof. Setting s = G and t = T , we have O(X [1]) = FK [s, s−1
] and O(C[1]) =

FK [t, t−1
], and f̄ : X [1] → C[1] is given by t = sd . Let V = AK [a, 1] and

U = f −1(V ). Then CK [1] is an affine open in V . Therefore, identifying O(U )
with its image in O(X [1]), we have

O(X [1])= O(U )⊗O(V ) O(CK [1]).

2Some authors call this an absolute value.
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Thus s is in the image of O(U ). So we may lift s to a function S0 ∈ Ao(U ) such
that

‖Sd
0 − f ∗T ‖X [1] < 1.

Now, choose a1∈R[a, 1) such that |Sd
0− f ∗T |< | f ∗T | on U1 := f −1 AK [a1, 1].

Let p(x)= xd
−( f ∗T/Sd

0 ), considered as a polynomial over Ao(U1). Then x0 := 1
satisfies |p(x0)|<1 and |p′(x0)|=1 over all of U1. Therefore, by the usual Hensel’s
lemma argument, there exists a unique x ∈ Ao(U1)with p(x)=0 and ‖x−1‖U1 <1.
Letting S1 = S0x , we have an S1 ∈ A(U1) whose restriction to X [1] is a lift of s,
and for which Sd

1 = f ∗T .
By precisely the same argument, there is a function S2 ∈ A(U2) that reduces to s

on X [1] and satisfies Sd
2 = f ∗T , where U2= f −1 AK [1, b1] for some b1 ∈R(1, b].

Also, since X is reduced, (S1/S2)
d
= 1 on X [1] (with p - d), and ‖Si−G‖X [1]< 1,

we must have S1 = S2 on X [1]. Therefore, S1 and S2 patch to a function S on
f −1 AK [a1, b1] with Sd

= f ∗T . �

Theorem 2.6. Suppose a < b ∈R. Any finite connected étale cover over K of the
annulus AK [a, b] (respectively AK (a, b)) of degree d, where d < p if p 6= 0, is an
annulus isomorphic over K to AK [a1/dc, b1/dc] (respectively AK (a1/dc, b1/dc))
for some c ∈ |K ∗|1/d .

Proof. We will first prove the statement for closed annuli.
Let W be a connected rigid space over K , and let f : W → AK [a, b] be finite

and étale of degree d < p (if p 6= 0). Initially, we also assume that a, b ∈ |K ∗|.
For each r ∈ |K ∗| ∩ [a, b], let Wr be the inverse image in W of the circle CK [r ].
Then the connected components of Wr , which we denote by {Vr 1, . . . , Vr mr }, are
affinoids over K , with each Vr i finite and étale of degree dr i over CK [r ], such that∑

dr i = d. As d < p or p= 0, each V r i must be finite and étale of degree dr i over
CK [r ] ∼= Gm . Thus, there must exist an isomorphism σr i : Vr i → CK [r1/dr i ] such
that f ◦σ−1

r i reduces to x 7→ xdr i on Gm (with respect to the standard parameters).
Moreover, this implies by Lemma 2.5 that for each r ∈ |K ∗| ∩ (a, b) there exist
αr , βr ∈R[a, b] with αr < r < βr , and an embedding

Fr :

mr∐
i=1

AK (α
1/dr i
r , β1/dr i

r ) ↪→W

such that Im(Fr ) = f −1 AK (αr , βr ). In fact, F−1
r can be defined on the i-th com-

ponent of f −1 AK (αr , βr ) by a parameter Sr i such that Sdr i
r i = f ∗T (where T is

the natural parameter on AK (αr , βr )). Similarly, we have embeddings Fa and Fb,
each of a disjoint union of semiopen annuli into W , with images f −1 AK [a, βa)

and f −1 AK (αb, b].
Suppose further that [a, b] = [a, βa)∪ (αb, b] ∪

⋃
r∈|K ∗|∩(a,b)(αr , βr ). Then by

compactness of [a, b], we may choose a finite set {r1, . . . , rn} ⊂ |K ∗|∩(a, b) such
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that [a, b] is covered by [a, βa), (αb, b] and the intervals (αri , βri ) for 1 ≤ i ≤ n.
Whenever two of these intervals overlap, it is clear from the properties of Fr that
the inverse images in W of the corresponding subannuli of AK [a, b] must have
the same number of connected components. Therefore, as W is connected, it
follows that mr = 1 for all r ∈ |K ∗| ∩ [a, b]. Thus, Fr is an isomorphism of
AK (α

1/d
r , β

1/d
r ) onto f −1 AK (αr , βr ), given by a parameter Sr with Sd

r = f ∗T
(for r ∈ |K ∗| ∩ (a, b), and similarly for r = a or b). We claim that Fa , Fb,
and the Fri can be used to construct an isomorphism of AK [a1/d , b1/d

] onto W .
Indeed, whenever (αri , βri ) ∩ (αr j , βr j ) = (αr j , βri ), we have a parameter Sri on
f −1 AK (αri , βri ) such that Sd

ri
= f ∗T , and likewise for r j . After adjusting by a d-th

root of unity in K if necessary, Sri and Sr j agree on f −1 AK (αr j , βri ). Therefore
the two parameters patch to a parameter Si j that identifies f −1 AK (αri , βr j ) with
AK (α

1/d
ri , β

1/d
r j ). After finitely many such patching steps, we have constructed a

parameter S on W over K such that Sd equals f ∗T and thus defines an isomorphism
from W onto AK [a1/d , b1/d

].
More generally, without making the above two suppositions, for each r ∈ [a, b]

take Mr to be a finite Galois extension of K such that r ∈ |M∗r | if r ∈ R and Kr

(defined as above) otherwise. Then we may choose αr , βr ∈ RMr [a, b] and an
embedding Fr that is defined over Mr , precisely as was done over K . Now, we
know that [a, b] is covered by [a, βa), (αb, b], and {(αr , βr ) : r ∈ (a, b)}. So by
compactness, there exists a finite set t1, . . . , tm ∈ (a, b) such that [a, b] is covered
by [a, βa), (αb, b], and {(αti , βti ) : 1≤ i ≤m}. Choose a finite Galois extension L
of K so that the images of the ti in R∗

+
/|L∗| generate a torsion-free abelian group.

Then choose r1, . . . , rn ∈R∗
+

so that their images form a basis for this group. Then
the argument above can be applied to produce a parameter S on W , which is defined
over Lr1,...,rn such that Sd

= f ∗T .
Now, if σ ∈Autcont(Lr1,...,rn/L), the map σ 7→ ζ(σ ) := Sσ/S is a 1-cocycle with

values in µd(A(WLr1,...,rn
)). Since W is connected, this equals µd(Lr1,...,rn ), which

is µd(L). It follows from Lemma 2.4 that ζ(σ )= 1 for all σ in a subgroup whose
fixed field is L . Thus S is defined over L . Then, for σ ∈ Gal(L/K ), Sσ = h(σ )S,
where h is a 1-cocycle. So by Hilbert’s Theorem 90 there exists γ ∈ L∗ such
that h(σ ) = γ σ/γ . Then H := S/γ is defined over K and H d

= αT for some
α ∈ K ∗. Therefore H defines an isomorphism of W onto AK [a1/dc, b1/dc], where
c = |α|1/d .

To deal with open annuli AK (a, b), choose sequences {an} and {bn} in RK (a, b)
such that an < bn , an → a and bn → b. For large n, W[an,bn] := f −1 AK [an, bn]

is connected, and it is finite étale over AK [an, bn] of degree d . Therefore, it is
isomorphic to AK [a

1/d
n cn, b1/d

n cn] by what we have proven. The theorem follows
when we let n go to infinity. �
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Remark 2.7. (i) When K is algebraically closed, there exists a = c0 < · · · <

cn+1 = b in R such that f −1 A(ci , ci+1) is a disjoint union of open annuli
[Lütkebohmert 1993, Lemma 2.3]. One could then use Hilbert’s Theorem 90
and Lemma 2.5, as in the proof above, to give another proof of the theorem.

(ii) One can obtain the same conclusion about W , for any finite étale surjection
f whose Galois closure has degree prime to p when p 6= 0.

If X is a reduced affinoid over K and P ∈ X(FK ), we let RX (P) denote the
residue class of P . When the context makes it clear, we will drop the subscript X .
This is the open rigid subspace of X whose C-valued points reduce to P , or equiv-
alently, the subspace Red−1 P , where P is naturally identified with a subscheme
of X . Alternatively, suppose f1, . . . , fm ∈ Ao(X) are such that f̄1, . . . , f̄m gener-
ate the maximal ideal of P . Then R(P) is admissibly covered by the increasing
sequence of affinoids whose C valued points are

{x ∈ X (C) : | fi (x)| ≤ rn, 1≤ i ≤ m},

where rn ∈R, rn < rn+1 and limn→∞ rn = 1. If x is a point of X such that x̄ = P
(which always exists by [Tate 1971, Theorem 6.4]), this is naturally isomorphic to
the formal fiber X+(x) of Bosch (by [1977a, Satz 6.1]).

Proposition 2.8. Let K be a stable field. Suppose X is a reduced pure d-dimen-
sional affinoid over K , ‖A(X)‖ = |K | (equivalently, Ao(X)⊗RK FK is reduced),
and P ∈ X(FK ). Then A(R(P))∼= ÔX ,P .

Proof. Let I (P) be the closure of mK Ao(R(P)) in Ao(R(P)). Bosch [1977a,
p. 44] proved that Ao(R(P))/I (P) ∼= ÔX ,P when there exists a surjective map
φ : Tn→ A(X) such that φ̊ is surjective.3 That such a map exists when K is stable
and ‖A(X)‖X = |K | follows from [Bosch et al. 1984, Corollary 6.4.3/6]. It is clear
that I (P) ⊆ A+(R(P)) ⊆ rad(I (P)). Since X is reduced, so is ÔX ,P , and hence
I (P)= A+(R(P)). The proposition follows. �

Definition 2.9. Let P be a point on a curve C over a field k. We say that P is an
ordinary double point over k if ÔC,P ∼= k[[u, v]]/(uv).

Hypothesis B. RK contains a bald subring [Bosch et al. 1984, Definition 1.7.2/1]
with the same residue field.

K satisfies Hypothesis B if it is discretely valued, if its residue field is perfect,
or if its residue field lifts to a subfield. In particular, this is the case if K satisfies
Hypothesis T. We do not know if all complete, nonarchimedean-valued fields K
satisfy Hypothesis B.

3As the example at the end of [Bosch et al. 1984, §6.4] implies, φ need not be distinguished; see
[Bosch et al. 1984, Definition 6.4.3/2].
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Proposition 2.10. Let X be a reduced, irreducible affinoid over a stable field K
satisfying Hypothesis B. Suppose that X is a reduced curve and P ∈ X(FK ). Then
P is an ordinary double point over FK if and only if the residue class R(P) is
isomorphic to AK (r, 1) for some r ∈ |K ∗|.

This was proven in [BL 1985, Proposition 2.3] when K is algebraically closed,
and we adapt their proof to our case here.

Lemma 2.11. Let I be a bald subring of RK , and {r1, r2, . . . } a zero sequence
in RK . Then there exists a bald subring of RK containing I and rn for all n ≥ 1.

Proof. The proof is almost identical to that of [Bosch et al. 1984, Corollary 1.7.2/5];
just replace the I in the proof of 1.7.2/4 with this I . �

Lemma 2.12. Let X be a reduced, one-dimensional affinoid, with reduced reduc-
tion, over a stable field K satisfying Hypothesis B. Suppose that f, g ∈ C := A(X)
generate a maximal ideal M= ( f, g), such that C/M∼= FK and f g ∈M3. Let

U =
{

X if f g = 0,
{x ∈ X : f (x̄)= g(x̄)= 0} otherwise.

Then there exist F,G ∈ Ao(U ) and c ∈ RK such that

F − f ∈M2 A(U ), G− g ∈M2 A(U ), and FG = c,

where we use Proposition 2.8 to identify A(U ) with ÔX ,U .

Proof. Suppose that f1, g1 ∈ Ao(X) are such that f = f̄1 and g = ḡ1, and that
α : X → BK [1] is a finite morphism. That X is reduced implies ‖A(X)‖X = |K |.
So by [Bosch et al. 1984, Corollary 6.4.1/4], α∗ : Ao(BK [1])→ Ao(X) is finite.
Now suppose α∗(Ao(BK [1])) = RK 〈T 〉. As C is torsion-free (because X is flat
over A1) and finitely generated over FK [T ], it is free. Choose h1, . . . , hn ∈ Ao(X)
so that h̄1, . . . , h̄n is a basis for C over FK [T ]. Then h1, . . . , hn is a basis for Ao(X)
over RK 〈T 〉. Thus B := {hi T j

: 1 ≤ i ≤ n, j ∈ N0} is an orthonormal Schauder
basis [ibid., Definition 2.7.2/1] for A(X). As C =M⊕ FK , the ring C has a basis
over FK of the form {1, ᾱi f, β̄ j g : i, j ∈N} for some αi , β j in a subring of Ao(X)
finitely generated over a bald subring of RK with residue field FK . It follows from
Lemma 2.11 that the change of basis matrix from B to {1, αi f1, β j g1 : i, j ∈ N}

has entries in a bald subring of RK [ibid., Definition 1.7.2/1]. Hence by the lifting
theorem of [ibid., Theorem 2.7.3/2], this is also an orthonormal Schauder basis.
Hence Ao(X)= RK +M , where M = ( f1, f2).

We have
f1g1 = πc1+ f1(πa1+ b1)+ g1(πa2+ b2),

with c1 ∈ RK , ai ∈ Ao(X), bi ∈ M2 (and bi = 0 if f g = 0) for some π ∈ RK ,
|π |< 1. Let I =πRK+ f1 Ao(X)+g1 Ao(X)=π Ao(X)+M , and let J =π Ao(X)
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if f g = 0 and I otherwise. Let f2 = f1− (πa2+ b2), and g2 = g1− (πa1+ b1).
Then

f2g2 = πc1+ (πa1+ b1)(πa2+ b2)

≡ πc1+π
2c′2 mod (π Ao(X)+M)3

≡ πc1+π
2c′2 mod π2 M if f g = 0,

for some c′2 ∈ RK . Now I n
= πn RK + f1 I n−1

+ g1 I n−1, so this implies

f2g2 = πc1+π
2c2+ f1r2,1+ g1r2,2,

where c2 ∈ RK , r2,i ∈ J 2. Let kn = 2n−2
+ 1 for n ≥ 2 and k1 = 1. Suppose

fngn = πc1+π
2c2+π

4c3+ · · ·+π
2kn−1cn + f1rn,1+ g1rn,2

for some rn,i ∈ J kn . Set fn+1 = fn − rn,2 and gn+1 = gn − rn,1. Then

fn+1gn+1 = πc1+π
2c2+π

4c3+· · ·+π
2kn−1cn+rn,1rn,2

= πc1+π
2c2+π

4c3+· · ·+π
2kn−1cn+π

2kn cn+1+ f1rn+1,1+g1rn+1,2,

where rn+1,i ∈ J kn+1 .
Finally, let r1,1 = πa1 + b1 and r1,2 = πa2 + b2. Set F = f1 −

∑
n≥1 rn,2 and

G = g1−
∑

n≥1 rn,1. Then these are elements of Ao(U ) that satisfy

FG = c := πc1+π
2c2+

∑
n≥3 π

2n−2
+2cn. �

Proof of Proposition 2.10. Suppose P ∈ X(FK ) is an ordinary double point. We can
apply Lemma 2.12 to conclude that there exist F,G ∈ Ao(R(P)) and c ∈ RK such
that (F,G) = MP and FG = c. Thus we have a morphism R(P)→ AK (|c|, 1).
That this is an isomorphism follows, as in the proof of [BL 1985, Proposition 2.3].

Conversely, suppose that R(P) is isomorphic to the annulus AK (r, 1) for some
r ∈ |K ∗| with r < 1. Then Ao(R(P))∼= RK [[T, cT−1

]], where c ∈ K with |c| = r .
So applying Proposition 2.8 we have

ÔX ,P
∼= A(R(P))∼= FK [[x, y]]/(xy),

and hence P is an ordinary double point of X . �

For a rigid space W over K , set

Di (W/K )= Ker(d :�i
W/K (W )→�i+1

W/K (W ))/d�i−1
W/K (W ),

where if A(W ) is the ring of rigid functions on W , then �i
W/K (W ) is the A(W )

module of rigid i-forms on W .
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Lemma 2.13. Suppose W = AK (r, s) or BK (r) \ {0}, where r, s ∈ |L∗| for some
finite extension L/K . Then

D0(W/K )∼= D1(W/K )∼= K .

Proof. If r, s ∈ |K ∗|, the lemma is clear. For in this case, we may choose a, b ∈ K
with |a| = r and |b| = s, and let x = T/b and y = a/T , where T is the natural
parameter on A1

K . Then AK (W ) is equal to the set of functions represented by

∞∑
n=0

anxn
+

∞∑
n=1

bn yn,

where an, bn ∈ K , antn
→ 0 and bntn

→ 0 as n→∞, for |t |< 1. There is a natural
continuous linear map ρK from �1

W/K (W ) onto K such that ρK (dv/v)= 1 for any
parameter v on WK such that |v(u)|> |v(w)| if |u|> |w| and u, w ∈ AK (r, s)(C).
Moreover, for any ω ∈�1

W/K (W ), ω ∈ dAK (W ) if and only if ρK (ω)= 0.
More generally, suppose L is a finite Galois extension of K with Galois group G,

and that r, s ∈ |L∗|. Then G acts on �1(AL(r, s)) such that �1(AL(r, s))G =
�1(AK (r, s)) and ρL(ω

σ ) = ρL(ω)
σ . Also, if r, s ∈ |K ∗|, then ρL |�1(AK ) = ρK .

Suppose ω ∈ �1(AK (r, s)) and ρL(ω) = 0. Then Hilbert’s additive Theorem 90
gives ω ∈ dA(AK (r, s)). Thus we have an injective K -linear map D1(W/K )→
LG
=K . If ω∈�1(AL(r, s)), ρL(ω)=1 and ν=

∑
σ∈G ω

σ , then ν ∈�1(AK (r, s))
and ρLν = [L : K ]. So this map is an isomorphism. �

From the proof we see that for any open annulus W over K , there are two residue
maps from �1

W onto K . In particular, they are resr,s ◦ f ∗ and − resr,s ◦ f ∗, where
f : AL(r, s)→ WL is an isomorphism and resr,s = ρL |�1(AK ) for any extension L
of K such that r, s ∈ |L∗|. By an oriented annulus over K , we mean a pair (W, ρ),
where W is an open annulus and ρ is a choice of one of the residue maps.

An end of a rigid space W over K is an element of the inverse limit of the set of
connected components of W \Z , where Z ranges over finite unions of subaffinoids
of W defined over K (ordered by containment). We let E(W ) denote the set of
ends of W , and we let e(W ) = |E(W )| (which may be infinite). For example,
e(W ) = 2 whenever W is an open annulus. If W is admissibly covered by a
countable number of affinoids, and f is a real-valued function of W (C), it makes
sense to compute the limit of f at an end e ∈ E(W ). In particular, we define
limx→e f (x)= limn→∞ f (xn), where {xn} is any sequence in W (C) such that for
any Z as above, xn is contained in a connected component of W \ Z that maps
to e for sufficiently large n (provided this limit exists and is independent of the
sequence).

The following result is used in the proof of [CM 2006, Theorem 5.2].
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Proposition 2.14. Suppose K is discretely valued and U is a rigid space over K
with two ends such that for some finite extension L of K , UL is isomorphic to the
open annulus AL(|u|, 1), where u ∈ K ∗ and |u|< 1. Then U ∼= AK (|u|, 1).

Proof. We may suppose that e(L/K ) > 1 and L is a Galois extension of K with
Galois group G. Let M = A(UL). Then G naturally acts on M , and MG

= A(U ).
Let R = RL , and let FL and FK denote the residue fields of L and K . Let π be a
uniformizing parameter on L .

Let a and b denote the ends of U , and suppose F ∈ M is an isomorphism from
UL onto AL(|u|, 1) such that limx→a|F(x)| = 1. Then we may use F to identify
M with L{{T, u/T }}, and the group Ma of orientation-preserving automorphisms
of AL(|u|, 1) with (under composition){

T
( ∞∑

i=0

ai T i
+

∞∑
i=1

bi (u/T )i
)
: ai , bi ∈ R and a0 ∈ R∗

}
.

The group G preserves Ma . For σ ∈ G, set σ(T )= Gσ (T ). For

h(T )=
∞∑

i=0

ai T i
+

∞∑
i=1

bi (u/T )i ∈ L{{T, u/T }},

set
hσ (T )=

∞∑
i=0

aσi T i
+

∞∑
i=1

bσi (u/T )i .

Then
Gσ
τ ◦Gσ = Gστ . (1)

We will show that there exists F ∈ Ma such that

Fσ ◦ F−1
= Gσ . (2)

This will imply that F−1(T ) ∈ A(U ), and as F−1(T ) is a parameter on U , it will
then follow that U is an annulus over K .

So first let I be the ideal in C := R[[T, u/T ]] generated by π , T and u/T , and
suppose that

Gσ (T )≡ a(σ )T mod TI, where a(σ ) ∈ R∗.

Then, from (1), we have a(σ )τa(τ )≡ a(στ) mod π . Using Hilbert’s Theorem 90
applied to FL/FK , one can show there exists a c∈ R∗ such that cσ/c≡ a(σ ) mod π .
Let h(T )= cT . Then we have

(h−σ ◦Gσ ◦ h)(T )≡ T mod TI.

Now, suppose Gσ (T )= T (1+ hσ (T )), where hσ (T ) ∈ I k .
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Lemma 2.15. Suppose h(T ) :=
∑
∞

i=1 B−i (u/T )i +
∑
∞

i=0 Bi T i is in C. Then
h(T ) ∈ I k if and only if Bi ≡ 0 mod π k−|i |R.

Proof. Let Sk be the R-module of series whose coefficients satisfy the bounds
above. The lemma is clearly true for k = 0. Suppose it is true for k. Let T be the
continuous involution of the R-algebra C that takes T to u/T . Then I and Sk are
preserved by T. As π k−i T i

∈ I k for 0≤ i ≤ k, and T k+1 R[[T ]] ⊆ I k+1, it follows
that Sk+1 ⊆ I k+1. We have

π(π k−i T i )= π k+1−i T i and T (π k−i T i )= π k+1−(i+1)T i+1,

and because v(u)≥ 2v(π),

T (π k−i (u/T )i )= uπ k−i (u/T )i−1
∈

{
π k+1−(i−1)(u/T )i−1 R if i > 0,
π k+1−1T R if i = 0.

Thus I k+1
⊆ Sk+1. �

Now suppose

hσ (T )=
∞∑

i=1

B−i (σ )(u/T )i +
∞∑

i=0

Bi (σ )T i .

Then, since

T (1+ hτ (T ))
(
1+ hτσ (T (1+ hτ (T )))

)
≡ T (1+ hτσ (T )+ hτ (T )) mod TI2k,

it follows that

Gτ
σ ◦Gτ (T )≡

T
(

1+
2k∑

i=1

(B−i (τ )+ B−i (σ )
τ )(u/T )i +

2k∑
i=0

(Bi (τ )+ Bi (σ )
τ )T i

)
mod TI2k .

Therefore, by Lemma 2.15 we have

Bi (στ)≡ Bi (τ )+ Bi (σ )
τ mod π2k−|i |.

Finally, using Hilbert’s Theorem 90 again, we can find Ci ∈ π
k−|i |R∩ R such that

Cτ
i −Ci ≡ Bi (τ ) mod π2k−|i | for −2k ≤ i ≤ 2k.

So let

H(T )= T
(

1+
2k∑

i=1

C−i (u/T )i +
k2
−1∑

i=0

Ci T i
)
.

Then H ∈ TIk and Hσ
◦ H−1

≡ Gσ mod TI2k . Thus we can find a convergent
sequence Fk ∈ Ma such that Fσk ◦ F−1

k → Gσ in Ma . The limit, F ∈ Ma , must
satisfy (2). �
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Remark 2.16. Suppose K is discretely valued and U is a rigid space with one
end over K , such that UL is isomorphic to the open disk BL(1) for some finite
extension L of K . Then it follows from a similar argument that U ∼= BK (1).

2B. Wide open spaces. In [Coleman 1989, §III] we defined wide open spaces
over Cp. Now we need to use them over more general fields. Suppose W is a
one-dimensional smooth rigid space over K . Then W is a wide open space, or
wide open, over K if it contains affinoid subdomains X and Y such that

(i) W \ X is a disjoint union of finitely many open annuli,

(ii) X is relatively compact in Y , and

(iii) Y ∩ V is a semiopen annulus for all connected components V of W \ X .

We call X an underlying affinoid of W . From the definition, it is immediate that
there is a natural bijection between E(W ), the set of ends of W , and CC(W \ X),
the set of connected components of W \ X . And X is connected to each element
of CC(W \ X). So e(W ) is finite in this case. We call the connected component of
W \ X that corresponds to an element e of E(W ) an annulus at e.

Remark 2.17. It is not immediate that the intrinsic definition of a wide open space
given above is equivalent to the one given in [Coleman 1989, §III] when K = Cp.
However, this will follow in one direction from Theorem 2.18 and in the other from
Theorem 2.40.

Theorem 2.18. Let W be a wide open over K with underlying affinoid X. Then W
may be completed to a proper algebraic curve C over K by gluing open disks onto
the connected components of W \ X.

Proof. More specifically, let S be the set of connected components of W \ X . For
each open annulus V ∈ S, let αV : V → BV be an embedding of V into an open
disk over K such that BV \αV (V ′) is connected for any concentric annulus V ′⊆ V
that is connected to X . We will show that

C :=
(

W ∪
∐
V∈S

BV

) /
{αV (V )= V }V∈S

is isomorphic to a complete algebraic curve.
It is clear that C is smooth of dimension one. Therefore, to establish the claim,

by the Riemann existence theorem (Theorem A.2), we need only show that C is
proper [Bosch et al. 1984, Definition 9.6.2/2]. The number of connected compo-
nents of W is finite and equals the number of connected components of X , and so
we may assume without loss of generality that W is connected. In this case X is
contained in a residue class R(P) of Y (where P is the image of X in Y ). Choose
an f ∈ Ao(Y ) such that P is an isolated zero of f̄ . This can be done by first passing
to a finite extension L of K so that Y L is reduced and so that there is such a function
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g∈ Ao(YL). Then let f be the norm of g. Now by [BL 1985, Lemma 2.4], if α∈R,
and α is less than and sufficiently close to 1, then {x ∈ R(P) : | f (x)| ≥ α} is the
set of C-valued points in a subdomain Uα of W which, after a finite extension (the
field in that lemma is algebraically closed), becomes isomorphic to a finite union
of semiopen annuli. In fact, for α sufficiently close to 1, Uα must decompose
as
∐

V∈S Aα,V , where each Aα,V is a concentric semiopen annulus in V . Thus
B1,V := BV \ αV (V ∩ Y ) and Bα,V := B1,V ∪ αV (Aα,V ) are closed disks. Also,
we may define Xα to be the rigid subdomain of W whose C-valued points are
{x ∈ R(P) : | f (x)| ≤ α}.

Then, U := {Xβ, Bβ,V : V ∈S} and V := {Y, Bα,V : V ∈S}, for any β ∈R with
α <β < 1, are two finite admissible affinoid coverings of C such that each element
of U is relatively compact in an element of V. So C is proper if it is separated. To
verify that C is separated, we must show that the diagonal map 1 : C→ C ×K C
is a closed immersion. This can be checked locally using the admissible affinoid
cover of C ×K C given by {Z ×K Z ′ : Z , Z ′ ∈ U}. Indeed, for every Z , Z ′ ∈ U,
1−1(Z ×K Z ′) = Z ∩ Z ′ is an affinoid and 1∗ : A(Z ×K Z ′) → A(Z ∩ Z ′) is
surjective. This is obvious when Z = Z ′. Otherwise, when Z ∩ Z ′ 6= ∅ we must
have {Z , Z ′} = {Xβ, Bβ,V } for some V ∈ S. So in this case, Z ∩ Z ′ is a circle
over K , and in particular the concentric circle in V ∩ Y defined by | f (x)| = β.
To obtain surjectivity, first make a finite base extension L of K so that (Xβ)L and
(Bβ,V )L are reduced. Then O((Xβ)L) is isomorphic to a subring of

FL [t1, . . . , tN ]/(ti t j )i 6= j

that contains a power of the ideal (t1, . . . , tN ). Also, if ti is the particular parameter
corresponding to V , then O((Bβ,V )L) can be identified via the gluing map with
FL [t−1

i ]. So 1∗ is surjective, as O(Z ∩ Z ′)= FL [ti , t−1
i ]. Thus, C is separated over

K [Bosch et al. 1984, Definition 9.6.1/1], and hence proper [Bosch et al. 1984,
Definition 9.6.2/2]. Therefore, C is an algebraic curve by the Riemann existence
theorem. �

When a wide open W is completed to a curve C as above, the underlying affinoid
X is the complement in C of a finite union of open disks. As we will now show,
this results in a close connection between the reductions of C and the canonical
reduction of X . Of particular interest will be the case when (W, X) is basic (defined
below), in which case, provided K is stable and assuming Hypothesis T, we show
that X is the minimal underlying affinoid and C has a model that reduces to X c.

Lemma 2.19. Assume Hypothesis T. Let C be a smooth complete curve over K ,
and let Z be a nonempty subset of C(K ) that is Galois stable over K and open in
the canonical topology [Bosch et al. 1984, §7.2.1]. If Q is a point in C(K ), there
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exists a function f on C , defined over K , with a pole only at Q and zeroes only
in Z.

Proof. We can assume g = g(C) > 0 and Q /∈ Z . Identify C with its image in its
Jacobian J by x 7→ (x)− (Q). Then U := [g]J Z = Z [+]J · · · [+]J Z is open in
J (K ). Let P 6= 0 ∈ U . We claim that there is a sequence m1,m2, . . . of positive
integers such that [mn]J P→ 0.

By [BL 1984, Theorems 5.1, 6.6, 7.4 and 7.5] (see [Cherry 1994, Theorems 2.1
and 2.2] also), there is a finite extension L of K ,4 a commutative rigid analytic
group Ĵ , and formal analytic groups J fm and B over L [Bosch 1977b, Defini-
tion 1.4] (see also [Bosch 1976, introduction] and [Cherry 1994, p. 397]), such
that B is proper and we have an injective composition (J fm)rg → Ĵ → J rg

L such
that the image of (J fm)rg in J rg

L is a maximal connected subgroup with a formal
analytic structure.5 Moreover, there is a diagram with exact rows and columns

0
��

Zt

��
0 // (Grg

m )
t // Ĵ

��

// Brg // 0

J rg
L

��
0

where t ∈ N (the toric rank) and the image of Zt is a discrete closed subgroup.
This induces an exact sequence 0→ (Gfm

m )
t
→ J fm

→ B→ 0, of formal analytic
groups6 and implies that Ĵ (L)/J fm(L) is isomorphic to (Grg

m (L)/Gfm
m (L))

t and the
reduction of J fm over the residue field of L is semiabelian.7

So J (L)/J fm(L) is isomorphic to (Grg
m (L)/Gfm

m (L))
t/0, where 0 is the injec-

tive image of Zt
→ Ĵ (L)/J fm(L)→ (Grg

m (L)/Gfm
m (L))

t . Assuming Hypothesis T
for L , Grg

m (L)/Gfm
m (L) = L∗/R∗L is isomorphic to a subgroup of Q, and hence it

follows that J (L)/J fm(L) is torsion. As all elements on a semiabelian variety over
a finite field are torsion, some multiple [k]J P of P lies in the image of the kernel
of reduction of J fm, and then [pnk]J P→ 0.

Now, since U is open and [mn]J P→ 0, there is a positive integer m such that
−[m − 1]J P = P [−]J [m]J P ∈ U . Thus 0 ∈ [mg]J Z . More specifically, there is

4While the field is assumed to be algebraically closed in [BL 1984], it is explained on [BL 1984,
p. 257] how to show that Ĵ may be defined over a finite extension.

5If Y is a scheme or formal analytic space, Y rg will denote the associated rigid space.
6Gfm

m denotes the formal completion of Gm along its reduction.
7Formal analytic spaces have canonical reductions.
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a principal divisor D of the form

(m− 1)
g∑

i=1

(Pi )+

g∑
i=1

(Ri )−mg(Q),

where Pi and Ri ∈ Z . If g is a function over L with this divisor, we can take
f =

∏
σ gσ , where σ ranges over embeddings of L/K into C/K . �

Lemma 2.20. Suppose C is a complete curve over K and U is an open disk in C.
Then Y := C \U is a nonempty open in the canonical topology.

Proof. Let P be any point in Y , which is nonempty since U is not proper and so
cannot equal C . By Riemann–Roch, we can choose a meromorphic function g on
C with a pole only at P . Then because g|U is holomorphic and finite to one, g(U )
is an open disk in A1. Let E be an open disk around infinity in P1

\ g(U ). Then
g−1(E) is an open neighborhood of P in Y , in the canonical topology. �

Proposition 2.21. Assume Hypothesis T. Suppose C is a smooth complete curve
over K . Let L be a finite Galois extension of K , and let T be a finite, nonempty,
Galois stable subset of C(L). Suppose D={Dt : t ∈T } is a Galois stable collection
of disjoint open disks over L in C , such that Dt ∩ T = {t} for all t ∈ T . Then if
U =

⋃
D, then X :=C \U is a one-dimensional affinoid over K , and the image of

the ring of algebraic functions, OC(C \ T ), is dense in A(X).

Proof. X is nonempty, since U is not proper, and X is open in the canonical
topology by Lemma 2.20. Therefore, Lemma 2.19 implies that for each Galois
orbit S ⊆ T there exists a function fS ∈ OC(C \ S), defined over K , that has a pole
at each s ∈ S and zeroes only on X . Set D0 = D, X0 = X , and U0 = U . Then for
each n ≥ 1, choose a Galois stable collection Dn of |T | open disks over L in C ,
such that Dn+1⊆Dn for all n≥0 and

⋂
n Dn= T . Set Un=

⋃
Dn and Xn=C\Un .

Let Dt n be the disk in Dn that contains any particular t ∈ T , and for any Galois
orbit S ⊆ T , set MS n = inf{| fS(x)| : x ∈

⋃
s∈S Ds n}. (Note that this infimum is

positive and does not belong to the set, since |g|sup exists and is not equal to |g(x)|
for any x ∈ D when g is a rigid function on an open disk D that vanishes at only
finitely many points.) We claim

Xn = Zn := {x ∈ C : | fS(x)| ≤ MS n for all Galois orbits S ⊆ T }.

It is clear that Zn ⊆ Xn since Zn cannot intersect Dt n for any t ∈ T . For the
other direction, note that fS is defined over K and has poles only on S, and so
fS : C → P1 has degree |S|dS where dS := − ords fS for any s ∈ S. Moreover,
since fS has no zeroes on D, fS|Ds n is a dS to 1 map onto the disk P1

\ BK [MS n].
It follows that MS n ∈R and ‖ fS‖Xn = MS n . Thus, Xn ⊆ Zn . So Xn = Zn , and in
particular Xn is an affinoid.
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For each n and S, we may choose eS n ∈N and aS n ∈ K ∗ such that |aS n| =MeS n
S n .

Then, using the notation of [Bosch et al. 1984, §7.2.3], we have

Zn = Zn+1( f eS n
S /aS n : S is a Galois orbit in T ).

It follows from [Bosch et al. 1984, Proposition 7.2.3/1] that the image of A(Xn+1)

is dense in A(Xn). Suppose g ∈ A(X) and ε > 0. Then there exist functions
hn ∈ A(Xn) such that ‖h1 − g‖X < ε and ‖hn+1 − hn‖Xn < ε/n for n ≥ 1. It
follows that the sequence hn converges to an element hε ∈ A(C \ T ) such that
‖hε − g‖X < ε. The proposition follows from the fact that OC(C \ T ) is dense in
A(C \ T ). �

Corollary 2.22. Assume Hypothesis T. Let W be a wide open over K . Then the
image of A(W ) is dense in A(X) for each underlying affinoid X.

Proof. Glue open disks BV to W to make a complete curve C as in the proof of
Theorem 2.18. For each V ∈S, choose a point tV ∈ BV \W defined over K . Then
let T = {tV : V ∈ S} and follow the procedure above, noting that the map from
OC(C \ T ) to A(X) factors through A(W ). �

Corollary 2.23. With the same hypotheses and notation as Proposition 2.21, set
A0 = { f ∈ OC(C \T ) : ‖ f ‖X ≤ 1}. If A0⊗FK is reduced, then Spec A0⊗FK ∼= X.

A basic wide open pair over K is a pair (W, X) where W is a connected
wide open over K and X is an underlying affinoid. In addition, we require that
‖A(X)‖X = |K |, that X have irreducible reduction with at worst ordinary double
points as singularities, and that the components of W \ X be isomorphic to annuli
of the form AK (1, s). If (W, X) is a basic wide open pair for some X , we say that
W is a basic wide open. By Proposition 2.21 and Corollary 2.23, basic wide open
pairs can be constructed by taking (W, X)= (C \

⋃n
i=1 Di ,C \

⋃n
i=1 Ui ). Here C

is a connected smooth complete curve over K that has a model C over RK whose
reduction is irreducible and has at worst ordinary double points as singularities,
{U1, . . . ,Un} is a finite collection of distinct residue classes of smooth points, and
each Di is an affinoid disk in Ui . The converse, that all basic wide open pairs can be
constructed in this manner, follows, when K is stable and assuming Hypothesis T,
from Theorem 2.27 (and thus the two notions are equivalent in this case).

Lemma 2.24. Assume Hypothesis T. Suppose f : X→ Y is a map between smooth
one-dimensional affinoids over K , and X is irreducible.

(i) If f̄ : X→ Y is a surjection, then f is a surjection.

(ii) If f̄ (X)⊆ Y is an open affine and X (C)→ Y (C) is an injection, then f̄ is an
injection.
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Proof. For both parts, we may extend scalars to C. To prove (i), suppose f̄ is a
surjection but that there exists a y ∈ Y that is not in the image of f . Let λ ∈ Ao(Y )
be a function that vanishes only at y and such that ‖λ‖Y = 1.8 On the one hand,
if we let L = f ∗(λ), the fact that f̄ is a surjection implies that ‖L‖X = 1. On the
other hand, since L does not vanish on X , L−1 exists and we may choose c ∈ C
such that |c| = ‖L−1

‖X . Now the fact that f̄ is a surjection implies that |c| > 1.
Thus, if we let M = c−1L−1, we have L,M 6= 0 but L M = 0. So X must be
reducible.

For (ii), let Y ′ ⊆ Y be the Zariski subaffinoid for which f̄ (X) = Y ′. Suppose
there are distinct points x1, x2 ∈ X for which f̄ (x1)= f̄ (x2). Let X ′ = X \ R(x2).
Then f restricts to a map f ′ : X ′→ Y ′ that reduces to a surjection. Thus, by (i),
f ′ is a surjection. But this is a contradiction since f (R(x2)) ⊆ Y ′ and f is an
injection. Therefore, f̄ must also be an injection. �

Lemma 2.25. Suppose h : B → Y is an analytic map from an open annulus or
open disk into a reduced affinoid. Then the image of B is contained in a residue
class of Y .

Proof. This is clear when Y is an affinoid disk. The general case follows. �

Remark 2.26. The same statement is true with B a connected wide open in place
of an open annulus.

Theorem 2.27. Suppose K is stable and satisfies Hypothesis T. Let (W, X) be a
basic wide open pair over K . Attach disks BV to W to obtain a complete curve C ,
as in the proof of Theorem 2.18. Then C has a model over RK whose reduction
is X c. Also, if x is a point at∞ in X c(F), then x ∈ X c(FK ) and {P ∈C(C) : P = x}
is equal to BV (C) for some V ∈ S= CC(W \ X).

Proof. Choose a finite, Galois stable set of points Y ⊂ X (L), for some finite exten-
sion L of K , that reduce to distinct smooth points in X L(FL). The set {R(ȳ) : y ∈Y }
of residue classes of X L is a Galois stable set of open disks in C over L . There-
fore, by Proposition 2.21, Z := C \

⋃
y∈Y R(ȳ) is an affinoid over K . Moreover,

X1 := X ∩ Z is a formal subdomain of X [BL 1985, p. 351], whose reduction is
X \ {ȳ : y ∈ Y }. We will show that X1 is also a formal subdomain of Z , and hence
C := {X, Z} is a formal covering of C .

To do this, let ZT := Z \
⋃

V∈T BV for any T ⊆ S. This is an affinoid over
K by Proposition 2.21. We claim that ZT has irreducible reduction, and that BV

is a residue class of ZT for each V ∈ S \ T. This is clearly true for T = S,
because ZS = X \

⋃
y∈Y R(ȳ) is a Zariski subaffinoid of X and S \ T is empty.

Suppose it holds for some T, and suppose also that V ∈ T. Let T′ = T \ {V }, so

8This can be done by embedding Y in a smooth, complete curve [Van der Put 1980, Theorem 1.1]
and applying Lemma 2.19.
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that ZT′ = ZT
∐

BV . By Lemma 2.25, applied to the inclusion of BV into ZT′ ,
BV is contained in the residue class R(t̄V ). If BV 6= R(t̄V ), the map ZT → ZT′

is a surjection. But this is impossible by Lemma 2.24 since ZT has irreducible
reduction and ZT 6= ZT′ . Therefore, BV is a residue class of ZT′ , ZT is a Zariski
subaffinoid of ZT′ , and in particular ZT′ has irreducible reduction. The claim now
follows for all T by induction. Taking T = ∅, we see that Z has irreducible
reduction, and that each disk BV is a residue class of Z . Thus, X1 is a formal
subdomain of Z , and C is a formal covering of C . Moreover, by Proposition 2.8,
the reduction of Z is the disjoint union of X1 and finitely many smooth points. Thus
C has semistable reduction with respect to C [BL 1985, Definition 1.5]. So using
the argument of [BL 1985, p. 377], it follows that C has a model with reduction X c.
Moreover, the residue classes of the points at infinity on X c are precisely the disks
BV over K . �

It may be proven that over C, all wide opens that are not disks or annuli have
minimal underlying affinoids. In fact, one can show that if W is a wide open over
K that is not a disk or an annulus, W has an affinoid subdomain that becomes
the minimal underlying affinoid of WL , where L is a finite extension of K ; see
Remark 2.41. However, this fact is not used in this paper.

Lemma 2.28. Suppose K is stable and assume Hypothesis T. If (W, Z) is a basic
wide open pair over K , and W is not a disk or annulus, then Z is a minimal
underlying affinoid of W .

Proof. Suppose there are e ends. Glue in disks, as above, to get a smooth complete
curve C , so that C\Z is the union of e open disks U1 . . .Ue. Then by Theorem 2.27,
C will have a model C with reduction isomorphic to the completion of Z .

We can and will extend scalars to C. Suppose V is any underlying affinoid of
W and A is a component of W \V . Then A∩Ui 6=∅ for some i . Set U =Ui . We
claim that A is contained in U .

Identify A with AC(r, s) so that AC(t, s) is connected to V for any t ∈R(r, s).
It follows from [BL 1985, Proposition 5.4(c)] that every circle in A that intersects
a residue class of C is contained in that class. Hence A∩U contains CC[t] for any
t ∈ R(r, s) with CC[t] ∩U 6= ∅. In fact, A ∩U ⊃ AC(r, t] for any such t . Let
q = LUB{t ∈R(r, s) : AC(r, t)⊆U }. Suppose that q < s, and let

v = LUB{t ∈R[q, s] : CC[t] ∩ Z 6=∅} = GLB{t ∈R[q, s] : CC[t] ∩ Z =∅}.

The number v exists since U is disconnected from U j for j 6= i . For u ∈R[q, v),
CC[u] ⊆ Z (again by [BL 1985, Proposition 5.4(c)]). Let w= q if q ∈R, and w ∈
R[q, u) otherwise, and set Y = AC[w, u]. We have a rigid morphism Y → Z . Since
Y is either a line or two lines crossing at a point, and Z is irreducible, not isomorphic
to A1 or Gm , with only ordinary double points as singularities, it follows that the
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map Y → Z is constant. This means A \U is contained in a residue class R of
Z . Thus {U, R} is a disjoint admissible cover of A. This is impossible as A is
connected.

From the contradiction, we know that q = s, and thus A ⊆U . Now, since each
component of W \ V is contained in W \ Z , we have shown that Z ⊆ V . �

The final two results of this section provide useful criteria for determining when
a rigid space is a wide open.

Theorem 2.29. Suppose X is a smooth, one-dimensional affinoid over a stable
field K satisfying Hypothesis B, and x is a point of degree one on X. Then, if
U = RX (x), there is a finite extension L of K such that UL is a connected wide
open over L. Moreover, the number of ends of UL equals the number of branches
of X L through x.

This is a consequence of the following lemma. Recall that FK ⊆ F.

Lemma 2.30. Suppose X is a pure, one-dimensional reduced affinoid over a stable
field K satisfying Hypothesis B, with reduced reduction, and x ∈ X(FK ) is a degree
one point. Choose any f ∈ Ao(X) such that f̄ has an isolated zero at x , that is,
such that x is the only zero in a Zariski neighborhood. For r ∈R(0, 1), let V (r) be
the subspace of X such that

V (r)(C)= {y ∈ R(x)(C) : r < | f (y)|< 1}.

Then for r sufficiently close to 1, there is a finite extension L of K such that VL(r)
is a disjoint union of m := |(n−1x)(F)| open annuli, where n : Y → XF is the
normalization of XF := X ⊗FK F.

Proof. Without loss of generality, we may assume that x is the only zero of f̄
(otherwise replace X with a suitable Zariski subaffinoid). Let Z := Zr be the
subaffinoid of X whose C-valued points are {y ∈ X (C) : | f (y)| ≥ r}. Let Xx be the
curve obtained from Y by identifying n−1(x ′) to a point for each x ′ ∈ XF(F) \ {x}
(thus, Xx is the minimal finite surjective cover of XF that is smooth at all points
above x). It is proven in the remark after [BL 1985, Lemma 2.4] that for r ∈R(0, 1)
sufficiently close to 1, the reduction of ZC is isomorphic to the union of Xx and m
lines, each crossing a single point above x normally.9

There is a finite extension M of K such that Z M is reduced, so ZC ∼= (Z M)F̄.
Thus, there is a finite extension L of K such that Z L is isomorphic to the union
of a finite surjective cover of XFL that is smooth at all points above x , and m lines
each crossing a single point above x normally. Now apply Proposition 2.10. �

9This is a minor correction of the statement in [BL 1985].
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Proposition 2.31. Assume Hypothesis T. Suppose f :U→W is a finite surjective
morphism over K of a smooth, one-dimensional rigid space onto a wide open, with
finitely many branch points all defined over K . If f has degree strictly less than p,
then U is a wide open over K .

Proof. First we claim that an underlying affinoid X ⊆ W can be chosen so that it
contains the set B of branch points of f . Indeed, let X1 be any underlying affinoid
of W . Glue disks BV onto W for each annulus V ∈ W \ X1, as in the proof of
Theorem 2.18, to obtain a complete curve C . Then for each V , choose an open
disk DV over K such that BV \ αV (V ) ⊂ DV ⊆ BV and DV ∩B = ∅. The rigid
subspace X := C \

⋃
DV is, by Proposition 2.21, an affinoid that is disjoint from

B and easily shown to be underlying in W .
Now suppose X is relatively compact in some affinoid Y ⊆ W . Then f −1(X)

and f −1(Y ) are affinoids in U . Moreover, as f is finite, and the image of X in
Y is finite, it follows that the image of f −1(X) in f −1(Y ) is finite. So f −1(X) is
relatively compact in f −1(Y ). All that remains is to check that U \ f −1(X) is the
disjoint union of open annuli, and for this Theorem 2.6 suffices. �

2C. Semistable coverings. For a wide open W over K , let

H i
DR(W/K )= Di (W/K ).

Using Lemma 2.13, the arguments in the proof of [Coleman 1989, Theorem 4.2]
generalize and allow us to conclude that H i

DR(W/K ) is finite-dimensional over K .
We define the genus of W , which we denote by g(W ), to be

1
2(dimK H 1

DR(W/K )− e(W )+ 1).

Then 2g(W ) can be interpreted as the dimension of the first compactly supported
de Rham cohomology group of W . For example, in Corollary 2.33, we show that

2g(W )= dimK (ker(H 1
DR(W/K )→ H 1

DR((W \ X)/K ))),

where X is any underlying affinoid of W . We also show in Proposition 2.32 that
if a wide open W is completed to a projective curve C by attaching disks at the
ends, as in Theorem 2.18, then g(W ) = g(C). As an immediate corollary of this
and of Theorem 2.27, if (W, X) is a basic wide open pair over a complete, stable
field K satisfying Hypothesis T, and X has good reduction X , then (X)c will also
have genus g(W ).

Proposition 2.32. Let W be a connected wide open over K . Suppose C is a
smooth, complete curve (over K ) obtained by attaching disks at the ends of W ,
as in Theorem 2.18. Then g(W )= g(C).
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Proof. The main idea is to view W and the attached disks as an admissible covering
of C , and then to apply the (generalized) Mayer–Vietoris sequence of de Rham
cohomology (over K ). So first suppose D1, . . . , Dn are the disks, and set D0=W .
Then Mayer–Vietoris gives us the exact sequence

0→ H 0
DR(C)→

⊕
i

H 0
DR(Di )→

⊕
i 6= j

H 0
DR(Di ∩ D j )→

H 1
DR(C)→

⊕
i

H 1
DR(Di )→

⊕
i 6= j

H 1
DR(Di ∩ D j )→ H 2

DR(C)→ 0.

Using Lemma 2.13, the definition above of g(W ), and the fact that H 1
DR(Di )= 0

for i > 0, we count dimensions to obtain

1− (e(W )+ 1)+ e(W )− 2g(C)+ (2g(W )+ e(W )− 1)− e(W )+ 1= 0.

From this we conclude that g(C)= g(W ). �

Corollary 2.33. Suppose W is a wide open over K , and X is an underlying affinoid
of W . Then

2g(W )= dimK (ker(H 1
DR(W/K )→ H 1

DR((W \ X)/K ))).

Proof. Suppose C is a smooth complete curve obtained by gluing disks to the ends
of W . Then arguing from Mayer–Vietoris exactly as in the above proof, we have
the exact sequence

0→ H 1
DR(C)→ H 1

DR(W )→ H 1
DR(W \ X)→ K → 0.

Now apply Proposition 2.32. �

Let C be a wide open or a smooth proper curve over K . Let C be a finite set
of basic wide open pairs (U,U u) over K such that Cw := {U, (U,U u) ∈ C} is an
admissible covering of C . Then we call C a semistable covering over K if the
following conditions hold:

(i) If U, V ∈ Cw and U 6= V , the intersection of U and V is a disjoint union of
connected components of U \U u (by definition, annuli of the form AK (1, s)).

(ii) If U , V and W are three distinct elements of Cw, their intersection is empty.

We say that a semistable covering C is stable if none of the elements of Cw are
disks or annuli. Having a semistable covering is not immediately equivalent to
having a semistable reduction in the sense of [BL 1985, Definition 1.5]. When the
context is clear, we will abuse notation by dropping the superscript w and writing
U ∈ C to mean U ∈ Cw.
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Proposition 2.34. Suppose C is a semistable covering of a smooth proper curve C
over K . Let 0C be the unoriented graph without loops whose vertices correspond
to the elements of C and whose edges with endpoints corresponding to distinct
U, V ∈ C correspond to the connected components of U ∩ V . Then

g(C)=
∑
U∈C

g(U )+Betti(0C).

Proof. Again, we begin with the Mayer–Vietoris sequence (of de Rham cohomol-
ogy over K ) associated to this covering.

· · · →

⊕
U,V∈C

H i−1
DR (U ∩ V )→ H i

DR(C)→
⊕
U∈C

H i
DR(U )→ · · ·

It is immediate that

H 0
DR(C)∼= H 2

DR(C)∼= K ,
⊕
U∈C

H 2
DR(U )= 0, and

⊕
U∈C

H 0
DR(U )∼= K #C.

Also, by applying Lemma 2.13 and condition (i) from above, we see that⊕
U,V∈C

H 0
DR(U ∩ V )∼=

⊕
U,V∈C

H 1
DR(U ∩ V )∼= K #E,

where E is the edge set of 0C. Now to prove the proposition, we simply count di-
mensions over K and compute the dimension of H 1

DR(C) using the exact sequence.
We have

2g(C)=
∑
U∈C

(2g(U )+ e(U )− 1)− #C+ 2= 2
(∑

U∈C

g(U )+ #E− #C+ 1
)

= 2
(∑

U∈C

g(U )+Betti(0C)
)
. �

Definition 2.35. A semistable model B of a curve C over K is a flat, proper scheme
over RK whose generic fiber is C , such that all of the singular points of the special
fiber of B have degree 1 and are ordinary double points. We say that B is stable if
it is the final object in the category of semistable models over K .10

See [BL 1985] and [Van der Put 1984] for a rigid analytic treatment of the
theory of stable models of curves over complete nonarchimedean fields, and in
particular, for a rigid analytic proof of the generalization to arbitrary complete

10This weakens the definition of the semistable model in [Mumford 1977] since it allows smooth
rational components that meet the other components in only one point. Requiring the singular points
to have degree 1 means that X0(p) usually does not have a stable model over Qp , but does over
W (Fp2)⊗Qp .
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nonarchimedean fields [Van der Put 1984, Corollary 3.3] (see also [BL 1985]11) of
the existence theorem of Deligne and Mumford. Moreover, we will use the results
of [BL 1984; 1985] to prove the following theorem, which relates stable coverings
to stable models. This result generalizes [Coleman 2003, Proposition 2.1], and the
proof we give is more complete than the one given there.

Theorem 2.36. Let C be a smooth complete curve over a stable field K satisfying
Hypothesis B.

(i) If C has a semistable model over RK whose reduction has at least two com-
ponents, then C has an associated semistable covering over K .

(ii) If K satisfies Hypothesis T, and C has a semistable covering over K , then C
has an associated semistable model over RK whose reduction has at least two
components.12

Stable coverings are precisely those that correspond to stable models whose reduc-
tions have at least two components.

Proof. Suppose C is a semistable model for C over RK , and let IC be the set of
irreducible components in the reduction of C. For each 0 ∈ IC, let

0o
= 0

∖ ⋃
0′∈IC,0

′
6=0

0′.

Assume, without loss of generality, that C is connected.
For each affine open U ⊆C, there is a natural affinoid subdomain of C rg, which

we denote by Red−1 U , whose points are all the points of C rg that reduce to points
of U . To see this, let Spec S be any affine open subscheme of C that reduces to U
and Ŝ = lim

←−n
S/πn S for some π ∈ RK with 0< |π |< 1. Then Ŝ is an admissible

RK -algebra in the sense of [BL 1993, p. 293], as can be seen from [BL 1993,
Lemma 1.2]. Then Ŝ⊗RK K is an affinoid algebra over K [BL 1993, §4] that up
to canonical isomorphism does not depend on the choices. We refer to the affinoid
Sp(Ŝ⊗RK K ) as Red−1 U . Because U is reduced, Red−1 U ∼=U . More generally,
suppose V is the union of finitely many subschemes W of C, with each contained
in some affine open UW . Then we let Red−1 V be the open rigid subspace that is
the union in C rg of the subspaces Red−1 W ⊆ Red−1 UW , as was defined in the
beginning of Section 2. This subspace is independent of the choices of UW .

If 0 ∈ IC, let W0 = Red−1 0 and X0 = Red−1 0o. We claim that {(W0, X0) :
0 ∈ IC} is a semistable covering. First, W0 is a smooth, one-dimensional rigid

11Bosch and Lütkebohmert [BL 1985, p. 377], while proving the theorem of Deligne and Mum-
ford, remark that their argument does not require the field to be discretely valued.

12In fact, when K satisfies Hypothesis T we have a natural one-to-one correspondence between
semistable coverings and semistable models whose reductions have at least two components. It
would be interesting to know if this is true more generally.



384 Ken McMurdy and Robert Coleman

space over K , and X0 is an affinoid subdomain, such that W0 \ X0 is a disjoint
union of a finite number of annuli of the form AK (1, s) by Proposition 2.10. Also,
X0 has absolutely irreducible reduction with at worst ordinary double points as
singularities. Moreover, if 0,0′, 0′′ ∈ IC, then W0 ∩W0′ is a union of connected
components of W0 \ X0 if 0 6= 0′, and W0 ∩W0′ ∩W0′′ = ∅ if 0,0′ and 0′′ are
all distinct.

What remains to be shown for (i) is that (W0, X0) is a basic wide open pair
for each 0 ∈ IC, and for that, all we have to show is that there exists an affinoid
subdomain Y of W0 such that X0 is relatively compact in Y and Y∩V is a semiopen
annulus for each connected component of W0 \ X0. (That W0 is connected will
follow from the absolute irreducibility of X0.) For this, let S0 be the set of singular
points in C where 0 intersects some other component. Blow up C at every point in
S0 to obtain a new model C0 that is defined over K and becomes semistable over
an, at worst, quadratic extension L . Let 0̂ be the proper transform of 0 in C0, and
let IC0 be the set of irreducible components in the reduction of C0. Set

Ỹ0 = C0
∖ ⋃
0′∈IC0 ,

0′∩0̂=∅

0′,

and let Y0 = Red−1(Ỹ0). It is clear that (X0)L ⊆ Y0 ⊆ (W0)L and Y0 is naturally
defined over K . Although Ỹ0 is not an affine open in C0, Y0 is the reduction
inverse of an affine open in the model obtained from C0 by blowing down 0̂. This
affine open will consist of |S0| lines intersecting in a single singular point that
contains the reduction of X0. Thus, not only is Y0 also an affinoid subdomain
of W0, but X0 is relatively compact in Y0. Finally, by applying Proposition 2.10
again, we see that the intersection of Y0 with each component of W0 \ X0 is a
semiopen annulus. Therefore, we are done with (i).

To prove (ii), suppose C is a semistable covering of C . Then by Theorem 2.27,
there is a natural one-to-one correspondence between (U u)c \U u , CC(U \U u),
and E(U ), for each U ∈ C. If e ∈ E(U ), let x(e) denote the corresponding point
on (U u)c and let A(e) denote the corresponding connected component of U \U u

(an annulus). If e ∈ E(U ) and f ∈ E(V ) for U, V ∈ C, we say that e ∼ f when-
ever A(e) = A( f ) (equivalently, A(e) ∩ A( f ) 6= ∅). Let E denote the quotient
of
∐

U∈C E(U ) by this equivalence relation. We define C to be the curve over
FK obtained from

∐
U∈C(U u)c by identifying the points x(e) and x( f ) whenever

e ∼ f . The reduction maps from U (C)→ (U )c(F) for each U ∈ C, which are
guaranteed by Theorem 2.27, patch together to form a natural Galois equivariant
reduction map from C(C)→C(F). We will show that in fact there is a model over
RK whose reduction is C.
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Let T be a finite Galois stable set of points of C(K ) that, by the above reduction
map, injects into the smooth locus of C, and such that T ∩U 6=∅ for each U ∈C.
Since each t ∈ T lies on a unique U u , the residue class, R(t̄) := RU u (t̄), is well
defined and can be viewed as an open disk in C over K . Moreover, as C is defined
over K , R(T ) :=

⋃
t∈T R(t̄) is Galois stable over K . So by Proposition 2.21,

ZT := C \ R(T ) is an affinoid over K . We want to show that Z T = C \ T , where
T = {t̄ : t ∈ T }.

For each U ∈ C, we let UT = U u
\ R(T ), a Zariski subaffinoid of U u . Then

the affinoid ZT is the disjoint union of
∐

U∈C UT and
∐

e∈E A(e). Now fix U
and consider the natural inclusion map UT ↪→ ZT . Since the reduction of UT is
irreducible, it follows that U T maps to a point or onto an affine open of some
irreducible component 0U of Z T . As UT and ZT are both connected to R(T ), the
first case is not possible. Therefore, by Lemma 2.24(ii), U T must inject into some
such 0U . Let U ′T be the subaffinoid of ZT that lies above the image of U T . By
Lemma 2.24(i), the inclusion of UT into U ′T is surjective, and therefore an equality.
As the UT don’t intersect, and UT = U ′T for each U ∈ C, the 0U must be distinct
components.

Now suppose e ∈E. By applying Lemma 2.25 to the inclusion of A(e) into ZT ,
we see that A(e) must be contained in a residue class, R(ye) := RZT (ye), for some
point ye ∈ Z T (FK ). Thus there can be no irreducible components of Z T other than
{0U : U ∈ C}. Moreover, it is clear that

⋃
e∈E A(e) =

⋃
e∈E R(ye). So using the

fact that residue classes of an affinoid are connected,13 it follows that the ye are
distinct and hence A(e) = R(ye) for each e ∈ E. From connectivity, we also have
that ye ∈0U∩0V whenever U 6=V and A(e)⊆U∩V , and by Proposition 2.10 this
must be a normal crossing. Therefore, as claimed, we have shown that Z T =C\T ,
and we use equality here to emphasize that the canonical reduction map on the
ZT (C) is compatible with the previously defined reduction map on C(C).

To finish the proof, let T1 and T2 be two finite Galois stable sets of points of
C(K ) satisfying the above conditions on T , and such that T 1 ∩ T 2 = ∅. Then
Z := ZT1 ∩ ZT2 is equal to ZT1∪T2 . Therefore, Z is a formal subdomain of both ZT1

and ZT2 by the compatibility of reduction maps. So C has semistable reduction
Z T1 ∪ Z T2 = C with respect to the formal covering {ZT1, ZT2}; see [BL 1985,
Definition 1.5]. Then, by the same argument as used in the proof of Theorem 2.27,
C has a semistable model over RK whose reduction is isomorphic to C. �

Remark 2.37. As a consequence of Theorem 2.36 we have the result that whenever
K is stable and satisfies Hypothesis B, every semistable curve over RK can be
constructed by gluing together wide opens taken out of curves with good reduction
over RK . Crossings of distinct irreducible components are created by gluing two

13If R is a residue class, Ao(R) is a local ring.
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annuli at the ends of two distinct wide opens, while self-intersections within a
component are created by gluing two annuli at distinct ends of a single wide open.

Lemma 2.38. Suppose D is a closed disk and U is either an open disk or open
annulus in a smooth complete curve C , all defined over K , such that D ∩U 6= ∅.
Then either D ⊆U , U ⊆ D, D ∪U is an open disk, or D ∪U = C ∼= P1 and U is
an open disk.

Proof. We can assume K = C and g(C) > 0. When U is an open disk the lemma
follows from [BL 1985, Proposition 5.4(a)]. So suppose U is an open annulus, with
U 6⊆D and D 6⊆U . We first show that every concentric circle R of U that intersects
D must be contained in D. Indeed, applying [BL 1985, Proposition 5.4(c)] to the
height 1 annulus R and the disk D, and using D 6⊆ R, we can conclude that R is
contained in some closed disk E . Then by [BL 1985, Proposition 5.4(a)], we have
D ⊆ E or E ⊆ D. Either way, it follows that R ⊆ D.

Now choose a parametrization ψ : AK (r, s) '−→ U . By the preceding argument,
we can then choose t ∈ R(r, s) such that Yt := ψ(CK [t]) ⊆ D. Then C \ Yt and
U \Yt have two connected components each. Since U is connected, U \Yt 6⊆C \D.
Thus there exists u ∈ R(r, s) such that u 6= t and Yu ⊆ D. We can assume that
u< t and Yu is contained in the connected component Z of C\Yt that lies inside D.
Because AK [u, t) is connected, it follows that ψ(AK [u, t))⊆ Z .

Now choose a P ∈ Z \U , and let φ : BK [1]
'

−→ D be any parametrization such
that φ(0) = P . We may assume that φ(CK [v]) = Yv whenever Yv ⊆ D. Thus,
φ(AK (r, 1]) = U ∩ D and s > 1. Finally, we let V = D ∪U . Then V is a wide
open with one end and φ−1 BK [t] is an underlying affinoid for t ∈R(r, 1]. Hence
g(V )= 0, and so by the Riemann existence theorem, V is isomorphic to P1 minus
a closed disk (in particular, an open disk). �

If C is a semistable covering of C , we define a residue class of C to be either a
residue class of U u or a component of U \U u for some U ∈ C.

Corollary 2.39. Suppose C is a stable covering of C. Then every closed disk D in
C is contained in a residue class of C.

Proof. Extend scalars to C. The curve C is not isomorphic to P1 as P1 does not have
a stable covering. Let R be a residue class of C such that D∩ R 6=∅, and suppose
D 6⊆ R. First suppose R is an open disk. If necessary, refine C to a semistable
covering C′ for which all underlying affinoids have smooth reduction, none are
closed disks, and R is a residue class of U u for some U ∈C′. By Lemma 2.38, we
have R ⊆ D.

This latter containment implies that U u
∩ D is a nonempty affinoid with good

reduction. Every such affinoid is a Zariski subaffinoid of a closed disk E1 in D,
because D is a closed disk. Since U u has good reduction, E1 is a disk, and C 6∼=P1,
it follows that U u is a Zariski subaffinoid of E1.
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Set U1=U . Then U u
1 is not equal to E1 since none of the underlying affinoids in

C′ are disks. Therefore, there exists a residue disk R1 of E1 such that A1 := R1∩U1

is a component of U1 \U u
1 (an open annulus). Now E2 := R1 \ A1 is a closed disk.

Let U2 be the other element of C′ containing A1. By the same argument as above,
and the fact that both U u

2 and E2 are connected to A1, it follows that U u
2 must

be a Zariski subaffinoid of E2. Again (for i = 2 now), we must have U u
i 6= Ei .

Proceeding in this manner, we eventually exhaust the underlying affinoids of C′ or
find a V ∈ C′ such that V u is a closed disk. Thus, we have a contradiction.

Now suppose R is an annulus. If an annulus at one end of R is contained in D,
and U u is connected to R at that end for some U ∈ C, then D intersects every
residue class of U u . In particular, it intersects an open disk. Now apply the above
argument. �

Theorem 2.40. Suppose C is a smooth complete curve over a stable field K satis-
fying Hypothesis B, and D is a finite (possibly empty) collection of disjoint closed
disks in C all defined over K . Then there exists a semistable covering C of C over
some finite extension of K such that

(1) D =U u
D for some UD ∈ C for each D ∈ D, and

(2) C \ {(UD, D) : D ∈ D} is a semistable covering of W := C \
⋃

D∈D

D.

Proof. If D is empty, or if |D| = 1 and g(C)= 0, the theorem follows directly from
Theorem 2.36 and [Deligne and Mumford 1969; Van der Put 1984].

Otherwise, suppose we have a semistable covering C of C that is compatible
with D, in the sense that each D ∈ D is either contained in a residue class of C

or equal to U u for some U ∈ C. Then we can refine C to obtain a covering that
satisfies the conclusions of the theorem. Indeed, suppose D ∈ D and D 6= U u for
any U ∈ C. Then D is contained in a residue class R of C, and there are three
possibilities to consider. First, D could be contained in a residue disk R of U u for
some U ∈ C. In this case we refine our covering to

CD := C \ {(U,U u)} ∪ {(U \ D,U u
\ R), (R, D)}.

The second possibility is that D is contained in a residue annulus R of some U u .
Applying Lemma 2.38 from above, there must then be a concentric circle T in R,
and a residue disk S in T , such that D ⊆ S. In this case, we let

CD := C \ {(U,U u)} ∪ {(U \ T,U u
\ R), (R \ D, T \ S), (S, D)}.

Finally, the residue class R that contains D may be a connected component of U∩V
for two distinct U, V ∈ C. Again there must be a concentric circle T in R and a
residue disk S in T such that D⊆ S. Let RU and RV be the connected components



388 Ken McMurdy and Robert Coleman

of R \ T that are connected to U and V , respectively. Let Û = (U \ R)∪ RU and
V̂ = (V \ R)∪ RV . Then we may take as our refined cover

CD := C \ {(U,U u), (V, V u)} ∪ {(Û ,U u), (V̂ , V u), (R \ D, T \ S), (S, D)}.

After applying this procedure finitely many times, we are done.
The only issue remaining is that of finding a compatible covering as a starting

point. If C is a stable covering, then it is compatible with D by Corollary 2.39. So
when g≥ 2 we are done by Theorem 2.36. If g= 0, and D1, D2 ∈D with D1 6= D2,
then C := {(C \D1, D2), (C \D2, D1)} is compatible with D. If g(C)= 1, D ∈D,
and U is the largest open disk in C containing D, then C :={(C\D,C\D), (U, D)}
is compatible with D. So in each case we are able to construct the desired covering
of C . �

Remark 2.41. If g(C) ≥ 2, or g(C) = 0 and |D| ≥ 3, or g(C) = 1 and |D| ≥ 1,
there exists a final object CD in the category of such coverings. In these cases,
C \

⋃
D∈D UD is the minimal underlying affinoid of W := C \

⋃
D∈D D.

Corollary 2.42. Let f be a meromorphic function with finitely many zeroes and
poles on a wide open W over a stable field K satisfying Hypothesis B. Then there
is a semistable covering C of W over a finite extension of K such that for each
U ∈ C, U u has good reduction and all the zeroes and poles of f are contained in⋃

U∈C U u .

Proof. Glue in disks to get a complete curve C . Let D be the union of CC(C \W )

with a finite collection of disjoint closed disks in W that contain the support of f .
Apply the theorem to get a semistable covering C1 of C over some finite extension
of K , and then throw out those U ∈ C1 for which U u

∈ CC(C \W ). This yields a
semistable covering C2 of W such that all the zeroes and poles of f are contained
in
⋃

U∈C2
U u . Let S be the collection of singular residue classes in U u for all

U ∈C2. For each R ∈S, choose a concentric circle AR ⊂ R (such an R is an open
annulus). Then

C :=
{(

U \
⋃

R∈S

AR,U u
\
⋃

R∈S

R
)
:U ∈ C2

}
∪ {(R, AR) : R ∈ S}

satisfies the requirements of the corollary. �

Our final result of this section is a lemma that will play a key role in the proof
of our main theorem, Theorem 9.2.

Lemma 2.43. Suppose W is a connected wide open over a stable field K sat-
isfying Hypothesis B, with minimal underlying affinoid W u , and let X⊂W be
an affinoid subdomain with smooth irreducible (connected) reduction such that
g(W )= g(X

c
) > 0. If X is connected to all but at most one component of W \W u ,

then W is a basic wide open and X is a Zariski subaffinoid of W u .
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Proof. First glue disks to W to obtain a smooth connected complete curve C
over K . Then by [Coleman 2005, Theorem A1]14, there exists a semistable model
T of C over a finite extension E of K , and a subset S of the set of components of
T such that X E = X (T, S). Moreover, there exists an s ∈ S such that X (T, s) is a
Zariski subaffinoid of X E .

Let C :=CT be the semistable covering of CE associated to T by Theorem 2.36.
This implies by Proposition 2.34 that Betti(0C) = 0 and g(z) = 0 for all z ∈ S
different from s. It follows that CE has good reduction isomorphic to X

c
E , that X E

is a Zariski subaffinoid of CE , and that each affinoid disk in C \W is contained in
a residue class of CE . Furthermore, the statement that X is connected to all but at
most one end of W implies that the elements of C \W lie in distinct residue classes
of CE , and that the complement of these residue classes is the minimal underlying
affinoid of WE that equals W u

E .
We now know that Ao(W u

E)
∼= A(W u

E)∩ Ao(X E), under restriction ρ, and that
A(W u

E)
∼= A(W u) ⊗K E . Also, Ao(W u) = Ao(W u

E) ∩ A(W u) and Ao(X E) =

Ao(X)⊗RK RE because X has good reduction.
It follows that there is some nonzero element m ∈ RK with |m| < 1, such that

m Ao(W u
E) ⊂ Ao(W u)⊗RK RE . So if c ∈ Ao(W u

E), then ρ(c) =
∑

i ri bi , where
r1, . . . , rn is a basis for RE over RK and bi ∈ Ao(X). It follows that mbi =ρ(ai ) for
some ai ∈ ρ(Ao(W u)). Thus ai/m ∈ Ao(W u

E), and so ai/m ∈ Ao(W u). Therefore
Ao(W u

E) = Ao(W u) ⊗RK RE . This implies that W u has good reduction, which
completes the proof. �

2D. Riemann–Hurwitz for wide opens. For this entire section we assume that K
is a stable field satisfying Hypothesis B. Let A be an oriented annulus over K .
Suppose f is a function on A, and ω a differential, each with no zeroes or poles
in A(C). Then we define ordA f = resA (d f/ f ), which is an integer (see the proof
of [Coleman 1989, Lemma 2.1]), and ordA ω = ordA (ω/dz) for any z ∈ A(A)∗

with ordA z = 1 (which is independent of the choice of z). Using this definition,
we can also define orde at any end e of a wide open W/K . Indeed, suppose ν is
either a meromorphic function or differential on W , with finitely many zeroes and
poles in W (C). Over some finite extension L of K , WL will have an underlying
affinoid X L containing the support of ν. Let A be the component of WL \ X L

corresponding to a fixed e ∈ E(W ), and let ψ : AK (r, s)→A be an isomorphism
such that ψ(AK (t, s)) is connected to X whenever r < t < s. Then we define the
inherited orientation on A by resA = resr,s ◦ψ

∗, and we set orde ν = ordA ν.

14The proof of this result was based on [Coleman 2003, Proposition 2.1], which is now a special
case of Theorem 2.36.
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Let Div(W ) := ZW (C)∪E(W ), and for any D ∈ Div(W ) let

deg D =
∑

P∈W (C)

D(P)+
∑

e∈E(W )

D(e).

Then for ν as above, set (ν)= (ν)fin+ (ν)inf, where

(ν)fin =
∑

P∈W (C)

ordP ν and (ν)inf =
∑

e∈E(W )

orde ν.

Lemma 2.44. Suppose f is a meromorphic function and ω is a meromorphic dif-
ferential on B(1) := BC(1), each with finitely many zeroes and poles, and each
supported on B[r ] := BC[r ] for some r < 1. Let A = AC(r, 1), oriented so that
resA = resr,1 (so not the inherited orientation from B(1) as a wide open). Then

ordA f =
∑

P∈B(1)

ordP f , ordA ω =
∑

P∈B(1)

ordP ω, resA ω =
∑

P∈B(1)

resP ω.

Proof. Let z be the natural parameter on B(1). For the first equation, suppose f is
supported on {P1, . . . , Pn} with ordPi f = ei and z(Pi ) = αi . By the Weierstrass
preparation theorem, we may write f (z)=

∏n
i=1(z−αi )

ei ·u(z), where u is a unit.
Then

ordA f =
n∑

i=1

resA

( ei dz
z−αi

)
=

n∑
i=1

ei =
∑

P∈B(1)

ordP f.

The other two equations follow from essentially the same argument. �

Theorem 2.45. Let f be a rigid function and ω a differential on W , each with
finitely many poles and zeroes in W (C). Then

(i) deg( f )= 0,

(ii) deg(ω)= 2g(W )− 2, and

(iii)
∑

P∈W (C) resP ω+
∑

e∈E(W ) rese ω = 0.

Proof. Attach disks at the ends of W to obtain a smooth projective curve C . For
any rational function g on C , it follows from Lemma 2.44 that deg(g|W )= 0.

For more general f , suppose first that (W, X) is a basic wide open pair, X has
good reduction, and ( f )fin is supported on X . In this case, there exists a g ∈OC and
a Zariski subaffinoid Y of X such that f/g is regular on Y and |( f/g)− 1|Y < 1
(in particular, we could choose Y so that f and g have no poles or zeroes on Y ).
It follows that there is a wide open V , with Y ⊂ V ⊆ W , such that (V, Y ) is a
basic wide open pair and |( f/g)− 1|V < 1. Hence, ( f |V )= (g|V ). Now, we have
a natural map β : Div(W )→ Div(V ). Indeed, the elements of E(V ) are in one-
to-one correspondence with the connected components of V \Y , which in turn are
in one-to-one correspondence (by intersection) with the connected components of
W \Y = (W \X)∪(X\Y ). Thus, as e∈E(W ) corresponds to a unique component of
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W \X , it then corresponds to a unique end of V that we take to be β(e). Similarly, if
P ∈W (C), we let β(P)= P if P ∈ V (C), and the element of E(V ) corresponding
to the component of X \Y that contains P otherwise. Extend this map by linearity.
Since degβ(D)= deg D and ( f |V )= β( f ), we have

deg( f )= deg( f |V )= deg(g|V )= 0.

To complete the proof that deg( f ) = 0, let C be a semistable covering of W
such that U u has good reduction and ( f |U )fin is supported on U u for each U ∈ C

(which exists by Corollary 2.42). Then

( f )=
∑
U∈C

( f |U ),

where we regard both sides as elements of

{D ∈ ZW (C)∪
⋃

U∈C E(U )
: D(a)=−D(b) if a ∈ E(U ), b ∈ E(V ),U 6= V,Ua = Vb}.

Therefore,
deg( f )=

∑
U∈C

deg( f |U )= 0.

Statements (ii) and (iii) are clearly true whenever ω = η|W for η ∈ �1
C , by

Lemma 2.44. Moreover, the general case of (ii) then follows from (i) and the fact
that ( f ω)= ( f )+ (ω). Finally, the general case of (iii) will follow once we know
it for basic wide opens, by an argument similar to that above.

So suppose (W, X) is a basic wide open pair, with X and C as above. For a
reduced affinoid X over K and ω ∈�1

X/K , we set

|ω|X = inf{|a| : a ∈ K , ω ∈ a Ao(X)dAo(X)}.

Using Riemann–Roch, we can find η ∈�1
C such that ω−η has no poles on X and

|ω − η|X < ε. Note that ω − η extends to a regular differential on a wide open
neighborhood V of X in W . Then statement (iii) for W follows from the general
fact that if (V, X) is a basic wide open pair, ω ∈ �1

V/K , |ω|X < ε and e ∈ E(V ),
then |rese ω|< ε. Indeed, let T :U → A(1,∞) be a parameter on the component
U of V \ X corresponding to e, such that |T (x)| → 1 as x→ X . Suppose on U

ω =

∞∑
n=−∞

anT n dT .

Then |ω|X =max{|an| : −∞< n <∞}. So |rese ω| = |a−1|< ε. �

Suppose f : W → V is a finite map. As f is finite, f naturally maps E(W )

to E(V ). For a ∈ W (C)∪E(W ), let δ f (a) = orda f ∗dT , where T is a parameter
at b := f (a) such that ordb T = 1. When a and b are ends, there exist annuli A
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and B at a and b such that f restricts to a finite étale map from A onto B. Let
e f (a) be the degree of this map. Otherwise, at a point in W (C), let e f (a) denote
the usual ramification index.

Lemma 2.46. With notation as above, ifω is a differential with finitely many zeroes
and poles on W , then

orda f ∗ω = e f (a) ordb ω+ δ f (a).

Proof. First suppose a ∈ E(W ), and let A and B be annuli at a and b such that
ω is regular and nonvanishing on B. Choose parameters S and T on A and B

respectively, such that orda S = ordb T = 1. Then f ∗T |A = Seg(S) and ω|B =
T dh(T )dT , where g is a unit on A with orda g= 0, h is unit on B with ordb h= 0,
e = e f (a), and d = ordb ω. So

( f ∗ω)|A = (Seg(S))dh(Seg(S)) f ∗dT,

from which the lemma follows.
The proof when a ∈W (C) is very similar. Let A and B be the stalks at a and b.

Then after choosing uniformizers S and T , respectively, the map f : A→ B is
given by a homomorphism between formal power series rings over C. Thus, we
have ω = T dh(T )dT and f ∗T = Seg(S), where e = e f (a), d = ordb ω, and g
and h are formal power series with nonzero constant terms. The lemma follows
from the computation above and the fact that h(Seg(S)) will again have nonzero
constant term. �

Corollary 2.47. Suppose that |e f (a)| = 1 in K , or that e f (a) 6= 0 in K and
a ∈W (C). Then δ f (a)= e f (a)− 1.

Proof. Keeping the same notation as above, we compute δ f (a) directly from the
definition

δ f (a)= orda dT = orda d(Seg(S))= orda(eg(S)+ Sg′(S))+ e− 1.

When a ∈ W (C) and e f (a) 6= 0 in K , this equals e − 1, since the power series
eg(S)+ Sg′(S) must have nonzero constant term. On the other had, if a ∈ E(W )

and |e f (a)| = 1, it is straightforward to show that eg(S) + Sg′(S) has constant
absolute value on A. So either way we are done. �

Theorem 2.48. Let f :W → V be a finite map of wide opens of degree d. Then

2g(W )− 2= d(2g(V )− 2)+
∑

a∈W (C)∪E(W )

δ f (a).

Furthermore, under the hypotheses of Corollary 2.47, this is

d(2g(V )− 2)+
∑

a∈W (C)∪E(W )

(e f (a)− 1).
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Proof. Let ω be a nonzero meromorphic differential on V . Then the degree of f ∗ω
must be 2g(W )− 2 by Theorem 2.45. On the other hand, we obtain the right side
of the equation if we compute deg( f ∗ω) using Lemma 2.46, Corollary 2.47, and∑

x∈W (C)
f (x)=y

e f (x)=
∑

a∈E(W )
f (a)=b

e f (a)= d. �

Proposition 2.49. Suppose (W,W u) and (V, V u) are basic wide open pairs, and
f :W→ V is a finite map such that f (W u)= V u . Let X and Y be the completions
of W u and V u , and let f̄ : X→ Y be the induced map. If f̄ is separable, then

δ f (a)= length(�X/Y )a.

Proof. First, we can lift f̄ to a map g : CX → CY between complete liftings of X
and Y . There must exist wide open neighborhoods W ′ ⊆ W and V ′ ⊆ V of W u

and V u , and embeddings φX :W ′→CX and φY : V ′→CY , such that f (W ′)= V ′,
φX |W u and φY |V u are the natural inclusions, and

g ◦φX |W u = φY ◦ f |W u .

Now, Hartshorne’s version [1977, Corollary 2.4] of Hurwitz’s theorem implies
the proposition for

h := φ−1
Y ◦ g ◦φX :W ′→ V ′.

The proposition follows because δ f (a)= δ f (a′)= δg(a′′), where a′ is the compo-
nent of W ′ \W u corresponding to a and a′′ = φX (a′). �

3. X0( pn) and its subspaces

Now that the rigid analytic foundation has been laid, we turn our focus specifically
to the curve X0(pn), which we will always think of in moduli-theoretic terms.
More precisely, we think of X0(pn) as the rigid analytic curve over Qp whose
points over Cp are in a one-to-one correspondence with (isomorphism classes of)
pairs (E,C), where E/Cp is a generalized elliptic curve and C is a cyclic subgroup
of order pn . We implicitly make use of this correspondence when we speak loosely
of “the point (E,C)”. There are various natural maps from X0(pn) to X0(pm) that
can be defined by way of this moduli-theoretic interpretation of points, and we
begin this section by fixing notation for these fundamental maps.

Definition 3.1. First let

π f , πν :
∐
n≥1

X0(pn)→
∐
n≥0

X0(pn)

be the maps given by π f (E,C) = (E, pC) and πν(E,C) = (E/C[p],C/C[p]),
where C[pi

] is the kernel of multiplication by pi in C . Then by letting πa b =
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πb
f ◦π

a
ν , we get maps

πa b :
∐

n≥a+b

X0(pn)→
∐
n≥0

X0(pn).

Remark 3.2. This definition is identical to the definition in [Coleman 2005, §1].
We also note that over C, πa b corresponds to the map on the upper half plane that
takes z to paz.

Another map crucial to this paper is the Atkin–Lehner involution,

w :
∐
n≥0

X0(pn)→
∐
n≥0

X0(pn),

which is defined by the formula

wn(E,C)= (E/C, E[pn
]/C), where wn := w|X0(pn).

The Atkin–Lehner involution is compatible with the level-lowering maps in the
sense that π f ◦ w = w ◦ πν (or equivalently, w ◦ π f = πν ◦ w, since w is an
involution).

3A. Canonical subgroups and supersingular annuli. We now introduce some
natural rigid subspaces of X0(pn) over finite extensions of Qp using the theory of
the canonical subgroup, which we now review and extend [Buzzard 2003, §3].15 If
E is an elliptic curve over Cp, we let h(E) denote the minimum of 1 and the valua-
tion of a lifting of the Hasse invariant of the reduction of a nonsingular model of E
mod p, if it exists, and 0 otherwise16 (this is denoted by v(E) in [Buzzard 2003]).
Katz [1973, §3] constructed a rigid analytic section s1 of π f : X0(p)→ X (1) over
the wide open W1 whose Cp-valued points are represented by generalized elliptic
curves E such that h(E) < p/(p+ 1), when p ≥ 5. Both W1 and s1 are defined
over Qp. Changing notation slightly from [Buzzard 2003], we let K1(E) ⊆ E
denote the subgroup of order p for which s1(E)= (E, K1(E)), and we call K1(E)
the canonical subgroup of order p.

Using [Buzzard 2003, Theorem 3.3], we can also define canonical subgroups
of higher order. For n ≥ 1, we generalize W1 by taking Wn to be the wide open
in X (1) where h(E) < p2−n/(p + 1) (the complement of finitely many affinoid
disks, one in each supersingular residue class). For E ∈Wn we then define Kn(E)
inductively, as in [ibid., Definition 3.4], as the preimage of Kn−1(E/K1(E)) under
the natural projection from E→ E/K1(E). This is a cyclic subgroup when E ∈Wn

15Although Buzzard works over a complete discrete valuation ring, all of his results can be ex-
tended to complete local rings.

16As pointed out in [BL 1985, Remark 6.4], the good reduction of E is well defined if it exists.
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by [ibid., Theorem 3.3], and we call it the canonical subgroup of order pn .17 Thus,
when E has supersingular reduction, either h(E)≥ p/(p+1) (and E is too super-
singular in the language of [ibid.]), or there is a largest n ≥ 1 for which Kn(E)
can be defined. In the first case, we define the canonical subgroup of E , written
K (E), to be the trivial subgroup, and in the second we let K (E)= Kn(E) for this
largest n. Whenever E/Cp has ordinary reduction (by this we mean ordinary good
or multiplicative18) we let K (E) be the p-power torsion of E that is contained
in the kernel of reduction, which does not depend on the good or multiplicative
model.

It is important to note that s1 also generalizes, in the sense that the map defined
by sn(E)= (E, Kn(E)) is also a rigid analytic section of π0n : X0(pn)→ X (1) over
the wide open Wn . To see this, first regard X0(pn) for n> 1 as the normalization of
the fiber product of X0(pn−1) with itself over X0(pn−2) via the maps π f and πν .
More specifically, let

ψn : X0(pn)→ X0(pn−1)×π f ,πν X0(pn−1)

be the isomorphism described by ψn = (πν, π f ) (after normalization of the right
side). Now assume that sn−1 is rigid analytic. With [Buzzard 2003, Theorem 3.3],
it is straightforward to verify that over Wn , we have

π f ◦ sn−1 ◦π1n−2 ◦ sn−1 = πν ◦ sn−1.

Thus we may define a rigid analytic map from Wn to X0(pn) by

sn := ψ
−1
n ◦ (sn−1 ◦π1n−2 ◦ sn−1, sn−1).

Again by the same theorem, we see that this map does indeed take E to (E, Kn(E)).
So by induction we are done. Note that both Wn and sn are defined over Qp.

Another way to focus on rigid subspaces of X0(pn) is to fix the isomorphism
class of the reduction of E . In particular, we make the following definition.

Definition 3.3. For a fixed elliptic curve A over a finite field F, we let WA(pn)

represent the rigid subspace of X0(pn) (over Qp ⊗W (F)) whose points over Cp

are represented by pairs (E,C) with E ∼= A.

Of course, WA(1) (for any A) is just a residue disk of the j-line. When A is
a supersingular curve, it is well known that WA(p) is isomorphic, over Qp2 :=

W (Fp2)⊗Qp, to an open annulus of width i(A) := |Aut(A)|/2. This means that
one can choose a parameter xA on WA(p) over Qp2 that identifies it with the (open)

17Thinking of the kernel of reduction of E as a disk, the set of points of order pn are not always
equidistant from the identity. When E ∈ Wn , Kn(E) is the union over i ≤ n of those points of order
pi that are closest to the identity.

18Equivalently, j (E) is not congruent to a supersingular j-invariant modulo mRp .
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annulus AQp2 (p
−i(A), 1). In fact, we can and will always do this in such a way that

v(xA(E,C))= i(A)h(E) when C = K1(E), and i(A)(1−h(E/C)) otherwise (this
is justified in [Buzzard 2003, Theorem 3.3 and §4]).

Now, inside the annulus, WA(p), there are three concentric circles that will be
essential for our analysis of X0(p2) and X0(p3). First there is the too-supersingular
circle, which we denote by TSA, whose points correspond to pairs (E,C), where
the canonical subgroup of E is trivial. Equivalently, these are the points with
h(E)≥ p/(p+1). Next there is the self-dual circle, denoted by SDA, whose points
correspond to pairs (E,C), where the subscheme C of order p is potentially self-
dual, that is, isomorphic to its Cartier dual after finite base extension. Equivalently,
SDA consists of those points that satisfy h(E) = 1/2 and C = K1(E). When
A/Fp, SDA can also be described as the unique circle in WA(p) that is fixed by
the involution w1, and hence we call it the Atkin–Lehner circle. Finally, we must
also consider what might be called the anti-Atkin–Lehner circle. It is the subspace
CA ⊆ WA(p) whose points correspond to pairs (E,C ′) for which there exists a
C such that (E,C) ∈ SDA but C ′ 6= C . We let τ f : CA → SDA be the map that
corresponds to replacing the cyclic subgroup C ′ with K1(E). Then τ f is rigid
analytic since it is the restriction of s1 ◦π f .

Remark 3.4. The fact that the regions above are circles follows from Buzzard’s
discussion of rigid subspaces of X1(p) [2003, §4]. Using a parameter xA chosen as
above, the circles TSA, SDA and CA are those where v(xA)/ i(A) equals p/(p+1),
1/2, and 1− 1/(2p), respectively.

From above, whenever A/Fp is supersingular, WA(p) is an annulus preserved
by the Atkin–Lehner involution w1, and which is mapped onto the residue disk
WA(1) via π f . In our analysis of the stable models of X0(p2) and X0(p3), we will
need to work with fairly explicit approximations for the restrictions of π f and w1

to these subspaces:

Theorem 3.5. Let Zp2 := W (Fp2) and let A/Fp be a supersingular curve with
j (A) 6= 0, 1728. Then there are parameters s and t over Zp2 that identify WA(1)
with the disk BQp2 (1) and WA(p) with the annulus AQp2 (p

−1, 1), and there are
series F(T ),G(T ) ∈ T Zp2[[T ]] such that

(i) w∗1(t)= κ/t for some κ ∈ Zp2 with v(κ)= 1, and

(ii) π∗f s= F(t)+G(κ/t), where F ′(0)≡1 (modp) and G(T )≡ (F(T ))p (modp).

Proof. One only has to translate results in [de Shalit 1994, §2, §3]. Our t and κ are
de Shalit’s y and π . Then our π∗f s is de Shalit’s ψ(y)− β0. The theorem follows
from [de Shalit 1994, (4) of §2, Lemma 1 and Corollaries 2–4 of §3]. �
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Note that the parameter t from Theorem 3.5 is a suitable choice for xA. This follows
from condition (ii), which guarantees that π f has degree p+1 on the circle where
v(t)= p/(p+ 1) and has degree 1 or p on all other concentric circles.

3B. Neighborhoods of the ordinary locus. The finitely many subspaces WA(pn)

(defined above), where A runs over supersingular curves over Fp2 , cover the super-
singular locus of X0(pn) over Qp2 , that is, the subspace whose points over Cp

correspond to pairs (E,C), where E has supersingular reduction. Furthermore,
these subspaces become connected wide opens over Cp by Theorem 2.29. We
will now describe a finite collection W±a b ⊆ X0(pn) of subspaces that cover the
ordinary locus. These will, in fact, be shown to be basic wide opens when n ≤ 3,
and we do expect this to hold more generally. Essentially, we extend the irreducible
affinoids, X±a b (introduced in [Coleman 2005]19), to wide open neighborhoods, by
considering points (E,C) that are nearly ordinary in the sense that either K (E) or
K (E/C) is large.

More precisely, for a ≥ b ≥ 0 with a+ b = n, we start by letting

Wa b = {(E,C) : |K (E)| ≥ pn, |K (E)∩C | = pa
}.

For b>a≥0 with a+b=n, we then define Wa b=wn(Wba). Now we show that the
pairing on Ka(E), which was defined in [Coleman 2005] for points (E,C) ∈Wa b

where E has ordinary reduction, carries over to all points in Wa b. Let (E,C) be
a point of Wa b with a ≥ b, and let A, B ∈ Ka(E). Then by the definition of Wa b,
we can choose P ∈ C and Q ∈ Kn(E) such that pb P = A and pb Q = B. Now set
PE,C(A, B)= en(P, Q), where en( · , · ) denotes the Weil pairing on E[pn

]. This
gives a well-defined pairing of Ka(E) with itself onto µpb . Furthermore, if p> 2,
there are exactly two isomorphism classes of pairings on Z/paZ ontoµpb whenever
b > 0. Let e+( · , · ) and e−( · , · ) be representatives for these classes. Then, es-
sentially repeating the argument from [Coleman 2005] for the ordinary affinoids,
X±a b, there is a rigid subspace W±a b of X0(pn) defined over Qp(

√
(−1)(p−1)/2)

whose Cp-valued points are

{(E,C) ∈Wa b | (Ka(E),PE,C)∼= (Z/paZ, e±)}.

Set W+n 0 =W−n 0 =Wn 0, and for b > a ≥ 0, set W β
a b = wn(W

(−1
p )β

ba ).

Thus, X±a b is just the affinoid whose points are those (E,C) ∈ W±a b for which
E has ordinary or multiplicative reduction. It is not immediate that W±a b is a basic
wide open with X±a b as a minimal underlying affinoid. We will show that this is
the case, however, when n ≤ 3, and we do expect it to hold for arbitrary n as well.

19When a < b, the Xβa b here is the same as X
(−1

p )β

a b from [Coleman 2005].
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The affinoid X±a b is well understood from results of [Coleman 2005]. In particular,
we have the following result, proven but not made explicit therein.

Proposition 3.6. The affinoid X±a b with a≥b>0 is defined and has good reduction
over Qp(µpb).

Proof. It was proven in [Coleman 2005, §0] that X±a b is an affinoid defined over the
quadratic subfield of Qp(µp). For ζ ∈µpb , we can define an embedding aζ of X±a b
onto an affinoid in X1(pb)bal by taking aζ (E,C) to be the point that is represented
by the balanced 01(pb)-structure [Katz and Mazur 1985, (3.3)]

P, E
α
−→
←−
α̌

E/C, P ′.

Here we have P ∈ Kb(E), PE,C(P, P)= ζ , and P ′ = α(Q) for some Q ∈ E[pb
]

such that (P, Q) = ζ . This image affinoid reduces to Ig(pb) by (the extension to
level 1 of) [Katz and Mazur 1985, p. 450].20 �

Corollary 3.7. The affinoid X±a b with a+ b = n is defined and has good reduction
over Qp(µpbn/2c).

Proof. When a ≥ b, this follows immediately from Proposition 3.6. Otherwise,
apply wn first. �

4. Formal groups

In the previous section we defined a finite collection WA(pn) of connected wide
opens that cover the supersingular locus of X0(pn). Unfortunately, WA(pn) is
only basic when n ≤ 2. Therefore, to arrive at a stable covering of X0(pn), it is
necessary to use smaller subspaces of WA(pn). One approach is to use canonical
subgroup considerations, as in Section 3A. Another is to use the interpretation from
[Lubin et al. 1964] of an elliptic curve, over a complete local ring R with residue
characteristic p, as a lifting of some formal group in characteristic p. In particular,
this will enable us to use explicit formulas of Hopkins and Gross, which we recall
in Section 4B.

Theorem 4.1 (Woods Hole theory). Suppose R is the ring of integers in a com-
plete subfield of Cp, with residue field F. The category of elliptic curves over R is
equivalent to the category of triples (F, A, α), where F is a formal group over R,
A is an elliptic curve over F, and α : F → Â is an isomorphism. A morphism
between two triples, (F, A, α) and (F ′, A′, β), is a pair (σ, τ ), where σ : F→ F ′

20Ig(pb) is the Igusa curve in characteristic p that classifies pairs (E, ψ), where E is an elliptic
curve and ψ : µpb ↪→ E (studied in [Igusa 1968]).
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and τ : A→ A′ are homomorphisms such that the following diagram commutes.

F

α

��

σ̄ // F̄ ′

β

��

Â
τ̂

// Â′

Proof. If E is an elliptic curve over R, let FR(E) = (Ê, E, ι), where ι : Ê → ˆE
is the natural isomorphism. This is a functor, compatible with changing R, from
the first category to the second. We claim this is an equivalence of categories. The
analogous statement is proven when R is a local Artinian ring with residue field
of characteristic p in [Lubin et al. 1964, §6]. Then on [Lubin et al. 1964, p. 7], it
is explained that by “passing to the limit. . . one sees that it continues to hold over
a complete local Noetherian ring”. Thus the theorem is true when R is the ring of
integers in a complete discretely valued subfield of Cp.

To obtain it more generally, we apply [Lubin et al. 1964, Theorem 1]. This
theorem implies that given an elliptic curve A over an algebraic extension of Fp,
the collection of liftings of Â to Rp is naturally the set of points in a wide open
disk D. On the other hand, the set of liftings of A to Rp is the set of points in a
residue disk R of X (1) and F yields a degree one rigid analytic map from R to D

with dense image. Hence it is an isomorphism. �

In light of this theorem, we may think of points (E,C) ∈ WA(pn) as triples
(F,C, α), where F is a formal group, C ⊆ F is a cyclic subgroup of order pn ,
and α : F → Â is an isomorphism. We then refer to such a triple as a Woods
Hole representation of (E,C). There are two specific ways in which we apply
this theory. First of all, from the fact that all supersingular elliptic curves are p-
prime isogenous, we are able to show that all supersingular regions WA(pn) for a
fixed p and n are nearly isomorphic. Along with the result in Appendix B, this
enables us to do all of our calculations under the simplifying assumption that A/Fp

and j (A) 6= 0, 1728. Secondly, we use extensively the natural action of the p-adic
group Aut( Â) on WA(p), which was studied in detail in [Hopkins and Gross 1994].

4A. All supersingular regions are (nearly) isomorphic.
Proposition 4.2. Let A and A′/Fp2 be two supersingular elliptic curves, with j (A)
not equal to 0 or 1728. Let F/Fp2 be a finite extension over which A and A′

are p-prime isogenous (which always exists). Then the wide open WA′(pn) is
isomorphic over W (F) ⊗ Qp to the quotient of WA(pn) by a faithful action of
Aut(A′)/{±1}.

Proof. Suppose ι : A → A′ is an isogeny of degree prime to p over F. Since
(deg ι, p) = 1, the induced map ι̂ : Â→ Â′ is an isomorphism of formal groups.
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So in Woods Hole terms we may define a map ψι :WA(pn)→WA′(pn) by taking

ψι(F,C, α)= (F,C, ι̂ ◦α).

To show that the map is, in fact, well defined, suppose that the triples (F1,C1, α1)

and (F2,C2, α2) represent the same point of WA(pn). This means that there are
isomorphisms γ : F1→ F2 (mapping C1 to C2) and τ : A→ A such that α2 ◦ γ =

τ̂ ◦ α1. Because j (A) 6= 0, 1728, we know that τ = ±1. Therefore τ̂ commutes
with all isogenies. In particular, composing with ι̂ on both sides, we have

ι̂ ◦α2 ◦ γ = τ̂ ◦ ι̂ ◦α1.

Therefore (F1,C1, ι̂ ◦ α1) and (F2,C2, ι̂ ◦ α2) are Woods Hole representations of
the same point in WA′(pn), and ψι is well defined.

To show that ψι is onto, choose any point of WA′(pn) and let (F,C, β) be one
of its Woods Hole representations (so β : F → Â′ is an isomorphism). Since ι̂ is
an isomorphism, we can choose a point of WA(pn) by taking (F,C, ι̂−1

◦ β), and
this point maps onto our chosen point of WA′(pn) by definition. (Note, however,
that this does not define a map from WA′(pn) to WA(pn), since our original choice
of triple was noncanonical.)

Finally, suppose that two points of WA(pn), represented by (F1,C1, α1) and
(F2,C2, α2), have the same image in WA′(pn). Then there must be isomorphisms
γ : F1→ F2 (taking C1 to C2) and τ : A′→ A′ such that

ι̂ ◦α2 ◦ γ = τ̂ ◦ ι̂ ◦α1 and α2 ◦ γ = îd ◦ (ι̂−1
◦ τ̂ ◦ ι̂) ◦α1.

In particular, τ 7→ ((F,C, α) 7→ (F,C, ι̂−1τ ι̂ ◦ α)) gives a faithful action of
Aut(A′)/{±1} on the fibers of ψ . �

Remark 4.3. Suppose now that F ⊇ Fp2 is a field over which all supersingular
curves are p-prime isogenous. It follows, then, that all of the regions WA(pn) are
nearly isomorphic over W (F)⊗Qp. We showed in [CM 2006, Theorem 5.5] that
this F can always be taken to be Fp24 .

4B. Woods Hole action and Gross–Hopkins theory. The other way we use Woods
Hole theory is to define a continuous action of a p-adic group on WA(pn). In
particular, when A is a supersingular elliptic curve, it is well known [Tate 1966,
Main Theorem] that

B := End( Â)∼= Zp[i, j, k],

where i2 is a quadratic nonresidue, j2
= −p, and i j = − j i = k. Furthermore,

we may take j to be the Frobenius endomorphism whenever A is defined over Fp.
Then B∗ = Aut( Â) acts on WA(pn) by

ρ(F,C, α)= (F,C, ρ ◦α) for ρ ∈ B∗.
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Remark 4.4. The subgroup Z∗p ⊆ B∗ acts trivially on WA(pn). Indeed, for ρ ∈
Z∗p, just take σ = ρ−1 and τ = id in Theorem 4.1. Not only does this define an
isomorphism between (F, α) and (F, ρ ◦ α), but in fact the isomorphism leaves
invariant the subgroups of F of order pn .

Hopkins and Gross studied the analogous action for deformation spaces of finite
height formal groups, and explicitly computed the action in the height 2 case in
[1994, §25]. To better understand their results (and translate them into our setting),
we now offer a brief review of their theory under suitable simplifying assumptions.
First, let K be a finite unramified extension of Qp with residue field F⊇Fp2 , and let
F0/F be a fixed height 2 formal group. They show that there is a rigid space over K ,
denoted by X K , whose L-valued points for any finite extension L of K correspond
to liftings of F0 to a formal group over OL . Here two liftings are equivalent (say,
(G1, γ1) and (G2, γ2) with γi :Gi

∼
→ F0) if there is an isomorphism between them

that induces the identity on F0. Then Aut(F0) acts (rigid analytically) on X K in
the same manner as above, and Hopkins and Gross make this action completely
explicit with their crystalline period mapping

8 : X K → P1
K ,

which can be understood as follows. Again, it is well known that B := End(F0) is
isomorphic to the maximal order of some quaternion algebra over Qp, and hence
B ⊗ K is (noncanonically) isomorphic to M2×2(K ). Since the image of B∗ in
M2×2(K ) must take lines to lines, we thus obtain an action of B∗ on P1

K . Hopkins
and Gross define the (rigid analytic) map 8 and decompose B⊗ K in such a way
that 8(ρx)=8(x)ρ for all ρ ∈ B∗, that is, 8 is B∗-equivariant. So the beauty of
their theory is that the action of B∗ on X K can be concretely expressed in terms of
linear algebra.

Indeed, suppose A/Fp with j (A) 6= 0, 1728. Then X K and WA(1) are natu-
rally isomorphic over the unramified quadratic extension K of Qp, and we may
decompose B as R⊕ R j , where

R = Zp[i] ∼= OK

and j is the Frobenius endomorphism of A (as above). Then by [Hopkins and
Gross 1994, §25], ρ = α+ jβ ∈ B∗ (with α, β ∈ Zp[i]) acts on P1(K ) = 8(X K )

via multiplication on the right by the matrix[α −pβ̄
β ᾱ

]
. (3)

Of course, this formula only completely defines the action of B∗ on B∗-stable
subspaces of WA(1) on which 8 is an injection (for example, the canonical lift-
ings of [Gross 1986, 2.1]). Hopkins and Gross [1994, 25.12] specify an affinoid
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disk Y ⊆ WA(1) for which this is the case, and which maps via 8 onto the disk
v(t)≥ 1/p, where t is the parameter on P1 corresponding to the row vector [1, t].
This parameter is distinct from the parameter on WA(p) from Theorem 3.5. How-
ever, from the explicit action of B∗ on 8(Y ) and the fact that this t vanishes at
some canonical lifting (which is necessarily too supersingular), there is significant
compatibility between the two. In particular, it is clear that the canonical section
of π f : WA(p) → WA(1) exists over the annulus in Y ⊆ WA(1) described by
1/p < v(t) < p/(p+ 1) and preserves valuations with respect to the two param-
eters. As B∗ acts equivariantly with respect to π f , the upshot of all this is that
B∗ acts on the subannulus of WA(p) that is identified via 8 ◦π f with the annulus
1/p < v(t) < p/(p+ 1) according to

ρ(t)=
−pβ̄ + ᾱt
α+βt

, where ρ = α+ jβ. (4)

In particular, we are most interested in the action of B∗ on the Atkin–Lehner circle
(equivalently, where v(t)=1/2). The following proposition and remark summarize
the specific results (still assuming that A/Fp and j (A) 6= 0, 1728) which we will
need for our explicit analysis of X0(p3).

Definition 4.5. For ρ = α+ jβ (as above), let ρ ′ = ᾱ+ j β̄, and let B ′ be the set
of all ρ ∈ B∗ such that ρρ ′ ∈ Z∗p. Alternatively, B ′ is just the set of all ρ ∈ B∗ with
ρ = a+ bi + dk.

Proposition 4.6. Let j (A) 6= 0, 1728. For any ρ ∈ B∗, let wρ := ρ ◦w1. Then wρ
is an automorphism of SDA with two fixed points and is an involution exactly when
ρ ∈ B ′.

Proof. If (E2, K (E2)) = w1(E1, K (E1)) are two points of SDA, this means that
there is a degree p isogeny f : E1 → E2 with kernel K (E1). Since A is super-
singular with Aut(A) = ±1, f can only induce ± j in End(A) (and hence in B =
End( Â)). Now, j /∈ B∗, but the full group, (B⊗K )×, acts equivariantly on8(X K )

by [Hopkins and Gross 1994, 23.11]. So this means that on SDA we may identify
w1 with ± j (and the sign is irrelevant).

To determine when wρ is an involution, we first verify that ρ ◦ w1 = w1 ◦ ρ
′

(equivalently, ρ j = jρ ′). This shows that w2
ρ acts like ρρ ′, and only Z∗p ⊆ B∗ acts

trivially from (4). So wρ is an involution exactly when ρ ∈ B ′. In particular, wρ is
given by

wρ(t)=
−pᾱ− pβ̄t
−pβ +αt

, (5)

and the explicit formula shows that in any case wρ has two fixed points. �

Remark 4.7. To better understand how ρ ∈ B∗ and wρ act on SDA, we could
choose the parameter u= t/

√
−p that identifies SDA with C[1]. Then, by reducing



Stable reduction of X0(p3) 403

equations (4) and (5) from above, on SDA ∼=Gm we have

ρū = ᾱα−1ū = ζ ū and wρ ū = ᾱα
−1

ū
=
ζ

ū
for some ζ ∈ µp+1 ⊆ F∗p2 .

So on SDA, the wρ reduce to p+1 distinct involutions with 2(p+1) distinct fixed
points (in a µ2(p+1) orbit). Furthermore, each of these involutions of SDA lifts to
an involution of SDA.

Another way to think of the fixed points of the automorphisms {wρ} is that they
correspond to elliptic curves whose formal groups have complex multiplication by
the ring of integers in a ramified quadratic extension of Qp (see Proposition 4.9
below). This point of view becomes crucial when we determine the field of defi-
nition of our stable model, because it ties our construction to the arithmetic theory
of CM elliptic curves. To this end, we make the following definition.

Definition 4.8. For K a complete subfield of Cp, an elliptic curve E/K has fake
CM if EndK Ê 6= Zp and potential fake CM if EndCp Ê 6= Zp.

Proposition 4.9. Let (E,C) be any point of SDA. Then the following statements
are equivalent.

(i) (E,C) is fixed by wρ for some ρ ∈ B ′.

(ii) (E,C) is fixed by wρ for some ρ ∈ B∗.

(iii) E has potential fake CM by Zp[π ], where π ∈ End(Ê) and C = kerπ .

Proof. We will show that (ii) is equivalent to both (i) and (iii) with a Woods Hole
argument. So before we begin we must reinterpret condition (ii) in the language
of Theorem 4.1. Let (F, α,C) be a Woods Hole representation of (E,C), and let
ιC : F→ F/C be the natural map. Then (E,C) is a fixed point of wρ if and only if
there is an isomorphism σ : F/C→ F that makes the following diagram commute.

F
ῑC //

α

��

F/C
id //

β

��

F/C
σ̄ //

ρ◦β

��

F

α

��

Â j
// Â ρ

// Â id
// Â

Note that the first commuting square represents the isogeny (of elliptic curves)
E→ E/C . The pair (F/C, ρ ◦β) then corresponds to the elliptic curve ρ(E/C).

Now, to show (iii) implies (ii), suppose first that we are given π ∈ End(F) with
ker(π) = C . Then π must factor as σ ◦ ιC for some isomorphism σ : F/C → F ,
and we may take ρ = α ◦ σ̄ ◦ β−1

∈ B∗ in the diagram above. Conversely, if
(E,C) is a fixed point of wρ for some ρ = a+ bi + cj + dk ∈ B∗, and hence we
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have a commutative diagram as above, End(F) must contain both π := σ ◦ ιC and
π0 := π + pc. Using the diagram to compute inside End( Â), we then have

α ◦π0 ◦α
−1
= ρ j − cj2

= (ρ− cj) j.

Note that ρ−cj ∈ B ′. So π2
0 ∈ pZ∗p, which means that Zp[π0]=Zp[π ] is already the

maximal order in a ramified quadratic extension of Qp (and hence all of End(F)).
Thus we have shown that (ii) implies (iii). We also get for free, however, that (ii)
implies (i), since (E,C) is now also fixed by wρ0 , where ρ0 := ρ− cj ∈ B ′. �

Corollary 4.10. If (E,C) ∈ SDA is fixed by wρ0 for some ρ0 ∈ B ′, then wρ fixes
(E,C) precisely when ρ = aρ0+ bj for a ∈ Z∗p and b ∈ Zp.

Remark 4.11. With notation as above, suppose that (E,C) ∈ SDA is fixed by wρ
and H is one of the noncanonical subgroups of E of order p (so (E, H) ∈ CA).
Since π2

0 ∈ pZ∗p and ker(π0) = C , we must have π0(H) = C . This implies that
a+ bπ0 ∈ (Zp[π0])

∗ ∼=Aut(F) fixes the noncanonical subgroups of order p when
p | b, and transitively permutes them otherwise.

Remark 4.12. We showed in [CM 2006, Remark 3.11] that the points that satisfy
the conditions of Proposition 4.9 are precisely the canonical liftings of Â in the
sense of [Gross 1986, 2.1], where K is one of the ramified quadratic extensions of
Qp and Â is given the structure of a formal OK -module.

5. Stable reduction of X0( p2)

At this point we have done enough groundwork to prove a rigid analytic reformula-
tion of Edixhoven’s result [1990, Theorem 2.1.2] on the stable reduction of X0(p2).
Most of the work is in computing the reduction of YA, the underlying affinoid
of WA(p2). This is done by first embedding YA into the product of two circles
(specifically TSA ×TSA) and then applying the explicit formula of Theorem 3.5.
After that, we use results from Section 2 to show that the wide opens in

{W20,W+11,W−11,W02} ∪ {WA(p2) : A is supersingular}

intersect properly and comprise a stable covering of X0(p2).

Lemma 5.1. Let YA = π
−1
ν (TSA). If A/Fp, YA is naturally isomorphic to

S := {(x, y) ∈ TSA×TSA | x 6= y, π f (x)= π f (y)}.

Proof. If (x, y)∈ S, then x= (E,C1) and y= (E,C2) for E some too supersingular
curve, and C1 and C2 are two distinct subgroups of order p. So we can define a
map ψ : S→YA by taking (x, y) to (E/C1, p−1C2/C1). It is immediate that this
takes values in YA since πν ◦ψ(x, y) is then

(E/E[p], p−1C2/E[p])∼= (E,C2).
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Also, we can define a map going the other way, say φ, by taking (E,C) ∈ YA to
the pair (x, y) ∈ S with x = (E/pC, E[p]/pC) and y = (E/pC,C/pC). This
takes values in S precisely because πν(E,C) = (E/pC,C/pC) ∈ TSA, and it is
straightforward to check that ψ ◦φ and φ ◦ψ are the respective identities. �

Proposition 5.2. Let A be as in Theorem 3.5. Then if K is any extension of
W (Fp2)⊗Qp such that (p + 1) | e(K ), YA := (YA)K is a smooth, affine curve
of genus (p− 1)/2 with 4 points at infinity (equation given below).

Proof. Let x and y be parameters on TSA that are specializations of the parameter
t on WA(p) from Theorem 3.5. Then by Lemma 5.1, YA can be described by the
equation

F(x)+G(κ/x)= F(y)+G(κ/y),

where v(x) = v(y) = p/(p+ 1). Now choose any α ∈ K with v(α) = 1/(p+ 1)
and substitute u = α p/x and v = α p/y into the above equation for YA (so that
v(u) = v(v) = 0). Dividing through by α p, we obtain an equation for YA in u
and v that has integral coefficients and satisfies the congruence

u−1
− v−1

≡ (v p
− u p)(κ/α p+1)p (mod α).

Now let b = (κ/α p+1)p (a unit), and we obtain

1≡ buv(v− u)p−1 (mod α)

as an equation for YA.
Strictly speaking, the above curve has three infinite points, with projective co-

ordinates (0 :1 :0), (1 :0 :0), and (1 :1 :0). However, while the first two are non-
singular, the third splits into two points in the normalization. The genus can easily
be computed by applying Riemann–Hurwitz to the equation

s p+1
=

b
4
(r2
− 1),

where s = 1/(v− u) and r = (v+ u)/(v− u). �

Theorem 5.3. Let p ≥ 13 be a prime, and K an extension of W (Fp24)⊗Qp(µp)

with (p+ 1) | e(K ). The following is a semistable covering of X0(p2) over K :

C0(p2) := {W20,W+11,W−11,W02} ∪ {WA(p2) : A is supersingular}.

The affinoids X±a b and YA are minimal underlying affinoids in W±a b and WA(p2).

Proof. The wide opens W±a b, which cover the ordinary locus, are disjoint from each
other, and we have

YA =WA(p2)
∖⋃

W±a b.
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By Proposition 3.6, all four ordinary affinoids have good reduction over K . There-
fore, it suffices to show that each YA has good reduction, and that WA(p2)∩W±a b
is always an annulus.

First we demonstrate that the wide open intersections are annuli over K (where
we still assume (p+1) | e). In the case of W20 this is immediate, as W20∩WA(p2)

maps isomorphically onto the annulus

x−1
A (A(p−i(A)/(p+1), 1))⊆WA(p)

over K , via π f . Similarly, W±11 ∩ WA(p2) maps onto the same annulus via π f ,
but with degree (p− 1)/2. Then Theorem 2.6 implies that this too is an annulus
over K . Finally, W02 ∩WA(p2) must be an annulus since it is isomorphic to the
region W20 ∩WAσ (p2), by the Atkin–Lehner involution w2.

Next we consider the reductions of the affinoids YA. Since p≥13, Theorem B.1
guarantees us a supersingular elliptic curve A0 for which Proposition 5.2 directly
applies. Then for any other supersingular curve A we use Proposition 4.2. In
particular, we choose a surjection ψι that maps WA0(p

2) onto WA(p2) with degree
i(A). If i(A) = 1, the two regions are isomorphic and we are done. In any case,
ψι necessarily takes YA0 to YA and is étale. Therefore YA is isomorphic to the
quotient of YA0 by an automorphism of degree i(A) (which fixes the four infinite
points). Hence YA has good reduction and we are done. �

Corollary 5.4. For any supersingular curve A, the reduction of YA must have
(with the correct choice of parameters) the equation

y(p+1)/i(A)
= x2
− 1,

and genus (p+ 1)/(2i(A))− 1.

Proof. After a change of coordinates, the reduction of YA0 has the equation y p+1
=

x2
−1, with two of the four infinite points moved to (±1, 0) and two still at infinity.

Now, any automorphism of order i(A) that acts on this curve and fixes these four
points must fix x and take y to ζ y, where ζ i(a)

= 1. �

Remark 5.5. Let K be as in Theorem 5.3, with ep(K )= (p2
−1)/2. By computing

the widths of the annuli in the stable covering (see Section 9A for more details), one
finds intersection multiplicities of i(A) where X±11 meets YA and of i(A)·(p−1)/2
where X20 and X02 meet YA.

The following implies [Coleman 2005, Theorem 3.1].

Corollary 5.6. The point (E,C) is not in S :=W20∪W+11∪W−11∪W02 if and only
if pC = K (E) and E[p]/pC = K (E/C), or equivalently K (E/pC)= 0.
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Proof. (E,C) is not in S if and only if it is in some YA, which by definition means
that E/pC has trivial canonical subgroup. This is equivalent to pC = K (E) and
E[p]/pC = K (E/C) by [Buzzard 2003, Theorem 3.3(vi)]. �

Corollary 5.7. The Hecke correspondence T` takes a divisor supported on S to a
divisor supported on S if and only if ` 6= p.

Proof. This follows from the fact that

T`(E,C)=
∑

degα=`
|αC |=|C |

(αE, αC). �

Remark 5.8. Using the fact that X (p) ∼= X0(p2)×X0(p) X1(p), Jared Weinstein
and the second author have used the results of this section to determine a stable
model of X (p).

6. Outline of X0( p3) analysis

At this point we would like to construct a stable covering for X0(p3) in much the
same way as was just done for X0(p2). By analogy, the natural starting point would
be the covering consisting of

{W30,W+21,W−21,W+12,W−12,W03} ∪ {WA(p3) : A is supersingular}.

This is not stable, however, because WA(p3) is not a basic wide open. This can
actually be seen immediately from the fact that each WA(p3) at least contains
the affinoids E1 A := π

−1
f (YA) and E2 A := π

−1
ν (YAσ ) (which are nontrivial from

Section 5). So our covering for X0(p3)must at least be refined to take these regions
into account. In fact, things are much more complicated.

For simplicity, suppose that A/Fp with j (A) 6= 0, 1728 (other WA(p3) can be
handled by Proposition 4.2). Since π11 maps WA(p3) onto the width 1 annulus,
WA(p), this gives us a convenient way to keep track of where various subspaces
are in relation to each other. For example, it follows from Section 5 that the above
affinoids, E1 A and E2 A, lie over the circles described by v(xA) = p/(p+ 1) and
v(xA) = 1/(p+ 1) respectively (with parameter xA as in Section 3). The former
is the too-supersingular circle, and the latter is what was called the nearly too-
supersingular circle in [Coleman 2005, §3]. Lying in between these two circles is
the Atkin–Lehner circle, SDA, where v(xA)=1/2. So lying “in between” E1,A and
E2,A in some sense is the affinoid ZA := π

−1
11 (SDA). It turns out that this affinoid

is where all of the new complication arises at the p3 level. We now give a brief
summary of the analysis of ZA that will follow in Sections 7 and 8.

Much of our analysis of ZA is explicit (see Section 8), and is based on an em-
bedding into the product of two circles as in Lemma 5.1. More specifically, let
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τ f : CA→ SDA be as in Section 3. Then ZA can be identified with

S := {(x, y) ∈ CA×CA | τ f (x)= w1 ◦ τ f (y)}.

Since π f ◦ τ f = π f , this identification along with de Shalit’s result (Theorem 3.5)
gives us a way to explicitly compute the reduction of ZA as

X p+1
+ X−(p+1)

= Z p.

So ZA has 2(p + 1) cuspidal singular points, and its normalization is a copy of
the affine line whose completion is what we will call a “bridging component”.
Basically, we want to show that the 2(p + 1) singular residue classes of ZA are
basic wide open subspaces, with underlying affinoids that reduce to y2

= x p
− x .

To motivate and explain this, consider the identity π11 ◦w3 =w1 ◦π11, relating
the Atkin–Lehner involutions on X0(p3) and X0(p). It follows immediately that
w3 preserves ZA, as well as D̃ := π−1

11 (D), where D is either of the residue disks
of SDA preserved by w1. Furthermore, a moduli-theoretic argument shows that w3

has 2p fixed points that lie p : 1 over the w1 fixed points in SDA. So D̃ ⊆ ZA is
a wide open with one end upon which the involution w3 acts with p fixed points.
We show that D̃ is in fact isomorphic to the complement of an affinoid disk near
infinity in a hyperelliptic curve that reduces to y2

= x p
− x (w3 is the hyperelliptic

involution). Such an argument, however, would only account for two of the singular
residue classes of ZA. To handle all of them, we use the action of B∗ = Aut( Â)
to generalize the pair (w1, w3) to a pair (wρ, w̃ρ), as was done in Proposition 4.6.
Thus we are able to handle all 2(p+ 1) residue classes because of Remark 4.7.

Once we have actually constructed all of the nontrivial components in the stable
reduction of X0(p3), the argument is reduced to showing that nothing else inter-
esting can happen. We do this in Section 9, with a total genus calculation playing
a key role. Again we first use the fact that all supersingular regions are (nearly)
isomorphic along with the result of Appendix B, so that calculations only need to
be done for a supersingular curve with A/Fp and j (A) 6= 0, 1728. The remaining
cases of p ≤ 11 were handled explicitly in [CM 2006, §6], which we hope makes
our construction more understandable, and which completes Theorem 9.2.

7. The bridging component

Fix a supersingular elliptic curve A/Fp with j (A) 6= 0, 1728. In this section we
begin our analysis of the affinoid ZA := π

−1
11 (SDA) ⊆ WA(p3). In particular, we

show by a moduli-theoretic argument that ZA can be embedded into CA × CA.
Using the embedding, we then construct a family of involutions on ZA. These
involutions are compatible (with respect to π11) with the involutions of SDA that
were introduced in Proposition 4.6.
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Proposition 7.1. Let CA and τ f :CA→ SDA be as in Section 3. There is a natural
isomorphism ψ from

S := {(x, y) ∈ CA×CA | τ f (x)= w1 ◦ τ f (y)}

to ZA, such that w3(ψ(x, y))= ψ(y, x) and π11(ψ(x, y))= τ f (x).

Proof. Suppose (x, y) ∈ S. Then there exists an (E,C) ∈ SDA such that x =
(E, H) for some H 6= C . The p noncanonical subgroups of E/C are precisely
the subgroups D/C , where D ⊆ E is a cyclic subgroup of order p2 with pD = C
[Buzzard 2003, 3.3]. Therefore, since τ f (x) = w1(τ f (y)) = (E,C), there is a
unique D such that y= (E/C, D/C). Hence we can define a mapψ : S→WA(p3)

by

ψ(x, y)= (E/H, (p−1 D)/H).

Note that (p−1 D)/H , and henceψ , is well defined since pD=C and H span E[p].
The key fact to check is that ψ(x, y) lies in ZA, that is, π11(ψ(x, y)) ∈ SDA.

π11(E/H, (p−1 D)/H)= (E/〈H, pD〉, D/〈H, pD〉)

= (E/E[p], D/E[p])

≡ (E, pD)= (E,C) ∈ SDA.

This calculation shows that ψ(x, y) ∈ ZA, that π11(ψ(x, y)) = τ f (x), and more.
Once a point (E,C) ∈ SDA is fixed, there are p independent choices for both H
and D. Therefore we have produced p2 points of ZA that are in the image of ψ
and in the π11-fiber over that particular (E,C) ∈ SDA. Since the total degree of
π11 : X0(p3)→ X0(p) is only p2, we can conclude thatψ maps onto ZA, and hence
is an isomorphism. We now describe its inverse. For an arbitrary (E, K ) ∈ ZA, let
x(E, K ) = (E/p2K , E[p]/p2K ), y(E, K ) = (E/pK , K/pK ), and φ(E, K ) =
(x(E, K ), y(E, K )). To show that φ = ψ−1, it suffices to check that φ ◦ψ is the
identity on S. We have

x(E/H, (p−1 D)/H)= (E/〈H,C〉, p−1 H/〈H,C〉)

= (E/E[p], p−1 H/E[p])≡ (E, H)

and
y(E/H, (p−1 D)/H)= (E/〈H, D〉, p−1 D/〈H, D〉)

= (E/〈E[p], D〉, p−1 D/〈E[p], D〉)

≡ (E/pD, D/pD)= (E/C, D/C).

Now that we have determined ψ−1, we can verify the claim regarding w3 by ap-
plying ψ−1

◦w3 ◦ψ to the pair (x, y), where x = (E, H) and y = (E/C, D/C).
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We have

w3 ◦ψ(x, y)= w3(E/H, (p−1 D)/H)

= (E/〈H, p−1 D〉, p−3 H/〈H, p−1 D〉)

= (E/〈E[p], p−1 D〉, p−3 H/〈E[p], p−1 D〉)

≡ (E/D, p−2 H/D),

x(E/D, p−2 H/D)= (E/〈D, H〉, p−1 D/〈D, H〉)

= (E/〈E[p], D〉, p−1 D/〈E[p], D〉)

≡ (E/pD, D/pD)= (E/C, D/C)= y,

y(E/D, p−2 H/D)= (E/〈D, p−1 H〉, p−2 H/〈D, p−1 H〉)

= (E/E[p2
], p−2 H/E[p2

])≡ (E, H)= x . �

Proposition 7.2. For each ρ ∈ B∗, we can define an automorphism w̃ρ of ZA

(identified with S) by
w̃ρ(x, y)= (ρy, ρ ′x).

Furthermore, w̃ρ is compatible with wρ , in the sense that π11 ◦ w̃ρ =wρ ◦π11, and
is an involution of ZA whenever ρ ∈ B ′.

Proof. The action of B∗ on WA(p) preserves circles. So at least this defines a map
from CA×CA to itself. To verify that it preserves the subspace S we need to check
that

τ f (x)= w1 ◦ τ f (y)⇒ τ f (ρy)= w1 ◦ τ f (ρ
′x).

But τ f commutes with B∗. So this follows from the identity ρw1 = w1ρ
′, which

was shown in the proof of Proposition 4.6.
By Remark 4.4, the inverse of w̃ρ is given by w̃ξ for any ξ ∈ B∗ with ξρ ′ ∈ Z∗p.

In particular, w̃ρ is an involution exactly when ρ ∈ B ′. Finally, the compatibility
relation follows easily from the fact that π11(x, y)= τ f (x). �

Corollary 7.3. Every fixed point of w̃ρ lies (via π11) over a fixed point of wρ .
If Dρ ⊆ SDA is one of the two residue disks that are preserved by wρ , then
D̃ρ := π

−1
11 (Dρ) is invariant under w̃ρ .

Proof. These are immediate consequences of π11 ◦ w̃ρ = wρ ◦π11. �

Remark 7.4. Let 1B be the multiplicative identity in B. Then w1B is w1|SDA and
w̃1B is w3|ZA .

Recall from Proposition 4.9 that the fixed points of wρ correspond to pairs
(E,C), where E has fake CM by Zp[π ] and ker(π) = C . The points of ZA that
lie over such a fixed point then correspond to pairs (E/H, p−1 D/H), where H
and D are as in the proof of Proposition 7.1. In particular, H ⊆ E is a noncanonical
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subgroup of order p, and D⊆ E is cyclic of order p2 such that pD=C . Combining
these facts with Corollary 7.3 gives us a convenient way to describe (and count)
the fixed points of w̃ρ .

Proposition 7.5. Let (E,C) be a fixed point of wρ for some ρ ∈ B∗, such that
End(Ê)= Zp[π ] with ker(π)= C. If ρ ∈ B ′(1+ pj B), there are p fixed points of
w̃ρ lying over (E,C), specifically those pairs (E/H, p−1 D/H) with π(D) = H.
Otherwise, w̃ρ has no fixed points.

Proof. Fix a Woods Hole triple (F, α,C) corresponding to (E,C). Then E/C
is equivalent to some pair (F/C, β), such that the diagram from the proof of
Proposition 4.9 commutes. Note that an explicit isomorphism from ρ(E/C) to
E is then given by the pair (σ, id). To determine the w̃ρ fixed points, it will be
useful to similarly describe the isomorphism from ρ ′(E) to E/C , which exists by
ρ ◦w1 = w1 ◦ ρ

′. This can be done by replacing ρ ◦ j with j ◦ ρ ′ in the diagram,
and repeating the first isogeny, to obtain the following.

F
ῑC //

ρ′◦α

��

F/C
σ̄ //

ρ◦β

��

F
ῑC //

α

��

F/C

β

��

Â j
// Â id

// Â j
// Â

Since j2
= −p, this diagram shows that an isomorphism from ρ ′(E) to E/C is

given by the pair (γ, id), where γ =−p−1ιC ◦ σ ◦ ιC .
Now, choose a point lying over (E,C) by taking x = (E, H) = (F, α, H) and

y = (E/C, D/C)= (F/C, β, D/C). We must determine when

w̃ρ(x, y)= (ρy, ρ ′x)= (x, y).

Since an isomorphism from ρ(E/C) to E is given by (σ, id), the condition ρy= x
is equivalent to σ(D/C) = H . Similarly, the condition ρ ′x = y is equivalent to
γ (H) = D/C . Putting these in terms of π , the first condition is π(D) = H and
the second is π(D) = −(π2/p)(H). By Remark 4.11, these two conditions are
equivalent when ρ ∈ B ′(1+ pj B), and incompatible otherwise. �

Remark 7.6. If (E,C) is any point lying over a fixed point of wρ via π11, it is a
fake Heegner point in the sense that E has fake CM and End(Ê/C) is isomorphic
to End(Ê). In fact, one can show in this case that End(Ê)∼=Zp[λ] for some λ such
that ker(λ)= C .

8. Explicit analysis

In this section, we use Proposition 7.1 and Theorem 3.5 to explicitly compute the
reduction of ZA (for A/Fp and j (A) 6= 0, 1728), in much the same way that the
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reduction of YA was computed in the proof of Proposition 5.2. We obtain

X p+1
+ X−(p+1)

= Z p.

Moreover, the residue classes of ZA that have singular reduction on this model
are shown to coincide with those regions D̃ρ that were described in Corollary 7.3.
From the previous section we know that D̃ρ is acted on by the involution w̃ρ ,
with p fixed points. In addition, from the explicit equation for ZA, we are able to
deduce that D̃ρ is a connected wide open with one end, and that D̃ρ/w̃ρ is a disk.
Putting all of this information together (and a little more), we are able to show
in Section 8B that D̃ρ is a basic wide open whose underlying affinoid reduces to
y2
= x p

− x .

8A. Reduction of ZA. Recall that Proposition 7.1 identifies ZA with the subspace
of CA ×CA defined by τ f (x) = w1 ◦ τ f (y). From this embedding we can obtain
an explicit equation for ZA, provided we can derive approximation formulas for
w1 on SDA and τ f :CA→ SDA. Such formulas follow readily from Theorem 3.5.
However, while the formula in this theorem is given over Qp ⊗W (Fp2), we will
ultimately need to work over a finite base extension. This extension can be gener-
ated by fixing a square root

√
κ of κ in Cp (where κ is as in Theorem 3.5) and a

β ∈ Cp satisfying

β p2
≡ κ (mod p3/2−1/2p2

). (6)

Remark 8.1. For example, if g(x)= x p2
−
√
κx , and γ is a root of g(g(x))/g(x),

one may take β= γ 2(p2
−1). Then, by Lubin–Tate theory, applied to the Lubin–Tate

formal group over F :=Qp(
√
κ)⊗Zp W (Fp2), with endomorphism g(x), F(β) is

Galois over F with Galois group C p×C p.

Proposition 8.2. Over R := Zp[
√
κ, β] ⊗ W (Fp2), the reduction of ZA has the

equation

X p+1
+ X−(p+1)

= Z p.

Hence, over R, its reduction is a reduced, connected, affine curve of genus zero
with only one branch through each singular point.

Proof. First we derive an approximation for τ f : CA → SDA in terms of the
parameter t from Theorem 3.5. For any P1 ∈ SDA and P2 ∈ CA, we note that
P1 = τ f (P2) if and only if π f (P1) = π f (P2). Thus, an approximation for τ f

should follow from approximations for π f on SDA and CA. Now, we know from
[Buzzard 2003, 3.3] that SDA and CA are the circles described by v(t)= 1/2 and
v(t) = 1 − 1/2p. In particular, we must have v(t (P1)) = 1/2 and v(t (P2)) =
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1− 1/2p. Therefore, from Theorem 3.5 we can approximate π f on SDA and CA:

s(π f (P1))≡ t (P1) (mod p),

s(π f (P2))≡ t (P2)+ (κ/t (P2))
p (mod p).

Hence an approximation for τ f : CA→ SDA is given by

t (τ f (P))≡ t (P)+ (κ/t (P))p (mod p).

To describe the reduction of ZA via Proposition 7.1, we now choose parameters
that identify CA and SDA with the unit circle, C[1]. For such a parameter on SDA

we let U := t/
√
κ , and on CA we let X := t/α, where

α = (β(p
2
+1)/2/

√
κ)p(2p−1)

(note that v(α)= 1− 1/2p). In terms of these new parameters, the Atkin–Lehner
involution is just given by w∗1U = 1/U . Also, using the defining congruence for β,
the approximation formula above for τ f becomes

τ ∗f U ≡ αX/
√
κ + X−p (mod

√
p).

Now let Y and V be analogous parameters on copies of CA and SDA, so that the
equation τ f (P) = w1(τ f (Q)) on CA ×CA (which defined the subspace S ∼= ZA)
becomes τ ∗f U = 1/τ ∗f V . Then on S the parameters X and Y satisfy the congruence
relations

(αX/
√
κ + X−p)(αY/

√
κ + Y−p)≡ 1 (mod

√
p),

αX p+1/
√
κ +αY p+1/

√
κ + 1≡ X pY p (mod

√
p). (7)

Finally, we define a new parameter Z on CA×CA by XY = β(p−1)/2 Z + 1. Then
ZA is determined over R⊗Qp by |X | ≤ 1 and |Z | ≤ 1. The congruence

X p+1
+ X−(p+1)

≡ Z p (mod m R),

where m R is the maximal ideal of R, follows from (7). �

Proposition 8.3. The involutions w̃ρ on ZA reduce to the involutions on ZA given
by

tζ : (X, Z) 7→ (ζ/X, Z),

where ζ varies over all (p+1)-st roots of unity. The D̃i
ρ coincide with the singular

residue classes of ZA, which are described by X2p+2
≡ 1.

Proof. We use the compatibility relation in the proof of Proposition 7.2, namely
π11 ◦ w̃ρ = wρ ◦ π11. Recall from Proposition 7.1 that π11(x, y) = τ f (x) (with
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notation consistent with that of the previous proposition). So from the proof of the
previous proposition, an explicit formula for π11 as a map from ZA to SDA is

U = π11(X, Z)= X−p.

Now, we know from Remark 4.7 that on SDA the involutions wρ reduce to those
of the form U→ ζ/U (where ζ is any (p+1)-st root of unity). So fix a ρ and cor-
responding ζ . Choose any point (X0, Z0) on ZA, and let (X1, Z1) = w̃ρ(X0, Z0).
We can compute both sides of the compatibility relation above:

wρ ◦π11(X0, Z0)= wρ(X
−p
0 )= ζ X p

0 ,

π11 ◦ w̃ρ(X0, Z0)= π11(X1, Z1)= X−p
1 .

Since ζ = ζ−p, we must have X1 = ζ/X0 and subsequently Z1 = Z0. In other
words, we have shown that on ZA we have w̃ρ(X, Z)= (ζ/X, Z).

Keeping the same notation, the points of SDA that are fixed by wρ are the two
described by U 2

= ζ , and by definition D̃1
ρ and D̃2

ρ are π−1
11 of the corresponding

residue classes. Since π11 : ZA→ SDA is given by U = X−p, this is equivalent to
saying that D̃i

ρ are the classes of ZA described by X2
≡ ζ . Letting ζ vary over all

(p+1)-st roots of unity, we obtain all the residue classes described by X2p+2
≡ 1,

and these are easily verified to be the singular ones. �

Proposition 8.4. For any ρ ∈ B ′, the residue classes of the affinoid quotient
ZA/w̃ρ , which are the images of the D̃i

ρ , are disks over Zp[
√
κ, β]⊗W (Fp2).

Proof. Let ζ be the (p+1)-st root of unity such that w̃ρ reduces to tζ on ZA. Let
fζ (x) be the unique polynomial of degree p+ 1 such that

fζ (X + ζ/X)= X p+1
+ X−(p+1).

Then fζ (x)= z p is an equation for the reduction of ZA/w̃ρ . Also

f ′ζ (X + ζ/X)= X2p+2
−1

X p(X2−ζ )
,

and the right side doesn’t vanish at ε if ε2
= ζ . Thus f ′ζ (2ε) 6= 0 mod p, and the

two residue classes of ZA/w̃ρ described by X =±ε are disks. �

From Theorem 2.29 and Proposition 2.31, we now conclude that (over a suitable
field extension) D̃i

ρ is a connected wide open with one end. Furthermore, using
Theorem 2.48 and the fact that there are p branch points in the degree 2 quotient
of D̃i

ρ by w̃ρ , we compute the genus of D̃i
ρ to be (p − 1)/2. To summarize, we

have the following corollary.

Corollary 8.5. Let L be a complete stable subfield of Cp containing R, over which
the fixed points of w̃ρ are defined. Over L , the rigid spaces D̃i

ρ for i = 1 or 2 are
connected wide opens with one end of genus (p− 1)/2.
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8B. The new components. We now show that over a suitable base extension, the
2(p + 1) residue classes D̃i

ρ ⊆ ZA are basic wide opens, and we compute the
reductions of their underlying affinoids. The main idea is to construct an auto-
morphism of order p on each D̃i

ρ that transitively permutes the p fixed points of
the involution w̃ρ . This induces an automorphism on the quotient D̃i

ρ/w̃ρ , a disk
by Corollary 8.5, which then must be conjugate to a translation.

First we define automorphisms of order p on the disk τ−1
f (D) ⊆ CA, where

τ f : CA → SDA is as in Section 3, and D is either of the two residue disks of
SDA fixed by wρ . Recall that points of SDA correspond to pairs (E,C) where
h(E)=1/2 and C is canonical. One of the key facts that we use in our construction
is that over the residue disk D one can analytically choose a generator up to sign
for each of these canonical subgroups. This amounts to choosing a section σ of
the forgetful map from X1(p) to X0(p) over D, given by

σ : (E, K1(E)) 7→ (E, Pσ (E)),

where Pσ (E) is a pair consisting of a generator of K1(E) and its inverse. Such
a section exists because this map is an étale map of annuli over SDA (over any
extension of Qp whose ramification index is divisible by 2(p − 1)). In fact, the
group (Z/pZ)∗/{±1} acts simply transitively on the set of the sections over D.
Once σ is chosen, automorphisms of τ−1

f (D)/D can be constructed by looking
closely at the Weil pairing.

Lemma 8.6. For any ζ ∈ µ∗p and σ (as above), we can define an analytic auto-
morphism of τ−1

f (D)/D by Sσ,ζ (E, H) = (E, 〈R〉), where R ∈ E[p] is chosen so
that ep(P, R)= ζ and R− P ∈ H for some P ∈ Pσ (E). Also,

(i) Si
σ,ζ (E, H)= (E, 〈R+ (i − 1)P〉) for i ∈ Z;

(ii) fσ,ζ : Z/pZ→Autan(τ
−1
f (D)/D), defined by fσ,ζ (i)= Si

σ,ζ for i 6= 0 and the
identity otherwise, is an injective homomorphism;

(iii) Saσ,ζ b = Sa2/b
σ,ζ for any a, b ∈ (Z/pZ)∗;

(iv) Sτσ,ζ = Sσ τ ,ζ τ for any τ ∈ Autcont(Cp) that preserves D.

Proof. Fix σ and ζ ∈ µ∗p. For a given pair (E, H) and choice of P ∈ Pσ (E), there
is a unique R ∈ E[p] that satisfies the two conditions. Note also that reversing
the sign of P just reverses the sign of R. Since 〈R〉 = 〈−R〉 is neither H nor the
canonical subgroup, it follows that Sσ,ζ is at least a well-defined automorphism of
τ−1

f (D)/D with no fixed points.
Fix P ∈ Pσ (E). It is easy to verify (i) by induction, and then (ii) follows imme-

diately. To prove (iii), we note that by definition Saσ,ζ b(E, H) is the pair (E, 〈Q〉)
where ep(a P, Q)= ζ b and Q−a P ∈ H . A simple Weil pairing calculation shows
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that Q is just a P + (b/a)(R− P). So we verify (iii) by checking that

ep(a P + (b/a)(R− P), R+ (a2/b− 1)P)= 1.

Finally, property (iv) follows from Galois properties of the Weil pairing and the
fact that D is connected. �

Proposition 8.7. Let L be a finite extension of Qp(
√
κ, β) in Cp, with

√
κ and β

as in Equation (6), over which the fixed points of w̃ρ are defined. Then D̃i
ρ is a

basic wide open over a quadratic extension of L , whose underlying affinoid has
good reduction, which can be described by y2

= x p
− x.

Proof. As usual, let D be either of the residue disks of SDA fixed by the involution
wρ , and let D̃ be the wide open lying over D via π11. Then the embedding of
ZA = π

−1
11 (SDA) into CA × CA embeds D̃ into τ−1

f (D)× ρ ′τ−1
f (D). Therefore,

by the previous lemma, we can lift any automorphism S := Sσ,ζ on τ−1
f (D) (for a

fixed σ and ζ ) to an automorphism S̃ := S̃σ,ζ of D̃ by taking

S̃(x, y)= (S(x), ρ ′S(ρy)).

One easily checks that S̃ also has order p, since S̃i
(x, y) = (Si (x), ρ ′Si (ρy)).

Furthermore, S̃ commutes with w̃ρ :

S̃w̃ρ(x, y)= S̃(ρy, ρ ′x)

= (S(ρy), ρ ′Sρ(ρ ′x))= (S(ρy), ρ ′S(x)),

w̃ρ S̃(x, y)= w̃ρ(S(x), ρ ′S(ρy))

= (ρρ ′S(ρy), ρ ′S(x))= (S(ρy), ρ ′S(x)).

It follows that S̃ passes to an automorphism of D̃/w̃ρ with order p and no fixed
points, which acts transitively on the images of the p fixed points of w̃ρ . This is
the key idea in the proof of the proposition.

To finish the argument, recall from Corollary 8.5 that D̃ is a connected wide
open with one end. The involution w̃ρ acts on it with p fixed points, and the
quotient space, say U := D̃/w̃ρ , is a disk, by Proposition 8.4. It follows that, over
a quadratic extension of L , D̃ can be described by

y2
0 = (x0−α1) · · · (x0−αp),

where x0 is a parameter for U and the αi are the x0 coordinates of the p fixed
points. Without loss of generality, we choose x0 so that U is identified with the
disk, v(x0) > 0. Because S̃ passes to an automorphism of a disk of order p and no
fixed points, it must reduce to a translation, in the sense that there exists an a ∈ Rp

with v(a) > 0 such that for all x0 ∈U we have

v(S̃(x0)− (x0+ a)) > v(a).
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Therefore, after possible reordering, the x0 coordinates of the fixed points must
satisfy

βi :=
αi −α1

a
≡ i (mod m p).

So if we make the changes of variables x = (x0 − α1)/a and y = y0/a p/2, we
identify D̃ with the wide open

y2
= (x −β1)(x −β2) · · · (x −βp), where v(x) >−v(a),

whose minimal underlying affinoid, determined by v(x)≥ 0, reduces as claimed.
�

Remark 8.8. The results of Section 8 were proven for A/Fp with j (A) 6= 0, 1728,
but similar results now follow for any other supersingular A′, by Proposition 4.2.
Since ZA′ is an étale quotient of ZA of degree i(A), ZA′ is a genus 0 curve with
2(p + 1)/ i(A′) singular points, corresponding to basic wide opens that are iso-
morphic to those described in Proposition 8.7. Note, however, that one might need
to replace the field L from Corollary 8.5 by a finite unramified extension in order
to define the surjection from WA(p3) onto WA′(p3) and describe the underlying
affinoids. In general, the reduction of the bridging component has the equation

X (p+1)/ i(A)
+ X−(p+1)/ i(A)

= Z p.

Lemma 8.9. The Hecke correspondence T` takes a divisor supported on
⋃

A ZA

to a divisor supported on
⋃

A ZA for all primes ` 6= p.

Proof. A point (E,C) lies on some ZA if and only if C is cyclic of order p3 and
pC/p2C is self-dual. If f : E → F is an isogeny such that ker( f )∩C = 0, the
same is true for (F, f (C)). �

Remark 8.10. The analogous statement, for the union of all of the underlying
affinoids in Proposition 8.7 (corresponding to new components), follows from the
results of [CM 2006, §8].

9. Stable reduction of X0( p3)

In this section we give the stable covering of X0(p3). In particular, we give a cov-
ering by basic wide opens, whose intersections are annuli as in Proposition 2.34.
We already defined some of these wide opens, namely the W±a b, in Section 3. They
cover the ordinary locus, and will be shown to be basic with the X±a b as underlying
affinoids. From our analysis of ZA in Section 8, we now know that WA(p3) is not a
basic wide open. So our next priority is to specify some new wide open subspaces
that cover each WA(p3) and that can ultimately be shown to be basic.



418 Ken McMurdy and Robert Coleman

Now let A be any supersingular elliptic curve mod p (no restriction). Identify
WAσ (p), where σ is the Frobenius automorphism, with the annulus A(p−i(A), 1),
as explained in Section 3A. Then we can define three subspaces of WA(p3):

V1(A) := π−1
11 A(p−i(A), p−i(A)/2),

V2(A) := π−1
11 A(p−i(A)/2, 1),

U (A) := π−1
11 A(p−pi(A)/(p+1), p−i(A)/(p+1)).

First we want to show that these subspaces are wide opens (over Cp). Since V1(A)
is a union of residue classes of the affinoid

π−1
11 (X01 ∪ A(p−i(A), p−i(A)/2

]),

and since it is connected, it is in fact one residue class and therefore a wide open,
by Theorem 2.29. The same argument applies to V2(A) and U (A), the latter being
a residue class of

π−1
11 A[p−pi(A)/(p+1), p−i(A)/(p+1)

].

Remark 9.1. The points of A(p−pi(A)/(p+1), p−i(A)/(p+1)) are pairs (E,C), where
C is the canonical subgroup of E and E[p]/C is the canonical subgroup of E/C .

Two of these supersingular wide opens will in fact be shown to be basic. More
specifically, V1(A) is a wide open neighborhood of the affinoid

E1 A := π
−1
11 C[p−pi(A)/(p+1)

],

which will be shown to be an underlying affinoid with good reduction. Points of
E1 A are pairs (E,C), such that E/p2C is too supersingular. Alternatively, E1 A

can be described as π−1
f YA, which is a key point because it implies that E1 A is

nontrivial. Similarly, V2(A) is a neighborhood of

E2 A := π
−1
11 C[p−i(A)/(p+1)

].

Points of E2 A are pairs (E,C) with E/pC too supersingular, and E2 A maps onto
YAσ via πν . U (A) is not basic, because its underlying affinoid ZA has the D̃i

ρ as
(bad) residue classes. However, the D̃i

ρ were shown to be basic in Proposition 8.7.
So this problem can essentially be solved by removing the underlying affinoids of
the D̃i

ρ from U (A) (obtaining a basic wide open) and then including the D̃i
ρ in the

overall covering. To be more precise, let S(A) denote the set of singular residue
classes of ZA, and for each S ∈ S(A) let XS be the underlying affinoid of S. Let
Û (A) denote the wide open given by

Û (A) :=U (A)
∖ ⋃

S∈S(A)

XS.
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Theorem 9.2. Let p ≥ 13 be a prime. The covering C0(p3) of X0(p3), which is
made up of

{W±a b | a, b ≥ 0, a+ b = 3}

and the union over all supersingular curves A of

{V1(A), V2(A), Û (A)} ∪S(A),

is stable (over Cp).

Proof. We know that the elements of C0(p3) are wide opens, and that (S,XS) is a
basic wide open pair for each S ∈ S(A). It is also easy to verify that condition (ii)
of Proposition 2.34 holds, by simply listing for each wide open the other members
of the covering that intersect it nontrivially. In particular, the W±a b are disjoint from
each other, and each W±a b intersects WA(p3) only at V2(A) when a> b, and only at
V1(A) otherwise. Similarly, while V1(A), V2(A), and the residue classes S ∈S(A)
are pairwise disjoint, each of these wide opens intersects Û (A) nontrivially. This
completely describes all adjacency relations of wide opens in the covering, and it
follows immediately that every triple intersection is empty. The bulk of what we
still have to show is that whenever two wide opens in the cover do intersect, the
intersection is the disjoint union of annuli. Then we have to show that each wide
open is basic, with an underlying affinoid that has good reduction.

We start by showing that

U±a b(A) :=W±a b ∩WA(p3)

is a wide open annulus in all cases. For U30 and U±21 it suffices to consider the map
π02 from X0(p3) to X0(p). The restriction of π02 to U30 is an isomorphism onto
the annulus

B := A(p−i(A)/(p(p+1)), 1)∼= A(1, pi(A)/(p(p+1)))

(considered as a subspace of WA(p), which has been identified with A(p−i(A), 1)
as in Section 3A). So U30 is an annulus right away. U+21 and U−21 also map onto B
via π02, but each with degree (p− 1)/2. To see that U±21 is at least connected, we
look at how π02 reduces when restricted to a map between the affinoid regions X±21
and X10. The latter is an isomorphic copy of the ordinary locus of X (1), and by
[Coleman 2005, p. 5] the reduction of X±21 is isomorphic to the ordinary locus of
Ig(p). Furthermore, by these identifications, π02 reduces to the forgetful map from
Ig(p) to X (1), which is totally ramified at the supersingular points. This implies
that one of the ends of B totally ramifies in the restriction of π02 to U±21. Hence
U±21 must be connected. Now it follows directly from Theorem 2.6 that U±21 is an
annulus. Similar arguments can be made for U±12 and U03 using π20. Alternatively
one can use the fact that the Atkin–Lehner involution, w3, switches Wa b with Wba
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and WA(p3) with WAσ (p3). Note that from this argument we also deduce that each
(W±a b,X±a b) is a basic wide open pair.

Among the remaining intersections of wide opens in the covering, we also have
S ∩ Û (A) for each S ∈ S(A). It is immediate, however, that this is an annulus,
since S is a basic wide open with one end, and by definition S ∩ Û (A) is the
complement in S of its underlying affinoid XS . So all that remains to be proven
is that Vi (A) ∩ Û (A) is the disjoint union of annuli (in fact, one annulus), and
that (V1(A),E1 A), (V2(A),E2 A), and (Û (A),ZA) are basic wide open pairs. This
essentially comes down to a genus computation and Proposition 2.34.

First shrink each Û (A) to a basic wide open neighborhood Û ′(A) of ZA, and
call the resulting covering C1(p3). Although we do not know that C1 is semistable
(and in fact it isn’t), Proposition 2.34 can still be applied as the wide opens in the
covering intersect properly in the disjoint union of annuli. Moreover, we know
that the intersection of Û ′(A) with Vi (A) is just one annulus, because ZA has
only two points at infinity (see Theorem 2.29). So the Betti number of the graph
associated to C1(p3) is exactly 5(sp−1), where sp is the number of supersingular
j-invariants (mod p). To apply Proposition 2.34, we need to know the genera of
the wide opens in C1(p3). The genus of Wa b is 0 when ab = 0 and g(Ig(p))
otherwise, by [Coleman 2005, §1]. The genus of Û ′(A) is 0 and the genus of each
S ∈ S(A) is (p − 1)/2, by Proposition 8.2 and Corollary 8.5. The only genera
that aren’t immediately available are those of V1(A) and V2(A). We can, however,
provide a lower bound for these genera. Recall that E1 A maps onto YA via π f ,
and E2 A maps onto YAσ via πν . So by a Riemann–Hurwitz argument we know
that g(Vi (A))≥ g(YA) (which we know from Corollary 5.4).

We now compute a lower bound for the genus of X0(p3), using the above and
Proposition 2.34. For brevity we only discuss the case p = 12k + 5. Then sp =

k + 1 and from [Igusa 1968, p. 103] we have g(Ig(p)) = 3k2
− k. There are k

supersingular regions with j (A) 6= 0, 1728, each of which contributes two wide
opens V1(A) and V2(A) of genus at least g(YA) = 6k + 2, and 24k + 12 residue
classes S ∈S(A) with genus 6k+2. In addition, we have one supersingular region
corresponding to j (A) = 0 that contributes two wide opens V1(A) and V2(A) of
genus at least g(YA) = 2k, and 8k + 4 residue classes S ∈ S(A) of genus 6k + 2.
Summing up the Betti number and genera as in Proposition 2.34, we have

g(X0(p3))≤ 5k+ 4(3k2
− k)+ 2(2k)+ (8k+ 4)(6k+ 2)

+ k(2(6k+ 2)+ (24k+ 12)(6k+ 2))

≤ 144k3
+ 192k2

+ 73k+ 8.

This is now easily shown to be the actual genus of X0(p3) using the well-known
genus formula [Shimura 1971, Propositions 1.40 and 1.43]. Thus the inequalities
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above are actually equalities. Furthermore, since g(Vi (A)) ≥ g(Ei A) ≥ g(YA),
Lemma 2.43 implies that V1(A) and V2(A) are basic wide opens such that E1 A and
E2 A are Zariski subaffinoids of the underlying affinoids. Then, since the reductions
of these affinoids each have at least four points at infinity, and since Vi (A) has only
four ends, it follows that E1 A and E2 A are the underlying affinoids (with good
reduction). Therefore Vi (A)∩ Û (A) must be an annulus, and we have shown that
C0(p3) is a stable covering. �

Remark 9.3. Since E1 A = π−1
f (YA), and since E1 A has good reduction with

g(E1 A) = g(YA), it follows that π f : E1 A → YA is purely inseparable and fac-
tors as Frobenius followed by an isomorphism. Hence, E1 A ∼= Yσ

A, and similarly
E2 A ∼= Yσ

Aσ .

9A. Graphs and intersection data. From Theorem 9.2, it is now straightforward
to generate graphs for the stable reduction of X0(p3) according to the four classes
of p (mod 12), and we include these graphs below in Figures 2–5. To make the
graphs more understandable, a brief description of how the various components are
organized and labeled is in order. First of all, recall from Section 3B that there are
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Figure 2. Graph of X0(p3) when p = 12k+ 1.
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Figure 3. Graph of X0(p3) when p = 12k+ 5.
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g=6k+3, #=24k+16

g=6k+3, #=12k+8

g=6k+3

g=3k+1 g=3k+1

g=6k+3

g = 0 g = 0

j = 1728

g = 3k2

(each)
g = 3k2

(each)

k other
s.s.
regions

g = 6k+ 3 g = 6k+ 3

g = 3k+ 1 g = 3k+ 1

g = 6k+ 3, #= 12k+ 8

g = 6k+ 3, #= 24k+ 16

Figure 4. Graph of X0(p3) when p = 12k+ 7.
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Figure 5. Graph of X0(p3) when p = 12k+ 11.

six ordinary components in every case, namely those corresponding to X30, X±21,
X±12, and X03. These are always presented as vertical components and labeled
explicitly with their genera. In addition to the six ordinary components, we have
one connected, acyclic configuration of components for each supersingular elliptic
curve A. This configuration is always presented as a horizontal chain of three com-
ponents, corresponding to E2 A, ZA, and E1 A (in that order), along with a number of
unmarked vertical components intersecting the middle component. We explicitly
label the genera of the reductions of E1 A and E2 A, but not the central “bridging
component”, as it always has genus 0. Below the central horizontal component, we
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list the number of copies of y2
= x p
−x that intersect it, as well as the genus of each

copy. Finally, we point out for clarification that the components corresponding to
X30 and X±21 meet each supersingular region in exactly one point in the reduction of
E2 A, while the same can be said for the other three ordinary components and E1 A.
In particular, one is reading the graph properly if the Betti number (equivalently the
toric rank of the Jacobian) appears to be 5(ss−1), where ss is the number of super-
singular j-invariants. This fact generalizes, as we show in the following theorem.

Theorem 9.4. The toric rank of J0(N pn) for (N , p) = 1 and n ≥ 0 is given by
(s(N )− 1)(2n− 1), where s(N ) is the number of supersingular points on X0(N )
mod p.

Proof. For N = 1 and n≤ 1 this follows from [Deligne and Rapoport 1973, §VI.6].
After inverting isogenies, we have the exact sequence

0→ J0(pn−1)→ J0(pn)× J0(pn)→ J0(pn+1)→ J0(pn+1)new
→ 0.

It follows from [Katz and Mazur 1985, Theorem 14.7.2] that J0(pn)new has poten-
tial good reduction for n>1. Thus, by induction, the theorem is true for all J0(pn).
The result for more general N follows from essentially the same argument. �

To go with the stable reduction graphs, we include the intersection multiplicities
in Table 1. These numbers have been obtained via a rigid analytic reformulation.
In particular, suppose that X and Y are components of a curve with semistable
reduction over some extension K/Qp, and that they intersect in an ordinary double
point P . Then R(P) is an annulus (by Proposition 2.10), say with width w(P). In
this case, the intersection multiplicity of X and Y at P can be found by

MK (P)= ep(K ) ·w(P).

Note that while intersection multiplicity depends on K , the width makes sense
even over Cp, which in some sense makes width a more natural invariant from the
purely geometric perspective.

P
(X30, E2 A),

(X03, E1 A)

(X±21, E2 A),

(X±12, E1 A)

(ZA, E2 A),

(ZA, E1 A)
(XS,ZA)

w(P) i(A)
p(p+1)

2·i(A)
p(p2−1)

(p−1)·i(A)
2p2(p+1)

1
4p2 ∗

MK (P) p(p− 1) · i(A) 2p · i(A) (p−1)2 ·i(A)
2

p2
−1
4
∗

Table 1. Intersection multiplicity data for X0(p3).
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For our calculations on X0(p3), we take ep(K ) = p2(p2
− 1), since this is the

ramification index over Qp for the field of Krir (see [CM 2006, §5] for details).
First we treat those singular points where Ei A meets either an ordinary component
or the bridging component. The reduction inverse of any such singular point is an
annulus in the supersingular locus that surjects via the forgetful map onto some
subannulus of WA(p). Using Hasse invariant and canonical subgroup consider-
ations, we can determine this subannulus and in particular its width. Then we
apply Proposition 2.2. For example, the ordinary component corresponding to X30

intersects the one corresponding to (each) E2 A in a unique singular point. As we
saw in the proof of Theorem 9.2, the corresponding annulus maps via π02 (the
forgetful map) onto the subannulus of WA(p) described by

0< v(xA) <
i(A)

p(p+ 1)
with degree 1.

The ordinary components corresponding to X±21 also meet the reduction of E2 A

in exactly one singular point (each). The corresponding two annuli surject onto
this same subannulus, but with degree (p− 1)/2. Using this line of reasoning, we
arrive at most of the data in Table 1. Note that any two components intersect in at
most one point, and so we may designate a singular point in the stable reduction
unambiguously by listing a pair of intersecting components.

The only intersection multiplicities that do not follow readily from the above
reasoning come from singular points where a copy of y2

= x p
− x (denoted XS for

S ∈ S(A) as in the theorem) intersects a bridging component. At such a singular
point, the corresponding annulus maps via π11 onto an annulus that is the comple-
ment of an affinoid disk inside a residue disk of SDA. Unfortunately, it is not at all
clear what the width of this image annulus is. We have some theoretical evidence
and some computational evidence [McMurdy 2004, Remark on p. 27] that suggest
that the width of the original annulus, that is, the annulus of intersection, is 1/4p2.
Therefore, we have included this in Table 1 with an asterisk to indicate that it is
our current best guess.

Appendix A: Riemann existence theorem

The p-adic Riemann existence theorem is well known, but not apparently in the
literature.21 Here we recall and adapt the proof of the existence of global mero-
morphic functions given in [Grauert and Remmert 1977, pp. 208–209], and then
use results from [Kiehl 1967] and [Köpf 1974] to deduce the final result.

21This is possibly because it follows the same lines of reasoning as those used in “the” complex
case; see [Springer 1957] for a history of the complex proofs and for a proof that has no obvious
p-adic analogue.
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Theorem A.1. Suppose X is a proper22 one-dimensional smooth rigid space over
a complete local field K or a compact Riemann surface, F 6= 0 is a locally free
sheaf on X , and D is a divisor of positive degree. Then

lim
n→∞

dimK F(nD)(X)=∞,

where K = C if X is a Riemann surface.

Proof. Let E ≤ E ′ be divisors on X , and let T= F(E ′)/F(E). Then

0→ F(E)(X)→ F(E ′)(X)→ T(X)→ H 1(X,F(E))→ H 1(X,F(E ′))→ 0

is exact. Moreover, if r is the rank of F, we have

dimK T(X)= r deg(E ′− E).

Now, for any coherent sheaf S on X , let

χ(S)= dimK H 0(X,S)− dimK H 1(X,S).

We deduce that

χ(F(D))−χ(F)= r deg D.

The theorem follows. �

Theorem A.2 (p-adic Riemann existence theorem). Let X be a smooth proper
rigid space of dimension one over a complete local field K . Then X is isomorphic
to the analytification of a complete algebraic curve over K .

Proof. By the previous theorem, there exists a nonconstant map f : X → P1
K that

must be finite since X is proper of dimension one. By Kiehl’s direct image theorem
[1967, Theorem 3.3], it follows that f∗OX is a coherent sheaf of analytic algebras
on P1

K . Then, we know from [Köpf 1974, Sätze 4.11 and 5.1] that f∗OX ∼= g∗OY ,
where g is a finite morphism from some algebraic curve Y onto P1

K .
To complete the proof, let C be an admissible open covering of P1

K by affinoids.
Then f −1(C) and g−1(C) are admissible open coverings of X and Y by affinoids.
Moreover, for each U ∈ C, we have

A( f −1U )= f∗OX (U )∼= g∗OY (U )= A(g−1U ).

Thus f −1U ∼= g−1U for each U ∈ C, and these isomorphisms are compatible,
which implies that X ∼= Y . �

22See [Bosch et al. 1984, 9.6.2] for definition.
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Appendix B: Supersingular curves
by Everett W. Howe

Theorem B.1. For p ≥ 13 there is a supersingular elliptic curve E defined over
Fp with j (E) 6= 0, 1728.

Proof. Note that there is always at least one supersingular curve over Fp, because
the number of curves of trace 0 is given by the Kronecker class number H(−4p),
which is positive [Schoof 1987]. So if p is a prime for which neither j = 0 nor
j = 1728 is supersingular, then there exists a supersingular curve over Fp with
j 6= 0, 1728.

If p is a prime for which j = 0 is supersingular, then p is inert in the field
Q(
√
−3). But then the elliptic curve over Q with j =24

·33
·53
=54000 (which has

CM by the order Z[
√
−3]) reduces to a supersingular curve over Fp. (If an elliptic

curve over Fp is not supersingular then its endomorphism ring tensored with Q is
an imaginary quadratic field in which p splits.) Note that 54000 is neither 0 nor
1728 modulo p for p > 11.

If p is a prime for which j = 1728 is supersingular, then p is inert in the field
Q(i). Then the elliptic curve over Q with j = 23

· 33
· 113
= 287496 (which has

CM by Z[2i]) reduces to a supersingular curve over Fp, and 287496 is neither 0
nor 1728 modulo p when p > 11. �

Appendix C: Concordance with [CM 2006]

Some of the references in [CM 2006] are no longer correct due to some shuffling
of the material in this paper. This problem can be resolved by noting the following:

• The reference to §2 on page 265 should be to Section 2C.
• Theorem 2.6 is referred to as Lemma 3.3 on page 295, and as Lemma 2.3 on

page 278.
• Proposition 2.14 is referred to as Proposition 3.14 on page 279.
• Proposition 2.34 is referred to as Proposition 2.5 on pages 267 and 278.
• Definition 2.35 and Theorem 2.36 are referred to as Definition 2.6 and Propo-

sition 2.7 on pages 279, 292 and 293.
• Proposition 3.6 is referred to as Lemma 3.6 on page 278.
• Proposition 4.6 is referred to as Corollary 4.6 on page 270.
• Remark 4.7 and Proposition 4.9 are referred to as Remark 4.8 and Proposi-

tion 4.10 on page 272.
• Proposition 7.5 and Remark 7.6 are referred to as Proposition 7.4 and Re-

mark 7.5 on pages 267, 275, 277 and 281.
• Theorem B.1 is cited as “results of E. Howe in §10” on page 262.
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Index of important notation

K , complete nonarchimedean-valued field Section 2
RK , ring of integers of K
FK , residue field of K
C, completion of an algebraic closure of K
R, ring of integers of C
F, residue field of C and algebraic closure of FK

W (F), Witt vectors of F for F⊆ F

RK , value group of C∗

Cp, completion of an algebraic closure of Qp

Rp, ring of integers in Cp

�p, completion of an algebraic closure of Fp((T ))
N := {n ∈ Z : n ≥ 1} and N0 := {n ∈ Z : n ≥ 0}
BK (r) and BK [r ], wide open and affinoid disks around 0
AK (r, s) and AK [r, s], wide open and affinoid annuli
CK [s], circle AK [s, s]
A(X) := OX (X)
Ao(X) and A+(X), subrings of A(X) where ‖ f ‖X ≤ 1 and ‖ f ‖X < 1

(when X is a reduced affinoid)
A(X) := Ao(X)/A+(X)
X , canonical reduction of X given by Spec(A(X))
Red : X (C)→ X(F), reduction map on C-valued points
Red−1(Ỹ ), Zariski subaffinoid of X corresponding to affine open Ỹ ⊆ X
X c, completion of X , nonsingular at infinity
R(P) := RX (P), residue class in X of P ∈ X(FK ) Section 2A
resr,s , canonical residue map on the annulus, AK (r, s)
E(W ), e(W ), set of ends, and number of ends, for a rigid space W
CC(W ), set of connected components of a rigid space W Section 2B
H i

DR(W/K ), de Rham cohomology of a wide open Section 2C
g(W ), genus of a wide open
C and Cw, semistable coverings of a wide open or curve
U u , underlying affinoid of a wide open U , in a basic wide open pair
0C, graph associated with a semistable covering
ordA ν, orde ν, ord of a function or differential at an annulus or end Section 2D
Div(W ), divisor group of a wide open
π f , πν and πa b, level lowering maps from X0(pn) to X0(pm) Section 3
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wn , Atkin–Lehner involution on X0(pn)

Kn(E), canonical subgroup of E of order pn Section 3A

K (E), (maximal) canonical subgroup of E

h(E), valuation of Hasse invariant of E (almost)

sn , rigid analytic section of π0n over Wn

WA(pn), wide open subspace of X0(pn) where E ∼= A

xA, parameter on WA(p)

i(A) := |Aut(A)|/2

TSA and SDA, too-supersingular and self-dual circles inside WA(p)

CA and τ f , special circle of WA(p) and map to SDA

X±a b, ordinary affinoids Section 3B

W±a b, wide open neighborhood of X±a b

Ig(pn), level pn Igusa curve

(F, A, α), Woods Hole representation of an elliptic curve Section 4

Â, formal group of A

B, quaternionic order over Zp isomorphic to End( Â) Section 4B

8, Gross–Hopkins period map

B ′, special subset of B∗

wρ , generalized Atkin–Lehner involution of SDA for ρ ∈ B ′

YA, nontrivial affinoid in WA(p2) Section 5

C0(p2), stable covering of X0(p2)

E1,A and E2,A, two pullbacks of YA to X0(p3) Section 6

ZA := π
−1
11 (SDA), affinoid in WA(p3) that corresponds to

the “bridging component”

w̃ρ , generalized Atkin–Lehner involution of ZA for ρ ∈ B ′ Section 7

Di
ρ and D̃i

ρ , residue classes of SDA and ZA invariant under wρ and w̃ρ
Sσ,ζ , S̃σ,ζ , order p automorphisms of τ−1

f (Di
ρ) and D̃i

ρ Section 8B

Vi (A) and U (A), wide open neighborhoods of Ei,A and ZA Section 9

S(A), singular residue classes of ZA

XS , underlying affinoid of S ∈ S(A)

Û (A), basic wide open refinement of U (A)

C0(p3), stable covering of X0(p3)

MK (P), intersection multiplicity at an ordinary double point Section 9A

w(P), width of the annulus that lifts an ordinary double point
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Cyclotomic function fields,
Artin–Frobenius automorphisms,

and list error correction with optimal rate
Venkatesan Guruswami

Algebraic error-correcting codes that achieve the optimal trade-off between rate
and fraction of errors corrected (in the model of list decoding) were recently
constructed by a careful “folding” of the Reed–Solomon code. The “low-degree”
nature of this folding operation was crucial to the list decoding algorithm. We
show how such folding schemes useful for list decoding arise out of the Artin–
Frobenius automorphism at primes in Galois extensions. Using this approach,
we construct new folded algebraic-geometric codes for list decoding based on
cyclotomic function fields with a cyclic Galois group. Such function fields
are obtained by adjoining torsion points of the Carlitz action of an irreducible
M ∈ Fq [T ]. The Reed–Solomon case corresponds to the simplest such extension
(corresponding to the case M = T ). In the general case, we need to descend to
the fixed field of a suitable Galois subgroup in order to ensure the existence of
many degree 1 places that can be used for encoding.

Our methods shed new light on algebraic codes and their list decoding, and
lead to new codes with optimal trade-off between rate and error correction radius.
Quantitatively, these codes provide list decoding (and list recovery/soft decod-
ing) guarantees similar to folded Reed–Solomon codes but with an alphabet size
that is only polylogarithmic in the block length. In comparison, for folded RS
codes, the alphabet size is a large polynomial in the block length. This has
applications to fully explicit (with no brute-force search) binary concatenated
codes for list decoding up to the Zyablov radius.
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1. Introduction

1A. Background, context, and motivation. Error-correcting codes enable reliable
transmission of information over a noisy communication channel (as well as re-
liable data storage and retrieval from a storage medium). The idea behind error-
correcting codes is to encode the message to be transmitted (or stored) into a longer,
redundant string called a codeword, which is then communicated over the noisy
channel. This is accompanied by a decoding procedure that recovers the correct
message even when several symbols in the transmitted codeword are corrupted. In
this work, we focus on the worst-case model of errors; here, the channel noise has
a single parameter ρ ∈ (0, 1). We do not assume anything about how the errors
are distributed beyond an upper bound of ρ on the total fraction of positions where
errors may be caused.

The principal trade-off in this theory is between the redundancy and the fraction
ρ of errors that can be corrected. Formally, a code is given by an injective encoding
function E :6k

→6n . The block length of the code equals n, and6 is its alphabet.
The redundancy is measured by the rate R of the code, defined as the ratio k/n
of the number of information symbols to the number of codeword symbols. The
larger the rate, the less redundant the code. We are interested in an asymptotically
good family of codes, that is, an infinite family of codes of increasing block lengths
whose rates are lower bounded by R. The goal is to correct a fraction ρ of errors
with as high a rate R as possible for the code family. It is simple to see that this
rate R cannot exceed 1− ρ. Indeed, the channel could corrupt the last ρ fraction
of symbols, and the first (1−ρ)n symbols should thus contain enough information
to recover the Rn message symbols, implying R 6 1− ρ.

Quite remarkably, this simplistic upper bound can in fact be met, via a natural
family of algebraic codes together with efficient decoding algorithms. Specifically,
recent progress in algebraic coding theory [Parvaresh and Vardy 2005; Guruswami
and Rudra 2008] has led to the construction of explicit codes over large alphabets
that achieve the optimal rate versus error correction radius trade-off — namely,
they admit efficient list decoding algorithms to correct close to the optimal fraction
1− R of errors with rate R. List decoding is an error correction model where the
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decoder is allowed to output a small list of messages which must include the correct
message. Allowing such a list is essential in order to correct more than a fraction
(1−R)/2 of errors with rate R. In practice, having more than one codeword on the
list is a rare event, and in case of multiple candidates, one can also return the closest
codeword (as the one with the highest likelihood). Also, for many applications of
codes, pinning down the message to a small list suffices, and some application-
specific context information can be used to identify the correct message from the
list. See, for instance, [Guruswami 2007, Chapter 1] or [Guruswami 2004] for
more detailed background on list decoding.

We now return to the mathematics of optimal rate codes for list decoding. The
algebraic codes constructed in [Guruswami and Rudra 2008] are folded Reed–
Solomon (RS) codes, where the RS encoding ( f (1), f (γ), . . . , f (γn−1)) of a low-
degree polynomial f ∈ Fq [T ] is viewed as a codeword of length N = n/m over the
alphabet Fm

q by identifying successive blocks of m symbols. Here γ is a primitive
element of the field Fq .

Simplifying matters somewhat, the principal algebraic engine behind the list de-
coding algorithm in [Guruswami and Rudra 2008] was the identity f (γT )≡ f (T )q

(mod (T q−1
− γ)), and the fact that (T q−1

− γ) is irreducible over Fq . This
gave a low-degree algebraic relation between f (T ) and f (γT ) in the residue field
Fq [T ]/(T q−1

−γ). This together with an algebraic relation found by a certain “in-
terpolation step” during decoding enabled us to find the list of all relevant message
polynomials f (T ) efficiently. Essentially, this gave two algebraically independent
low-degree polynomial relations between the residues of f (T ) and f (γT ) in the
extension field Fq [T ]/(T q−1

− γ). Solving these gives the list of possible values
for f (T ) mod (T q−1

−γ), which also suffices to identify the message polynomial
f (T ), as its degree is less than q − 1.

One of the motivations of this work is to gain a deeper understanding of the
general algebraic principles underlying the above folding, with the hope of extend-
ing it to more general algebraic-geometric (AG) codes — an interesting algebraic
question in its own right, but also important for potentially improving the alphabet
size of the codes, as well as the decoding complexity and output list size of the
decoding algorithm. (The large complexity and list size of the folded RS decoding
algorithm in [Guruswami and Rudra 2008] are a direct consequence of the large
degree q in the identity relating f (γT ) and f (T ).)

The precursor to the folded RS codes were the Parvaresh–Vardy codes [2005].
Here the encoding of a message polynomial f (T ) consists of the evaluations of f
at distinct elements of Fq together with the evaluations of a few other algebraically
related polynomials f1(T ), . . . , fm(T ) (for some parameter m> 1) at these points.
The algebraic relations between fi and f are used at the decoder together with
a multivariate polynomial relation between f (T ), f1(T ), . . . , fm(T ) to solve for
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f (T ). An extension of the Parvaresh–Vardy codes [2005] to arbitrary AG codes
was achieved in [Guruswami and Patthak 2008]. But in these codes, there is a
substantial loss in rate since the encoding includes the evaluations of additional
function(s) explicitly picked to satisfy a low-degree relation over some residue
field. The crucial insight in the construction of folded RS codes was the fact that
this additional function could just be the closely related function f (γT )— the im-
age of f (T ) under the automorphism T 7→ γT of Fq(T ). It is a priori not clear for
which algebraic function fields one can have a similar algebraic phenomenon and
thereby deduce constructions of folded list-decodable codes analogous to folded
RS codes.

1B. Summary of our contributions. We explain how folding schemes conducive
to list decoding (such as the above relation between f (γT ) and f (T )) arise out
of the Artin–Frobenius automorphism at primes in Galois extensions. We then use
this approach to construct new list-decodable folded AG codes based on cyclotomic
function fields with a cyclic Galois group. Cyclotomic function fields [Carlitz 1938;
Hayes 1974] are obtained by adjoining torsion points of the Carlitz action of an
irreducible M ∈ Fq [T ]. The RS case corresponds to the simplest such extension
(corresponding to the case M = T ). In the general case, we need to descend to the
fixed field of a suitable Galois subgroup in order to ensure the existence of many
degree 1 places that can be used for encoding. We establish some key algebraic
lemmas that characterize the desired subfield in terms of the appropriate generator
µ in the algebraic closure of Fq(T ) and its minimal polynomial over Fq(T ). We
then tackle the computational algebra challenge of computing a representation of
the subfield and its rational places, and the message space, that is conducive for
efficient encoding and decoding of the associated AG code.

Our constructions lead to some substantial quantitative improvements in the
alphabet size, which we discuss in Section 1D. We also make some simplifications
in the list decoding algorithm and avoid the need of a zero-increasing basis at each
code place (Lemma 6.2). This, together with several other ideas, lets us implement
the list decoding algorithm in polynomial time assuming only the natural represen-
tation of the code needed for efficient encoding, namely a basis for the message
space. Computing such a basis remains an interesting challenge in computational
function field theory. Our description and analysis of the list decoding algorithm
in this work is self-contained, though it builds strongly on the framework of the
algorithms in [Sudan 1997; Parvaresh and Vardy 2005; Guruswami and Patthak
2008; Guruswami and Rudra 2008].

1C. Galois extensions and Artin automorphisms in list decoding. We will now
discuss how and why Artin–Frobenius automorphisms arise in the seemingly dis-
tant world of list decoding, and why we make the choice of cyclotomic function
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fields for the underlying function field. In order to generalize the folding operation
from the RS case, it is natural to look for function fields whose automorphisms we
understand reasonably well. Galois extensions are a natural subclass of function
fields to consider, with the hope that some automorphism in the Galois group will
give a low-degree relation over some residue field. Unfortunately, the explicit
constructions of good AG code families are typically based on a tower of function
fields [Garcia and Stichtenoth 1995; 1996], where each step is Galois, but the
whole extension is not. (Stichtenoth [2006] recently showed the existence of a
Galois extension with the optimal trade-off between genus and number of rational
places, but this extension is not, and cannot be, cyclic, as we require.)

In Galois extensions K/F , for each place A′ in the extension field K , there is
a special and important automorphism called the Artin–Frobenius automorphism
(see, for example, [Marcus 1977, Chapter 4]) that simply powers the residue of any
(regular) function at that place. The exponent or degree of this map is the norm
of the place A of F lying below A′. Since the degree dictates the complexity of
decoding, we would like this norm to be small. On the other hand, the residue
field at A′ needs to be large enough so that the message functions can be uniquely
identified by their residue modulo A′. The most appealing way to realize this is if
the place A is inert, that is, has a unique A′ lying above it. However, this condition
can only hold if the Galois group is cyclic, a rather strong restriction. For example,
it is known [Frey et al. 1992] that even abelian extensions must be asymptotically
bad.

In order to construct AG codes, we also need to have a good control of how
certain primes split in the extension. For cyclotomic function fields, and of course
their better-known number-theoretic counterparts Q(ω) obtained by adjoining a
root of unity ω, this theory is well-developed. As mentioned earlier, the cyclotomic
function field we use itself has very few rational places. So we need to descend
to an appropriate subfield where many degree 1 places of Fq(T ) split completely,
and develop some underlying theory concerning the structure of this subfield that
can be exploited for efficient computation with them.

The Artin–Frobenius automorphism1 is of course a well-known and fundamental
notion in algebraic number theory, playing a role in the Chebotarev density theorem
and Dirichlet’s theorem on infinitude of primes in arithmetic progressions, as well
as quadratic and more general reciprocity laws. We find it rather intriguing that
this notion ends up playing an important role in algorithmic coding theory as well.

1Following [Rosen 2002], we will henceforth refer to the Artin–Frobenius automorphisms as
simply Artin automorphisms. Many texts refer to these as Frobenius automorphisms. Since the
latter term is most commonly associated with automorphism x 7→ xq of Fqm , we use the term Artin
automorphism to refer to the general notion that applies to all Galois extensions. The association of
a place with its Artin–Frobenius automorphism is called the Artin map.



438 Venkatesan Guruswami

1D. Long codes achieving list decoding capacity and explicit binary concate-
nated codes. Quantitatively, our cyclotomic function field codes achieve list de-
coding (and list recovery2) guarantees similar to folded RS codes, but with an
alphabet size that is only polylogarithmic in the block length. In comparison,
for folded RS codes, the alphabet size is a large polynomial in the block length.
We note that Guruswami and Rudra [2008] also present capacity-achieving codes
of rate R for list decoding a fraction (1 − R − ε) of errors with alphabet size
|6| = 2(1/ε)

O(1)
, a fixed constant depending only on ε. But these codes do not have

the strong “list recovery” (or more generally, soft decoding) property of folded RS
codes.

Our codes inherit the powerful list recovery property of folded RS codes, which
makes them very useful as outer codes in constructions of concatenated codes.3 In
fact, due to their small alphabet size, they are even better in this role. Indeed, they
can serve as outer codes for a family of concatenated codes list-decodable up to
the so-called Zyablov radius, with no brute-force search for the inner codes. This
is the first such construction for list decoding. It is similar to the “Justesen-style”
explicit constructions for rate versus distance from [Justesen 1972; Shen 1993],
except even easier, as one can use the ensemble of all linear codes instead of the
succinct Wozencraft ensemble at the inner level of the concatenated scheme.

1E. Related work. Codes based on cyclotomic function fields have been consid-
ered previously in the literature. Some specific (nonasymptotic) constructions of
function fields with many rational places over small fields Fq (q 6 5) appear in
[Niederreiter and Xing 1996; 1997]. Cyclotomic codes based on the action of
polynomials T a for small a appear in [Quebbemann 1988], but decoding algo-
rithms are not discussed for these codes, nor are these extensions cyclic as we
require. Our approach is more general and works based on the action of an arbitrary
irreducible polynomial. Exploiting the Artin automorphism of cyclotomic fields for
an algorithmic purpose is also new to this work.

Independent of our work, Huang and Narayanan [2008] have considered AG
codes constructed from Galois extensions, and observed how automorphisms of
large order can be used for folding such codes. To our knowledge, the only in-
stantiation of this approach that improves on folded RS codes is the one based
on cyclotomic function fields from our work. As an alternate approach, they also

2List recovery is a generalization of list decoding where for each position a set of possible sym-
bols is provided as input to the decoder, and the goal is to find all codewords that agree with some
element of the input sets for at least a certain fraction of positions; see Remark 6.11.

3In binary concatenated codes, the message is first encoded by an “outer” code over a large
alphabet 6, and then each outer codeword symbol is encoded by an “inner” binary code Cin : 6→
{0, 1}b. Despite its simplicity, code concatenation remains the preeminent method for constructing
good codes over small alphabets such as binary codes.
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propose a decoding method that works with folding via automorphisms of small
order. This involves computing several coefficients of the power series expansion
of the message function at a low-degree place. Unfortunately, piecing together
these coefficients into a function could lead to an exponential list size bound. The
authors suggest a heuristic assumption under which they can show that for a random
received word, the expected list size and running time are polynomially bounded.

2. Background on cyclotomic function fields

We assume familiarity with basic background on global fields and their extensions
such as valuations and places, Galois extensions, decomposition of primes, ramifi-
cation, Artin–Frobenius automorphism, etc. In this section, we will focus on back-
ground material concerning cyclotomic function fields. These are the function-field
analog of the classic cyclotomic number fields from algebraic number theory. This
theory was developed by Hayes [1974], building upon ideas due to Carlitz [1938].
The objective was to develop an explicit class field theory classifying all abelian
extensions of the rational function field Fq(T ), analogous to classic results for Q

and imaginary quadratic extensions of Q. The common idea in these results is to
allow a ring of “integers” in the ground field to act on part of its algebraic closure,
and obtain abelian extensions by adjoining torsion points of this action. We will
now describe these extensions of Fq(T ).

Let T be an indeterminate over the finite field Fq . Let RT = Fq [T ] denote the
polynomial ring, and F = Fq(T ) the field of rational functions. Let Fac be a fixed
algebraic closure of F . Let EndFq (F

ac) be the ring of Fq -endomorphisms of Fac,
thought of as a Fq -vector space. We consider two special elements of EndFq (F

ac):

(i) the Frobenius automorphism τ defined by τ(z)= zq for all z ∈ Fac, and

(ii) the map µT defined by µT (z)= T z for all z ∈ Fac.

The substitution T→ τ+µT yields a ring homomorphism from RT to EndFq (F
ac)

given by
f (T ) 7→ f (τ +µT ).

Using this, we can define the Carlitz action of RT on Fac as follows: for M ∈ RT ,

CM(z)= M(τ +µT )(z) for all z ∈ Fac.

This action endows Fac with the structure of an RT -module, which is called the
Carlitz module. For a nonzero polynomial M ∈ RT , define the set

3M = {z ∈ Fac
| CM(z)= 0},

to consist of the M-torsion points of Fac, that is, the elements annihilated by the
Carlitz action of M (this is also the set of zeroes of the polynomial CM(Z)∈RT [Z ]).
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Since RT is commutative, 3M is in fact an RT -submodule of Fac. It is in fact a
cyclic RT -module, naturally isomorphic to RT /(M).

The cyclotomic function field F(3M) is obtained by adjoining the set 3M of
M-torsion points to F .4 The following result summarizes some fundamental facts
about cyclotomic function fields, stated for the special case when M is irreducible
(we will only use such extensions). Proofs can also be found in graduate texts
[Rosen 2002, Chapter 12; Villa Salvador 2006, Chapter 12]. In what follows, we
will often use the convention that an irreducible polynomial P ∈ RT is identified
with the place of F that is the zero of P , and also denote this place by P . Recall
that these are all the places of F , with the exception of the place P∞, which is the
unique pole of T .

For a place P , we denote by OP the ring of regular functions at P (that is, the
valuation ring corresponding to the place P). Thus OP/P is the residue field at P .

Proposition 2.1 [Hayes 1974]. Let M ∈ RT be a nonzero degree d monic polyno-
mial that is irreducible over Fq . Let K = F(3M).

(i) CM(Z) is a separable polynomial in Z of degree qd over RT , of the form∑d
i=0[M, i]Zq i

where the degree of [M, i] as a polynomial in T is q i (d − i),
and further [M, 0] = M.
The polynomial ψM(Z) = CM(Z)/Z is irreducible in RT [Z ]. The field K is
equal to the splitting field of ψM(Z), and is generated by any nonzero element
λ ∈3M , that is, K = F(λ).

(ii) K/F is a Galois extension of degree (qd
− 1) and Gal(K/F) is isomorphic

to (RT /(M))∗, the cyclic multiplicative group of units of the field RT /(M).
The Galois automorphism σN associated with N̄ ∈ (RT /(M))∗ is given by
σN (λ)= CN (λ).
The Galois automorphisms commute with the Carlitz action: for any σ ∈
Gal(K/F) and A ∈ RT , σ(CA(x))= CA(σ (x)) for all x ∈ K .

(iii) If P ∈ RT is a monic irreducible polynomial different from M , then the Artin
automorphism at the place P is equal to σP .

(iv) The integral closure of RT in F(λ) equals RT [λ].

(v) The genus gM of F(3M) satisfies 2gM − 2= d(qd
− 2)− (q/q − 1)(qd

− 1).

The splitting behavior of primes in the extension F(3M)/F will be crucial for
our construction. We record this as a separate proposition below.

4It is instructive to compare this with the more familiar setting of cyclotomic number fields.
There, one lets Z act on the multiplicative group (Qac)∗ with the endomorphism corresponding to
n ∈ Z sending ζ 7→ ζ n for ζ ∈ Qac. The n-torsion points now equal {ζ ∈ Qac

| ζ n
= 1}, that is, the

n-th roots of unity. Adjoining these gives the various cyclotomic number fields.



List error correction with optimal rate 441

Proposition 2.2. Let M ∈ RT , M 6= 0, be a monic, irreducible polynomial of
degree d.

(i) Ramification at M : the place M is totally ramified in the extension F(3M)/F.
If λ ∈ 3M is a root of CM(z)/z and M̃ is the unique place of F(3M) lying
above M , then λ is a M̃-prime element, that is, vM̃(λ)= 1.

(ii) Ramification at P∞: the infinite place P∞ of F , that is, the pole of T , splits
into (qd

−1)/(q−1) places of degree 1 in F(3M)/F , each with ramification
index (q − 1). Its decomposition group equals F∗q .

(iii) Splitting at other places: if P ∈ RT is a monic, irreducible polynomial different
from M , then P is unramified in F(3M)/F , and splits into (qd

−1)/ f primes
of degree f deg P where f is the order of P modulo M (that is, the smallest
positive integer e such that Pe

≡ 1 (mod M)).

3. Reed–Solomon codes as cyclotomic function field codes

We now discuss how RS codes arise out of the simplest cyclotomic extension
F(3T )/F . This serves both as a warm-up for our later results, and as a method to
illustrate that one can view the folding employed in [Guruswami and Rudra 2008]
as arising naturally from the Artin automorphism at a certain prime in the extension
F(3T )/F .

We have 3T = {u ∈ Fac
| uq
+T u = 0}. Pick a nonzero λ∈3T . By Proposition

2.2, the only ramified places in F(3T )/F are T and the pole P∞ of T . Both of
these are totally ramified and have a unique place above them in F(3T ). Denote
by Q∞ the place above P∞ in F(3T ).

We have λq−1
=−T , so λ has a pole of order one at Q∞, and no poles elsewhere.

The place T + 1 splits completely into n = q − 1 places of degree 1 in F(3T ).
The evaluation of λ at these places corresponds to the roots of xq−1

= 1, that
is, to nonzero elements of Fq . Thus the places above T + 1 can be described
as P1, Pγ, . . . , Pγq−2 , where γ is a primitive element of Fq and λ(Pγi ) = γi for
i = 0, 1, . . . , q − 2.

For k < q − 1, define Mk =
{∑k−1

i=0 βiλ
i
| βi ∈ Fq

}
. Mk has qk elements, each

with at most (k − 1) poles at Q∞ and no poles elsewhere. Consider the Fq -linear
map ERS :Mk→ Fn

q defined as

ERS( f )=
(

f (P1), f (Pγ), . . . , f (Pγq−2)
)
.

Clearly this just defines an [n, k]q RS code, consisting of evaluations of polyno-
mials of degree < k at elements of F∗q .

Consider the place T+γ of F . The condition (T+γ) f
≡ 1 (mod T ) is satisfied

if and only if γ f
= 1, which happens if and only if (q−1)| f . Therefore, the place
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T + γ remains inert in F(3T )/F . Let A denote the unique place above T + γ in
F(3T ). The degree of A equals q − 1.

The Artin automorphism at A, σA, is given by σA(λ)=CT+γ(λ)=Cγ(λ)= γλ.
Note that this implies f (Pγi+1)= σA( f )(Pγi ) for 06 i < q−2. By the property of
the Artin automorphism, we have σA( f ) ≡ f q (mod A) for all f ∈ RT [λ]. Note
that this is same as the condition f (γλ) ≡ f (λ)q (mod (λq−1

− γ)) treating f as
a polynomial in λ. This corresponds to the algebraic relation between f (X) and
f (γX) in the ring Fq [X ] that was used by Guruswami and Rudra [2008] in their
decoding algorithm, specifically in the task of finding all f (X) of degree less than k
satisfying Q(X, f (X), f (γX))= 0 for a given Q ∈ Fq [X, Y, Z ]. In the cyclotomic
language, this corresponds to finding all f ∈ RT [λ] with fewer than k poles at Q∞
satisfying Q( f, σA( f )) = 0 for Q ∈ RT [λ](Y, Z). Since deg A = q − 1 > k, f is
determined by its residue at A, and we know σA( f ) ≡ f q (mod A). Therefore,
we can find all such f by finding the roots of the univariate polynomial Q(Y, Y q)

mod A over the residue field OA/A.

4. Subfield construction from cyclic cyclotomic function fields

In this section, we will construct the function field construction that will be used for
our AG codes, and establish the key algebraic facts concerning it. The approach
will be to take the cyclotomic field K = F(3M), where M is an irreducible of
degree d > 1, and get a code over Fq . But the only places of degree 1 in F(3M)

are the ones above the pole P∞ of T . There are only (qd
−1)/(q−1) such places

above P∞, which is much smaller than the genus. So we descend to a subfield
where many degree 1 places split completely. This is done by taking a subgroup
H of (Fq [T ]/(M))∗ with many degree 1 polynomials and considering the fixed
field E = K H . For every irreducible N ∈ RT such that N̄ = N mod M ∈ H , the
place N splits completely in the extension E/F (this follows from the fact that CN

is the Artin automorphism at the place N ). This technique has also been used in
works mentioned earlier [Quebbemann 1988; Niederreiter and Xing 1996; 1997],
though our approach is more general and works with any irreducible M . The study
of algorithms for cyclotomic codes and the role played by the Artin automorphism
in their list decoding is also novel to our work.

4A. Table of parameters. Since there is an unavoidable surfeit of notation and pa-
rameters used in this section and Section 5, we summarize them for easy reference
in the Appendix.

4B. Function field construction. Let Fr be a subfield of Fq . Let M ∈ Fr [T ] be a
monic polynomial that is irreducible over Fq (note that we require M(T ) to have
coefficients in the smaller field Fr , but demand irreducibility in the ring Fq [T ]).
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The following lemma follows from the general characterization of when binomials
T m
−α are irreducible in Fq [T ] [Lidl and Niederreiter 1986, Chapter 3].

Lemma 4.1. Let d > 1 be an odd integer such that every prime factor of d divides
(r − 1) and gcd(d, (q − 1)/(r − 1)) = 1. Let γ be a primitive element of Fr . Then
T d
− γ ∈ Fr [T ] is irreducible in Fq [T ].

A simple choice for which the above conditions are met is r = 2a , q = r2, and
d = r − 1 (we will need a more complicated choice for our list decoding result in
Theorem 7.1). For the sake of generality as well as clarity of exposition, we will
develop the theory without making specific choices for the parameters, a somewhat
intricate task we will undertake in Section 7.

For the rest of this section, fix M(T ) = T d
− γ as guaranteed by Lemma 4.1.

We continue with the notation F = Fq(T ), RT = Fq [T ], and K = F(3M). Fix a
generator λ ∈3M of K/F so that K = F(λ).

Let G be the Galois group of K/F , which is isomorphic to the cyclic multi-
plicative group (Fq [T ]/(M))∗. Let H ⊂ G be the subgroup F∗q · (Fr [T ]/(M))∗.
The cardinality of H is (rd

−1) ·(q−1)/(r − 1). Note that since G is cyclic, there
is a unique subgroup H of this size. Indeed, if 0 ∈ G is an arbitrary generator of
G, then H = {1, 0b, 02b, . . . , 0qd

−1−b
}, where

b = |G|
|H |
=

qd
−1

rd−1
·

r−1
q−1

. (4-1)

Let A ∈ RT be an arbitrary polynomial such that A mod M is a generator of
(Fq [T ]/(M))∗. We can then take 0 so that 0(λ) = CA(λ). We fix a choice of
A in the sequel and assume that A is precomputed and known. In Section 5C
we will pick such an A of appropriately large degree D. The effective version of
Dirichlet’s theorem for irreducible polynomials in arithmetic progressions guaran-
tees the existence of such polynomials A for large enough degree [Rosen 2002,
Theorem 4.8].

Note that by Proposition 2.1(ii), the Galois action commutes with the Carlitz
action and therefore 0 j (λ)= CA j (λ) for all j > 1. Thus knowing the polynomial
A lets us compute the action of the automorphisms of H on any desired element
of K = F(λ).

Let E ⊂ K be the subfield of K fixed by the subgroup H , that is,

E = {x ∈ K | σ(x)= x for all σ ∈ H}.

The field E will be the one used to construct our codes. We first record some
basic properties of the extension E/F , and how certain places decompose in this
extension.
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Proposition 4.2. Let E = F(3M)
H .

(i) E/F is a Galois extension of degree [E : F] = b.

(ii) The place M is the only ramified place in E/F , and it is totally ramified with
a unique place M ′ above it in E.

(iii) The infinite place P∞ of F , that is, the pole of T , splits completely into b
degree 1 places in E.

(iv) The genus gE of E equals d(b− 1)/2+ 1.

(v) For each β ∈ Fr , the place T −β of F splits completely into b degree 1 places
in E.

(vi) If A ∈ RT is irreducible of degree `> 1 and A mod M is a primitive element
of RT /(M), then the place A is inert in E/F. The Artin automorphism σA at
A satisfies

σA(x)≡ xq` (mod A′) (4-2)

for all x ∈ OA′ , where A′ is the unique place of E lying above A.

Proof. By Galois theory, [E : F]= |G|/|H | = b. Since G is abelian, E/F is Galois
with Galois group isomorphic to G/H . Since E ⊂ K , and M is totally ramified
in K , it must also be totally ramified in E . The only other place ramified in K
is P∞, and since H contains the decomposition group F∗q of P∞, P∞ must split
completely in E/F .

The genus of E is easily computed, since E/F is a tamely ramified exten-
sion [Stichtenoth 1993, Sec. III.5]. Since only the place M of degree d is ramified,
we have 2gE − 2= d(b− 1).

Since H ⊃ Fr [T ], for β ∈ Fr , the Artin automorphism σT−β of the place T −β
in K/F belongs to H . The Artin automorphism of T −β in the extension E/F is
the restriction of σT−β to E , which is trivial since H fixes E . It follows that T −β
splits completely in E .

For an irreducible polynomial A ∈ RT which has order qd
− 1 modulo M , by

Proposition 2.2(iii), the place A remains inert in the extension K/F , and therefore
also in the subextension E/F . Since the degree of the place A equals `, (4-2)
follows from the definition of the Artin automorphism at A. �

4C. A generator for E and its properties. We would like to represent elements
of E and to be able to evaluate them at the places above T − β. To this end, we
will exhibit a µ ∈ Fac such that E = F(µ) along with a defining equation for µ
(which will then aid in the evaluations of µ at the requisite places).

Theorem 4.3. Let λ be an arbitrary nonzero element of 3M (so that K = F(λ)).
Define

µ
def
=

∏
σ∈H

σ(λ)= CAb(λ)CA2b(λ) · · ·CAqd−1(λ). (4-3)



List error correction with optimal rate 445

Then the fixed field E = K H equals the extension field F(µ). The minimal poly-
nomial h ∈ RT [Z ] of µ over F is given by

h(Z)=
b−1∏
j=0

(Z −0 j (µ)).

Further, the polynomial h(Z) can be computed in q O(d) time.

Proof (sketch). By definition, µ is fixed by each π ∈ H and so µ ∈ E . Therefore
F(µ)⊆ E . To show E = F(µ), we will argue that [F(µ) : F] = b, which in turn
follows if we show that h(Z) has coefficients in F and is irreducible over F . It is
easy to see that the coefficients of h are fixed by 0 and hence by all of Gal(K/F),
and so must belong to F . Since λ and all its Galois conjugates CAi (λ) are integral
over F , each 0 j (µ) is integral over F , and thus so is each coefficient of h. But
since we already know they belong to F , the coefficients must in fact lie in RT .

The irreducibility of h over RT can be shown using Eisenstein’s criterion with
respect to M . Indeed, except the leading coefficient, every other coefficient of h is
divisible by λ, and since λ ∈ M̃ (by Proposition 2.2), these coefficients belong to
the ideal F ∩ M̃ = M . The constant term of h equals

∏
06i<qd−1 CAi (λ), which is

also the constant term of
CM(Z)/Z =

∏
06i<qd−1

(Z −CAi (λ)).

The latter equals M by Proposition 2.1(i). Thus the constant term of h is not
divisible by M2. By Eisenstein’s criterion, h must be irreducible over F .

Finally, we address how the coefficients of h(Z) can be computed efficiently.
Note that for j = 0, 1, . . . , b− 1,

0 j (µ)=
∏

06i<qd
−1

i mod b= j

0i (λ)=
∏

06i<qd
−1

i mod b= j

CAi (λ). (4-4)

Using this, we can compute 0 j (µ) for 06 j 6 b− 1 as a formal polynomial in λ
with coefficients from RT . We can divide this polynomial by the monic polynomial
CM(λ)/λ (formally, over the polynomial ring RT [λ]) and represent 0 j (µ) as a
polynomial of degree less than (qd

− 1) in λ. Using this representation, we can
compute the polynomials

h(i)(Z)=
i∏

j=0

(Z −0 j (µ)) for 16 i 6 b− 1

iteratively, as an element of RT [λ][Z ], with all coefficients having degree less than
(qd
− 1) in λ. When i = b− 1, we would have computed h(Z)— we know at the

end all the coefficients will have degree 0 in λ and belong to RT . �
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Using
∏b−1

j=0 0
j (µ)= M from the above argument, and vM ′(0

j (µ))= vM ′(µ),
we conclude that vM ′(µ) = 1, that is, µ (as well as each of its Galois conjugates
0 j (µ)) is M ′-prime. We record this fact below. It will useful to establish that the
integral closure of RT in E equals RT [µ] (Proposition 5.1), a fact we will use en
route characterizing the message space in Theorem 5.2.

Lemma 4.4. The element µ has a simple zero at M ′, that is, vM ′(µ)= 1.

With the minimal polynomial h(Z) of µ at our disposal, we turn to comput-
ing the evaluations of µ at the b places above T − β; call them P (β)j for j =
0, 1, . . . , b− 1, for each β ∈ Fr . (Recall that the place T − β splits completely in
E/F by Proposition 4.2(v).) The following lemma identifies the set of evaluations
of µ at these places. This method is related to Kummer’s theorem on splitting of
primes [Stichtenoth 1993, Section III.3].

Lemma 4.5. Consider the polynomial h̄(β)(Z) ∈ Fq [Z ] obtained by evaluating the
coefficients of h(Z), which are polynomials in T , at β. Then

h̄(β)(Z)=
b−1∏
j=0

(Z −µ(P (β)j )).

In particular, the set of evaluations of µ at the places above (T − β) equals the
roots of h̄(β) in Fq , and can be computed in bO(1) time given h ∈ RT [Z ].

Proof. We know h(Z)=
b−1∏
j=0
(Z −0 j (µ)). Therefore

h̄(β)(Z)=
b−1∏
j=0

(Z −0 j (µ)(P (β)0 ))=

b−1∏
j=0

(
Z −µ

(
0− j (P (β)0 )

))
=

b−1∏
j=0

(Z −µ(P (β)j )),

where the last step uses the fact that 0− j (P (β)0 ) for j = 0, 1, . . . , b−1 is precisely
the set of places above T −β. �

5. Code construction from cyclotomic function fields

We will now describe the AG codes based on the function field E . A tempting
choice for the message space is perhaps

{∑b−1
i=0 ai (T )µi

}
⊂ RT [µ], where ai (T )

are polynomials of some bounded degree. This is certainly a Fq -linear space and
messages in this space have no poles outside the places lying above P∞. However,
the valuations of µ at these places are complicated — one needs the Newton poly-
gon method to estimate them [Villa Salvador 2006, Section 12.4] — and since µ
has both zeroes and poles among these places, it is hard to get good bounds on the
total pole order of such messages at each of the places above P∞.
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5A. Message space. Let M ′ be the unique totally ramified place M ′ in E lying
above M ; deg M ′ = deg M = d . We will use as message space elements of RT [µ]

that have no more than a certain number ` of poles at the place M ′ and no poles
elsewhere. These can equivalently be thought of (via a natural correspondence) as
elements of E that have bounded (depending on `) pole order at each place above
P∞, and no poles elsewhere, and we can develop our codes and algorithms in this
equivalent setting. Since the literature on AG codes typically focuses on one-point
codes where the messages have poles at a unique place, we work with functions
with poles restricted to M ′.

Formally, for an integer ` > 1, let L(`M ′) be the space of functions in E that
have no poles outside M ′ and at most ` poles at M ′. L(`M ′) is an Fq -vector
space, and by the Riemann–Roch theorem, dim L(`M ′) > `d − g + 1, where
g = d(b − 1)/2 + 1 is the genus of E . We will assume that ` > b, in which
case dim L(`M ′)= `d − g+ 1.

We will represent the code by a basis of L(`M ′) over Fq . Of course, we first need
to understand how to represent a single function in L(`M ′). Theorem 5.2 below
suggests a representation for elements of L(`M ′) that we can use. Its proof uses
the following claim, which can be established using Lemma 4.4 and an argument
similar to the one used to prove that the integral closure of RT in K = F(λ) equals
RT [λ] [Rosen 2002, Proposition 12.9].

Proposition 5.1. The integral closure of RT in E equals

RT [µ] =
{b−1∑

i=0

aiµ
i
∣∣ ai ∈ RT

}
.

Theorem 5.2. A function f in E with poles only at M ′ has a unique representation
of the form

f =
∑b−1

i=0 aiµ
i

Me , (5-1)

where e > 0 is an integer, each ai ∈ RT , and not all the ai’s are divisible by M (as
polynomials in T ).

Proof. If f has poles only at M ′, there must be a smallest integer e > 0 such that
Me f has no poles outside the places above P∞. This means that Me f must belong
to the integral closure (ring of integers) of RT in E , that is, the minimal polynomial
of Me f over RT is monic. By Proposition 5.1, we have Me f ∈ RT [µ] and so we
can write f = M−e ∑b−1

i=0 aiµ
i as claimed. The uniqueness of the representation

follows since {1, µ, . . . , µb−1
} forms a basis of E over F . �

5B. Succinctness of representation. In order to be able to efficiently compute
with the representation (5-1) of functions in L(`M ′), we need the guarantee that
the representation will be succinct, that is, of size polynomial in the code length.
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We show that this will be the case by obtaining an upper bound on the degree of
the coefficients ai ∈ RT in Lemma 5.3 below. This is not as straightforward as
one might hope, and we thank G. Anderson and D. Thakur for help with its proof.
For the choice of parameters we will make (in Theorems 6.10 and 7.1), this upper
bound will be polynomially bounded in the code length. Therefore, the assumed
representation of the basis functions is of polynomial size.

Lemma 5.3. Suppose f ∈ L(`M ′) is given by f = M−e ∑b−1
i=0 aiµ

i for ai ∈ RT

(not all divisible by M) and e > 0. Then the degree of each ai is at most `+ qdb.

Proof. Let g = Me f =
∑b−1

i=0 aiµ
i . We know that g has at most eb poles at each

place of E that lies above P∞ (since f has no poles at these places). Using the
fact that f has at most ` poles at M ′, and the uniqueness of the representation
f = M−e ∑b−1

i=0 aiµ
i , it is easy to argue that eb 6 `+ b. So, g has at most `+ b

poles at each place of E lying above P∞.
Let σ =σA; we know that σ is a generator of Gal(E/F). For j =0, 1, . . . , b−1,

we have σ j (g) =
∑b−1

i=0 aiσ
j (µi ). Let a = (a0, a1, . . . , ab−1)

T be the (column)
vector of coefficients, and let g = (g, σ (g), . . . , σ b−1(g))T . Denoting by 8 the
b×b matrix with8 j i =σ

j (µi ) for 06 i, j 6b−1, we have the system of equations
8a = b.

We can thus determine the coefficients ai by solving this linear system. By
Cramér’s rule, ai = det8i / det8, where 8i is obtained by replacing the i-th
column of 8 by the column vector g. The square of the denominator det8 is
the discriminant of the field extension E/F , and belongs to RT . Thus the degree
of ai is at most the pole order of det8i at an arbitrary place, say P̃ , above P∞. By
the definition (4-3) of µ, and the fact that λ and its conjugates have at most one
pole at the places above P∞ in F(3M), it follows that µ has at most (qd

− 1)/b
poles at P̃ . The same holds for all its conjugates σ j (µ). The function g and its
conjugates σ j (g) have at most `+b poles at P̃ . All in all, this yields a crude upper
bound of

qd
−1
b

(b−1)b
2
+ `+ b 6 `+ qdb

for the pole order of det8i at P̃ , and hence also the degree of the polynomial
ai ∈ RT . �

5C. Rational places for encoding and their ordering. So far, the polynomial A ∈
RT was any monic irreducible polynomial that was a primitive element modulo
M , so that its Artin automorphism σA generates Gal(E/F). We will now pick A
to have degree D satisfying

D >
`d
b

and D > 3d, (5-2)
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where the latter condition (in fact even D>2d+o(d) suffices) ensures that there are
at least q D/2Dqd irreducible polynomials of degree D with any desired residue
modulo M . This follows from the effective version of Dirichlet’s theorem for
polynomials; see for instance [Rosen 2002, Theorem 4.8].

For D satisfying the above conditions, an irreducible polynomial A of degree D
that is primitive modulo M can be found by a Las Vegas algorithm in (Dqd)O(1)

time by picking a random polynomial and checking that it works, or deterministi-
cally by brute force in q O(d+D) time. Both of these bounds are within the decoding
time claimed in Theorem 6.10, and will be polynomial in the block length for our
parameter choices in Theorem 7.1. By Proposition 2.1, A remains inert in E/F ,
and let us denote by A′ the unique place of E that lies over A. The degree of A′

equals Db.
For each β ∈ Fr , fix an arbitrary place P (β)0 lying above T − β in E . For

j = 0, 1, . . . , b− 1, define

P (β)j = σ
− j
A (P (β)0 ) . (5-3)

Since Gal(E/F) acts transitively on the set of primes above a prime, and σA gener-
ates Gal(E/F), these constitute all the places above T−β. Lemma 4.5 already tells
us the set of evaluations of µ at these places, but not which evaluation corresponds
to which point. We have µ(σ− j

A (P (β)0 )) = σ
j
A(µ)(P

(β)
0 ); hence, to compute the

evaluations of µ at all these b places according to the ordering (5-3), it suffices to
know

(i) the value at µ(P (β)0 ), which we can find by simply picking one of the roots
from Lemma 4.5 arbitrarily, and

(ii) a representation of σA(µ) as an element of RT [µ] (since σA(µ) is integral over
RT , it belongs to RT [µ] by virtue of Proposition 5.1). Note that T (P (β)0 )= β,
so once we know µ(P (β)0 ), we can evaluate any element of RT [µ] at P (β)0 .

We now show that σA(µ) ∈ RT [µ] can be computed efficiently.

Lemma 5.4. (i) The values of σ j
A(µ) for 06 j 6 b−1 as elements of RT [µ] can

be computed in q O(d) time.

(ii) The values µ(P (β)j ) for β ∈ Fr and j = 0, 1, . . . , b − 1 can be computed
in q O(d) time. Knowing these values, we can compute any function in the
message space L(`M ′) represented in the form (5-1) at the places P (β)j in
poly(`, qd) time.

Proof. Part (ii) follows from (i) and the discussion above. To prove (i), note that
once we compute σA(µ), we can recursively compute σ j

A(µ) for j > 2, using the
relation h(µ)= 0 to replace µb and higher powers of µ in terms of 1, µ, . . . , µb−1.
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By definition (4-3), we have µ=
∏

06i<(qd−1)/b CAib mod M(λ). Thus one can com-
pute an expression

µ=

qd
−2∑

i=0

eiλ
i
∈ RT [λ]

with coefficients ei ∈ RT in q O(d) time. By successive multiplication in the ring
RT [λ] (using the relation CM(λ)= 0 to express λqd

−1 and higher powers in terms
of 1, λ, . . . , λqd

−2), we can compute, for l = 0, 1, . . . , b− 1, expressions

µl
=

qd
−2∑

i=0

eilλ
i

with eil ∈ RT in q O(d) time.
We have

σA(µ)=

qd
−2∑

i=0

eiσA(λ)
i
=

qd
−2∑

i=0

ei CA mod M(λ)
i .

So one can likewise compute an expression σA(µ)=
∑qd

−2
i=0 fiλ

i with fi ∈ RT in
q O(d) time. The task now is to rewrite this expression for σA(µ) as an element of
RT [µ], of the form

∑b−1
l=0 alµ

l , for unknowns al ∈ RT that are to be determined.
We will argue that this can be accomplished by solving a linear system.

Indeed, using the expressions µl
=
∑qd

−2
i=0 eilλ

i , the coefficients al satisfy the
following system of linear equations over RT :

b−1∑
l=0

eilal = fi for i = 0, 1, . . . , qd
− 2 . (5-4)

Since the representation σA(µ) =
∑b−1

l=0 alµ
l is unique, the system has a unique

solution. By Cramér’s rule, the degree of each al is at most q O(d). Therefore, we
can express the system (5-4) as a linear system of size q O(d) over Fq in unknowns
the coefficients of all the polynomials al ∈ RT . By solving this system in q O(d)

time, we can compute the representation of σA(µ) as an element of RT [µ]. �

5D. The basic cyclotomic algebraic-geometric code. The basic AG code C0 based
on subfield E of the cyclotomic function field F(3M) is defined as

C0
=

{(
f (P (β)j )

)
β∈Fr ,06 j<b

∣∣ f ∈ L(`M ′)
}
, (5-5)

where the ordering of the places P (β)j above T − β is as in (5-3). We record the
standard parameters of the above AG code, which follows from Riemann–Roch,
the genus of E from Proposition 4.2, and that a nonzero f ∈ L(`M ′) can have at
most ` deg M ′ = `d zeroes.
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Lemma 5.5. Suppose `> b. Then C0 is an Fq -linear code of block length n = rb,
dimension k = `d − d(b− 1)/2, and distance at least n− `d.

Lemma 5.4(ii) implies the following.

Lemma 5.6 (Efficient encoding). Given a basis for the message space L(`M ′)
represented in the form (5-1), the generator matrix of the cyclotomic code C0 can
be computed in poly(`, qd , q D) time.

5E. The folded cyclotomic code. Let m > 1 be an integer. For convenience, we
assume m|b (though this is not really necessary). Analogously to the construction
of folded RS codes [Guruswami and Rudra 2008], the folded cyclotomic code C

is obtained from C0 by bundling together successive m-tuples of symbols into a
single symbol to give a code of length N = n/m over Fm

q . Formally,

C=
{(

f (P (β)mı ), f (P (β)mı+1), . . . , f (P (β)mı+m−1)
)
β∈Fr ,06ı<b/m

∣∣ f ∈L(`M ′)
}
. (5-6)

We will index the N positions of codewords in C by pairs (β, ı) for β ∈ Fr and
ı ∈ {0, 1, . . . , (b/m)− 1}.

The generator matrix of unfolded code C0, which can be computed given a
basis for L(`M ′) according to Lemma 5.6, obviously suffices for encoding. Later
we will argue that the same representation also suffices for polynomial time list
decoding.

5F. Folding and Artin–Frobenius automorphism. The unique place A′ that lies
above A has degree D′ def

= Db. The residue field at A′, denoted by K A′ , is isomor-
phic to Fq D′ . By our choice Db > `d , this immediately implies that a message in
L(`M ′) is uniquely determined by its evaluation at A′.

Lemma 5.7. The map evA′ :L(`M ′)→ K A′ given by evA′( f )= f (A′) is one-one.

The key algebraic property of our folding is the following.

Lemma 5.8. For every f ∈ L(`M ′):

(i) For every β ∈ Fr and 06 j < b− 1, σA( f )(P (β)j )= f (P (β)j+1).

(ii) σA( f )(A′)= f (A′)q
D

.

Proof. Part (i) follows since we ordered the places above T − β such that P (β)j+1 =

σ−1
A (P (β)j ).
Part (ii) follows from the property of the Artin automorphism at A, since the

norm of the place A equals qdeg A
= q D . (A nice discussion of the Artin–Frobenius

automorphism, albeit in the setting of number fields, appears in [Marcus 1977,
Chapter 4].) �
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6. List decoding algorithm

We now turn to list decoding the folded cyclotomic code C defined in (5-6). The
underlying approach is similar to that of the algorithm for list decoding folded RS
codes [Guruswami and Rudra 2008] and AG generalizations of Parvaresh–Vardy
codes [2005; Guruswami and Patthak 2008]. We will therefore not repeat the entire
rationale and motivation behind the algorithm development. But our technical pre-
sentation and analysis is self-contained. In fact, our presentation here does offer
some simplifications over previous descriptions of AG list decoding algorithms
from [Guruswami and Sudan 1999; 2001; Guruswami and Patthak 2008]. A princi-
pal strength of the new description is that it avoids the use of zero-increasing bases
at each code place P (β)j . This simplifies the algorithm as well as the representation
of the code needed for decoding.

The list decoding problem for C up to e errors corresponds to solving the fol-
lowing function reconstruction problem. Recall that the length of the code is N =
n/m=rb/m, and the codeword positions are indexed by Fr×{0, 1, . . . , (b/m)−1}.

Input: Collection T of N tuples
(
y(β)mı , y(β)mı+1, . . . , y(β)mı+m−1

)
∈ Fm

q for β ∈ Fr

and 06 ı < b/m.

Output: A list of all f ∈ L(`M ′) whose encoding according to C agrees with
the (β, ı)-th tuple for at least N − e codeword positions.

6A. Algorithm description. We describe the algorithm at a high level below and
later justify how the individual steps can be implemented efficiently, and under
what condition the decoding will succeed. We stress that regardless of complexity
considerations, even the combinatorial list-decodability property “proved” by the
algorithm is nontrivial.

Algorithm List-Decode(C)

Parameters: • An integer parameter s, 26 s 6m, for s-variate interpolation;
• an integer parameter w > 1 that governs the zero order (multiplicity)

guaranteed by interpolation; and
• an integer parameter 1 > 1 that is the total degree of the interpolated

s-variate polynomial.

Step 1 (Interpolation): Find a nonzero polynomial Q(Z1, Z2, . . . , Zs) of total
degree at most 1 with coefficients in L(`M ′) such that for each β ∈ Fr ,
06 ı < b/m, and j ′ ∈ {0, 1, . . . ,m− s}, the shifted polynomial

Q
(
Z1+ y(β)mı+ j ′, Z2+ y(β)mı+ j ′+1, . . . , Zs + y(β)mı+ j ′+s−1

)
(6-1)

has the property that the coefficient of the monomial Zn1
i Zn2

2 · · · Z
ns
s vanishes

at P (β)mı+ j ′ whenever its total degree n1+ n2+ · · ·+ ns <w.
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Step 2 (Root-finding): Find a list of all f ∈ L(`M ′) satisfying

Q( f, σA( f ), . . . , σAs−1( f ))= 0.

Output those whose encoding according to C agrees with at least N−e of the
m-tuples in T.

6B. Analysis of error correction radius.

Lemma 6.1. If k(1 + 1)s > N (m − s + 1)(w + s − 1)s (where, as we recall,
k = `d − d(b − 1)/2 is the dimension of L(`M ′)), then a nonzero polynomial
Q with the stated properties exists. If we know the evaluations of the functions
in a basis {φ1, φ2, . . . , φk} of L(`M ′) at the places P(β)j , then such a Q can be
found by solving a homogeneous system of linear equations over Fq with at most
Nm(w+ s)s equations and unknowns.

Proof. The proof is standard and follows by counting degrees of freedom versus
number of constraints. One can express the desired polynomial as∑

n1,n2,...,ns

q(n1,...,ns)Z
n1
1 · · · Z

ns
s ,

with unknowns q(n1,...,ns)∈Fq . The number of coefficients is k
(1+s

s

)
>k(1+1)s/s!.

One can express for each place P (β)mı+ j ′ the required condition at that place by(w+s−1
s

)
linear conditions (this quantity is the number of monomials of total degree

less than w), for a total of

N (m− s+ 1)
(
w+ s− 1

s

)
< N (m− s+ 1)(w+s−1)s

s!

constraints. When the number of unknowns exceeds the number of constraints,
a nonzero solution must exist. A solution can also be found efficiently once the
linear system is set up, which can clearly be done if we know the evaluations of
φi ’s at the code places (that is, a generator matrix of the code). �

Lemma 6.2. Let Q be the polynomial found in Step 1. If the encoding of some
f as per C agrees with (y(β)mı , y(β)mı+1, · · · , y(β)mı+m−1) for some position (β, ı), then
Q( f, σA( f ), . . . , σAs−1( f )) has at least w zeroes at each of the (m− s+1) places
P (β)mı+ j ′ for j ′ = 0, 1, . . . ,m− s.

Proof. The proof differs slightly from earlier proofs of similar statements (for
example, [Guruswami and Patthak 2008, Lemma 6.6]) in that it avoids the use of
zero-increasing bases and is thus simpler. We will prove the claim for j ′ = 0, and
the same proof works for any j ′ 6 m − s. Note that agreement on the m-tuple at
position (b, ı) implies that

f (P (β)mı )= y(β)mı , f (P (β)mı+1)= y(β)mı+1, . . . , f (P (β)mı+s−1)= y(β)mı+s−1.
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By Lemma 5.8(i), this implies

f (P (β)mı )= y(β)mı , σA( f )(P (β)mı )= y(β)mı+1, . . . , σAs−1( f )(P (β)mı )= y(β)mı+s−1.

Denote by Q∗ the shifted polynomial (6-1) for the triple (β, ı, 0). We have

Q
(

f, σA( f ), . . . , σAs−1( f )
)

= Q∗
(

f − y(β)mı , σA( f )− y(β)mı+1, · · · , σ
s−1
A ( f )− y(β)mı+s−1

)
=

∑
n1,n2,...,ns

w6n1+···+ns61

q∗(n1,...,ns)

(
f − f (P (β)mı )

)n1
(
σA( f )− σA( f )(P (β)mı )

)n2

· · ·
(
σAs−1( f )− σAs−1( f )(P (β)mı )

)ns .

for some coefficients q∗(n1,...,ns)
∈ Fq . Since each term of the function in the last

expression has valuation at leastw at P (β)mı , so does Q( f, σA( f ), . . . , σAs−1( f )). �

Lemma 6.3. If the encoding of f ∈ L(`M ′) has at least N − e agreements with
the input tuples T, and (N − e)(m− s+ 1)w > d`(1+ 1), then

Q( f, σA( f ), . . . , σAs−1( f ))= 0.

Proof. Since f has no poles outside M ′, neither do σAi ( f ) for 16 i < s. Moreover,
vM ′(σA( f )) = vσ−1

A (M ′)( f ) = vM ′( f ) (since M ′ is the unique place above M and
is thus fixed by every Galois automorphism). Since f ∈ L(`M ′), this implies
σAi ( f )∈L(`M ′) for every i . Since each coefficient of Q also belongs to L(`M ′),
we conclude that Q( f, σA( f ), . . . , σAs−1( f ))∈L((`+`1)M ′). On the other hand,
by Lemma 6.2, Q( f, σA( f ), . . . , σAs−1( f )) has at least (N−e)(m−s+1)w zeroes.
If (N − e)(m − s + 1)w > `(1+ 1)d , then Q( f, σA( f ), . . . , σAs−1( f )) has more
zeroes than poles and must thus equal 0. �

Putting together the above lemmas, we can conclude the following about the list
decoding radius guaranteed by the algorithm. Note that we have not yet discussed
how Step 2 may be implemented, or why it implies a reasonable bound on the
output list size. We will do this in Section 6C.

Theorem 6.4. For every s, 26 s6m, and any ζ > 0, for the choicew=ds/ζe and
a suitable choice of the parameter 1, the algorithm List-Decode(C) successfully
list decodes up to e errors whenever

e < (N − 1)− (1+ ζ )
( k

m−s+1

)1−1/s
N 1/s

(
1+ d(b−1)

2k

)
. (6-2)

Proof. Picking w = ds/ζe and

1+ 1=
⌈(N (m−s+1)

k

)1/s
(w+ s− 1)

⌉
,

the requirement of Lemma 6.1 is met. By Lemma 5.5, the dimension k satisfies
`d = k + d(b− 1)/2. A straightforward computation reveals that for this choice,
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the bound (6-2) implies the decoding condition (N−e)(m−s+1)w > `d(1+1),
under which Lemma 6.3 guarantees successful decoding. �

Remark 6.5. The error correction radius above is nontrivial only when s > 2.
We will see later how to pick parameters so that the error fraction approaches
1 − R1−1/s . For AG codes, even s = 1 led to a nontrivial guarantee of about
1−
√

R in [Guruswami and Sudan 1999], and for folded RS codes the error fraction
with s-variate interpolation was 1− Rs/(s+1). The weaker bound we get is due to
restricting the pole order of coefficients of Q to at most `, the number of poles
allowed for messages. This is similar to the algorithm in [Guruswami and Patthak
2008, Section 5]. Since we let grow s anyway, this does not hurt us. It also avoids
some difficult technical complications that would arise otherwise (discussed in,
for example, [Guruswami and Patthak 2008]), and allows us to implement the
interpolation step just using the natural generator matrix of the code.

6C. Root-finding using the Artin automorphism. So far we have not discussed
how Step 2 of decoding can be performed, and why in particular it implies a rea-
sonably small upper bound on the number of solutions f ∈ L(`M ′) that it may
find in the worst case. We address this now. This is where the properties of the
Artin automorphism σA will play a crucial role. Recall that K A′ = OA′/A′ denotes
the residue field at the place A′ of E lying above A, and that we picked A so that
D = deg A obeyed Db > `d .

Lemma 6.6. Suppose f ∈ OA′ satisfies

Q( f, σA( f ), . . . , σAs−1( f ))= 0

for some Q ∈OA′[Z1, Z2, . . . , Zs]. Let Q ∈K A′[Z1, Z2, . . . , Zs] be the polynomial
obtained by reducing the coefficients of Q modulo A′. Then f (A′) ∈ K A′ obeys

Q
(

f (A′), f (A′)q
D
, f (A′)q

2D
, . . . , f (A′)q

D(s−1))
= 0. (6-3)

Proof. If Q( f, σA( f ), . . . , σAs−1( f ))= 0, then surely

Q
(

f (A′), σA( f )(A′), . . . , σAs−1( f )(A′)
)
= 0.

The claim (6-3) now follows immediately from Lemma 5.8(ii). �

Lemma 6.7. If Q(Z1, . . . , Zs) is a nonzero polynomial of total degree at most1<
q D all of whose coefficients belong to L(`M ′), then the polynomial 8 ∈ K A′[Y ]
defined as

8(Y ) def
= Q

(
Y, Y q D

, . . . , Y q D(s−1))
is a nonzero polynomial of degree at most 1 · q D(s−1).
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Proof. If ψ ∈ L(`M ′) is nonzero, then ψ(A′) 6= 0. (Otherwise, the degree of the
zero divisor of ψ will be at least deg A′ = bD > `d, and thus exceed the degree of
the pole divisor of ψ .) It follows that if Q 6= 0, then Q(Z1, . . . , Zs) obtained by
reducing coefficients of Q modulo A′ is also nonzero.5 Since the degree of Q in
each Zi is at most 1 < q D , it is easy to see that 8(Y ) = Q

(
Y, Y q D

, . . . , Y q D(s−1))
is also nonzero. The degree of 8 is at most q D(s−1) times the total degree of Q,
which is at most 1. �

By the above two lemmas, we see that one can compute the set of residues f (A′)
of all f satisfying Q( f, σA( f ), . . . , σAs−1( f ))= 0 by computing the roots in K A′

of 8(Y ). Since evA′ is injective on L(`M ′) (Lemma 5.7), this also lets us recover
the message f ∈ L(`M ′).

Lemma 6.8. Given a nonzero polynomial Q(Z1, . . . , Zs) with coefficients from
L(`M ′) and degree 1< q D , the set of functions

S= { f ∈ L(`M ′) | Q
(

f, σA( f ), . . . , σAs−1( f )
)
= 0}

has cardinality at most q Ds .
Moreover, knowing the evaluations of a basis B = {φ1, φ2, . . . , φk} of L(`M ′)

at the place A′, one can compute the coefficients expressing each f ∈S in the basis
B in q O(Ds) time.

Proof. As argued above, any desired f ∈L(`M ′) has the property that8( f (A′))=
0, so the evaluations of functions in S take at most degree(8)61q D(s−1) 6 q Ds

values. Since evA′ is injective on S, this implies |S|6q Ds . The second part follows
since we can compute the roots of8 in K A′ in time poly(q Ds, log |K A′ |)6 q O(Ds).
Knowing f (A′), we can recover f (in terms of the basis B) by solving a linear
system if we know the evaluations of the functions in the basis B at A′. The next
section discusses a convenient representation for computations in K A′ . �

6C.1. Representation of the residue field K A′ . The following gives a convenient
representation for elements of K A′ which can be used in computations involving
this field.

Lemma 6.9. The elements {1, µ(A), . . . , µ(A)b−1
} form a basis for K A′ over the

field RT /(A)' Fq D . In other words, elements of K A′ can be expressed in a unique
way as

b−1∑
i=0

bi (T )µ(A)i ,

where each bi ∈ RT has degree less than D.

5This is simplicity we gain by restricting the coefficients of Q to also belong to L(`M ′).
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Proof. Since A is inert in E/F , the minimal polynomial h(Z) of µ over F has
the property that h(Z), obtained by reducing the coefficients of h modulo A, is
irreducible over the residue field RT /(A). Thus µ(A) generates K A′ over RT /(A),
and in fact the minimal polynomial of µ(A) with respect to K A equals h(Z). Note
that the coefficients of h, which belong to RT /(A), have a natural representation
as a polynomial in RT of degree less than deg A = D. �

We note that given the representation of the basis B = {φ1, φ2, . . . , φk} in the
form guaranteed by Theorem 5.2, one can trivially compute the evaluations of
φi (A′) in the above form. There is no need to explicitly compute µ(A) ∈ OA/A.
Therefore, the decoding algorithm requires no additional preprocessed informa-
tion beyond a basis for the message space L(`M ′)— the rest can all be computed
efficiently from the basis alone.

6D. Wrap-up. We are now ready to state our final decoding claim.

Theorem 6.10. For any s, 2 6 s 6 m, and ζ > 0, the folded cyclotomic code
C⊆ (Fm

q )
N defined in (5-6) can be list decoded in time (Nm)O(1)(s/ζ )O(s)

+q O(Ds)

from a fraction ρ of errors

ρ = 1− (1+ ζ )
( R0m

m− s+ 1

)1−1/s(
1+

d
2R0r

)
, (6-4)

where R0 = k/n is the rate of the code. The size of the output list is at most q Ds .
The decoding algorithm assumes polynomial amount of preprocessed information
consisting of basis functions {φ1, . . . , φk} for the message space L(`M ′) repre-
sented in the form (5-1). (This is the same representation used for encoding, and it
is succinct by Lemma 5.3.)

Proof. We first note that bound on fraction of errors follows from Theorem 6.4,
and the fact that k = R0n= R0 Nm = R0br . By Lemma 6.1 and its proof, in Step 1
of the algorithm we can find a nonzero polynomial Q (of degree less than q D) such
that for any f ∈L(`M ′) that needs to be output by the list decoder, we must have
Q( f, σA( f ), . . . , σAs−1( f ))= 0. We can evaluate the basis functions φi at P (β)j in
(`qd)O(1) time by Lemma 5.4, and with this information, the running time of this
interpolation step can be bounded by (Nm)O(1)(w+ s)O(s)

= (Nm)O(1)(s/ζ )O(s)

(since w= O(s/ζ )). We can also efficiently compute the evaluations of φi at A′ in
the representation suggested by Lemma 6.9. Therefore, by Lemma 6.8, we can then
find a list of the at most q Ds functions f satisfying Q( f, σA( f ), . . . , σAs−1( f ))= 0
in q O(Ds) time. �

Remark 6.11 (List recovery). A similar claim holds for the more general list recov-
ery problem, where for each position we are given as input a set of up to l elements
of Fm

q , and the goal is to find all codewords which agree with some element of the
input sets for at least a fraction (1−ρ) of positions. In this case, 1−ρ only needs
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to be only a factor l1/s larger than the bound (6-4). By picking s � l, the effect
of l can be made negligible. This feature is very useful in concatenation schemes;
see Section 7A and [Guruswami and Rudra 2008] for further details.

7. Long codes with optimal rate for list decoding

We now describe the parameter choices which lead to capacity-achieving list-
decodable codes, that is, codes of rate R0 that can correct a fraction 1− R0− ε of
errors (for any desired 0< R0 < 1), and whose alphabet size is polylogarithmic in
the block length; the formal statement appears in Theorem 7.1 below. (Recall that
for folded RS codes, the alphabet size is a large polynomial in the block length.)
Using concatenation and expander-based ideas, [Guruswami and Rudra 2008] also
presents capacity-achieving codes over a fixed alphabet size (that depends on the
distance ε to capacity alone). The advantage of our codes is that they inherit strong
list recovery properties similar to the folded RS codes (Remark 6.11). This is very
useful in concatenation schemes, and indeed our codes can be used as outer codes
for an explicit family of binary concatenated codes list-decodable up to the Zyablov
radius, with no brute-force search for the inner code (see Section 7A below).

We now describe our main result on how to obtain the desired codes from the
construction C and Theorem 6.10. The underlying parameter choices to achieve
this require a fair bit of care.

Theorem 7.1 (Main theorem). For every R0, 0< R0< 1, and every constant ε > 0,
the following holds for infinitely many integers q which are powers of two. There
is a code of rate at least R0 over an alphabet of size q with block length

N > 2q�(ε2/ log(1/R0))

that can be list decoded up to a fraction 1− R0 − ε of errors in time bounded by
(N log(1/R0)/ε

2)O(1/(R0ε)
2).

Proof. Suppose R0, 0 < R0 < 1, and ε > 0 are given. Let c = 2b 10
R0ε
c+ 1, and let

φ(c) denote the Euler’s totient function of c.
Let u > 1 be an arbitrary integer; we will get a family of codes by varying u.

The code we construct will be a folded cyclotomic code C defined in (5-6). Let
x = φ(c)u. Note that 2x

≡ 1 (mod c). We first pick q, r, d as follows: r = 2x ,
q = r2, and d = (2x

−1)/c. For this choice, d|r −1 and (q−1)/(r −1)= r +1 is
coprime to d, as required in Lemma 4.1. So we can take M(T )= T d

− γ ∈ Fr [T ]
for γ primitive in Fr as the irreducible polynomial over Fq .

For the above choice, d/r < 1/c6 εR0/20, so that d/2R0r < ε/10. By picking

s =2(ε−1 log(1/R0)), m =2(s/ε), and ζ = ε/20,
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we can ensure that the decoding radius ρ guaranteed in (6-4) by Theorem 6.10 is
at least 1− (1+ ε)R0.

The degree b of the extension E/F , introduced in (4-1), is given by

b = (rd
+ 1)/(r + 1).

The length of the unfolded cyclotomic code C0 (defined in (5-5)) equals n = rb>
rd/2. We need to ensure that the rate of C0, which is equal to the rate of the folded
cyclotomic code C, is at least R0. To this end, we will pick

`=
⌈b

2
+

R0rb
d

⌉
. (7-1)

It is easily checked that for our choice of parameters, ` > b. By Lemma 5.5, the
rate of C0 equals d(`− (b− 1)/2)/rb, which is at least R0 for the above choice
of `.

We next pick the value of D, the degree of the irreducible A, which is the key
quantity governing the list size and decoding complexity. To satisfy the condition
(5-2), we need D>max{`d/b, 3d}. For the ` chosen above, this condition is surely
met if D > 3r . We can thus pick

D =2(r)=2(dc)=2(d/(R0ε)) .

The running time of the list decoding algorithm is dominated by the q O(Ds) term,
and for the above choice of parameters can be bounded by q O(d/(R0ε)

2). The block
length of the code N satisfies

N = n
m
>

rd

2m
=

qd/2

2m
=�

(
ε2qd/2

log(1/R0)

)
.

As a function of N , the decoding complexity is therefore bounded by

(N log(1/R0)/ε
2)O(1/(R0ε)

2).

The alphabet size of the folded cyclotomic code is q= qm , and we can bound the
block length N from below as a function of q as:

N > qd/2

2m
> q�(r/c)

2m
> q�(εR0

√
q)

2m
> 2
√

q (for large enough q compared to 1/R0, 1/ε)

= 2q1/(2m)
> 2q�(ε2/ log(1/R0)))

.

This establishes the claimed lower bound on block length, and completes the proof
of the theorem. �
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7A. Concatenated codes list-decodable up to Zyablov radius. Using the strong
list recovery property of folded RS codes, a polynomial time construction of binary
codes list-decodable up to the Zyablov radius was given in [Guruswami and Rudra
2008, Theorem 5.3]. The construction used folded RS codes as outer codes in
a concatenation scheme, and involved an undesirable brute-force search to find a
binary inner code that achieves list decoding capacity. The time to construct the
code grew faster than N�(1/ε), where ε is the distance of the decoding radius to
the Zyablov radius. This result as well as our result below hold not only for binary
codes but also codes over any fixed alphabet; for sake of clarity, we state results
only for binary codes.

As the folded cyclotomic codes from Theorem 7.1 are much longer than the
alphabet size, by using them as outer codes, it is possible to achieve a similar result
without having to search for an inner code, by using as inner codes all possible
binary linear codes of a certain rate!

Theorem 7.2. Let 0 < R0, r < 1 and ε > 0. Let C be a folded cyclotomic code
guaranteed by Theorem 7.1 with rate at least R0 and a large enough block length
N. Let C∗ be a binary code obtained by concatenating C with all possible binary
linear maps of rate r (each one used a roughly equal number of times). Then C∗ is
a binary linear code of rate at least R0 · r that can be list decoded from a fraction
(1− R0)H−1(1− r)− ε of errors in N (1/ε)O(1)

time.

We briefly discuss the idea behind proving the above claim. As the alphabet size
of folded cyclotomic codes is polylogarithmic in N , each outer codeword symbol
can be expressed using Oε(log log N ) bits. Hence the total number of such inner
codes S will be at most 2Oε((log log N )2)

� N for large enough N . The N outer
codeword positions will be partitioned into S (roughly) equal parts in an arbitrary
way, and each inner code used to encode all the outer codeword symbols in one of
the parts. Most of the inner codes achieve list decoding capacity — if their rate is
r , they can list decode H−1(1− r)− ε fraction of errors with constant sized lists
(of size 2O(1/ε)). This suffices for analyzing the standard algorithm for decoding
concatenated codes (namely, list decode the inner codes to produce a small set of
candidate symbols for each position, and then list recover the outer code based on
these sets). Arguing as in [Guruswami and Rudra 2008, Theorem 5.3], we can thus
prove Theorem 7.2.

Appendix: List of parameters

Since the construction of the cyclotomic function field and the associated error-
correcting code used a large number of parameters, we summarize them below for
easy reference.
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We begin by recalling the parameters concerning the function field construction.

q size of the ground finite field
r size of the subfield Fr ⊂ Fq

F the field Fq(T ) of rational functions
RT the ring of polynomials Fq [T ]
P∞ the place of F that is the unique pole of T
M polynomial T d

− γ ∈ Fr [T ], irreducible over Fq

d degree of the irreducible polynomial M
CM the Carlitz action corresponding to M
3M the M-torsion points in Fac under the action CM

K the cyclotomic function field F(3M)

λ nonzero element of 3M that generates K over F ; K = F(λ)
G the Galois group of K/F , naturally isomorphic to (RT /(M))∗

H the subgroup F∗q · Fr [T ] of G
E the fixed field K H of H
µ primitive element for E/F ; E = F(µ)
b the degree [E : F] of the extension E/F
g the genus of E/F , equals d(b− 1)/2+ 1

The construction of the code C0 from lrefeqbasic-cycl and its folded version C

from lrefeqcode-def used further parameters, listed here:

M ′ the unique place of E lying above M
` maximum pole order at M ′ of message functions; `> b
L(`M ′) Fq -linear space of messages of the codes
n block length of C0, n = br
k dimension of the Fq -linear code C, k = `d − g+ 1
m folding parameter
N block length of folded code C, N = n/m
P (β)j the rational places lying above T−β in E , for β ∈ Fr and 06 j<b
A an irreducible polynomial (place of F) that remains inert in E/F
D the degree of the polynomial A; satisfies Db > `d
σA the Artin automorphism of the extension E/F at A
A′ the unique place of E lying above A
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Algebraic properties of generic
tropical varieties

Tim Römer and Kirsten Schmitz

We show that the algebraic invariants multiplicity and depth of the quotient ring
S/I of a polynomial ring S and a graded ideal I ⊂ S are closely connected to
the fan structure of the generic tropical variety of I in the constant coefficient
case. Generically the multiplicity of S/I is shown to correspond directly to a
natural definition of multiplicity of cones of tropical varieties. Moreover, we can
recover information on the depth of S/I from the fan structure of the generic
tropical variety of I if the depth is known to be greater than 0. In particular,
in this case we can see if S/I is Cohen–Macaulay or almost-Cohen–Macaulay
from the generic tropical variety of I .

1. Introduction

As a very new area of mathematics, tropical geometry has received a lot of atten-
tion, from various points of view, in the last few years; see [Develin and Sturmfels
2004; Katz et al. 2008; Mikhalkin 2006; Speyer and Sturmfels 2004; Gathmann
2006; Itenberg et al. 2007] for review articles. One approach to tropical geometry,
which provides an effective tool for studying questions in algebraic geometry, is
to associate a combinatorial object to a projective algebraic variety; see for exam-
ple [Draisma 2008; Gathmann and Markwig 2008]. More precisely, the tropical
variety T(X) of an algebraic variety X is the real-valued image of X under some
valuation map [Draisma 2008; Jensen et al. 2008; Speyer and Sturmfels 2004]. In
certain settings, T(X) has the structure of a polyhedral complex [Bieri and Groves
1984; Jensen 2007], and there is a practical characterization in terms of initial
ideals given in [Speyer and Sturmfels 2004; Draisma 2008, Theorem 4.2]. If the
valuation on the ground field is trivial, T(X) is a subfan of the Gröbner fan of the
ideal I defining X . We only consider this constant coefficient case, and we define
the tropical variety as a fan associated to I instead of X . In this situation the ideal
I need not be a radical ideal. So let K be an infinite field and K [x1, . . . , xn] be the
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polynomial ring in n variables over K . In this setting, the tropical variety T(I ) of a
graded ideal I ⊂ K [x1, . . . , xn] is defined to be the subfan of the Gröbner fan of I
that consists of all cones such that the corresponding initial ideal does not contain
a monomial.

The tropical variety of an ideal depends on the choice of coordinates in the
following sense. For g ∈ GLn(K ), the image g(I ) of a graded ideal I ⊂ S =
K [x1, . . . , xn] is also a graded ideal, and all important algebraic invariants of S/I ,
such as the dimension, multiplicity and depth, are preserved under g. In fact, g(I )
can be considered as the ideal I given in different coordinates. In general, for
I ⊂ K [x1, . . . , xn] and g ∈ GLn(K ), we have

T(I ) 6= T(g(I )).

We can, however, find a nonempty Zariski-open set U ⊂GLn(K ) such that T(g(I ))
is the same fan gT(I ) for every g ∈ U [Römer and Schmitz 2009, Corollary 6.7].
The fact that U is dense in GLn(K ) justifies the name generic tropical variety of I
for this fan. In Corollary 7.4 of the same reference it was shown that gT(I ) as a set
depends only on the dimension of S/I . More precisely, if S/I is m-dimensional,
the underlying set of gT(I ) is always the m-skeleton of a particular complete fan Wn

in Rn . We show that under certain conditions, we can recover information on the
depth of S/I in addition to the dimension from the fan structure of gT(I ) induced
by the Gröbner fan. As one of the main results, we can completely describe generic
tropical varieties as fans if S/I is Cohen–Macaulay or almost-Cohen–Macaulay.
With this we can determine if S/I is Cohen–Macaulay or almost-Cohen–Macaulay
from the fan structure of the generic tropical variety of I if we know the depth of
S/I to be greater than 0. Moreover, we show that the multiplicities associated
with the maximal cones of gT(I ) as done in [Dickenstein et al. 2007] correspond
directly to the multiplicity of S/I .

Our paper is organized as follows. In Section 2 we introduce basic results and
necessary notation. In Section 3 we show that for an m-dimensional ring S/I for a
graded ideal I , the generic tropical variety is always a subfan of the m-skeleton of
Wn by showing that the fan structure induced by Wn is the coarsest possible on the
underlying set. This will be important in all following sections. Sections 4 and 5
are devoted to the depth of S/I . In Section 4 we show that gT(I ) is equal to the m-
skeleton of Wn if and only if S/I is Cohen–Macaulay or almost-Cohen–Macaulay,
where dim(S/I )=m. In Section 5 we show that we can recover the depth of S/I
from gT(I ) if we know it to be greater than 0 and less than dim(S/I )− 1. We
also give more structural results depending on depth(S/I ) on gT(I ) as a fan for a
special class of ideals. We show in Section 6 that the multiplicities defined on the
maximal cones of T(I ) as in [Dickenstein et al. 2007] generically behave in a nice
way. These multiplicities coincide with the multiplicity of S/I .
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2. Preliminaries

Let K be an algebraically closed field of characteristic 0 and let S= K [x1, . . . , xn]

be the polynomial ring in n variables over K . The ω-weight wtω(cxν) of some
term cxν = cxν1

1 · · · x
νn
n ∈ S is defined as wtω(cxν) = ω · ν for any ω ∈ Rn . For

a homogeneous polynomial f ∈ S with f =
∑

ν∈Nn aνxν and ω ∈ Rn , the initial
polynomial inω( f ) of f consists of all terms of f whose ω-weight ω ·ν is minimal.
We use multiplicative term orders � on the monomials of S and define in�( f ) to
be the term cxν of f for which cxν � dxµ for every other term dxµ of f . For
ω ∈ Rn and a term order � we can consider the refinement �ω. This is the term
order that first compares terms by their ω-weight and uses � to break ties. Note
that while initial polynomials with respect to ω are defined by taking terms of
minimal ω-weight, the symbol � suggests that in�( f ) is the “largest” term of
f . The reason for considering this counterintuitive setup is that in Gröbner basis
theory one usually considers the largest terms as initial terms, while in tropical
geometry it is convenient to work with the minimal ω-weight.

In particular, we will repeatedly need a (degree) reverse lexicographic term
order. With respect to an ordering x j1 � x j2 � · · · � x jn of the variables, this
monomial order is defined as follows. For ν, µ ∈ (N0)

n we have xν � xµ if either∑
i νi >

∑
i µi or

∑
i νi =

∑
i µi and there exists k ∈ {1, . . . , n} such that ν ji =µ ji

for i > k and ν jk <µ jk . Since we only consider graded ideals, we will simply call
this order a reverse lexicographic order. If no ordering of the variables is specified,
we mean the reverse lexicographic order with respect to x1 � x2 � · · · � xn .

We consider graded ideals I ⊂ S and always assume I 6= (0) if not stated oth-
erwise. The dimension dim(S/I ) refers to the Krull dimension of the ring S/I .
Since we assume I 6= (0), we always have dim(S/I )< n. The initial ideal of I ⊂ S
with respect to ω ∈ Rn is defined as

inω(I )= (inω( f ) : f ∈ I ).

For I ⊂ S = K [x1, . . . , xn], we define the tropical variety of I by

T(I )= {ω ∈ Rn
: inω(I ) does not contain a monomial}.

This is a special case, called the constant coefficient case, of the usual definition of
a tropical variety as the image of a projective variety under a valuation map; see for
example [Draisma 2008; Speyer and Sturmfels 2004]. In this case, K is considered
to have a trivial valuation [Draisma 2008, Theorem 4.2]. Then the tropical variety
T(I ) is a subfan of the Gröbner fan GF(I ) of I as observed in [Bogart et al. 2007].
Recall that the Gröbner fan is a complete fan in Rn , where ω,ω′ ∈ Rn are in the
same relatively open cone if inω(I )= inω′(I ); see for example [Mora and Robbiano
1988; Sturmfels 1996]. Sometimes we denote the ideal inω(I ) for a relatively open
cone C̊ of GF(I ) and ω ∈ C̊ by inC(I ).



468 Tim Römer and Kirsten Schmitz

We study the structure of the tropical variety under a generic coordinate trans-
formation in the following sense. For g ∈ GLn(K ), we regard the K -algebra
automorphism induced by

K [x1, . . . , xn] → K [x1, . . . , xn],

xi 7→
n∑

j=1
g j i x j .

In the sequel, we identify g with this automorphism and call both of them g. Note
that this definition differs from [Römer and Schmitz 2009, Definition 2.4] by a
transposition of the matrix g. However, this does not affect the results proved in
that paper. We consider GLn(K ) equipped with the Zariski-topology. If S/I is
0-dimensional, then for every g ∈ GLn(K ), the tropical variety T(g(I )) is empty
[Römer and Schmitz 2009, Lemma 2.5]. We will therefore always assume that
dim(S/I ) > 0. In Corollary 6.9 of the same work it was shown that for a graded
ideal I ⊂ S = K [x1, . . . , xn] with dim(S/I ) > 0, there exists a Zariski-open set
∅ 6= U ⊂ GLn(K ) such that T(g(I )) is the same fan for every g ∈ U . This fan
is denoted by gT(I ) and called the generic tropical variety of I . If g ∈ U , then
g(I ) is called a generic coordinate transformation of I . Moreover, by [Römer and
Schmitz 2009, Theorem 3.1] we know that there is also a generic Gröbner fan
gGF(I ) such that GF(g(I )) = gGF(I ) as a fan for every g ∈ U . The monomial
initial ideal in�(g(I )) with respect to a term order � is exactly the generic initial
ideal gin�(I ) for g ∈ U . These generic initial ideals correspond to the maximal
cones of gGF(I ). In the following, we will fix a nonempty Zariski-open subset
U ⊂ GLn(K ) such that

GF(g(I ))= gGF(I ) and T(g(I ))= gT(I ) for every g ∈U, (2-1)

and refer to it simply as U .
The generic tropical variety as a set is always equal to some skeleton of a partic-

ular complete fan Wn in Rn . We recall that this fan is defined by the maximal cones
Ci = {ω ∈ Rn

: ωi = mink{ωk}} for i = 1, . . . , n. Note that to define a fan in Rn

or to show that two fans in Rn are the same, it suffices to do this for the maximal
cones. This is because every cone in a fan is a face of a maximal cone, so all cones
in a fan are determined by the maximal cones. Every m-dimensional cone CA in
Wn for m ∈ {1, . . . , n} has the form CA = {ω ∈ Rn

: ωi = mink{ωk} for i ∈ A},
where A ⊂ {1, . . . , n} with |A| = n−m + 1. On the other hand, every nonempty
A⊂ {1, . . . , n} defines a cone of Wn in this way, which we will denote by CA. We
let Wm

n be the m-skeleton of Wn , that is, the fan consisting of all cones of Wn of
dimension less than or equal to m. In [Römer and Schmitz 2009, Corollary 7.4], it
was shown that for a graded ideal I ⊂ S = K [x1, . . . , xn] with dim(S/I )=m, the
generic tropical variety gT(I ) coincides with Wm

n as a set.
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For a fan F in Rn , we denote by |F| the set
⋃

C∈F C (without its fan structure),
where the union is taken over all cones of F. The notation C for a cone of F always
refers to a closed cone. By C̊ we denote the relative interior of C . We say that a
fan E in Rn refines a fan F in Rn if |E| = |F| and for every relatively open cone C̊
of E there exists a relatively open cone D̊ of F with C̊ ⊂ D̊. In Proposition 3.5 we
show that it suffices to check this condition for the maximal cones of E.

3. Fan structures on the set |Wm
n |

In this section we assume 0<m<n. The aim is to show that Wm
n is the coarsest fan

structure on the set |Wm
n |. By this we mean that every fan F in Rn with |F| = |Wm

n |

refines Wm
n as a fan. We first prove that any fan on |Wm

n | is pure, by proving this
statement for any subset of Rn that permits a pure fan structure of dimension at
most n− 1. We repeatedly need the following lemma.

Lemma 3.1. Let F be a fan in Rn and C a cone of F. Let ω ∈ C̊ and (ωi )i∈N be a
sequence such that ωi ∈ |F|\C and limi→∞ ωi = ω. Then there exists a cone D in
F containing a subsequence of (ωi )i∈N such that C is a proper face of D.

Proof. Since ωi ∈ F, there exists some other cone Ci 6= C such that ωi ∈ C̊i . But
F has only finitely many cones, so there exists a subsequence (ω ji ) ji∈N of (ωi )i∈N

such that ω ji ∈ D for one particular cone D of F. By the choice of ωi , we have
D 6=C . Now limi→∞ ω ji =ω and D is closed, so ω ∈ D. Because C̊ ∩ D̊=∅, we
have ω ∈ ∂D. By assumption, C and D intersect in a face of both of them. Since
ω ∈ C̊ is in this intersection, this face is C . Hence, C ( D as a face. �

With this we can show in the following proposition that any fan structure on
|Wm

n | is pure.

Proposition 3.2. Let E be a pure m-dimensional fan in Rn and F an arbitrary fan
in Rn with |F| = |E|. Then F is also a pure m-dimensional fan.

Proof. Let C be any cone in F. Assume that dim C < m and let ω ∈ C̊ . Since for
any open neighborhood W (ω)⊂Rn of ω we have dim W (ω)∩C <m, there always
exists v ∈ (W (ω)∩ |F|)\C . So if we choose a sequence (εn)n∈N with εn > 0 for
every n ∈ N and limn→∞ εn = 0, there exists vn ∈ |F|\C with |vn −ω| < εn . By
Lemma 3.1, we obtain a cone D of F such that C ( D. Since dim D > dim C ,
either the proof is complete if dim D = m, or we can apply the same procedure to
D instead of C . Either way, we obtain an m-dimensional cone of which C is a face
after finitely many steps. �

This immediately implies the following corollary, which is a generalization of
the fact that the tropical variety of a prime ideal P with dim(S/P) = m that does
not contain a monomial is a pure m-dimensional fan [Bieri and Groves 1984].
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Corollary 3.3. Let I ⊂ S = K [x1, . . . , xn] be a graded ideal with dim(S/I )= m.
Then gT(I ) is a pure m-dimensional fan.

To prove that a fan E ⊂ Rn refines another fan F ⊂ Rn , it suffices to consider
the maximal cones of E. This will be the result of the next two statements.

Lemma 3.4. Let D,C be cones in Rn such that D ⊂ C and D ∩ C̊ 6= ∅. Then
D̊ ⊂ C̊.

Proof. Let p ∈ D̊, and for some ε > 0 let W = {u ∈ D̊ : |u − p| < ε} ⊂ D̊ be a
relatively open neighborhood of p in D̊. If p ∈ ∂C , then there exists a face F of
C with p ∈ F . Let H = {ω ∈ Rn

: a · ω = 0} be a defining hyperplane of F , so
F = H ∩C , and let C ⊂ H− = {ω ∈ Rn

: a ·ω ≤ 0}. Since W ⊂ D̊ ⊂ C , we know
that a · u ≤ 0 for every u ∈ W . In addition, we have a · p = 0, because p ∈ F .
Assume there exists u ∈W such that a ·u < 0. Then we can choose 0<λ< 1 very
small such that p+λ(p−u)∈ D̊. Moreover, |(p+λ(p−u))− p| = |λ(p−u)|<ε,
so p+λ(p−u)∈W . But (p+λ(p−u)) ·a=−λu ·a> 0, which is a contradiction
to p+ λ(p− u) ∈ C . Hence, a · u = 0 for every u ∈ W . Thus W ⊂ H , and since
W is relatively open in D, we also have aff(D)⊂ H . But then

D ⊂ aff(D)∩C ⊂ H ∩C = F,

which is a contradiction to D∩ C̊ 6=∅. Hence, p /∈ ∂C and we get that D̊ ⊂ C̊ . �

Proposition 3.5. Let E,F⊂ Rn be two fans. Then E refines F as a fan if and only
if |E| = |F| and for every maximal cone C ⊂E there exists a cone D⊂F such that
C̊ ⊂ D̊.

Proof. One implication follows directly from the definition of refinement. For the
other one, we have to show that for any cone K ⊂ E, there exists a cone L ⊂ F

such that K̊ ⊂ L̊ . If K is maximal, this is true by assumption. Let K ⊂ E be not
maximal. Then there exists a maximal cone C ⊂ E such that K is a face of C .
Moreover, we know that C̊ ⊂ D̊ for some cone D ∈ F. So K ⊂ D. Assume that
such a cone L does not exist. If K ∩ D̊ 6=∅, this would imply K̊ ⊂ D̊ by Lemma
3.4 and we could set L = D. Hence, K ∩ D̊ = ∅. Then K ⊂ ∂D and by [Bruns
and Gubeladze 2009, Lemma 1.5], it follows that K ⊂ E for a proper face E of
D. Since dim E < dim D, we can use a suitable induction to obtain a sequence
of cones in F of strictly decreasing dimension such that K does not intersect the
relative interior of each cone. The last cone in this sequence has to be the lineality
space A of F. So by this induction, we get K ⊂ ∂A, which is a contradiction to
∂A =∅. Hence, there has to exist a cone L ⊂ F such that K̊ ⊂ L̊ . �

The proof of the next auxiliary result is elementary, so we omit it.
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Lemma 3.6. Let C ⊂Rn be a cone and let dim C =m. Also, let D1, . . . , Ds ⊂Rn

be cones such that

C ⊂
s⋃

i=1

Di ,

where dim D1 = m and dim D2, . . . , dim Ds < m. Then C ⊂ D1.

With these prerequisites, we can show that for m < n, the fan structure of Wm
n is

actually the coarsest possible on the set |Wm
n | in the sense that every other fan F⊂

Rn with |F| = |Wm
n | refines Wm

n as a fan. In particular, this will imply that gT(I )
refines Wm

n as a fan for a graded ideal I ⊂ S = K [x1, . . . , xn] with dim(S/I )=m.

Proposition 3.7. Let m < n and F⊂ Rn be a fan with |F| = |Wm
n |. Then for every

relatively open cone C̊ of F, there exists a relatively open cone C̊A of Wm
n such

that C̊ ⊂ C̊A.

Proof. Wm
n =

⋃̇
|A|≥n−m+1C̊A is the disjoint union of all relatively open cones

of Wn whose defining set A ⊂ {1, . . . , n} has at least n − m + 1 elements. By
Proposition 3.5 it suffices to prove the condition for the maximal cones of F. Let
C be a maximal cone of F. Then dim C = m, as F is pure by Proposition 3.2.
Since dim

⋃
|A|>n−m+1 C̊A = m − 1 < m, there exists an ω ∈ C̊ that is contained

in the interior of some maximal cone C̊A1 of Wm
n with |A1| = n−m+ 1. Assume

there exists v ∈ C̊ such that v ∈ C̊A2 for a different maximal cone C̊A2 of Wm
n . Then

|A1 ∩ A2|< n−m+ 1. We have to consider two cases:

• If A1 ∩ A2 6= ∅, the minimal coordinates of ω+ v are attained exactly at the
indices in A1 ∩ A2. But |A1 ∩ A2| < n −m + 1, so ω+ v /∈ |Wm

n |. This is a
contradiction to ω+ v ∈ C̊ ⊂ |Wm

n |.

• Assume that A1 ∩ A2 =∅. Since dim C = m, we can change the coordinates
of ω that are not contained in A1 independently from each other by adding or
subtracting small real numbers without leaving C̊ . The same is true for the
coordinates of v that are not in A2. Hence, we can change every coordinate
of ω+ v by a small amount without leaving C̊ , since A1 ∩ A2 =∅. But then
we can assume that the minimum of the coordinates of ω+ v is attained only
once. Again we have ω+ v /∈ |Wm

n |, contradicting ω+ v ∈ C̊ ⊂ |Wm
n |.

Hence, no element of C̊ can be contained in the relative interior of any maximal
cone of Wm

n other than CA1 . But then

C̊ ⊂ C̊A1 ∪

( ⋃
|A|>n−m+1

C̊A

)
.

Taking the topological closure, this implies C ⊂ CA1 by Lemma 3.6. Since both
cones have the same dimension, we also have C̊ ⊂ C̊A1 by Lemma 3.4. �
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Proposition 3.7 implies as a corollary that the generic tropical variety always
refines Wm

n as a fan.

Corollary 3.8. Let I ⊂ S= K [x1, . . . , xn] be a graded ideal with dim(S/I )=m>
0. Then for every relatively open cone C̊ of gT(I ), there exists a relatively open
cone D̊ of Wm

n such that C̊ ⊂ D̊.

Proof. Since | gT(I )| = |Wm
n | by [Römer and Schmitz 2009, Corollary 7.4] and

Wm
n is pure m-dimensional, it follows from Proposition 3.2 that gT(I ) is a pure

m-dimensional fan. The claim now is a consequence of Proposition 3.7. �

4. Generic tropical varieties of Cohen–Macaulay and
almost-Cohen–Macaulay rings

In addition to the dimension of S/I , it is also possible to recover information on
the depth of S/I from the generic tropical variety of I . We will show that for an
ideal I with dim(S/I )=m and depth(S/I ) > 0, the generic tropical variety is Wm

n
as a fan if and only if depth(S/I )= dim(S/I ) or depth(S/I )= dim(S/I )−1. Thus
we can read off whether S/I is Cohen–Macaulay or almost-Cohen–Macaulay from
the fan gT(I ).

To define the depth of S/I , recall that a system of linear forms l1, . . . , lt ∈ S/I is
called a regular sequence for S/I if li is not a zero-divisor on (S/I )/(l1, . . . , li−1)

for i = 1, . . . , t .

Definition 4.1. For a graded ideal I ⊂ S = K [x1, . . . , xn], we define the depth of
S/I to be

depth(S/I )=max
{ t ∈ N : there is a regular sequence

of linear forms l1, . . . , lt ∈ S/I

}
.

The depth is bounded from above by the dimension of S/I ; see for example
[Bruns and Herzog 1993, Proposition 1.2.12]. Also, we know that depth(S/I ) ≥
depth(S/ gin�(I )) for any term order �. Equality holds if � is a reverse lexico-
graphic order with respect to some ordering of the variables. These two statements
follow from [Bruns and Conca 2004, Corollary 3.5 and Remark 3.6] together with
the Auslander–Buchsbaum formula.

In general it is not possible to see the depth of S/I in the fan T(I ), as the
following example shows.

Example 4.2. For 1≤ k ≤ n, consider the ideal

I = (x1(x1+ x2), x2(x1+ x2), . . . , xk(x1+ x2))⊂ S = K [x1, . . . , xn].

Then dim(S/I ) = n − 1 and depth(S/I ) = n − k. But the tropical variety T(I )
always consists of only one cone T(I )= {ω ∈Rn

: ω1 = ω2} which is independent
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of k. So we have obtained a collection of ideals of every possible depth from 0 to
n− 1 such that the tropical variety is always the same.

The connection of depth(S/I ) with gT(I ) is established by the following propo-
sition, taken as a reformulation of [Herzog and Srinivasan 1998, Lemma 3.1] and
relying on [Eliahou and Kervaire 1990]. Since a generic initial ideal J is a mono-
mial ideal, there exists a system of monomial generators of J . The unique smallest
system of monomial generators with respect to inclusion will be called a minimal
system of generators, and its elements are minimal generators of J .

Proposition 4.3. Let I ⊂ S= K [x1, . . . , xn] be a graded ideal with dim(S/I )=m,
and � be any term order with x1 � · · · � xn . Let depth(S/ gin�(I ))= t . Then:

• Every minimal generator of gin�(I ) is divisible by one of x1, . . . , xn−m .

• xd
n−m is one of the minimal generators of gin�(I ) for some d ∈ N.

• The minimal generators of gin�(I ) are elements of K [x1, . . . , xn−t ].

• There exists a minimal generator of gin�(I ) that is divisible by xn−t .

In particular, if � is the reverse lexicographic order, these statements are true for
t = depth(S/I ), since then depth(S/I )= depth(S/ gin�(I )).

Recall that by [Römer and Schmitz 2009, Corollary 7.4], the condition for ω ∈
Rn to be in gT(I ) is that the minimum of its coordinates be attained at least n−m+1
times. So Proposition 4.3 already shows that the cases where depth(S/I )=m and
depth(S/I )= m− 1 are special. We use the following standard definition.

Definition 4.4. Let I ⊂ S = K [x1, . . . , xn] be a graded ideal. If depth(S/I ) =
dim(S/I ), then S/I will be called Cohen–Macaulay. If depth(S/I )= dim(S/I )−
1, then S/I is called almost-Cohen–Macaulay. In what follows, we say I is Cohen–
Macaulay or almost-Cohen–Macaulay if S/I has the corresponding property.

In this case, the refinement�ω of every ω∈ gT(I ) with respect to an appropriate
reverse lexicographic order � yields the same generic initial ideal as with respect
to �. In the following statement, the set U denotes the Zariski-open subset of
GLn(K ) as defined in (2-1).

Lemma 4.5. Let I ⊂ S = K [x1, . . . , xn] be a graded Cohen–Macaulay or almost-
Cohen–Macaulay ideal, � be the reverse lexicographic order, and ω ∈ Wm

n ⊂

Rn with ω1 = ω2 = · · · = ωn−m+1 ≤ ωn−m+2, . . . , ωn . Moreover, let �ω be the
refinement of ω with respect to �. Then the reduced Gröbner bases of g(I ) with
respect to � and �ω are the same for g ∈U. In particular, gin�ω(I )= gin�(I ).

Proof. Since for a given degree t any term containing none of xn−m+2, . . . , xn is
smaller than any term divisible by one of them with respect to�ω, the term orders�
and�ω coincide up to the term x t

n−m+1. By Proposition 4.3, the minimal generators
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of gin�(I ) are monomials in K [x1, . . . , xn−m+1]. Then for g∈U , the leading terms
of the reduced Gröbner basis G(g) of g(I ) are terms in K [x1, . . . , xn−m+1]. Since
the leading terms of two elements of G(g) are the same with respect to � and �ω,
every S-pair with respect to �ω is the same as with respect to �. As G(g) is a
Gröbner basis with respect to �, every such S-pair reduces to 0. So the set G(g) is
a Gröbner basis with respect to �ω as well. Hence, gin�ω(I )= gin�(I ). �

We can now formulate the reverse statement of Proposition 3.7 for Cohen–
Macaulay and almost-Cohen–Macaulay ideals.

Proposition 4.6. Let I ⊂ S = K [x1, . . . , xn] be a graded Cohen–Macaulay or
almost-Cohen–Macaulay ideal with dim(S/I )=m. Then for every relatively open
cone C̊A ⊂Wm

n there exists a relatively open cone C̊ of gT(I ) with C̊A ⊂ C̊.

Proof. Let A ⊂ {1, . . . , n} with |A| ≥ n −m + 1, so C̊A is an open cone of Wm
n .

We need to show that for ω,ω′ ∈ C̊A, we have inω(g(I )) = inω′(g(I )) for every
g ∈U . Without loss of generality, we may assume {1, . . . , n−m+1} ⊂ A. Let �
denote the reverse lexicographic order. By Lemma 4.5, the reduced Gröbner basis
G(g) = {h1(g), . . . , hs(g)} of g(I ) with respect to � is also a reduced Gröbner
basis with respect to �ω and �ω′ for g ∈ U . So {inω(h1(g)), . . . , inω(hs(g))}
and {inω′(h1(g)), . . . , inω′(hs(g))} are Gröbner bases of inω(g(I )) and inω′(g(I )).
However, all the leading terms of the hi (g) are elements of K [x1, . . . , xn−m+1].
Hence, inω(hi (g)) and inω′(hi (g)) exactly consist of those terms of hi (g) that con-
tain only variables x j for which ω j and ω′j respectively are minimal. But these
variables are the same for ω and ω′ by assumption, so we obtain inω(g(I )) =
inω′(g(I )). This shows that all ω ∈ C̊A are contained in the same open cone C̊ of
T(g(I ))= gT(I ) for g ∈U . �

In the case of a Cohen–Macaulay or almost-Cohen–Macaulay ideal I such that
dim(S/I )=m, the generic tropical variety is equal to Wm

n as a fan. This generalizes
the result [Römer and Schmitz 2009, Corollary 7.4] for this class of ideals.

Corollary 4.7. Let I⊂ S=K [x1, . . . , xn] be a graded Cohen–Macaulay or almost-
Cohen–Macaulay ideal with dim(S/I )= m. Then gT(I )=Wm

n as a fan.

Proof. Let C̊ be a relatively open cone of gT(I ). By Corollary 3.8, there exists a
cone D of Wm

n such that C̊ ⊂ D̊. On the other hand, by Proposition 4.6 there exists
a cone E of gT(I ) with D̊ ⊂ E̊ . But then C̊ ⊂ E̊ are two cones of gT(I ) with
C̊ ∩ E̊ 6=∅. This implies C̊ = E̊ and thus C̊ = D̊. This shows that every maximal
cone of gT(I ) is equal to some maximal cone of Wm

n . By the same argument,
it follows that every maximal cone from Wm

n is equal to some maximal cone of
gT(I ), so the two fans are the same. �

To show that Corollary 4.7 is wrong for every ideal that is not Cohen–Macaulay
or almost-Cohen–Macaulay, we need the following auxiliary result.
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Lemma 4.8. Let c ∈ N and ω ∈ Rn be such that 0 = ω1 = · · · = ωn−m+1 and
cωi <ωi+1 for i = n−m+1, . . . , n−1. Let � be the reverse lexicographic order.
Then � and �ω are the same term orders for the monomials of any degree up to c.

Proof. Let t ≤ c and xν, xµ be two monomials of degree t . We write xν = y1z1 and
xµ = y2z2, where y1, y2 ∈ K [x1, . . . , xn−m+1] and z1, z2 ∈ K [xn−m+2, . . . , xn].
If z1 = z2, it is clear from the definition that xν � xµ if and only if xν �ω xµ.
Otherwise, let k ≥ n−m+2 be the largest index such that νk 6=µk . Without loss of
generality, we may assume that no variable x j divides xν or xµ for j > k and that
νk < µk , so xν � xµ. For the ω-weight of xν and xµ we obtain the upper bound

wtω(xν)≤ wtω(x
t−νk
k−1 xνk

k )= ωk−1(t − νk)+ωkνk

and the lower bound

wtω(xµ)≥ wtω(x
t−µk
1 xµk

k )= ωkµk .

So it is enough to show that ωk−1(t − νk)+ωkνk < ωkµk . We have

c(ωkµk − (ωk−1(t − νk)+ωkνk))= cωk(µk − νk)− cωk−1(t − νk)

> cωk(µk − νk)−ωk(t − νk)

= ωk(c(µk − νk)− (t − νk))≥ 0.

The last inequality is true, since t−νk ≤ c and c(µk−νk)> c, as we know µk >νk .
It follows that wtω(xν) <wtω(xµ), so xν �ω xµ. Hence, � and �ω coincide up to
degree c. �

We can now completely characterize when gT(I ) is equal to a skeleton of the
generic tropical fan for ideals of depth(S/I ) > 0. If dim(S/I ) = 0, we know that
gT(I ) is empty, since every graded ideal with dim(S/I )= 0 contains a monomial.
In the cases dim(S/I ) = 1 and dim(S/I ) = 2, the fan gT(I ) is equal to W1

n and
W2

n respectively by [Römer and Schmitz 2009, Examples 8.3 and 8.4]. Note that in
these cases, every ideal of depth(S/I ) > 0 is Cohen–Macaulay or almost Cohen–
Macaulay. For ideals with arbitrary dimension dim(S/I ) > 0, we have:

Theorem 4.9. Let I ⊂ S=K [x1, . . . , xn] be a graded ideal with dim(S/I )=m>0
and depth(S/I ) > 0. Then S/I is Cohen–Macaulay or almost-Cohen–Macaulay if
and only if gT(I )=Wm

n as a fan.

Proof. We show that if t =depth(S/I )<m−1, then gT(I ) 6=Wm
n as a fan. For this,

let� be the reverse lexicographic order with x1�· · ·� xn−t � xn−t+1�· · ·� xn and
�
′ be the reverse lexicographic order with x1 �

′
· · · �

′ xn−t+1 �
′ xn−t �

′
· · · �

′ xn .
Let c be the maximal degree of the minimal generators of gin�(I ) and gin�′(I ).
For the purpose of this proof, for a, b ∈ R+ we write a� b if ac < b.
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Choose ω, v ∈Rn such that 0=ω1 = · · · =ωn−m+1�ωn−m+2�· · ·�ωn and

0= v1 = · · · = vn−m+1� vn−m+2� · · · � vn−t+1� vn−t � · · · � vn.

By Lemma 4.8, we know that � and �ω are the same term orders up to degree c.
Since gin�(I ) is generated by monomials of degree at most c, for a fixed g ∈U (as
defined in (2-1)), all elements of the reduced Gröbner basis G of g(I ) with respect
to � have degree at most c. The leading term of every element of G is the same
with respect to � and �ω. Thus every S-pair of elements of G reduces to zero
with respect to �ω as well. So G is also a Gröbner basis of gin�ω(I ). This implies
gin�ω(I )= gin�(I ).

By Lemma 4.8 and the same argument as before, we can show that gin�v (I )=
gin�′(I ). Since depth(S/ gin�(I )) = depth(S/ gin�′(I )) = t , we know that xn−t

divides one of the minimal generators of gin�(I ) but does not divide one of the
minimal generators of gin�′(I ) by Proposition 4.3. So gin�ω(I ) = gin�(I ) 6=
gin�′(I ) = gin�v (I ), and it follows that inω(g(I )) 6= inv(g(I )) for g ∈ U . Hence,
ω and v are not in the same relatively open cone of gT(I ), but they are in the same
relatively open cone of Wm

n . This implies gT(I ) 6=Wm
n as a fan.

The converse of this statement, that depth(S/I ) ≥ m − 1 implies gT(I ) =Wm
n

as a fan, has already been proved in Corollary 4.7. �

In particular, this theorem gives a negative answer to the question posed in the
introduction of [Römer and Schmitz 2009] of whether the generic tropical variety
of I as a fan only depends on the dimension of S/I . If depth(S/I ) = 0, it is not
possible to obtain a statement like Theorem 4.9; see Remark 5.12.

5. Generic tropical varieties and depth

In this section we will consider a certain class of ideals I such that dim(S/I )−1>
depth(S/I ) > 0 for which we can recover the depth from the generic tropical
varieties. These ideals have the property that the rings S/ gin�(I ) for all generic
initial ideals of I have the same depth as S/I itself. This makes it possible to use
Proposition 4.3 on all of these. We express this property by considering the generic
depth of S/I .

Definition 5.1. For a graded ideal I ⊂ S = K [x1, . . . , xn], we call

gdepth(S/I )=min{depth(S/ gin�(I ))},

where the minimum is taken over all possible generic initial ideals of I , the generic
depth of S/I . If depth(S/I ) = gdepth(S/I ), then I is called a maximal-gdepth
ideal.

Note that since depth(S/ gin�(I ))≤depth(S/I ) for any generic initial ideal of I ,
the ideal I is a maximal-gdepth ideal if and only if depth(S/I )=depth(S/ gin�(I ))
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for every generic initial ideal of I . A trivial example of a maximal-gdepth ideal is
a principal ideal like I = (xd

1 +· · ·+xd
n ) in S= K [x1, . . . , xn] for an integer d ≥ 1,

because every gin is also a principal ideal generated by a polynomial of degree d.
Next we describe two interesting classes of maximal-gdepth ideals.

Example 5.2. The first example is the class of strongly stable ideals I . These are
by definition monomial ideals, so the tropical variety T(I ) is of course empty. We
are, however, interested in the generic tropical variety gT(I ). This fan is not empty
if dim(S/I ) > 0, and it contains algebraic information on I , as we show.

Recall that a monomial ideal I ⊂ K [x1, . . . , xn] is called strongly stable with
respect to some ordering xi1 > · · · > xin of the variables x1, . . . , xn if for every
monomial u ∈ I we also have xi j ux−1

ik
∈ I for every xik that divides u and every

j < k. Every ideal gin�(I ) is a strongly stable ideal with respect to the ordering of
the variables given by �, since char(K )= 0. Moreover, if I is strongly stable with
respect to xi1 > · · ·> xin and� is a term order with xi1�· · ·� xin , then gin�(I )= I .
We now explain that strongly stable ideals are maximal-gdepth ideals.

Let I ⊂K [x1, . . . , xn] be a graded strongly stable ideal with respect to x1> · · ·>

xn . Let� be any term order with xi1 �· · ·� xin for {i1, . . . , in}= {1, . . . , n}. In ad-
dition, let �′ be the reverse lexicographic order with xi1 �

′
· · · �

′ xin . Consider the
image of I under the K -algebra isomorphism φ that maps x j to xi j . Then φ(I ) is a
strongly stable ideal with respect to term orders with xi1 �· · ·� xin , so in particular
with respect to � and to �′. So we know that gin�(φ(I )) = gin�′(φ(I )) = φ(I ).
Let ∅ 6= U1 ⊂ GLn(K ) be Zariski-open such that in�(g(I )) = gin�(I ) for every
g ∈U1, and ∅ 6=U2⊂GLn(K ) Zariski-open such that in�(h(φ(I )))= gin�(φ(I ))
for every h ∈ U2. Note that also the set ∅ 6= U ′2 = {h ◦ φ ∈ GLn(K ) : h ∈ U2} is
Zariski-open, as it can be defined by the polynomials obtained by permuting the
polynomials defining U2 according to φ. Hence, U1∩U ′2 6=∅. For k ∈U1∩U ′2 we
have in�(k(I ))=gin�(I )=gin�(φ(I )). In addition, gin�′(I )=gin�′(φ(I )) by the
same argument. Hence, gin�(I ) = gin�′(I ). Since for any reverse lexicographic
order � we have depth(S/ gin�(I ))= depth(S/I ), this implies that strongly stable
ideals are maximal-gdepth ideals.

A concrete example for such an ideal is (x2
1 , x1x2, x1x3, x1x4)⊆ K [x1, . . . , x5].

Applying a K -algebra automorphism in GLn(K ) provides examples of maximal-
gdepth ideals that are not monomial ideals.

Example 5.3. The second example class is the class of ideals such that I and
every gin�(I ) is generated by polynomials of the same degree. We can see that
these ideals are also maximal-gdepth as follows. Let S = K [x1, . . . , xn] with the
standard Z-grading and note that S/I is a graded S-module. We denote by βi, j

the graded Betti number βi, j = βi, j (S/I )= dimK (TorS
i (S/I, K )) j . For d ∈ N, let

S(−d) be the graded module S with the grading given by S(−d) j = S j−d . Recall
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that for some d ∈N, we say that I has a d-linear resolution if and only if βi,i+ j = 0
for j 6= d − 1, i ≥ 1. This is equivalent to the fact that the minimal graded free
resolution of S/I has the form

0→ S(−d − p+ 1)βp → · · · → S(−d − 1)β2 → S(−d)β1 → S→ S/I → 0,

where βi = βi,i+d is the i-th total Betti number and p is the projective dimension
p= projdim(S/I ) of S/I . Let I ⊂ S be a graded ideal such that I and gin�(I ) are
generated by polynomials of degree d for every term order �. Let J = gin�(I ) be
a given generic initial ideal if I . We now show that depth(S/I )= depth(S/J ). As
J is strongly stable and generated in one degree, the minimal graded free resolu-
tion (as constructed in [Eliahou and Kervaire 1990]) is linear. Since βi, j (S/I ) ≤
βi, j (S/J ) for every i, j (see for example [Bruns and Conca 2004, Proposition 3.3]),
this implies that S/I has a linear resolution as well. So I and J have linear resolu-
tions, which in turn means that their total Betti numbers depend only on the Hilbert
series of S/I and S/J respectively. But HS/I (t) = HS/J (t), so the Betti numbers
and in particular the projective dimensions of S/I and S/J are the same. By the
Auslander–Buchsbaum formula depth(S/I ) + projdim(S/I ) = n, it follows that
depth(S/I )= depth(S/J ). This is true for every generic initial ideal of I . Hence,
I is a maximal-gdepth ideal.

Recall that the Castelnuovo–Mumford regularity reg(S/I ) of S/I is defined to
be the maximal j ∈ Z such that βi,i+ j 6= 0 for some i ≥ 0. It is well-known that
the ideal I≥t (generated by all homogeneous components Is of I with s ≥ t) has
a linear resolution if t ≥ reg(S/I )+ 1; see [Eisenbud and Goto 1984]. Observe
further that by the construction of gin, we know gin�(I )≥t = gin�(I≥t). Since
there exist only finitely many different generic initial ideals for I , we can find a t
such that all gin�(I≥t) have a linear resolution. In particular, they are generated in
degree t . Then also I≥t is generated in degree t (and has a linear resolution). So
every high truncation I≥t of an arbitrary graded ideal I is a maximal-gdepth ideal.
Unfortunately we cannot decide in general which t one has to take.

In this section we give a structural result on generic tropical varieties of maximal-
gdepth ideals. We will see that these as fans are closely related to the following
refinement of Wm

n .

Definition 5.4. Let Wm
n be the m-skeleton of the standard tropical fan in Rn , and

let 0< t < m− 1. The refinement of Wm
n containing all open cones

{ω ∈ Rn
: ωi1 = · · · = ωin−m+1 < ωin−m+2, . . . , ωin−t < ωin−t+1, . . . , ωin }

for any permutation (i1, . . . , in) of {1, . . . , n} as maximal open cones will be called
the t-refinement of Wm

n and denoted by Wm,t
n .
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Lemma 5.5. Let I ⊂ S = K [x1, . . . , xn] be a maximal-gdepth ideal such that
dim(S/I ) = m < n and depth(S/I ) = t for some 0 < t < m − 1. Let ω ∈ C̊ for
some maximal cone C of gT(I ) and let ωi1 ≤· · ·≤ωin for {i1, . . . , in}= {1, . . . , n}.
Then ωin−t < ωin−t+1 .

Proof. Without loss of generality we have

ω1 = · · · = ωn−m+1 < ωn−m+2 ≤ · · · ≤ ωn,

since ω∈ |Wm
n |. Let us assume that ωn−t =ωn−t+1. For ε > 0 we define uε ∈Rn by

uεi =


ωi − ε for i < n− t,
ωi for i = n− t,
ωi + ε for i = n− t + 1,
ωi + 2ε for i > n− t + 1.

In the same way we define vεi ∈ Rn by

vεi =


ωi − ε for i < n− t,
ωi for i = n− t + 1,
ωi + ε for i = n− t,
ωi + 2ε for i > n− t + 1.

Note that uε and vε are contained in gT(I ) for every choice of ε. Let � be any
term order. Then xi �uε xn−t �uε xn−t+1 �uε x j and xi �vε xn−t+1 �vε xn−t �vε x j

for i < n− t , j > n− t + 1. Since

depth(S/I )= depth(S/ gin�uε
(I ))= depth(S/ gin�vε (I )),

by Proposition 4.3 the monomial ideal gin�uε
(I ) contains a minimal monomial

generator divisible by xn−t , but none that is divisible by xn−t+1. On the other
hand, gin�vε (I ) contains a minimal generator divisible by xn−t+1, but none that is
divisible by xn−t . Hence, the reduced Gröbner bases of inuε(g(I )) and invε(g(I ))
are different with respect to the same term order�. Since the reduced Gröbner basis
of an ideal is unique with respect to a given term order, this implies inuε(g(I )) 6=
invε(g(I )), so uε and vε are in different cones of gT(I ). So in every neighborhood
of ω in gT(I ), there are elements that are in different cones of gT(I ). This is a
contradiction to the fact that ω ∈ C̊ and C is maximal. �

We can now show that for maximal-gdepth ideals, gT(I ) refines Wm,t
n as a fan.

Proposition 5.6. Let I ⊂ S = K [x1, . . . , xn] be a maximal-gdepth ideal with
dim(S/I )= m < n and 0< depth(S/I )= t < m− 1. Let C be a maximal cone of
gT(I ). Then there exists a cone D ⊂Wm,t

n such that C̊ ⊂ D̊.



480 Tim Römer and Kirsten Schmitz

Proof. By Lemma 5.5, we know that C̊ does not intersect the (m− 1)-skeleton X
of Wm,t

n . So C̊ must be contained in the union Wm,t
n \X of the open maximal cones

of Wm,t
n . Since it is convex, C̊ is connected and thus contained in one connected

component of Wm,t
n \X . But the connected components of Wm,t

n \X are the open
maximal cones themselves, so C̊ must be contained in some maximal open cone
D̊ of Wm,t

n . �

This shows that the fan gT(I ) is always finer than the fan Wm,t
n for maximal-

gdepth ideals. We can now give a complementary result by showing that every
maximal cone contains a t-dimensional orthant of Rn . For this we will need the
following basic observation from Gröbner basis theory.

Lemma 5.7. Let I ⊂ [x1, . . . , xn] be a graded ideal and let ω,ω′ ∈ Rn . Let �
be a term order and G be the reduced Gröbner basis of I with respect to �ω. If
inω( f )= inω′( f ) for every f ∈ G, then inω(I )= inω′(I ).

Proof. Since {inω( f ) : f ∈ G} is a reduced Gröbner basis for inω(I ) with respect
to � (see for example [Maclagan and Thomas 2007, Lemma 2.4.2]), it follows
that inω(I ) = (inω′( f ) : f ∈ G) ⊂ inω′(I ). This implies that in�ω(I ) ⊂ in�ω′ (I ).
As there cannot be a proper inclusion of two initial ideals (see [Maclagan and
Thomas 2007, Corollary 2.2.3]), this means in�ω(I ) = in�ω′ (I ). Therefore we
have inω(I )= inω′(I ), because {inω( f ) : f ∈ G} is also a reduced Gröbner basis of
g(I ) with respect to �ω′ . �

Proposition 5.8. Let I ⊂ S = K [x1, . . . , xn] be a maximal-gdepth ideal with
dim(S/I ) = m, let 0 < depth(S/I ) = t < m − 1, and let c be the maximal total
degree of a minimal generator of a generic initial ideal of I . Let ω ∈ gT(I ) with

0= ω1 = · · · = ωn−m+1 < ωn−m+2 ≤ · · · ≤ ωn−t < ωn−t+1, . . . , ωn

such that ωn−t c<ω j for j > n− t and ω ∈ C̊ for some maximal cone C of gT(I ).
Then

ω+ cone(en−t+1, . . . , en)⊂ C̊,

where ei denotes the i-th standard basis vector of Rn .

Proof. Let � be any term order. Then for the refinement �ω of ω by Proposition
4.3, the generic initial ideal gin�ω(I ) is minimally generated in K [x1, . . . , xn−t ],
since I is maximal-gdepth and depth(S/ gin�ω(I )) = depth(S/I ) = t . Hence, for
g ∈ U (where U is defined as in (2-1)) there exists a reduced Gröbner basis G of
g(I ) with respect to �ω such that in�ω( f ) ∈ K [x1, . . . , xn−t ] for every f ∈ G.

We show that inω′( f )∈ K [x1, . . . , xn−t ] for every ω′∈ω+cone(en−t+1, . . . , en)

and every f ∈G. To see this, we need to show that every term of f that contains one
of the xn−t+1, . . . , xn has larger ω′-weight than any term of f in K [x1, . . . , xn−t ].
By the choice of c, the ω′-weight of a term of f in K [x1, . . . , xn−t ] is bounded
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from above by cωn−t . But any of the xn−t+1, . . . , xn has weight strictly larger
than cωn−t . Since we already know that f contains a term in K [x1, . . . , xn−t ], we
have inω′( f ) ∈ K [x1, . . . , xn−t ]. By the choice of ω′, all terms in K [x1, . . . , xn−t ]

have the same ω-weight and ω′-weight. So inω′( f ) = inω( f ) for f ∈ G. Then by
Lemma 5.7, it follows that inω(g(I )) = inω′(g(I )) for g ∈ U . Hence, ω′ ∈ C̊ for
every ω′ ∈ ω+ cone(en−t+1, . . . , en). �

For maximal-gdepth ideals I , it is therefore possible to obtain depth(S/I ) from
the generic tropical variety of I , as shown in the following theorem.

Theorem 5.9. Let I ⊂ S = K [x1, . . . , xn] be a maximal-gdepth ideal such that
dim(S/I )= m and 0< depth(S/I ) < m− 1. Then

depth(S/I )=min{t ∈ N : gT(I ) refines Wm,t
n }.

Proof. Let T = depth(S/I ). By Proposition 5.6, we already know that gT(I )
refines Wm,T

n as a fan. On the other hand let t < T . Then we can choose ω ∈ Rn

such that

ω1 = · · · = ωn−m+1 < ωn−m+2, . . . , ωn−t < ωn−t+1, . . . , ωn

with ω ∈ C̊ for some maximal cone C of gT(I ) and ωn−t c < ω j for j > n − t ,
where c is chosen as in Proposition 5.8. Define ω′i = ωi for i 6= n− t and choose
ω′n−t >ωn−t+1. Since t < T , by Proposition 5.8 we know that ω′ ∈ C̊ as well. But
by definition of Wm,t

n , we know that ω and ω′ are in different open cones of Wm,t
n .

So gT(I ) cannot refine Wm,t
n as a fan. �

Remark 5.10. Note that it is also possible to recover depth(S/I ) from gT(I ) for ar-
bitrary graded ideals I ⊂ K [x1, . . . , xn] with dim(S/I )=m and 0< depth(S/I )<
m − 1 in the following way. Let depth(S/I ) = t and let � be the reverse lexico-
graphic term order. Let c be the maximal degree of a minimal generator of any
generic initial ideal with respect to a reverse lexicographic term order. Choose
ω ∈ C̊ for some maximal cone C of gT(I ) as in Lemma 4.8. We now show that
for this particular choice of ω, we have

ω+ cone(en−t+1, . . . , en)⊂ C̊,

but
ω+ cone(en−t , . . . , en) 6⊂ C̊ .

Since � and �ω coincide up to degree c, this implies gin�ω(I ) = gin�(I ). In
particular, depth(S/ gin�ω(I ))= depth(S/I ). By the same proof as in Proposition
5.8, we obtain that ω+ cone(en−t+1, . . . , en)⊂ C̊ .

Assume that ω+ cone(en−t , . . . , en) ⊂ C̊ . Let �′ be the reverse lexicographic
term order with x1 �

′
· · · �

′ xn−t−1 �
′ xn−t+1 �

′
· · · �

′ xn �
′ xn−t . Then we define

ω′ ∈ Rn by ω′i = ωi for i 6= n− t and ω′n−t > ωnc. By assumption, we know that
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ω′ ∈ C̊ . Since �ω′ and �′ coincide up to degree c by Lemma 4.8, we know that
gin�ω′ (I )= gin�′(I ). As in the proof of Theorem 4.9, we get that

gin�ω(I )= gin�(I ) 6= gin�′(I )= gin�ω′ (I ).

This implies inω(g(I )) 6= inω′(g(I )) for g∈U , which is a contradiction toω,ω′∈ C̊ .
Hence, ω+ cone(en−t , . . . , en) 6⊂ C̊ .

To obtain depth(S/I ) from gT(I ), we can therefore determine ω as described
above. Then we have

depth(S/I )=min{t : ω+ cone(en−t+1, . . . , en)⊂ C̊}

for this particular choice of ω.

As we saw in Proposition 5.6, the generic tropical variety of a maximal-gdepth
ideal with dim(S/I ) = m and depth(S/I ) = t with 0 < t < m − 1 always refines
Wm,t

n . It is also true that any of the fans Wm,t
n is the generic tropical variety of some

ideal, which we will see by focusing on a class of strongly stable ideals generated
in degree 2.

Proposition 5.11. Let 0< m < n and 0< t < m− 1. The ideal

I = (x1, . . . , xn−m−1, x2
n−m, xn−m xn−m+1, . . . , xn−m xn−t)⊂ S = K [x1, . . . , xn]

is a maximal-gdepth ideal with dim(S/I )= m, depth(S/I )= t and gT(I )=Wm,t
n

as a fan.

Proof. We first show that dim(S/I ) = m and depth(S/I ) = t . Since I is strongly
stable with respect to the reverse lexicographic order �, we have gin�(I ) = I .
So I has only one minimal prime by [Eisenbud 1995, Corollary 15.25], which is
(x1, . . . , xn−m). Thus, dim(S/I ) = m. To see that depth(S/I ) = t , we note again
that gin�(I )= I . By Proposition 4.3, it follows that depth(S/I )= n− (n− t)= t .
In particular, I is a maximal-gdepth ideal (see Example 5.2).

By Proposition 5.6, we know that every maximal cone C̊ of gT(I ) is contained
in some maximal cone D̊ of Wm,t

n . So it remains to show that for every ω,ω′ ∈ D̊
for some maximal cone D of Wm,t

n , we have inω(g(I ))= inω′(g(I )) for g ∈U . Let
D be the maximal cone of Wm,t

n given by

D̊ = {ω ∈ Rn
: ωi1 = · · · = ωin−m+1 < ωin−m+2, . . . , ωin−t < ωin−t+1, . . . , ωin }

for some permutation (i1, . . . , in) of {1, . . . , n}. Let ω ∈ D̊ be fixed, �ω be the
refinement of ω with respect to the reverse lexicographic order � with xin−m+2 �

· · · � xin � xi1 � · · · � xin−m+1 , and G be the reduced Gröbner basis of g(I ) with
respect to �ω for a fixed g ∈U . Note that xi1 �ω · · · �ω xin−m+1 and xik �ω xi j for
k ∈{n−m+2, . . . , n−t}, j ∈{n−t+1, . . . , n}. Let (q1, . . . , qn) be the permutation
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on {1, . . . , n} such that xq1 �ω xq2 �ω · · · �ω xqn . As in Example 5.2, we know
gin�ω(I )= φ(I ) for the K -algebra isomorphism φ induced by φ(x j )= xq j . So

gin�ω(I )= (xi1, . . . , xin−m−1, x2
in−m

, xin−m xin−m+1, . . . , xin−m xin−t ).

Hence, in�ω( f ) = xi j for some j ∈ {1, . . . , n−m − 1} or in�ω( f ) = xin−m xik for
some k ∈ {n − m, . . . , n − t} for every f ∈ G. Let ω′ ∈ D̊. We now show that
inω( f )= inω′( f ) for every f ∈ G.

If in�ω( f ) = xi j for some j ∈ {1, . . . , n−m − 1}, then by comparing weights,
inω( f ) is exactly the sum of all linear terms aik xik that appear in f , with aik ∈ K ,
k ∈ {1, . . . , n−m − 1}. But the same is true for inω′( f ), since ω and ω′ have the
same minimal coordinates. So in this case inω( f )= inω′( f ).

If in�ω( f ) = xin−m xik for some k ∈ {n −m, . . . , n − t}, we have to distinguish
two subcases.

Case 1. If k = n−m or k = n−m + 1, then inω( f ) is the sum of all monomials
in K [xn−m, xn−m+1] that appear in f . The same is true for inω′( f ) by the same
argument as before, so inω( f )= inω′( f ).

Case 2. For k > n−m+1, we need to show that certain terms cannot appear in f .
First note that no term that is divisible by any of xi1, . . . , xin−m−1 can appear in f ,
since f is part of a reduced Gröbner basis with respect to �ω, and such a term
would be divisible by a leading term of another element of G. For the same reason,
f cannot contain the monomial xin−m xis for s ∈ {n−m + 2, . . . , n− t}\{k}. Note
that x2

in−m+1
cannot appear in f either, since then wtω(x2

in−m+1
) < wtω(xin−m xik ).

Furthermore, assume that f contains the monomial xin−m+1 xis for some index s ∈
{n−m+2, . . . , n− t}\{k}. Then for v ∈Rn with vi1 = · · · = vin−m+1 <vis <vi j for
j ∈{n−m+2, . . . , n}\{k}, we know inv( f )= xin−m+1 xis is a monomial, since every
other possible term of f has greater v-weight. This is a contradiction to v ∈ gT(I ).
This that implies xin−m+1 xis for s ∈ {n−m + 2, . . . , n− t}\{k} does not appear in
f either.

With this we can determine the initial forms inω( f ) and inω′( f ). As we have
wtω(xin−m xik ) = wtω(xin−m+1 xik ), these two terms have to appear in inω( f ), if
xin−m+1 xik is a term of f . Assume there exists another term in inω( f ); then it
would have to be of the form xin−m xir or xin−m+1 xir for some r ∈ {n− t+1, . . . , n},
or of the form xia xib for some a, b∈ {n−m+2, . . . , n−t}. The former can’t occur,
since wtω(xin−m xir )=wtω(xin−m+1 xir ) >wtω(xin−m xik ). Assume that xia xib appears
in inω( f ) for some a, b ∈ {n−m + 2, . . . , n− t}; then of course wtω(xin−m xik ) =

wtω(xia xib). But we know that xia xib � xin−m xik , by the choice of �. This is a
contradiction to in�ω( f )= xin−m xik , so inω( f ) only contains the monomials xin−m xik

and xin−m+1 xik .
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The same is true for inω′( f ), as we will see. We show that in�ω′ ( f ) = xin−m xik

as well. By the same argument as above, it follows that only the terms xin−m xik and
xin−m+1 xik appear in inω′( f ), and thus inω( f ) = inω′( f ). Since wtω′(xin−m xir ) =

wtω′(xin−m+1 xir )>wtω′(xin−m xik ) for r ∈{n−t+1, . . . , n}, terms of this form cannot
occur as the leading term. Assume that in�ω′ ( f )= xia xib for some a, b∈{n−m+2,
. . . , n − t}. Then xia xib ∈ gin�ω′ (I ). But we know that dim(S/ gin�ω′ (I )) =
dim(S/I )=m and xi1 �ω′ · · · �ω′ xin−m �ω′ xi j for j > n−m. By Proposition 4.3,
this implies that gin�ω′ (I ) cannot contain a monomial that is not divisible by one
of xi1, . . . , xn−m , which is a contradiction to xia xib ∈ gin�ω′ (I ).

We have now shown that inω( f )= inω′( f ) for every f ∈ G. Hence, by Lemma
5.7, we have inω(g(I ))= inω′(g(I )) for g ∈U . Thus every maximal cone of Wm,t

n
is contained in a maximal cone of gT(I ). The claim now follows from this together
with Proposition 5.6. �

This of course raises the question of whether it is always true that gT(I )=Wm,t
n

for strongly stable ideals or even maximal-gdepth ideals I ⊂ S = K [x1, . . . , xn]

with dim(S/I ) = m and 0 < depth(S/I ) = t < m − 1. Computations with
gfan [Jensen 2009] indicate that this is not the case. For example, the ideal I =
(x2

1 , x1x2, x1x2
3 , x1x3x4) ⊂ K [x1, . . . , x5] is strongly stable with respect to x1 >

· · ·> x5 and has dimension dim(K [x1, . . . , x5]/I )=4 and depth(K [x1, . . . , x5]/I )
= 1 by Proposition 4.3. However, computing gT(I ) with gfan yields that gT(I )
has 60 maximal cones. Thus gT(I ) 6=W4,1

5 , which has only 30 maximal cones.

Remark 5.12. If depth(S/I )= 0, we cannot make a statement about the fan struc-
ture of the generic tropical variety of I . To see this, we can, for example, consider
the ideals

I = (x1, . . . , xn−m−1, x2
n−m, xn−m xn−m+1, . . . , xn−m xn)⊂ S = K [x1, . . . , xn]

for 0 < m < n, which are the ideals of Proposition 5.11 for t = 0. By the same
argument as before, we have dim(S/I ) = m and depth(S/I ) = 0. Hence, by
Corollary 3.8 we know that gT(I ) as a fan is a refinement of Wm

n . Using the
same arguments as in the proof of Proposition 5.11, we can show that inω(g(I ))=
inω′(g(I )) for ω,ω′ ∈ C̊ for any maximal cone C of Wm

n for every g∈U (as defined
in (2-1)). This shows that gT(I ) is equal to Wm

n as a fan.
On the other hand, we can find ideals with depth(S/I ) = 0 whose generic

tropical variety is a proper refinement of Wm
n . For example, for the ideal I =

(x2
1 , x1x2, x1x2

3 , x1x3x4)⊂ K [x1, . . . , x4] we have dim(K [x1, . . . , x4]/I )= 3 and
depth(K [x1, . . . , x4]/I ) = 0 by Proposition 4.3. If we compute gT(I ) with gfan,
however, we obtain a fan with 12 maximal cones that refines the fan W3

4 with only
6 maximal cones.
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6. Multiplicities

Let S = K [x1, . . . , xn] as before. For a finitely generated graded S-module M , we
denote by HM(t) the Hilbert series of M . Recall that the Hilbert series of 0 6= M
can be written as

HM(t)=
QM(t)
(1−t)d

,

where QM(t) ∈ Z[t, t−1
] is a Laurent polynomial with QM(1) 6= 0 and d is the

Krull dimension of M . It is well-known that QM(1) 6= 0, and this number is called
the multiplicity m(M) of M . As always, we set m(I ) = m(S/I ) = QS/I (1) for a
graded ideal I . We call this the multiplicity of I , although more precisely it is the
multiplicity of S/I .

To express the multiplicity of I in terms of the multiplicities of its minimal
primes, we use the following formula, known as the associativity formula for
multiplicities. Note that all minimal prime ideals of a graded ideal are graded
themselves. For a minimal prime ideal P of I , let `((S/I )P) denote the length of
the localization of the S-module S/I at P . We then have

m(I )=
∑

`((S/I )P)m(P),

with the sum taken over all minimal primes of I such that dim(S/I )= dim(S/P);
see [Vasconcelos 1998, Formula (9. 4)].

We define the multiplicity of a maximal cone in T(I ) in a slightly more general
setting than in [Dickenstein et al. 2007], where the multiplicity of a maximal cone
C in T (P) for a prime ideal P is defined as the sum of the multiplicities of all
monomial-free minimal primes of the initial ideal inC(P) corresponding to C . Note
that by [Gräbe 1993, Theorem 1], for every minimal prime Q of inC(P), we have
dim(S/Q) = dim(S/ inC(P)). For an arbitrary ideal I ⊂ S = K [x1, . . . , xn] this
is not true, and in our definition we consider only those prime ideals P of inC(I )
such that S/P has the same dimension as S/ inC(I ).

Definition 6.1. Let I ⊂ S = K [x1, . . . , xn] be a graded ideal and C be a maximal
cone of T(I ). Let J = inC(I ) be the initial ideal of I corresponding to C . Then
the intrinsic multiplicity m(C) of C is defined as m(C)=

∑
`((S/J )P), where the

sum is taken over all minimal primes P of J with dim(S/P)= dim(S/J ) that do
not contain a monomial.

Note that in general T(I ) need not be pure, so in general this definition of intrin-
sic multiplicities will not give rise to a tropical fan as defined in [Gathmann et al.
2009, Definition 2.8]. However, we only need this definition for generic tropical
varieties, and these are pure by Proposition 3.2. Even if I is a radical ideal and
T(I ) a pure fan, the multiplicity of the cones of T(I ) need not have anything to do
with the multiplicity of I , as the following example shows.
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Example 6.2. Let 0 ≤ k ≤ n and fk = x1 · · · xk(x1 + x2) ∈ K [x1, . . . , xn]. Then
m( fk)= deg( fk)= k+ 1. But we see that for I = ( fk), the tropical variety

T(I )= {ω ∈ Rn
: ω1 = ω2}

consists of only one cone. The corresponding initial ideal is ( fk). By factorization,
this has only one monomial-free minimal prime ideal, which is (x1 + x2). Since
`((S/( fk))(x1+x2)) = 1, the only cone of gT(I ) has multiplicity 1. So in general
it is impossible to obtain the multiplicity of the ideal from the multiplicity of the
maximal cones of the tropical variety, at least for ideals that are not prime.

In contrast, we can now prove that generically, the intrinsic multiplicities of the
maximal cones in the tropical variety are constant and equal to the multiplicity of
the ideal. For this, we first show that for a graded ideal I , the minimal prime ideals
of the initial ideals of I that correspond to the maximal cones in gT(I ) contain
no monomial. Recall that by U , we denote the Zariski-open subset of GLn(K ) as
defined in (2-1).

Proposition 6.3. Let I ⊂ S= K [x1, . . . , xn] be a graded ideal with dim(S/I )=m.
Let C be a maximal cone of gT(I ) and ω ∈ C̊. Then no minimal prime P of
inω(g(I )) with dim(S/P)= m contains a monomial for g ∈U.

Proof. Since gT(I ) =Wm
n as a set, we can assume ω1 = · · · = ωn−m+1 < ω j for

j > n − m + 1 without loss of generality. For g ∈ U , let inω(g(I )) ⊂ P be a
minimal prime ideal with dim(S/P) = m. Assume that P contains a monomial
xν . Since P is prime, this implies that P contains a variable xk for some k. We
choose {i1, . . . , in−m} ⊂ {1, . . . , n−m+ 1}\{k} and a term order � such that

xi1 � xi2 � · · · � xin−m � x j for j /∈ {i1, . . . , in−m}.

Then
gin�ω(I )= in�(inω(g(I )))⊂ in�(P),

with dim(S/ gin�ω(I )) = dim(S/ in�(P)) = m. Let Q be a minimal prime of
in�(P). Since the dimensions coincide, Q is also a minimal prime of gin�ω(I ).
But gin�ω(I ) has only one minimal prime, which is (xi1, . . . , xin−m ) by the choice
of the term order �; see for example [Eisenbud 1995, Corollary 15.25]. Hence, Q
does not contain xk . This is a contradiction to the fact that xk ∈ P , and therefore
xk ∈ in�(P)⊂ Q. Thus, P cannot contain a monomial. �

Remark 6.4. Note that together with [Römer and Schmitz 2009, Lemma 7.2],
where gT(I ) can be replaced by T(g(I )) for every g ∈U, and [Römer and Schmitz
2009, Corollary 3.2], this gives another, simpler proof that generic tropical varieties
exist as described in [Römer and Schmitz 2009].
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To use the associativity formula for multiplicities to show that m(C)=m(I ) in
generic tropical varieties, we need to show that generically all minimal primes of
inω(g(I )) have multiplicity 1. This we do by showing that they are linear, that is,
generated by linear forms.

Lemma 6.5. Let P ⊂ K [x1, . . . , xn] be a graded prime ideal with dim(S/P)= 1.
Then P is a linear ideal.

Proof. As P 6= (x1, . . . , xn), we know that V (P) 6= {0}. Let

0 6= a = (a1, . . . , an) ∈ V (P)⊂ K n.

Then V (Q) = K (a1, . . . , an) for the linear ideal Q = (ai x j − a j xi : i < j).
Since V (Q) ⊂ V (P) and both are prime, this implies P ⊂ Q ⊂ (x1, . . . , xn).
But dim(S/P)= 1 and Q 6= (x1, . . . , xn), hence P = Q is linear. �

Lemma 6.6. For a fixed t < n, let R = K [x1, . . . , xt ]. Let J ⊂ S = K [x1, . . . , xn]

be a graded ideal and J ⊂ P ⊂ S be a minimal prime of J with dim(S/J ) =
dim(S/P)= m. If (J ∩ R)S = J , then also (P ∩ R)S = P.

Proof. It is clear that (P ∩ R)S ⊂ P . As J ⊂ P , we know that J = (J ∩ R)S ⊂
(P ∩ R)S ⊂ P . Since P is prime, so are P ∩ R and (P ∩ R)S. But P is a minimal
prime of J , and hence (P ∩ R)S = P . �

With this we can prove that for I ⊂ K [x1, . . . , xn], the minimal primes of the
initial ideals corresponding to the maximal cones of gT(I ) of the same dimension
as S/I have multiplicity 1.

Proposition 6.7. Let I ⊂ S= K [x1, . . . , xn] be a graded ideal with dim(S/I )=m
and ω∈ C̊ for some maximal cone C of gT(I ). Then for every g ∈U, every minimal
prime P of inω(g(I )) with dim(S/P) = dim(S/ inω(g(I ))) is a linear ideal. In
particular, m(P)= 1.

Proof. Without loss of generality we can assume ω1 = · · · = ωn−m+1 < ω j for
j > n − m + 1. Let g ∈ U , and let inω(g(I )) ⊂ P be a minimal prime with
dim(S/P) = m. Let G = { f1, . . . , ft } be a reduced Gröbner basis of g(I ) with
respect to �ω for a term order � with x1 � · · · � xn . Then

(in�ω( fi ) : i = 1, . . . , t)= in�(inω(g(I )))= gin�ω(I ).

Note that x1 �ω · · · �ω xn−m+1 �ω x j for j > n−m+1. Let A⊂ {1, . . . , t} be the
set of all indices i such that in�ω( fi )∈ K [x1, . . . , xn−m]. We define J̃ = (in�ω( fi ) :

i ∈ A) to be the ideal generated by all initial forms of elements in G that are not
divisible by xn−m+1, . . . , xn . Since J̃ ⊂ gin�ω(I ), we know that dim(S/ J̃ ) ≥ m.
As gin�ω(I ) is a strongly stable ideal, by Proposition 4.3 there exists 1 ≤ k ≤ t
such that in�ω( fk) = xd

n−m for some d ∈ N. Hence, xd
n−m ∈ J̃ . But J̃ is also a
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strongly stable ideal, so again by Proposition 4.3 it follows that dim(S/ J̃ ) ≤ m.
Thus, dim(S/ J̃ )= m. We set J = (inω( fi ) : i ∈ A). Then we have

m = dim(S/ inω(g(I )))≤ dim(S/J )= dim(S/ in�(J ))≤ dim(S/ J̃ )= m,

where the first inequality holds because J ⊂ inω(g(I )), and the second because
J̃ ⊂ in�(J ). So dim(S/J )=m. Since J ⊂ inω(g(I ))⊂ P and all considered rings
have the same dimension, P is also a minimal prime ideal of J .

Let R be the polynomial ring K [x1, . . . , xn−m+1], so S = R[xn−m+2, . . . , xn].
For i ∈ A, every term of fi that has minimal ω-weight has to be a term in R by the
choice of ω. So we know that J = (J ∩ R)S. From Lemma 6.6 it now follows that
P = (P ∩ R)S. Let P̃ = P ∩ R. Then we have

S/P = S/(P̃ S)∼= R/P̃[xn−m+2, . . . , xn].

Hence, dim(S/P)= dim(R/P̃)+(m−1), so R/P̃ has dimension m−(m−1)= 1
in R. By Lemma 6.5, we know that P̃ is linear. So P = P̃ S is linear as well and
in particular, m(P)= 1. �

Theorem 6.8. Let I ⊂ S = K [x1, . . . , xn] be a graded ideal with dim(S/I ) = m.
Then for g ∈ U and any maximal cone C of T(g(I )), we have m(C) = m(I ), so
the intrinsic multiplicity of every maximal cone equals the multiplicity of I .

Proof. First note that the Hilbert series and thus the multiplicity of I does not
change if one passes to any initial ideal of I ; see for example [Eisenbud 1995,
Theorem 15.26]. Moreover, the Hilbert series is of course not affected by a coor-
dinate change.

By Proposition 6.3, for g ∈ U and any maximal cone C of T(g(I )) = gT(I ),
we know that every minimal prime P of inC(g(I )) with dim(S/P) = m does not
contain a monomial. Moreover, by Proposition 6.7, every such minimal prime P
of inC(g(I )) has multiplicity m(P) = 1. Thus with the associativity formula for
multiplicities, we get

m(C)=
∑

`((S/ inC(g(I )))P)=
∑

`((S/ inC(g(I )))P)m(P)

= m(inC(g(I )))= m(I ),

as the sum is taken over all minimal primes of inC(g(I )) with dim(S/P)= m. �

Remark 6.9. The fan gT(I ) equipped with the weights m(C) for the maximal
cones C ∈ gT(I ) is a tropical fan in the sense of [Gathmann et al. 2009, Defi-
nition 2.8]. It can be shown directly by elementary methods that the balancing
condition is fulfilled for each cone of dimension dim(S/I )−1. See [Speyer 2005,
Theorem 2.5.1] for a proof in a more general case.
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We briefly explain [Dickenstein et al. 2007, Example (1)] in our case. This
example states that for an irreducible polynomial f ∈ K [x1, . . . , xn], the intrinsic
multiplicity m(C) of a given cone C of T ( f ) is exactly the lattice length of the
edge corresponding to C in the Newton polytope of f . Here, the lattice length of
an edge is defined as the number of integer points on this edge minus 1.

Example 6.10. Let 0 6= f ∈K [x1, . . . , xn] be a homogeneous polynomial of degree
t . Then every maximal cone of gT( f ) has multiplicity t , as m(g( f ))=deg g( f )= t
for every g ∈ U . Let N (g( f )) be the Newton polytope of g( f ) for g ∈ U . By
[Römer and Schmitz 2009, Lemma 8.5], for g ∈U we know that

N (g( f ))= conv(te1, . . . , ten),

where e1, . . . , en are the standard basis vectors in Rn . Now a maximal cone C of
gT( f ) is given by

C = {ω ∈ Rn
: ωi1 = ωi2 ≤ ωi j for j 6= 1, 2}

for some coordinates i1, i2. This corresponds to the edge conv(tei1, tei2) of N (g( f ))
for g ∈ U . This edge has lattice length t , that is, |{Zn

∩ conv(tei1, tei2)}| = t + 1.
So the lattice length coincides with the intrinsic multiplicity m(C).
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